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Introduction

W indows Internals, Seventh Edition is intended for advanced computer professionals 
(developers, security researchers, and system administrators) who want to under-

stand how the core components of the Microsoft Windows 10 and Windows Server 2016 
operating systems work internally. With this knowledge, developers can better com-
prehend the rationale behind design choices when building applications specific to the 
Windows platform. Such knowledge can also help developers debug complex problems. 
System administrators can benefit from this information as well, because understand-
ing how the operating system works “under the hood” facilitates an understanding of 
the performance behavior of the system and makes troubleshooting system problems 
much easier when things go wrong. Security researchers can figure out how software 
applications and the operating system can misbehave and be misused, causing undesir-
able behavior, while also understanding the mitigations and security features modern 
Windows offers against such scenarios. After reading this book, you should have a better 
understanding of how Windows works and why it behaves as it does.

History of the book

This is the seventh edition of a book that was originally called Inside Windows NT (Micro-
soft Press, 1992), written by Helen Custer (prior to the initial release of Microsoft Windows 
NT 3.1). Inside Windows NT was the first book ever published about Windows NT and 
provided key insights into the architecture and design of the system. Inside Windows NT, 
Second Edition (Microsoft Press, 1998) was written by David Solomon. It updated the origi-
nal book to cover Windows NT 4.0 and had a greatly increased level of technical depth.

Inside Windows 2000, Third Edition (Microsoft Press, 2000) was authored by David  
Solomon and Mark Russinovich. It added many new topics, such as startup and shut-
down, service internals, registry internals, file-system drivers, and networking. It also 
covered kernel changes in Windows 2000, such as the Windows Driver Model (WDM), 
Plug and Play, power management, Windows Management Instrumentation (WMI),  
encryption, the job object, and Terminal Services. Windows Internals, Fourth Edition 
(Microsoft Press, 2004) was the Windows XP and Windows Server 2003 update and 
added more content focused on helping IT professionals make use of their knowledge 
of Windows internals, such as using key tools from Windows SysInternals and analyzing 
crash dumps.

Windows Internals, Fifth Edition (Microsoft Press, 2009) was the update for Windows 
Vista and Windows Server 2008. It saw Mark Russinovich move on to a full-time job at 
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Microsoft (where he is now the Azure CTO) and the addition of a new co-author, Alex  
Ionescu. New content included the image loader, user-mode debugging facility, Advanced 
Local Procedure Call (ALPC), and Hyper-V. The next release, Windows Internals, Sixth 
Edition (Microsoft Press, 2012), was fully updated to address the many kernel changes 
in Windows 7 and Windows Server 2008 R2, with many new hands-on experiments to 
reflect changes in the tools as well.

Seventh edition changes

Since this book’s last update, Windows has gone through several releases, coming up 
to Windows 10 and Windows Server 2016. Windows 10 itself, being the current going-
forward name for Windows, has had several releases since its initial release to manufac-
turing (RTM). Each is labeled with a four-digit version number indicating the year and 
month of release, such as Windows 10, version 1703, which was completed in March 2017. 
This implies that Windows has gone through at least six versions since Windows 7 (at the 
time of this writing).

Starting with Windows 8, Microsoft began a process of OS convergence, which is 
beneficial from a development perspective as well as for the Windows engineering team. 
Windows 8 and Windows Phone 8 had converged kernels, with modern app convergence 
arriving in Windows 8.1 and Windows Phone 8.1. The convergence story was complete 
with Windows 10, which runs on desktops/laptops, servers, XBOX One, phones (Windows 
Mobile 10), HoloLens, and various Internet of Things (IoT) devices.

With this grand unification completed, the time was right for a new edition of the 
series, which could now finally catch up with almost half a decade of changes in what will 
now be a more stable kernel architecture going forward. As such, this latest book covers 
aspects of Windows from Windows 8 to Windows 10, version 1703. Additionally, this edi-
tion welcomes Pavel Yosifovich as its new co-author.

Hands-on experiments

Even without access to the Windows source code, you can glean much about Windows 
internals from the kernel debugger, tools from SysInternals, and the tools developed 
specifically for this book. When a tool can be used to expose or demonstrate some as-
pect of the internal behavior of Windows, the steps for trying the tool yourself are listed 
in special “EXPERIMENT” sections. These appear throughout the book, and we encourage 
you to try them as you’re reading. Seeing visible proof of how Windows works internally 
will make much more of an impression on you than just reading about it will.
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Topics not covered

Windows is a large and complex operating system. This book doesn’t cover everything 
relevant to Windows internals but instead focuses on the base system components. For 
example, this book doesn’t describe COM+, the Windows distributed object-oriented 
programming infrastructure, or the Microsoft .NET Framework, the foundation of man-
aged code applications. Because this is an “internals” book and not a user, programming, 
or system-administration book, it doesn’t describe how to use, program, or configure 
Windows.

A warning and a caveat

Because this book describes undocumented behavior of the internal architecture and the 
operation of the Windows operating system (such as internal kernel structures and func-
tions), this content is subject to change between releases. 

By “subject to change,” we don’t necessarily mean that details described in this book 
will change between releases, but you can’t count on them not changing. Any software 
that uses these undocumented interfaces, or insider knowledge about the operating 
system, might not work on future releases of Windows. Even worse, software that runs 
in kernel mode (such as device drivers) and uses these undocumented interfaces might 
experience a system crash when running on a newer release of Windows, resulting in 
potential loss of data to users of such software. 

In short, you should never use any internal Windows functionality, registry key, 
behavior, API, or other undocumented detail mentioned in this book during the devel-
opment of any kind of software designed for end-user systems, or for any other purpose 
other than research and documentation. Always check with the Microsoft Software 
Development Network (MSDN) for official documentation on a particular topic first.

Assumptions about you

The book assumes the reader is comfortable with working on Windows at a power-user 
level, and has a basic understanding of operating system and hardware concepts, such  
as CPU registers, memory, processes, and threads. Basic understanding of functions, 
pointers, and similar C programming language constructs is beneficial in some sections.
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Organization of this book

The book is divided into two parts (as was the sixth edition), the first of which you’re 
holding in your hands.

 ■ Chapter 1, “Concepts and tools,” provides a general introduction to Windows 
internals concepts and introduces the main tools used throughout the book. It’s 
critical to read this chapter first, as it provides the necessary background needed 
for the rest of the book.

 ■ Chapter 2, “System architecture,” shows the architecture and main components 
that comprise Windows and discusses them in some depth. Several of these con-
cepts are dealt with in greater detail in subsequent chapters.

 ■ Chapter 3, “Processes and jobs,” details how processes are implemented in  
Windows and the various ways of manipulating them. Jobs are also discussed  
as a means for controlling a set of processes and enabling Windows Container 
support.

 ■ Chapter 4, “Threads,” details how threads are managed, scheduled, and other-
wise manipulated in Windows.

 ■ Chapter 5, “Memory management,” shows how the memory manager uses physi-
cal and virtual memory, and the various ways that memory can be manipulated 
and used by processes and drivers alike.

 ■ Chapter 6, “I/O system,” shows how the I/O system in Windows works and 
integrates with device drivers to provide the mechanisms for working with I/O 
peripherals.

 ■ Chapter 7, “Security,” details the various security mechanisms built into Windows, 
including mitigations that are now part of the system to combat exploits.

Conventions

The following conventions are used in this book:

 ■ Boldface type is used to indicate text that you type as well as interface items that 
you are instructed to click or buttons that you are instructed to press.

 ■ Italic type is used to indicate new terms.

 ■ Code elements appear in a monospaced font.
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 ■ The first letters of the names of dialog boxes and dialog box elements are  
capitalized—for example, the Save As dialog box.

 ■ Keyboard shortcuts are indicated by a plus sign (+) separating the key names.  
For example, Ctrl+Alt+Delete mean that you press Ctrl, Alt, and Delete keys at  
the same time.

About the companion content

We have included companion content to enrich your learning experience. The companion 
content for this book can be downloaded from the following page:

https://aka.ms/winint7ed/downloads

We have also placed the source code for the tools written specifically for this book at 
https://github.com/zodiacon/windowsinternals.
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C H A P T E R  1

Concepts and tools

In this chapter, we’ll introduce the key Microsoft Windows operating system (OS) concepts and terms 
we’ll be using throughout this book, such as the Windows API, processes, threads, virtual memory, 

kernel mode and user mode, objects, handles, security, and the registry. We’ll also introduce the tools 
that you can use to explore Windows internals, such as the kernel debugger, the Performance Monitor, 
and key tools from Windows Sysinternals (http://www.microsoft.com/technet/sysinternals). In addition, 
we’ll explain how you can use the Windows Driver Kit (WDK) and the Windows Software Development 
Kit (SDK) as resources for finding further information on Windows internals.

Be sure that you understand everything in this chapter; the remainder of the book is written assum-
ing that you do.

Windows operating system versions

This book covers the most recent version of the Microsoft Windows client and server operating  
systems: Windows 10 (32-bit on x86 and ARM, and 64-bit version on x64) and Windows Server 2012  
R2 (which exists as 64-bit version only). Unless specifically stated, the text applies to all versions. As  
background information, Table 1-1 lists the Windows product names, their internal version number,  
and their release date.

TABLE 1-1 Windows operating system releases

Product Name Internal Version Number Release Date

Windows NT 3.1 3.1 July 1993

Windows NT 3.5 3.5 September 1994

Windows NT 3.51 3.51 May 1995

Windows NT 4.0 4.0 July 1996

Windows 2000 5.0 December 1999

Windows XP 5.1 August 2001

Windows Server 2003 5.2 March 2003

http://www.microsoft.com/technet/sysinternals
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Product Name Internal Version Number Release Date  (continued)

Windows Server 2003 R2 5.2 December 2005

Windows Vista 6.0 January 2007

Windows Server 2008 6.0 (Service Pack 1) March 2008

Windows 7 6.1 October 2009

Windows Server 2008 R2 6.1 October 2009

Windows 8 6.2 October 2012

Windows Server 2012 6.2 October 2012

Windows 8.1 6.3 October 2013

Windows Server 2012 R2 6.3 October 2013

Windows 10 10.0 (build 10240) July 2015

Windows 10 version 1511 10.0 (build 10586) November 2015

Windows 10 version 1607 
(Anniversary Update)

10.0 (build 14393) July 2016

Windows Server 2016 10.0 (build 14393) October 2016

The version numbers seem to have strayed from a well-defined path starting with Windows 7. Its 
version number was 6.1 and not 7. Because of the popularity of Windows XP, when Windows Vista 
bumped the version number to 6.0, some applications failed to detect the correct (OS) because devel-
opers checked major numbers greater than or equal to 5 and minor numbers greater than or equal to 1, 
which was not the case with Windows Vista. Having learned the lesson, Microsoft chose to leave the 
major version number as 6 and the minor version number as 2 (greater than 1) to minimize such incom-
patibilities. However, with Windows 10, the version number has been updated to 10.0.

Note Starting with Windows 8, the GetVersionEx Windows API function returns the OS ver-
sion number as 6.2 (Windows 8) by default, regardless of the actual OS. (The function is also 
declared as deprecated.) This is done to minimize compatibility issues but also as an indica-
tor that checking for the OS version is not the best approach in most cases. This is because 
some components can be installed out of band, without coinciding with an official Windows 
release. Still, if you need the actual OS version, you can obtain it indirectly by using the 
VerifyVersionInfo function or the newer version helper APIs, such as IsWindows8OrGreater, 
IsWindows8Point1OrGreater, IsWindows10OrGreater, IsWindowsServer, and similar. Also, OS 
compatibility can be indicated in the executable’s manifest, which changes the results of this 
function. (See Chapter 8, “System mechanisms,” in Windows Internals Part 2 for details.)
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You can view the Windows version information using the ver command-line tool or graphically by 
running winver. Here’s a screenshot of winver on Windows 10 Enterprise version 1511:

The graphic also shows the Windows build number (10586.218 in this example), which could be use-
ful for Windows Insiders (those who registered for getting earlier previews of Windows). It’s also helpful 
for managing security updates because it shows which patch level is installed.

Windows 10 and future Windows versions
With Windows 10, Microsoft declared it will update Windows at a faster cadence than before. There  
will not be an official “Windows 11”; instead, Windows Update (or another enterprise servicing model) 
will update the existing Windows 10 to a new version. At the time of writing, two such updates have  
occurred, in November 2015 (also known as version 1511, referring to the year and month of servicing) 
and July 2016 (version 1607, also known by the marketing name of Anniversary Update).

Note Internally, Microsoft still builds Windows versions in waves. For example, the initial 
Windows 10 release was code-named Threshold 1, while the November 2015 update was 
called Threshold 2. The next three phases of update are called Redstone 1 (version 1607) to 
be followed by Redstone 2 and Redstone 3.

Windows 10 and OneCore
Over the years, several flavors of Windows have evolved. Apart from mainstream Windows running on 
PCs, there is the Xbox 360 game console that runs a fork off Windows 2000. Windows Phone 7 runs 
a variant based on Windows CE (Microsoft’s real-time OS). Maintaining and extending all these code 
bases is clearly difficult. Therefore, Microsoft decided to converge the kernels and base platform sup-
port binaries into one. This started with Windows 8 and Windows Phone 8 having a shared kernel  
(and Windows 8.1 and Windows Phone 8.1 having a converged Windows Runtime API). With Windows 10, 
the convergence is complete; this shared platform is known as OneCore, and it runs on PCs, phones, the 
Xbox One game console, the HoloLens and Internet of Things (IoT) devices such as the Raspberry Pi 2.
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Clearly, all these device form factors are very different from one another. Some features simply don’t 
exist on some devices. For example, supporting a mouse or a physical keyboard on a HoloLens device 
may not make sense, so you can’t expect those parts to be present on the Windows 10 version for such 
a device. But the kernel, drivers, and base platform binaries are essentially the same (with registry-based 
and/or policy-based settings where they make sense for performance or other reasons). You’ll see one 
such policy example in the section “API Sets” in Chapter 3, “Processes and jobs.”

This book delves into the internals of the OneCore kernel, on whatever device it’s running on. The 
experiments in the book, however, are targeted to a desktop machine with a mouse and keyboard 
mostly for convenience, as it’s not easy (and sometimes officially impossible) to perform the experi-
ments on other devices such as phones or the Xbox One.

Foundation concepts and terms

The following sections introduce the most fundamental concepts in Windows, which are essential to 
understanding the topics discussed in the rest of the book. Many of the concepts such as processes, 
threads, and virtual memory are discussed at length in subsequent chapters.

Windows API
The Windows application programming interface (API) is the user-mode system programming inter-
face to the Windows OS family. Prior to the introduction of 64-bit versions of Windows, the program-
ming interface to the 32-bit versions of the Windows OS was called the Win32 API to distinguish it from 
the original 16-bit Windows API, which was the programming interface to the original 16-bit versions 
of Windows. In this book, the term Windows API refers to both the 32-bit and 64-bit programming 
interfaces to Windows.

Note We sometimes use the term Win32 API in lieu of Windows API. Either way, it still refers 
to the 32-bit and 64-bit variants.

Note The Windows API is described in the Windows SDK documentation. (See the section 
“Windows Software Development Kit” later in this chapter.) This documentation is available 
free online at https://developer.microsoft.com/en-us/windows/desktop/develop. It is also in-
cluded with all subscription levels to the Microsoft Developer Network (MSDN), Microsoft’s 
support program for developers. An excellent description of how to program the Windows 
base API is in the book Windows via C/C++, Fifth Edition by Jeffrey Richter and Christophe 
Nasarre (Microsoft Press, 2007).

https://www.developer.microsoft.com/en-us/windows/desktop/develop


 CHAPTER 1 Concepts and tools 5

Windows API flavors
The Windows API originally consisted of C-style functions only. Today, thousands of such functions exist 
for developers to use. C was the natural choice at the time of the inception of Windows because it was 
the lowest common denominator (that is, it could be accessed from other languages as well) and was 
low level enough to expose OS services. The downside was the sheer number of functions coupled with 
the lack of naming consistency and logical groupings (for example, C++ namespaces). One outcome of 
these difficulties resulted in some newer APIs using a different API mechanism: the Component Object 
Model (COM).

COM was originally created to enable Microsoft Office applications to communicate and exchange 
data between documents (such as embedding an Excel chart inside a Word document or a PowerPoint 
presentation). This ability is called Object Linking and Embedding (OLE). OLE was originally implement-
ed using an old Windows messaging mechanism called Dynamic Data Exchange (DDE). DDE was inher-
ently limited, which is why a new way of communication was developed: COM. In fact, COM initially was 
called OLE 2, released to the public circa 1993.

COM is based on two foundational principles. First, clients communicate with objects (sometimes 
called COM server objects) through interfaces—well-defined contracts with a set of logically related 
methods grouped under the virtual table dispatch mechanism, which is also a common way for C++ 
compilers to implement virtual functions dispatch. This results in binary compatibility and removal of 
compiler name mangling issues. Consequently, it is possible to call these methods from many languages 
(and compilers), such as C, C++, Visual Basic, .NET languages, Delphi and others. The second principle is 
that component implementation is loaded dynamically rather than being statically linked to the client.

The term COM server typically refers to a Dynamic Link Library (DLL) or an executable (EXE) where 
the COM classes are implemented. COM has other important features related to security, cross-process 
marshalling, threading model, and more. A comprehensive treatment of COM is beyond the scope of 
this book; an excellent treatment of COM can be found in the book Essential COM by Don Box (Addison- 
Wesley, 1998).

Note Examples of APIs accessed through COM include DirectShow, Windows Media 
Foundation, DirectX, DirectComposition, Windows Imaging Component (WIC), and the 
Background Intelligent Transfer Service (BITS).

The Windows Runtime
Windows 8 introduced a new API and supporting runtime called the Windows Runtime (sometimes ab-
breviated WinRT, not to be confused with Windows RT, the discontinued ARM-based Windows OS ver-
sion). The Windows Runtime consists of platform services aimed particularly at app developers for the 
so-called Windows Apps (formerly known as Metro Apps, Modern Apps, Immersive Apps, and Windows 
Store Apps). Windows Apps may target multiple device form factors, from small IoT devices to phones, 
tablets, laptops, desktops, and even devices such as the Xbox One and Microsoft HoloLens.
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From an API perspective, WinRT is built on top of COM, adding various extensions to the base COM 
infrastructure. For example, complete type metadata is available in WinRT (stored in WINMD files and 
based on the .NET metadata format) that extends a similar concept in COM known as type libraries. 
From an API design perspective, it’s much more cohesive than classic Windows API functions, with 
namespace hierarchies, consistent naming, and programmatic patterns. 

Windows Apps are subject to new rules, unlike the normal Windows applications (now called 
Windows desktop applications or Classic Windows applications). These rules are described in Chapter 9, 
“Management mechanisms,” in Part 2.

The relationship between the various APIs and applications is not straightforward. Desktop apps can  
use a subset of the WinRT APIs. Conversely, Windows Apps can use a subset of Win32 and COM APIs. Refer 
to the MSDN documentation for the details of which APIs are available from each application platform. 
Note, however, that at the basic binary level, the WinRT API is still based on top of the legacy Windows 
binaries and APIs, even though the availability of certain APIs may not be documented or supported. It is 
not a new “native” API for the system, much like .NET still leverages the traditional Windows API.

Applications written in C++, C# (or other .NET languages), and JavaScript can consume WinRT APIs 
easily thanks to language projections developed for these platforms. For C++, Microsoft created a 
non-standard extension known as C++/CX that makes it simpler to consume WinRT types. The normal 
COM interop layer for .NET (with some supporting run-time extensions) allows any .NET language to 
consume WinRT APIs naturally and simply just as if it were pure .NET. For JavaScript developers, an 
extension called WinJS was developed for accessing WinRT, although JavaScript developers must still 
use HTML to build their app’s user interface.

Note Even though HTML can be used in Windows Apps, it’s still a local client app and not a 
web application retrieved from a web server.

The .NET Framework
The .NET Framework is part of Windows. Table 1-2 shows the .NET Framework version installed as part 
of a given Windows version. However, a later version of the .NET Framework can be installed on older 
OS versions.

TABLE 1-2 Default .NET Framework installations on Windows

Windows Version .NET Framework Version

Windows 8 4.5

Windows 8.1 4.5.1

Windows 10 4.6

Windows 10 version 1511 4.6.1

Windows 10 version 1607 4.6.2
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The .NET Framework consists of two major components:

 ■ The Common Language Runtime (CLR) This is the run-time engine for .NET and includes a 
Just In Time (JIT) compiler that translates Common Intermediate Language (CIL) instructions to 
the underlying hardware CPU machine language, a garbage collector, type verification, code 
access security, and more. It’s implemented as a COM in-process server (DLL) and uses various 
facilities provided by the Windows API.

 ■ The .NET Framework Class Library (FCL) This is a large collection of types that implement 
functionality typically needed by client and server applications, such as user interface services, 
networking, database access, and much more. 

By offering these features and others, including new high-level programming languages (C#, Visual 
Basic, F#) and supporting tools, the .NET Framework improves developer productivity and increases 
safety and reliability within applications that target it. Figure 1-1 shows the relationship between the 
.NET Framework and the OS.

FIGURE 1-1 This diagram shows the relationship between .NET and the Windows OS.

Services, functions, and routines
Several terms in the Windows user and programming documentation have different meanings in dif-
ferent contexts. For example, the word service can refer to a callable routine in the OS, a device driver, 
or a server process. The following list describes what certain terms mean in this book:

 ■ Windows API functions These are documented, callable subroutines in the Windows API. 
Examples include CreateProcess, CreateFile, and GetMessage.

 ■ Native system services (or system calls) These are the undocumented, underlying services 
in the OS that are callable from user mode. For example, NtCreateUserProcess is the internal 
system service the Windows CreateProcess function calls to create a new process.

 ■ Kernel support functions (or routines) These are the subroutines inside the Windows 
OS that can be called only from kernel mode (defined later in this chapter). For example,  
ExAllocatePoolWithTag is the routine that device drivers call to allocate memory from the 
Windows system heaps (called pools).
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 ■ Windows services These are processes started by the Windows service control manager. For 
example, the Task Scheduler service runs in a user-mode process that supports the schtasks 
command (which is similar to the UNIX commands at and cron). (Note that although the regis-
try defines Windows device drivers as “services,” they are not referred to as such in this book.)

 ■ Dynamic link libraries (DLLs) These are callable subroutines linked together as a binary file 
that can be dynamically loaded by applications that use the subroutines. Examples include  
Msvcrt.dll (the C run-time library) and Kernel32.dll (one of the Windows API subsystem libraries). 
Windows user-mode components and applications use DLLs extensively. The advantage DLLs 
provide over static libraries is that applications can share DLLs, and Windows ensures that there 
is only one in-memory copy of a DLL’s code among the applications that are referencing it. 
Note that library .NET assemblies are compiled as DLLs but without any unmanaged exported 
subroutines. Instead, the CLR parses compiled metadata to access the corresponding types and 
members.

Processes
Although programs and processes appear similar on the surface, they are fundamentally different. A 
program is a static sequence of instructions, whereas a process is a container for a set of resources used 
when executing the instance of the program. At the highest level of abstraction, a Windows process 
comprises the following:

 ■ A private virtual address space This is a set of virtual memory addresses that the process 
can use.

 ■ An executable program This defines initial code and data and is mapped into the process’s 
virtual address space.

 ■ A list of open handles These map to various system resources such as semaphores, synchro-
nization objects, and files that are accessible to all threads in the process.

 ■ A security context This is an access token that identifies the user, security groups, privileges, 
attributes, claims, capabilities, User Account Control (UAC) virtualization state, session, and lim-
ited user account state associated with the process, as well as the AppContainer identifier and 
its related sandboxing information.

 ■ A process ID This is a unique identifier, which is internally part of an identifier called a client ID.

 ■ At least one thread of execution Although an “empty” process is possible, it is (mostly) not 
useful.

A number of tools for viewing (and modifying) processes and process information are available. The 
following experiments illustrate the various views of process information you can obtain with some of 
these tools. While many of these tools are included within Windows itself, and within the Debugging 
Tools for Windows and the Windows SDK, others are stand-alone tools from Sysinternals. Many of 
these tools show overlapping subsets of the core process and thread information, sometimes identified 
by different names.
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Probably the most widely used tool to examine process activity is Task Manager. (Because there is 
no such thing as a “task” in the Windows kernel, the name of this tool, Task Manager, is a bit odd.) The 
following experiment shows some of the basic features of Task Manager.

EXPERIMENT: Viewing process information with Task Manager
The built-in Windows Task Manager provides a quick list of the processes on the system. You can 
start Task Manager in one of four ways:

 ■ Press Ctrl+Shift+Esc.

 ■ Right-click the taskbar and click Start Task Manager.

 ■ Press Ctrl+Alt+Delete and click the Start Task Manager button.

 ■ Start the executable Taskmgr.exe.

The first time Task Manager shows up, it’s in “less details” mode, where only processes that 
have a visible top-level window are shown, as in the following screenshot:

There’s little you can do from this window, so click the More Details expander button to show 
Task Manager’s full view. The Processes tab should be selected by default:

The Processes tab shows the list of processes, with four columns: CPU, Memory, Disk, and Network. 
You can show more columns by right-clicking the header. Available columns are Process (Image) 
Name, Process ID, Type, Status, Publisher, and Command Line. Some processes can be further 
expanded, showing top-level visible windows created by the process.
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To get even more process details, click the Details tab. Or, right-click a process and choose  
Go to Details to switch to the Details tab and select that specific process.

Note The Windows 7 Task Manager’s Processes tab is roughly equivalent 
to Windows 8+ Task Manager’s Details tab. The Windows 7 Task Manager’s 
Applications tab shows top-level visible Windows and not processes per se. 
This information is now contained in the Processes tab of the new Windows 8+ 
Task Manager.

The Details tab shows processes as well, but does so in a more compact manner. It does not show 
windows created by processes, and provides more diverse information columns.

Notice that processes are identified by the name of the image of which they are an instance. Un-
like some objects in Windows, processes can’t be given global names. To display additional details, 
right-click the header row and click Select Columns. A list of columns appears as shown here:
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Some key columns are as follows:

 ■ Threads The Threads column shows the number of threads in each process. This num-
ber should normally be at least one, as there’s no direct way of creating a process with no 
threads (and such a process is pretty useless anyway). If a process shows zero threads, it 
usually means the process can’t be deleted for some reason—probably because of some 
buggy driver code.

 ■ Handles The Handles column shows the number of handles to kernel objects opened by 
threads running within the process. (This is described later in this chapter and in detail in 
Chapter 8 in Part 2.)

 ■ Status The Status column is a little bit tricky. For processes that don’t have any user 
interface, Running should be the normal case, although the threads may all be waiting for 
something, such as a kernel object being signaled or some I/O operation to complete. The 
other option for such processes is Suspended, and this happens if all the threads in the 
process are in a suspended state. This is unlikely to occur by the process itself, but can be 
achieved programmatically by calling the undocumented NtSuspendProcess native API 
on the process, typically through a tool (for example, Process Explorer, described later, has 
such an option). For processes that create a user interface, the Running status value means 
that the UI is responsive. In other words, the thread that created the window(s) is waiting for 
UI input (technically, the message queue associated with the thread). The Suspended state 
is possible just like in the non-UI case, but for Windows Apps (those hosting the Windows 
Runtime), Suspended normally occurs when the app loses its foreground status by being 
minimized by the user. Such processes are suspended after 5 seconds so that they don’t 
consume any CPU or networking resources, thus allowing the new foreground app to get all 
machine resources. This is especially important for battery-powered devices, such as tablets 
and phones. This and other related mechanisms are described more fully in Chapter 9 in 
Part 2. The third possible value for Status is Not Responding. This can happen if a thread 
within the process that created the user interface has not checked its message queue for 
UI-related activity for at least 5 seconds. The process (actually the thread that owns the win-
dow) may be busy doing some CPU-intensive work or waiting on something else entirely 
(such as an I/O operation to complete). Either way, the UI freezes up, and Windows indicates 
that by fading the window(s) in question and appending “(Not Responding)” to its title.

Each process also points to its parent or creator process (which may be, but is not always, its creator 
process). If the parent no longer exists, this information is not updated. Therefore, it is possible for a 
process to refer to a nonexistent parent. This is not a problem, because nothing relies on this informa-
tion being kept current. In the case of the Process Explorer tool, the start time of the parent process 
is taken into account to avoid attaching a child process based on a reused process ID. The following 
experiment illustrates this behavior.
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 Note Why would a parent process not be the same as its creator? In certain cases, some 
processes that appear to be created by a certain user application might involve the help of 
a broker, or helper, process, which is responsible for calling the process creation API. In such 
cases, it would be confusing (and sometimes incorrect, if handle or address space inheritance 
is needed) to display the broker process as the creator, and a “re-parenting” is done. You’ll 
learn about one such example in Chapter 7, “Security.”

EXPERIMENT: Viewing the process tree
One unique attribute about a process that most tools don’t display is the parent or creator process 
ID. You can retrieve this value with the Performance Monitor (or programmatically) by querying 
the Creating Process ID. You can use the Tlist.exe tool in the Debugging Tools for Windows to 
show the process tree by using the /t switch. Here’s an example of output from tlist /t:

System Process (0) 
System (4) 
  smss.exe (360) 
csrss.exe (460) 
wininit.exe (524) 
  services.exe (648) 
    svchost.exe (736) 
      unsecapp.exe (2516) 
      WmiPrvSE.exe (2860) 
      WmiPrvSE.exe (2512) 
      RuntimeBroker.exe (3104)  
      SkypeHost.exe (2776) 
      ShellExperienceHost.exe (3760) Windows Shell Experience Host 
      ApplicationFrameHost.exe (2848) OleMainThreadWndName 
      SearchUI.exe (3504) Cortana 
      WmiPrvSE.exe (1576) 
      TiWorker.exe (6032) 
      wuapihost.exe (5088) 
    svchost.exe (788) 
    svchost.exe (932) 
    svchost.exe (960) 
    svchost.exe (976) 
    svchost.exe (68) 
    svchost.exe (380) 
    VSSVC.exe (1124) 
    svchost.exe (1176) 
      sihost.exe (3664)  
      taskhostw.exe (3032) Task Host Window 
    svchost.exe (1212) 
    svchost.exe (1636) 
    spoolsv.exe (1644) 
    svchost.exe (1936) 
    OfficeClickToRun.exe (1324) 
    MSOIDSVC.EXE (1256) 
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      MSOIDSVCM.EXE (2264) 
    MBAMAgent.exe (2072) 
    MsMpEng.exe (2116) 
    SearchIndexer.exe (1000) 
      SearchProtocolHost.exe (824) 
    svchost.exe (3328) 
    svchost.exe (3428) 
    svchost.exe (4400) 
    svchost.exe (4360) 
    svchost.exe (3720) 
    TrustedInstaller.exe (6052) 
  lsass.exe (664) 
csrss.exe (536)  
winlogon.exe (600) 
  dwm.exe (1100) DWM Notification Window 
explorer.exe (3148) Program Manager 
  OneDrive.exe (4448)  
  cmd.exe (5992) C:\windows\system32\cmd.exe - tlist  /t  
    conhost.exe (3120) CicMarshalWnd 
    tlist.exe (5888) 
SystemSettingsAdminFlows.exe (4608)

The list indents each process to show its parent/child relationship. Processes whose parents 
aren’t alive are left-justified (as explorer.exe is in the preceding example) because even if a 
grandparent process exists, there’s no way to find that relationship. Windows maintains only the 
creator process ID, not a link back to the creator of the creator, and so forth.

The number in parentheses is the process ID, and the text that follows some processes is the 
title of a window that was created by that process.

To prove that Windows doesn’t keep track of more than just the parent process ID, follow 
these steps:

1. Press WinKey+R, type cmd, and press Enter to open a Command Prompt window.

2. Type title Parent to change the title of the window to Parent.

3. Type start cmd to open a second Command Prompt window.

4. Type title Child in the second Command Prompt window.

5. Type mspaint in the second Command Prompt window to start Microsoft Paint.

6. Go back to the second Command Prompt window and type exit. Notice that Paint remains.

7. Press Ctrl+Shift+Esc to open Task Manager.

8. If Task Manager is in “less details” mode, click More Details.

9. Click the Processes tab.
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10. Find the Windows Command Processor app and expand its node. You should see the 
title Parent, as in the following screenshot:

11. Right-click the Windows Command Processor entry and select Go to details.

12. Right-click this cmd.exe process and select End Process Tree.

13. Click End Process Tree in the Task Manager confirmation dialog box.

The first Command Prompt window will disappear, but you should still see the Paint window 
because it was the grandchild of the command prompt process you terminated. Because the 
intermediate process (the parent of Paint) was terminated, there was no link between the parent 
and the grandchild.

Process Explorer, from Sysinternals, shows more details about processes and threads than any  
other available tool, which is why you will see it used in a number of experiments throughout the book. 
Following are some of the unique things that Process Explorer shows or enables:

 ■ A process security token, such as lists of groups and privileges and the virtualization state

 ■ Highlighting to show changes in the process, thread, DLLs, and handles list

 ■ A list of services inside service-hosting processes, including the display name and description
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 ■ A list of additional process attributes, such as mitigation policies and their process protection 
level

 ■ Processes that are part of a job and job details

 ■ Processes hosting .NET applications and .NET-specific details, such as the list of AppDomains, 
loaded assemblies, and CLR performance counters

 ■ Processes that host the Windows Runtime (immersive processes)

 ■ The start time for processes and threads

 ■ A complete list of memory-mapped files (not just DLLs)

 ■ The ability to suspend a process or a thread

 ■ The ability to kill an individual thread

 ■ Easy identification of which processes were consuming the most CPU over a period of time 

Note The Performance Monitor can display process CPU utilization for a given set of pro-
cesses, but it won’t automatically show processes created after the performance-monitoring 
session has started. Only a manual trace in binary output format can do that.

Process Explorer also provides easy access to information in one place, such as the following:

 ■ A process tree, with the ability to collapse parts of the tree

 ■ Open handles in a process, including unnamed handles

 ■ A list of DLLs (and memory-mapped files) in a process

 ■ Thread activity within a process

 ■ User-mode and kernel-mode thread stacks, including the mapping of addresses to names using 
the Dbghelp.dll that comes with the Debugging Tools for Windows

• More accurate CPU percentage using the thread cycle count—an even better representation 
of precise CPU activity, as explained in Chapter 4, “Threads.”

• Integrity level

 ■ Memory manager details such as peak commit charge and kernel memory paged and non-
paged pool limits (other tools show only current size)

An introductory experiment using Process Explorer follows.
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EXPERIMENT: Viewing process details with Process Explorer
Download the latest version of Process Explorer from Sysinternals and run it. You can run it with 
standard user privileges. Alternatively, right-click the executable and select Run as Administrator 
to run it with administrator privileges. Running with admin privileges causes Process Explorer to 
install a driver that provides more features. The following description works the same regardless 
of how you launch Process Explorer.

The first time you run Process Explorer, you should configure symbols. If you don’t, you will re-
ceive a message that symbols are not currently configured when you double-click a process and 
click the Threads tab. If properly configured, Process Explorer can access symbol information 
to display the symbolic name of the thread start function as well as functions on a thread’s call 
stack. This is useful for identifying what threads are doing within a process. To access symbols, 
you must have Debugging Tools for Windows installed (described later in this chapter). Then click 
Options, choose Configure Symbols, and fill in the path to Dbghelp.dll in the Debugging Tools 
folder and a valid symbol path. For example, on a 64-bit system, this configuration is correct if 
Debugging Tools for Windows are installed in the default location as part of the WDK:

In the preceding example, the on-demand symbol server is used to access symbols and a copy 
of the symbol files is stored on the local machine in the C:\symbols folder. (You can replace this 
folder with some other folder, such as on another drive, if free disk space is an issue.) For more 
information on configuring the use of the symbol server, see https://msdn.microsoft.com/en-us/
library/windows/desktop/ee416588.aspx.

Tip You can configure the Microsoft symbol server by setting an environment 
variable named _NT_SYMBOL_PATH to the value shown in the preceding graphic. 
Various tools look for this variable automatically, such as Process Explorer, the 
debuggers that are part of the Debugging Tools for Windows, Visual Studio, 
and others. This will help you avoid having to configure each tool separately.

When Process Explorer starts, it shows the process tree view by default. You can expand the 
lower pane to display open handles or mapped DLLs and memory-mapped files. (These are 
explored in Chapter 5, “Memory management,” and in Chapter 8 in Part 2.) It also shows a tooltip 
for the process command line and path, which becomes visible when you hover the mouse over 

https://msdn.microsoft.com/en-us/library/windows/desktop/ee416588.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ee416588.aspx
https://www.msdn.microsoft.com/en-us/library/windows/desktop/ee416588.aspx
https://www.msdn.microsoft.com/en-us/library/windows/desktop/ee416588.aspx
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the process name. For some types of processes, the tooltip also shows extra information, including 
the following:

 ■ The services inside a service-hosting process (for example, Svchost.exe)

 ■ The tasks inside a task-hosting process (for example, TaskHostw.exe)

 ■ The target of a Rundll32.exe process, used for Control Panel items and other features

 ■ The COM class information when being hosted inside a Dllhost.exe process (also known  
as the default COM+ surrogate)

 ■ Provider information for Windows Management Instrumentation (WMI) host processes 
such as WMIPrvSE.exe (see Chapter 8 in Part 2 for more on WMI)

 ■ Package information for Windows Apps processes (processes hosting the Windows Runtime, 
briefly discussed in “The Windows Runtime” section earlier in this chapter)

Here are a few steps to walk you through some basic capabilities of Process Explorer:

1. Notice that processes hosting services are highlighted by default in pink. Your own pro-
cesses are highlighted in blue. You can change these colors by opening the drop-down 
menu, selecting Options, and choosing Configure Colors.

2. Hover your mouse pointer over the image name for processes. Notice that the tooltip 
displays the full path. As noted, certain types of processes have additional details in the 
tooltip.
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3. In the Process Image tab, click View, choose Select Columns, and add the image path.

4. Click the Process column head to sort the processes. Notice that the tree view disap-
pears. (You can either display the tree view or sort by any of the columns shown.) Click 
the Process column head again to sort from Z to A. Click it a third time to return the 
display to tree view.

5. Open the View menu and deselect Show Processes from All Users to show only your 
processes.

6. Click the Options menu, choose Difference Highlight Duration, and change the 
value to 3 seconds. Then launch a new process (anything). Notice that the new process 
is highlighted in green for 3 seconds. Exit this new process, and notice that the process 
is highlighted in red for 3 seconds before disappearing from the display. This can be 
useful for seeing processes being created and exiting on your system.

7. Double-click a process and explore the various tabs available from the process prop-
erties display. (These will be referenced in various experiments throughout the book 
where the information being shown is being explained.)

Threads
A thread is an entity within a process that Windows schedules for execution. Without it, the process’s 
program can’t run. A thread includes the following essential components:

 ■ The contents of a set of CPU registers representing the state of the processor

 ■ Two stacks—one for the thread to use while executing in kernel mode and one for executing in 
user mode

 ■ A private storage area called thread-local storage (TLS) for use by subsystems, run-time libraries, 
and DLLs

 ■ A unique identifier called a thread ID (part of an internal structure called a client ID; process IDs 
and thread IDs are generated out of the same namespace, so they never overlap)

In addition, threads sometimes have their own security context, or token, which is often used by 
multithreaded server applications that impersonate the security context of the clients that they serve.

The volatile registers, stacks, and private storage area are called the thread’s context. Because this 
information is different for each machine architecture that Windows runs on, this structure, by necessity, 
is architecture-specific. The Windows GetThreadContext function provides access to this architecture-
specific information (called the CONTEXT block).

Because switching execution from one thread to another involves the kernel scheduler, it can be an 
expensive operation, especially if two threads are often switching between each other. Windows imple-
ments two mechanisms to reduce this cost: fibers and user-mode scheduling (UMS).
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Note The threads of a 32-bit application running on a 64-bit version of Windows will 
contain both 32-bit and 64-bit contexts, which Wow64 (Windows on Windows) will use to 
switch the application from running in 32-bit to 64-bit mode when required. These threads 
will have two user stacks and two CONTEXT blocks, and the usual Windows API functions will 
return the 64-bit context instead. The Wow64GetThreadContext function, however, will return 
the 32-bit context. See Chapter 8 in Part 2 for more information on Wow64.

Fibers
Fibers allow an application to schedule its own threads of execution rather than rely on the priority-
based scheduling mechanism built into Windows. Fibers are often called lightweight threads. In terms 
of scheduling, they’re invisible to the kernel because they’re implemented in user mode in Kernel32.
dll. To use fibers, you first make a call to the Windows ConvertThreadToFiber function. This function 
converts the thread to a running fiber. Afterward, the newly converted fiber can create additional fibers 
via the CreateFiber function. (Each fiber can have its own set of fibers.) Unlike a thread, however, a 
fiber doesn’t begin execution until it’s manually selected through a call to the SwitchToFiber function. 
The new fiber runs until it exits or until it calls SwitchToFiber, again selecting another fiber to run. For 
more information, see the Windows SDK documentation on fiber functions.

Note Using fibers is usually not a good idea. This is because they are invisible to the kernel. 
They also have issues such as sharing thread local storage (TLS) because several fibers can 
be running on the same thread. Although fiber local storage (FLS) exists, this does not solve 
all sharing issues, and I/O-bound fibers will perform poorly regardless. Additionally, fibers 
cannot run concurrently on more than one processor, and are limited to cooperative multi-
tasking only. In most scenarios, it’s best to let the Windows kernel handle scheduling by using 
the appropriate threads for the task at hand.

User-mode scheduling threads
User-mode scheduling (UMS) threads, which are available only on 64-bit versions of Windows, provide 
the same basic advantages as fibers—and only a few of the disadvantages. UMS threads have their own 
kernel thread state and are therefore visible to the kernel, which allows multiple UMS threads to issue 
blocking system calls and share and contend on resources. Or, when two or more UMS threads need 
to perform work in user mode, they can periodically switch execution contexts (by yielding from one 
thread to another) in user mode rather than involving the scheduler. From the kernel’s perspective, the 
same kernel thread is still running and nothing has changed. When a UMS thread performs an opera-
tion that requires entering the kernel (such as a system call), it switches to its dedicated kernel-mode 
thread (called a directed context switch). While concurrent UMS threads still cannot run on multiple pro-
cessors, they do follow a pre-emptible model that’s not solely cooperative. 
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Although threads have their own execution context, every thread within a process shares the pro-
cess’s virtual address space (in addition to the rest of the resources belonging to the process), meaning 
that all the threads in a process have full read-write access to the process virtual address space. Threads 
cannot accidentally reference the address space of another process, however, unless the other process 
makes available part of its private address space as a shared memory section (called a file mapping 
object in the Windows API) or unless one process has the right to open another process to use cross-
process memory functions, such as ReadProcessMemory and WriteProcessMemory (which a process 
that’s running with the same user account, and not inside of an AppContainer or other type of sandbox, 
can get by default unless the target process has certain protections).

In addition to a private address space and one or more threads, each process has a security context 
and a list of open handles to kernel objects such as files, shared memory sections, or one of the syn-
chronization objects such as mutexes, events, or semaphores, as illustrated in Figure 1-2.

FIGURE 1-2 A process and its resources.

Each process’s security context is stored in an object called an access token. The process access token 
contains the security identification and credentials for the process. By default, threads don’t have their 
own access token, but they can obtain one, thus allowing individual threads to impersonate the secu-
rity context of another process—including processes on a remote Windows system—without affecting 
other threads in the process. (See Chapter 7 for more details on process and thread security.)

The virtual address descriptors (VADs) are data structures that the memory manager uses to keep 
track of the virtual addresses the process is using. These data structures are described in more depth in 
Chapter 5.

Jobs
Windows provides an extension to the process model called a job. A job object’s main function is to allow 
the management and manipulation of groups of processes as a unit. A job object allows control of certain 
attributes and provides limits for the process or processes associated with the job. It also records basic 
accounting information for all processes associated with the job and for all processes that were associated 
with the job but have since terminated. In some ways, the job object compensates for the lack of a struc-
tured process tree in Windows—yet in many ways it is more powerful than a UNIX-style process tree.
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Note Process Explorer can show processes managed by a job using a default color of 
brown, but it’s not enabled by default (to enable it, open the Options menu and choose 
Configure Colors). Furthermore, the property pages of such a process have an additional 
Job tab that gives information on the job object itself.

You’ll find out much more about the internal structure of processes and jobs in Chapter 3 and about 
threads and thread-scheduling algorithms in Chapter 4.

Virtual memory
Windows implements a virtual memory system based on a flat (linear) address space that provides each 
process with the illusion of having its own large, private address space. Virtual memory provides a logical 
view of memory that might not correspond to its physical layout. At run time, the memory manager—
with assistance from hardware—translates, or maps, the virtual addresses into physical addresses, where 
the data is actually stored. By controlling the protection and mapping, the OS can ensure that individual 
processes don’t bump into each other or overwrite OS data.

Because most systems have much less physical memory than the total virtual memory in use by the 
running processes, the memory manager transfers, or pages, some of the memory contents to disk. 
Paging data to disk frees physical memory so that it can be used for other processes or for the OS itself. 
When a thread accesses a virtual address that has been paged to disk, the virtual memory manager 
loads the information back into memory from disk.

Applications don’t have to be altered in any way to take advantage of paging because hardware 
support enables the memory manager to page without the knowledge or assistance of processes or 
threads. Figure 1-3 shows two processes using virtual memory in which parts are mapped to physical 
memory (RAM) while other parts are paged to disk. Notice that contiguous virtual memory chunks may 
be mapped to non-contiguous chunks in physical memory. These chunks are called pages, and have a 
default size of 4 KB.

FIGURE 1-3 Mapping virtual memory to physical memory with paging.
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The size of the virtual address space varies for each hardware platform. On 32-bit x86 systems, the 
total virtual address space has a theoretical maximum of 4 GB. By default, Windows allocates the lower 
half of this address space (addresses 0x00000000 through 0x7FFFFFFF) to processes for their unique 
private storage and the upper half (addresses 0x80000000 through 0xFFFFFFFF) for its own protected 
OS memory utilization. The mappings of the lower half change to reflect the virtual address space of 
the currently executing process, but (most of) the mappings of the upper half always consist of the OS’s 
virtual memory. Windows supports boot-time options, such as the increaseuserva qualifier in the 
Boot Configuration Database (described in Chapter 5), that give processes running specially marked 
programs the ability to use up to 3 GB of private address space, leaving 1 GB for the OS. (By “specially 
marked,” we mean the large address space‒aware flag must be set in the header of the executable 
image.) This option allows applications such as database servers to keep larger portions of a database 
in the process address space, thus reducing the need to map subset views of the database on disk and 
therefore increasing overall performance (although in certain cases, the loss of 1 GB for the system can 
cause more pronounced system-wide performance losses). Figure 1-4 shows the two typical virtual  
address space layouts supported by 32-bit Windows. (The increaseuserva option allows executable  
images marked with the large address space–aware flag to use anywhere from 2 to 3 GB.)

FIGURE 1-4 Typical address space layouts for 32-bit Windows.

Although 3 GB is better than 2 GB, it’s still not enough virtual address space to map very large 
(multi-gigabyte) databases. To address this need on 32-bit systems, Windows provides a mechanism 
called Address Windowing Extensions (AWE), which allows a 32-bit application to allocate up to 64 GB 
of physical memory and then map views, or windows, into its 2 GB virtual address space. Although  
using AWE puts the burden of managing the mapping of virtual to physical memory on the developer, 
it does address the need to directly access more physical memory than can be mapped at any one time 
in a 32-bit process address space.

64-bit Windows provides a much larger address space for processes: 128 TB on Windows 8.1, Server 
2012 R2, and later systems. Figure 1-5 shows a simplified view of the 64-bit system address space layouts. 
(For a detailed description, see Chapter 5.) Note that these sizes do not represent the architectural 
limits for these platforms. Sixty-four bits of address space is 2 to the 64th power, or 16 EB (where 1 EB 
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equals 1,024 PB, or 1,048,576 TB), but current 64-bit hardware limits this to smaller values. The unmapped 
region marked in figure 1-5 is much larger than the possible mapped region (about one million times 
larger on Windows 8), which means the images are (by far) not to scale.

FIGURE 1-5 Address space layouts for 64-bit Windows.

Details of the implementation of the memory manager, including how address translation works 
and how Windows manages physical memory, are described in Chapter 5.

Kernel mode vs. user mode
To protect user applications from accessing and/or modifying critical OS data, Windows uses two 
processor access modes (even if the processor on which Windows is running supports more than two): 
user mode and kernel mode. User application code runs in user mode, whereas OS code (such as system 
services and device drivers) runs in kernel mode. Kernel mode refers to a mode of execution in a pro-
cessor that grants access to all system memory and all CPU instructions. Some processors differentiate 
between such modes by using the term code privilege level or ring level, while others use terms such 
as supervisor mode and application mode. Regardless of what it’s called, by providing the operating 
system kernel with a higher privilege level than user mode applications have, the processor provides 
a necessary foundation for OS designers to ensure that a misbehaving application can’t disrupt the 
stability of the system as a whole.

Note The architectures of the x86 and x64 processors define four privilege levels (or rings) 
to protect system code and data from being overwritten either inadvertently or maliciously 
by code of lesser privilege. Windows uses privilege level 0 (or ring 0) for kernel mode and 
privilege level 3 (or ring 3) for user mode. The reason Windows uses only two levels is that 
some hardware architectures, such as ARM today and MIPS/Alpha in the past, implemented 
only two privilege levels. Settling on the lowest minimum bar allowed for a more efficient 
and portable architecture, especially as the other x86/x64 ring levels do not provide the 
same guarantees as the ring 0/ring 3 divide.
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Although each Windows process has its own private memory space, the kernel-mode OS and de-
vice-driver code share a single virtual address space. Each page in virtual memory is tagged to indicate 
what access mode the processor must be in to read and/or write the page. Pages in system space can 
be accessed only from kernel mode, whereas all pages in the user address space are accessible from 
user mode and kernel mode. Read-only pages (such as those that contain static data) are not writable 
from any mode. Additionally, on processors that support no-execute memory protection, Windows 
marks pages containing data as non-executable, thus preventing inadvertent or malicious code execu-
tion in data areas (if this feature, Data Execution Prevention [DEP] is enabled).

Windows doesn’t provide any protection for private read/write system memory being used by com-
ponents running in kernel mode. In other words, once in kernel mode, OS and device-driver code has 
complete access to system-space memory and can bypass Windows security to access objects. Because 
the bulk of the Windows OS code runs in kernel mode, it is vital that components that run in kernel mode 
be carefully designed and tested to ensure they don’t violate system security or cause system instability.

This lack of protection also emphasizes the need to remain vigilant when loading a third-party 
device driver, especially if it’s unsigned, because once in kernel mode, the driver has complete access 
to all OS data. This risk was one of the reasons behind the driver-signing mechanism introduced in 
Windows 2000, which warns (and, if configured as such, blocks) the user if an attempt is made to add 
an unsigned plug-and-play driver (see Chapter 6, “I/O system,” for more information on driver signing), 
but does not affect other types of drivers. Also, a mechanism called Driver Verifier helps device-driver 
writers find bugs, such as buffer overruns or memory leaks, that can cause security or reliability issues. 
(Chapter 6 also discusses Driver Verifier.)

On 64-bit and ARM versions of Windows 8.1, the kernel-mode code-signing (KMCS) policy dictates 
that all device drivers (not just plug-and-play) must be signed with a cryptographic key assigned by 
one of the major code certification authorities. The user cannot explicitly force the installation of an 
unsigned driver, even as an administrator. As a one-time exception, however, this restriction can be 
disabled manually. This allows drivers to be self-signed and tested, places a watermark on the desktop 
wallpaper labeled “Test Mode,” and disables certain digital rights management (DRM) features.

On Windows 10, Microsoft implemented an even more significant change, which was enforced 
starting one year after release as part of the July Anniversary Update (version 1607). As of that time, 
all new Windows 10 drivers must be signed by only two of the accepted certification authorities with a 
SHA-2 Extended Validation (EV) Hardware certificate instead of the regular file-based SHA-1 certificate 
and its 20 authorities. Once EV-signed, the hardware driver must be submitted to Microsoft through 
the System Device (SysDev) portal for attestation signing, which will see the driver receive a Microsoft 
signature. As such, the kernel will sign only Microsoft-signed Windows 10 drivers with no exemptions 
except the aforementioned Test Mode. Drivers signed before the release date of Windows 10 (July 
2015) can continue to load with their regular signature for the time being.

With Windows Server 2016, the operating system takes its strongest stance yet. On top of the aforemen-
tioned EV requirements, mere attestation signing is insufficient. For a Windows 10 driver to load on a server 
system, it must pass through stringent Windows Hardware Quality Labs (WHQL) certification as part of the 
Hardware Compatibility Kit (HCK) and be submitted for formal evaluation. Only WHQL-signed drivers—
which provide certain compatibility, security, performance, and stability assurances to system administrators 
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—will be allowed to load on such systems. All in all, the reduction of third-party drivers that are allowed to 
load in kernel mode memory should result in significant stability and security improvements.

Certain vendors, platforms, and even enterprise configurations of Windows can have any number 
of these signing policies customized, such as through the Device Guard technology, which we’ll briefly 
describe in the upcoming “Hypervisor” section, and later in Chapter 7. As such, an enterprise might 
require WHQL signatures even on Windows 10 client systems, or might request the omission of this 
requirement on a Windows Server 2016 system.

As you’ll see in Chapter 2, “System architecture,” user applications switch from user mode to kernel 
mode when they make a system service call. For example, a Windows ReadFile function eventually needs 
to call the internal Windows routine that actually handles reading data from a file. That routine, because it 
accesses internal system data structures, must run in kernel mode. The use of a special processor instruc-
tion triggers the transition from user mode to kernel mode and causes the processor to enter the system 
service dispatching code in the kernel. This in turn calls the appropriate internal function in Ntoskrnl.exe 
or Win32k.sys. Before returning control to the user thread, the processor mode is switched back to user 
mode. In this way, the OS protects itself and its data from perusal and modification by user processes.

Note A transition from user mode to kernel mode (and back) does not affect thread 
scheduling per se. A mode transition is not a context switch. Further details on system  
service dispatching are included in Chapter 2.

Thus, it’s normal for a user thread to spend part of its time executing in user mode and part in 
kernel mode. In fact, because the bulk of the graphics and windowing system also runs in kernel mode, 
graphics-intensive applications spend more of their time in kernel mode than in user mode. An easy 
way to test this is to run a graphics-intensive application such as Microsoft Paint and watch the time 
split between user mode and kernel mode using one of the performance counters listed in Table 1-3. 
More advanced applications can use newer technologies such as Direct2D and DirectComposition, 
which perform bulk computations in user mode and send only the raw surface data to the kernel. This 
reduces the time spent transitioning between user and kernel modes.

TABLE 1-3 Mode-related performance counters

Object: Counter Function

Processor: % Privileged Time Percentage of time that an individual CPU (or all CPUs) has run in kernel mode during a 
specified interval

Processor: % User Time Percentage of time that an individual CPU (or all CPUs) has run in user mode during a 
specified interval

Process: % Privileged Time Percentage of time that the threads in a process have run in kernel mode during a 
specified interval

Process: % User Time Percentage of time that the threads in a process have run in user mode during a speci-
fied interval

Thread: % Privileged Time Percentage of time that a thread has run in kernel mode during a specified interval

Thread: % User Time Percentage of time that a thread has run in user mode during a specified interval
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EXPERIMENT: Kernel mode vs. user mode
You can use the Performance Monitor to see how much time your system spends executing in 
kernel mode versus in user mode. Follow these steps:

1. Open the Start menu and type Run Performance Monitor (it should be suggested 
before you finish typing) to run Performance Monitor.

2. Select the Performance Monitor node under Performance/Monitoring Tools in the 
tree on the left side.

3. To delete the default counter showing the total CPU time, click the Delete button on 
the toolbar or press the Suppr key on the keyboard.

4. Click the Add (+) button on the toolbar.

5. Expand the Processor counter section, click the % Privileged Time counter, and, while 
holding down the Ctrl key, click the % User Time counter.

6. Click Add, and then click OK.

7. Open a command prompt and type dir \\%computername%\c$ /s to run a directory 
scan of your C drive.

8. When you’re finished, close the tool.
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You can also quickly see this by using Task Manager. Just click the Performance tab, right-
click the CPU graph, and select Show Kernel Times. The CPU usage bar will show kernel-mode 
CPU time usage in a darker shade of light blue.

To see how the Performance Monitor itself uses kernel time and user time, run it again, but add 
the individual process counters % User Time and % Privileged Time for every process in the system:

1. If it’s not already running, run the Performance Monitor again. (If it is already running, 
start with a blank display by right-clicking in the graph area and selecting Remove All 
Counters.)

2. Click the Add button on the toolbar.

3. In the available counters area, expand the Process section.

4. Select the % Privileged Time and % User Time counters.

5. Select a few processes in the Instance box (such as mmc, csrss, and Idle).

6. Click Add, and then click OK.

7. Move the mouse rapidly back and forth.

8. Press Ctrl+H to turn on highlighting mode. This highlights the currently selected counter 
in black.

9. Scroll through the counters at the bottom of the display to identify the processes whose 
threads were running when you moved the mouse, and note whether they were running 
in user mode or kernel mode.

When you move the mouse, you should see the kernel-mode and user-mode time increase 
in the Instance column of the mmc process in the Process Monitor. This is because the process 
is executing application code in user mode and calling Windows functions that run in kernel 
mode. You’ll also notice kernel-mode thread activity in a process named csrss when you move 
the mouse. This activity occurs because the Windows subsystem’s kernel-mode raw input thread, 
which handles keyboard and mouse input, is attached to this process. (See Chapter 2 for more 
information about system threads and subsystems.) Finally, the Idle process that you see spend-
ing nearly 100 percent of its time in kernel mode isn’t really a process—it’s a fake process used to 
account for idle CPU cycles. As you can observe from the mode in which the threads in the Idle 
process run, when Windows has nothing to do, it does it in kernel mode.

Hypervisor
Recent shifts in application and software models, such as the introduction of cloud-based services and 
the pervasiveness of IoT devices, have resulted in the need for operating systems and hardware vendors 
to figure out more efficient ways to virtualize other OS guests on the host hardware of the machine,  
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whether to allow for hosting multiple tenants on a server farm and run 100 isolated websites on a 
single server or to permit developers to test dozens of different OS varieties without buying dedicated 
hardware. The need for fast, efficient, and secure virtualization has driven new models of computing 
and reasoning about software. In fact, today, certain software—such as Docker, which is supported in 
Windows 10 and Server 2016—runs in containers, which provide fully isolated virtual machines solely 
designed for running a single application stack or framework, pushing the boundaries of a guest/host 
even further.

To provide such virtualization services, almost all modern solutions employ the use of a hypervisor, 
which is a specialized and highly privileged component that allows for the virtualization and isola-
tion of all resources on the machine, from virtual to physical memory, to device interrupts, and even 
to PCI and USB devices. Hyper-V is an example of such a hypervisor, which powers the Hyper-V client 
functionality exposed in Windows 8.1 and later. Competing products such as Xen, KVM, VMware, and 
VirtualBox all implement their own hypervisors, each with their own strengths and weaknesses.

Due to its highly privileged nature, and because it has access even greater than the kernel itself, a 
hypervisor has a distinct advantage that goes beyond merely running multiple guest instances of other 
operating systems: It can protect and monitor a single host instance to offer assurances and guarantees 
beyond what the kernel provides. In Windows 10, Microsoft now leverages the Hyper-V hypervisor to 
provide a new set of services known as virtualization-based security (VBS):

 ■ Device Guard This provides Hypervisor Code Integrity (HVCI) for stronger code-signing 
guarantees over KMCS alone, and allows for the customization of the signature policy of the 
Windows OS, for both user-mode and kernel-mode code.

 ■ Hyper Guard This protects key kernel-related and hypervisor-related data structures and 
code.

 ■ Credential Guard This prevents unauthorized access to domain account credentials and 
secrets, combined with secure biometrics.

 ■ Application Guard This provides an even stronger sandbox for the Microsoft Edge browser.

 ■ Host Guardian and Shielded Fabric These leverage a virtual TPM (v-TPM) to protect a  
virtual machine from the infrastructure it’s running on.

Additionally, the Hyper-V hypervisor enables certain key kernel mitigations against exploits and 
other attackers. The key advantage of all these technologies is that unlike previous kernel-based secu-
rity improvements, they are not vulnerable to malicious or badly written drivers, regardless of whether 
they are signed or not. This makes them highly resilient against today’s advanced adversaries. This is 
possible due to the hypervisor’s implementation of Virtual Trust Levels (VTLs). Because the normal 
operating system and its components are in a less privileged mode (VTL 0), but these VBS technolo-
gies run at VTL 1 (a higher privilege), they cannot be affected even by kernel mode code. As such, code 
remains within the realm of the VTL 0 privilege space. In this way, you can think of VTLs as orthogonal 
to the processor’s privilege levels: kernel and user mode exist within each VTL, and the hypervisor man-
ages privileges across VTLs. Chapter 2 covers additional details on the hypervisor-assisted architecture, 
and Chapter 7 discusses these VBS security mechanisms in detail.
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Firmware
Windows components increasingly rely on the security of the operating system and its kernel, and the 
latter now relies on the protection of the hypervisor. A question arises of what can ensure these com-
ponents are loaded securely and can authenticate their contents. This is typically the job of the boot 
loader, but it, too, needs the same level of authenticity checking, creating an increasingly complicated 
hierarchy of trust. 

What, then, provides a root chain of trust that can guarantee an unencumbered boot process? In 
modern Windows 8 and later systems, this falls under the purview of the system firmware, which must 
be UEFI-based on certified systems. As part of the UEFI standard, which Windows dictates (UEFI 2.3.1b; 
see http://www.uefi.org for more information), a secure boot implementation with strong guarantees 
and requirements around the signature qualities of the boot-related software must be present. 
Through this verification process, Windows components are guaranteed to load securely from the very 
beginning of the boot process. In addition, technologies such as Trusted Platform Module (TPM) can 
measure the process to provide attestation (both local and remote). Through partnerships with the 
industry, Microsoft manages the whitelist and blacklist of the UEFI secure boot component in case of 
boot software errors or compromise, and Windows updates now include firmware updates as well. 
Although we won’t talk about firmware again until Chapter 11, “Startup and shutdown,” in Part 2, it’s 
important now to state its significance in modern Windows architecture, through the guarantees its 
meant to provide.

Terminal Services and multiple sessions
Terminal Services refers to the support in Windows for multiple interactive user sessions on a single sys-
tem. With Windows Terminal Services, a remote user can establish a session on another machine, log in, 
and run applications on the server. The server transmits the graphical user interface (GUI) to the client 
(as well as other configurable resources such as audio and clipboard), and the client transmits the user’s 
input back to the server. (Similar to the X Window System, Windows permits running individual applica-
tions on a server system with the display remoted to the client instead of remoting the entire desktop.)

The first session is considered the services session, or session zero, and contains system service host-
ing processes (explained in further detail in Chapter 9 in Part 2). The first login session at the physical 
console of the machine is session one, and additional sessions can be created through the use of the 
remote desktop connection program (Mstsc.exe) or through the use of fast user switching.

Windows client editions permit a single remote user to connect to the machine, but if someone is 
logged in at the console, the workstation is locked. That is, someone can be using the system either 
locally or remotely, but not at the same time. Windows editions that include Windows Media Center 
allow one interactive session and up to four Windows Media Center Extender sessions.

Windows server systems support two simultaneous remote connections. This is to facilitate remote 
management—for example, using management tools that require you to be logged in to the machine 
being managed. They also support more than two remote sessions if appropriately licensed and con-
figured as a terminal server.

http://www.uefi.org
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All Windows client editions support multiple sessions, created locally through a feature called fast 
user switching, that can be used one at a time. When a user chooses to disconnect their session instead 
of log off (for example, by clicking the Start button, clicking the current user, and choosing Switch 
Account from the submenu that appears or by holding down the Windows key, pressing L, and then 
clicking a different user in the bottom-left corner of the screen), the current session—that is, the  
processes running in that session and all the session-wide data structures that describe the session—
remains active in the system and the system returns to the main logon screen (if it’s not already there). 
If a new user logs in, a new session is created.

For applications that want to be aware of running in a terminal server session, there are a set of 
Windows APIs for programmatically detecting that as well as for controlling various aspects of Terminal 
Services. (See the Windows SDK and the Remote Desktop Services API for details.)

Chapter 2 briefly describes how sessions are created and contains some experiments showing how 
to view session information with various tools, including the kernel debugger. The “Object manager” 
section in Chapter 8 in Part 2 describes how the system namespace for objects is instantiated on a  
per-session basis and how applications that need to be aware of other instances of themselves on the 
same system can accomplish that. Finally, Chapter 5 covers how the memory manager sets up and 
manages session-wide data.

Objects and handles
In the Windows OS, a kernel object is a single, run-time instance of a statically defined object type. An 
object type comprises a system-defined data type, functions that operate on instances of the data type, 
and a set of object attributes. If you write Windows applications, you might encounter process, thread, 
file, and event objects, to name just a few examples. These objects are based on lower-level objects 
that Windows creates and manages. In Windows, a process is an instance of the process object type, a 
file is an instance of the file object type, and so on.

An object attribute is a field of data in an object that partially defines the object’s state. An object of 
type process, for example, would have attributes that include the process ID, a base scheduling priority, 
and a pointer to an access token object. Object methods, the means for manipulating objects, usually 
read or change object attributes. For example, the open method for a process would accept a process 
identifier as input and return a pointer to the object as output.

Note There is a parameter named ObjectAttributes that a caller supplies when creating 
an object using the kernel object manager APIs. That parameter shouldn’t be confused with 
the more general meaning of the term as used in this book, however.

The most fundamental difference between an object and an ordinary data structure is that the 
internal structure of an object is opaque. You must call an object service to get data out of or put data 
into an object. You can’t directly read or change data inside an object. This difference separates the 
underlying implementation of the object from code that merely uses it, a technique that allows object 
implementations to be changed easily over time.
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Objects, through the help of a kernel component called the object manager, provide a convenient 
means for accomplishing the following four important OS tasks:

 ■ Providing human-readable names for system resources

 ■ Sharing resources and data among processes

 ■ Protecting resources from unauthorized access

 ■ Reference tracking, which allows the system to recognize when an object is no longer in use so 
that it can be automatically deallocated

Not all data structures in the Windows OS are objects. Only data that needs to be shared, protected, 
named, or made visible to user-mode programs (via system services) is placed in objects. Structures 
used by only one component of the OS to implement internal functions are not objects. Objects and 
handles (references to instances of an object) are discussed in more detail in Chapter 8 in Part 2.

Security
Windows was designed from the start to be secure and to meet the requirements of various formal 
government and industry security ratings, such as the Common Criteria for Information Technology 
Security Evaluation (CCITSE) specification. Achieving a government-approved security rating allows an 
OS to compete in that arena. Of course, many of these capabilities are advantageous features for any 
multiuser system.

The core security capabilities of Windows include:

 ■ Discretionary (need-to-know) and mandatory protection for all shareable system objects, such 
as files, directories, processes, threads, and so forth

 ■ Security auditing for accountability of subjects, or users, and the actions they initiate

 ■ User authentication at logon

 ■ The prevention of one user from accessing uninitialized resources, such as free memory or disk 
space, that another user has deallocated

Windows has three forms of access control over objects:

 ■ Discretionary access control This is the protection mechanism that most people think of 
when they think of OS security. It’s the method by which owners of objects (such as files or 
printers) grant or deny access to others. When users log in, they are given a set of security 
credentials, or a security context. When they attempt to access objects, their security context is 
compared to the access control list on the object they are trying to access to determine whether 
they have permission to perform the requested operation. With Windows Server 2012 and 
Windows 8, this form of discretionary control is further improved by implementing attribute-
based access control (also called Dynamic Access Control). However, a resource’s access control 
list does not necessarily identify individual users and groups. Instead, it identifies required 
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attributes or claims that grant access to a resource, such as “Clearance Level: Top Secret” or 
“Seniority: 10 Years.” With the ability to populate such attributes automatically by parsing SQL 
databases and schemas through Active Directory, this significantly more elegant and flexible 
security model helps organizations avoid cumbersome manual group management and group 
hierarchies.

 ■ Privileged access control This is necessary for those times when discretionary access control 
is not enough. It’s a method of ensuring that someone can get to protected objects if the owner 
isn’t available. For example, if an employee leaves a company, the administrator needs a way to 
gain access to files that might have been accessible only to that employee. In that case, under 
Windows, the administrator can take ownership of the file so that they can manage its rights as 
necessary.

 ■ Mandatory integrity control This is required when an additional level of security control is 
needed to protect objects that are being accessed from within the same user account. It’s used 
for everything from providing part of the sandboxing technology for Windows Apps (see the 
upcoming discussion), to isolating Protected Mode Internet Explorer (and other browsers) from 
a user’s configuration, to protecting objects created by an elevated administrator account from 
access by a non-elevated administrator account. (See Chapter 7 for more information on User 
Account Control.)

Starting with Windows 8, a sandbox called an AppContainer is used to host Windows Apps, which 
provides isolation with relation to other AppContainers and non–Windows Apps processes. Code in 
AppContainers can communicate with brokers (non-isolated processes running with the user’s credentials) 
and sometimes other AppContainers or processes through well-defined contracts provided by the 
Windows Runtime. A canonical example is the Microsoft Edge browser that runs inside an AppContainer 
and thus provides better protection against malicious code running within its boundaries. Additionally, 
third-party developers can leverage AppContainers to isolate their own non–Windows Apps applica-
tions in similar ways. The AppContainer model forces a significant shift in traditional programming 
paradigms, moving from the traditional multithreaded single-process application implementation to  
a multi-process one.

Security pervades the interface of the Windows API. The Windows subsystem implements object-
based security in the same way the OS does: protecting shared Windows objects from unauthorized 
access by placing Windows security descriptors on them. The first time an application tries to access a 
shared object, the Windows subsystem verifies the application’s right to do so. If the security check  
succeeds, the Windows subsystem allows the application to proceed.

For a comprehensive description of Windows security, see Chapter 7.

Registry
If you’ve worked with Windows operating systems, you’ve probably heard about or looked at the 
registry. You can’t talk much about Windows internals without referring to the registry because it’s the 
system database that contains the information required to boot and configure the system, system-
wide software settings that control the operation of Windows, the security database, and per-user 



 CHAPTER 1 Concepts and tools 33

configuration settings such as which screen saver to use. In addition, the registry provides a window 
into in-memory volatile data, such as the current hardware state of the system (what device drivers are 
loaded, the resources they are using, and so on) as well as the Windows performance counters. The 
performance counters, which aren’t actually in the registry, can be accessed through the registry func-
tions (although there is a newer, better API for accessing performance counters). See Chapter 9 in Part 2 
for more on how performance counter information is accessed from the registry.

Although many Windows users and administrators will never need to look directly into the registry 
(because you can view or change most configuration settings with standard administrative utilities), it is 
still a useful source of Windows internals information because it contains many settings that affect system 
performance and behavior. You’ll find references to individual registry keys throughout this book as they 
pertain to the component being described. Most registry keys referred to in this book are under the 
system-wide configuration hive, HKEY_LOCAL_MACHINE, which we’ll abbreviate throughout as HKLM.

Caution If you decide to directly change registry settings, you must exercise extreme caution. 
Any changes might adversely affect system performance or, worse, cause the system to fail 
to boot successfully.

For further information on the registry and its internal structure, see Chapter 9 in Part 2.

Unicode
Windows differs from most other operating systems in that most internal text strings are stored and 
processed as 16-bit-wide Unicode characters (technically UTF-16LE; when Unicode is mentioned in this 
book it refers to UTF-16LE unless otherwise stated). Unicode is an international character set standard 
that defines unique values for most of the world’s known character sets, and provides 8, 16, and even 
32-bit encodings for each character.

Because many applications deal with 8-bit (single-byte) ANSI character strings, many Windows 
functions that accept string parameters have two entry points: a Unicode (wide, 16-bit) version and 
an ANSI (narrow, 8-bit) version. If you call the narrow version of a Windows function, there is a slight 
performance impact as input string parameters are converted to Unicode before being processed by 
the system and output parameters are converted from Unicode to ANSI before being returned to the 
application. Thus, if you have an older service or piece of code that you need to run on Windows but 
this code is written using ANSI character text strings, Windows will convert the ANSI characters into 
Unicode for its own use. However, Windows never converts the data inside files—it’s up to the applica-
tion to decide whether to store data as Unicode or as ANSI.

Regardless of language, all versions of Windows contain the same functions. Instead of having 
separate language versions, Windows has a single worldwide binary so that a single installation can 
support multiple languages (through the addition of various language packs). Applications can also 
take advantage of Windows functions that allow single worldwide application binaries that can support 
multiple languages.
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Note The old Windows 9x operating systems did not support Unicode natively. This was 
yet another reason for the creation of two functions for ANSI and Unicode. For example, the 
Windows API function CreateFile is not a function at all; instead, it’s a macro that expands 
to one of two functions: CreateFileA (ANSI) or CreateFileW (Unicode, where W stands for 
wide). The expansion is based on a compilation constant named UNICODE. It’s defined by  
default in Visual Studio C++ projects because it’s more beneficial to work with the Unicode 
functions. However, the explicit function name can be used in lieu of the appropriate macro. 
The following experiment shows these pairs of functions.

 EXPERIMENT: Viewing exported functions
In this experiment, you’ll use the Dependency Walker tool to view exported functions from a 
Windows subsystem DLL.

1. Download Dependency Walker from http://www.dependencywalker.com. If you have a 
32-bit system, download the 32-bit version of Download Dependency. Or, if you have  
a 64-bit system, download the 64-bit version. Then extract the downloaded ZIP file to a 
folder of your choice.

2. Run the tool (depends.exe). Then open the File menu and choose Open, navigate to the 
C:\Windows\System32 folder (assuming Windows is installed on your C drive), locate the 
kernel32.dll file and click Open.

3. Dependency Walker may show a warning message box. Disregard it and dismiss the 
message box.

4. You’ll see several views with vertical and horizontal splitter bars. Make sure the item 
selected in the top-left tree view is kernel32.dll.

5. Look at the second view from the top on the right side. This view lists the exported 
functions available in kernel32.dll. Click the Function list header to sort by name. Then 
locate the function CreateFileA. You’ll find CreateFileW not much farther down, as 
shown here:

http://www.dependencywalker.com
http://www.dependencywalker.com
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6.  As you can see, most functions that have at least one string type argument are 
in fact pairs of functions. In the preceding graphic, the following are visible: 
CreateFileMappingA/W, CreateFileTransactedA/W, and CreateFileMappingNumaA/W.

7. You can scroll the list to locate others. You can also open other system files, such as 
user32.dll and advapi32.dll.

Note The COM-based APIs in Windows typically use Unicode strings, sometimes typed 
as BSTR. This is essentially a null-terminated array of Unicode characters with the length of 
the string in bytes stored 4 bytes before the start of the array of characters in memory. The 
Windows Runtime APIs use Unicode strings only, typed as HSTRING, which is an immutable 
array of Unicode characters.

For more information about Unicode, see http://www.unicode.org and the programming documen-
tation in the MSDN Library.

Digging into Windows internals

Although much of the information in this book is based on reading Windows source code and talking 
to developers, you don’t have to take everything on faith. Many details about the internals of Windows 
can be exposed and demonstrated by using a variety of available tools, such as those that come with 
Windows and the Windows debugging tools. These tool packages are briefly described later in this 
section.

To encourage your exploration of Windows internals, we’ve included “Experiment” sidebars 
throughout the book that describe steps you can take to examine a particular aspect of Windows inter-
nal behavior. (You already saw a few of these sidebars earlier in this chapter.) We encourage you to try 
these experiments so you can see in action many of the internals topics described in this book.

Table 1-4 shows a list of the principal tools used in this book and where they come from.

TABLE 1-4 Tools for viewing Windows internals

Tool Image Name Origin

Startup Programs Viewer AUTORUNS Sysinternals 

Access Check ACCESSCHK Sysinternals

Dependency Walker DEPENDS www.dependencywalker.com

Global Flags GFLAGS Debugging tools

Handle Viewer HANDLE Sysinternals

Continues...

http://www.unicode.org
http://www.dependencywalker.com
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TABLE 1-4 Tools for viewing Windows internals  (continued)

Tool Image Name Origin

Kernel debuggers WINDBG, KD WDK, Windows SDK

Object Viewer WINOBJ Sysinternals

Performance Monitor PERFMON.MSC Windows built-in tool

Pool Monitor POOLMON WDK

Process Explorer PROCEXP Sysinternals

Process Monitor PROCMON Sysinternals

Task (Process) List TLIST Debugging tools

Task Manager TASKMGR Windows built-in tool

Performance Monitor and Resource Monitor
We refer to Performance Monitor—which you can access from the Administrative Tools folder in the 
Control Panel or by typing perfmon in the Run dialog box—throughout this book. Specifically, we 
focus on Performance Monitor and Resource Monitor. 

Note Performance Monitor has three functions: system monitoring, viewing performance 
counter logs, and setting alerts (by using data collector sets, which also contain performance 
counter logs and trace and configuration data). For simplicity, when we refer to Performance 
Monitor, we mean the system-monitoring function within that tool.

Performance Monitor provides more information about how your system is operating than any 
other single utility. It includes hundreds of base and extensible counters for various objects. For each 
major topic described in this book, a table of the relevant Windows performance counters is included. 
Performance Monitor contains a brief description for each counter. To see the descriptions, select a 
counter in the Add Counters window and select the Show Description check box.

Although all the low-level system monitoring we’ll do in this book can be done with Performance 
Monitor, Windows also includes a Resource Monitor utility (accessible from the Start menu or from the 
Task Manager Performance tab) that shows four primary system resources: CPU, disk, network, and 
memory. In their basic states, these resources are displayed with the same level of information that 
you would find in Task Manager. However, they also provide sections that can be expanded for more 
information. Here’s a typical view of Resource Monitor:
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When expanded, the CPU tab displays information about per-process CPU usage, just like Task 
Manager. However, it adds a column for average CPU usage, which can give you a better idea of which 
processes are most active. The CPU tab also includes a separate display of services and their associated 
CPU usage and average. Each service-hosting process is identified by the service group it is hosting. 
As with Process Explorer, selecting a process (by clicking its associated check box) will display a list of 
named handles opened by the process, as well as a list of modules (such as DLLs) that are loaded in the 
process address space. The Search Handles box can also be used to search for which processes have 
opened a handle to a given named resource.

The Memory tab displays much of the same information that one can obtain with Task Manager,  
but it is organized for the entire system. A physical memory bar graph displays the current organization 
of physical memory into either hardware-reserved, in-use, modified, standby, or free memory.  
See Chapter 5 for the exact meaning of these terms.

The Disk tab, on the other hand, displays per-file information for I/O in a way that makes it easy 
to identify the most-accessed, the most‒written to, or the most–read from files on the system. These 
results can be further filtered down by process.

The Network tab displays the active network connections, the processes that own them, and how 
much data is going through them. This information makes it possible to see background network activ-
ity that might be hard to detect otherwise. In addition, it shows the TCP connections that are active on 
the system, organized by process, with data such as the remote and local port and address and packet 
latency. Finally, it displays a list of listening ports by process, allowing an administrator to see which 
services or applications are currently waiting for connections on a given port. The protocol and firewall 
policy for each port and process is also shown.
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Note All Windows performance counters are accessible programmatically. For more infor-
mation, search for “performance counters” in the MSDN documentation.

Kernel debugging
Kernel debugging means examining internal kernel data structures and/or stepping through functions 
in the kernel. It is a useful way to investigate Windows internals because you can display internal system 
information not available through any other tools and get a clearer idea of code flows within the kernel. 
Before describing the various ways in which you can debug the kernel, let’s examine a set of files that 
you’ll need in order to perform any type of kernel debugging.

Symbols for kernel debugging
Symbol files contain the names of functions and variables and the layout and format of data structures. 
They are generated by the linker and used by debuggers to reference and display these names during 
a debug session. This information is not usually stored in the binary image because it is not needed to 
execute the code. This means binaries are smaller and faster. However, it also means that when debug-
ging, you must make sure the debugger can access the symbol files associated with the images you are 
referencing during a debugging session.

To use any of the kernel-debugging tools to examine internal Windows kernel data structures such 
as the process list, thread blocks, loaded driver list, memory usage information, and so on, you must 
have the correct symbol files for at least the kernel image, Ntoskrnl.exe. (You can learn more about this 
file in the section “Architecture overview” in Chapter 2.) Symbol table files must match the version of 
the image from which they were taken. For example, if you install a Windows service pack or hot fix that 
updates the kernel, you must obtain the matching updated symbol files.

While it is possible to download and install symbols for various versions of Windows, updated symbols 
for hot fixes are not always available. The easiest way to obtain the correct version of symbols for debug-
ging is to employ the Microsoft on-demand symbol server by using a special syntax for the symbol path 
that you specify in the debugger. For example, the following symbol path causes the debugging tools to 
load required symbols from the Internet symbol server and keep a local copy in the C:\symbols folder:

srv*c:\symbols*http://msdl.microsoft.com/download/symbols

Debugging Tools for Windows
The Debugging Tools for Windows package contains advanced debugging tools, which are used in this 
book to explore Windows internals. The latest version is included as part of the Windows SDK. (See 
https://msdn.microsoft.com/en-us/library/windows/hardware/ff551063.aspx for more details about the 
different installation types.) These tools can be used to debug user-mode processes as well as the kernel.

http://www.msdl.microsoft.com/download/symbols
https://www.msdn.microsoft.com/en-us/library/windows/hardware/ff551063.aspx
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There are four debuggers included in the tools: cdb, ntsd, kd, and WinDbg. All are based on a single 
debugging engine implemented in DbgEng.dll, which is documented fairly well in the help file for the 
tools. Here’s a brief overview of the debuggers:

 ■ cdb and ntsd are user-mode debuggers based on a console user interface. The only difference 
between them is that ntsd opens a new console window if activated from an existing console 
window, while cdb does not.

 ■ kd is a kernel-mode debugger based on a console user interface.

 ■ WinDbg can be used as a user-mode or kernel-mode debugger, but not both at the same time. 
It provides a GUI for the user.

 ■ The user-mode debuggers (cdb, ntsd, and WinDbg, when used as such) are essentially equivalent. 
Usage of one or the other is a matter of preference.

 ■ The kernel-mode debuggers (kd and WinDbg, when used as such) are equivalent as well.

User-mode debugging The debugging tools can also be used to attach to a user-mode process and 
to examine and/or change process memory. There are two options when attaching to a process:

 ■ Invasive Unless specified otherwise, when you attach to a running process, you use the 
DebugActiveProcess Windows function to establish a connection between the debugger and 
the debugee. This permits you to examine and/or change process memory, set breakpoints, and 
perform other debugging functions. Windows allows you to stop debugging without killing the 
target process as long as the debugger is detached, not killed.

 ■ Noninvasive With this option, the debugger simply opens the process with the OpenProcess 
function. It does not attach to the process as a debugger. This allows you to examine and/or 
change memory in the target process, but you cannot set breakpoints. This also means it’s  
possible to attach noninvasively even if another debugger is attached invasively.

You can also open user-mode process dump files with the debugging tools. User-mode dump files 
are explained in Chapter 8 in Part 2 in the section on exception dispatching.

Kernel-mode debugging As mentioned, there are two debuggers that can be used for kernel 
debugging: a command-line version (Kd.exe) and a GUI version (Windbg.exe). You can perform three 
types of kernel debugging with these tools:

 ■ Open a crash dump file created as a result of a Windows system crash. (See Chapter 15, “Crash 
dump analysis,” in Part 2 for more information on kernel crash dumps.)

 ■ Connect to a live, running system and examine the system state (or set breakpoints if you’re 
debugging device driver code). This operation requires two computers: a target (the system 
being debugged) and a host (the system running the debugger). The target system can be con-
nected to the host via a null modem cable, an IEEE 1394 cable, a USB 2.0/3.0 debugging cable, 
or the local network. The target system must be booted in debugging mode. You can configure 
the system to boot in debugging mode using Bcdedit.exe or Msconfig.exe. (Note that you may 
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have to disable secure boot in the UEFI BIOS settings.) You can also connect through a named 
pipe—which is useful when debugging Windows 7 or earlier versions through a virtual machine 
product such as Hyper-V, Virtual Box, or VMWare Workstation—by exposing the guest operat-
ing system’s serial port as a named pipe device. For Windows 8 and later guests, you should 
instead use local network debugging by exposing a host-only network using a virtual NIC in the 
guest operating system. This will result in 1,000x performance gain.

 ■ Windows systems also allow you to connect to the local system and examine the system state. 
This is called local kernel debugging. To initiate local kernel debugging with WinDbg, first make 
sure the system is set to debug mode (for example, by running msconfig.exe, clicking the Boot 
tab, selecting Advanced Options, selecting Debug, and restarting Windows). Launch WinDbg 
with admin privileges and open the File menu, choose Kernel Debug, click the Local tab, and 
then click OK (or use bcdedit.exe). Figure 1-6 shows a sample output screen on a 64-bit Windows 
10 machine. Some kernel debugger commands do not work when used in local kernel debug-
ging mode, such as setting breakpoints or creating a memory dump with the .dump command. 
However, the latter can be done with LiveKd, described later in this section.

FIGURE 1-6 Local kernel debugging.

Once connected in kernel-debugging mode, you can use one of the many debugger extension 
commands—also known as bang commands, which are commands that begin with an exclamation 
point (!)—to display the contents of internal data structures such as threads, processes, I/O request 
packets, and memory management information. Throughout this book, the relevant kernel debugger 
commands and output are included as they apply to each topic being discussed. An excellent compan-
ion reference is the Debugger.chm help file, contained in the WinDbg installation folder, which docu-
ments all the kernel debugger functionality and extensions. In addition, the dt (display type) command 
can format more than 1,000 kernel structures because the kernel symbol files for Windows contain type 
information that the debugger can use to format structures.



 CHAPTER 1 Concepts and tools 41

 EXPERIMENT: Displaying type information for kernel structures
To display the list of kernel structures whose type information is included in the kernel symbols, 
type dt nt!_* in the kernel debugger. A sample partial output is shown here. (ntkrnlmp is the 
internal file name of the 64-bit kernel. For more details, see Chapter 2.)

lkd> dt nt!_* 
          ntkrnlmp!_KSYSTEM_TIME 
          ntkrnlmp!_NT_PRODUCT_TYPE 
          ntkrnlmp!_ALTERNATIVE_ARCHITECTURE_TYPE 
          ntkrnlmp!_KUSER_SHARED_DATA 
          ntkrnlmp!_ULARGE_INTEGER 
          ntkrnlmp!_TP_POOL 
          ntkrnlmp!_TP_CLEANUP_GROUP 
          ntkrnlmp!_ACTIVATION_CONTEXT 
          ntkrnlmp!_TP_CALLBACK_INSTANCE 
          ntkrnlmp!_TP_CALLBACK_PRIORITY 
          ntkrnlmp!_TP_CALLBACK_ENVIRON_V3 
          ntkrnlmp!_TEB

You can also use the dt command to search for specific structures by using its wildcard lookup 
capability. For example, if you were looking for the structure name for an interrupt object, you 
could type dt nt!_*interrupt*:

lkd> dt nt!_*interrupt* 
          ntkrnlmp!_KINTERRUPT_MODE 
          ntkrnlmp!_KINTERRUPT_POLARITY 
          ntkrnlmp!_PEP_ACPI_INTERRUPT_RESOURCE 
          ntkrnlmp!_KINTERRUPT 
          ntkrnlmp!_UNEXPECTED_INTERRUPT 
          ntkrnlmp!_INTERRUPT_CONNECTION_DATA 
          ntkrnlmp!_INTERRUPT_VECTOR_DATA 
          ntkrnlmp!_INTERRUPT_HT_INTR_INFO 
          ntkrnlmp!_INTERRUPT_REMAPPING_INFO

Then you can use dt to format a specific structure as shown next (the debugger treats structures 
as case insensitive):

lkd> dt nt!_KINTERRUPT 
   +0x000 Type             : Int2B 
   +0x002 Size             : Int2B 
   +0x008 InterruptListEntry : _LIST_ENTRY 
   +0x018 ServiceRoutine   : Ptr64     unsigned char  
   +0x020 MessageServiceRoutine : Ptr64     unsigned char  
   +0x028 MessageIndex     : Uint4B 
   +0x030 ServiceContext   : Ptr64 Void 
   +0x038 SpinLock         : Uint8B 
   +0x040 TickCount        : Uint4B 
   +0x048 ActualLock       : Ptr64 Uint8B 
   +0x050 DispatchAddress  : Ptr64     void  
   +0x058 Vector           : Uint4B 
   +0x05c Irql             : UChar 
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   +0x05d SynchronizeIrql  : UChar 
   +0x05e FloatingSave     : UChar 
   +0x05f Connected        : UChar 
   +0x060 Number           : Uint4B 
   +0x064 ShareVector      : UChar 
   +0x065 EmulateActiveBoth : UChar 
   +0x066 ActiveCount      : Uint2B 
   +0x068 InternalState    : Int4B 
   +0x06c Mode             : _KINTERRUPT_MODE 
   +0x070 Polarity         : _KINTERRUPT_POLARITY 
   +0x074 ServiceCount     : Uint4B 
   +0x078 DispatchCount    : Uint4B 
   +0x080 PassiveEvent     : Ptr64 _KEVENT 
   +0x088 TrapFrame        : Ptr64 _KTRAP_FRAME 
   +0x090 DisconnectData   : Ptr64 Void 
   +0x098 ServiceThread    : Ptr64 _KTHREAD 
   +0x0a0 ConnectionData   : Ptr64 _INTERRUPT_CONNECTION_DATA 
   +0x0a8 IntTrackEntry    : Ptr64 Void 
   +0x0b0 IsrDpcStats      : _ISRDPCSTATS 
   +0x0f0 RedirectObject   : Ptr64 Void 
   +0x0f8 Padding          : [8] UChar

Note that dt does not show substructures (structures within structures) by default. To show 
substructures, use the -r or -b switches. For example, using one of these switches to display the 
kernel interrupt object shows the format of the _LIST_ENTRY structure stored in the Interrupt-
ListEntry field. (See the documentation for the exact differences between the -r and -b 
switches.)

lkd> dt nt!_KINTERRUPT -r 
   +0x000 Type             : Int2B 
   +0x002 Size             : Int2B 
   +0x008 InterruptListEntry : _LIST_ENTRY 
      +0x000 Flink            : Ptr64 _LIST_ENTRY 
         +0x000 Flink            : Ptr64 _LIST_ENTRY 
         +0x008 Blink            : Ptr64 _LIST_ENTRY 
      +0x008 Blink            : Ptr64 _LIST_ENTRY 
         +0x000 Flink            : Ptr64 _LIST_ENTRY 
         +0x008 Blink            : Ptr64 _LIST_ENTRY 
   +0x018 ServiceRoutine   : Ptr64     unsigned char

The dt command even lets you specify the level of recursion of structures by appending a number 
to the -r switch. The following example means one level of recursion:

lkd> dt nt!_KINTERRUPT -r1

The Debugging Tools for Windows help file explains how to set up and use kernel debuggers. For 
additional details on using kernel debuggers aimed primarily at device-driver writers, see the WDK 
documentation.



 CHAPTER 1 Concepts and tools 43

LiveKd tool
LiveKd is a free tool from Sysinternals that enables you to use the standard Microsoft kernel debuggers 
just described to examine the running system without booting the system in debugging mode. This  
approach might be useful when kernel-level troubleshooting is required on a machine that wasn’t 
booted in debugging mode. Certain issues might be hard to reproduce reliably, so a reboot with the 
debug option enabled might not readily exhibit the error.

You run LiveKd just as you would WinDbg or kd. LiveKd passes any command-line options you 
specify to the debugger you select. By default, LiveKd runs the command-line kernel debugger (kd).  
To have it run WinDbg, use the -w switch. To see the help files for LiveKd switches, use the -? switch.

LiveKd presents a simulated crash dump file to the debugger so you can perform any operations 
in LiveKd that are supported on a crash dump. Because LiveKd relies on physical memory to back the 
simulated dump, the kernel debugger might run into situations in which data structures are in the middle 
of being changed by the system and are inconsistent. Each time the debugger is launched, it starts with 
a fresh view of the system state. If you want to refresh the snapshot, enter the q command to quit the 
debugger. LiveKd will ask you whether you want to start it again. If the debugger enters a loop in printing 
output, press Ctrl+C to interrupt the output and quit. If it hangs, press Ctrl+Break, which will terminate 
the debugger process. LiveKd will then ask you whether you want to run the debugger again.

Windows Software Development Kit
The Windows Software Development Kit (SDK) is available as part of the MSDN subscription program. 
You can also download it for free from https://developer.microsoft.com/en-US/windows/downloads/
windows-10-sdk. Visual Studio also provides the option of installing the SDK as part of VS installation. 
The versions contained in the Windows SDK always match the latest version of the Windows operating 
system, whereas the version that comes with Visual Studio might be an older version that was current 
when that version was released. Besides the Debugging Tools for Windows, it contains the C header 
files and the libraries necessary to compile and link Windows applications. From a Windows internals 
perspective, items of interest in the Windows SDK include the Windows API header files—for example, 
C:\Program Files (x86)\Windows Kits\10\Include—and the SDK tools (search for the Bin folder). Also of 
interest is the documentation. It’s available online or can be downloaded for offline access. A few of 
these tools are also shipped as sample source code in both the Windows SDK and the MSDN Library.

Windows Driver Kit
The Windows Driver Kit (WDK) is also available through the MSDN subscription program. Just like the 
Windows SDK, it is available for free download. The WDK documentation is included in the MSDN Library.

Although the WDK is aimed at developers of device drivers, it is an abundant source of Windows 
internals information. For example, although Chapter 6 describes the I/O system architecture, driver 
model, and basic device driver data structures, it does not describe the individual kernel support 
functions in detail. The WDK documentation contains a comprehensive description of all the Windows 
kernel support functions and mechanisms used by device drivers in both tutorial and reference form.

https://www.developer.microsoft.com/en-US/windows/downloads/windows-10-sdk
https://www.developer.microsoft.com/en-US/windows/downloads/windows-10-sdk
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In addition to including the documentation, the WDK contains header files (in particular, ntddk.h, 
ntifs.h, and wdm.h) that define key internal data structures and constants as well as interfaces to many 
internal system routines. These files are useful when exploring Windows internal data structures with 
the kernel debugger because although the general layout and content of these structures are shown in 
this book, detailed field-level descriptions (such as size and data types) are not. A number of these data 
structures—such as object dispatcher headers, wait blocks, events, mutants, semaphores, and so on—
are, however, fully described in the WDK.

If you want to dig into the I/O system and driver model beyond what is presented in this book, read 
the WDK documentation—especially the Kernel-Mode Driver Architecture Design Guide and Kernel-
Mode Driver Reference manuals. You might also find useful Programming the Microsoft Windows Driver 
Model, Second Edition by Walter Oney (Microsoft Press, 2002) and Developing Drivers with the Windows 
Driver Foundation by Penny Orwick and Guy Smith (Microsoft Press, 2007).

Sysinternals tools
Many experiments in this book use freeware tools that you can download from Sysinternals. Mark 
Russinovich, coauthor of this book, wrote most of these tools. The most popular tools include Process 
Explorer and Process Monitor. Note that many of these utilities involve the installation and execution  
of kernel-mode device drivers and thus require administrator, or elevated, privileges—although some of 
them can run with limited functionality and output on a standard, or non-elevated, user account.

Because the Sysinternals tools are updated frequently, be make sure you have the latest version. 
To be notified of tool updates, you can follow the Sysinternals Site Blog (which has an RSS feed). For a 
description of all the tools, a description of how to use them, and case studies of problems solved, see 
Windows Sysinternals Administrator’s Reference by Mark Russinovich and Aaron Margosis (Microsoft 
Press, 2011). For questions and discussions on the tools, use the Sysinternals Forums.

Conclusion

This chapter introduced key Windows technical concepts and terms that will be used throughout the 
book. It also offered a glimpse of the many useful tools available for digging into Windows internals. 
Now you’re ready to begin your exploration of the internal design of the system, beginning with an 
overall view of the system architecture and its key components.
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C H A P T E R  2

System architecture

Now that you’ve learned the terms, concepts, and tools you need to be familiar with, it’s time to 
start exploring the internal design goals and structure of the Microsoft Windows operating system 

(OS). This chapter explains the overall architecture of the system—the key components, how they inter-
act with each other, and the context in which they run. To provide a framework for understanding the 
internals of Windows, let’s first review the requirements and goals that shaped the original design and 
specification of the system.

Requirements and design goals

The following requirements drove the specification of Windows NT back in 1989:

 ■ Provide a true 32-bit, preemptive, reentrant, virtual memory OS.

 ■ Run on multiple hardware architectures and platforms.

 ■ Run and scale well on symmetric multiprocessing systems.

 ■ Be a great distributed computing platform, both as a network client and as a server.

 ■ Run most existing 16-bit MS-DOS and Microsoft Windows 3.1 applications.

 ■ Meet government requirements for POSIX 1003.1 compliance.

 ■ Meet government and industry requirements for OS security.

 ■ Be easily adaptable to the global market by supporting Unicode.

To guide the thousands of decisions that had to be made to create a system that met these require-
ments, the Windows NT design team adopted the following design goals at the beginning of the project:

 ■ Extensibility The code must be written to comfortably grow and change as market require-
ments change.

 ■ Portability The system must be able to run on multiple hardware architectures and must be 
able to move with relative ease to new ones as market demands dictate.

 ■ Reliability and robustness The system should protect itself from both internal malfunction 
and external tampering. Applications should not be able to harm the OS or other applications.
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 ■ Compatibility Although Windows NT should extend existing technology, its user interface 
and APIs should be compatible with older versions of Windows and with MS-DOS. It should also 
interoperate well with other systems, such as UNIX, OS/2, and NetWare.

 ■ Performance Within the constraints of the other design goals, the system should be as fast 
and responsive as possible on each hardware platform.

As we explore the details of the internal structure and operation of Windows, you’ll see how these 
original design goals and market requirements were woven successfully into the construction of the 
system. But before we start that exploration, let’s examine the overall design model for Windows and 
compare it with other modern operating systems.

Operating system model

In most multiuser operating systems, applications are separated from the OS itself. The OS kernel code 
runs in a privileged processor mode (referred to as kernel mode in this book), with access to system 
data and to the hardware. Application code runs in a non-privileged processor mode (called user mode), 
with a limited set of interfaces available, limited access to system data, and no direct access to hardware. 
When a user-mode program calls a system service, the processor executes a special instruction that 
switches the calling thread to kernel mode. When the system service completes, the OS switches the 
thread context back to user mode and allows the caller to continue.

Windows is similar to most UNIX systems in that it’s a monolithic OS in the sense that the bulk of 
the OS and device driver code shares the same kernel-mode protected memory space. This means 
that any OS component or device driver can potentially corrupt data being used by other OS system 
components. However, as you saw in Chapter 1, “Concepts and tools,” Windows addresses this through 
attempts to strengthen the quality and constrain the provenance of third-party drivers through 
programs such as WHQL and enforcement through KMCS, while also incorporating additional kernel 
protection technologies such as virtualization-based security and the Device Guard and Hyper Guard 
features. Although you’ll see how these pieces fit together in this section, more details will follow in 
Chapter 7, “Security,” and in Chapter 8, “System mechanisms,” in Windows Internals Part 2.

All these OS components are, of course, fully protected from errant applications because applica-
tions don’t have direct access to the code and data of the privileged part of the OS (although they can 
quickly call other kernel services). This protection is one of the reasons that Windows has the reputa-
tion for being both robust and stable as an application server and as a workstation platform, yet fast 
and nimble from the perspective of core OS services, such as virtual memory management, file I/O, 
networking, and file and print sharing.

The kernel-mode components of Windows also embody basic object-oriented design principles.  
For example, in general they don’t reach into one another’s data structures to access information main-
tained by individual components. Instead, they use formal interfaces to pass parameters and access 
and/or modify data structures.
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Despite its pervasive use of objects to represent shared system resources, Windows is not an object-
oriented system in the strict sense. Most of the kernel-mode OS code is written in C for portability. The 
C programming language doesn’t directly support object-oriented constructs such as polymorphic 
functions or class inheritance. Therefore, the C-based implementation of objects in Windows borrows 
from, but doesn’t depend on, features of particular object-oriented languages.

Architecture overview

With this brief overview of the design goals and packaging of Windows, let’s take a look at the key 
system components that make up its architecture. A simplified version of this architecture is shown in 
Figure 2-1. Keep in mind that this diagram is basic. It doesn’t show everything. For example, the net-
working components and the various types of device driver layering are not shown.

FIGURE 2-1 Simplified Windows architecture.

In Figure 2-1, first notice the line dividing the user-mode and kernel-mode parts of the Windows 
OS. The boxes above the line represent user-mode processes, and the components below the line are 
kernel-mode OS services. As mentioned in Chapter 1, user-mode threads execute in a private process 
address space (although while they are executing in kernel mode, they have access to system space). 
Thus, system processes, service processes, user processes, and environment subsystems each have their 
own private process address space. A second dividing line between kernel-mode parts of Windows 
and the hypervisor is also visible. Strictly speaking, the hypervisor still runs with the same CPU privilege 
level (0) as the kernel, but because it uses specialized CPU instructions (VT-x on Intel, SVM on AMD), it 
can both isolate itself from the kernel while also monitoring it (and applications). For these reasons, you 
may often hear the term ring -1 thrown around (which is inaccurate).
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The four basic types of user-mode processes are described as follows:

 ■ User processes These processes can be one of the following types: Windows 32-bit or 64-bit 
(Windows Apps running on top of the Windows Runtime in Windows 8 and later are included 
in this category), Windows 3.1 16-bit, MS-DOS 16-bit, or POSIX 32-bit or 64-bit. Note that 16-bit 
applications can be run only on 32-bit Windows, and that POSIX applications are no longer sup-
ported as of Windows 8.

 ■ Service processes These are processes that host Windows services, such as the Task Sched-
uler and Print Spooler services. Services generally have the requirement that they run indepen-
dently of user logons. Many Windows server applications, such as Microsoft SQL Server and 
Microsoft Exchange Server, also include components that run as services. Chapter 9, “Manage-
ment mechanisms,” in Part 2 describes services in detail.

 ■ System processes These are fixed, or hardwired, processes, such as the logon process and 
the Session Manager, that are not Windows services. That is, they are not started by the Service 
Control Manager. 

 ■ Environment subsystem server processes These implement part of the support for the OS 
environment, or personality, presented to the user and programmer. Windows NT originally 
shipped with three environment subsystems: Windows, POSIX, and OS/2. However, the OS/2 
subsystem last shipped with Windows 2000 and POSIX last shipped with Windows XP. The Ulti-
mate and Enterprise editions of Windows 7 client as well as all of the server versions of Windows 
2008 R2 include support for an enhanced POSIX subsystem called Subsystem for UNIX-based 
Applications (SUA). The SUA is now discontinued and is no longer offered as an optional part of 
Windows (either client or server).

Note Windows 10 Version 1607 includes a Windows Subsystem for Linux (WSL) in beta 
state for developers only. However, this is not a true subsystem as described in this section. 
This chapter will discuss WSL and the related Pico providers in more detail. For information 
about Pico processes, see Chapter 3, “Processes and jobs.”

In Figure 2-1, notice the Subsystem DLLs box below the Service Processes and User Processes boxes. 
Under Windows, user applications don’t call the native Windows OS services directly. Rather, they go 
through one or more subsystem dynamic-link libraries (DLLs). The role of subsystem DLLs is to translate 
a documented function into the appropriate internal (and generally undocumented) native system 
service calls implemented mostly in Ntdll.dll. This translation might or might not involve sending a 
message to the environment subsystem process that is serving the user process.

The kernel-mode components of Windows include the following:

 ■ Executive The Windows executive contains the base OS services, such as memory management, 
process and thread management, security, I/O, networking, and inter-process communication.
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 ■ The Windows kernel This consists of low-level OS functions, such as thread scheduling, 
interrupt and exception dispatching, and multiprocessor synchronization. It also provides a 
set of routines and basic objects that the rest of the executive uses to implement higher-level 
constructs.

 ■ Device drivers This includes both hardware device drivers, which translate user I/O function 
calls into specific hardware device I/O requests, and non-hardware device drivers, such as file 
system and network drivers.

 ■ The Hardware Abstraction Layer (HAL) This is a layer of code that isolates the kernel, the 
device drivers, and the rest of the Windows executive from platform-specific hardware differ-
ences (such as differences between motherboards).

 ■ The windowing and graphics system This implements the graphical user interface (GUI) 
functions (better known as the Windows USER and GDI functions), such as dealing with windows, 
user interface controls, and drawing.

 ■ The hypervisor layer This is composed of a single component: the hypervisor itself. There are 
no drivers or other modules in this environment. That being said, the hypervisor is itself com-
posed of multiple internal layers and services, such as its own memory manager, virtual proces-
sor scheduler, interrupt and timer management, synchronization routines, partitions (virtual 
machine instances) management and inter-partition communication (IPC), and more.

Table 2-1 lists the file names of the core Windows OS components. (You’ll need to know these file 
names because we’ll be referring to some system files by name.) Each of these components is covered 
in greater detail both later in this chapter and in the chapters that follow.

TABLE 2-1 Core Windows System Files

File Name Components

Ntoskrnl.exe Executive and kernel

Hal.dll HAL

Win32k.sys Kernel-mode part of the Windows subsystem (GUI)

Hvix64.exe (Intel), Hvax64.exe (AMD) Hypervisor

.sys files in \SystemRoot\System32\Drivers Core driver files, such as Direct X, Volume Manager, TCP/IP, TPM, and 
ACPI support

Ntdll.dll Internal support functions and system service dispatch stubs to ex-
ecutive functions

Kernel32.dll, Advapi32.dll, User32.dll, Gdi32.dll Core Windows subsystem DLLs

Before we dig into the details of these system components, though, let’s examine some basics about 
the Windows kernel design, starting with how Windows achieves portability across multiple hardware 
architectures.
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Portability
Windows was designed to run on a variety of hardware architectures. The initial release of Windows NT 
supported the x86 and MIPS architectures. Support for the Digital Equipment Corporation (which was 
bought by Compaq, which later merged with Hewlett-Packard) Alpha AXP was added shortly thereaf-
ter. (Although Alpha AXP was a 64-bit processor, Windows NT ran in 32-bit mode. During the develop-
ment of Windows 2000, a native 64-bit version was running on Alpha AXP, but this was never released.) 
Support for a fourth processor architecture, the Motorola PowerPC, was added in Windows NT 3.51. 
Because of changing market demands, however, support for the MIPS and PowerPC architectures was 
dropped before development began on Windows 2000. Later, Compaq withdrew support for the Alpha 
AXP architecture, resulting in Windows 2000 being supported only on the x86 architecture. Windows 
XP and Windows Server 2003 added support for two 64-bit processor families: the Intel Itanium IA-64 
family and the AMD64 family with its equivalent Intel 64-bit Extension Technology (EM64T). These 
latter two implementations are called 64-bit extended systems and in this book are referred to as x64. 
(How Windows runs 32-bit applications on 64-bit Windows is explained in Chapter 8 in Part 2.) Addi-
tionally, as of Server 2008 R2, IA-64 systems are no longer supported by Windows.

Newer editions of Windows support the ARM processor architecture. For example, Windows RT was 
a version of Windows 8 that ran on ARM architecture, although that edition has since been discontinued. 
Windows 10 Mobile—the successor for Windows Phone 8.x operating systems—runs on ARM based 
processors, such as Qualcomm Snapdragon models. Windows 10 IoT runs on both x86 and ARM devices 
such as Raspberry Pi 2 (which uses an ARM Cortex-A7 processor) and Raspberry Pi 3 (which uses the 
ARM Cortex-A53). As ARM hardware has advanced to 64-bit, a new processor family called AArch64,  
or ARM64, may also at some point be supported, as an increasing number of devices run on it.

Windows achieves portability across hardware architectures and platforms in two primary ways:

 ■ By using a layered design Windows has a layered design, with low-level portions of the 
system that are processor-architecture–specific or platform-specific isolated into separate 
modules so that upper layers of the system can be shielded from the differences between  
architectures and among hardware platforms. The two key components that provide OS por-
tability are the kernel (contained in Ntoskrnl.exe) and the HAL (contained in Hal.dll). Both these 
components are described in more detail later in this chapter. Functions that are architecture-
specific, such as thread context switching and trap dispatching, are implemented in the kernel. 
Functions that can differ among systems within the same architecture (for example, different 
motherboards) are implemented in the HAL. The only other component with a significant 
amount of architecture-specific code is the memory manager, but even that is a small amount 
compared to the system as a whole. The hypervisor follows a similar design, with most parts 
shared between the AMD (SVM) and Intel (VT-x) implementation, and some specific parts for 
each processor—hence the two file names on disk you saw in Table 2-1.

 ■ By using C The vast majority of Windows is written in C, with some portions in C++. Assembly 
language is used only for those parts of the OS that need to communicate directly with system 
hardware (such as the interrupt trap handler) or that are extremely performance-sensitive (such 
as context switching). Assembly language code exists not only in the kernel and the HAL but 
also in a few other places within the core OS (such as the routines that implement interlocked 
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instructions as well as one module in the local procedure call facility), in the kernel-mode part 
of the Windows subsystem, and even in some user-mode libraries, such as the process startup 
code in Ntdll.dll (a system library explained later in this chapter).

Symmetric multiprocessing
Multitasking is the OS technique for sharing a single processor among multiple threads of execution. 
When a computer has more than one processor, however, it can execute multiple threads simultane-
ously. Thus, whereas a multitasking OS only appears to execute multiple threads at the same time, a 
multiprocessing OS actually does it, executing one thread on each of its processors.

As mentioned at the beginning of this chapter, one of the key design goals for Windows was that 
it had to run well on multiprocessor computer systems. Windows is a symmetric multiprocessing 
(SMP) OS. There is no master processor—the OS as well as user threads can be scheduled to run on 
any processor. Also, all the processors share just one memory space. This model contrasts with asym-
metric multiprocessing (ASMP), in which the OS typically selects one processor to execute OS kernel 
code while other processors run only user code. The differences in the two multiprocessing models are 
illustrated in Figure 2-2.

FIGURE 2-2 Symmetric vs. asymmetric multiprocessing.

Windows also supports four modern types of multiprocessor systems: multicore, simultaneous 
multi-threaded (SMT), heterogeneous, and non-uniform memory access (NUMA). These are briefly 
mentioned in the following paragraphs. (For a complete, detailed description of the scheduling sup-
port for these systems, see the section on thread scheduling in Chapter 4, “Threads.”)

SMT was first introduced to Windows systems by adding support for Intel’s Hyper-Threading Tech-
nology, which provides two logical processors for each physical core. Newer AMD processors under the 
Zen micro-architecture implement a similar SMT technology, also doubling the logical processor count. 
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Each logical processor has its own CPU state, but the execution engine and onboard cache are shared. 
This permits one logical CPU to make progress while the other logical CPU is stalled (such as after a  
cache miss or branch misprediction). Confusingly, the marketing literature for both companies refers 
to these additional cores as threads, so you’ll often see claims such as “four cores, eight threads.” This 
indicates that up to eight threads can be scheduled, hence, the existence of eight logical processors. 
The scheduling algorithms are enhanced to make optimal use of SMT-enabled machines, such as by 
scheduling threads on an idle physical processor versus choosing an idle logical processor on a physical 
processor whose other logical processors are busy. For more details on thread scheduling, see Chapter 4.

In NUMA systems, processors are grouped in smaller units called nodes. Each node has its own 
processors and memory and is connected to the larger system through a cache-coherent interconnect 
bus. Windows on a NUMA system still runs as an SMP system, in that all processors have access to all 
memory. It’s just that node-local memory is faster to reference than memory attached to other nodes. 
The system attempts to improve performance by scheduling threads on processors that are in the same 
node as the memory being used. It attempts to satisfy memory-allocation requests from within the 
node, but it will allocate memory from other nodes if necessary.

Naturally, Windows also natively supports multicore systems. Because these systems have real 
physical cores (simply on the same package), the original SMP code in Windows treats them as discrete 
processors, except for certain accounting and identification tasks (such as licensing, described shortly) 
that distinguish between cores on the same processor and cores on different sockets. This is especially 
important when dealing with cache topologies to optimize data-sharing.

Finally, ARM versions of Windows also support a technology known as heterogeneous multi-pro-
cessing, whose implementation on such processors is called big.LITTLE. This type of SMP-based design 
differs from traditional ones in that not all processor cores are identical in their capabilities, yet unlike 
pure heterogeneous multi-processing, they are still able to execute the same instructions. The differ-
ence, then, comes from the clock speed and respective full load/idle power draws, allowing for a col-
lection of slower cores to be paired with faster ones.

Think of sending an e-mail on an older dual-core 1 GHz system connected to a modern Internet 
connection. It’s unlikely this will be any slower than on an eight-core 3.6 GHz machine because bottle-
necks are mostly caused by human input typing speed and network bandwidth, not raw processing 
power. Yet even in its deepest power-saving mode, such a modern system is likely to use significantly 
more power than the legacy system. Even if it could regulate itself down to 1 GHz, the legacy system 
has probably set itself to 200 MHz, for example.

By being able to pair such legacy mobile processors with top-of-the-line ones, ARM-based plat-
forms paired with a compatible OS kernel scheduler can maximize processing power when needed (by 
turning on all cores), strike a balance (by having certain big cores online and other little ones for other 
tasks), or run in extremely low power modes (by having only a single little core online—enough for 
SMS and push e-mail). By supporting what are called heterogeneous scheduling policies, Windows 10 
allows threads to pick and choose between a policy that satisfies their needs, and will interact with the 
scheduler and power manager to best support it. You’ll learn more about these policies in Chapter 4.

Windows was not originally designed with a specific processor number limit in mind, other than 
the licensing policies that differentiate the various Windows editions. However, for convenience and 
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efficiency, Windows does keep track of processors (total number, idle, busy, and other such details) in 
a bitmask (sometimes called an affinity mask) that is the same number of bits as the native data type 
of the machine (32-bit or 64-bit). This allows the processor to manipulate bits directly within a regis-
ter. Due to this fact, Windows systems were originally limited to the number of CPUs in a native word, 
because the affinity mask couldn’t arbitrarily be increased. To maintain compatibility, as well as support 
larger processor systems, Windows implements a higher-order construct called a processor group. The 
processor group is a set of processors that can all be defined by a single affinity bitmask, and the kernel 
as well as the applications can choose which group they refer to during affinity updates. Compatible 
applications can query the number of supported groups (currently limited to 20; the maximum number 
of logical processors is currently limited to 640) and then enumerate the bitmask for each group. 
Meanwhile, legacy applications continue to function by seeing only their current group. For more 
information on how exactly Windows assigns processors to groups (which is also related to NUMA) and 
legacy processes to groups, see Chapter 4.

As mentioned, the actual number of supported licensed processors depends on the edition of Win-
dows being used. (See Table 2-2 later in this chapter.) This number is stored in the system license policy 
file (essentially a set of name/value pairs) %SystemRoot%\ServiceProfiles\LocalService\AppData\Local\
Microsoft\WSLicense\tokens.dat in the variable kernel-RegisteredProcessors.

Scalability
One of the key issues with multiprocessor systems is scalability. To run correctly on an SMP system, OS 
code must adhere to strict guidelines and rules. Resource contention and other performance issues are 
more complicated in multiprocessing systems than in uniprocessor systems and must be accounted 
for in the system’s design. Windows incorporates several features that are crucial to its success as a 
multiprocessor OS:

 ■ The ability to run OS code on any available processor and on multiple processors at the same time

 ■ Multiple threads of execution within a single process, each of which can execute simultaneously 
on different processors

 ■ Fine-grained synchronization within the kernel (such as spinlocks, queued spinlocks, and 
pushlocks, described in Chapter 8 in Part 2) as well as within device drivers and server processes, 
which allows more components to run concurrently on multiple processors

 ■ Programming mechanisms such as I/O completion ports (described in Chapter 6, “I/O system”) 
that facilitate the efficient implementation of multithreaded server processes that can scale well 
on multiprocessor systems

The scalability of the Windows kernel has evolved over time. For example, Windows Server 2003 in-
troduced per-CPU scheduling queues with a fine-grained lock, permitting thread-scheduling decisions 
to occur in parallel on multiple processors. Windows 7 and Windows Server 2008 R2 eliminated global 
scheduler locking during wait-dispatching operations. This stepwise improvement of the granularity 
of locking has also occurred in other areas, such as the memory manager, cache manager, and object 
manager.
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Differences between client and server versions
Windows ships in both client and server retail packages. There are six desktop client versions of Windows 
10: Windows 10 Home, Windows 10 Pro, Windows 10 Education, Windows 10 Pro Education, Windows 10 
Enterprise, and Windows 10 Enterprise Long Term Servicing Branch (LTSB). Other non-desktop editions 
include Windows 10 Mobile, Windows 10 Mobile Enterprise, and Windows 10 IoT Core, IoT Core Enter-
prise, and IoT Mobile Enterprise. Still more variants exist that target world regions with specific needs, 
such as the N series.

There are six different versions of Windows Server 2016: Windows Server 2016 Datacenter, Windows 
Server 2016 Standard, Windows Server 2016 Essentials, Windows Server 2006 MultiPoint Premium 
Server, Windows Storage Server 2016, and Microsoft Hyper-V Server 2016.

These versions differ as follows:

 ■ Core-based (rather than socket-based) pricing for the Server 2016 Datacenter and Standard 
edition

 ■ The number of total logical processors supported

 ■ For server systems, the number of Hyper-V containers allowed to run (client systems support 
only namespace-based Windows containers)

 ■ The amount of physical memory supported (actually highest physical address usable for RAM; 
see Chapter 5, “Memory management,” for more information on physical memory limits)

 ■ The number of concurrent network connections supported (for example, a maximum of 10 con-
current connections are allowed to the file and print services in client versions)

 ■ Support for multi-touch and Desktop Composition

 ■ Support for features such as BitLocker, VHD booting, AppLocker, Hyper-V, and more than 100 
other configurable licensing policy values

 ■ Layered services that come with Windows Server editions that don’t come with the client edi-
tions (for example, directory services, Host Guardian, Storage Spaces Direct, shielded virtual 
machines, and clustering)

Table 2-2 lists the differences in memory and processor support for some Windows 10, Windows 
Server 2012 R2, and Windows Server 2016 editions. For a detailed comparison chart of the different 
editions of Windows Server 2012 R2, see https://www.microsoft.com/en-us/download/details.aspx?id=41703.  
For Windows 10 and Server 2016 editions and earlier OS memory limits, see https://msdn.microsoft.com/ 
en-us/library/windows/desktop/aa366778.aspx.

Although there are several client and server retail packages of the Windows OS, they share a common 
set of core system files, including the kernel image, Ntoskrnl.exe (and the PAE version, Ntkrnlpa.exe), 
the HAL libraries, the device drivers, and the base system utilities and DLLs.

https://www.microsoft.com/en-us/download/details.aspx?id=41703
https://www.msdn.microsoft.com/en-us/library/windows/desktop/aa366778.aspx
https://www.msdn.microsoft.com/en-us/library/windows/desktop/aa366778.aspx


 CHAPTER 2 System architecture 55

TABLE 2-2 Processor and memory limits for some Windows editions

Number of 
Sockets Supported 
(32-Bit Edition)

Physical Memory 
Supported  
(32-Bit Edition)

Number of Logical 
Processors/Sockets 
Supported  
(64-Bit Edition)

Physical 
Memory 
Supported 
(x64 Editions)

Windows 10 Home 1 4 GB 1 socket 128 GB

Windows 10 Pro 2 4 GB 2 sockets 2 TB

Windows 10 
Enterprise

2 4 GB 2 sockets 2 TB

Windows Server 
2012 R2 Essentials

Not available Not available 2 sockets 64 GB

Windows Server 
2016 Standard

Not available Not available 512 logical processors 24 TB

Windows Server 
2016 Datacenter

Not available Not available 512 logical processors 24 TB

With so many different editions of Windows and each having the same kernel image, how does the 
system know which edition is booted? By querying the registry values ProductType and ProductSuite 
under the HKLM\SYSTEM\CurrentControlSet\Control\ProductOptions key. ProductType is used to 
distinguish whether the system is a client system or a server system (of any flavor). These values are 
loaded into the registry based on the licensing policy file described earlier. The valid values are listed 
in Table 2-3. This can be queried from the user-mode VerifyVersionInfo function or from a device 
driver using the kernel-mode support function RtlGetVersion and RtlVerifyVersionInfo, both 
documented in the Windows Driver Kit (WDK).

TABLE 2-3 ProductType registry values

Edition of Windows Value of ProductType

Windows client WinNT

Windows server (domain controller) LanmanNT

Windows server (server only) ServerNT

A different registry value, ProductPolicy, contains a cached copy of the data inside the tokens.dat 
file, which differentiates between the editions of Windows and the features that they enable.

So if the core files are essentially the same for the client and server versions, how do the systems 
differ in operation? In short, server systems are optimized by default for system throughput as high-
performance application servers, whereas the client version (although it has server capabilities) is op-
timized for response time for interactive desktop use. For example, based on the product type, several 
resource-allocation decisions are made differently at system boot time, such as the size and number 
of OS heaps (or pools), the number of internal system worker threads, and the size of the system data 
cache. Also, run-time policy decisions, such as the way the memory manager trades off system and 
process memory demands, differ between the server and client editions. Even some thread-scheduling 
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details have different default behavior in the two families (the default length of the time slice, or thread 
quantum; see Chapter 4 for details). Where there are significant operational differences in the two 
products, these are highlighted in the pertinent chapters throughout the rest of this book. Unless  
otherwise noted, everything in this book applies to both the client and server versions.

EXPERIMENT: Determining features enabled by licensing policy
As mentioned, Windows supports more than 100 different features that can be enabled through 
the software licensing mechanism. These policy settings determine the various differences not 
only between a client and server installation, but also between each edition (or SKU) of the OS, 
such as BitLocker support (available on Windows server as well as the Pro and Enterprise editions 
of Windows client). You can use the SlPolicy tool from the downloads available for the book to 
display many of these policy values.

Policy settings are organized by a facility, which represents the owner module for which the 
policy applies. You can display a list of all facilities known to the tool by running Slpolicy.exe with 
the –f switch:

C:\>SlPolicy.exe -f 
Software License Policy Viewer Version 1.0 (C)2016 by Pavel Yosifovich 
Desktop Windows Manager 
Explorer 
Fax 
Kernel 
IIS 
…

You can then add the name of any facility after the switch to display the policy value for that 
facility. For example, to look at the limitations on CPUs and available memory, use the Kernel 
facility. Here’s the expected output on a machine running Windows 10 Pro:

C:\>SlPolicy.exe -f Kernel 
Software License Policy Viewer Version 1.0 (C)2016 by Pavel Yosifovich 
Kernel 
------ 
Maximum allowed processor sockets: 2 
Maximum memory allowed in MB (x86): 4096 
Maximum memory allowed in MB (x64): 2097152 
Maximum memory allowed in MB (ARM64): 2097152 
Maximum physical page in bytes: 4096 
Device Family ID: 3 
Native VHD boot: Yes 
Dynamic Partitioning supported: No 
Virtual Dynamic Partitioning supported: No 
Memory Mirroring supported: No 
Persist defective memory list: No

As another example, the output for the kernel facility for a Windows Server 2012 R2 Datacenter 
edition would look something like this:
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Kernel 
------ 
Maximum allowed processor sockets: 64 
Maximum memory allowed in MB (x86): 4096 
Maximum memory allowed in MB (x64): 4194304 
Add physical memory allowed: Yes 
Add VM physical memory allowed: Yes 
Maximum physical page in bytes: 0 
Native VHD boot: Yes 
Dynamic Partitioning supported: Yes 
Virtual Dynamic Partitioning supported: Yes 
Memory Mirroring supported: Yes 
Persist defective memory list: Yes

Checked build
There is a special internal debug version of Windows called the checked build (externally available only 
for Windows 8.1 and earlier with an MSDN Operating Systems subscription). It is a recompilation of the 
Windows source code with a compile-time flag defined called DBG, which causes compile time, condi-
tional debugging, and tracing code to be included. Also, to make it easier to understand the machine 
code, the post-processing of the Windows binaries to optimize code layout for faster execution is not 
performed. (See the section “Debugging performance-optimized code” in the Debugging Tools for 
Windows help file.)

The checked build was provided primarily to aid device driver developers because it performs more 
stringent error-checking on kernel-mode functions called by device drivers or other system code. For 
example, if a driver (or some other piece of kernel-mode code) makes an invalid call to a system func-
tion that is checking parameters (such as acquiring a spinlock at the wrong interrupt request level), 
the system will stop execution when the problem is detected rather than allow some data structure to 
be corrupted and the system to possibly crash at a later time. Because a full checked build was often 
unstable and impossible to run in most environments, Microsoft provides a checked kernel and HAL 
only for Windows 10 and later. This enables developers to obtain the same level of usefulness from the 
kernel and HAL code they interact with without dealing with the issues that a full checked build would 
cause. This checked kernel and HAL pair is freely available through the WDK, in the \Debug directory of 
the root installation path. For detailed instructions on how to do this, see the section “Installing Just the 
Checked Operating System and HAL” in the WDK documentation.

EXPERIMENT: Determining if you are running the checked build
There is no built-in tool to display whether you are running the checked build or the retail build 
(called the free build) of the kernel. However, this information is available through the Debug 
property of the Windows Management Instrumentation (WMI) Win32_OperatingSystem class. 
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The following PowerShell script displays this property. (You can try this by opening a PowerShell 
script host.)

PS C:\Users\pavely> Get-WmiObject win32_operatingsystem | select debug 
debug 
----- 
False

This system is not running the checked build, because the Debug property shown here says False.

Much of the additional code in the checked-build binaries is a result of using the ASSERT and/or 
NT_ASSERT macros, which are defined in the WDK header file Wdm.h and documented in the WDK 
documentation. These macros test a condition, such as the validity of a data structure or parameter. If 
the expression evaluates to FALSE, the macros either call the kernel-mode function RtlAssert, which 
calls DbgPrintEx to send the text of the debug message to a debug message buffer, or issue an asser-
tion interrupt, which is interrupt 0x2B on x64 and x86 systems. If a kernel debugger is attached and the 
appropriate symbols are loaded, this message is displayed automatically followed by a prompt asking 
the user what to do about the assertion failure (breakpoint, ignore, terminate process, or terminate 
thread). If the system wasn’t booted with the kernel debugger (using the debug option in the Boot 
Configuration Database) and no kernel debugger is currently attached, failure of an assertion test will 
bug-check (crash) the system. For a small list of assertion checks made by some of the kernel support 
routines, see the section “Checked Build ASSERTs” in the WDK documentation (although note this list is 
unmaintained and outdated).

The checked build is also useful for system administrators because of the additional detailed 
informational tracing that can be enabled for certain components. (For detailed instructions, see the 
Microsoft Knowledge Base Article number 314743, titled “HOWTO: Enable Verbose Debug Tracing in 
Various Drivers and Subsystems.”) This information output is sent to an internal debug message buffer 
using the DbgPrintEx function referred to earlier. To view the debug messages, you can either attach a 
kernel debugger to the target system (which requires booting the target system in debugging mode), 
use the !dbgprint command while performing local kernel debugging, or use the Dbgview.exe tool 
from Sysinternals. Most recent versions of Windows have moved away from this type of debug output, 
however, and use a combination of either Windows preprocessor (WPP) tracing or TraceLogging 
technology, both of which are built on top of Event Tracing for Windows (ETW). The advantage of these 
new logging mechanisms is that they are not solely limited to the checked versions of components 
(especially useful now that a full checked build is no longer available), and can be seen by using tools 
such as the Windows Performance Analyzer (WPA), formerly known as XPerf or Windows Perfomance 
Toolkit, TraceView (from the WDK), or the !wmiprint extension command in the kernel debugger.

Finally, the checked build can also be useful for testing user-mode code only because the timing of 
the system is different. (This is because of the additional checking taking place within the kernel and 
the fact that the components are compiled without optimizations.) Often, multithreaded synchroni-
zation bugs are related to specific timing conditions. By running your tests on a system running the 
checked build (or at least the checked kernel and HAL), the fact that the timing of the whole system is 
different might cause latent timing bugs to surface that do not occur on a normal retail system.
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Virtualization-based security architecture overview

As you saw in Chapter 1 and again in this chapter, the separation between user mode and kernel 
mode provides protection for the OS from user-mode code, whether malicious or not. However, if an 
unwanted piece of kernel-mode code makes it into the system (because of some yet-unpatched kernel 
or driver vulnerability or because the user was tricked into installing a malicious or vulnerable driver), 
the system is essentially compromised because all kernel-mode code has complete access to the entire 
system. The technologies outlined in Chapter 1, which leverage the hypervisor to provide additional 
guarantees against attacks, make up a set of virtualization-based security (VBS) capabilities, extend-
ing the processor’s natural privilege-based separation through the introduction of Virtual Trust Levels 
(VTLs). Beyond simply introducing a new orthogonal way of isolating access to memory, hardware, 
and processor resources, VTLs also require new code and components to manage the higher levels of 
trust. The regular kernel and drivers, running in VTL 0, cannot be permitted to control and define VTL 1 
resources; this would defeat the purpose.

Figure 2-3 shows the architecture of Windows 10 Enterprise and Server 2016 when VBS is active. 
(You’ll also sometimes see the term Virtual Secure Mode, or VSM, used.) With Windows 10 version 1607 
and Server 2016 releases, it’s always active by default if supported by hardware. For older versions of 
Windows 10, you can activate it by using a policy or with the Add Windows Features dialog box (select 
the Isolated User Mode option).

FIGURE 2-3 Windows 10 and Server 2016 VBS architecture.

As shown in Figure 2-3, the user/kernel code discussed earlier is running on top of a Hyper-V hyper-
visor, just like in Figure 2-1. The difference is that with VBS enabled, a VTL of 1 is now present, which 
contains its own secure kernel running in the privileged processor mode (that is, ring 0 on x86/x64). 
Similarly, a run-time user environment mode, called the Isolated User Mode (IUM), now exists, which 
runs in unprivileged mode (that is, ring 3).
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In this architecture, the secure kernel is its own separate binary, which is found under the name se-
curekernel.exe on disk. As for IUM, it’s both an environment that restricts the allowed system calls that 
regular user-mode DLLs can make (thus limiting which of these DLLs can be loaded) and a framework 
that adds special secure system calls that can execute only under VTL 1. These additional system calls 
are exposed in a similar way as regular system calls: through an internal system library named Iumdll.dll 
(the VTL 1 version of Ntdll.dll) and a Windows subsystem–facing library named Iumbase.dll (the VTL 1 
version of Kernelbase.dll). This implementation of IUM, mostly sharing the same standard Win32 API 
libraries, allows for the reduction of the memory overhead of VTL 1 user-mode applications because 
essentially, the same user-mode code is present as in their VTL 0 counterparts. As an important note, 
copy-on-write mechanisms, which you’ll learn more about in Chapter 5, prevent VTL 0 applications 
from making changes to binaries used by VTL 1.

With VBS, the regular user versus kernel rules apply, but are now augmented by VTL considerations. 
In other words, kernel-mode code running at VTL 0 cannot touch user mode running at VTL 1 because 
VTL 1 is more privileged. Yet, user-mode code running at VTL 1 cannot touch kernel mode running at 
VTL 0 either because user (ring 3) cannot touch kernel (ring 0). Similarly, VTL 1 user-mode applications 
must still go through regular Windows system calls and their respective access checks if they wish to 
access resources. 

A simple way of thinking about this is as follows: privilege levels (user versus kernel) enforce power. 
VTLs, on the other hand, enforce isolation. Although a VTL 1 user-mode application is not more power-
ful than a VTL 0 application or driver, it is isolated from it. In fact, VTL 1 applications aren’t just not 
more powerful; in many cases, they’re much less so. Because the secure kernel does not implement 
a full range of system capabilities, it hand-picks which system calls it will forward to the VTL 0 kernel. 
(Another name for secure kernel is proxy kernel.) Any kind of I/O, including file, network, and registry-
based, is completely prohibited. Graphics, as another example, are out of the question. Not a single 
driver is allowed to be communicated with.

The secure kernel however, by both running at VTL 1 and being in kernel mode, does have complete 
access to VTL 0 memory and resources. It can use the hypervisor to limit the VTL 0 OS access to certain 
memory locations by leveraging CPU hardware support known as Second Level Address Translation 
(SLAT). SLAT is the basis of Credential Guard technology, which can store secrets in such locations. 
Similarly, the secure kernel can use SLAT technology to interdict and control execution of memory 
locations, a key covenant of Device Guard.

To prevent normal device drivers from leveraging hardware devices to directly access memory, the 
system uses another piece of hardware known as the I/O memory management unit (MMU), which 
effectively virtualizes memory access for devices. This can be used to prevent device drivers from using 
direct memory access (DMA) to directly access the hypervisor or secure kernel’s physical regions of 
memory. This would bypass SLAT because no virtual memory is involved.

Because the hypervisor is the first system component to be launched by the boot loader, it can pro-
gram the SLAT and I/O MMU as it sees fit, defining the VTL 0 and 1 execution environments. Then, while 
in VTL 1, the boot loader runs again, loading the secure kernel, which can configure the system further 
to its needs. Only then is the VTL dropped, which will see the execution of the normal kernel, now living 
in its VTL 0 jail, unable to escape.
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Because user-mode processes running in VTL 1 are isolated, potentially malicious code—while not 
able to exert greater influence over the system—could run surreptitiously, attempt secure system calls 
(which would allow it to seal/sign its own secrets), and potentially cause bad interactions with other VTL 
1 processes or the smart kernel. As such, only a special class of specially signed binaries, called Trustlets, 
are allowed to execute in VTL 1. Each Trustlet has a unique identifier and signature, and the secure ker-
nel has hard-coded knowledge of which Trustlets have been created so far. As such, it is impossible to 
create new Trustlets without access to the secure kernel (which only Microsoft can touch), and existing 
Trustlets cannot be patched in any way (which would void the special Microsoft signature). For more 
information on Trustlets, see Chapter 3.

The addition of the secure kernel and VBS is an exciting step in modern OS architecture. With ad-
ditional hardware changes to various buses such as PCI and USB, it will soon be possible to support an 
entire class of secure devices, which, when combined with a minimalistic secure HAL, secure Plug-and-
Play manager, and secure User-Mode Device Framework, could allow certain VTL 1 applications direct 
and segregated access to specially designated devices, such as for biometric or smartcard input. New 
versions of Windows 10 are likely to leverage such advances.

Key system components

Now that we’ve looked at the high-level architecture of Windows, let’s delve deeper into the internal 
structure and the role each key OS component plays. Figure 2-4 is a more detailed and complete 
diagram of the core Windows system architecture and components than was shown in Figure 2-1. Note 
that it still does not show all components (networking in particular, which is explained in Chapter 10, 
“Networking,” in Part 2).

FIGURE 2-4 Windows architecture.
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The following sections elaborate on each major element of this diagram. Chapter 8 in Part 2 explains 
the primary control mechanisms the system uses (such as the object manager, interrupts, and so forth). 
Chapter 11, “Startup and shutdown,” in Part 2 describes the process of starting and shutting down Win-
dows, and Chapter 9 in Part 2 details management mechanisms such as the registry, service processes 
and WMI. Other chapters explore in even more detail the internal structure and operation of key areas 
such as processes and threads, memory management, security, the I/O manager, storage management, 
the cache manager, the Windows file system (NTFS), and networking.

Environment subsystems and subsystem DLLs
The role of an environment subsystem is to expose some subset of the base Windows executive system 
services to application programs. Each subsystem can provide access to different subsets of the na-
tive services in Windows. That means that some things can be done from an application built on one 
subsystem that can’t be done by an application built on another subsystem. For example, a Windows 
application can’t use the SUA fork function.

Each executable image (.exe) is bound to one and only one subsystem. When an image is run, the 
process creation code examines the subsystem type code in the image header so that it can notify the 
proper subsystem of the new process. This type code is specified with the /SUBSYSTEM linker option of 
the Microsoft Visual Studio linker (or through the SubSystem entry in the Linker/System property page 
in the project’s properties).

As mentioned, user applications don’t call Windows system services directly. Instead, they go through 
one or more subsystem DLLs. These libraries export the documented interface that the programs linked 
to that subsystem can call. For example, the Windows subsystem DLLs (such as Kernel32.dll, Advapi32.dll, 
User32.dll, and Gdi32.dll) implement the Windows API functions. The SUA subsystem DLL (Psxdll.dll)  
is used to implement the SUA API functions (on Windows versions that supported POSIX).

EXPERIMENT: Viewing the image subsystem type
You can see the image subsystem type by using the Dependency Walker tool (Depends.exe). For 
example, notice the image types for two different Windows images, Notepad.exe (the simple text 
editor) and Cmd.exe (the Windows command prompt):
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This shows that Notepad is a GUI program, while Cmd is a console, or character-based, 
program. Although this implies there are two different subsystems for GUI and character-based 
programs, there is just one Windows subsystem, and GUI programs can have consoles (by calling 
the AllocConsole function), just like console programs can display GUIs.

When an application calls a function in a subsystem DLL, one of three things can occur:

 ■ The function is entirely implemented in user mode inside the subsystem DLL. In other words, 
no message is sent to the environment subsystem process, and no Windows executive system 
services are called. The function is performed in user mode, and the results are returned to the 
caller. Examples of such functions include GetCurrentProcess (which always returns -1, a value 
that is defined to refer to the current process in all process-related functions) and GetCurrent-
ProcessId. (The process ID doesn’t change for a running process, so this ID is retrieved from a 
cached location, thus avoiding the need to call into the kernel.)

 ■ The function requires one or more calls to the Windows executive. For example, the Windows 
ReadFile and WriteFile functions involve calling the underlying internal (and undocumented 
for user-mode use) Windows I/O system services NtReadFile and NtWriteFile, respectively.

 ■ The function requires some work to be done in the environment subsystem process. (The 
environment subsystem processes, running in user mode, are responsible for maintaining the 
state of the client applications running under their control.) In this case, a client/server request 
is made to the environment subsystem via an ALPC (described in Chapter 8 in Part 2) message 
sent to the subsystem to perform some operation. The subsystem DLL then waits for a reply 
before returning to the caller.

Some functions can be a combination of the second and third items just listed, such as the Windows 
CreateProcess and ExitWindowsEx functions.

Subsystem startup
Subsystems are started by the Session Manager (Smss.exe) process. The subsystem startup information 
is stored under the registry key HKLM\SYSTEM\CurrentControlSet\Control\Session Manager\SubSystems. 
Figure 2-5 shows the values under this key (Windows 10 Pro snapshot).
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FIGURE 2-5 Registry Editor showing Windows subsystem information.

The Required value lists the subsystems that load when the system boots. The value has two strings: 
Windows and Debug. The Windows value contains the file specification of the Windows subsystem, 
Csrss.exe, which stands for Client/Server Runtime Subsystem. Debug is blank (this value has not been 
needed since Windows XP, but the registry value is kept for compatibility) and therefore does nothing. 
The Optional value indicates optional subsystems, which in this case is blank as well because SUA is no 
longer available on Windows 10. If it was, a data value of Posix would point to another value pointing to 
Psxss.exe (the POSIX subsystem process). A value of Optional means “loaded on demand,” which means 
the first time a POSIX image is encountered. The registry value Kmode contains the file name of the 
kernel-mode portion of the Windows subsystem, Win32k.sys (explained later in this chapter).

Let’s take a closer look at the Windows environment subsystems.

Windows subsystem
Although Windows was designed to support multiple independent environment subsystems, from a 
practical perspective, having each subsystem implement all the code to handle windowing and display 
I/O would result in a large amount of duplication of system functions that, ultimately, would negatively 
affect both system size and performance. Because Windows was the primary subsystem, the Windows 
designers decided to locate these basic functions there and have the other subsystems call on the 
Windows subsystem to perform display I/O. Thus, the SUA subsystem calls services in the Windows 
subsystem to perform display I/O.

As a result of this design decision, the Windows subsystem is a required component for any Windows 
system, even on server systems with no interactive users logged in. Because of this, the process is 
marked as a critical process (which means if it exits for any reason, the system crashes).



 CHAPTER 2 System architecture 65

The Windows subsystem consists of the following major components:

 ■ For each session, an instance of the environment subsystem process (Csrss.exe) loads four DLLs 
(Basesrv.dll, Winsrv.dll, Sxssrv.dll, and Csrsrv.dll) that contain support for the following:

• Various housekeeping tasks related to creating and deleting processes and threads

• Shutting down Windows applications (through the ExitWindowsEx API)

• Containing .ini file to registry location mappings for backward compatibility

• Sending certain kernel notification messages (such as those from the Plug-and-Play  
manager) to Windows applications as Window messages (WM_DEVICECHANGE)

• Portions of the support for 16-bit virtual DOS machine (VDM) processes (32-bit Windows only)

• Side-by-Side (SxS)/Fusion and manifest cache support

• Several natural language support functions, to provide caching

Note Perhaps most critically, the kernel mode code that handles the raw input thread 
and desktop thread (responsible for the mouse cursor, keyboard input, and handling of 
the desktop window) is hosted inside threads running inside Winsrv.dll. Additionally, the 
Csrss.exe instances associated with interactive user sessions contain a fifth DLL called the 
Canonical Display Driver (Cdd.dll). CDD is responsible for communicating with the DirectX 
support in the kernel (see the upcoming discussion) on each vertical refresh (VSync) to draw 
the visible desktop state without traditional hardware-accelerated GDI support.

 ■ A kernel-mode device driver (Win32k.sys) that contains the following:

• The window manager, which controls window displays; manages screen output; collects 
input from keyboard, mouse, and other devices; and passes user messages to applications

• The Graphics Device Interface (GDI), which is a library of functions for graphics output de-
vices and includes functions for line, text, and figure drawing and for graphics manipulation

• Wrappers for DirectX support that is implemented in another kernel driver (Dxgkrnl.sys)

 ■ The console host process (Conhost.exe), which provides support for console (character cell)  
applications

 ■ The Desktop Window Manager (Dwm.exe), which allows for compositing visible window ren-
dering into a single surface through the CDD and DirectX

 ■ Subsystem DLLs (such as Kernel32.dll, Advapi32.dll, User32.dll, and Gdi32.dll) that translate 
documented Windows API functions into the appropriate and undocumented (for user-mode) 
kernel-mode system service calls in Ntoskrnl.exe and Win32k.sys

 ■ Graphics device drivers for hardware-dependent graphics display drivers, printer drivers, and 
video miniport drivers
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Note As part of a refactoring effort in the Windows architecture called MinWin, the subsys-
tem DLLs are now generally composed of specific libraries that implement API Sets, which 
are then linked together into the subsystem DLL and resolved using a special redirection 
scheme. For more information on this refactoring, see the “Image loader” section in Chapter 3.

Windows 10 and Win32k.sys

The basic window-management requirements for Windows 10–based devices vary considerably de-
pending on the device in question. For example, a full desktop running Windows needs all the win-
dow manager’s capabilities, such as resizable windows, owner windows, child windows and so forth. 
Windows Mobile 10 running on phones or small tablets doesn’t need many of these features because 
there’s only one window in the foreground and it cannot be minimized or resized, etc. The same goes 
for IoT devices, which may not even have a display at all.

For these reasons, the functionality of Win32K.sys has been split among several kernel modules so 
that not all modules may be required on a specific system. This significantly reduces the attack surface 
of the window manager by reducing the complexity of the code and eliminating many of its legacy 
pieces. Here are some examples:

 ■ On phones (Windows Mobile 10) Win32k.sys loads Win32kMin.sys and Win32kBase.sys.

 ■ On full desktop systems Win32k.sys loads Win32kBase.sys and Win32kFull.sys.

 ■ On certain IoT systems, Win32k.sys might only need Win32kBase.sys.

Applications call the standard USER functions to create user-interface controls, such as windows and 
buttons, on the display. The window manager communicates these requests to the GDI, which passes 
them to the graphics device drivers, where they are formatted for the display device. A display driver is 
paired with a video miniport driver to complete video display support.

The GDI provides a set of standard two-dimensional functions that let applications communicate with 
graphics devices without knowing anything about the devices. GDI functions mediate between appli-
cations and graphics devices such as display drivers and printer drivers. The GDI interprets application 
requests for graphic output and sends the requests to graphics display drivers. It also provides a standard 
interface for applications to use varying graphics output devices. This interface enables application code 
to be independent of the hardware devices and their drivers. The GDI tailors its messages to the capa-
bilities of the device, often dividing the request into manageable parts. For example, some devices can 
understand directions to draw an ellipse; others require the GDI to interpret the command as a series of 
pixels placed at certain coordinates. For more information about the graphics and video driver architec-
ture, see the “Design Guide” section of the “Display (Adapters and Monitors)” chapter in the WDK.

Because much of the subsystem—in particular, display I/O functionality—runs in kernel mode, only 
a few Windows functions result in sending a message to the Windows subsystem process: process and 
thread creation and termination and DOS device drive letter mapping (such as through subst.exe).  
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In general, a running Windows application won’t cause many, if any, context switches to the Windows 
subsystem process, except as needed to draw the new mouse cursor position, handle keyboard input, 
and render the screen through CDD.

Console window host
In the original Windows subsystem design, the subsystem process (Csrss.exe) was responsible 
for managing console windows and each console application (such as Cmd.exe, the command 
prompt) communicated with Csrss.exe. Starting with Windows 7, a separate process is used for 
each console window on the system: the console window host (Conhost.exe). (A single console 
window can be shared by multiple console applications, such as when you launch a command 
prompt from the command prompt. By default, the second command prompt shares the console 
window of the first.) The details of the Windows 7 console host are explained in Chapter 2 of the 
sixth edition of this book.

With Windows 8 and later, the console architecture changed yet again. The Conhost.exe pro-
cess remains, but is now spawned from the console-based process (rather than from Csrss.exe, 
as in Windows 7) by the console driver (\Windows\System32\Drivers\ConDrv.sys). The process 
in question communicates with Conhost.exe using the console driver (ConDrv.sys), by sending 
read, write, I/O control and other I/O request types. Conhost.exe is designated as a server and 
the process using the console is the client. This change obviates the need for Csrss.exe to receive 
keyboard input (as part of the raw input thread), send it through Win32k.sys to Conhost.exe, and 
then use ALPC to send it to Cmd.exe. Instead, the command-line application can directly receive 
input from the console driver through read/write I/Os, avoiding needless context switching.

The following Process Explorer screen shows the handle Conhost.exe holds open to the device 
object exposed by ConDrv.sys named \Device\ConDrv. (For more details on device names and 
I/O, see Chapter 6.)

Notice that Conhost.exe is a child process of the console process (in this case, Cmd.exe). 
Conhost creation is initiated by the image loader for Console subsystem images or on demand 
if a GUI subsystem image calls the AllocConsole Windows API. (Of course, GUI and Console 
are essentially the same in the sense both are variants of the Windows subsystem type.) The real 
workhorse of Conhost.exe is a DLL it loads (\Windows\System32\ConhostV2.dll) that includes the 
bulk of code that communicates with the console driver.
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Other subsystems
As mentioned, Windows originally supported POSIX and OS/2 subsystems. Because these subsystems 
are no longer provided with Windows, they are not covered in this book. The general concept of sub-
systems remains, however, making the system extensible to new subsystems if such a need arises in the 
future.

Pico providers and the Windows subsystem for Linux
The traditional subsystem model, while extensible and clearly powerful enough to have supported 
POSIX and OS/2 for a decade, has two important technical disadvantages that made it hard to reach 
broad usage of non-Windows binaries beyond a few specialized use cases:

 ■ As mentioned, because subsystem information is extracted from the Portable Executable (PE) 
header, it requires the source code of the original binary to rebuild it as a Windows PE ex-
ecutable file (.exe). This will also change any POSIX-style dependencies and system calls into 
Windows-style imports of the Psxdll.dll library.

 ■ It is limited by the functionality provided either by the Win32 subsystem (on which it sometimes 
piggybacks) or the NT kernel. Therefore, the subsystem wraps, instead of emulates, the behav-
ior required by the POSIX application. This can sometimes lead to subtle compatibility flaws.

Finally, it’s also important to point out, that as the name says, the POSIX subsystem/SUA was de-
signed with POSIX/UNIX applications in mind, which dominated the server market decades ago, not 
true Linux applications, which are common today.

Solving these issues required a different approach to building a subsystem—one that did not 
require the traditional user-mode wrapping of the other environments’ system call and the execution 
of traditional PE images. Luckily, the Drawbridge project from Microsoft Research provided the perfect 
vehicle for an updated take on subsystems. It resulted in the implementation of the Pico model.

Under this model, the idea of a Pico provider is defined, which is a custom kernel-mode driver that 
receives access to specialized kernel interfaces through the PsRegisterPicoProvider API. The ben-
efits of these specialized interfaces are two-fold:

 ■ They allow the provider to create Pico processes and threads while customizing their execution 
contexts, segments, and store data in their respective EPROCESS and ETHREAD structures (see 
Chapter 3 and Chapter 4 for more on these structures).

 ■ They allow the provider to receive a rich set of notifications whenever such processes or threads 
engage in certain system actions such as system calls, exceptions, APCs, page faults, termination, 
context changes, suspension/resume, etc.

With Windows 10 version 1607, one such Pico provider is present: Lxss.sys and its partner Lxcore.sys. 
As the name suggests, this refers to the Windows Subsystem for Linux (WSL) component, and these 
drivers make up the Pico provider interface for it.
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Because the Pico provider receives almost all possible transitions to and from user and kernel mode 
(be they system calls or exceptions, for example), as long as the Pico process (or processes) running 
underneath it has an address space that it can recognize, and has code that can natively execute 
within it, the “true” kernel below doesn’t really matter as long as these transitions are handled in a fully 
transparent way. As such, Pico processes running under the WSL Pico provider, as you’ll see in Chapter 
3, are very different from normal Windows processes—lacking, for example, the Ntdll.dll that is always 
loaded into normal processes. Instead, their memory contains structures such as a vDSO, a special im-
age seen only on Linux/BSD systems.

Furthermore, if the Linux processes are to run transparently, they must be able to execute without 
requiring recompilation as PE Windows executables. Because the Windows kernel does not know how 
to map other image types, such images cannot be launched through the CreateProcess API by a Win-
dows process, nor do they ever call such APIs themselves (because they have no idea they are running 
on Windows). Such interoperability support is provided both by the Pico provider and the LXSS Manag-
er, which is a user-mode service. The former implements a private interface that it uses to communicate 
with the LXSS Manager. The latter implements a COM-based interface that it uses to communicate with 
a specialized launcher process, currently known as Bash.exe, and with a management process, called 
Lxrun.exe. The following diagram shows an overview of the components that make up WSL.

Providing support for a wide variety of Linux applications is a massive undertaking. Linux has 
hundreds of system calls—about as many as the Windows kernel itself. Although the Pico provider can 
leverage existing features of Windows—many of which were built to support the original POSIX sub-
system, such as fork() support—in some cases, it must re-implement functionality on its own. For ex-
ample, even though NTFS is used to store the actual file system (and not EXTFS), the Pico provider has 
an entire implementation of the Linux Virtual File System (VFS), including support for inodes, inotify(), 
and /sys, /dev, and other similar Linux-style file-system–based namespaces with corresponding behav-
iors. Similarly, while the Pico provider can leverage Windows Sockets for Kernel (WSK) for networking, 
it has complex wrapping around actual socket behavior, such that it can support UNIX domain sockets, 
Linux NetLink sockets, and standard Internet sockets.

In other cases, existing Windows facilities were simply not adequately compatible, sometimes in subtle 
ways. For example, Windows has a named pipe driver (Npfs.sys) that supports the traditional pipe IPC 
mechanism. Yet, it’s subtly different enough from Linux pipes that applications would break. This required 
a from-scratch implementation of pipes for Linux applications, without using the kernel’s Npfs.sys driver.
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As the feature is still officially in beta at the time of this writing and subject to significant change, we 
won’t cover the actual internals of the subsystem in this book. We will, however, take another look at 
Pico processes in Chapter 3. When the subsystem matures beyond beta, you will probably see official 
documentation on MSDN and stable APIs for interacting with Linux processes from Windows.

Ntdll.dll
Ntdll.dll is a special system support library primarily for the use of subsystem DLLs and native applica-
tions. (Native in this context refers to images that are not tied to any particular subsystem.) It contains 
two types of functions:

 ■ System service dispatch stubs to Windows executive system services

 ■ Internal support functions used by subsystems, subsystem DLLs, and other native images

The first group of functions provides the interface to the Windows executive system services that 
can be called from user mode. There are more than 450 such functions, such as NtCreateFile, Nt-
SetEvent, and so on. As noted, most of the capabilities of these functions are accessible through the 
Windows API. (A number are not, however, and are for use only by specific OS-internal components.)

For each of these functions, Ntdll.dll contains an entry point with the same name. The code inside 
the function contains the architecture-specific instruction that causes a transition into kernel mode 
to invoke the system service dispatcher. (This is explained in more detail in Chapter 8 in Part 2.) After 
verifying some parameters, this system service dispatcher calls the actual kernel-mode system service 
that contains the real code inside Ntoskrnl.exe. The following experiment shows what these functions 
look like.

EXPERIMENT: Viewing the system service dispatcher code
Open the version of WinDbg that corresponds to your system’s architecture (for example the x64 
version bit on 64 bit Windows). Then open the File menu and select Open Executable. Navigate 
to %SystemRoot%\System32 and select Notepad.exe.

Notepad should launch and the debugger should break in the initial breakpoint. This is very 
early in the life of the process, which you can witness by executing the k (call stack) command. 
You should see a few functions starting with Ldr, which indicates the image loader. The main 
function for Notepad has not executed yet, which means you won’t see Notepad’s window.

Set a breakpoint in the NtCreateFile inside Ntdll.dll (the debuggers are not case sensitive):

bp ntdll!ntcreatefile

Enter the g (go) command or press F5 to let Notepad continue execution. The debugger 
should break almost immediately, showing something like this (x64):

Breakpoint 0 hit 
ntdll!NtCreateFile: 
00007ffa'9f4e5b10 4c8bd1          mov     r10,rcx
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You may see the function name as ZwCreateFile. ZwCreateFile and NtCreateFile refer to 
the same symbol in user mode. Now enter the u (unassembled) command to see a few instructions 
ahead:

00007ffa'9f4e5b10 4c8bd1          mov     r10,rcx 
00007ffa'9f4e5b13 b855000000      mov     eax,55h 
00007ffa'9f4e5b18 f604250803fe7f01 test    byte ptr [SharedUserData+0x308 
(00000000'7ffe0308)],1 
00007ffa'9f4e5b20 7503            jne     ntdll!NtCreateFile+0x15 
(00007ffa'9f4e5b25) 
00007ffa'9f4e5b22 0f05            syscall 
00007ffa'9f4e5b24 c3              ret 
00007ffa'9f4e5b25 cd2e            int     2Eh 
00007ffa'9f4e5b27 c3              ret

The EAX register is set with the system service number (55 hex in this case). This is the system 
service number on this OS (Windows 10 Pro x64). Then notice the syscall instruction. This is 
the one causing the processor to transition to kernel mode, jumping to the system service dis-
patcher, where that EAX is used to select the NtCreateFile executive service. You’ll also notice 
a check for a flag (1) at offset 0x308 in the Shared User Data (more information on this structure 
is available in Chapter 4). If this flag is set, execution will take another path, by using the int 2Eh 
instruction instead. If you enable the specific Credential Guard VBS feature that is described in 
Chapter 7, this flag will be set on your machine, because the hypervisor can react to the int in-
struction in a more efficient fashion than the syscall instruction, and this behavior is beneficial 
to Credential Guard.

As mentioned, more details about this mechanism (and the behavior of both syscall and 
int) are provided in Chapter 8 in Part 2. For now, you can try to locate other native services such 
as NtReadFile, NtWriteFile and NtClose.

You saw in the “Virtualization-based security architecture overview” section that IUM applications 
can leverage another binary similar to Ntdll.dll, called IumDll.dll. This library also contains system calls, 
but their indices will be different. If you have a system with Credential Guard enabled, you can repeat 
the preceding experiment by opening the File menu in WinDbg, choosing Open Crash Dump, and 
choosing IumDll.dll as the file. Note how in the following output, the system call index has the high bit 
set, and no SharedUserData check is done; syscall is always the instruction used for these types of 
system calls, which are called secure system calls:

0:000> u iumdll!IumCrypto 
iumdll!IumCrypto: 
00000001'80001130 4c8bd1          mov     r10,rcx 
00000001'80001133 b802000008      mov     eax,8000002h 
00000001'80001138 0f05            syscall 
00000001'8000113a c3              ret

Ntdll.dll also contains many support functions, such as the image loader (functions that start with 
Ldr), the heap manager, and Windows subsystem process communication functions (functions that 
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start with Csr). Ntdll.dll also includes general run-time library routines (functions that start with Rtl), 
support for user-mode debugging (functions that start with DbgUi), Event Tracing for Windows (func-
tions starting in Etw), and the user-mode asynchronous procedure call (APC) dispatcher and exception 
dispatcher. (APCs are explained briefly in Chapter 6 and in more detail in Chapter 8 in Part 2, as well as 
exceptions.) 

Finally, you’ll find a small subset of the C Run-Time (CRT) routines in Ntdll.dll, limited to those routines 
that are part of the string and standard libraries (such as memcpy, strcpy, sprintf, and so on); these 
are useful for native applications, described next.

Native images
Some images (executables) don’t belong to any subsystem. In other words, they don’t link against a set  
of subsystem DLLs, such as Kernel32.dll for the Windows subsystem. Instead, they link only to Ntdll.dll, 
which is the lowest common denominator that spans subsystems. Because the native API exposed  
by Ntdll.dll is mostly undocumented, these kind of images are typically built only by Microsoft. One 
example is the Session Manager process (Smss.exe, described in more detail later in this chapter).  
Smss.exe is the first user-mode process created (directly by the kernel), so it cannot be dependent 
on the Windows subsystem because Csrss.exe (the Windows subsystem process) has not started yet. 
In fact, Smss.exe is responsible for launching Csrss.exe. Another example is the Autochk utility that 
sometimes runs at system startup to check disks. Because it runs relatively early in the boot process 
(launched by Smss.exe, in fact), it cannot depend on any subsystem.

Here is a screenshot of Smss.exe in Dependency Walker, showing its dependency on Ntdll.dll only. 
Notice the subsystem type is indicated by Native.

Executive
The Windows executive is the upper layer of Ntoskrnl.exe. (The kernel is the lower layer.) The executive 
includes the following types of functions:

 ■ Functions that are exported and callable from user mode These functions are called 
system services and are exported via Ntdll.dll (such as NtCreateFile from the previous experi-
ment). Most of the services are accessible through the Windows API or the APIs of another 
environment subsystem. A few services, however, aren’t available through any documented 
subsystem function. (Examples include ALPC and various query functions such as NtQuery-
InformationProcess, specialized functions such as NtCreatePagingFile, and so on.)
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 ■ Device driver functions that are called through the DeviceIoControl function This provides a 
general interface from user mode to kernel mode to call functions in device drivers that are not 
associated with a read or write. The driver used for Process Explorer and Process Monitor from 
Sysinternals are good examples of that as is the console driver (ConDrv.sys) mentioned earlier.

 ■ Functions that can be called only from kernel mode that are exported and documented 
in the WDK These include various support routines, such as the I/O manager (start with Io), 
general executive functions (Ex) and more, needed for device driver developers.

 ■ Functions that are exported and can be called from kernel mode but are not documented 
in the WDK These include the functions called by the boot video driver, which start with Inbv.

 ■ Functions that are defined as global symbols but are not exported These include internal 
support functions called within Ntoskrnl.dll, such as those that start with Iop (internal I/O man-
ager support functions) or Mi (internal memory management support functions).

 ■ Functions that are internal to a module that are not defined as global symbols These 
functions are used exclusively by the executive and kernel.

The executive contains the following major components, each of which is covered in detail in a sub-
sequent chapter of this book:

 ■ Configuration manager The configuration manager, explained in Chapter 9 in Part 2, is 
responsible for implementing and managing the system registry.

 ■ Process manager The process manager, explained in Chapter 3 and Chapter 4, creates and 
terminates processes and threads. The underlying support for processes and threads is imple-
mented in the Windows kernel; the executive adds additional semantics and functions to these 
lower-level objects.

 ■ Security Reference Monitor (SRM) The SRM, described in Chapter 7, enforces security  
policies on the local computer. It guards OS resources, performing run-time object protection 
and auditing.

 ■ I/O manager The I/O manager, discussed in Chapter 6, implements device-independent I/O 
and is responsible for dispatching to the appropriate device drivers for further processing.

 ■ Plug and Play (PnP) manager The PnP manager, covered in Chapter 6, determines which driv-
ers are required to support a particular device and loads those drivers. It retrieves the hardware 
resource requirements for each device during enumeration. Based on the resource requirements 
of each device, the PnP manager assigns the appropriate hardware resources such as I/O ports, 
IRQs, DMA channels, and memory locations. It is also responsible for sending proper event notifi-
cation for device changes (the addition or removal of a device) on the system.

 ■ Power manager The power manager (explained in Chapter 6), processor power management 
(PPM), and power management framework (PoFx) coordinate power events and generate 
power management I/O notifications to device drivers. When the system is idle, the PPM can  
be configured to reduce power consumption by putting the CPU to sleep. Changes in power 
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consumption by individual devices are handled by device drivers but are coordinated by the 
power manager and PoFx. On certain classes of devices, the terminal timeout manager also 
manages physical display timeouts based on device usage and proximity.

 ■ Windows Driver Model (WDM) Windows Management Instrumentation (WMI) routines 
These routines, discussed in Chapter 9 in Part 2, enable device drivers to publish performance 
and configuration information and receive commands from the user-mode WMI service.  
Consumers of WMI information can be on the local machine or remote across the network.

 ■ Memory manager The memory manager, discussed in Chapter 5, implements virtual 
memory, a memory management scheme that provides a large private address space for each 
process that can exceed available physical memory. The memory manager also provides the 
underlying support for the cache manager. It is assisted by the prefetcher and Store Manager, 
also explained in Chapter 5.

 ■ Cache manager The cache manager, discussed in Chapter 14, “Cache manager,” in Part 2, 
improves the performance of file-based I/O by causing recently referenced disk data to reside 
in main memory for quick access. It also achieves this by deferring disk writes by holding the 
updates in memory for a short time before sending them to the disk. As you’ll see, it does this 
by using the memory manager’s support for mapped files.

In addition, the executive contains four main groups of support functions that are used by the 
executive components just listed. About a third of these support functions are documented in the WDK 
because device drivers also use them. These are the four categories of support functions:

 ■ Object manager The object manager creates, manages, and deletes Windows executive ob-
jects and abstract data types that are used to represent OS resources such as processes, threads, 
and the various synchronization objects. The object manager is explained in Chapter 8 in Part 2.

 ■ Asynchronous LPC (ALPC) facility The ALPC facility, explained in Chapter 8 in Part 2, passes 
messages between a client process and a server process on the same computer. Among other 
things, ALPC is used as a local transport for remote procedure call (RPC), the Windows imple-
mentation of an industry-standard communication facility for client and server processes across 
a network.

 ■ Run-time library functions These include string processing, arithmetic operations, data type 
conversion, and security structure processing.

 ■ Executive support routines These include system memory allocation (paged and non-paged 
pool), interlocked memory access, as well as special types of synchronization mechanisms such 
as executive resources, fast mutexes, and pushlocks.

The executive also contains a variety of other infrastructure routines, some of which are mentioned 
only briefly in this book: 

 ■ Kernel debugger library This allows debugging of the kernel from a debugger supporting 
KD, a portable protocol supported over a variety of transports such as USB, Ethernet, and IEEE 
1394, and implemented by WinDbg and the Kd.exe debuggers.
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 ■ User-Mode Debugging Framework This is responsible for sending events to the user-mode 
debugging API and allowing breakpoints and stepping through code to work, as well as for 
changing contexts of running threads.

 ■ Hypervisor library and VBS library These provide kernel support for the secure virtual  
machine environment and optimize certain parts of the code when the system knows it’s 
running in a client partition (virtual environment).

 ■ Errata manager The errata manager provides workarounds for nonstandard or noncompliant 
hardware devices.

 ■ Driver Verifier The Driver Verifier implements optional integrity checks of kernel-mode  
drivers and code (described in Chapter 6).

 ■ Event Tracing for Windows (ETW) ETW provides helper routines for system-wide event 
tracing for kernel-mode and user-mode components.

 ■ Windows Diagnostic Infrastructure (WDI) The WDI enables intelligent tracing of system 
activity based on diagnostic scenarios.

 ■ Windows Hardware Error Architecture (WHEA) support routines These routines provide 
a common framework for reporting hardware errors.

 ■ File-System Runtime Library (FSRTL) The FSRTL provides common support routines for file 
system drivers.

 ■ Kernel Shim Engine (KSE) The KSE provides driver-compatibility shims and additional device 
errata support. It leverages the shim infrastructure and database described in Chapter 8 in Part 2.

Kernel
The kernel consists of a set of functions in Ntoskrnl.exe that provides fundamental mechanisms. These 
include thread-scheduling and synchronization services, used by the executive components, and low-
level hardware architecture–dependent support, such as interrupt and exception dispatching, which is 
different on each processor architecture. The kernel code is written primarily in C, with assembly code 
reserved for those tasks that require access to specialized processor instructions and registers not eas-
ily accessible from C.

Like the various executive support functions mentioned in the preceding section, a number of func-
tions in the kernel are documented in the WDK (and can be found by searching for functions beginning 
with Ke) because they are needed to implement device drivers.

Kernel objects
The kernel provides a low-level base of well-defined, predictable OS primitives and mechanisms that 
allow higher-level components of the executive to do what they need to do. The kernel separates itself 
from the rest of the executive by implementing OS mechanisms and avoiding policy making. It leaves 
nearly all policy decisions to the executive, with the exception of thread scheduling and dispatching, 
which the kernel implements.
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Outside the kernel, the executive represents threads and other shareable resources as objects. These 
objects require some policy overhead, such as object handles to manipulate them, security checks to 
protect them, and resource quotas to be deducted when they are created. This overhead is eliminated 
in the kernel, which implements a set of simpler objects, called kernel objects, that help the kernel 
control central processing and support the creation of executive objects. Most executive-level objects 
encapsulate one or more kernel objects, incorporating their kernel-defined attributes.

One set of kernel objects, called control objects, establishes semantics for controlling various OS 
functions. This set includes the Asynchronous Procedure Call (APC) object, the Deferred Procedure 
Call (DPC) object, and several objects the I/O manager uses, such as the interrupt object.

Another set of kernel objects, known as dispatcher objects, incorporates synchronization capabili-
ties that alter or affect thread scheduling. The dispatcher objects include the kernel thread, mutex 
(called mutant in kernel terminology), event, kernel event pair, semaphore, timer, and waitable timer. 
The executive uses kernel functions to create instances of kernel objects, to manipulate them, and to 
construct the more complex objects it provides to user mode. Objects are explained in more detail in 
Chapter 8 in Part 2, and processes and threads are described in Chapter 3 and Chapter 4, respectively.

Kernel processor control region and control block
The kernel uses a data structure called the kernel processor control region (KPCR) to store processor-
specific data. The KPCR contains basic information such as the processor’s interrupt dispatch table 
(IDT), task state segment (TSS), and global descriptor table (GDT). It also includes the interrupt con-
troller state, which it shares with other modules, such as the ACPI driver and the HAL. To provide easy 
access to the KPCR, the kernel stores a pointer to it in the fs register on 32-bit Windows and in the gs 
register on an x64 Windows system.

The KPCR also contains an embedded data structure called the kernel processor control block 
(KPRCB). Unlike the KPCR, which is documented for third-party drivers and other internal Windows 
kernel components, the KPRCB is a private structure used only by the kernel code in Ntoskrnl.exe. It 
contains the following:

 ■ Scheduling information such as the current, next, and idle threads scheduled for execution on 
the processor

 ■ The dispatcher database for the processor, which includes the ready queues for each priority 
level

 ■ The DPC queue

 ■ CPU vendor and identifier information, such as the model, stepping, speed, and feature bits

 ■ CPU and NUMA topology, such as node information, cores per package, logical processors per 
core, and so on

 ■ Cache sizes

 ■ Time accounting information, such as the DPC and interrupt time.
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The KPRCB also contains all the statistics for the processor, such as:

 ■ I/O statistics

 ■ Cache manager statistics (see Chapter 14 in Part 2 for a description of these)

 ■ DPC statistics

 ■ Memory manager statistics (see Chapter 5 for more information)

Finally, the KPRCB is sometimes used to store cache-aligned, per-processor structures to optimize 
memory access, especially on NUMA systems. For example, the non-paged and paged-pool system 
look-aside lists are stored in the KPRCB.

EXPERIMENT: Viewing the KPCR and KPRCB
You can view the contents of the KPCR and KPRCB by using the !pcr and !prcb kernel debugger 
commands. For the latter, if you don’t include flags, the debugger will display information for CPU 0 
by default. Otherwise, you can specify a CPU by adding its number after the command—for  
example, !prcb 2. The former command, on the other hand, will always display information on the 
current processor, which you can change in a remote debugging session. If doing local debugging, 
you can obtain the address of the KPCR by using the !pcr extension, followed by the CPU number, 
then replacing @$pcr with that address. Do not use any of the other output shown in the !pcr 
command. This extension is deprecated and shows incorrect data. The following example shows 
what the output of the dt nt!_KPCR @$pcr and !prcb commands looks like (Windows 10 x64):

lkd> dt nt!_KPCR @$pcr 
   +0x000 NtTib            : _NT_TIB 
   +0x000 GdtBase          : 0xfffff802'a5f4bfb0 _KGDTENTRY64 
   +0x008 TssBase          : 0xfffff802'a5f4a000 _KTSS64 
   +0x010 UserRsp          : 0x0000009b'1a47b2b8 
   +0x018 Self             : 0xfffff802'a280a000 _KPCR 
   +0x020 CurrentPrcb      : 0xfffff802'a280a180 _KPRCB 
   +0x028 LockArray        : 0xfffff802'a280a7f0 _KSPIN_LOCK_QUEUE 
   +0x030 Used_Self        : 0x0000009b'1a200000 Void 
   +0x038 IdtBase          : 0xfffff802'a5f49000 _KIDTENTRY64 
   +0x040 Unused           : [2] 0 
   +0x050 Irql             : 0 '' 
   +0x051 SecondLevelCacheAssociativity : 0x10 '' 
   +0x052 ObsoleteNumber   : 0 '' 
   +0x053 Fill0            : 0 '' 
   +0x054 Unused0          : [3] 0 
   +0x060 MajorVersion     : 1 
   +0x062 MinorVersion     : 1 
   +0x064 StallScaleFactor : 0x8a0 
   +0x068 Unused1          : [3] (null)  
   +0x080 KernelReserved   : [15] 0 
   +0x0bc SecondLevelCacheSize : 0x400000 
   +0x0c0 HalReserved      : [16] 0x839b6800 
   +0x100 Unused2          : 0 
   +0x108 KdVersionBlock   : (null)  
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   +0x110 Unused3          : (null)  
   +0x118 PcrAlign1        : [24] 0 
   +0x180 Prcb             : _KPRCB 
lkd> !prcb 
PRCB for Processor 0 at fffff803c3b23180: 
Current IRQL -- 0 
Threads--  Current ffffe0020535a800 Next 0000000000000000 Idle fffff803c3b99740 
Processor Index 0 Number (0, 0) GroupSetMember 1 
Interrupt Count -- 0010d637 
Times -- Dpc    000000f4 Interrupt 00000119  
         Kernel 0000d952 User      0000425d

You can also use the dt command to directly dump the _KPRCB data structures because the 
debugger command gives you the address of the structure (shown in bold for clarity in the previ-
ous output). For example, if you wanted to determine the speed of the processor as detected at 
boot, you could look at the MHz field with the following command: 

lkd> dt nt!_KPRCB fffff803c3b23180 MHz 
   +0x5f4 MHz : 0x893 
lkd> ? 0x893 
Evaluate expression: 2195 = 00000000'00000893 

On this machine, the processor was running at about 2.2 GHz during boot-up.

Hardware support
The other major job of the kernel is to abstract or isolate the executive and device drivers from varia-
tions between the hardware architectures supported by Windows. This job includes handling variations 
in functions such as interrupt handling, exception dispatching, and multiprocessor synchronization.

Even for these hardware-related functions, the design of the kernel attempts to maximize the 
amount of common code. The kernel supports a set of interfaces that are portable and semantically 
identical across architectures. Most of the code that implements these portable interfaces is also identi-
cal across architectures.

Some of these interfaces are implemented differently on different architectures or are partially 
implemented with architecture-specific code. These architecturally independent interfaces can be 
called on any machine, and the semantics of the interface will be the same regardless of whether the 
code varies by architecture. Some kernel interfaces, such as spinlock routines, described in Chapter 8 in 
Part 2, are actually implemented in the HAL (described in the next section) because their implementation 
can vary for systems within the same architecture family.

The kernel also contains a small amount of code with x86-specific interfaces needed to support  
old 16-bit MS-DOS programs (on 32-bit systems). These x86 interfaces aren’t portable in the sense  
that they can’t be called on a machine based on any other architecture; they won’t be present. This 
x86-specific code, for example, supports calls to use Virtual 8086 mode, required for the emulation  
of certain real-mode code on older video cards.
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Other examples of architecture-specific code in the kernel include the interfaces to provide transla-
tion buffer and CPU cache support. This support requires different code for the different architectures 
because of the way caches are implemented.

Another example is context switching. Although at a high level the same algorithm is used for 
thread selection and context switching (the context of the previous thread is saved, the context of the 
new thread is loaded, and the new thread is started), there are architectural differences among the 
implementations on different processors. Because the context is described by the processor state (reg-
isters and so on), what is saved and loaded varies depending on the architecture.

Hardware abstraction layer
As mentioned at the beginning of this chapter, one of the crucial elements of the Windows design is its 
portability across a variety of hardware platforms. With OneCore and the myriad device form factors 
available, this is more important than ever. The hardware abstraction layer (HAL) is a key part of making 
this portability possible. The HAL is a loadable kernel-mode module (Hal.dll) that provides the low-
level interface to the hardware platform on which Windows is running. It hides hardware-dependent 
details such as I/O interfaces, interrupt controllers, and multiprocessor communication mechanisms—
any functions that are both architecture-specific and machine-dependent.

So rather than access hardware directly, Windows internal components and user-written device 
drivers maintain portability by calling the HAL routines when they need platform-dependent informa-
tion. For this reason, many HAL routines are documented in the WDK. To find out more about the HAL 
and its use by device drivers, refer to the WDK.

Although a couple of x86 HALs are included in a standard desktop Windows installation (as shown 
in Table 2-4), Windows has the ability to detect at boot-up time which HAL should be used, eliminating 
the problem that existed on earlier versions of Windows when attempting to boot a Windows installa-
tion on a different kind of system.

TABLE 2-4 List of x86 HALs

HAL File Name Systems Supported

Halacpi.dll Advanced Configuration and Power Interface (ACPI) PCs. Implies uniprocessor-only machine, 
without APIC support. (The presence of either one would make the system use the HAL below 
instead.)

Halmacpi.dll Advanced Programmable Interrupt Controller (APIC) PCs with an ACPI. The existence of an 
APIC implies SMP support.

On x64 and ARM machines, there is only one HAL image, called Hal.dll. This results from all x64 
machines having the same motherboard configuration, because the processors require ACPI and APIC 
support. Therefore, there is no need to support machines without ACPI or with a standard PIC. Similarly, 
all ARM systems have ACPI and use interrupt controllers, which are similar to a standard APIC. Once 
again, a single HAL can support this.

On the other hand, although such interrupt controllers are similar, they are not identical. Addition-
ally, the actual timer and memory/DMA controllers on some ARM systems are different from others.
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Finally, in the IoT world, certain standard PC hardware such as the Intel DMA controller may not be pres-
ent and might require support for a different controller, even on PC-based systems. Older versions of 
Windows handled this by forcing each vendor to ship a custom HAL for each possible platform combina-
tion. This is no longer realistic, however, and results in significant amounts of duplicated code. Instead, 
Windows now supports modules known as HAL extensions, which are additional DLLs on disk that the 
boot loader may load if specific hardware requiring them is needed (usually through ACPI and registry-
based configuration). Your desktop Windows 10 system is likely to include a HalExtPL080.dll and  
HalExtIntcLpioDMA.dll, the latter of which is used on certain low-power Intel platforms, for example. 

Creating HAL extensions requires collaboration with Microsoft, and such files must be custom 
signed with a special HAL extension certificate available only to hardware vendors. Additionally, they 
are highly limited in the APIs they can use and interact through a limited import/export table mecha-
nism that does not use the traditional PE image mechanism. For example, the following experiment will 
not show you any functions if you try to use it on a HAL extension.

EXPERIMENT: Viewing Ntoskrnl.exe and HAL image dependencies
You can view the relationship of the kernel and HAL images by using the Dependency Walker 
tool (Depends.exe) to examine their export and import tables. To examine an image in the  
Dependency Walker, open the File menu, choose Open, and select the desired image file.

Here is a sample of output you can see by viewing the dependencies of Ntoskrnl.exe using this 
tool (for now, disregard the errors displayed by Dependency Walker’s inability to parse the API sets):

Notice that Ntoskrnl.exe is linked against the HAL, which is in turn linked against Ntoskrnl.exe. 
(They both use functions in each other.) Ntoskrnl.exe is also linked to the following binaries:

 ■ Pshed.dll The Platform-Specific Hardware Error Driver (PSHED) provides an abstraction of 
the hardware error reporting facilities of the underlying platform. It does this by hiding the 
details of a platform’s error-handling mechanisms from the OS and exposing a consistent 
interface to the Windows OS.
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 ■ Bootvid.dll The Boot Video Driver on x86 systems (Bootvid) provides support for the 
VGA commands required to display boot text and the boot logo during startup. 

 ■ Kdcom.dll This is the Kernel Debugger Protocol (KD) communications library.

 ■ Ci.dll This is the integrity library. (See Chapter 8 in Part 2 for more information on code 
integrity.)

 ■ Msrpc.sys The Microsoft Remote Procedure Call (RPC) client driver for kernel mode allows 
the kernel (and other drivers) to communicate with user-mode services through RPC or to 
marshal MES-encoded assets. For example, the kernel uses this to marshal data to and from 
the user-mode Plug-and-Play service.

For a detailed description of the information displayed by this tool, see the Dependency 
Walker help file (Depends.hlp).

We asked you to disregard the errors that Dependency Walker has parsing API Sets because 
its authors have not updated it to correctly handle this mechanism. While the implementation 
of API Sets will be described in Chapter 3 in the “Image loader” section, you should still use the 
Dependency Walker output to review what other dependencies the kernel may potentially have, 
depending on SKU, as these API Sets may indeed point to real modules. Note that when dealing 
with API Sets, they are described in terms of contracts, not DLLs or libraries. It’s important to  
realize that any number (or even all) of these contracts might be absent from your machine.  
Their presence depends on a combination of factors: SKU, platform, and vendor.

 ■ Werkernel contract This provides support for Windows Error Reporting (WER) in the 
kernel, such as with live kernel dump creation.

 ■ Tm contract This is the kernel transaction manager (KTM), described in Chapter 8 in Part 2.

 ■ Kcminitcfg contract This is responsible for the custom initial registry configuration that 
may be needed on specific platforms.

 ■ Ksr contract This handles Kernel Soft Reboot (KSR) and the required persistence of cer-
tain memory ranges to support it, specifically on certain mobile and IoT platforms.

 ■ Ksecurity contract This contains additional policies for AppContainer processes (that is, 
Windows Apps) running in user mode on certain devices and SKUs.

 ■ Ksigningpolicy contract This contains additional policies for user-mode code integrity 
(UMCI) to either support non-AppContainer processes on certain SKUs or futher configure 
Device Guard and/or App Locker security features on certain platforms/SKUs.

 ■ Ucode contract This is the microcode update library for platforms that can support pro-
cessor microcode updates, such as Intel and AMD.

 ■ Clfs contract This is the Common Log File System driver, used by (among other things) 
the Transactional Registry (TxR). For more information on TxR, see Chapter 8 in Part 2.
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 ■ Ium Contract These are additional policies for IUM Trustlets running on the system, 
which may be needed on certain SKUs, such as for providing shielded VMs on Datacenter 
Server. Trustlets are described further in Chapter 3.

Device drivers
Although device drivers are explained in detail in Chapter 6, this section provides a brief overview of 
the types of drivers and explains how to list the drivers installed and loaded on your system.

Windows supports kernel-mode and user-mode drivers, but this section discussed the kernel drivers 
only. The term device driver implies a hardware device, but there are other device driver types that are 
not directly related to hardware (listed momentarily). This section focuses on device drivers that are 
related to controlling a hardware device.

Device drivers are loadable kernel-mode modules (files typically ending with the .sys extension) that 
interface between the I/O manager and the relevant hardware. They run in kernel mode in one of three 
contexts:

 ■ In the context of the user thread that initiated an I/O function (such as a read operation)

 ■ In the context of a kernel-mode system thread (such as a request from the Plug and Play manager)

 ■ As a result of an interrupt and therefore not in the context of any particular thread but rather of 
whichever thread was current when the interrupt occurred

As stated in the preceding section, device drivers in Windows don’t manipulate hardware directly. 
Rather, they call functions in the HAL to interface with the hardware. Drivers are typically written in C 
and/or C++. Therefore, with proper use of HAL routines, they can be source-code portable across the 
CPU architectures supported by Windows and binary portable within an architecture family.

There are several types of device drivers:

 ■ Hardware device drivers These use the HAL to manipulate hardware to write output to or 
retrieve input from a physical device or network. There are many types of hardware device  
drivers, such as bus drivers, human interface drivers, mass storage drivers, and so on.

 ■ File system drivers These are Windows drivers that accept file-oriented I/O requests and 
translate them into I/O requests bound for a particular device.

 ■ File system filter drivers These include drivers that perform disk mirroring and encryption 
or scanning to locate viruses, intercept I/O requests, and perform some added-value processing 
before passing the I/O to the next layer (or in some cases rejecting the operation).

 ■ Network redirectors and servers These are file system drivers that transmit file system I/O 
requests to a machine on the network and receive such requests, respectively.

 ■ Protocol drivers These implement a networking protocol such as TCP/IP, NetBEUI, and IPX/SPX.
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 ■ Kernel streaming filter drivers These are chained together to perform signal processing on 
data streams, such as recording or displaying audio and video.

 ■ Software drivers These are kernel modules that perform operations that can only be done 
in kernel mode on behalf of some user-mode process. Many utilities from Sysinternals such as 
Process Explorer and Process Monitor use drivers to get information or perform operations that 
are not possible to do from user-mode APIs.

Windows driver model
The original driver model was created in the first NT version (3.1) and did not support the concept of 
Plug and Play (PnP) because it was not yet available. This remained the case until Windows 2000 came 
along (and Windows 95/98 on the consumer Windows side).

Windows 2000 added support for PnP, Power Options, and an extension to the Windows NT driver 
model called the Windows Driver Model (WDM). Windows 2000 and later can run legacy Windows NT 
4 drivers, but because these don’t support PnP and Power Options, systems running these drivers will 
have reduced capabilities in these two areas.

Originally, WDM provided a common driver model that was (almost) source compatible between 
Windows 2000/XP and Windows 98/ME. This was done to make it easier to write drivers for hardware 
devices, since a single code base was needed instead of two. WDM was simulated on Windows 98/ME. 
Once these operating systems were no longer used, WDM remained the base model for writing drivers 
for hardware devices for Windows 2000 and later versions.

From the WDM perspective, there are three kinds of drivers:

 ■ Bus drivers A bus driver services a bus controller, adapter, bridge, or any device that has child 
devices. Bus drivers are required drivers, and Microsoft generally provides them. Each type of 
bus (such as PCI, PCMCIA, and USB) on a system has one bus driver. Third parties can write bus 
drivers to provide support for new buses, such as VMEbus, Multibus, and Futurebus.

 ■ Function drivers A function driver is the main device driver and provides the operational 
interface for its device. It is a required driver unless the device is used raw, an implementation in 
which I/O is done by the bus driver and any bus filter drivers, such as SCSI PassThru. A function 
driver is by definition the driver that knows the most about a particular device, and it is usually 
the only driver that accesses device-specific registers.

 ■ Filter drivers A filter driver is used to add functionality to a device or existing driver, or to 
modify I/O requests or responses from other drivers. It is often used to fix hardware that pro-
vides incorrect information about its hardware resource requirements. Filter drivers are optional 
and can exist in any number, placed above or below a function driver and above a bus driver. 
Usually, system original equipment manufacturers (OEMs) or independent hardware vendors 
(IHVs) supply filter drivers.

In the WDM driver environment, no single driver controls all aspects of a device. A bus driver is 
concerned with reporting the devices on its bus to PnP manager, while a function driver manipulates 
the device.
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In most cases, lower-level filter drivers modify the behavior of device hardware. For example, if a de-
vice reports to its bus driver that it requires 4 I/O ports when it actually requires 16 I/O ports, a lower-
level, device-specific function filter driver could intercept the list of hardware resources reported by the 
bus driver to the PnP manager and update the count of I/O ports.

Upper-level filter drivers usually provide added-value features for a device. For example, an upper-
level device filter driver for a disk can enforce additional security checks.

Interrupt processing is explained in Chapter 8 in Part 2 and in the narrow context of device drivers, 
in Chapter 6. Further details about the I/O manager, WDM, Plug and Play, and power management are 
also covered in Chapter 6.

Windows Driver Foundation
The Windows Driver Foundation (WDF) simplifies Windows driver development by providing two 
frameworks: the Kernel-Mode Driver Framework (KMDF) and the User-Mode Driver Framework 
(UMDF). Developers can use KMDF to write drivers for Windows 2000 SP4 and later, while UMDF sup-
ports Windows XP and later.

KMDF provides a simple interface to WDM and hides its complexity from the driver writer without 
modifying the underlying bus/function/filter model. KMDF drivers respond to events that they can 
register and call into the KMDF library to perform work that isn’t specific to the hardware they are  
managing, such as generic power management or synchronization. (Previously, each driver had to 
implement this on its own.) In some cases, more than 200 lines of WDM code can be replaced by a 
single KMDF function call.

UMDF enables certain classes of drivers—mostly USB-based or other high-latency protocol buses, 
such as those for video cameras, MP3 players, cell phones, and printers—to be implemented as user-
mode drivers. UMDF runs each user-mode driver in what is essentially a user-mode service, and it uses 
ALPC to communicate to a kernel-mode wrapper driver that provides actual access to hardware. If a 
UMDF driver crashes, the process dies and usually restarts. That way, the system doesn’t become un-
stable; the device simply becomes unavailable while the service hosting the driver restarts.

UMDF has two major versions: version 1.x is available for all OS versions that support UMDF, the  
latest and last being version 1.11, available in Windows 10. This version uses C++ and COM for driver 
writing, which is rather convenient for user-mode programmers, but it makes the UMDF model  
different from KMDF. Version 2.0 of UMDF, introduced in Windows 8.1, is based around the same  
object model as KMDF, making the two frameworks very similar in their programming model. Finally, 
WDF has been open-sourced by Microsoft, and at the time of this writing is available on GitHub at 
https://github.com/Microsoft/Windows-Driver-Frameworks.

https://www.github.com/Microsoft/Windows-Driver-Frameworks
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Universal Windows drivers
Starting with Windows 10, the term Universal Windows drivers refers to the ability to write device driv-
ers once that share APIs and Device Driver Interfaces (DDIs) provided by the Windows 10 common core. 
These drivers are binary-compatible for a specific CPU architecture (x86, x64, ARM) and can be used as 
is on a variety of form factors, from IoT devices, to phones, to the HoloLens and Xbox One, to laptops 
and desktops. Universal drivers can use KMDF, UMDF 2.x, or WDM as their driver model.

EXPERIMENT: Viewing the installed device drivers
To list the installed drivers, run the System Information tool (Msinfo32.exe). To launch this tool, 
click Start and then type Msinfo32 to locate it. Under System Summary, expand Software  
Environment and open System Drivers. Here’s an example output of the list of installed drivers:

This window displays the list of device drivers defined in the registry, their type, and their state 
(Running or Stopped). Device drivers and Windows service processes are both defined in the 
same place: HKLM\SYSTEM\CurrentControlSet\Services. However, they are distinguished by a 
type code. For example, type 1 is a kernel-mode device driver. For a complete list of the infor-
mation stored in the registry for device drivers, see Chapter 9 in Part 2.

Alternatively, you can list the currently loaded device drivers by selecting the System process 
in Process Explorer and opening the DLL view. Here’s a sample output. (To get the extra columns, 
right-click a column header and click Select Columns to see all the available columns for modules 
in the DLL tab.)
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Peering into undocumented interfaces
Examining the names of the exported or global symbols in key system images (such as Ntoskrnl.
exe, Hal.dll, or Ntdll.dll) can be enlightening—you can get an idea of the kinds of things Windows 
can do versus what happens to be documented and supported today. Of course, just because 
you know the names of these functions doesn’t mean that you can or should call them—the 
interfaces are undocumented and are subject to change. We suggest that you look at these func-
tions purely to gain more insight into the kinds of internal functions Windows performs, not to 
bypass supported interfaces.

For example, looking at the list of functions in Ntdll.dll gives you the list of all the system 
services that Windows provides to user-mode subsystem DLLs versus the subset that each sub-
system exposes. Although many of these functions map clearly to documented and supported 
Windows functions, several are not exposed via the Windows API.

Conversely, it’s also interesting to examine the imports of Windows subsystem DLLs (such as 
Kernel32.dll or Advapi32.dll) and which functions they call in Ntdll.dll.

Another interesting image to dump is Ntoskrnl.exe—although many of the exported routines 
that kernel-mode device drivers use are documented in the WDK, quite a few are not. You might 
also find it interesting to take a look at the import table for Ntoskrnl.exe and the HAL; this table 
shows the list of functions in the HAL that Ntoskrnl.exe uses and vice versa.

Table 2-5 lists most of the commonly used function name prefixes for the executive compo-
nents. Each of these major executive components also uses a variation of the prefix to denote 
internal functions—either the first letter of the prefix followed by an i (for internal) or the full 
prefix followed by a p (for private). For example, Ki represents internal kernel functions, and Psp 
refers to internal process support functions.
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TABLE 2-5 Commonly Used Prefixes

Prefix Component

Alpc Advanced Local Procedure Calls 

Cc Common Cache

Cm Configuration manager

Dbg Kernel debug support

Dbgk Debugging Framework for user mode

Em Errata manager

Etw Event Tracing for Windows

Ex Executive support routines

FsRtl File System Runtime Library

Hv Hive library

Hvl Hypervisor library

Io I/O manager

Kd Kernel debugger

Ke Kernel

Kse Kernel Shim Engine

Lsa Local Security Authority

Mm Memory manager

Nt NT system services (accessible from user mode through system calls)

Ob Object manager

Pf Prefetcher

Po Power manager

PoFx Power framework

Pp PnP manager

Ppm Processor power manager

Ps Process support

Rtl Run-time library

Se Security Reference Monitor

Sm Store Manager

Tm Transaction manager

Ttm Terminal timeout manager

Vf Driver Verifier
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TABLE 2-5 Commonly Used Prefixes  (Continued)

Prefix Component

Vsl Virtual Secure Mode library

Wdi Windows Diagnostic Infrastructure

Wfp Windows FingerPrint

Whea Windows Hardware Error Architecture

Wmi Windows Management Instrumentation

Zw Mirror entry point for system services (beginning with Nt) that sets previous  
access mode to kernel, which eliminates parameter validation, because Nt system 
services validate parameters only if previous access mode is user

You can decipher the names of these exported functions more easily if you understand the 
naming convention for Windows system routines. The general format is

<Prefix><Operation><Object>

In this format, Prefix is the internal component that exports the routine, Operation tells what is 
being done to the object or resource, and Object identifies what is being operated on.

For example, ExAllocatePoolWithTag is the executive support routine to allocate from  
a paged or non-paged pool. KeInitializeThread is the routine that allocates and sets up a  
kernel thread object.

System processes
The following system processes appear on every Windows 10 system. One of these (Idle) is not a 
process at all, and three of them—System, Secure System, and Memory Compression—are not full 
processes because they are not running a user-mode executable. These types of processes are called 
minimal processes and are described in Chapter 3.

 ■ Idle process This contains one thread per CPU to account for idle CPU time.

 ■ System process This contains the majority of the kernel-mode system threads and handles.

 ■ Secure System process This contains the address space of the secure kernel in VTL 1, if running.

 ■ Memory Compression process This contains the compressed working set of user-mode 
processes, as described in Chapter 5.

 ■ Session manager (Smss.exe).

 ■ Windows subsystem (Csrss.exe).

 ■ Session 0 initialization (Wininit.exe).

 ■ Logon process (Winlogon.exe).
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 ■ Service Control Manager (Services.exe) and the child service processes it creates such as the 
system-supplied generic service-host process (Svchost.exe).

 ■ Local Security Authentication Service (Lsass.exe), and if Credential Guard is active, the 
Isolated Local Security Authentication Server (Lsaiso.exe).

To understand how these processes are related, it is helpful to view the process tree—that is, the 
parent/child relationship between processes. Seeing which process created each process helps to  
understand where each process comes from. Figure 2-6 shows the process tree following a Process 
Monitor boot trace. To conduct a boot trace, open the Process Monitor Options menu and select  
Enable Boot Logging. Then restart the system, open Process Monitor again, and open the Tools 
menu and choose Process Tree or press Ctrl+T. Using Process Monitor enables you to see processes 
that have since exited, indicated by the faded icon.

FIGURE 2-6 The initial system process tree.

The next sections explain the key system processes shown in Figure 2-6. Although these sections 
briefly indicate the order of process startup, Chapter 11 in Part 2, contains a detailed description of the 
steps involved in booting and starting Windows.

System idle process
The first process listed in Figure 2-6 is the Idle process. As discussed in Chapter 3, processes are identified 
by their image name. However, this process—as well as the System, Secure System, and Memory Com-
pression processes—isn’t running a real user-mode image. That is, there is no “System Idle Process.exe” 
in the \Windows directory. In addition, because of implementation details, the name shown for this 
process differs from utility to utility. The Idle process accounts for idle time. That’s why the number of 
“threads” in this “process” is the number of logical processors on the system. Table 2-6 lists several of 
the names given to the Idle process (process ID 0). The Idle process is explained in detail in Chapter 3.
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TABLE 2-6 Names for process ID 0 in various utilities

Utility Name for Process ID 0

Task Manager System Idle process

Process Status (Pstat.exe) Idle process

Process Explorer (Procexp.exe) System Idle process

Task List (Tasklist.exe) System Idle process

Tlist (Tlist.exe) System process

Now let’s look at system threads and the purpose of each of the system processes that are running 
real images.

System process and system threads
The System process (process ID 4) is the home for a special kind of thread that runs only in kernel 
mode: a kernel-mode system thread. System threads have all the attributes and contexts of regular 
user-mode threads such as a hardware context, priority, and so on, but differ in that they run only in 
kernel-mode executing code loaded in system space, whether that is in Ntoskrnl.exe or in any other 
loaded device driver. In addition, system threads don’t have a user process address space and hence 
must allocate any dynamic storage from OS memory heaps, such as a paged or non-paged pool.

Note On Windows 10 Version 1511, Task Manager calls the System process System and 
Compressed Memory. This is because of a new feature in Windows 10 that compresses mem-
ory to save more process information in memory rather than page it out to disk. This mech-
anism is further described in Chapter 5. Just remember that the term System process refers 
to this one, no matter the exact name displayed by this tool or another. Windows 10 Version 
1607 and Server 2016 revert the name of the System process to System. This is because a new 
process called Memory Compression is used for compressing memory. Chapter 5 discusses 
this process in more detail.

System threads are created by the PsCreateSystemThread or IoCreateSystemThread functions, 
both documented in the WDK. These threads can be called only from kernel mode. Windows, as well 
as various device drivers, create system threads during system initialization to perform operations that 
require thread context, such as issuing and waiting for I/Os or other objects or polling a device. For 
example, the memory manager uses system threads to implement such functions as writing dirty pages 
to the page file or mapped files, swapping processes in and out of memory, and so forth. The kernel 
creates a system thread called the balance set manager that wakes up once per second to possibly  
initiate various scheduling and memory-management related events. The cache manager also uses 
system threads to implement both read-ahead and write-behind I/Os. The file server device driver 
(Srv2.sys) uses system threads to respond to network I/O requests for file data on disk partitions shared 
to the network. Even the floppy driver has a system thread to poll the floppy device. (Polling is more 
efficient in this case because an interrupt-driven floppy driver consumes a large amount of system 
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resources.) Further information on specific system threads is included in the chapters in which the  
corresponding component is described.

By default, system threads are owned by the System process, but a device driver can create a system 
thread in any process. For example, the Windows subsystem device driver (Win32k.sys) creates a system 
thread inside the Canonical Display Driver (Cdd.dll) part of the Windows subsystem process (Csrss.exe) 
so that it can easily access data in the user-mode address space of that process.

When you’re troubleshooting or going through a system analysis, it’s useful to be able to map the 
execution of individual system threads back to the driver or even to the subroutine that contains the 
code. For example, on a heavily loaded file server, the System process will likely consume considerable 
CPU time. But knowing that when the System process is running, “some system thread” is running isn’t 
enough to determine which device driver or OS component is running.

So if threads in the System process are running, first determine which ones are running (for example, 
with the Performance Monitor or Process Explorer tools). Once you find the thread (or threads) that is 
running, look up in which driver the system thread began execution. This at least tells you which driver 
likely created the thread. For example, in Process Explorer, right-click the System process and select 
Properties. Then, in the Threads tab, click the CPU column header to view the most active thread at 
the top. Select this thread and click the Module button to see the file from which the code on the top 
of stack is running. Because the System process is protected in recent versions of Windows, Process 
Explorer is unable to show a call stack.

Secure System process
The Secure System process (variable process ID) is technically the home of the VTL 1 secure kernel ad-
dress space, handles, and system threads. That being said, because scheduling, object management, 
and memory management are owned by the VTL 0 kernel, no such actual entities will be associated 
with this process. Its only real use is to provide a visual indicator to users (for example, in tools such as 
Task Manager and Process Explorer) that VBS is currently active (providing at least one of the features 
that leverages it).

Memory Compression process
The Memory Compression process uses its user-mode address space to store the compressed pages 
of memory that correspond to standby memory that’s been evicted from the working sets of certain 
processes, as described in Chapter 5. Unlike the Secure System process, the Memory Compression 
process does actually host a number of system threads, usually seen as SmKmStoreHelperWorker and 
SmStReadThread. Both of these belong to the Store Manager that manages memory compression.

Additionally, unlike the other System processes in this list, this process actually stores its memory in 
the user-mode address space. This means it is subject to working set trimming and will potentially have 
large visible memory usage in system-monitoring tools. In fact, if you view the Performance tab in Task 
Manager, which now shows both in-use and compressed memory, you should see that the size of the 
Memory Compression process’s working set is equal to the amount of compressed memory.
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Session Manager
The Session Manager (%SystemRoot%\System32\Smss.exe) is the first user-mode process created in 
the system. The kernel-mode system thread that performs the final phase of the initialization of the 
executive and kernel creates this process. It is created as a Protected Process Light (PPL), as described  
in Chapter 3.

When Smss.exe starts, it checks whether it is the first instance (the master Smss.exe) or an instance 
of itself that the master Smss.exe launched to create a session. If command-line arguments are pres-
ent, it is the latter. By creating multiple instances of itself during boot-up and Terminal Services session 
creation, Smss.exe can create multiple sessions at the same time—as many as four concurrent sessions, 
plus one more for each extra CPU beyond one. This ability enhances logon performance on Terminal 
Server systems where multiple users connect at the same time. Once a session finishes initializing, the 
copy of Smss.exe terminates. As a result, only the initial Smss.exe process remains active. (For a descrip-
tion of Terminal Services, see the section “Terminal Services and multiple sessions” in Chapter 1.)

The master Smss.exe performs the following one-time initialization steps:

1. It marks the process and the initial thread as critical. If a process or thread marked critical exits 
for any reason, Windows crashes. See Chapter 3 for more information.

2. It causes the process to treat certain errors as critical, such as invalid handle usage and heap 
corruption, and enables the Disable Dynamic Code Execution process mitigation.

3. It increases the process base priority to 11.

4. If the system supports hot processor add, it enables automatic processor affinity updates. That 
way, if new processors are added, new sessions will take advantage of the new processors. For 
more information about dynamic processor additions, see Chapter 4.

5. It initializes a thread pool to handle ALPC commands and other work items.

6. It creates an ALPC port named \SmApiPort to receive commands.

7. It initializes a local copy of the NUMA topology of the system.

8. It creates a mutex named PendingRenameMutex to synchronize file-rename operations.

9. It creates the initial process environment block and updates the Safe Mode variable if needed.

10. Based on the ProtectionMode value in the HKLM\SYSTEM\CurrentControlSet\Control\Session 
Manager key, it creates the security descriptors that will be used for various system resources.

11. Based on the ObjectDirectories value in the HKLM\SYSTEM\CurrentControlSet\Control\
Session Manager key, it creates the object manager directories that are described, such as \
RPC Control and \Windows. It also saves the programs listed under the values BootExecute, 
BootExecuteNoPnpSync, and SetupExecute.

12. It saves the program path listed in the S0InitialCommand value under the HKLM\SYSTEM\ 
CurrentControlSet\Control\Session Manager key.
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13. It reads the NumberOfInitialSessions value from the HKLM\SYSTEM\CurrentControlSet\
Control\Session Manager key, but ignores it if the system is in manufacturing mode.

14. It reads the file rename operations listed under the PendingFileRenameOperations and 
PendingFileRenameOperations2 values from the HKLM\SYSTEM\CurrentControlSet\Control\
Session Manager key.

15. It reads the values of the AllowProtectedRenames, ClearTempFiles, TempFileDirectory, 
and DisableWpbtExecution values in the HKLM\SYSTEM\CurrentControlSet\Control\Session 
Manager key.

16. It reads the list of DLLs in the ExcludeFromKnownDllList value found under the HKLM\SYSTEM\ 
CurrentControlSet\Control\Session Manager key.

17. It reads the paging file information stored in the HKLM\SYSTEM\CurrentControlSet\Control\
Session Manager\Memory Management key, such as the PagingFiles and ExistingPageFiles 
list values and the PagefileOnOsVolume and WaitForPagingFiles configuration values.

18. It reads and saves the values stored in the HKLM\SYSTEM\CurrentControlSet\Control\Session 
Manager\ DOS Devices key.

19. It reads and saves the KnownDlls value list stored in the HKLM\SYSTEM\CurrentControlSet\
Control\Session Manager key.

20. It creates system-wide environment variables as defined in HKLM\SYSTEM\CurrentControlSet\
Control\Session Manager\Environment. 

21. It creates the \KnownDlls directory, as well as \KnownDlls32 on 64-bit systems with WoW64.

22. It creates symbolic links for devices defined in HKLM\SYSTEM\CurrentControlSet\Control\Ses-
sion Manager\DOS Devices under the \Global?? directory in the object manager namespace.

23. It creates a root \Sessions directory in the object manager namespace.

24. It creates protected mailslot and named pipe prefixes to protect service applications from spoof-
ing attacks that could occur if a malicious user-mode application executes before a service does.

25. It runs the programs part of the BootExecute and BootExecuteNoPnpSync lists parsed earlier. 
(The default is Autochk.exe, which performs a disk check.)

26. It initializes the rest of the registry (HKLM software, SAM, and security hives).

27. Unless disabled by the registry, it executes the Windows Platform Binary Table (WPBT) binary 
registered in the respective ACPI table. This is often used by anti-theft vendors to force the 
execution of a very early native Windows binary that can call home or set up other services for 
execution, even on a freshly installed system. These processes must link with Ntdll.dll only (that 
is, belong to the native subsystem).

28. It processes pending file renames as specified in the registry keys seen earlier unless this is a 
Windows Recovery Environment boot. 
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29. It initializes paging file(s) and dedicated dump file information based on the HKLM\System\
CurrentControlSet\Control\Session Manager\Memory Management and HKLM\System\Cur-
rentControlSet\Control\CrashControl keys.

30. It checks the system’s compatibility with memory cooling technology, used on NUMA systems.

31. It saves the old paging file, creates the dedicated crash dump file, and creates new paging files 
as needed based on previous crash information.

32. It creates additional dynamic environment variables, such as PROCESSOR_ARCHITECTURE, 
PROCESSOR_LEVEL, PROCESSOR_IDENTIFIER, and PROCESSOR_REVISION, which are based on 
registry settings and system information queried from the kernel.

33. It runs the programs in HKLM\SYSTEM\CurrentControlSet\Control\Session Manager\SetupEx-
ecute. The rules for these executables are the same as for BootExecute in step 11.

34. It creates an unnamed section object that is shared by child processes (for example, Csrss.exe) 
for information exchanged with Smss.exe. The handle to this section is passed to child processes 
via handle inheritance. For more on handle inheritance, see Chapter 8 in Part 2.

35. It opens known DLLs and maps them as permanent sections (mapped files) except those listed 
as exclusions in the earlier registry checks (none listed by default).

36. It creates a thread to respond to session create requests.

37. It creates the Smss.exe instance to initialize session 0 (non-interactive session).

38. It creates the Smss.exe instance to initialize session 1 (interactive session) and, if configured 
in the registry, creates additional Smss.exe instances for extra interactive sessions to prepare 
itself in advance for potential future user logons. When Smss.exe creates these instances, it 
requests the explicit creation of a new session ID using the PROCESS_CREATE_NEW_SESSION flag 
in NtCreateUserProcess each time. This has the effect of calling the internal memory manager 
function MiSessionCreate, which creates the required kernel-mode session data structures 
(such as the Session object) and sets up the Session Space virtual address range that is used 
by the kernel-mode part of the Windows subsystem (Win32k.sys) and other session-space 
device drivers. See Chapter 5 for more details.

After these steps have been completed, Smss.exe waits forever on the handle to the session 0 
instance of Csrss.exe. Because Csrss.exe is marked as a critical process (and is also a protected process; 
see Chapter 3), if Csrss.exe exits, this wait will never complete because the system will crash.

A session startup instance of Smss.exe does the following:

 ■ It creates the subsystem process(es) for the session (by default, the Windows subsystem Csrss.exe).

 ■ It creates an instance of Winlogon (interactive sessions) or the Session 0 Initial Command, which 
is Wininit (for session 0) by default unless modified by the registry values seen in the preceding 
steps. See the upcoming paragraphs for more information on these two processes.
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Finally, this intermediate Smss.exe process exits, leaving the subsystem processes and Winlogon or 
Wininit as parent-less processes.

Windows initialization process
The Wininit.exe process performs the following system initialization functions:

1. It marks itself and the main thread critical so that if it exits prematurely and the system is 
booted in debugging mode, it will break into the debugger. (Otherwise, the system will crash.)

2. It causes the process to treat certain errors as critical, such as invalid handle usage and heap 
corruption.

3. It initializes support for state separation, if the SKU supports it.

4. It creates an event named Global\FirstLogonCheck (this can be observed in Process Explorer 
or WinObj under the \BaseNamedObjects directory) for use by Winlogon processes to detect 
which Winlogon is first to launch.

5. It creates a WinlogonLogoff event in the BasedNamedObjects object manager directory to be 
used by Winlogon instances. This event is signaled (set) when a logoff operation starts.

6. It increases its own process base priority to high (13) and its main thread’s priority to 15.

7. Unless configured otherwise with the NoDebugThread registry value in the HKLM\Software\
Microsoft\Windows NT\CurrentVersion\Winlogon key, it creates a periodic timer queue, which 
will break into any user-mode process as specified by the kernel debugger. This enables remote 
kernel debuggers to cause Winlogon to attach and break into other user-mode applications.

8. It sets the machine name in the environment variable COMPUTERNAME and then updates and 
configures TCP/IP-related information such as the domain name and host name

9. It sets the default profile environment variables USERPROFILE, ALLUSERSPROFILE, PUBLIC, and 
ProgramData.

10. It creates the temp directory by expanding %SystemRoot%\Temp (for example, C:\Windows\
Temp).

11. It sets up font loading and DWM if session 0 is an interactive session, which depends on the SKU.

12. It creates the initial terminal, which is composed of a window station (always named Winsta0) 
and two desktops (Winlogon and Default) for processes to run on in session 0.

13. It initializes the LSA machine encryption key, depending on whether it’s stored locally or if it 
must be entered interactively. See Chapter 7 for more information on how local authentication 
keys are stored.

14. It creates the Service Control Manager (SCM or Services.exe). See the upcoming paragraphs for 
a brief description and Chapter 9 in Part 2 for more details.
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15. It starts the Local Security Authentication Subsystem Service (Lsass.exe) and, if Credential Guard 
is enabled, the Isolated LSA Trustlet (Lsaiso.exe). This also requires querying the VBS provision-
ing key from UEFI. See Chapter 7 for more information on Lsass.exe and Lsaiso.exe.

16. If Setup is currently pending (that is, if this is the first boot during a fresh install or an update to 
a new major OS build or Insider Preview), it launches the setup program.

17. It waits forever for a request for system shutdown or for one of the aforementioned system 
processes to terminate (unless the DontWatchSysProcs registry value is set in the Winlogon  
key mentioned in step 7). In either case, it shuts down the system.

Service control manager
Recall that with Windows, services can refer to either a server process or a device driver. This section 
deals with services that are user-mode processes. Services are like Linux daemon processes in that 
they can be configured to start automatically at system boot time without requiring an interactive 
logon. They can also be started manually, such as by running the Services administrative tool, using the 
sc.exe tool, or calling the Windows StartService function. Typically, services do not interact with the 
logged-on user, although there are special conditions when this is possible. Additionally, while most 
services run in special service accounts (such as SYSTEM or LOCAL SERVICE), others can run with the 
same security context as logged-in user accounts. (For more, see Chapter 9 in Part 2.)

The Service Control Manager (SCM) is a special system process running the image %SystemRoot%\
System32\Services.exe that is responsible for starting, stopping, and interacting with service processes. 
It is also a protected process, making it difficult to tamper with. Service programs are really just Win-
dows images that call special Windows functions to interact with the SCM to perform such actions as 
registering the service’s successful startup, responding to status requests, or pausing or shutting down 
the service. Services are defined in the registry under HKLM\SYSTEM\CurrentControlSet\Services.

Keep in mind that services have three names: the process name you see running on the system, the 
internal name in the registry, and the display name shown in the Services administrative tool. (Not all 
services have a display name—if a service doesn’t have a display name, the internal name is shown.) 
Services can also have a description field that further details what the service does.

To map a service process to the services contained in that process, use the tlist /s (from Debugging 
Tools for Windows) or tasklist /svc (built-in Windows tool) command. Note that there isn’t always 
one-to-one mapping between service processes and running services, however, because some services 
share a process with other services. In the registry, the Type value under the service’s key indicates 
whether the service runs in its own process or shares a process with other services in the image.

A number of Windows components are implemented as services, such as the Print Spooler, Event 
Log, Task Scheduler, and various networking components. For more details on services, see Chapter 9 
in Part 2.
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EXPERIMENT: Listing installed services
To list the installed services, open the Control Panel, select Administrative Tools, and select 
Services. Alternatively, click Start and run services.msc. You should see output like this:

To see the detailed properties of a service, right-click the service and select Properties.  
For example, here are the properties of the Windows Update service:

Notice that the Path to Executable field identifies the program that contains this service and 
its command line. Remember that some services share a process with other services. Mapping 
isn’t always one-to-one.
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EXPERIMENT: Viewing service details inside service processes
Process Explorer highlights processes hosting one service or more. (These processes are shaded 
pink color by default, but you can change this by opening the Options menu and choosing  
Configure Colors.) If you double-click a service-hosting process, you will see a Services tab that 
lists the services inside the process, the name of the registry key that defines the service, the display 
name seen by the administrator, the description text for that service (if present), and for Svchost.
exe services, the path to the DLL that implements the service. For example, listing the services in 
one of the Svchost.exe processes running under the System account appears as follows:

Winlogon, LogonUI, and Userinit
The Windows logon process (%SystemRoot%\System32\Winlogon.exe) handles interactive user logons 
and logoffs. Winlogon.exe is notified of a user logon request when the user enters the secure attention 
sequence (SAS) keystroke combination. The default SAS on Windows is Ctrl+Alt+Delete. The reason for 
the SAS is to protect users from password-capture programs that simulate the logon process because 
this keyboard sequence cannot be intercepted by a user-mode application.

The identification and authentication aspects of the logon process are implemented through DLLs 
called credential providers. The standard Windows credential providers implement the default Windows 
authentication interfaces: password and smartcard. Windows 10 provides a biometric credential pro-
vider: face recognition, known as Windows Hello. However, developers can provide their own credential 
providers to implement other identification and authentication mechanisms instead of the standard 
Windows user name/password method, such as one based on a voice print or a biometric device such 
as a fingerprint reader. Because Winlogon.exe is a critical system process on which the system depends, 
credential providers and the UI to display the logon dialog box run inside a child process of Winlogon.exe 
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called LogonUI.exe. When Winlogon.exe detects the SAS, it launches this process, which initializes the 
credential providers. When the user enters their credentials (as required by the provider) or dismisses 
the logon interface, the LogonUI.exe process terminates. Winlogon.exe can also load additional network 
provider DLLs that need to perform secondary authentication. This capability allows multiple network 
providers to gather identification and authentication information all at one time during normal logon.

After the user name and password (or another information bundle as the credential provider re-
quires) have been captured, they are sent to the Local Security Authentication Service process (Lsass.
exe, described in Chapter 7) to be authenticated. Lsass.exe calls the appropriate authentication pack-
age, implemented as a DLL, to perform the actual verification, such as checking whether a password 
matches what is stored in the Active Directory or the SAM (the part of the registry that contains the 
definition of the local users and groups). If Credential Guard is enabled, and this is a domain logon, 
Lsass.exe will communicate with the Isolated LSA Trustlet (Lsaiso.exe, described in Chapter 7) to obtain 
the machine key required to authenticate the legitimacy of the authentication request.

Upon successful authentication, Lsass.exe calls a function in the SRM (for example, NtCreateToken) 
to generate an access token object that contains the user’s security profile. If User Account Control 
(UAC) is used and the user logging on is a member of the administrators group or has administrator 
privileges, Lsass.exe will create a second, restricted version of the token. This access token is then used 
by Winlogon to create the initial process(es) in the user’s session. The initial process(es) are stored in the 
Userinit registry value under the HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Win-
logon registry key. The default is Userinit.exe, but there can be more than one image in the list.

Userinit.exe performs some initialization of the user environment, such as running the login script 
and reestablishing network connections. It then looks in the registry at the Shell value (under the 
same Winlogon key mentioned previously) and creates a process to run the system-defined shell (by 
default, Explorer.exe). Then Userinit exits. This is why Explorer is shown with no parent. Its parent has 
exited, and as explained in Chapter 1, tlist.exe and Process Explorer left-justify processes whose parent 
isn’t running. Another way of looking at it is that Explorer is the grandchild of Winlogon.exe.

Winlogon.exe is active not only during user logon and logoff, but also whenever it intercepts the 
SAS from the keyboard. For example, when you press Ctrl+Alt+Delete while logged on, the Windows 
Security screen comes up, providing the options to log off, start the Task Manager, lock the worksta-
tion, shut down the system, and so forth. Winlogon.exe and LogonUI.exe are the processes that handle 
this interaction.

For a complete description of the steps involved in the logon process, see Chapter 11 in Part 2. For 
more details on security authentication, see Chapter 7. For details on the callable functions that inter-
face with Lsass.exe (the functions that start with Lsa), see the documentation in the Windows SDK.

Conclusion

This chapter takes a broad look at the overall system architecture of Windows. It examines the key 
components of Windows and shows how they interrelate. In the next chapter, we’ll look in more detail 
at processes, which are one of the most basic entities in Windows.
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C H A P T E R  3

Processes and jobs

In this chapter, we’ll explain the data structures and algorithms that deal with processes and jobs in 
Windows. First we’ll take a general look at process creation. Then we’ll examine the internal structures 

that make up a process. Next we’ll look at protected processes and how they differ from non-protected 
ones. After that we outline the steps involved in creating a process (and its initial thread). The chapter 
concludes with a description of jobs.

Because processes touch so many components in Windows, a number of terms and data structures 
(such as working sets, threads, objects and handles, system memory heaps, and so on) are referred 
to in this chapter but are explained in detail elsewhere in the book. To fully understand this chapter, 
you need to be familiar with the terms and concepts explained in Chapter 1, “Concepts and tools,” and 
Chapter 2, “System architecture,” such as the difference between a process and a thread, the Windows 
virtual address space layout, and the difference between user mode and kernel mode.

Creating a process

The Windows API provides several functions for creating processes. The simplest is CreateProcess, 
which attempts to create a process with the same access token as the creating process. If a different 
token is required, CreateProcessAsUser can be used, which accepts an extra argument (the first)—a 
handle to a token object that was already somehow obtained (for example, by calling the LogonUser 
function).

Other process creation functions include CreateProcessWithTokenW and CreateProcessWithLogonW 
(both part of advapi32.Dll). CreateProcessWithTokenW is similar to CreateProcessAsUser, but the 
two differ in the privileges required for the caller. (Check the Windows SDK documentation for the 
specifics.) CreateProcessWithLogonW is a handy shortcut to log on with a given user’s credentials and 
create a process with the obtained token in one stroke. Both call the Secondary Logon service (seclogon.dll, 
hosted in a SvcHost.Exe) by making a Remote Procedure Call (RPC) to do the actual process creation. 
SecLogon executes the call in its internal SlrCreateProcessWithLogon function, and if all goes well, 
eventually calls CreateProcessAsUser. The SecLogon service is configured by default to start manu-
ally, so the first time CreateProcessWithTokenW or CreateProcessWithLogonW is called, the service 
is started. If the service fails to start (for example, an administrator can configure the service to be dis-
abled), these functions will fail. The runas command-line utility, which you may be familiar with, makes 
use of these functions.
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Figure 3-1 shows the call graph described above.

FIGURE 3-1 Process creation functions. Functions marked with dotted boxes are internal.

All the above documented functions expect a proper Portable Executable (PE) file (although the  
EXE extension is not strictly required), batch file, or 16-bit COM application. Beyond that, they have  
no knowledge of how to connect files with certain extensions (for example, .txt) to an executable  
(for example, Notepad). This is something that is provided by the Windows Shell, in functions such as 
ShellExecute and ShellExecuteEx. These functions can accept any file (not just executables) and try 
to locate the executable to run based on the file extensions and the registry settings at HKEY_CLASSES_ 
ROOT. (See Chapter 9, “Management mechanisms,” in Windows Internals Part 2 for more on this.) 
Eventually, ShellExecute(Ex) calls CreateProcess with a proper executable and appends appropriate 
arguments on the command line to achieve the user’s intention (such as editing a TXT file by append-
ing the file name to Notepad.exe).

Ultimately, all these execution paths lead to a common internal function, CreateProcessInternal, 
which starts the actual work of creating a user-mode Windows process. Eventually (if all goes well), 
CreateProcessInternal calls NtCreateUserProcess in Ntdll.dll to make the transition to kernel 
mode and continue the kernel-mode part of process creation in the function with the same name  
(NtCreateUserProcess), part of the Executive.

CreateProcess* functions arguments
It’s worthwhile to discuss the arguments to the CreateProcess* family of functions, some of which will 
be referred to in the section on the flow of CreateProcess. A process created from user mode is always 
created with one thread within it. This is the thread that eventually will execute the main function of the 
executable. Here are the important arguments to the CreateProcess* functions:

 ■ For CreateProcessAsUser and CreateProcessWithTokenW, the token handle under which the 
new process should execute. Similarly, for CreateProcessWithLogonW, the username, domain 
and password are required.
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 ■ The executable path and command-line arguments.

 ■ Optional security attributes applied to the new process and thread object that’s about to be 
created.

 ■ A Boolean flag indicating whether all handles in the current (creating) process that are marked 
inheritable should be inherited (copied) to the new process. (See Chapter 8, “System mecha-
nisms,” in Part 2 for more on handles and handle inheritance.)

 ■ Various flags that affect process creation. Here are some examples. (Check the Windows SDK 
documentation for a complete list.)

• CREATE_SUSPENDED This creates the initial thread of the new process in the suspended state. 
A later call to ResumeThread will cause the thread to begin execution.

• DEBUG_PROCESS The creating process is declaring itself to be a debugger, creating the new 
process under its control.

• EXTENDED_STARTUPINFO_PRESENT The extended STARTUPINFOEX structure is provided  
instead of STARTUPINFO (described below).

 ■ An optional environment block for the new process (specifying environment variables). If not 
specified, it will be inherited from the creating process.

 ■ An optional current directory for the new process. (If not specified, it uses the one from the 
creating process.) The created process can later call SetCurrentDirectory to set a different 
one. The current directory of a process is used in various non-full path searches (such as when 
loading a DLL with a filename only).

 ■ A STARTUPINFO or STARTUPINFOEX structure that provides more configuration for process cre-
ation. STARTUPINFOEX contains an additional opaque field that represents a set of process and 
thread attributes that are essentially an array of key/value pairs. These attributes are filled by 
calling UpdateProcThreadAttributes once for each attribute that’s needed. Some of these at-
tributes are undocumented and used internally, such as when creating store apps, as described 
in the next section.

 ■ A PROCESS_INFORMATION structure that is the output of a successful process creation. This 
structure holds the new unique process ID, the new unique thread ID, a handle to the new pro-
cess and a handle to the new thread. The handles are useful for the creating process if it wants 
to somehow manipulate the new process or thread in some way after creation.

Creating Windows modern processes
Chapter 1 described the new types of applications available starting from Windows 8 and Windows 
Server 2012. The names of these apps have changed over time, but we’ll refer to them as modern apps, 
UWP apps, or immersive processes, to distinguish them from the classic, also known as desktop,  
applications.



104 CHAPTER 3 Processes and jobs

Creating a modern application process requires more than just calling CreateProcess with the 
correct executable path. There are some required command-line arguments. Yet another requirement 
is adding an undocumented process attribute (using UpdateProcThreadAttribute) with a key named 
PROC_THREAD_ATTRIBUTE_PACKAGE_FULL_NAME with the value set to the full store app package name. 
Although this attribute is undocumented, there are other ways (from an API perspective) to execute a 
store app. For example, the Windows API includes a COM interface called IApplicationActivation-
Manager that is implemented by a COM class with a CLSID named CLSID_ApplicationActivation-
Manager. One of the methods in the interface is ActivateApplication, which can be used to launch a 
store app after obtaining something known as AppUserModelId from the store app full package name 
by calling GetPackageApplicationIds. (See the Windows SDK for more information on these APIs.)

Package names and the way a store app is typically created, from a user tapping on a modern app 
tile, eventually leading to CreateProcess, is discussed in Chapter 9 in Part 2.

Creating other kinds of processes
Although Windows applications launch either classic or modern applications, the Executive includes 
support for additional kinds of processes that must be started by bypassing the Windows API, such  
as native processes, minimal processes, or Pico processes. For example, we described in Chapter 2 
the existence of Smss, the Session Manager, which is an example of a native image. Since it is created 
directly by the kernel, it obviously does not use the CreateProcess API, but instead calls directly  
into NtCreateUserProcess. Similarly, when Smss creates Autochk (the check disk utility) or Csrss  
(the Windows subsystem process), the Windows API is also not available, and NtCreateUserProcess 
must be used. Additionally, native processes cannot be created from Windows applications, as the  
CreateProcessInternal function will reject images with the native subsystem image type. To  
alleviate these complications, the native library, Ntdll.dll, includes an exported helper function called 
RtlCreateUserProcess, providing a simpler wrapper around NtCreateUserProcess.

As its name suggests, NtCreateUserProcess is used for the creation of user-mode processes. How-
ever, as we saw in Chapter 2, Windows also includes a number of kernel-mode processes, such as the 
System process and the Memory Compression processes (which are minimal processes), plus the possi-
bility of Pico processes managed by a provider such as the Windows Subsystem for Linux. The creation 
of such processes is instead provided by the NtCreateProcessEx system call, with certain capabilities 
reserved solely for kernel-mode callers (such as the creation of minimal processes).

Finally, Pico providers call a helper function, which takes care of both creating the minimal process 
as well as initializing its Pico provider context—PspCreatePicoProcess. This function is not exported, 
and is only available to Pico providers through their special interface.

As we’ll see in the flow section later in this chapter, although NtCreateProcessEx and NtCreate-
UserProcess are different system calls, the same internal routines are used to perform the work: 
PspAllocateProcess and PspInsertProcess. All the possible ways we’ve enumerated so far to create 
a process, and any ways you can imagine, from a WMI PowerShell cmdlet to a kernel driver, will end 
up there.
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Process internals

This section describes the key Windows process data structures maintained by various parts of the 
system and describes different ways and tools to examine this data.

Each Windows process is represented by an executive process (EPROCESS) structure. Besides con-
taining many attributes relating to a process, an EPROCESS contains and points to a number of other 
related data structures. For example, each process has one or more threads, each represented by an 
executive thread (ETHREAD) structure. (Thread data structures are explained in Chapter 4, “Threads”.)

The EPROCESS and most of its related data structures exist in system address space. One exception 
is the Process Environment Block (PEB), which exists in the process (user) address space (because it con-
tains information accessed by user-mode code). Additionally, some of the process data structures used 
in memory management, such as the working set list, are valid only within the context of the current 
process, because they are stored in process-specific system space. (See Chapter 5, “Memory manage-
ment,” for more information on process address space.)

For each process that is executing a Windows program, the Windows subsystem process (Csrss) 
maintains a parallel structure called the CSR_PROCESS. Additionally, the kernel-mode part of the Win-
dows subsystem (Win32k.sys) maintains a per-process data structure, W32PROCESS, which is created 
the first time a thread calls a Windows USER or GDI function that is implemented in kernel mode. This 
happens as soon as the User32.dll library is loaded. Typical functions that cause this library to be loaded 
are CreateWindow(Ex) and GetMessage.

Since the kernel-mode Windows subsystem makes heavy use of DirectX-based hardware accelerat-
ed graphics, the Graphics Device Interface (GDI) component infrastructure causes the DirectX Graphics 
Kernel (Dxgkrnl.sys) to initialize a structure of its own, DXGPROCESS. This structure contains information 
for DirectX objects (surfaces, shaders, etc.) and the GPGPU-related counters and policy settings for 
both computational and memory management–related scheduling.

Except for the idle process, every EPROCESS structure is encapsulated as a process object by the 
executive object manager (described in Chapter 8 in Part 2). Because processes are not named objects, 
they are not visible in the WinObj tool (from Sysinternals). You can, however, see the Type object called 
Process in the \ObjectTypes directory (in WinObj). A handle to a process provides, through use of the 
process-related APIs, access to some of the data in the EPROCESS structure and in some of its associated 
structures.

Many other drivers and system components, by registering process-creation notifications, can 
choose to create their own data structures to track information they store on a per-process basis. (The 
executive functions PsSetCreateProcessNotifyRoutine(Ex, Ex2) allow this and are documented in 
the WDK.) When one discusses the overhead of a process, the size of such data structures must often 
be taken into consideration, although it is nearly impossible to obtain an accurate number. Additionally, 
some of these functions allow such components to disallow, or block, the creation of processes. This 
provides anti-malware vendors with an architectural way to add security enhancements to the operat-
ing system, either through hash-based blacklisting or other techniques.
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First let’s focus on the Process object. Figure 3-2 shows the key fields in an EPROCESS structure. 

FIGURE 3-2 Important fields of the executive process structure.

Similar to the way the kernel’s APIs and components are divided into isolated and layered modules 
with their own naming conventions, the data structures for a process follow a similar design. As shown 
in Figure 3-2, the first member of the executive process structure is called Pcb (Process Control Block). 
It is a structure of type KPROCESS, for kernel process. Although routines in the executive store informa-
tion in the EPROCESS, the dispatcher, scheduler, and interrupt/time accounting code—being part of the 
operating system kernel—use the KPROCESS instead. This allows a layer of abstraction to exist between 
the executive’s high-level functionality and its underlying low-level implementation of certain func-
tions, and helps prevent unwanted dependencies between the layers. Figure 3-3 shows the key fields in 
a KPROCESS structure.
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FIGURE 3-3 Important fields of the kernel process structure.

EXPERIMENT: Displaying the format of an EPROCESS structure
For a list of the fields that make up an EPROCESS structure and their offsets in hexadecimal, type 
dt nt!_eprocess in the kernel debugger. (See Chapter 1 for more information on the kernel 
debugger and how to perform kernel debugging on the local system.) The output (truncated for 
the sake of space) on a 64-bit Windows 10 system looks like this:

lkd> dt nt!_eprocess  
   +0x000 Pcb              : _KPROCESS 
   +0x2d8 ProcessLock      : _EX_PUSH_LOCK 
   +0x2e0 RundownProtect   : _EX_RUNDOWN_REF 
   +0x2e8 UniqueProcessId  : Ptr64 Void 
   +0x2f0 ActiveProcessLinks : _LIST_ENTRY 
...    
   +0x3a8 Win32Process     : Ptr64 Void 
   +0x3b0 Job              : Ptr64 _EJOB 
... 
   +0x418 ObjectTable      : Ptr64 _HANDLE_TABLE 
   +0x420 DebugPort        : Ptr64 Void 
   +0x428 WoW64Process     : Ptr64 _EWOW64PROCESS 
... 
   +0x758 SharedCommitCharge : Uint8B 
   +0x760 SharedCommitLock : _EX_PUSH_LOCK 
   +0x768 SharedCommitLinks : _LIST_ENTRY 
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   +0x778 AllowedCpuSets   : Uint8B 
   +0x780 DefaultCpuSets   : Uint8B 
   +0x778 AllowedCpuSetsIndirect : Ptr64 Uint8B 
   +0x780 DefaultCpuSetsIndirect : Ptr64 Uint8B

The first member of this structure (Pcb) is an embedded structure of type KPROCESS. This is 
where scheduling and time-accounting data is stored. You can display the format of the kernel 
process structure in the same way as the EPROCESS: 

lkd> dt nt!_kprocess 
   +0x000 Header           : _DISPATCHER_HEADER 
   +0x018 ProfileListHead  : _LIST_ENTRY 
   +0x028 DirectoryTableBase : Uint8B 
   +0x030 ThreadListHead   : _LIST_ENTRY 
   +0x040 ProcessLock      : Uint4B 
   ... 
   +0x26c KernelTime       : Uint4B 
   +0x270 UserTime         : Uint4B 
   +0x274 LdtFreeSelectorHint : Uint2B 
   +0x276 LdtTableLength   : Uint2B 
   +0x278 LdtSystemDescriptor : _KGDTENTRY64 
   +0x288 LdtBaseAddress   : Ptr64 Void 
   +0x290 LdtProcessLock   : _FAST_MUTEX 
   +0x2c8 InstrumentationCallback : Ptr64 Void 
   +0x2d0 SecurePid        : Uint8B

The dt command also enables you to view the specific contents of one field or multiple 
fields by typing their names following the structure name. For example, typing dt nt!_eprocess 
UniqueProcessId displays the process ID field. In the case of a field that represents a structure— 
such as the Pcb field of EPROCESS, which contains the KPROCESS substructure—adding a period 
after the field name will cause the debugger to display the substructure. For example, an alterna-
tive way to see the KPROCESS is to type dt nt!_eprocess Pcb. You can continue to recurse this 
way by adding more field names (within KPROCESS) and so on. Finally, the –r switch of the dt 
command allows you to recurse through all the substructures. Adding a number after the switch 
controls the depth of recursion the command will follow.

The dt command used as shown earlier shows the format of the selected structure, not the 
contents of any particular instance of that structure type. To show an instance of an actual pro-
cess, you can specify the address of an EPROCESS structure as an argument to the dt command. 
You can get the addresses of almost all of the EPROCESS structures in the system by using the 
!process 0 0 command (the exception being the system idle process). Because the KPROCESS 
is the first thing in the EPROCESS, the address of an EPROCESS will also work as the address of a 
KPROCESS with dt _kprocess.
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EXPERIMENT: Using the kernel debugger !process command
The kernel debugger !process command displays a subset of the information in a process 
object and its associated structures. This output is arranged in two parts for each process. First 
you see the information about the process, as shown here. When you don’t specify a process 
address or ID, !process lists information for the process owning the thread currently running on 
CPU 0, which will be WinDbg itself (or livekd if it’s used in lieu of WinDbg) on a single-processor 
system.

lkd> !process 
PROCESS ffffe0011c3243c0 
    SessionId: 2  Cid: 0e38    Peb: 5f2f1de000  ParentCid: 0f08 
    DirBase: 38b3e000  ObjectTable: ffffc000a2b22200  HandleCount: <Data Not Accessible> 
    Image: windbg.exe 
    VadRoot ffffe0011badae60 Vads 117 Clone 0 Private 3563. Modified 228. Locked 1. 
    DeviceMap ffffc000984e4330 
    Token                             ffffc000a13f39a0 
    ElapsedTime                       00:00:20.772 
    UserTime                          00:00:00.000 
    KernelTime                        00:00:00.015 
    QuotaPoolUsage[PagedPool]         299512 
    QuotaPoolUsage[NonPagedPool]      16240 
    Working Set Sizes (now,min,max)  (9719, 50, 345) (38876KB, 200KB, 1380KB) 
    PeakWorkingSetSize                9947 
    VirtualSize                       2097319 Mb 
    PeakVirtualSize                   2097321 Mb 
    PageFaultCount                    13603 
    MemoryPriority                    FOREGROUND 
    BasePriority                      8 
    CommitCharge                      3994 
    Job                               ffffe0011b853690

After the basic process output comes a list of the threads in the process. That output is ex-
plained in the “Experiment: Using the kernel debugger !thread command” section in Chapter 4.

Other commands that display process information include !handle, which dumps the process 
handle table (described in more detail in the section “Object handles and the process handle 
table” in Chapter 8 in Part 2). Process and thread security structures are described in Chapter 7, 
“Security.”

Note that the output gives the address of the PEB. You can use this with the !peb command 
shown in the next experiment to see a friendly view of the PEB of an arbitrary process or you can 
use the regular dt command with the _PEB structure. However, because the PEB is in the user-mode 
address space, it is valid only within the context of its own process. To look at the PEB of another 
process, you must first switch WinDbg to that process. You can do this with the .process /P 
command, followed by the EPROCESS pointer.
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If you’re using the latest Windows 10 SDK, the updated version of WinDbg will include an intuitive 
hyperlink under the PEB address, which you can click to automatically execute both the .process  
command and the !peb command.

The PEB lives in the user-mode address space of the process it describes. It contains information 
needed by the image loader, the heap manager, and other Windows components that need to access 
it from user mode; it would be too expensive to expose all that information through system calls. The 
EPROCESS and KPROCESS structures are accessible only from kernel mode. The important fields of the 
PEB are illustrated in Figure 3-4 and are explained in more detail later in this chapter.

FIGURE 3-4 Important fields of the Process Environment Block.

EXPERIMENT: Examining the PEB
You can dump the PEB structure with the !peb command in the kernel debugger, which displays 
the PEB of the process that owns the currently running thread on CPU 0. By using the information 
in the previous experiment, you can also use the PEB pointer as an argument to the command.
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lkd> .process /P ffffe0011c3243c0 ; !peb 5f2f1de000 
PEB at 0000003561545000 
    InheritedAddressSpace:    No 
    ReadImageFileExecOptions: No 
    BeingDebugged:            No 
    ImageBaseAddress:         00007ff64fa70000 
    Ldr                       00007ffdf52f5200 
    Ldr.Initialized:          Yes 
    Ldr.InInitializationOrderModuleList: 000001d3d22b3630 . 000001d3d6cddb60 
    Ldr.InLoadOrderModuleList:           000001d3d22b3790 . 000001d3d6cddb40 
    Ldr.InMemoryOrderModuleList:         000001d3d22b37a0 . 000001d3d6cddb50 
                    Base TimeStamp                     Module 
            7ff64fa70000 56ccafdd Feb 23 21:15:41 2016 C:\dbg\x64\windbg.exe 
            7ffdf51b0000 56cbf9dd Feb 23 08:19:09 2016 C:\WINDOWS\SYSTEM32\ntdll.dll 
            7ffdf2c10000 5632d5aa Oct 30 04:27:54 2015 C:\WINDOWS\system32\KERNEL32.DLL 
    ...

The CSR_PROCESS structure contains information about processes that is specific to the Windows 
subsystem (Csrss). As such, only Windows applications have a CSR_PROCESS structure associated  
with them (for example, Smss does not). Additionally, because each session has its own instance of  
the Windows subsystem, the CSR_PROCESS structures are maintained by the Csrss process within each 
individual session. The basic structure of the CSR_PROCESS is illustrated in Figure 3-5 and is explained  
in more detail later in this chapter.

FIGURE 3-5 Fields of the CSR process structure.
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EXPERIMENT: Examining the CSR_PROCESS
Csrss processes are protected (see later in this chapter for more on protected processes), so it’s 
not possible to attach a user mode debugger to a Csrss process (not even with elevated privileges 
or non-invasively). Instead, we’ll use the kernel debugger.

First, list the existing Csrss processes:
lkd> !process 0 0 csrss.exe 
PROCESS ffffe00077ddf080 
    SessionId: 0  Cid: 02c0    Peb: c4e3fc0000  ParentCid: 026c 
    DirBase:   ObjectTable: ffffc0004d15d040  HandleCount: 543. 
    Image: csrss.exe 
 
PROCESS ffffe00078796080 
    SessionId: 1  Cid: 0338    Peb: d4b4db4000  ParentCid: 0330 
    DirBase:   ObjectTable: ffffc0004ddff040  HandleCount: 514. 
    Image: csrss.exe

Next, take any one of them and change the debugger context to point to the particular pro-
cess so that its user mode modules are visible:

lkd> .process /r /P ffffe00078796080 
Implicit process is now ffffe000'78796080 
Loading User Symbols 
.............

The /p switch changes the process context of the debugger to the provided process object 
(EPROCESS, mostly needed in live debugging) and /r requests loading of user mode symbols. 
Now you can look at the modules themselves using the lm command or look at the CSR_PROCESS 
structure:

lkd> dt csrss!_csr_process 
   +0x000 ClientId         : _CLIENT_ID 
   +0x010 ListLink         : _LIST_ENTRY 
   +0x020 ThreadList       : _LIST_ENTRY 
   +0x030 NtSession        : Ptr64 _CSR_NT_SESSION 
   +0x038 ClientPort       : Ptr64 Void 
   +0x040 ClientViewBase   : Ptr64 Char 
   +0x048 ClientViewBounds : Ptr64 Char 
   +0x050 ProcessHandle    : Ptr64 Void 
   +0x058 SequenceNumber   : Uint4B 
   +0x05c Flags            : Uint4B 
   +0x060 DebugFlags       : Uint4B 
   +0x064 ReferenceCount   : Int4B 
   +0x068 ProcessGroupId   : Uint4B 
   +0x06c ProcessGroupSequence : Uint4B 
   +0x070 LastMessageSequence : Uint4B 
   +0x074 NumOutstandingMessages : Uint4B 
   +0x078 ShutdownLevel    : Uint4B 
   +0x07c ShutdownFlags    : Uint4B 
   +0x080 Luid             : _LUID 
   +0x088 ServerDllPerProcessData : [1] Ptr64 Void 
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The W32PROCESS structure is the final system data structure associated with processes that we’ll look 
at. It contains all the information that the Windows graphics and window management code in the ker-
nel (Win32k) needs to maintain state information about GUI processes (which were defined earlier as 
processes that have done at least one USER/GDI system call). The basic structure of the W32PROCESS is 
illustrated in Figure 3-6. Unfortunately, since type information for Win32k structures is not available in 
public symbols, we can’t easily show you an experiment displaying this information. Either way, discus-
sion of graphics-related data structures and concepts is beyond the scope of this book.

FIGURE 3-6 Fields of the Win32k Process structure.

Protected processes

In the Windows security model, any process running with a token containing the debug privilege (such 
as an administrator’s account) can request any access right that it desires to any other process running 
on the machine. For example, it can read and write arbitrary process memory, inject code, suspend and 
resume threads, and query information on other processes. Tools such as Process Explorer and Task 
Manager need and request these access rights to provide their functionality to users.

This logical behavior (which helps ensure that administrators will always have full control of the run-
ning code on the system) clashes with the system behavior for digital rights management requirements 
imposed by the media industry on computer operating systems that need to support playback of ad-
vanced, high-quality digital content such as Blu-ray media. To support reliable and protected playback of 
such content, Windows Vista and Windows Server 2008 introduced protected processes. These processes 
exist alongside normal Windows processes, but they add significant constraints to the access rights that 
other processes on the system (even when running with administrative privileges) can request.

Protected processes can be created by any application. However, the operating system will allow a 
process to be protected only if the image file has been digitally signed with a special Windows Media 
Certificate. The Protected Media Path (PMP) in Windows makes use of protected processes to provide 
protection for high-value media, and developers of applications such as DVD players can make use of 
protected processes by using the Media Foundation (MF) API. 
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The Audio Device Graph process (Audiodg.exe) is a protected process because protected music con-
tent can be decoded through it. Related to this is the Media Foundation Protected Pipeline (Mfpmp.exe), 
which is also a protected process for similar reasons (it does not run by default). Similarly, the Windows 
Error Reporting (WER; discussed in Chapter 8 in Part 2) client process (Werfaultsecure.exe) can also run 
protected because it needs to have access to protected processes in case one of them crashes. Finally, 
the System process itself is protected because some of the decryption information is generated by the 
Ksecdd.sys driver and stored in its user-mode memory. The System process is also protected to protect 
the integrity of all kernel handles (because the System process’s handle table contains all the kernel 
handles on the system). Since other drivers may also sometimes map memory inside the user-mode ad-
dress space of the System process (such as Code Integrity certificate and catalog data), it’s yet another 
reason for keeping the process protected.

At the kernel level, support for protected processes is twofold. First, the bulk of process creation  
occurs in kernel mode to avoid injection attacks. (The flow for both protected and standard process 
creation is described in detail in the next section.) Second, protected processes (and their extended 
cousin, Protected Processes Light [PPL], described in the next section) have special bits set in their 
EPROCESS structure that modify the behavior of security-related routines in the process manager to 
deny certain access rights that would normally be granted to administrators. In fact, the only access 
rights that are granted for protected processes are PROCESS_QUERY/SET_LIMITED_INFORMATION, 
PROCESS_TERMINATE and PROCESS_SUSPEND_RESUME. Certain access rights are also disabled for threads 
running inside protected processes. We will look at those access rights in Chapter 4 in the section 
“Thread internals.”

Because Process Explorer uses standard user-mode Windows APIs to query information on process 
internals, it is unable to perform certain operations on such processes. On the other hand, a tool like 
WinDbg in kernel-debugging mode, which uses kernel-mode infrastructure to obtain this informa-
tion, will be able to display complete information. See the experiment in the “Thread internals” section 
in Chapter 4 on how Process Explorer behaves when confronted with a protected process such as 
Audiodg.exe.

Note As mentioned in Chapter 1, to perform local kernel debugging, you must boot in 
debugging mode (enabled by using bcdedit /debug on or by using the Msconfig advanced 
boot options). This mitigates against debugger-based attacks on protected processes and 
the PMP. When booted in debugging mode, high-definition content playback will not work.

Limiting these access rights reliably allows the kernel to sandbox a protected process from user-
mode access. On the other hand, because a protected process is indicated by a flag in the EPROCESS 
structure, an administrator can still load a kernel-mode driver that modifies this flag. However, this 
would be a violation of the PMP model and considered malicious, and such a driver would likely 
eventually be blocked from loading on a 64-bit system because the kernel-mode, code-signing policy 
prohibits the digital signing of malicious code. Additionally, kernel-mode patch protection, known as 
PatchGuard (described in Chapter 7), as well as the Protected Environment and Authentication Driver 
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(Peauth.sys), will recognize and report such attempts. Even on 32-bit systems, the driver has to be 
recognized by PMP policy or the playback may be halted. This policy is implemented by Microsoft and 
not by any kernel detection. This block would require manual action from Microsoft to identify the 
signature as malicious and update the kernel.

Protected Process Light (PPL)
As we just saw, the original model for protected processes focused on DRM-based content. Starting 
with Windows 8.1 and Windows Server 2012 R2, an extension to the protected process model was intro-
duced, called Protected Process Light (PPL).

PPLs are protected in the same sense as classic protected processes: User-mode code (even running 
with elevated privileges) cannot penetrate these processes by injecting threads or obtaining detailed 
information about loaded DLLs. However, the PPL model adds an additional dimension to the quality of 
being protected: attribute values. The different Signers have differing trust levels, which in turn results 
in certain PPLs being more, or less, protected than other PPLs. 

Because DRM evolved from merely multimedia DRM to also Windows licensing DRM and Windows 
Store DRM, standard protected processes are now also differentiated based on the Signer value. Finally, 
the various recognized Signers also define which access rights are denied to lesser protected processes. 
For example, normally, the only access masks allowed are PROESS_QUERY/SET_LIMITED_INFORMATION 
and PROCESS_SUSPEND_RESUME. PROCESS_TERMINATE is not allowed for certain PPL signers.

Table 3-1 shows the legal values for the protection flag stored in the EPROCESS structure.

TABLE 3-1 Valid protection values for processes

Internal Protection Process Level Symbol Protection Type Signer

PS_PROTECTED_SYSTEM (0x72) Protected WinSystem

PS_PROTECTED_WINTCB (0x62) Protected WinTcb

PS_PROTECTED_WINTCB_LIGHT (0x61) Protected Light WinTcb

PS_PROTECTED_WINDOWS (0x52) Protected Windows

PS_PROTECTED_WINDOWS_LIGHT (0x51) Protected Light Windows

PS_PROTECTED_LSA_LIGHT (0x41) Protected Light Lsa

PS_PROTECTED_ANTIMALWARE_LIGHT (0x31) Protected Light Anti-malware

PS_PROTECTED_AUTHENTICODE (0x21) Protected Authenticode

PS_PROTECTED_AUTHENTICODE_LIGHT (0x11) Protected Light Authenticode

PS_PROTECTED_NONE (0x00) None None

As shown in Table 3-1, there are several signers defined, from high to low power. WinSystem is the 
highest-priority signer and used for the System process and minimal processes such as the Memory 
Compression process. For user-mode processes, WinTCB (Windows Trusted Computer Base) is the 
highest-priority signer and leveraged to protect critical processes that the kernel has intimate knowledge 
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of and might reduce its security boundary toward. When interpreting the power of a process, keep in 
mind that first, protected processes always trump PPLs, and that next, higher-value signer processes 
have access to lower ones, but not vice versa. Table 3-2 shows the signer levels (higher values denote the 
signer is more powerful) and some examples of their usage. You can also dump these in the debugger 
with the _PS_PROTECTED_SIGNER type.

TABLE 3-2 Signers and levels

Signer Name (PS_PROTECTED_SIGNER) Level Used For

PsProtectedSignerWinSystem 7 System and minimal processes (including Pico processes).

PsProtectedSignerWinTcb 6 Critical Windows components. PROCESS_TERMINATE is  
denied.

PsProtectedSignerWindows 5 Important Windows components handling sensitive data.

PsProtectedSignerLsa 4 Lsass.exe (if configured to run protected).

PsProtectedSignerAntimalware 3 Anti-malware services and processes, including third party. 
PROCESS_TERMINATE is denied.

PsProtectedSignerCodeGen 2 NGEN (.NET native code generation).

PsProtectedSignerAuthenticode 1 Hosting DRM content or loading user-mode fonts.

PsProtectedSignerNone 0 Not valid (no protection).

At this point you may be wondering what prohibits a malicious process from claiming it is a protect-
ed process and shielding itself from anti-malware (AM) applications. Because the Windows Media DRM 
Certificate is no longer necessary to run as a protected process, Microsoft extended its Code Integrity 
module to understand two special enhanced key usage (EKU) OIDs that can be encoded in a digital 
code signing certificate: 1.3.6.1.4.1.311.10.3.22 and 1.3.6.4.1.311.10.3.20. Once one of these EKUs is pres-
ent, hardcoded Signer and Issuer strings in the certificate, combined with additional possible EKUs, are 
then associated with the various Protected Signer values. For example, the Microsoft Windows Issuer 
can grant the PsProtectedSignerWindows protected signer value, but only if the EKU for Windows 
System Component Verification (1.3.6.1.4.1.311.10.3.6) is also present. As an example, Figure 3-7 shows 
the certificate for Smss.exe, which is permitted to run as WinTcb-Light.

Finally, note that the protection level of a process also impacts which DLLs it will be allowed to 
load—otherwise, either through a logic bug or simple file replacement or plating, a legitimate protect-
ed process could be coerced into loading a third party or malicious library, which would now execute 
with the same protection level as the process. This check is implemented by granting each process a 
“Signature Level,” which is stored in the SignatureLevel field of EPROCESS, and then using an inter-
nal lookup table to find a corresponding “DLL Signature Level,” stored as SectionSignatureLevel 
in EPROCESS. Any DLL loading in the process will be checked by the Code Integrity component in the 
same way that the main executable is verified. For example, a process with “WinTcb” as its executable 
signer will only load “Windows” or higher signed DLLs.
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FIGURE 3-7 Smss certificate.

On Windows 10 and Windows Server 2016, the following processes are PPL signed with WinTcb-Lite: 
smss.exe, csrss.exe, services.exe, and wininit.exe. Lsass.exe is running as PPL on ARM-based Windows 
(such as Windows mobile 10) and can run as PPL on x86/x64 if configured as such by a registry setting 
or by policy (see Chapter 7 for more information). Additionally, certain services are configured to run as 
Windows PPL or protected processes, such as sppsvc.exe (Software Protection Platform). You may also 
notice certain service-hosting processes (Svchost.exe) running with this protection level, since many 
services, such as the AppX Deployment Service and the Windows Subsystem for Linux Service, also run 
protected. More information on such protected services will be described in Chapter 9 in Part 2.

The fact that these core system binaries run as TCB is critical to the security of the system. For example, 
Csrss.exe has access to certain private APIs implemented by the Window Manager (Win32k.sys), which 
could give an attacker with Administrator rights access to sensitive parts of the kernel. Similarly, Smss.
exe and Wininit.exe implement system startup and management logic that is critical to perform with-
out possible interference from an administrator. Windows guarantees that these binaries will always 
run as WinTcb-Lite such that, for example, it is not possible for someone to launch them without  
specifying the correct process protection level in the process attributes when calling CreateProcess. 
This guarantee is known as the minimum TCB list and forces any processes with the names in Table 3-3 
that are in a System path to have a minimum protection level and/or signing level regardless of the 
caller’s input.
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TABLE 3-3 Minimum TCB

Process Name Minimum Signature Level Minimum Protection Level

Smss.exe Inferred from protection level WinTcb-Lite

Csrss.exe Inferred from protection level WinTcb-Lite

Wininit.exe Inferred from protection level WinTcb-Lite

Services.exe Inferred from protection level WinTcb-Lite

Werfaultsecure.exe Inferred from protection level WinTcb-Full

Sppsvc.exe Inferred from protection level Windows-Full

Genvalobj.exe Inferred from protection level Windows-Full

Lsass.exe SE_SIGNING_LEVEL_WINDOWS 0

Userinit.exe SE_SIGNING_LEVEL_WINDOWS 0

Winlogon.exe SE_SIGNING_LEVEL_WINDOWS 0

Autochk.exe SE_SIGNING_LEVEL_WINDOWS* 0

*Only on UEFI firmware systems

EXPERIMENT: Viewing protected processes in Process Explorer
In this experiment, we’ll look at how Process Explorer shows protected processes (of either type). 
Run Process Explorer and select the Protection check box in the Process Image tab to view the 
Protection column:

Now sort by the Protection column in descending order and scroll to the top. You should see all 
protected processes with their protection type. Here’s a screenshot from a Windows 10 x64 machine:
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If you select a protected process and look at the lower part when configured to view DLLs, you’ll 
see nothing. That’s because Process Explorer uses user-mode APIs to query the loaded modules 
and that requires access that is not granted for accessing protected processes. The notable excep-
tion is the System process, which is protected, but Process Explorer instead shows the list of loaded 
kernel modules (mostly drivers) since there are no DLLs in system processes. This is done using the 
EnumDeviceDrivers API, which is a system API that does not require a process handle.

If you switch to Handle view, you’ll see complete handle information. The reason is similar: 
Process Explorer uses an undocumented API that returns all handles on the system, which does 
not require a specific process handle. Process Explorer can identify the process simply because 
this information returns the PID associated with each handle.

Third-party PPL support
The PPL mechanism extends the protection possibilities for processes beyond executables created 
solely by Microsoft. A common example is anti-malware (AM) software. A typical AM product consists 
of three main components:

 ■ A kernel driver that intercepts I/O requests to the file system and/or the network, and implements 
blocking capabilities using object, process, and thread callbacks

 ■ A user-mode service (typically running under a privileged account) that configures the driver’s 
policies, receives notifications from the driver regarding “interesting” events (for example, 
infected file), and may communicate with a local server or the Internet

 ■ A user-mode GUI process that communicates information to the user and optionally allows the 
user to make decisions where applicable.

One possible way malware can attack a system is by managing to inject code inside a process running 
with elevated privileges, or better, inject code specifically inside an anti-malware service and thus tam-
per with it or disable its operation. If, however, the AM service could run as a PPL, no code injection would 
be possible, and no process termination would be allowed, meaning that the AM software would be 
better protected from malware that does not employ kernel-level exploits.
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To enable this use, the AM kernel driver described above needs to have a corresponding Early-Launch 
Anti Malware (ELAM) driver. While ELAM is further described in Chapter 7, the key distinction is that 
such drivers require a special anti-malware certificate provided by Microsoft (after proper verification 
of the software’s publisher). Once such a driver is installed, it can contain a custom resource section in 
its main executable (PE) file called ELAMCERTIFICATEINFO. This section can describe three additional 
Signers (identified by their public key), each having up to three additional EKUs (identified by OID). 
Once the Code Integrity system recognizes any file signed by one of the three Signers, containing 
one of the three EKUs, it permits the process to request a PPL of PS_PROTECTED_ANTIMALWARE_LIGHT 
(0x31). A canonical example of this is Microsoft’s own AM known as Windows Defender. Its service on 
Windows 10 (MsMpEng.exe) is signed with the anti-malware certificate for better protection against 
malware attacking the AM itself, as is its Network Inspection Server (NisSvc.exe).

Minimal and Pico processes

The types of processes we’ve looked at so far, and their data structures, seem to imply that their use 
is the execution of user-mode code, and that they contain a great deal of related data structures in 
memory to achieve this. Yet, not all processes are used for this purpose. For example, as we’ve seen, the 
System process is merely used as a container of most of the system threads, such that their execution 
time doesn’t pollute arbitrary user-mode processes, as well as being used as a container of drivers’ 
handles (called kernel handles), such that these don’t end up owned by an arbitrary application either.

Minimal processes
When a specific flag is given to the NtCreateProcessEx function, and the caller is kernel-mode, the 
function behaves slightly differently and causes the execution of the PsCreateMinimalProcess API.  
In turn, this causes a process to be created without many of the structures that we saw earlier, namely:

 ■ No user-mode address space will be set up, so no PEB and related structures will exist.

 ■ No NTDLL will be mapped into the process, nor will any loader/API Set information.

 ■ No section object will be tied to the process, meaning no executable image file is associated to 
its execution or its name (which can be empty, or an arbitrary string).

 ■ The Minimal flag will be set in the EPROCESS flags, causing all threads to become minimal 
threads, and also avoid any user-mode allocations such as their TEB or user-mode stack.  
(See Chapter 4 for more information on the TEB.)

As we saw in Chapter 2, Windows 10 has at least two minimal processes—the System process and 
Memory Compression process—and can have a third, the Secure System process, if Virtualization-
Based Security is enabled, which is described further in Chapter 2 and Chapter 7.

Finally, the other way to have minimal processes running on a Windows 10 system is to enable the 
Windows Subsystem for Linux (WSL) optional feature that was also described in Chapter 2. This will 
install an inbox Pico Provider composed of the Lxss.sys and LxCore.sys drivers.
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Pico processes
While minimal processes have a limited use in terms of allowing access to user-mode virtual address 
space from kernel components and protecting it, Pico processes take on a more important role by 
permitting a special component, called a Pico Provider, to control most aspects of their execution from 
an operating system perspective. This level of control ultimately allows such a provider to emulate the 
behavior of a completely different operating system kernel, without the underlying user-mode binary 
being aware that it is running on a Windows-based operating system. This is essentially an implemen-
tation of the Drawbridge project from Microsoft Research, which is also used to support SQL Server for 
Linux in a similar way (albeit with a Windows-based Library OS on top of the Linux kernel).

To support the existence of Pico processes on the system, a provider must first be present. Such a 
provider can be registered with the PsRegisterPicoProvider API, but subject to a very specific rule:  
A Pico provider must be loaded before any other third-party drivers are loaded (including boot drivers). 
In fact, only one of the limited set of a dozen or so core drivers are allowed to call this API before the 
functionality is disabled, and these core drivers must be signed with a Microsoft Signer Certificate and 
Windows Component EKU. On Windows systems with the optional WSL component enabled, this core 
driver is called Lxss.sys, and serves as a stub driver until another driver, LxCore.sys, loads a bit later and 
takes over the Pico provider responsibilities by transferring the various dispatch tables over to itself. 
Additionally, note that at the time of this writing, only one such core driver can register itself as a Pico 
provider.

When a Pico provider calls the registration API, it receives a set of function pointers, which allow it to 
create and manage Pico processes:

 ■ One function to create a Pico process and one to create a Pico thread.

 ■ One function to get the context (an arbitrary pointer that the provider can use to store specific 
data) of a Pico process, one to set it, and another pair of functions to do the same for Pico 
threads. This will populate the PicoContext field in ETHREAD and/or EPROCESS.

 ■ One function to get the CPU context structure (CONTEXT) of a Pico thread and one to set it.

 ■ A function to change the FS and/or GS segments of a Pico thread, which are normally used by 
user-mode code to point to some thread local structure (such as the TEB on Windows).

 ■ One function to terminate a Pico thread and one to do the same to a Pico process.

 ■ One function to suspend a Pico thread and one to resume it.

As you can see, through these functions, the Pico provider can now create fully custom processes and 
threads for whom it controls the initial starting state, segment registers, and associate data. However, 
this alone would not allow the ability to emulate another operating system. A second set of function 
pointers is transferred, this time from the provider to the kernel, which serve as callbacks whenever 
certain activities of interest will be performed by a Pico thread or process.

 ■ A callback whenever a Pico thread makes a system call using the SYSCALL instruction

 ■ A callback whenever an exception is raised from a Pico thread
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 ■ A callback whenever a fault during a probe and lock operation on a memory descriptor list 
(MDL) occurs inside a Pico thread

 ■ A callback whenever a caller is requesting the name of a Pico process

 ■ A callback whenever Event Tracing for Windows (ETW) is requesting the user-mode stack trace 
of a Pico process

 ■ A callback whenever an application attempts to open a handle to a Pico process or Pico thread

 ■ A callback whenever someone requests the termination of a Pico process

 ■ A callback whenever a Pico thread or Pico process terminates unexpectedly

Additionally, a Pico provider also leverages Kernel Patch Protection (KPP), described in Chapter 7, 
to both protect its callbacks and system calls as well as prevent fraudulent or malicious Pico providers 
from registering on top of a legitimate Pico provider.

It now becomes clear that with such unparalleled access to any possible user-kernel transition or vis-
ible kernel-user interactions between a Pico process/thread and the world, it can be fully encapsulated 
by a Pico provider (and relevant user-mode libraries) to wrap a completely different kernel implemen-
tation than that of Windows (with some exceptions, of course, as thread scheduling rules and memory 
management rules, such as commit, still apply). Correctly written applications are not supposed to be 
sensitive to such internal algorithms, as they are subject to change even within the operating system 
they normally execute on.

Therefore, Pico providers are essentially custom-written kernel modules that implement the neces-
sary callbacks to respond to the list of possible events (shown earlier) that a Pico process can cause to 
arise. This is how WSL is capable of running unmodified Linux ELF binaries in user-mode, limited only 
by the completeness of its system call emulation and related functionality.

To complete the picture on regular NT processes versus minimal processes versus Pico processes, we 
present Figure 3-8, showing the different structures for each.

FIGURE 3-8 Process types.
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Trustlets (secure processes)

As covered in Chapter 2, Windows contains new virtualization-based security (VBS) features such as 
Device Guard and Credential Guard, which enhance the safety of the operating system and user data 
by leveraging the hypervisor. We saw how one such feature, Credential Guard (which is discussed at 
length in Chapter 7), runs in a new Isolated User Mode environment, which, while still unprivileged 
(ring 3), has a virtual trust level of 1 (VTL 1), granting it protection from the regular VTL 0 world in which 
both the NT kernel (ring 0) and applications (ring 3) live. Let’s investigate how the kernel sets up such 
processes for execution, and the various data structures such processes use.

Trustlet structure
To begin with, although Trustlets are regular Windows Portable Executables (PE) files, they contain 
some IUM-specific properties:

 ■ They can import only from a limited set of Windows system DLLs (C/C++ Runtime, KernelBase, 
Advapi, RPC Runtime, CNG Base Crypto, and NTDLL) due to the restricted number of system 
calls that are available to Trustlets. Note that mathematical DLLs that operate only on data 
structures (such as NTLM, ASN.1, etc.) are also usable, as they don’t perform any system calls.

 ■ They can import from an IUM-specific system DLL that is made available to them, called  
Iumbase, which provides the Base IUM System API, containing support for mailslots, storage 
boxes, cryptography, and more. This library ends up calling into Iumdll.dll, which is the VTL 1 
version of Ntdll.dll, and contains secure system calls (system calls that are implemented by the 
Secure Kernel, and not passed on to the Normal VTL 0 Kernel).

 ■ They contain a PE section named .tPolicy with an exported global variable named  
s_IumPolicyMetadata. This serves as metadata for the Secure Kernel to implement policy  
settings around permitting VTL 0 access to the Trustlet (such as allowing debugging, crash 
dump support, etc.).

 ■ They are signed with a certificate that contains the Isolated User Mode EKU (1.3.6.1.4.311.10.3.37). 
Figure 3-9 shows the certificate data for LsaIso.exe, showing its IUM EKU.

Additionally, Trustlets must be launched by using a specific process attribute when using  
CreateProcess—both to request their execution in IUM as well as to specify launch properties. 
We will describe both the policy metadata and the process attributes in the following sections.
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FIGURE 3-9 Trustlet EKU in the certificate.

Trustlet policy metadata
The policy metadata includes various options for configuring how “accessible” the Trustlet will be from 
VTL 0. It is described by a structure present at the s_IumPolicyMetadata export mentioned earlier, 
and contains a version number (currently set to 1) as well as the Trustlet ID, which is a unique number 
that identifies this specific Trustlet among the ones that are known to exist (for example, BioIso.exe is 
Trustlet ID 4). Finally, the metadata has an array of policy options. Currently, the options listed in Table 
3-4 are supported. It should be obvious that as these policies are part of the signed executable data, 
attempting to modify them would invalidate the IUM signature and prohibit execution.

TABLE 3-4 Trustlet policy options

Policy Meaning More Information

ETW Enables or Disables ETW

Debug Configures debugging Debug can be enabled at all times, only when SecureBoot 
is disabled, or using an on-demand challenge/response 
mechanism.

Crash Dump Enables or disables crash dump

Crash Dump Key Specifies Public Key for  
Encrypting Crash Dump

Dumps can be submitted to Microsoft Product Team, which 
has the private key for decryption

Crash Dump GUID Specifies identifier for crash  
dump key

This allows multiple keys to be used/identified by the  
product team.
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TABLE 3-4 Trustlet policy options  (continued)

Policy Meaning More Information

Parent Security  
Descriptor

SDDL format This is used to validate that the owner/parent process is 
expected.

Parent Security  
Descriptor Revision

SDDL format revision ID This is used to validate that the owner/parent process is 
expected.

SVN Security version This is a unique number that can be used by the Trustlet 
(along its identity) when encrypting AES256/GCM  
messages.

Device ID Secure device PCI identifier The Trustlet can only communicate with a Secure Device 
whose PCI ID matches.

Capability Enables powerful VTL 1  
capabilities

This enables access to the Create Secure Section API, 
DMA and user-mode MMIO access to Secure Devices, and 
Secure Storage APIs.

Scenario ID Specifies the scenario ID for  
this binary

Encoded as a GUID, this must be specified by Trustlets 
when creating secure image sections to ensure it is for a 
known scenario.

Trustlet attributes
Launching a Trustlet requires correct usage of the PS_CP_SECURE_PROCESS attribute, which is first used 
to authenticate that the caller truly wants to create a Trustlet, as well as to verify that the Trustlet the 
caller thinks its executing is actually the Trustlet being executed. This is done by embedding a Trustlet 
identifier in the attribute, which must match the Trustlet ID contained in the policy metadata. Then, one 
or more attributes can be specified, which are shown in Table 3-5.

TABLE 3-5 Trustlet attributes

Attribute Meaning More Information

Mailbox Key Used to retrieve mailbox data Mailboxes allow the Trustlet to share data with the VTL 0 
world as long as the Trustlet key is known.

Collaboration ID Sets the collaboration ID to use 
when using the Secure Storage 
IUM API

Secure Storage allows Trustlets to share data among 
each other, as long as they have the same collaboration 
ID. If no collaboration ID is present, the Trustlet instance 
ID will be used instead.

TK Session ID Identifies the session ID used  
during Crypto

System built-in Trustlets
At the time of this writing, Windows 10 contains five different Trustlets, which are identified by their 
identity numbers. They are described in Table 3-6. Note that Trustlet ID 0 represents the Secure Kernel 
itself.
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TABLE 3-6 Built-in Trustlets

Binary Name (Trustlet ID) Description Policy Options

LsaIso.exe (1) Credential and Key Guard Trustlet Allow ETW, Disable Debugging, Allow Encrypted 
Crash Dump

Vmsp.exe (2) Secure Virtual Machine Worker 
(vTPM Trustlet)

Allow ETW, Disable Debugging, Disable Crash 
Dump, Enable Secure Storage Capability, Verify 
Parent Security Descriptor is S-1-5-83-0 (NT 
VIRTUAL MACHINE\Virtual Machines) 

Unknown (3) vTPM Key Enrollment Trustlet Unknown

BioIso.exe (4) Secure Biometrics Trustlet Allow ETW, Disable Debugging, Allow Encrypted 
Crash Dump

FsIso.exe (5) Secure Frame Server Trustlet Disable ETW, Allow Debugging, Enable Create 
Secure Section Capability, Use Scenario ID { 
AE53FC6E-8D89-4488-9D2E-4D008731C5FD}

Trustlet identity
Trustlets have multiple forms of identity that they can use on the system:

 ■ Trustlet identifier or Trustlet ID This is a hard-coded integer in the Trustlet’s policy metada-
ta, which also must be used in the Trustlet process-creation attributes. It ensures that the system 
knows there are only a handful of Trustlets, and that the callers are launching the expected one. 

 ■ Trustlet instance This is a cryptographically secure 16-byte random number generated by 
the Secure Kernel. Without the use of a collaboration ID, the Trustlet instance is what’s used to 
guarantee that Secure Storage APIs will only allow this one instance of the Trustlet to get/put 
data into its storage blob.

 ■ Collaboration ID This is used when a Trustlet would like to allow other Trustlets with the  
same ID, or other instances of the same Trustlet, to share access to the same Secure Storage 
blob. When this ID is present, the instance ID of the Trustlet will be ignored when calling the  
Get or Put APIs.

 ■ Security version (SVN) This is used for Trustlets that require strong cryptographic proof of 
provenance of signed or encrypted data. It is used when encrypting AES256/GCM data by  
Credential and Key Guard, and is also used by the Cryptograph Report service.

 ■ Scenario ID This is used for Trustlets that create named (identity-based) secure kernel ob-
jects, such as secure sections. This GUID validates that the Trustlet is creating such objects as 
part of a predetermined scenario, by tagging them in the namespace with this GUID. As such, 
other Trustlets wishing to open the same named objects would thus have to have the same sce-
nario ID. Note that more than one scenario ID can actually be present, but no Trustlets currently 
use more than one.
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Isolated user-mode services
The benefits of running as a Trustlet not only include protection from attacks from the normal (VTL 0) 
world, but also access to privileged and protected secure system calls that are only offered by the 
Secure Kernel to Trustlets. These include the following services:

 ■ Secure Devices (IumCreateSecureDevice, IumDmaMapMemory, IumGetDmaEnabler, IumMap- 

SecureIo, IumProtectSecureIo, IumQuerySecureDeviceInformation, IopUnmapSecureIo, 

IumUpdateSecureDeviceState) These provide access to secure ACPI and/or PCI devices, which 
cannot be accessed from VTL 0 and are exclusively owned by the Secure Kernel (and its ancillary 
Secure HAL and Secure PCI services). Trustlets with the relevant capabilities (see the “Trustlet 
policy metadata” section earlier in this chapter) can map the registers of such a device in VTL 1 
IUM, as well as potentially perform Direct Memory Access (DMA) transfers. Additionally, Trustlets 
can serve as user-mode device drivers for such hardware by using the Secure Device Framework 
(SDF) located in SDFHost.dll. This functionality is leveraged for Secure Biometrics for Windows 
Hello, such as Secure USB Smartcard (over PCI) or Webcam/Fingerprint Sensors (over ACPI).

 ■ Secure Sections (IumCreateSecureSection, IumFlushSecureSectionBuffers, IumGetExposed- 

SecureSection, IumOpenSecureSection) These provide the ability to both share physical 
pages with a VTL 0 driver (which would use VslCreateSecureSection) through exposed 
secure sections, as well as share data solely within VTL 1 as named secured sections (leveraging 
the identity-based mechanism described earlier in the “Trustlet identity” section) with other 
Trustlets or other instances of the same Trustlet. Trustlets require the Secure Section capability 
described in the “Trustlet policy metadata” section to use these features.

 ■ Mailboxes (IumPostMailbox) This enables a Trustlet to share up to eight slots of about up to 4 
KB of data with a component in the normal (VTL 0) kernel, which can call VslRetrieveMailbox 
passing in the slot identifier and secret mailbox key. For example, Vid.sys in VTL 0 uses this to 
retrieve various secrets used by the vTPM feature from the Vmsp.exe Trustlet.

 ■ Identity Keys (IumGetIdk) This allows a Trustlet to obtain either a unique identifying decryp-
tion key or signing key. This key material is unique to the machine and can be obtained only 
from a Trustlet. It is an essential part of the Credential Guard feature to uniquely authenticate 
the machine and that credentials are coming from IUM.

 ■ Cryptographic Services (IumCrypto) This allows a Trustlet to encrypt and decrypt data with 
a local and/or per-boot session key generated by the Secure Kernel that is only available to 
IUM, to obtain a TPM binding handle, to get the FIPS mode of the Secure Kernel, and to obtain 
a random number generator (RNG) seed only generated by the Secure Kernel for IUM. It also 
enables a Trustlet to generate an IDK-signed, SHA-2 hashed, and timestamped report with the 
identity and SVN of the Trustlet, a dump of its policy metadata, whether or not it was ever at-
tached to a debugger, and any other Trustlet-controlled data requested. This can be used as a 
sort of TPM-like measurement of the Trustlet to prove that it was not tampered with.
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 ■ Secure Storage (IumSecureStorageGet, IumSecureStoragePut) This allows Trustlets that 
have the Secure Storage capability (described earlier in the “Trustlet policy metadata” section) 
to store arbitrarily sized storage blobs and to later retrieve them, either based on their unique 
Trustlet instance or by sharing the same collaboration ID as another Trustlet.

Trustlet-accessible system calls
As the Secure Kernel attempts to minimize its attack surface and exposure, it only provides a subset 
(less than 50) of all of the hundreds of system calls that a normal (VTL 0) application can use. These  
system calls are the strict minimum necessary for compatibility with the system DLLs that Trustlets can 
use (refer to the section “Trustlet structure” to see these), as well as the specific services required to 
support the RPC runtime (Rpcrt4.dll) and ETW tracing.

 ■ Worker Factory and Thread APIs These support the Thread Pool API (used by RPC) and TLS 
Slots used by the Loader.

 ■ Process Information API This supports TLS Slots and Thread Stack Allocation.

 ■ Event, Semaphore, Wait, and Completion APIs These support Thread Pool and  
Synchronization.

 ■ Advanced Local Procedure Call (ALPC) APIs These support Local RPC over the ncalrpc 
transport.

 ■ System Information API This supports reading Secure Boot information, basic and NUMA 
system information for Kernel32.dll and Thread Pool scaling, performance, and subsets of time 
information.

 ■ Token API This provides minimal support for RPC impersonation.

 ■ Virtual Memory Allocation APIs These support allocations by the User-Mode Heap  
Manager.

 ■ Section APIs These support the Loader (for DLL Images) as well as the Secure Section  
functionality (once created/exposed through secure system calls shown earlier).

 ■ Trace Control API This supports ETW.

 ■ Exception and Continue API This supports Structured Exception Handling (SEH).

It should be evident from this list that support for operations such as Device I/O, whether on files or 
actual physical devices, is not possible (there is no CreateFile API, to begin with), as is also the case 
for Registry I/O. Nor is the creation of other processes, or any sort of graphics API usage (there is no 
Win32k.sys driver in VTL 1). As such, Trustlets are meant to be isolated workhorse back-ends (in VTL 1) 
of their complex front-ends (in VTL 0), having only ALPC as a communication mechanism, or exposed 
secure sections (whose handle would have to had been communicated to them through ALPC). In 
Chapter 7 (Security), we’ll look in more detail into the implementation of a specific Trustlet—LsaIso.exe, 
which provides Credential and Key Guard.
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Experiment: Identifying secure processes
Secure processes, other than being known by their name, can be identified in the kernel debug-
ger in two ways. First, each secure process has a secure PID, which represents its handle in the 
Secure Kernel’s handle table. This is used by the normal (VTL 0) kernel when creating threads in 
the process or requesting its termination. Secondly, the threads themselves have a thread cookie 
associated with them, which represents their index in the Secure Kernel’s thread table.

You can try the following in a kernel debugger:

lkd> !for_each_process .if @@(((nt!_EPROCESS*)${@#Process})->Pcb.SecurePid) { 
.printf "Trustlet: %ma (%p)\n", @@(((nt!_EPROCESS*)${@#Process})->ImageFileName), 
@#Process } 
Trustlet: Secure System (ffff9b09d8c79080) 
Trustlet: LsaIso.exe (ffff9b09e2ba9640) 
Trustlet: BioIso.exe (ffff9b09e61c4640) 
lkd> dt nt!_EPROCESS ffff9b09d8c79080 Pcb.SecurePid 
   +0x000 Pcb           :  
      +0x2d0 SecurePid     : 0x00000001'40000004 
lkd> dt nt!_EPROCESS ffff9b09e2ba9640 Pcb.SecurePid 
   +0x000 Pcb           :  
      +0x2d0 SecurePid     : 0x00000001'40000030 
lkd> dt nt!_EPROCESS ffff9b09e61c4640 Pcb.SecurePid 
   +0x000 Pcb           :  
      +0x2d0 SecurePid     : 0x00000001'40000080 
lkd> !process ffff9b09e2ba9640 4 
PROCESS ffff9b09e2ba9640 
    SessionId: 0  Cid: 0388    Peb: 6cdc62b000  ParentCid: 0328 
    DirBase: 2f254000  ObjectTable: ffffc607b59b1040  HandleCount:  44. 
    Image: LsaIso.exe 
        THREAD ffff9b09e2ba2080  Cid 0388.038c  Teb: 0000006cdc62c000 Win32Thread: 
0000000000000000 WAIT 
lkd> dt nt!_ETHREAD ffff9b09e2ba2080 Tcb.SecureThreadCookie 
   +0x000 Tcb                    :  
      +0x31c SecureThreadCookie     : 9

Flow of CreateProcess

We’ve shown the various data structures involved in process-state manipulation and management and 
how various tools and debugger commands can inspect this information. In this section, we’ll see how 
and when those data structures are created and filled out, as well as the overall creation and termina-
tion behaviors behind processes. As we’ve seen, all documented process-creation functions eventually 
end up calling CreateProcessInternalW, so this is where we start.

Creating a Windows process consists of several stages carried out in three parts of the operating system: 
the Windows client-side library Kernel32.dll (the real work starting with CreateProcessInternalW), the 
Windows executive, and the Windows subsystem process (Csrss). Because of the multiple-environment 
subsystem architecture of Windows, creating an executive process object (which other subsystems can 
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use) is separated from the work involved in creating a Windows subsystem process. So, although the 
following description of the flow of the Windows CreateProcess function is complicated, keep in mind 
that part of the work is specific to the semantics added by the Windows subsystem as opposed to the 
core work needed to create an executive process object.

The following list summarizes the main stages of creating a process with the Windows CreateProcess* 
functions. The operations performed in each stage are described in detail in the subsequent sections. 

Note Many steps of CreateProcess are related to the setup of the process virtual address 
space and therefore refer to many memory-management terms and structures that are de-
fined in Chapter 5.

1. Validate parameters; convert Windows subsystem flags and options to their native counter-
parts; parse, validate, and convert the attribute list to its native counterpart.

2. Open the image file (.exe) to be executed inside the process.

3. Create the Windows executive process object.

4. Create the initial thread (stack, context, and Windows executive thread object).

5. Perform post-creation, Windows subsystem–specific process initialization.

6. Start execution of the initial thread (unless the CREATE_SUSPENDED flag was specified).

7. In the context of the new process and thread, complete the initialization of the address space 
(for example, load required DLLs) and begin execution of the program’s entry point.

Figure 3-10 shows an overview of the stages Windows follows to create a process.

FIGURE 3-10 The main stages of process creation.
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Stage 1: Converting and validating parameters and flags
Before opening the executable image to run, CreateProcessInternalW performs the following steps:

1. The priority class for the new process is specified as independent bits in the CreationFlags 
parameter to the CreateProcess* functions. Thus, you can specify more than one priority  
class for a single CreateProcess* call. Windows resolves the question of which priority class  
to assign to the process by choosing the lowest-priority class set.

There are six process priority classes defined, each value mapped to a number: 

• Idle or Low, as Task Manager displays it (4)

• Below Normal (6)

• Normal (8)

• Above Normal (10)

• High (13)

• Real-time (24)

The priority class is used as the base priority for threads created in that process. This value does 
not directly affect the process itself—only the threads inside it. A description of process priority 
class and its effects on thread scheduling appears in Chapter 4.

2. If no priority class is specified for the new process, the priority class defaults to Normal. If a 
Real-time priority class is specified for the new process and the process’s caller doesn’t have the 
Increase Scheduling Priority privilege (SE_INC_BASE_PRIORITY_NAME), the High priority class is 
used instead. In other words, process creation doesn’t fail just because the caller has insufficient 
privileges to create the process in the Real-time priority class; the new process just won’t have 
as high a priority as Real-time.

3. If the creation flags specify that the process will be debugged, Kernel32 initiates a connection 
to the native debugging code in Ntdll.dll by calling DbgUiConnectToDbg and gets a handle to 
the debug object from the current thread’s environment block (TEB).

4. Kernel32.dll sets the default hard error mode if the creation flags specified one.

5. The user-specified attribute list is converted from Windows subsystem format to native format 
and internal attributes are added to it. The possible attributes that can be added to the attribute 
list are listed in Table 3-7, including their documented Windows API counterparts, if any.

Note The attribute list passed on CreateProcess* calls permits passing back to the caller 
information beyond a simple status code, such as the TEB address of the initial thread or  
information on the image section. This is necessary for protected processes because the 
parent cannot query this information after the child is created.
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TABLE 3-7 Process attributes

Native Attribute Equivalent Win32 Attribute Type Description

PS_CP_PARENT_PROCESS PROC_THREAD_ATTRIBUTE_
PARENT_PROCESS. Also used 
when elevating.

Input Handle to the parent process.

PS_CP_DEBUG_OBJECT N/A. Used when using DEBUG_
PROCESS as a flag.

Input Debug object if process is being 
started debugged.

PS_CP_PRIMARY_TOKEN N/A. Used when using 
CreateProcessAsUser/
WithTokenW.

Input Process token if 
CreateProcessAsUser was used.

PS_CP_CLIENT_ID N/A. Returned by Win32 API 
as a parameter (PROCESS_
INFORMATION).

Output Returns the TID and PID of the initial 
thread and the process.

PS_CP_TEB_ADDRESS N/A. Internally used and not 
exposed.

Output Returns the address of the TEB for 
the initial thread.

PS_CP_FILENAME N/A. Used as a parameter in 
CreateProcess APIs.

Input The name of the process that should 
be created.

PS_CP_IMAGE_INFO N/A. Internally used and not 
exposed.

Output Returns SECTION_IMAGE_
INFORMATION, which contains in-
formation on the version, flags, and 
subsystem of the executable, as well 
as the stack size and entry point.

PS_CP_MEM_RESERVE N/A. Internally used by SMSS 
and CSRSS.

Input An array of virtual memory reserva-
tions that should be made during 
initial process address space cre-
ation, allowing guaranteed availabil-
ity because no other allocations have 
taken place yet.

PS_CP_PRIORITY_CLASS N/A. Passed in as a parameter to 
the CreateProcess API.

Input Priority class that the process should 
be given.

PS_CP_ERROR_MODE N/A. Passed in through the 
CREATE_DEFAULT_ERROR_MODE 
flag.

Input Hard error-processing mode for the 
process.

PS_CP_STD_HANDLE_INFO None. Used internally. Input Specifies whether standard handles 
should be duplicated or new handles 
should be created.

PS_CP_HANDLE_LIST PROC_THREAD_ATTRIBUTE_
HANDLE_LIST

Input A list of handles belonging to the 
parent process that should be inher-
ited by the new process.

PS_CP_GROUP_AFFINITY PROC_THREAD_ATTRIBUTE_
GROUP_AFFINITY

Input Processor group(s) the thread should 
be allowed to run on.

PS_CP_PREFERRED_NODE PROC_THREAD_ATTRIBUTES_
PRFERRED_NODE

Input The preferred (ideal) NUMA node 
that should be associated with the 
process. It affects the node on which 
the initial process heap and thread 
stack will be created (see Chapter 5).

PS_CP_IDEAL_PROCESSOR PROC_THREAD_ATTTRIBUTE_
IDEAL_PROCESSOR

Input The preferred (ideal) processor that 
the thread should be scheduled on.

PS_CP_UMS_THREAD PROC_THREAD_ATTRIBUTE_
UMS_THREAD

Input Contains the UMS attributes, com-
pletion list, and context.
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PS_CP_MITIGATION_
OPTIONS

PROC_THREAD_MITIGATION_
POLICY

Input Contains information on which miti-
gations (SEHOP, ATL Emulation, NX) 
should be enabled/disabled for the 
process.

PS_CP_PROTECTION_LEVEL PROC_THREAD_ATTRIBUTE_
PROTECTION_LEVEL

Input Must point to one of the allowed 
process protection values shown 
in Table 3-1 or the value PROTECT_
LEVEL_SAME to indicate the same 
protection level as the parent.

PS_CP_SECURE_PROCESS None. Used internally. Input Indicates the process should run as 
an Isolated User Mode (IUM) Trustlet. 
See Chapter 8 in Part 2 for more 
details.

PS_CP_JOB_LIST None. Used internally. Input Assigns the process to a list of jobs.

PS_CP_CHILD_PROCESS_
POLICY

PROC_THREAD_ATTRIBUTE_
CHILD_PROCESS_POLICY

Input Specifies whether the new process 
is allowed to create child processes, 
either directly or indirectly (such as 
by using WMI).

PS_CP_ALL_APPLICATION_
PACKAGES_POLICY

PROC_THREAD_ATTRIBUTE_
ALL_APPLICATION_PACKAGES_
POLICY

Input Specifies if the AppContainer 
token should be excluded from 
ACL checks that include the ALL 
APPLICATION PACKAGES group. 
The ALL RESTRICTED APPLICATION 
PACKAGES group will be used in-
stead.

PS_CP_WIN32K_FILTER PROC_THREAD_ATTRIBUTE_
WIN32K_FILTER

Input Indicates if the process will have 
many of its GDI/USER system calls to 
Win32k.sys filtered out (blocked), or 
if they will be permitted but audited. 
Used by the Microsoft Edge browser 
to reduce attack surface.

PS_CP_SAFE_OPEN_PROMPT_
ORIGIN_CLAIM

None. Used internally. Input Used by the Mark of the Web func-
tionality to indicate the file came 
from an untrusted source.

PS_CP_BNO_ISOLATION PROC_THREAD_ATTRIBUTE_
BNO_ISOLATION

Input Causes the primary token of the pro-
cess to be associated with an isolated 
BaseNamedObjects directory. (See 
Chapter 8 in Part 2 for more informa-
tion on named objects.)

PS_CP_DESKTOP_APP_
POLICY

PROC_THREAD_ATTRIBUTE_
DESKTOP_APP_POLICY

Input Indicates if the modern application 
will be allowed to launch legacy 
desktop applications, and if so, in 
what way.

None—used internally PROC_THREAD_ATTRIBUTE_
SECURITY_CAPABILITIES

Input Specifies a pointer to a SECURITY_
CAPABILITIES structure, which is 
used to create the AppContainer 
token for the process before calling 
NtCreateUserProcess.

6. If the process is part of a job object, but the creation flags requested a separate virtual DOS 
machine (VDM), the flag is ignored.
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7. The security attributes for the process and initial thread that were supplied to the CreateProcess 
function are converted to their internal representation (OBJECT_ATTRIBUTES structures, docu-
mented in the WDK).

8. CreateProcessInternalW checks whether the process should be created as modern. The 
process is to be created modern if specified so by an attribute (PROC_THREAD_ATTRIBUTE_ 
PACKAGE_FULL_NAME) with the full package name or the creator is itself modern (and a parent 
process has not been explicitly specified by the PROC_THREAD_ATTRIBUTE_PARENT_PROCESS 
attribute). If so, a call is made to the internal BasepAppXExtension to gather more contextual 
information on the modern app parameters described by a structure called APPX_PROCESS_
CONTEXT. This structure holds information such as the package name (internally referred to as 
package moniker), the capabilities associated with the app, the current directory for the process, 
and whether the app should have full trust. The option of creating full trust modern apps is not 
publicly exposed, and is reserved for apps that have the modern look and feel but perform system- 
level operations. A canonical example is the Settings app in Windows 10 (SystemSettings.exe).

9. If the process is to be created as modern, the security capabilities (if provided by PROC_THREAD_
ATTRIBUTE_SECURITY_CAPABILITIES) are recorded for the initial token creation by calling the 
internal BasepCreateLowBox function. The term LowBox refers to the sandbox (AppContainer) 
under which the process is to be executed. Note that although creating modern processes by 
directly calling CreateProcess is not supported (instead, the COM interfaces described earlier 
should be used), the Windows SDK and MSDN do document the ability to create AppContainer 
legacy desktop applications by passing this attribute.

10. If a modern process is to be created, then a flag is set to indicate to the kernel to skip embedded 
manifest detection. Modern processes should never have an embedded manifest as it’s simply 
not needed. (A modern app has a manifest of its own, unrelated to the embedded manifest 
referenced here.)

11. If the debug flag has been specified (DEBUG_PROCESS), then the Debugger value under the Image 
File Execution Options registry key (discussed in the next section) for the executable is marked to 
be skipped. Otherwise, a debugger will never be able to create its debuggee process because the 
creation will enter an infinite loop (trying to create the debugger process over and over again).

12. All windows are associated with desktops, the graphical representation of a workspace. If no 
desktop is specified in the STARTUPINFO structure, the process is associated with the caller’s 
current desktop.

Note The Windows 10 Virtual Desktop feature does not use multiple desktop objects (in 
the kernel object sense). There is still one desktop, but windows are shown and hidden as 
required. This is in contrast to the Sysinternals desktops.exe tool, which really creates up to 
four desktop objects. The difference can be felt when trying to move a window from one 
desktop to another. In the case of desktops.exe, it can’t be done, as such an operation is not 
supported in Windows. On the other hand, Windows 10’s Virtual Desktop allows it, since 
there is no real “moving” going on.
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13. The application and command-line arguments passed to CreateProcessInternalW are  
analyzed. The executable path name is converted to the internal NT name (for example,  
c:\temp\a.exe turns into something like \device\harddiskvolume1\temp\a.exe) because some 
functions require it in that format.

14. Most of the gathered information is converted to a single large structure of type RTL_USER_
PROCESS_PARAMETERS.

Once these steps are completed, CreateProcessInternalW performs the initial call to NtCreate-
UserProcess to attempt creation of the process. Because Kernel32.dll has no idea at this point whether 
the application image name is a real Windows application or a batch file (.bat or .cmd), 16-bit, or DOS 
application, the call might fail, at which point CreateProcessInternalW looks at the error reason and 
attempts to correct the situation.

Stage 2: Opening the image to be executed
At this point, the creating thread has switched into kernel mode and continues the work within the 
NtCreateUserProcess system call implementation.

1. NtCreateUserProcess first validates arguments and builds an internal structure to hold all 
creation information. The reason for validating arguments again is to make sure the call to the 
executive did not originate from a hack that managed to simulate the way Ntdll.dll makes the 
transition to the kernel with bogus or malicious arguments.

2. As illustrated in Figure 3-11, the next stage in NtCreateUserProcess is to find the appropriate 
Windows image that will run the executable file specified by the caller and to create a section 
object to later map it into the address space of the new process. If the call fails for any reason, it 
returns to CreateProcessInternalW with a failure state (look ahead to Table 3-8) that causes 
CreateProcessInternalW to attempt execution again.

FIGURE 3-11 Choosing a Windows image to activate.
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3. If the process needs to be created protected, it also checks the signing policy. 

4. If the process to be created is modern, a licensing check is done to make sure it’s licensed and 
allowed to run. If the app is inbox (preinstalled with Windows), it’s allowed to run regardless of 
license. If sideloading apps is allowed (configured through the Settings app), then any signed 
app can be executed, not just from the store.

5. If the process is a Trustlet, the section object must be created with a special flag that allows the 
secure kernel to use it.

6. If the executable file specified is a Windows EXE, NtCreateUserProcess tries to open the file 
and create a section object for it. The object isn’t mapped into memory yet, but it is opened. 
Just because a section object has been successfully created doesn’t mean the file is a valid Win-
dows image, however. It could be a DLL or a POSIX executable. If the file is a POSIX executable, 
the call fails, because POSIX is no longer supported. If the file is a DLL, CreateProcessInternalW 
fails as well.

7. Now that NtCreateUserProcess has found a valid Windows executable image, as part of the 
process creation code described in the next section, it looks in the registry under HKLM\ 
SOFTWARE\Microsoft\Windows NT\CurrentVersion\Image File Execution Options to see 
whether a subkey with the file name and extension of the executable image (but without the 
directory and path information—for example, Notepad.exe) exists there. If it does, PspAllocate-
Process looks for a value named Debugger for that key. If this value is present, the image to be 
run becomes the string in that value and CreateProcessInternalW restarts at stage 1.

Tip You can take advantage of this process-creation behavior and debug the startup code 
of Windows services processes before they start rather than attach the debugger after start-
ing a service, which doesn’t allow you to debug the startup code.

8. On the other hand, if the image is not a Windows EXE (for example, if it’s an MS-DOS or a Win16 
application), CreateProcessInternalW goes through a series of steps to find a Windows sup-
port image to run it. This process is necessary because non-Windows applications aren’t run 
directly. Windows instead uses one of a few special support images that, in turn, are responsible 
for actually running the non-Windows program. For example, if you attempt to run an MS-DOS 
or a Win16 executable (32-bit Windows only), the image to be run becomes the Windows ex-
ecutable Ntvdm.exe. In short, you can’t directly create a process that is not a Windows process. 
If Windows can’t find a way to resolve the activated image as a Windows process (as shown in 
Table 3-8), CreateProcessInternalW fails.
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TABLE 3-8 Decision tree for stage 1 of CreateProcess

If the Image… Create State Code This Image 
Will Run… …and This Will Happen

Is an MS-DOS  
application with an 
.exe, .com, or .pif 
extension

PsCreateFailOnSectionCreate Ntvdm.exe CreateProcessInternalW 
restarts stage 1.

Is a Win16 application PsCreateFailOnSectionCreate Ntvdm.exe CreateProcessInternalW 
restarts stage 1.

Is a Win64 application 
on a 32-bit system  
(or a PPC, MIPS, or 
Alpha binary)

PsCreateFailMachineMismatch N/A CreateProcessInternalW 
will fail.

Has a Debugger value 
with another image 
name

PsCreateFailExeName Name speci-
fied in the 
Debugger 
value

CreateProcessInternalW 
restarts stage 1.

Is an invalid or dam-
aged Windows EXE

PsCreateFailExeFormat N/A CreateProcessInternalW 
will fail.

Cannot be opened PsCreateFailOnFileOpen N/A CreateProcessInternalW 
will fail.

Is a command pro-
cedure (application 
with a .bat or .cmd 
extension)

PsCreateFailOnSectionCreate Cmd.exe CreateProcessInternalW 
restarts Stage 1.

Specifically, the decision tree that CreateProcessInternalW goes through to run an image is 
as follows:

• If it’s x86 32-bit Windows, and the image is an MS-DOS application with an .exe, .com, or .pif 
extension, a message is sent to the Windows subsystem to check whether an MS-DOS sup-
port process (Ntvdm.exe, specified in the HKLM\SYSTEM\CurrentControlSet\Control\WOW\
cmdline registry value) has already been created for this session. If a support process has 
been created, it is used to run the MS-DOS application. (The Windows subsystem sends the 
message to the virtual DOS machine [VDM] process to run the new image.) Then Create-
ProcessInternalW returns. If a support process hasn’t been created, the image to be run 
changes to Ntvdm.exe and CreateProcessInternalW restarts at stage 1.

• If the file to run has a .bat or .cmd extension, the image to be run becomes Cmd.exe, the 
Windows command prompt, and CreateProcessInternalW restarts at stage 1. (The name 
of the batch file is passed as the second parameter to Cmd.exe after the /c switch.)

• For an x86 Windows system, if the image is a Win16 (Windows 3.1) executable, CreateProcess-
InternalW must decide whether a new VDM process must be created to run it or whether 
it should use the default session-wide shared VDM process (which might not yet have been 
created). The CreateProcess flags CREATE_SEPARATE_WOW_VDM and CREATE_SHARED_WOW_
VDM control this decision. If these flags aren’t specified, the HKLM\SYSTEM\CurrentControlSet\ 
Control\WOW\DefaultSeparateVDM registry value dictates the default behavior. If the  
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application is to be run in a separate VDM, the image to be run changes to Ntvdm.exe fol-
lowed by some configuration parameters and the 16-bit process name, and CreateProcess-
InternalW restarts at stage 1. Otherwise, the Windows subsystem sends a message to see 
whether the shared VDM process exists and can be used. (If the VDM process is running on a 
different desktop or isn’t running under the same security as the caller, it can’t be used, and 
a new VDM process must be created.) If a shared VDM process can be used, the Windows 
subsystem sends a message to it to run the new image and CreateProcessInternalW returns. 
If the VDM process hasn’t yet been created (or if it exists but can’t be used), the image to be 
run changes to the VDM support image and CreateProcessInternalW restarts at stage 1.

Stage 3: Creating the Windows executive process object
At this point, NtCreateUserProcess has opened a valid Windows executable file and created a sec-
tion object to map it into the new process address space. Next, it creates a Windows executive process 
object to run the image by calling the internal system function PspAllocateProcess. Creating the 
executive process object (which is done by the creating thread) involves the following sub-stages:

3A. Setting up the EPROCESS object

3B. Creating the initial process address space

3C. Initializing the kernel process structure (KPROCESS)

3D. Concluding the setup of the process address space

3E. Setting up the PEB

3F. Completing the setup of the executive process object

Note The only time there won’t be a parent process is during system initialization (when 
the System process is created). After that point, a parent process is always required to pro-
vide a security context for the new process.

Stage 3A: Setting up the EPROCESS object
This sub-stage involves the following steps:

1. Inherit the affinity of the parent process unless it was explicitly set during process creation 
(through the attribute list).

2. Choose the ideal NUMA node that was specified in the attribute list, if any.

3. Inherit the I/O and page priority from the parent process. If there is no parent process, the 
default page priority (5) and I/O priority (Normal) are used.

4. Set the new process exit status to STATUS_PENDING.



 CHAPTER 3 Processes and jobs 139

5. Choose the hard error processing mode selected by the attribute list. Otherwise, inherit the 
parent’s processing mode if none was given. If no parent exists, use the default processing 
mode, which is to display all errors.

6. Store the parent process’s ID in the InheritedFromUniqueProcessId field in the new process 
object.

7. Query the Image File Execution Options (IFEO) key to check if the process should be mapped 
with large pages (UseLargePages value in the IFEO key), unless the process is to run under 
Wow64, in which case large pages will not be used. Also, query the key to check if NTDLL has 
been listed as a DLL that should be mapped with large pages within this process.

8. Query the performance options key in IFEO (PerfOptions, if it exists), which may consist of any 
number of the following possible values: IoPriority, PagePriority, CpuPriorityClass, and 
WorkingSetLimitInKB.

9. If the process would run under Wow64, then allocate the Wow64 auxiliary structure  
(EWOW64PROCESS) and set it in the WoW64Process member of the EPROCESS structure.

10. If the process is to be created inside an AppContainer (in most cases a modern app), validate 
that the token was created with a LowBox. (See Chapter 7 for more on AppContainers.)

11. Attempt to acquire all the privileges required for creating the process. Choosing the Real-time 
process priority class, assigning a token to the new process, mapping the process with large pages, 
and creating the process within a new session are all operations that require the appropriate 
privilege.

12. Create the process’s primary access token (a duplicate of its parent’s primary token). New pro-
cesses inherit the security profile of their parents. If the CreateProcessAsUser function is being 
used to specify a different access token for the new process, the token is then changed appropri-
ately. This change might happen only if the parent token’s integrity level dominates the integrity 
level of the access token, and if the access token is a true child or sibling of the parent token. Note 
that if the parent has the SeAssignPrimaryToken privilege, this will bypass these checks.

13. The session ID of the new process token is now checked to determine if this is a cross-session 
create. If so, the parent process temporarily attaches to the target session to correctly process 
quotas and address space creation.

14. Set the new process’s quota block to the address of its parent process’s quota block, and incre-
ment the reference count for the parent’s quota block. If the process was created through 
CreateProcessAsUser, this step won’t occur. Instead, the default quota is created, or a quota 
matching the user’s profile is selected.

15. The process minimum and maximum working set sizes are set to the values of PspMinimum-
WorkingSet and PspMaximumWorkingSet, respectively. These values can be overridden if per-
formance options were specified in the PerfOptions key part of Image File Execution Options, 
in which case the maximum working set is taken from there. Note that the default working set 
limits are soft limits and are essentially hints, while the PerfOptions working set maximum is a 
hard limit. (That is, the working set will not be allowed to grow past that number.)
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16. Initialize the address space of the process. (See stage 3B.) Then detach from the target session if 
it was different.

17. The group affinity for the process is now chosen if group-affinity inheritance was not used. 
The default group affinity will either inherit from the parent if NUMA node propagation was 
set earlier (the group owning the NUMA node will be used) or be assigned round-robin. If the 
system is in forced group-awareness mode and group 0 was chosen by the selection algorithm, 
group 1 is chosen instead, as long as it exists.

18. Initialize the KPROCESS part of the process object. (See Stage 3C.)

19. The token for the process is now set.

20. The process’s priority class is set to normal unless the parent was using idle or the Below Normal 
process priority class, in which case the parent’s priority is inherited.

21. The process handle table is initialized. If the inherit handles flag is set for the parent process, 
any inheritable handles are copied from the parent’s object handle table into the new process. 
(For more information about object handle tables, see Chapter 8 in Part 2.) A process attribute 
can also be used to specify only a subset of handles, which is useful when you are using  
CreateProcessAsUser to restrict which objects should be inherited by the child process.

22. If performance options were specified through the PerfOptions key, these are now applied. 
The PerfOptions key includes overrides for the working set limit, I/O priority, page priority, 
and CPU priority class of the process.

23. The final process priority class and the default quantum for its threads are computed and set.

24. The various mitigation options provided in the IFEO key (as a single 64-bit value named  
Mitigation) are read and set. If the process is under an AppContainer, add the TreatAs- 
AppContainer mitigation flag.

25. All other mitigation flags are now applied.

Stage 3B: Creating the initial process address space
The initial process address space consists of the following pages:

 ■ Page directory (it’s possible there’ll be more than one for systems with page tables more than 
two levels, such as x86 systems in PAE mode or 64-bit systems)

 ■ Hyperspace page

 ■ VAD bitmap page

 ■ Working set list
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To create these pages, the following steps are taken:

1. Page table entries are created in the appropriate page tables to map the initial pages.

2. The number of pages is deducted from the kernel variable MmTotalCommittedPages and 
added to MmProcessCommit.

3. The system-wide default process minimum working set size (PsMinimumWorkingSet) is  
deducted from MmResidentAvailablePages.

4. The page table pages for the global system space (that is, other than the process-specific  
pages we just described, and except session-specific memory) are created.

Stage 3C: Creating the kernel process structure
The next stage of PspAllocateProcess is the initialization of the KPROCESS structure (the Pcb member 
of the EPROCESS). This work is performed by KeInitializeProcess, which does the following:

1. The doubly linked list, which connects all threads part of the process (initially empty), is initialized.

2. The initial value (or reset value) of the process default quantum (which is described in more de-
tail in the “Thread scheduling” section in Chapter 4) is hard-coded to 6 until it is initialized later 
(by PspComputeQuantumAndPriority).

Note The default initial quantum differs between Windows client and server systems. For 
more information on thread quantums, turn to the discussion in the section “Thread sched-
uling” in Chapter 4.

3. The process’s base priority is set based on what was computed in stage 3A.

4. The default processor affinity for the threads in the process is set, as is the group affinity. The 
group affinity was calculated in stage 3A or inherited from the parent.

5. The process-swapping state is set to resident.

6. The thread seed is based on the ideal processor that the kernel has chosen for this process 
(which is based on the previously created process’s ideal processor, effectively randomizing this 
in a round-robin manner). Creating a new process will update the seed in KeNodeBlock (the 
initial NUMA node block) so that the next new process will get a different ideal processor seed.

7. If the process is a secure process (Windows 10 and Server 2016), then its secure ID is created 
now by calling HvlCreateSecureProcess.

Stage 3D: Concluding the setup of the process address space
Setting up the address space for a new process is somewhat complicated, so let’s look at what’s involved 
one step at a time. To get the most out of this section, you should have some familiarity with the inter-
nals of the Windows memory manager, described in Chapter 5.
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The routine that does most of the work in setting the address space is MmInitializeProcess- 
AddressSpace. It also supports cloning an address space from another process. This capability was 
useful at the time to implement the POSIX fork system call. It may also be leveraged in the future to 
support other Unix-style fork (this is how fork is implemented in Windows Subsystem for Linux in 
Redstone 1). The following steps do not describe the address space cloning functionality, but rather 
focus on normal process address space initialization.

1. The virtual memory manager sets the value of the process’s last trim time to the current time. 
The working set manager (which runs in the context of the balance set manager system thread) 
uses this value to determine when to initiate working set trimming.

2. The memory manager initializes the process’s working set list. Page faults can now be taken.

3. The section (created when the image file was opened) is now mapped into the new process’s  
address space, and the process section base address is set to the base address of the image.

4. The Process Environment Block (PEB) is created and initialized (see the section stage 3E).

5. Ntdll.dll is mapped into the process. If this is a Wow64 process, the 32-bit Ntdll.dll is also 
mapped.

6. A new session, if requested, is now created for the process. This special step is mostly imple-
mented for the benefit of the Session Manager (Smss) when initializing a new session.

7. The standard handles are duplicated and the new values are written in the process parameters 
structure.

8. Any memory reservations listed in the attribute list are now processed. Additionally, two flags 
allow the bulk reservation of the first 1 or 16 MB of the address space. These flags are used 
internally for mapping, for example, real-mode vectors and ROM code (which must be in the 
low ranges of virtual address space, where normally the heap or other process structures could 
be located).

9. The user process parameters are written into the process, copied, and fixed up (that is, they are 
converted from absolute form to a relative form so that a single memory block is needed).

10. The affinity information is written into the PEB.

11. The MinWin API redirection set is mapped into the process and its pointer is stored in the PEB.

12. The process unique ID is now determined and stored. The kernel does not distinguish between 
unique process and thread IDs and handles. The process and thread IDs (handles) are stored in 
a global handle table (PspCidTable) that is not associated with any process.

13. If the process is secure (that is, it runs in IUM), the secure process is initialized and associated 
with the kernel process object. 
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Stage 3E: Setting up the PEB
NtCreateUserProcess calls MmCreatePeb, which first maps the system-wide National Language Sup-
port (NLS) tables into the process’s address space. It next calls MiCreatePebOrTeb to allocate a page 
for the PEB and then initializes a number of fields, most of them based on internal variables that were 
configured through the registry, such as MmHeap* values, MmCriticalSectionTimeout, and MmMinimum- 
StackCommitInBytes. Some of these fields can be overridden by settings in the linked executable 
image, such as the Windows version in the PE header or the affinity mask in the load configuration 
directory of the PE header. 

If the image header characteristics IMAGE_FILE_UP_SYSTEM_ONLY flag is set (indicating that the im-
age can run only on a uniprocessor system), a single CPU (MmRotatingUniprocessorNumber) is chosen 
for all the threads in this new process to run on. The selection process is performed by simply cycling 
through the available processors. Each time this type of image is run, the next processor is used. In this 
way, these types of images are spread evenly across the processors.

Stage 3F: Completing the setup of the executive process object
Before the handle to the new process can be returned, a few final setup steps must be completed, 
which are performed by PspInsertProcess and its helper functions:

1. If system-wide auditing of processes is enabled (because of either local policy settings or group 
policy settings from a domain controller), the process’s creation is written to the Security event 
log.

2. If the parent process was contained in a job, the job is recovered from the job level set of the 
parent and then bound to the session of the newly created process. Finally, the new process is 
added to the job.

3. The new process object is inserted at the end of the Windows list of active processes (PsActive- 
ProcessHead). Now the process is accessible via functions like EnumProcesses and OpenProcess.

4. The process debug port of the parent process is copied to the new child process unless the 
NoDebugInherit flag is set (which can be requested when creating the process). If a debug port 
was specified, it is attached to the new process.

5. Job objects can specify restrictions on which group or groups the threads within the processes 
part of a job can run on. Therefore, PspInsertProcess must make sure the group affinity asso-
ciated with the process would not violate the group affinity associated with the job. An interest-
ing secondary issue to consider is if the job’s permissions grant access to modify the process’s 
affinity permissions, because a lesser-privileged job object might interfere with the affinity 
requirements of a more privileged process.

6. Finally, PspInsertProcess creates a handle for the new process by calling ObOpenObject-
ByPointer, and then returns this handle to the caller. Note that no process-creation callback 
is sent until the first thread within the process is created, and the code always sends process 
callbacks before sending object managed–based callbacks.
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Stage 4: Creating the initial thread and its stack and context
At this point, the Windows executive process object is completely set up. It still has no thread, however, 
so it can’t do anything yet. It’s now time to start that work. Normally, the PspCreateThread routine 
is responsible for all aspects of thread creation and is called by NtCreateThread when a new thread 
is being created. However, because the initial thread is created internally by the kernel without user-
mode input, the two helper routines that PspCreateThread relies on are used instead: PspAllocate-
Thread and PspInsertThread. PspAllocateThread handles the actual creation and initialization of 
the executive thread object itself, while PspInsertThread handles the creation of the thread handle 
and security attributes and the call to KeStartThread to turn the executive object into a schedulable 
thread on the system. However, the thread won’t do anything yet. It is created in a suspended state and 
isn’t resumed until the process is completely initialized (as described in stage 5). 

Note The thread parameter (which can’t be specified in CreateProcess but can be speci-
fied in CreateThread) is the address of the PEB. This parameter will be used by the initializa-
tion code that runs in the context of this new thread (as described in stage 6).

PspAllocateThread performs the following steps:

1. It prevents user-mode scheduling (UMS) threads from being created in Wow64 processes, as 
well as preventing user-mode callers from creating threads in the system process.

2. An executive thread object is created and initialized.

3. If energy estimation is enabled for the system (always disabled for XBOX), then it allocates and 
initializes a THREAD_ENERGY_VALUES structure pointed to by the ETHREAD object.

4. The various lists used by LPC, I/O Management, and the Executive are initialized.

5. The thread’s creation time is set, and its thread ID (TID) is created.

6. Before the thread can execute, it needs a stack and a context in which to run, so these are set 
up. The stack size for the initial thread is taken from the image; there’s no way to specify an-
other size. If this is a Wow64 process, the Wow64 thread context will also be initialized.

7. The thread environment block (TEB) is allocated for the new thread.

8. The user-mode thread start address is stored in the ETHREAD (in the StartAddress field).  
This is the system-supplied thread startup function in Ntdll.dll (RtlUserThreadStart). The 
user’s specified Windows start address is stored in the ETHREAD in a different location  
(the Win32StartAddress field) so that debugging tools such as Process Explorer can display 
the information.

9. KeInitThread is called to set up the KTHREAD structure. The thread’s initial and current base 
priorities are set to the process’s base priority, and its affinity and quantum are set to that of the 
process. KeInitThread next allocates a kernel stack for the thread and initializes the machine-
dependent hardware context for the thread, including the context, trap, and exception frames. 
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The thread’s context is set up so that the thread will start in kernel mode in KiThreadStartup. 
Finally, KeInitThread sets the thread’s state to Initialized and returns to PspAllocateThread.

10. If this is a UMS thread, PspUmsInitThread is called to initialize the UMS state.

Once that work is finished, NtCreateUserProcess calls PspInsertThread to perform the following 
steps:

1. The thread ideal processor is initialized if it was specified using an attribute.

2. The thread group affinity is initialized if it was specified using an attribute.

3. If the process is part of a job, a check is made to ensure that the thread’s group affinity does not 
violate job limitations (described earlier). 

4. Checks are made to ensure that the process hasn’t already been terminated, that the thread 
hasn’t already been terminated, or that the thread hasn’t even been able to start running. If any 
of these are true, thread creation will fail.

5. If the thread is part of a secure process (IUM), then the secure thread object is created and 
initialized.

6. The KTHREAD part of the thread object is initialized by calling KeStartThread. This involves 
inheriting scheduler settings from the owner process, setting the ideal node and processor,  
updating the group affinity, setting the base and dynamic priorities (by copying from the  
process), setting the thread quantum, and inserting the thread in the process list maintained  
by KPROCESS (a separate list from the one in EPROCESS).

7. If the process is in a deep freeze (meaning no threads are allowed to run, including new threads), 
 then this thread is frozen as well. 

8. On non-x86 systems, if the thread is the first in the process (and the process is not the idle pro-
cess), then the process is inserted into another system-wide list of processes maintained by the 
global variable KiProcessListHead.

9. The thread count in the process object is incremented, and the owner process’s I/O priority and 
page priority are inherited. If this is the highest number of threads the process has ever had, the 
thread count high watermark is updated as well. If this was the second thread in the process, 
the primary token is frozen (that is, it can no longer be changed).

10. The thread is inserted in the process’s thread list, and the thread is suspended if the creating 
process requested it.

11. The thread object is inserted into the process handle table.

12. If it’s the first thread created in the process (that is, the operation happened as part of a Create- 
Process* call), any registered callbacks for process creation are called. Then any registered 
thread callbacks are called. If any callback vetoes the creation, it will fail and return an appropri-
ate status to the caller.
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13. If a job list was supplied (using an attribute) and this is the first thread in the process, then the 
process is assigned to all of the jobs in the job list.

14. The thread is readied for execution by calling KeReadyThread. It enters the deferred ready 
state. (See Chapter 4 for more information on thread states.)

Stage 5: Performing Windows subsystem–specific initialization
Once NtCreateUserProcess returns with a success code, the necessary executive process and thread 
objects have been created. CreateProcessInternalW then performs various operations related to 
Windows subsystem–specific operations to finish initializing the process.

1. Various checks are made for whether Windows should allow the executable to run. These 
checks include validating the image version in the header and checking whether Windows ap-
plication certification has blocked the process (through a group policy). On specialized editions 
of Windows Server 2012 R2, such as Windows Storage Server 2012 R2, additional checks are 
made to see whether the application imports any disallowed APIs.

2. If software restriction policies dictate, a restricted token is created for the new process.  
Afterward, the application-compatibility database is queried to see whether an entry exists in 
either the registry or system application database for the process. Compatibility shims will not 
be applied at this point; the information will be stored in the PEB once the initial thread starts 
executing (stage 6).

3. CreateProcessInternalW calls some internal functions (for non-protected processes) to get 
SxS information (see the section “DLL name resolution and redirection” later in this chapter 
for more information on side-by-side) such as manifest files and DLL redirection paths, as well 
as other information such as whether the media on which the EXE resides is removable and 
installer detection flags. For immersive processes, it also returns version information and target 
platform from the package manifest. 

4. A message to the Windows subsystem is constructed based on the information collected to be 
sent to Csrss. The message includes the following information:

• Path name and SxS path name

• Process and thread handles

• Section handle

• The access token handle

• Media information

• AppCompat and shim data

• Immersive process information

• The PEB address

• Various flags such as whether it’s a protected process or whether it is required to run elevated
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• A flag indicating whether the process belongs to a Windows application (so that Csrss can 
determine whether to show the startup cursor)

• UI language information

• DLL redirection and .local flags (discussed in the “Image loader” section later in this chapter)

• Manifest file information

When it receives this message, the Windows subsystem performs the following steps:

1. CsrCreateProcess duplicates a handle for the process and thread. In this step, the usage count 
of the process and the thread is incremented from 1 (which was set at creation time) to 2.

2. The Csrss process structure (CSR_PROCESS) is allocated.

3. The new process’s exception port is set to be the general function port for the Windows subsys-
tem so that the Windows subsystem will receive a message when a second-chance exception 
occurs in the process. (For further information on exception handling, see Chapter 8 in Part 2.)

4. If a new process group is to be created with the new process serving as the root (CREATE_NEW_
PROCESS_GROUP flag in CreateProcess), then it’s set in CSR_PROCESS. A process group is useful 
for sending a control event to a set of processes sharing a console. See the Windows SDK docu-
mentation for CreateProcess and GenerateConsoleCtrlEvent for more information. 

5. The Csrss thread structure (CSR_THREAD) is allocated and initialized.

6. CsrCreateThread inserts the thread in the list of threads for the process.

7. The count of processes in this session is incremented.

8. The process shutdown level is set to 0x280, the default process shutdown level. (See SetProcess- 
ShutdownParameters in the Windows SDK documentation for more information.)

9. The new Csrss process structure is inserted into the list of Windows subsystem–wide processes.

After Csrss has performed these steps, CreateProcessInternalW checks whether the process 
was run elevated (which means it was executed through ShellExecute and elevated by the AppInfo 
service after the consent dialog box was shown to the user). This includes checking whether the process 
was a setup program. If it was, the process’s token is opened, and the virtualization flag is turned on so 
that the application is virtualized. (See the information on UAC and virtualization in Chapter 7.) If the 
application contained elevation shims or had a requested elevation level in its manifest, the process is 
destroyed and an elevation request is sent to the AppInfo service.

Note that most of these checks are not performed for protected processes. Because these processes 
must have been designed for Windows Vista or later, there’s no reason they should require elevation, vir-
tualization, or application-compatibility checks and processing. Additionally, allowing mechanisms such 
as the shim engine to use its usual hooking and memory-patching techniques on a protected process 
would result in a security hole if someone could figure how to insert arbitrary shims that modify the be-
havior of the protected process. Additionally, because the shim engine is installed by the parent process, 
which might not have access to its child protected process, even legitimate shimming cannot work.
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Stage 6: Starting execution of the initial thread
At this point, the process environment has been determined, resources for its threads to use have been 
allocated, the process has a thread, and the Windows subsystem knows about the new process. Unless 
the caller specified the CREATE_SUSPENDED flag, the initial thread is now resumed so that it can start 
running and perform the remainder of the process-initialization work that occurs in the context of the 
new process (stage 7).

Stage 7: Performing process initialization in the context of the 
new process
The new thread begins life running the kernel-mode thread startup routine KiStartUserThread.  
KiStartUserThread lowers the thread’s IRQL level from deferred procedure call (DPC) level to APC 
level and then calls the system initial thread routine, PspUserThreadStartup. The user-specified 
thread start address is passed as a parameter to this routine. PspUserThreadStartup performs the 
following actions:

1. It installs an exception chain on x86 architecture. (Other architectures work differently in this 
regard, see Chapter 8 in Part 2.)

2. It lowers IRQL to PASSIVE_LEVEL (0, which is the only IRQL user code is allowed to run at).

3. It disables the ability to swap the primary process token at runtime. 

4. If the thread was killed on startup (for whatever reason), it’s terminated and no further action is 
taken.

5. It sets the locale ID and the ideal processor in the TEB, based on the information present in 
kernel-mode data structures, and then it checks whether thread creation actually failed. 

6. It calls DbgkCreateThread, which checks whether image notifications were sent for the new 
process. If they weren’t, and notifications are enabled, an image notification is sent first for the 
process and then for the image load of Ntdll.dll. 

Note This is done in this stage rather than when the images were first mapped because 
the process ID (which is required for the kernel callouts) is not yet allocated at that time. 

7. Once those checks are completed, another check is performed to see whether the process is 
a debuggee. If it is and if debugger notifications have not been sent yet, then a create process 
message is sent through the debug object (if one is present) so that the process startup debug 
event (CREATE_PROCESS_DEBUG_INFO) can be sent to the appropriate debugger process. This 
is followed by a similar thread startup debug event and by another debug event for the image 
load of Ntdll.dll. DbgkCreateThread then waits for a reply from the debugger (via the Continue- 
DebugEvent function).
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8. It checks whether application prefetching is enabled on the system and, if so, calls the prefetcher 
(and Superfetch) to process the prefetch instruction file (if it exists) and prefetch pages refer-
enced during the first 10 seconds the last time the process ran. (For details on the prefetcher 
and Superfetch, see Chapter 5.)

9. It checks whether the system-wide cookie in the SharedUserData structure has been set up. If 
it hasn’t, it generates it based on a hash of system information such as the number of interrupts 
processed, DPC deliveries, page faults, interrupt time, and a random number. This system-wide 
cookie is used in the internal decoding and encoding of pointers, such as in the heap manager 
to protect against certain classes of exploitation. (For more information on the heap manager 
security, see Chapter 5.)

10. If the process is secure (IUM process), then a call is made to HvlStartSecureThread that trans-
fers control to the secure kernel to start thread execution. This function only returns when the 
thread exits.

11. It sets up the initial thunk context to run the image-loader initialization routine (LdrInitialize- 
Thunk in Ntdll.dll), as well as the system-wide thread startup stub (RtlUserThreadStart in 
Ntdll.dll). These steps are done by editing the context of the thread in place and then issuing  
an exit from system service operation, which loads the specially crafted user context. The 
LdrInitializeThunk routine initializes the loader, the heap manager, NLS tables, thread-local 
storage (TLS) and fiber-local storage (FLS) arrays, and critical section structures. It then loads 
any required DLLs and calls the DLL entry points with the DLL_PROCESS_ATTACH function code. 

Once the function returns, NtContinue restores the new user context and returns to user mode. 
Thread execution now truly starts.

RtlUserThreadStart uses the address of the actual image entry point and the start parameter and 
calls the application’s entry point. These two parameters have also already been pushed onto the stack 
by the kernel. This complicated series of events has two purposes:

 ■ It allows the image loader inside Ntdll.dll to set up the process internally and behind the scenes 
so that other user-mode code can run properly. (Otherwise, it would have no heap, no thread-
local storage, and so on.) 

 ■ Having all threads begin in a common routine allows them to be wrapped in exception handling 
so that if they crash, Ntdll.dll is aware of that and can call the unhandled exception filter inside 
Kernel32.dll. It is also able to coordinate thread exit on return from the thread’s start routine 
and to perform various cleanup work. Application developers can also call SetUnhandled- 
ExceptionFilter to add their own unhandled exception-handling code.

EXPERIMENT: Tracing process startup
Now that we’ve looked in detail at how a process starts up and the different operations required 
to begin executing an application, we’re going to use Process Monitor to look at some of the file 
I/O and registry keys that are accessed during this process.
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Although this experiment will not provide a complete picture of all the internal steps we’ve de-
scribed, you’ll be able to see several parts of the system in action, notably prefetch and Superfetch, 
image-file execution options and other compatibility checks, and the image loader’s DLL mapping.

We’ll look at a very simple executable—Notepad.exe—and launch it from a Command Prompt 
window (Cmd.exe). It’s important that we look both at the operations inside Cmd.exe and those 
inside Notepad.exe. Recall that a lot of the user-mode work is performed by CreateProcessIn-
ternalW, which is called by the parent process before the kernel has created a new process object.

To set things up correctly, follow these steps:

1. Add two filters to Process Monitor: one for Cmd.exe and one for Notepad.exe. These 
are the only two processes you should include. Be sure you don’t have any currently 
running instances of these two processes so that you know you’re looking at the right 
events. The filter window should look like this:

2. Make sure event logging is currently disabled (open the File and deselect Capture 
Events) and then start the command prompt. 

3. Enable event logging (open the File menu and choose Event Logging, press Ctrl+E, or 
click the magnifying glass icon on the toolbar) and then type Notepad.exe and press 
Enter. On a typical Windows system, you should see anywhere between 500 and 3,500 
events appear. 

4. Stop capture and hide the Sequence and Time of Day columns so that you can focus your 
attention on the columns of interest. Your window should look similar to the one shown 
in the following screenshot.

As described in stage 1 of the CreateProcess flow, one of the first things to notice is that 
just before the process is started and the first thread is created, Cmd.exe does a registry read 
at HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Image File Execution Options\
Notepad.exe. Because there were no image-execution options associated with Notepad.exe, the 
process was created as is.
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As with this and any other event in Process Monitor’s log, you can see whether each part of 
the process-creation flow was performed in user mode or kernel mode, and by which routines, by 
looking at the stack of the event. To do this, double-click the RegOpenKey event and switch to the 
Stack tab. The following screenshot shows the standard stack on a 64-bit Windows 10 machine:
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This stack shows that you already reached the part of process creation performed in kernel 
mode (through NtCreateUserProcess) and that the helper routine PspAllocateProcess is 
responsible for this check.

Going down the list of events after the thread and process have been created, you will notice 
three groups of events:

 ■ A simple check for application-compatibility flags, which will let the user-mode process-
creation code know if checks inside the application-compatibility database are required 
through the shim engine.

 ■ Multiple reads to SxS (search for Side-By-Side), Manifest, and MUI/Language keys, which 
are part of the assembly framework mentioned earlier. 

 ■ File I/O to one or more .sdb files, which are the application-compatibility databases on 
the system. This I/O is where additional checks are done to see if the shim engine needs to 
be invoked for this application. Because Notepad is a well-behaved Microsoft program, it 
doesn’t require any shims.

The following screenshot shows the next series of events, which happen inside the Notepad 
process itself. These are actions initiated by the user-mode thread startup wrapper in kernel 
mode, which performs the actions described earlier. The first two are the Notepad.exe and Ntdll.
dll image load debug notification messages, which can be generated only now that code is run-
ning inside Notepad’s process context and not inside the context for the command prompt.
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Next, the prefetcher kicks in, looking for a prefetch database file that has already been gener-
ated for Notepad. (For more information on the prefetcher, see Chapter 5.) On a system where 
Notepad has already been run at least once, this database will exist, and the prefetcher will 
begin executing the commands specified inside it. If this is the case, scrolling down, you will see 
multiple DLLs being read and queried. Unlike typical DLL loading, which is done by the user-
mode image loader by looking at the import tables or when an application manually loads a DLL, 
these events are being generated by the prefetcher, which is already aware of the libraries that 
Notepad will require. Typical image loading of the DLLs required happens next, and you will see 
events similar to the ones shown here:

These events are now being generated from code running inside user mode, which was called 
once the kernel-mode wrapper function finished its work. Therefore, these are the first events 
coming from LdrpInitializeProcess, which is called by LdrInitializeThunk for the first 
thread in the process. You can confirm this on your own by looking at the stack of these events—
for example, the kernel32.dll image load event, which is shown in the following screenshot.

Further events are generated by this routine and its associated helper functions until you 
finally reach events generated by the WinMain function inside Notepad, which is where code 
under the developer’s control is now being executed. Describing in detail all the events and user-
mode components that come into play during process execution would fill up this entire chapter, 
so exploration of any further events is left as an exercise for the reader.
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Terminating a process

A process is a container and a boundary. This means resources used by one process are not automati-
cally visible in other processes, so some inter-process communication mechanism needs to be used to 
pass information between processes. Therefore, a process cannot accidentally write arbitrary bytes on 
another process’s memory. That would require explicit call to a function such as WriteProcessMemory. 
However, to get that to work, a handle with the proper access mask (PROCESS_VM_WRITE) must be 
opened explicitly, which may or may not be granted. This natural isolation between processes also 
means that if some exception happens in one process, it will have no effect on other processes. The 
worst that can happen is that same process would crash, but the rest of the system stays intact.

A process can exit gracefully by calling the ExitProcess function. For many processes—depending 
on linker settings—the process startup code for the first thread calls ExitProcess on the process’s 
behalf when the thread returns from its main function. The term gracefully means that DLLs loaded into 
the process get a chance to do some work by getting notified of the process exit using a call to their 
DllMain function with DLL_PROCESS_DETACH.

ExitProcess can be called only by the process itself asking to exit. An ungraceful termination of 
a process is possible using the TerminateProcess function, which can be called from outside the 
process. (For example, Process Explorer and Task Manager use it when so requested.) TerminatePro-
cess requires a handle to the process that is opened with the PROCESS_TERMINATE access mask, which 
may or may not be granted. This is why it’s not easy (or it’s impossible) to terminate some processes (for 
example, Csrss)—the handle with the required access mask cannot be obtained by the requesting user. 
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The meaning of ungraceful here is that DLLs don’t get a chance to execute code (DLL_PROCESS_DETACH 
is not sent) and all threads are terminated abruptly. This can lead to data loss in some cases—for example, 
if a file cache has no chance to flush its data to the target file.

In whatever way a process ceases to exist, there can never be any leaks. That is, all process’s private 
memory is freed automatically by the kernel, the address space is destroyed, all handles to kernel 
objects are closed, etc. If open handles to the process still exist (the EPROCESS structure still exists), then 
other processes can still gain access to some process-management information, such as the process 
exit code (GetExitCodeProcess). Once these handles are closed, the EPROCESS is properly destroyed, 
and there’s truly nothing left of the process.

That being said, if third party drivers make allocations in kernel memory on behalf of a process—
say, due to an IOCTL or merely due to a process notification—it is their responsibility to free any such 
pool memory on their own. Windows does not track or clean-up process-owned kernel memory  
(except for memory occupied by objects due to handles that the process created). This would typically 
be done through the IRP_MJ_CLOSE or IRP_MJ_CLEANUP notification to tell the driver that the handle 
to the device object has been closed, or through a process termination notification. (see Chapter 6,  
“I/O system,” for more on IOCTLs.)

Image loader

As we’ve just seen, when a process is started on the system, the kernel creates a process object to 
represent it and performs various kernel-related initialization tasks. However, these tasks do not result 
in the execution of the application, merely in the preparation of its context and environment. In fact, 
unlike drivers, which are kernel-mode code, applications execute in user mode. So most of the actual 
initialization work is done outside the kernel. This work is performed by the image loader, also internally 
referred to as Ldr.

The image loader lives in the user-mode system DLL Ntdll.dll and not in the kernel library. Therefore, 
it behaves just like standard code that is part of a DLL, and it is subject to the same restrictions in terms 
of memory access and security rights. What makes this code special is the guarantee that it will always 
be present in the running process (Ntdll.dll is always loaded) and that it is the first piece of code to run 
in user mode as part of a new process. 

Because the loader runs before the actual application code, it is usually invisible to users and devel-
opers. Additionally, although the loader’s initialization tasks are hidden, a program typically does inter-
act with its interfaces during the run time of a program—for example, whenever loading or unloading 
a DLL or querying the base address of one. Some of the main tasks the loader is responsible for include:

 ■ Initializing the user-mode state for the application, such as creating the initial heap and setting 
up the thread-local storage (TLS) and fiber-local storage (FLS) slots.

 ■ Parsing the import table (IAT) of the application to look for all DLLs that it requires (and then 
recursively parsing the IAT of each DLL), followed by parsing the export table of the DLLs to 
make sure the function is actually present. (Special forwarder entries can also redirect an export 
to yet another DLL.)
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 ■ Loading and unloading DLLs at run time, as well as on demand, and maintaining a list of all 
loaded modules (the module database).

 ■ Handling manifest files, needed for Windows Side-by-Side (SxS) support, as well as Multiple 
Language User Interface (MUI) files and resources.

 ■ Reading the application compatibility database for any shims, and loading the shim engine DLL 
if required.

 ■ Enabling support for API Sets and API redirection, a core part of the One Core functionality that 
allows creating Universal Windows Platform (UWP) applications.

 ■ Enabling dynamic runtime compatibility mitigations through the SwitchBack mechanism as well 
as interfacing with the shim engine and Application Verifier mechanisms.

As you can see, most of these tasks are critical to enabling an application to actually run its code. 
Without them, everything from calling external functions to using the heap would immediately fail. 
After the process has been created, the loader calls the NtContinue special native API to continue 
execution based on an exception frame located on the stack, just as an exception handler would. This 
exception frame, built by the kernel as we saw in an earlier section, contains the actual entry point of 
the application. Therefore, because the loader doesn’t use a standard call or jump into the running 
application, you’ll never see the loader initialization functions as part of the call tree in a stack trace for 
a thread.

EXPERIMENT: Watching the image loader
In this experiment, you’ll use global flags to enable a debugging feature called loader snaps. This 
allows you to see debug output from the image loader while debugging application startup. 

1. From the directory where you’ve installed WinDbg, launch the Gflags.exe application, 
and then click the Image File tab.

2. In the Image field, type Notepad.exe, and then press the Tab key. This should enable 
the various options. Select the Show Loader Snaps option and then click OK or Apply. 

3. Now launch WinDbg, open the File menu, choose Open Executable, and navigate to 
c:\windows\system32\notepad.exe to launch it. You should see a couple of screens of 
debug information similar to that shown here:

0f64:2090 @ 02405218 - LdrpInitializeProcess - INFO: Beginning execution of 
notepad.exe (C:\WINDOWS\notepad.exe) 
    Current directory: C:\Program Files (x86)\Windows Kits\10\Debuggers\ 
    Package directories: (null) 
0f64:2090 @ 02405218 - LdrLoadDll - ENTER: DLL name: KERNEL32.DLL 
0f64:2090 @ 02405218 - LdrpLoadDllInternal - ENTER: DLL name: KERNEL32.DLL 
0f64:2090 @ 02405218 - LdrpFindKnownDll - ENTER: DLL name: KERNEL32.DLL 
0f64:2090 @ 02405218 - LdrpFindKnownDll - RETURN: Status: 0x00000000 
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0f64:2090 @ 02405218 - LdrpMinimalMapModule - ENTER: DLL name: C:\WINDOWS\
System32\KERNEL32.DLL 
ModLoad: 00007fff'5b4b0000 00007fff'5b55d000   C:\WINDOWS\System32\KERNEL32.DLL 
0f64:2090 @ 02405218 - LdrpMinimalMapModule - RETURN: Status: 0x00000000 
0f64:2090 @ 02405218 - LdrpPreprocessDllName - INFO: DLL api-ms-win-core-
rtlsupport-l1-2-0.dll was redirected to C:\WINDOWS\SYSTEM32\ntdll.dll by API set 
0f64:2090 @ 02405218 - LdrpFindKnownDll - ENTER: DLL name: KERNELBASE.dll 
0f64:2090 @ 02405218 - LdrpFindKnownDll - RETURN: Status: 0x00000000 
0f64:2090 @ 02405218 - LdrpMinimalMapModule - ENTER: DLL name: C:\WINDOWS\
System32\KERNELBASE.dll 
ModLoad: 00007fff'58b90000 00007fff'58dc6000   C:\WINDOWS\System32\KERNELBASE.dll 
0f64:2090 @ 02405218 - LdrpMinimalMapModule - RETURN: Status: 0x00000000 
0f64:2090 @ 02405218 - LdrpPreprocessDllName - INFO: DLL api-ms-win-
eventing-provider-l1-1-0.dll was redirected to C:\WINDOWS\SYSTEM32\
kernelbase.dll by API set 
0f64:2090 @ 02405218 - LdrpPreprocessDllName - INFO: DLL api-ms-win-core-
apiquery-l1-1-0.dll was redirected to C:\WINDOWS\SYSTEM32\ntdll.dll by API set 

4. Eventually, the debugger breaks somewhere inside the loader code, at a location where 
the image loader checks whether a debugger is attached and fires a breakpoint. If you 
press the g key to continue execution, you will see more messages from the loader, and 
Notepad will appear.

5. Try interacting with Notepad and see how certain operations invoke the loader. A good 
experiment is to open the Save/Open dialog box. That demonstrates that the loader 
not only runs at startup, but continuously responds to thread requests that can cause 
delayed loads of other modules (which can then be unloaded after use).

Early process initialization
Because the loader is present in Ntdll.dll, which is a native DLL that’s not associated with any particular 
subsystem, all processes are subject to the same loader behavior (with some minor differences). Earlier, 
we took a detailed look at the steps that lead to the creation of a process in kernel mode, as well as 
some of the work performed by the Windows function CreateProcess. Here, we’ll cover all the other 
work that takes place in user mode, independent of any subsystem, as soon as the first user-mode 
instruction starts execution.

When a process starts, the loader performs the following steps:

1. It checks if LdrpProcessInitialized is already set to 1 or if the SkipLoaderInit flag is set in the 
TEB. In this case, skip all initialization and wait three seconds for someone to call LdrpProcess- 
InitializationComplete. This is used in cases where process reflection is used by Windows 
Error Reporting, or other process fork attempts where loader initialization is not needed.

2. It sets the LdrInitState to 0, meaning that the loader is uninitialized. Also set the PEB’s  
ProcessInitializing flag to 1 and the TEB’s RanProcessInit to 1.
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3. It initializes the loader lock in the PEB.

4. It initializes the dynamic function table, used for unwind/exception support in JIT code.

5. It initializes the Mutable Read Only Heap Section (MRDATA), which is used to store security- 
relevant global variables that should not be modified by exploits (see Chapter 7 for more  
information).

6. It initializes the loader database in the PEB.

7. It initializes the National Language Support (NLS, for internationalization) tables for the process.

8. It builds the image path name for the application.

9. It captures the SEH exception handlers from the .pdata section and builds the internal exception 
tables.

10. It captures the system call thunks for the five critical loader functions: NtCreateSection,  
NtOpenFile, NtQueryAttributesFile, NtOpenSection, and NtMapViewOfSection.

11. It reads the mitigation options for the application (which are passed in by the kernel through the 
LdrSystemDllInitBlock exported variable). These are described in more detail in Chapter 7.

12. It queries the Image File Execution Options (IFEO) registry key for the application. This will 
include options such as the global flags (stored in GlobalFlags), as well as heap-debugging 
options (DisableHeapLookaside, ShutdownFlags, and FrontEndHeapDebugOptions), loader 
settings (UnloadEventTraceDepth, MaxLoaderThreads, UseImpersonatedDeviceMap), ETW 
settings (TracingFlags). Other options include MinimumStackCommitInBytes and MaxDead-
ActivationContexts. As part of this work, the Application Verifier package and related Verifier 
DLLs will be initialized and Control Flow Guard (CFG) options will be read from CFGOptions.

13. It looks inside the executable’s header to see whether it is a .NET application (specified by the 
presence of a .NET-specific image directory) and if it’s a 32-bit image. It also queries the kernel 
to verify if this is a Wow64 process. If needed, it handles a 32-bit IL-only image, which does not 
require Wow64.

14. It loads any configuration options specified in the executable’s Image Load Configuration 
Directory. These options, which a developer can define when compiling the application, and 
which the compiler and linker also use to implement certain security and mitigation features 
such as CFG, control the behavior of the executable.

15. It minimally initializes FLS and TLS.

16. It sets up debugging options for critical sections, creates the user-mode stack trace database 
if the appropriate global flag was enabled, and queries StrackTraceDatabaseSizeInMb from 
the Image File Execution Options.

17. It initializes the heap manager for the process and creates the first process heap. This will use 
various load configuration, image file execution, global flags, and executable header options to 
set up the required parameters.
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18. It enables the Terminate process on heap corruption mitigation if it’s turned on.

19. It initializes the exception dispatch log if the appropriate global flag has enabled this.

20. It initializes the thread pool package, which supports the Thread Pool API. This queries and 
takes into account NUMA information.

21. It initializes and converts the environment block and parameter block, especially as needed to 
support WoW64 processes.

22. It opens the \KnownDlls object directory and builds the known DLL path. For a Wow64 process, 
\KnownDlls32 is used instead.

23. For store applications, it reads the Application Model Policy options, which are encoded in the 
WIN://PKG and WP://SKUID claims of the token (see the “AppContainers” section in Chapter 7 
for more information).

24. It determines the process’s current directory, system path, and default load path (used when 
loading images and opening files), as well as the rules around default DLL search order.  
This includes reading the current policy settings for Universal (UWP) versus Desktop Bridge  
(Centennial) versus Silverlight (Windows Phone 8) packaged applications (or services).

25. It builds the first loader data table entry for Ntdll.dll and inserts it into the module database.

26. It builds the unwind history table.

27. It initializes the parallel loader, which is used to load all the dependencies (which don’t have 
cross-dependencies) using the thread pool and concurrent threads.

28. It builds the next loader data table entry for the main executable and inserts it into the module 
database.

29. If needed, it relocates the main executable image.

30. If enabled, it initializes Application Verifier.

31. It initializes the Wow64 engine if this is a Wow64 process. In this case, the 64-bit loader will 
finish its initialization, and the 32-bit loader will take control and re-start most of the operations 
we’ve just described up until this point.

32. If this is a .NET image, it validates it, loads Mscoree.dll (.NET runtime shim), and retrieves the 
main executable entry point (_CorExeMain), overwriting the exception record to set this as the 
entry point instead of the regular main function.

33. It initializes the TLS slots of the process.

34. For Windows subsystem applications, it manually loads Kernel32.dll and Kernelbase.dll, regard-
less of actual imports of the process. As needed, it uses these libraries to initialize the SRP/Safer 
(Software Restriction Policies) mechanisms, as well as capture the Windows subsystem thread 
initialization thunk function. Finally, it resolves any API Set dependencies that exist specifically 
between these two libraries.
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35. It initializes the shim engine and parses the shim database.

36. It enables the parallel image loader, as long as the core loader functions scanned earlier do not 
have any system call hooks or “detours” attached to them, and based on the number of loader 
threads that have been configured through policy and image file execution options.

37. It sets the LdrInitState variable to 1, meaning “import loading in progress.”

At this point, the image loader is ready to start parsing the import table of the executable belonging 
to the application and start loading any DLLs that were dynamically linked during the compilation of 
the application. This will happen both for .NET images, which will have their imports processed by call-
ing into the .NET runtime, as well as for regular images. Because each imported DLL can also have its 
own import table, this operation, in the past, continued recursively until all DLLs had been satisfied and 
all functions to be imported have been found. As each DLL was loaded, the loader kept state informa-
tion for it and built the module database.

In newer versions of Windows, the loader instead builds a dependency map ahead of time, with spe-
cific nodes that describe a single DLL and its dependency graph, building out separate nodes that can 
be loaded in parallel. At various points when serialization is needed, the thread pool worker queue is 
“drained,” which services as a synchronization point. One such point is before calling all the DLL initial-
ization routines of all the static imports, which is one of the last stages of the loader. Once this is done, 
all the static TLS initializers are called. Finally, for Windows applications, in between these two steps, the 
Kernel32 thread initialization thunk function (BaseThreadInitThunk) is called at the beginning, and 
the Kernel32 post-process initialization routine is called at the end.

DLL name resolution and redirection
Name resolution is the process by which the system converts the name of a PE-format binary to a 
physical file in situations where the caller has not specified or cannot specify a unique file identity. 
Because the locations of various directories (the application directory, the system directory, and so 
on) cannot be hardcoded at link time, this includes the resolution of all binary dependencies as well as 
LoadLibrary operations in which the caller does not specify a full path.

When resolving binary dependencies, the basic Windows application model locates files in a search 
path—a list of locations that is searched sequentially for a file with a matching base name—although 
various system components override the search path mechanism in order to extend the default ap-
plication model. The notion of a search path is a holdover from the era of the command line, when an 
application’s current directory was a meaningful notion; this is somewhat anachronistic for modern GUI 
applications.

However, the placement of the current directory in this ordering allowed load operations on system 
binaries to be overridden by placing malicious binaries with the same base name in the application’s 
current directory, a technique often known as binary planting. To prevent security risks associated with 
this behavior, a feature known as safe DLL search mode was added to the path search computation and 
is enabled by default for all processes. Under safe search mode, the current directory is moved behind 
the three system directories, resulting in the following path ordering: 
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1. The directory from which the application was launched 

2. The native Windows system directory (for example, C:\Windows\System32) 

3. The 16-bit Windows system directory (for example, C:\Windows\System) 

4. The Windows directory (for example, C:\Windows) 

5. The current directory at application launch time 

6. Any directories specified by the %PATH% environment variable 

The DLL search path is recomputed for each subsequent DLL load operation. The algorithm used 
to compute the search path is the same as the one used to compute the default search path, but the 
application can change specific path elements by editing the %PATH% variable using the SetEnviron-
mentVariable API, changing the current directory using the SetCurrentDirectory API, or using the 
SetDllDirectory API to specify a DLL directory for the process. When a DLL directory is specified, the 
directory replaces the current directory in the search path and the loader ignores the safe DLL search 
mode setting for the process. 

Callers can also modify the DLL search path for specific load operations by supplying the LOAD_
WITH_ALTERED_SEARCH_PATH flag to the LoadLibraryEx API. When this flag is supplied and the DLL 
name supplied to the API specifies a full path string, the path containing the DLL file is used in place of 
the application directory when computing the search path for the operation. Note that if the path is a 
relative path, this behavior is undefined and potentially dangerous. When Desktop Bridge (Centennial) 
applications load, this flag is ignored.

Other flags that applications can specify to LoadLibraryEx include LOAD_LIBRARY_SEARCH_DLL_
LOAD_DIR, LOAD_LIBRARY_SEARCH_APPLICATION_DIR, LOAD_LIBRARY_SEARCH_SYSTEM32, and LOAD_
LIBRARY_SEARCH_USER_DIRS, in place of the LOAD_WITH_ALTERED_SEARCH_PATH flag. Each of these 
modifies the search order to only search the specific directory (or directories) that the flag references, 
or the flags can be combined as desired to search multiple locations. For example, combining the appli-
cation, system32, and user directories results in LOAD_LIBRARY_SEARCH_DEFAULT_DIRS. Furthermore, 
these flags can be globally set using the SetDefaultDllDirectories API, which will affect all library 
loads from that point on.

Another way search-path ordering can be affected is if the application is a packaged application or 
if it is not a packaged service or legacy Silverlight 8.0 Windows Phone application. In these conditions, 
the DLL search order will not use the traditional mechanism and APIs, but will rather be restricted to the 
package-based graph search. This is also the case when the LoadPackagedLibrary API is used instead 
of the regular LoadLibraryEx function. The package-based graph is computed based on the <Pack-
ageDependency> entries in the UWP application’s manifest file’s <Dependencies> section, and guaran-
tees that no arbitrary DLLs can accidentally load in the package.

Additionally, when a packaged application is loaded, as long as it is not a Desktop Bridge applica-
tion, all application-configurable DLL search path ordering APIs, such as the ones we saw earlier, will be 
disabled, and only the default system behavior will be used (in combination with only looking through 
package dependencies for most UWP applications as per the above).
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Unfortunately, even with safe search mode and the default path searching algorithms for legacy 
applications, which always include the application directory first, a binary might still be copied from 
its usual location to a user-accessible location (for example, from c:\windows\system32\notepad.exe 
into c:\temp\notepad.exe, an operation that does not require administrative rights). In this situation, 
an attacker can place a specifically crafted DLL in the same directory as the application, and due to the 
ordering above, it will take precedence over the system DLL. This can then be used for persistence or 
otherwise affecting the application, which might be privileged (especially if the user, unaware of the 
change, is elevating it through UAC). To defend against this, processes and/or administrators can use a 
process-mitigation policy (see Chapter 7 for more information on these) called Prefer System32 Images, 
which inverts the order above between points 1 and 2, as the name suggests.

DLL name redirection
Before attempting to resolve a DLL name string to a file, the loader attempts to apply DLL name redi-
rection rules. These redirection rules are used to extend or override portions of the DLL namespace—
which normally corresponds to the Win32 file system namespace—to extend the Windows application 
model. In order of application, these are:

 ■ MinWin API Set redirection The API set mechanism is designed to allow different versions 
or editions of Windows to change the binary that exports a given system API in a manner that is 
transparent to applications, by introducing the concept of contracts. This mechanism was briefly 
touched upon in Chapter 2, and will be further explained in a later section.

 ■ .LOCAL redirection The .LOCAL redirection mechanism allows applications to redirect all 
loads of a specific DLL base name, regardless of whether a full path is specified, to a local copy 
of the DLL in the application directory—either by creating a copy of the DLL with the same base 
name followed by .local (for example, MyLibrary.dll.local) or by creating a file folder with the 
name .local under the application directory and placing a copy of the local DLL in the folder 
(for example, C:\\MyApp\.LOCAL\MyLibrary.dll). DLLs redirected by the .LOCAL mechanism are 
handled identically to those redirected by SxS. (See the next bullet point.) The loader honors 
.LOCAL redirection of DLLs only when the executable does not have an associated manifest, 
either embedded or external. It’s not enabled by default. To enable it globally, add the DWORD 
value DevOverrideEnable in the base IFEO key (HKLM\Software\Microsoft\WindowsNT\Cur-
rentVersion\Image File Execution Options) and set it to 1.

 ■ Fusion (SxS) redirection Fusion (also referred to as side-by-side, or SxS) is an extension to the 
Windows application model that allows components to express more detailed binary depen-
dency information (usually versioning information) by embedding binary resources known 
as manifests. The Fusion mechanism was first used so that applications could load the correct 
version of the Windows common controls package (comctl32.dll) after that binary was split into 
different versions that could be installed alongside one another; other binaries have since been 
versioned in the same fashion. As of Visual Studio 2005, applications built with the Microsoft 
linker use Fusion to locate the appropriate version of the C runtime libraries, while Visual Studio 
2015 and later use API Set redirection to implement the idea of the universal CRT.
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The Fusion runtime tool reads embedded dependency information from a binary’s resource 
section using the Windows resource loader, and it packages the dependency information into 
lookup structures known as activation contexts. The system creates default activation contexts 
at the system and process level at boot and process startup time, respectively; in addition, each 
thread has an associated activation context stack, with the activation context structure at the 
top of the stack considered active. The per-thread activation context stack is managed both 
explicitly, via the ActivateActCtx and DeactivateActCtx APIs, and implicitly by the system at 
certain points, such as when the DLL main routine of a binary with embedded dependency in-
formation is called. When a Fusion DLL name redirection lookup occurs, the system searches for 
redirection information in the activation context at the head of the thread’s activation context 
stack, followed by the process and system activation contexts; if redirection information is pres-
ent, the file identity specified by the activation context is used for the load operation.

 ■ Known DLL redirection Known DLLs is a mechanism that maps specific DLL base names to 
files in the system directory, preventing the DLL from being replaced with an alternate version 
in a different location. 

One edge case in the DLL path search algorithm is the DLL versioning check performed on 64-
bit and WoW64 applications. If a DLL with a matching base name is located but is subsequently 
determined to have been compiled for the wrong machine architecture—for example, a 64-
bit image in a 32-bit application—the loader ignores the error and resumes the path search 
operation, starting with the path element after the one used to locate the incorrect file. This 
behavior is designed to allow applications to specify both 64-bit and 32-bit entries in the global 
%PATH% environment variable. 

EXPERIMENT: Observing DLL load search order
You can use Sysinternals Process Monitor tool to watch how the loader searches for DLLs. When 
the loader attempts to resolve a DLL dependency, you will see it perform CreateFile calls to 
probe each location in the search sequence until either it finds the specified DLL or the load fails. 

Here’s the capture of the loader’s search for the OneDrive.exe executable. To re-create the 
experiment, do the following:

1. If the OneDrive is running, close it from its tray icon. Make sure to close all Explorer 
windows that are looking at OneDrive content.

2. Open Process Monitor and add filters to show just the process OneDrive.exe. Optionally, 
show only the operation for CreateFile.

3. Go to %LocalAppData%\Microsoft\OneDrive and launch OneDrive.exe or OneDrive 
Personal.cmd (which launches OneDrive.exe as “personal” rather than “business”).  
You should see something like the following (note that OneDrive is a 32 bit process, 
here running on a 64 bit system):
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Here are some of the calls shown as they relate to the search order described previously:

 ■ KnownDlls DLLs load from the system location (ole32.dll in the screenshot).

 ■ LoggingPlatform.Dll is loaded from a version subdirectory, probably because OneDrive 
calls SetDllDirectory to redirect searches to the latest version (17.3.6743.1212 in the screen-
shot).

 ■ The MSVCR120.dll (MSVC run time version 12) is searched for in the executable’s directory, 
and is not found. Then it’s searched in the version subdirectory, where it’s located.

 ■ The Wsock32.Dll (WinSock) is searched in the executable’s path, then in the version subdi-
rectory, and finally located in the system directory (SysWow64). Note that this DLL is not a 
KnownDll.

Loaded module database
The loader maintains a list of all modules (DLLs as well as the primary executable) that have been 
loaded by a process. This information is stored in the PEB—namely, in a substructure identified by Ldr 
and called PEB_LDR_DATA. In the structure, the loader maintains three doubly linked lists, all containing 
the same information but ordered differently (either by load order, memory location, or initialization 
order). These lists contain structures called loader data table entries (LDR_DATA_TABLE_ENTRY) that 
store information about each module.
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Additionally, because lookups in linked lists are algorithmically expensive (being done in linear 
time), the loader also maintains two red-black trees, which are efficient binary lookup trees. The first is 
sorted by base address, while the second is sorted by the hash of the module’s name. With these trees, 
the searching algorithm can run in logarithmic time, which is significantly more efficient and greatly 
speeds up process-creation performance in Windows 8 and later. Additionally, as a security precaution, 
the root of these two trees, unlike the linked lists, is not accessible in the PEB. This makes them harder 
to locate by shell code, which is operating in an environment where address space layout randomiza-
tion (ASLR) is enabled. (See Chapter 5 for more on ASLR.)

Table 3-9 lists the various pieces of information the loader maintains in an entry.

TABLE 3-9 Fields in a loader data table entry

Field Meaning

BaseAddressIndexNode Links this entry as a node in the Red-Black Tree sorted by base address.

BaseDllName/
BaseNameHashValue

The name of the module itself, without the full path. The second field stores its 
hash using RtlHashUnicodeString.

DdagNode/NodeModuleLink A pointer to the data structure tracking the distributed dependency graph (DDAG), 
which parallelizes dependency loading through the worker thread pool. The  
second field links the structure with the LDR_DATA_TABLE_ENTRYs associated 
with it (part of the same graph).

DllBase Holds the base address at which the module was loaded.

EntryPoint Contains the initial routine of the module (such as DllMain).

EntryPointActivationContext Contains the SxS/Fusion activation context when calling initializers.

Flags Loader state flags for this module (see Table 3-10 for a description of the flags).

ForwarderLinks A linked list of modules that were loaded as a result of export table forwarders 
from the module.

FullDllName The fully qualified path name of the module.

HashLinks A linked list used during process startup and shutdown for quicker lookups.

ImplicitPathOptions Used to store path lookup flags that can be set with the 
LdrSetImplicitPathOptions API or that are inherited based on the DLL path.

List Entry Links Links this entry into each of the three ordered lists part of the loader database.

LoadContext Pointer to the current load information for the DLL. Typically NULL unless actively 
being loaded.

ObsoleteLoadCount A reference count for the module (that is, how many times it has been loaded). 
This is no longer accurate and has been moved to the DDAG node structure  
instead.

LoadReason Contains an enumeration value that explains why this DLL was loaded (dynami-
cally, statically, as a forwarder, as a delay-load dependency, etc.).

LoadTime Stores the system time value when this module was being loaded.

MappingInfoIndexNode Links this entry as a node in the red-black tree sorted by the hash of the name.

OriginalBase Stores the original base address (set by the linker) of this module, before ASLR or 
relocations, enabling faster processing of relocated import entries.

Continues...
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TABLE 3-9 Fields in a loader data table entry  (continued)

Field Meaning

ParentDllBase In case of static (or forwarder, or delay-load) dependencies, stores the address of 
the DLL that has a dependency on this one.

SigningLevel Stores the signature level of this image (see Chapter 8, Part 2, for more informa-
tion on the Code Integrity infrastructure).

SizeOfImage The size of the module in memory.

SwitchBackContext Used by SwitchBack (described later) to store the current Windows context GUID 
associated with this module, and other data.

TimeDateStamp A time stamp written by the linker when the module was linked, which the loader 
obtains from the module’s image PE header.

TlsIndex The thread local storage slot associated with this module.

One way to look at a process’s loader database is to use WinDbg and its formatted output of the 
PEB. The next experiment shows you how to do this and how to look at the LDR_DATA_TABLE_ENTRY 
structures on your own.

EXPERIMENT: Dumping the loaded modules database
Before starting the experiment, perform the same steps as in the previous two experiments 
to launch Notepad.exe with WinDbg as the debugger. When you get to the initial breakpoint 
(where you’ve been instructed to type g until now), follow these instructions: 

1. You can look at the PEB of the current process with the !peb command. For now, you’re 
interested only in the Ldr data that will be displayed. 

0:000> !peb 
PEB at 000000dd4c901000 
    InheritedAddressSpace:    No 
    ReadImageFileExecOptions: No 
    BeingDebugged:            Yes 
    ImageBaseAddress:         00007ff720b60000 
    Ldr                       00007ffe855d23a0 
    Ldr.Initialized:          Yes 
    Ldr.InInitializationOrderModuleList: 0000022815d23d30 . 0000022815d24430 
    Ldr.InLoadOrderModuleList:           0000022815d23ee0 . 0000022815d31240 
    Ldr.InMemoryOrderModuleList:         0000022815d23ef0 . 0000022815d31250 
                    Base TimeStamp                     Module 
            7ff720b60000 5789986a Jul 16 05:14:02 2016 C:\Windows\System32\
notepad.exe 
            7ffe85480000 5825887f Nov 11 10:59:43 2016 C:\WINDOWS\SYSTEM32\
ntdll.dll 
            7ffe84bd0000 57899a29 Jul 16 05:21:29 2016 C:\WINDOWS\System32\
KERNEL32.DLL 
            7ffe823c0000 582588e6 Nov 11 11:01:26 2016 C:\WINDOWS\System32\
KERNELBASE.dll 
...
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2. The address shown on the Ldr line is a pointer to the PEB_LDR_DATA structure described 
earlier. Notice that WinDbg shows you the address of the three lists, and dumps the 
initialization order list for you, displaying the full path, time stamp, and base address of 
each module. 

3. You can also analyze each module entry on its own by going through the module list 
and then dumping the data at each address, formatted as a LDR_DATA_TABLE_ENTRY 
structure. Instead of doing this for each entry, however, WinDbg can do most of the 
work by using the !list extension and the following syntax: 

!list –x "dt ntdll!_LDR_DATA_TABLE_ENTRY" @@C++(&@$peb->Ldr-
>InLoadOrderModuleList)

4. You should then see the entries for each module:

+0x000 InLoadOrderLinks : _LIST_ENTRY [ 0x00000228'15d23d10 - 
0x00007ffe'855d23b0 ] 
   +0x010 InMemoryOrderLinks : _LIST_ENTRY [ 0x00000228'15d23d20 - 
0x00007ffe'855d23c0 ] 
   +0x020 InInitializationOrderLinks : _LIST_ENTRY [ 0x00000000'00000000 - 
0x00000000'00000000 ] 
   +0x030 DllBase          : 0x00007ff7'20b60000 Void 
   +0x038 EntryPoint       : 0x00007ff7'20b787d0 Void 
   +0x040 SizeOfImage      : 0x41000 
   +0x048 FullDllName      : _UNICODE_STRING "C:\Windows\System32\notepad.
exe" 
   +0x058 BaseDllName      : _UNICODE_STRING "notepad.exe" 
   +0x068 FlagGroup        : [4]  "???" 
   +0x068 Flags            : 0xa2cc

Although this section covers the user-mode loader in Ntdll.dll, note that the kernel also employs its 
own loader for drivers and dependent DLLs, with a similar loader entry structure called KLDR_DATA_
TABLE_ENTRY instead. Likewise, the kernel-mode loader has its own database of such entries, which is 
directly accessible through the PsActiveModuleList global data variable. To dump the kernel’s loaded 
module database, you can use a similar !list command as shown in the preceding experiment by 
replacing the pointer at the end of the command with nt!PsActiveModuleList and using the new 
structure/module name: !list nt!_KLDR_DATA_TABLE_ENTRY nt!PsActiveModuleList.

Looking at the list in this raw format gives you some extra insight into the loader’s internals, such as 
the Flags field, which contains state information that !peb on its own would not show you. See Table 
3-10 for their meaning. Because both the kernel and user-mode loaders use this structure, the meaning 
of the flags is not always the same. In this table, we explicitly cover the user-mode flags only (some of 
which may exist in the kernel structure as well).
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TABLE 3-10 Loader data table entry flags

Flag Meaning

Packaged Binary (0x1) This module is part of a packaged application (it can only be set on the 
main module of an AppX package).

Marked for Removal (0x2) This module will be unloaded as soon as all references (such as from an 
executing worker thread) are dropped.

Image DLL (0x4) This module is an image DLL (and not a data DLL or executable).

Load Notifications Sent (0x8) Registered DLL notification callouts were notified of this image  
already.

Telemetry Entry Processed (0x10) Telemetry data has already been processed for this image.

Process Static Import (0x20) This module is a static import of the main application binary.

In Legacy Lists (0x40) This image entry is in the loader’s doubly linked lists.

In Indexes (0x80) This image entry is in the loader’s red-black trees.

Shim DLL (0x100) This image entry represents a DLL part of the shim engine/application 
compatibility database.

In Exception Table (0x200) This module’s .pdata exception handlers have been captured in the 
loader’s inverted function table.

Load In Progress (0x800) This module is currently being loaded.

Load Config Processed (0x1000) This module’s image load configuration directory has been found and 
processed.

Entry Processed (0x2000) The loader has fully finished processing this module.

Protect Delay Load (0x4000) Control Flow Guard features for this binary have requested the protec-
tion of the delay-load IAT. See chapter 7 for more information.

Process Attach Called (0x20000) The DLL_PROCESS_ATTACH notification has already been sent to the 
DLL.

Process Attach Failed (0x40000) The DllMain routine of the DLL has failed the DLL_PROCESS_ATTACH 
notification.

Don’t Call for Threads (0x80000) Do not send DLL_THREAD_ATTACH/DETACH notifications to this DLL. 
Can be set with DisableThreadLibraryCalls.

COR Deferred Validate (0x100000) The Common Object Runtime (COR) will validate this .NET image at a 
later time.

COR Image (0x200000) This module is a .NET application.

Don’t Relocate (0x400000) This image should not be relocated or randomized.

COR IL Only (0x800000) This is a .NET intermediate-language (IL)-only library, which does not 
contain native assembly code.

Compat Database Processed (0x40000000) The shim engine has processed this DLL.

Import parsing
Now that we’ve explained the way the loader keeps track of all the modules loaded for a process, you 
can continue analyzing the startup initialization tasks performed by the loader. During this step, the 
loader will do the following:
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1. Load each DLL referenced in the import table of the process’s executable image.

2. Check whether the DLL has already been loaded by checking the module database. If it doesn’t 
find it in the list, the loader opens the DLL and maps it into memory.

3. During the mapping operation, the loader first looks at the various paths where it should at-
tempt to find this DLL, as well as whether this DLL is a known DLL, meaning that the system has 
already loaded it at startup and provided a global memory mapped file for accessing it. Certain 
deviations from the standard lookup algorithm can also occur, either through the use of a .local 
file (which forces the loader to use DLLs in the local path) or through a manifest file, which can 
specify a redirected DLL to use to guarantee a specific version.

4. After the DLL has been found on disk and mapped, the loader checks whether the kernel has 
loaded it somewhere else—this is called relocation. If the loader detects relocation, it parses 
the relocation information in the DLL and performs the operations required. If no relocation 
information is present, DLL loading fails.

5. The loader then creates a loader data table entry for this DLL and inserts it into the database.

6. After a DLL has been mapped, the process is repeated for this DLL to parse its import table and 
all its dependencies.

7. After each DLL is loaded, the loader parses the IAT to look for specific functions that are being 
imported. Usually this is done by name, but it can also be done by ordinal (an index number). 
For each name, the loader parses the export table of the imported DLL and tries to locate a 
match. If no match is found, the operation is aborted.

8. The import table of an image can also be bound. This means that at link time, the developers 
already assigned static addresses pointing to imported functions in external DLLs. This removes 
the need to do the lookup for each name, but it assumes that the DLLs the application will use 
will always be located at the same address. Because Windows uses address space randomiza-
tion (see Chapter 5 for more information on ASLR), this is usually not the case for system ap-
plications and libraries.

9. The export table of an imported DLL can use a forwarder entry, meaning that the actual func-
tion is implemented in another DLL. This must essentially be treated like an import or depen-
dency, so after parsing the export table, each DLL referenced by a forwarder is also loaded and 
the loader goes back to step 1.

After all imported DLLs (and their own dependencies, or imports) have been loaded, all the required 
imported functions have been looked up and found, and all forwarders also have been loaded and 
processed, the step is complete: All dependencies that were defined at compile time by the application 
and its various DLLs have now been fulfilled. During execution, delayed dependencies (called delay 
load), as well as run-time operations (such as calling LoadLibrary) can call into the loader and essen-
tially repeat the same tasks. Note, however, that a failure in these steps will result in an error launching 
the application if they are done during process startup. For example, attempting to run an application 
that requires a function that isn’t present in the current version of the operating system can result in a 
message similar to the one in Figure 3-12.
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FIGURE 3-12 The dialog box shown when a required (imported) function is not present in a DLL.

Post-import process initialization
After the required dependencies have been loaded, several initialization tasks must be performed to 
fully finalize launching the application. In this phase, the loader will do the following:

1. These steps begin with the LdrInitState variable set to 2, which means imports have loaded.

2. The initial debugger breakpoint will be hit when using a debugger such as WinDbg. This is 
where you had to type g to continue execution in earlier experiments.

3. Check if this is a Windows subsystem application, in which case the BaseThreadInitThunk 
function should’ve been captured in the early process initialization steps. At this point, it is 
called and checked for success. Similarly, the TermsrvGetWindowsDirectoryW function, which 
should have been captured earlier (if on a system which supports terminal services), is now 
called, which resets the System and Windows directories path.

4. Using the distributed graph, recurse through all dependencies and run the initializers for all of 
the images’ static imports. This is the step that calls the DllMain routine for each DLL (allowing 
each DLL to perform its own initialization work, which might even include loading new DLLs 
at run time) as well as processes the TLS initializers of each DLL. This is one of the last steps in 
which loading an application can fail. If all the loaded DLLs do not return a successful return 
code after finishing their DllMain routines, the loader aborts starting the application.

5. If the image uses any TLS slots, call its TLS initializer.

6. Run the post-initialization shim engine callback if the module is being shimmed for application 
compatibility.

7. Run the associated subsystem DLL post-process initialization routine registered in the PEB. For 
Windows applications, this does Terminal Services–specific checks, for example.

8. At this point, write an ETW event indicating that the process has loaded successfully.

9. If there is a minimum stack commit, touch the thread stack to force an in-page of the committed 
pages.

10. Set LdrInitState to 3, which means initialization done. Set the PEB’s ProcessInitializing 
field back to 0. Then, update the LdrpProcessInitialized variable.
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SwitchBack
As each new version of Windows fixes bugs such as race conditions and incorrect parameter validation 
checks in existing API functions, an application-compatibility risk is created for each change, no matter 
how minor. Windows makes use of a technology called SwitchBack, implemented in the loader, which 
enables software developers to embed a GUID specific to the Windows version they are targeting in 
their executable’s associated manifest. 

For example, if a developer wants to take advantage of improvements added in Windows 10 to a given 
API, she would include the Windows 10 GUID in her manifest, while if a developer has a legacy applica-
tion that depends on Windows 7–specific behavior, she would put the Windows 7 GUID in the manifest 
instead. 

SwitchBack parses this information and correlates it with embedded information in SwitchBack-
compatible DLLs (in the .sb_data image section) to decide which version of an affected API should be 
called by the module. Because SwitchBack works at the loaded-module level, it enables a process to 
have both legacy and current DLLs concurrently calling the same API, yet observing different results.

SwitchBack GUIDs
Windows currently defines GUIDs that represent compatibility settings for every version from Windows 
Vista:

 ■ {e2011457-1546-43c5-a5fe-008deee3d3f0} for Windows Vista

 ■ {35138b9a-5d96-4fbd-8e2d-a2440225f93a} for Windows 7

 ■ {4a2f28e3-53b9-4441-ba9c-d69d4a4a6e38} for Windows 8

 ■ {1f676c76-80e1-4239-95bb-83d0f6d0da78} for Windows 8.1

 ■ {8e0f7a12-bfb3-4fe8-b9a5-48fd50a15a9a} for Windows 10

These GUIDs must be present in the application’s manifest file under the <SupportedOS> element in 
the ID attribute in a compatibility attribute entry. (If the application manifest does not contain a GUID, 
Windows Vista is chosen as the default compatibility mode.) Using Task Manager, you can enable an 
Operating System Context column in the Details tab, which will show if any applications are running 
with a specific OS context (an empty value usually means they are operating in Windows 10 mode). 
Figure 3-13 shows an example of a few such applications, which are operating in Windows Vista and 
Windows 7 modes, even on a Windows 10 system.

Here is an example of a manifest entry that sets compatibility for Windows 10:

  <compatibility xmlns="urn:schemas-microsoft-com:compatibility.v1"> 
    <application> 
      <!-- Windows 10 --> 
      <supportedOS Id="{8e0f7a12-bfb3-4fe8-b9a5-48fd50a15a9a}" /> 
    </application> 
  </compatibility>
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FIGURE 3-13 Some processes that run with compatibility modes.

SwitchBack compatibility modes
As a few examples of what SwitchBack can do, here’s what running under the Windows 7 context affects:

 ■ RPC components use the Windows thread pool instead of a private implementation.

 ■ DirectDraw Lock cannot be acquired on the primary buffer.

 ■ Blitting on the desktop is not allowed without a clipping window.

 ■ A race condition in GetOverlappedResult is fixed.

 ■ Calls to CreateFile are allowed to pass a “downgrade” flag to receive exclusive open to a file 
even when the caller does not have write privilege, which causes NtCreateFile not to receive 
the FILE_DISALLOW_EXCLUSIVE flag.

Running in Windows 10 mode, on the other hand, subtly affects how the Low Fragmentation Heap 
(LFH) behaves, by forcing LFH sub-segments to be fully committed and padding all allocations with 
a header block unless the Windows 10 GUID is present. Additionally, in Windows 10, using the Raise 
Exception on Invalid Handle Close mitigation (see Chapter 7 for more information) will result in  
CloseHandle and RegCloseKey respecting the behavior. On the other hand, on previous operating 
systems, if the debugger is not attached, this behavior will be disabled before calling NtClose, and 
then re-enabled after the call.
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As another example, the Spell Checking Facility will return NULL for languages which don’t have a 
spell checker, while it returns an “empty” spell checker on Windows 8.1. Similarly, the implementation of 
the function IShellLink::Resolve will return E_INVALIDARG when operating in Windows 8 compat-
ibility mode when given a relative path, but will not contain this check in Windows 7 mode.

Furthermore, calls to GetVersionEx or the equivalent functions in NtDll such as RtlVerifyVersion- 
Info will return the maximum version number that corresponds to the SwitchBack Context GUID that 
was specified.

Note These APIs have been deprecated, and calls to GetVersionEx will return 6.2 on all versions 
of Windows 8 and later if a higher SwitchBack GUID is not provided.

SwitchBack behavior
Whenever a Windows API is affected by changes that might break compatibility, the function’s entry 
code calls the SbSwitchProcedure to invoke the SwitchBack logic. It passes along a pointer to the 
SwitchBack module table, which contains information about the SwitchBack mechanisms employed in 
the module. The table also contains a pointer to an array of entries for each SwitchBack point. This table 
contains a description of each branch-point that identifies it with a symbolic name and a comprehen-
sive description, along with an associated mitigation tag. Typically, there will be several branch-points 
in a module, one for Windows Vista behavior, one for Windows 7 behavior, etc. 

For each branch-point, the required SwitchBack context is given—it is this context that determines 
which of the two (or more) branches is taken at runtime. Finally, each of these descriptors contains a 
function pointer to the actual code that each branch should execute. If the application is running with 
the Windows 10 GUID, this will be part of its SwitchBack context, and the SbSelectProcedure API, 
upon parsing the module table, will perform a match operation. It finds the module entry descriptor for 
the context and proceeds to call the function pointer included in the descriptor. 

SwitchBack uses ETW to trace the selection of given SwitchBack contexts and branch-points and 
feeds the data into the Windows AIT (Application Impact Telemetry) logger. This data can be periodi-
cally collected by Microsoft to determine the extent to which each compatibility entry is being used, 
identify the applications using it (a full stack trace is provided in the log), and notify third-party vendors.

As mentioned, the compatibility level of the application is stored in its manifest. At load time, 
the loader parses the manifest file, creates a context data structure, and caches it in the pShimData 
member of the PEB. This context data contains the associated compatibility GUIDs that this process 
is executing under and determines which version of the branch-points in the called APIs that employ 
SwitchBack will be executed.

API Sets
While SwitchBack uses API redirection for specific application-compatibility scenarios, there is a much 
more pervasive redirection mechanism used in Windows for all applications, called API Sets. Its purpose
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is to enable fine-grained categorization of Windows APIs into sub-DLLs instead of having large multi-
purpose DLLs that span nearly thousands of APIs that might not be needed on all types of Windows 
systems today and in the future. This technology, developed mainly to support the refactoring of the 
bottom-most layers of the Windows architecture to separate it from higher layers, goes hand in hand 
with the breakdown of Kernel32.dll and Advapi32.dll (among others) into multiple, virtual DLL files.

For example, Figure 3-14 shows a screenshot of Dependency Walker where Kernel32.dll, which is a 
core Windows library, imports from many other DLLs, beginning with API-MS-WIN. Each of these DLLs 
contains a small subset of the APIs that Kernel32 normally provides, but together they make up the 
entire API surface exposed by Kernel32.dll. The CORE-STRING library, for instance, provides only the 
Windows base string functions.

FIGURE 3-14 API sets for kernel32.dll.

In splitting functions across discrete files, two objectives are achieved. First, doing this allows future 
applications to link only with the API libraries that provide the functionality that they need. Second, if 
Microsoft were to create a version of Windows that did not support, for example, localization (say, a 
non-user-facing, English-only embedded system), it would be possible to simply remove the sub-DLL 
and modify the API Set schema. This would result in a smaller Kernel32 binary, and any applications 
that ran without requiring localization would still run.
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With this technology, a “base” Windows system called MinWin is defined (and, at the source level, 
built), with a minimum set of services that includes the kernel, core drivers (including file systems, basic 
system processes such as CSRSS and the Service Control Manager, and a handful of Windows services). 
Windows Embedded, with its Platform Builder, provides what might seem to be a similar technology, 
as system builders are able to remove select “Windows components,” such as the shell, or the network 
stack. However, removing components from Windows leaves dangling dependencies—code paths that, 
if exercised, would fail because they depend on the removed components. MinWin’s dependencies, on 
the other hand, are entirely self-contained.

When the process manager initializes, it calls the PspInitializeApiSetMap function, which is 
responsible for creating a section object of the API Set redirection table, which is stored in %System-
Root%\System32\ApiSetSchema.dll. The DLL contains no executable code, but it has a section called 
.apiset that contains API Set mapping data that maps virtual API Set DLLs to logical DLLs that imple-
ment the APIs. Whenever a new process starts, the process manager maps the section object into the 
process’s address space and sets the ApiSetMap field in the process’s PEB to point to the base address 
where the section object was mapped.

In turn, the loader’s LdrpApplyFileNameRedirection function, which is normally responsible for 
the .local and SxS/Fusion manifest redirection that was mentioned earlier, also checks for API Set redi-
rection data whenever a new import library that has a name starting with API- loads (either dynami-
cally or statically). The API Set table is organized by library with each entry describing in which logical 
DLL the function can be found, and that DLL is what gets loaded. Although the schema data is a binary 
format, you can dump its strings with the Sysinternals Strings tool to see which DLLs are currently defined:

C:\Windows\System32>strings apisetschema.dll 
... 
api-ms-onecoreuap-print-render-l1-1-0 
printrenderapihost.dllapi-ms-onecoreuap-settingsync-status-l1-1-0 
settingsynccore.dll 
api-ms-win-appmodel-identity-l1-2-0 
kernel.appcore.dllapi-ms-win-appmodel-runtime-internal-l1-1-3 
api-ms-win-appmodel-runtime-l1-1-2 
api-ms-win-appmodel-state-l1-1-2 
api-ms-win-appmodel-state-l1-2-0 
api-ms-win-appmodel-unlock-l1-1-0 
api-ms-win-base-bootconfig-l1-1-0 
advapi32.dllapi-ms-win-base-util-l1-1-0 
api-ms-win-composition-redirection-l1-1-0 
... 
api-ms-win-core-com-midlproxystub-l1-1-0 
api-ms-win-core-com-private-l1-1-1 
api-ms-win-core-comm-l1-1-0 
api-ms-win-core-console-ansi-l2-1-0 
api-ms-win-core-console-l1-1-0 
api-ms-win-core-console-l2-1-0 
api-ms-win-core-crt-l1-1-0 
api-ms-win-core-crt-l2-1-0 
api-ms-win-core-datetime-l1-1-2 
api-ms-win-core-debug-l1-1-2 
api-ms-win-core-debug-minidump-l1-1-0 
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... 
api-ms-win-core-firmware-l1-1-0 
api-ms-win-core-guard-l1-1-0 
api-ms-win-core-handle-l1-1-0 
api-ms-win-core-heap-l1-1-0 
api-ms-win-core-heap-l1-2-0 
api-ms-win-core-heap-l2-1-0 
api-ms-win-core-heap-obsolete-l1-1-0 
api-ms-win-core-interlocked-l1-1-1 
api-ms-win-core-interlocked-l1-2-0 
api-ms-win-core-io-l1-1-1 
api-ms-win-core-job-l1-1-0 
...

Jobs

A job is a nameable, securable, shareable kernel object that allows control of one or more processes as 
a group. A job object’s basic function is to allow groups of processes to be managed and manipulated 
as a unit. A process can be a member of any number of jobs, although the typical case is just one. A 
process’s association with a job object can’t be broken, and all processes created by the process and 
its descendants are associated with the same job object (unless child processes are created with the 
CREATE_BREAKAWAY_FROM_JOB flag and the job itself has not restricted it). The job object also records 
basic accounting information for all processes associated with the job and for all processes that were 
associated with the job but have since terminated.

Jobs can also be associated with an I/O completion port object, which other threads might be wait-
ing for, with the Windows GetQueuedCompletionStatus function or by using the Thread Pool API (the 
native function TpAllocJobNotification). This allows interested parties (typically the job creator) to 
monitor for limit violations and events that could affect the job’s security, such as a new process being 
created or a process abnormally exiting.

Jobs play a significant role in a number of system mechanisms, enumerated here:

 ■ They manage modern apps (UWP processes), as discussed in more detail in Chapter 9 in Part 2. 
In fact, every modern app is running under a job. You can verify this with Process Explorer, as 
described in the “Viewing the job object” experiment later in this chapter.

 ■ They are used to implement Windows Container support, through a mechanism called server 
silo, covered later in this section.

 ■ They are the primary way through which the Desktop Activity Moderator (DAM) manages 
throttling, timer virtualization, timer freezing, and other idle-inducing behaviors for Win32  
applications and services. The DAM is described in Chapter 8 in Part 2.

 ■ They allow the definition and management of scheduling groups for dynamic fair-share  
scheduling (DFSS), which is described in Chapter 4.
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 ■ They allow for the specification of a custom memory partition, which enables usage of the 
Memory Partitioning API described in Chapter 5.

 ■ They serve as a key enabler for features such as Run As (Secondary Logon), Application Boxing, 
and Program Compatibility Assistant.

 ■ They provide part of the security sandbox for applications such as Google Chrome and  
Microsoft Office Document Converter, as well as mitigation from denial-of-service (DoS)  
attacks through Windows Management Instrumentation (WMI) requests.

Job limits
The following are some of the CPU-, memory-, and I/O-related limits you can specify for a job:

 ■ Maximum number of active processes This limits the number of concurrently existing 
processes in the job. If this limit is reached, new processes that should be assigned to the job are 
blocked from creation.

 ■ Job-wide user-mode CPU time limit This limits the maximum amount of user-mode CPU 
time that the processes in the job can consume (including processes that have run and exited). 
Once this limit is reached, by default all the processes in the job are terminated with an error 
code and no new processes can be created in the job (unless the limit is reset). The job object 
is signaled, so any threads waiting for the job will be released. You can change this default 
behavior with a call to SetInformationJobObject to set the EndOfJobTimeAction member 
of the JOBOBJECT_END_OF_JOB_TIME_INFORMATION structure passed with the JobObjectEnd-
OfJobTimeInformation information class and request a notification to be sent through the 
job’s completion port instead.

 ■ Per-process user-mode CPU time limit This allows each process in the job to accumulate 
only a fixed maximum amount of user-mode CPU time. When the maximum is reached, the 
process terminates (with no chance to clean up).

 ■ Job processor affinity This sets the processor affinity mask for each process in the job.  
(Individual threads can alter their affinity to any subset of the job affinity, but processes can’t 
alter their process affinity setting.)

 ■ Job group affinity This sets a list of groups to which the processes in the job can be assigned. 
Any affinity changes are then subject to the group selection imposed by the limit. This is treated 
as a group-aware version of the job processor affinity limit (legacy), and prevents that limit from 
being used.

 ■ Job process priority class This sets the priority class for each process in the job. Threads 
can’t increase their priority relative to the class (as they normally can). Attempts to increase 
thread priority are ignored. (No error is returned on calls to SetThreadPriority, but the  
increase doesn’t occur.)
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 ■ Default working set minimum and maximum This defines the specified working set mini-
mum and maximum for each process in the job. (This setting isn’t job-wide. Each process has its 
own working set with the same minimum and maximum values.)

 ■ Process and job committed virtual memory limit This defines the maximum amount of 
virtual address space that can be committed by either a single process or the entire job.

 ■ CPU rate control This defines the maximum amount of CPU time that the job is allowed to 
use before it will experience forced throttling. This is used as part of the scheduling group sup-
port described in Chapter 4.

 ■ Network bandwidth rate control This defines the maximum outgoing bandwidth for the 
entire job before throttling takes effect. It also enables setting a differentiated services code 
point (DSCP) tag for QoS purposes for each network packet sent by the job. This can only be set 
for one job in a hierarchy, and affects the job and any child jobs.

 ■ Disk I/O bandwidth rate control This is the same as network bandwidth rate control, but is 
applied to disk I/O instead, and can control either bandwidth itself or the number of I/O opera-
tions per second (IOPS). It can be set either for a particular volume or for all volumes on the 
system.

For many of these limits, the job owner can set specific thresholds, at which point a notification will 
be sent (or, if no notification is registered, the job will simply be killed). Additionally, rate controls allow 
for tolerance ranges and tolerance intervals—for example, allowing a process to go beyond 20 percent 
of its network bandwidth limit for up to 10 seconds every 5 minutes. These notifications are done by 
queuing an appropriate message to the I/O completion port for the job. (See the Windows SDK docu-
mentation for the details.)

Finally, you can place user-interface limits on processes in a job. Such limits include restricting 
processes from opening handles to windows owned by threads outside the job, reading and/or writing 
to the clipboard, and changing the many user-interface system parameters via the Windows System-
ParametersInfo function. These user-interface limits are managed by the Windows subsystem GDI/
USER driver, Win32k.sys, and are enforced through one of the special callouts that it registers with the 
process manager, the job callout. You can grant access for all processes in a job to specific user handles 
(for example, window handle) by calling the UserHandleGrantAccess function; this can only be called 
by a process that is not part of the job in question (naturally).

Working with a job
A job object is created using the CreateJobObject API. The job is initially created empty of any 
process. To add a process to a job, call the AssignProcessToJobObject, which can be called multiple 
times to add processes to the job or even to add the same process to multiple jobs. This last option 
creates a nested job, described in the next section. Another way to add a process to a job is to manually 
specify a handle to the job object by using the PS_CP_JOB_LIST process-creation attribute described 
earlier in this chapter. One or more handles to job objects can be specified, which will all be joined.
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The most interesting API for jobs is SetInformationJobObject, which allows the setting of the 
various limits and settings mentioned in the previous section, and contains internal information classes 
used by mechanisms such as Containers (Silo), the DAM, or Windows UWP applications. These values 
can be read back with QueryInformationJobObject, which can provide interested parties with the 
limits set on a job. It’s also necessary to call in case limit notifications have been set (as described in  
the previous section) in order for the caller to know precisely which limits were violated. Another 
sometimes-useful function is TerminateJobObject, which terminates all processes in the job (as if 
TerminateProcess were called on each process).

Nested jobs
Until Windows 7 and Windows Server 2008 R2, a process could only be associated with a single job, 
which made jobs less useful than they could be, as in some cases an application could not know in ad-
vance whether a process it needed to manage happened to be in a job or not. Starting with Windows 
8 and Windows Server 2012, a process can be associated with multiple jobs, effectively creating a job 
hierarchy.

A child job holds a subset of processes of its parent job. Once a process is added to more than one 
job, the system tries to form a hierarchy, if possible. A current restriction is that jobs cannot form a hier-
archy if any of them sets any UI limits (SetInformationJobObject with JobObjectBasicUIRestrictions 
argument).

Job limits for a child job cannot be more permissive than its parent, but they can be more restrictive. 
For example, if a parent job sets a memory limit of 100 MB for the job, any child job cannot set a higher 
memory limit (such requests simply fail). A child job can, however, set a more restrictive limit for its pro-
cesses (and any child jobs it has), such as 80 MB. Any notifications that target the I/O completion port of 
a job will be sent to the job and all its ancestors. (The job itself does not have to have an I/O completion 
port for the notification to be sent to ancestor jobs.)

Resource accounting for a parent job includes the aggregated resources used by its direct managed 
processes and all processes in child jobs. When a job is terminated (TerminateJobObject), all processes 
in the job and in child jobs are terminated, starting with the child jobs at the bottom of the hierarchy. 
Figure 3-15 shows four processes managed by a job hierarchy.

FIGURE 3-15 A job hierarchy.
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To create this hierarchy, processes should be added to jobs from the root job. Here are a set of steps 
to create this hierarchy:

1. Add process P1 to job 1.

2. Add process P1 to job 2. This creates the first nesting.

3. Add process P2 to job 1.

4. Add process P2 to job 3. This creates the second nesting.

5. Add process P3 to job 2.

6. Add process P4 to job 1.

EXPERIMENT: Viewing the job object
You can view named job objects with the Performance Monitor tool. (Look for the Job Object 
and Job Object Details categories.) You can view unnamed jobs with the kernel debugger !job 
or dt nt!_ejob commands.

To see whether a process is associated with a job, you can use the kernel debugger !process 
command or Process Explorer. Follow these steps to create and view an unnamed job object:

1. From the command prompt, use the runas command to create a process running the 
command prompt (Cmd.exe). For example, type runas /user:<domain>\< username> cmd. 

2. You’ll be prompted for your password. Enter your password, and a Command Prompt 
window will appear. The Windows service that executes runas commands creates an 
unnamed job to contain all processes (so that it can terminate these processes at logoff 
time).

3. Run Process Explorer, open the Options menu, choose Configure Colors, and check 
the Jobs entry. Notice that the Cmd.exe process and its child ConHost.exe process are 
highlighted as part of a job, as shown here:

4. Double click the Cmd.exe or ConHost.Exe process to open its properties dialog box. 
Then click the Job tab to see information about the job this process is part of:
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5. From the command prompt, run Notepad.exe.

6. Open Notepad’s process and look at the Job tab. Notepad is running under the same 
job. This is because cmd.exe does not use the CREATE_BREAKAWAY_FROM_JOB creation 
flag. In the case of nested jobs, the Job tab shows the processes in the direct job this 
process belongs to and all processes in child jobs.

7. Run the kernel debugger on the live system and type the !process command to find the 
notepad.exe and show its basic info:

lkd> !process 0 1 notepad.exe 
PROCESS ffffe001eacf2080 
    SessionId: 1  Cid: 3078    Peb: 7f4113b000  ParentCid: 05dc 
    DirBase: 4878b3000  ObjectTable: ffffc0015b89fd80  HandleCount: 188. 
    Image: notepad.exe 
    ... 
    BasePriority                      8 
    CommitCharge                      671 
    Job                               ffffe00189aec460

8. Note the Job pointer, which is non-zero. To get a summary of the job, type the !job 
debugger command:

lkd> !job ffffe00189aec460 
Job at ffffe00189aec460 
  Basic Accounting Information 
    TotalUserTime:             0x0 
    TotalKernelTime:           0x0 
    TotalCycleTime:            0x0 
    ThisPeriodTotalUserTime:   0x0 
    ThisPeriodTotalKernelTime: 0x0 
    TotalPageFaultCount:       0x0 
    TotalProcesses:            0x3 
    ActiveProcesses:           0x3 
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    FreezeCount:               0 
    BackgroundCount:           0 
    TotalTerminatedProcesses:  0x0 
    PeakJobMemoryUsed:         0x10db 
    PeakProcessMemoryUsed:     0xa56 
  Job Flags 
  Limit Information (LimitFlags: 0x0) 
  Limit Information (EffectiveLimitFlags: 0x0)

9. Notice the ActiveProcesses member set to 3 (cmd.exe, conhost.exe, and notepad.exe). 
You can use flag 2 after the !job command to see a list of the processes that are part of 
the job:

lkd> !job ffffe00189aec460 2 
... 
Processes assigned to this job: 
    PROCESS ffff8188d84dd780 
        SessionId: 1  Cid: 5720    Peb: 43bedb6000  ParentCid: 13cc 
        DirBase: 707466000  ObjectTable: ffffbe0dc4e3a040  HandleCount: 
<Data Not Accessible> 
        Image: cmd.exe 
 
    PROCESS ffff8188ea077540 
        SessionId: 1  Cid: 30ec    Peb: dd7f17c000  ParentCid: 5720 
        DirBase: 75a183000  ObjectTable: ffffbe0dafb79040  HandleCount: 
<Data Not Accessible> 
        Image: conhost.exe 
 
    PROCESS ffffe001eacf2080 
        SessionId: 1  Cid: 3078    Peb: 7f4113b000  ParentCid: 05dc 
    DirBase: 4878b3000  ObjectTable: ffffc0015b89fd80  HandleCount: 188. 
    Image: notepad.exe

10. You can also use the dt command to display the job object and see the additional fields 
shown about the job, such as its member level and its relations to other jobs in case of 
nesting (parent job, siblings, and root job):

lkd> dt nt!_ejob ffffe00189aec460 
   +0x000 Event            : _KEVENT 
   +0x018 JobLinks         : _LIST_ENTRY [ 0xffffe001'8d93e548 - 
0xffffe001'df30f8d8 ] 
   +0x028 ProcessListHead  : _LIST_ENTRY [ 0xffffe001'8c4924f0 - 
0xffffe001'eacf24f0 ] 
   +0x038 JobLock          : _ERESOURCE 
   +0x0a0 TotalUserTime    : _LARGE_INTEGER 0x0 
   +0x0a8 TotalKernelTime  : _LARGE_INTEGER 0x2625a 
   +0x0b0 TotalCycleTime   : _LARGE_INTEGER 0xc9e03d 
   ... 
   +0x0d4 TotalProcesses   : 4 
   +0x0d8 ActiveProcesses  : 3 
   +0x0dc TotalTerminatedProcesses : 0 
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... 
   +0x428 ParentJob        : (null)  
   +0x430 RootJob          : 0xffffe001'89aec460 _EJOB 
... 
   +0x518 EnergyValues     : 0xffffe001'89aec988 _PROCESS_ENERGY_VALUES 
   +0x520 SharedCommitCharge : 0x5e8

Windows containers (server silos)
The rise of cheap, ubiquitous cloud computing has led to another major Internet revolution, in which 
building online services and/or back-end servers for mobile applications is as easy as clicking a button 
on one of the many cloud providers. But as competition among cloud providers has increased, and 
as the need to migrate from one to another, or even from a cloud provider to a datacenter, or from a 
datacenter to a high-end personal server, has grown, it has become increasingly important to have 
portable back ends, which can be deployed and moved around as needed without the costs associated 
with running them in a virtual machine. 

It is to satisfy this need that technologies such as Docker were created. These technologies essen-
tially allow the deployment of an “application in a box” from one Linux distribution to another without 
worrying about the complicated deployment of a local installation or the resource consumption of a 
virtual machine. Originally a Linux-only technology, Microsoft has helped bring Docker to Windows 10 
as part of the Anniversary Update. It can work in two modes:

 ■ By deploying an application in a heavyweight, but fully isolated, Hyper-V container, which is 
supported on both client and server scenarios

 ■ By deploying an application in a lightweight, OS-isolated, server silo container, which is  
currently supported only in server scenarios due to licensing reasons

This latter technology, which we will investigate in this section, has resulted in deep changes in the 
operating system to support this capability. Note that, as mentioned, the ability for client systems to 
create server silo containers exists, but is currently disabled. Unlike a Hyper-V container, which lever-
ages a true virtualized environment, a server silo container provides a second “instance” of all user-
mode components while running on top of the same kernel and drivers. At the cost of some security, 
this provides a much more lightweight container environment.

Job objects and silos
The ability to create a silo is associated with a number of undocumented subclasses as part of the 
SetJobObjectInformation API. In other words, a silo is essentially a super-job, with additional rules 
and capabilities beyond those we’ve seen so far. In fact, a job object can be used for the isolation and 
resource management capabilities we’ve looked at as well as used to create a silo. Such jobs are called 
hybrid jobs by the system.
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In practice, job objects can actually host two types of silos: application silos (which are currently used 
to implement the Desktop Bridge are not covered in this section, and are left for Chapter 9 in Part 2) 
and server silos, which are the ones used for Docker container support.

Silo isolation
The first element that defines a server silo is the existence of a custom object manager root direc-
tory object (\). (The object manager is discussed in Chapter 8 in Part 2.) Even though we have not yet 
learned about this mechanism, suffice it to say that all application-visible named objects (such as files, 
registry keys, events, mutexes, RPC ports, and more) are hosted in a root namespace, which allows ap-
plications to create, locate, and share these objects among themselves. 

The ability for a server silo to have its own root means that all access to any named object can be 
controlled. This is done in one of three ways:

 ■ By creating a new copy of an existing object to provide an alternate access to it from within the 
silo

 ■ By creating a symbolic link to an existing object to provide direct access to it

 ■ By creating a brand-new object that only exists within the silo, such as the ones a containerized 
application would use

This initial ability is then combined with the Virtual Machine Compute (Vmcompute) service (used 
by Docker), which interacts with additional components to provide a full isolation layer:

 ■ A base Windows image (WIM) file called base OS This provides a separate copy of the 
operating system. At this time, Microsoft provides a Server Core image as well as a Nano Server 
image.

 ■ The Ntdll.dll library of the host OS This overrides the one in the base OS image. This is 
due to the fact that, as mentioned, server silos leverage the same host kernel and drivers, and 
because Ntdll.dll handles system calls, it is the one user-mode component that must be reused 
from the host OS.

 ■ A sandbox virtual file system provided by the Wcifs.sys filter driver This allows tempo-
rary changes to be made to the file system by the container without affecting the underlying 
NTFS drive, and which can be wiped once the container is shut down.

 ■ A sandbox virtual registry provided by the VReg kernel component This allows for the 
provision of a temporary set of registry hives (as well as another layer of namespace isolation, as 
the object manager root namespace only isolates the root of the registry, not the registry hives 
themselves).

 ■ The Session Manager (Smss.exe) This is now used to create additional service sessions or 
console sessions, which is a new capability required by the container support. This extends 
Smss to handle not only additional user sessions, but also sessions needed for each container 
launched.
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The architecture of such containers with the preceding components is shown in Figure 3-16.

FIGURE 3-16 Containers architecture.

Silo isolation boundaries
The aforementioned components provide the user-mode isolation environment. However, as the host 
Ntdll.dll component is used, which talks to the host kernel and drivers, it is important to create addi-
tional isolation boundaries, which the kernel provides to differentiate one silo from another. As such, 
each server silo will contain its own isolated:

 ■ Micro shared user data (SILO_USER_SHARED_DATA in the symbols) This contains the custom 
system path, session ID, foreground PID, and product type/suite. These are elements of the 
original KUSER_SHARED_DATA that cannot come from the host, as they reference information 
relevant to the host OS image instead of the base OS image, which must be used instead. Vari-
ous components and APIs were modified to read the silo shared data instead of the user shared 
data when they look up such data. Note that the original KUSER_SHARED_DATA remains at its 
usual address with its original view of the host details, so this is one way that host state “leaks” 
inside container state.

 ■ Object directory root namespace This has its own \SystemRoot symlink, \Device directory 
(which is how all user-mode components access device drivers indirectly), device map and DOS 
device mappings (which is how user-mode applications access network mapped drivers, for 
example), \Sessions directory, and more.

 ■ API Set mapping This is based on the API Set schema of the base OS WIM, and not the one 
stored on the host OS file system. As you’ve seen, the loader uses API Set mappings to deter-
mine which DLL, if any, implements a certain function. This can be different from one SKU to 
another, and applications must see the base OS SKU, not the host’s.
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 ■ Logon session This is associated with the SYSTEM and Anonymous local unique ID (LUID), plus 
the LUID of a virtual service account describing the user in the silo. This essentially represents the 
token of the services and application that will be running inside the container service session 
created by Smss. For more information on LUIDs and logon sessions, see Chapter 7.

 ■ ETW tracing and logger contexts These are for isolating ETW operations to the silo and not 
exposing or leaking states between the containers and/or the host OS itself. (See Chapter 9 in 
Part 2 for more on ETW.)

Silo contexts
While these are the isolation boundaries provided by the core host OS kernel itself, other components 
inside the kernel, as well as drivers (including third party), can add contextual data to silos by using 
the PsCreateSiloContext API to set custom data associated with a silo or by associating an existing 
object with a silo. Each such silo context will utilize a silo slot index that will be inserted in all running, 
and future, server silos, storing a pointer to the context. The system provides 32 built-in system-wide 
storage slot indexes, plus 256 expansion slots, providing lots of extensibility options.

As each server silo is created, it receives its own silo-local storage (SLS) array, much like a thread 
has thread-local storage (TLS). Within this array, the different entries will correspond to slot indices 
that have been allocated to store silo contexts. Each silo will have a different pointer at the same slot 
index, but will always store the same context at that index. (For example, driver “Foo” will own index 5 
in all silos, and can use it to store a different pointer/context in each silo.) In some cases, built-in kernel 
components, such as the object manager, security reference monitor (SRM), and Configuration Man-
ager use some of these slots, while other slots are used by inbox drivers (such as the Ancillary Function 
Driver for Winsock, Afd.sys). 

Just like when dealing with the server silo shared user data, various components and APIs have been 
updated to access data by getting it from the relevant silo context instead of what used to be a global 
kernel variable. As an example, because each container will now host its own Lsass.exe process, and 
since the kernel’s SRM needs to own a handle to the Lsass.exe process (see Chapter 7 for more informa-
tion on Lsass and the SRM), this can no longer be a singleton stored in a global variable. As such, the 
handle is now accessed by the SRM through querying the silo context of the active server silo, and  
getting the variable from the data structure that is returned.

This leads to an interesting question: What happens with the Lsass.exe that is running on the host 
OS itself? How will the SRM access the handle, as there’s no server silo for this set of processes and 
session (that is, session 0 itself)? To solve this conundrum, the kernel now implements a root host silo. 
In other words, the host itself is presumed to be part of a silo as well! This isn’t a silo in the true sense of 
the word, but rather a clever trick to make querying silo contexts for the current silo work, even when 
there is no current silo. This is implemented by storing a global kernel variable called PspHostSilo-
Globals, which has its own Slot Local Storage Array, as well as other silo contexts used by built-in 
kernel components. When various silo APIs are called with a NULL pointer, this "NULL" is instead treated  
as “no silo—i.e., use the host silo.”
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EXPERIMENT: Dumping SRM silo context for the host silo
As shown, even though your Windows 10 system may not be hosting any server silos, especially if 
it is a client system, a host silo still exists, which contains the silo-aware isolated contexts used by 
the kernel. The Windows Debugger has an extension, !silo, which can be used with the –g Host 
parameters as follows: !silo –g Host. You should see output similar to the one below:

lkd> !silo -g Host 
Server silo globals fffff801b73bc580: 
                        Default Error Port: ffffb30f25b48080 
                        ServiceSessionId  : 0 
                        Root Directory    : 00007fff00000000 '' 
                        State             : Running

In your output, the pointer to the silo globals should be hyperlinked, and clicking it will result 
in the following command execution and output:

 
lkd> dx -r1 (*((nt!_ESERVERSILO_GLOBALS *)0xfffff801b73bc580)) 
(*((nt!_ESERVERSILO_GLOBALS *)0xfffff801b73bc580))                 [Type: _
ESERVERSILO_GLOBALS] 
    [+0x000] ObSiloState      [Type: _OBP_SILODRIVERSTATE] 
    [+0x2e0] SeSiloState      [Type: _SEP_SILOSTATE] 
    [+0x310] SeRmSiloState    [Type: _SEP_RM_LSA_CONNECTION_STATE] 
    [+0x360] CmSiloState      : 0xffffc308870931b0 [Type: _CMP_SILO_CONTEXT *] 
    [+0x368] EtwSiloState     : 0xffffb30f236c4000 [Type: _ETW_SILODRIVERSTATE *]  
...

Now click the SeRmSiloState field, which will expand to show you, among other things, a 
pointer to the Lsass.exe process:

lkd> dx -r1 ((ntkrnlmp!_SEP_RM_LSA_CONNECTION_STATE *)0xfffff801b73bc890) 
((ntkrnlmp!_SEP_RM_LSA_CONNECTION_STATE *)0xfffff801b73bc890)       : 
0xfffff801b73bc890 [Type: _SEP_RM_LSA_CONNECTION_STATE *] 
    [+0x000] LsaProcessHandle : 0xffffffff80000870 [Type: void *] 
    [+0x008] LsaCommandPortHandle : 0xffffffff8000087c [Type: void *] 
    [+0x010] SepRmThreadHandle : 0x0 [Type: void *] 
    [+0x018] RmCommandPortHandle : 0xffffffff80000874 [Type: void *]

Silo monitors
If kernel drivers have the capability to add their own silo contexts, how do they first know what silos are 
executing, and what new silos are created as containers are launched? The answer lies in the silo moni-
tor facility, which provides a set of APIs to receive notifications whenever a server silo is created and/
or terminated (PsRegisterSiloMonitor, PsStartSiloMonitor, PsUnregisterSiloMonitor), as well 
as notifications for any already-existing silos. Then, each silo monitor can retrieve its own slot index by 
calling PsGetSiloMonitorContextSlot, which it can then use with the PsInsertSiloContext, PsRe-
placeSiloContext, and PsRemoveSiloContext functions as needed. Additional slots can be allocated 
with PsAllocSiloContextSlot, but this would be needed only if a component would wish to store two 
contexts for some reason. Additionally, drivers can also use the PsInsertPermanentSiloContext or  
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PsMakeSiloContextPermanent APIs to use “permanent” silo contexts, which are not reference counted 
and are not tied to the lifetime of the server silo or the number of silo context getters. Once inserted, such 
silo contexts can be retrieved with PsGetSiloContext and/or PsGetPermanentSiloContext.

EXPERIMENT: Silo monitors and contexts
To understand how silo monitors are used, and how they store silo contexts, let’s take a look 
at the Ancillary Function Driver for Winsock (Afd.sys) and its monitor. First, let’s dump the data 
structure that represents the monitor. Unfortunately, it is not in the symbol files, so we must do 
this as raw data.

lkd> dps poi(afd!AfdPodMonitor) 
ffffe387'a79fc120  ffffe387'a7d760c0 
ffffe387'a79fc128  ffffe387'a7b54b60 
ffffe387'a79fc130  00000009'00000101 
ffffe387'a79fc138  fffff807'be4b5b10 afd!AfdPodSiloCreateCallback 
ffffe387'a79fc140  fffff807'be4bee40 afd!AfdPodSiloTerminateCallback

Now get the slot (9 in this example) from the host silo. Silos store their SLS in a field called 
Storage, which contains an array of data structures (slot entries), each storing a pointer, and some 
flags. We are multiplying the index by 2 to get the offset of the right slot entry, then accessing 
the second field (+1) to get the pointer to the context pointer:

lkd> r? @$t0 = (nt!_ESERVERSILO_GLOBALS*)@@masm(nt!PspHostSiloGlobals) 
lkd> ?? ((void***)@$t0->Storage)[9 * 2 + 1] 
void ** 0xffff988f'ab815941

Note that the permanent flag (0x2) is ORed into the pointer, mask it out, and then use the 
!object extension to confirm that this is truly a silo context.

lkd> !object (0xffff988f'ab815941 & -2) 
Object: ffff988fab815940  Type: (ffff988faaac9f20) PsSiloContextNonPaged

Creation of a server silo
When a server silo is created, a job object is first used, because as mentioned, silos are a feature of job 
objects. This is done through the standard CreateJobObject API, which was modified as part of the 
Anniversary Update to now have an associated job ID, or JID. The JID comes from the same pool of 
numbers as the process and thread ID (PID and TID), which is the client ID (CID) table. As such, a JID 
is unique among not only other jobs, but also other processes and threads. Additionally, a container 
GUID is automatically created.

Next, the SetInformationJobObject API is used, with the create silo information class. This results 
in the Silo flag being set inside of the EJOB executive object that represents the job, as well as the al-
location of the SLS slot array we saw earlier in the Storage member of EJOB. At this point, we have an 
application silo.
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After this, the root object directory namespace is created with another information class and call  
to SetInformationJobObject. This new class requires the trusted computing base (TCB) privilege. 
As silos are normally created only by the Vmcompute service, this is to ensure that virtual object 
namespaces are not used maliciously to confuse applications and potentially break them. When this 
namespace is created, the object manager creates or opens a new Silos directory under the real host 
root (\) and appends the JID to create a new virtual root (e.g., \Silos\148\). It then creates the Kernel-
Objects, ObjectTypes, GLOBALROOT, and DosDevices objects. The root is then stored as a silo context 
with whatever slot index is in PsObjectDirectorySiloContextSlot, which was allocated by the object 
manager at boot.

The next step is to convert this silo into a server silo, which is done with yet another call to Set-
InformationJobObject and another information class. The PspConvertSiloToServerSilo function 
in the kernel now runs, which initializes the ESERVERSILO_GLOBALS structure we saw earlier as part of 
the experiment dumping the PspHostSiloGlobals with the !silo command. This initializes the silo 
shared user data, API Set mapping, SystemRoot, and the various silo contexts, such as the one used 
by the SRM to identify the Lsass.exe process. While conversion is in progress, silo monitors that have 
registered and started their callbacks will now receive a notification, such that they can add their own 
silo context data.

The final step, then, is to “boot up” the server silo by initializing a new service session for it. You can 
think of this as session 0, but for the server silo. This is done through an ALPC message sent to Smss 
SmApiPort, which contains a handle to the job object created by Vmcompute, which has now become 
a server silo job object. Just like when creating a real user session, Smss will clone a copy of itself, except 
this time, the clone will be associated with the job object at creation time. This will attach this new 
Smss copy to all the containerized elements of the server silo. Smss will believe this is session 0, and will 
perform its usual duties, such as launching Csrss.exe, Wininit.exe, Lsass.exe, etc. The “boot-up” process 
will continue as normal, with Wininit.exe then launching the Service Control Manager (Services.exe), 
which will then launch all the automatic start services, and so on. New applications can now execute 
in the server silo, which will run with a logon session associated with a virtual service account LUID, as 
described earlier.

Ancillary functionality
You may have noticed that the short description we’ve seen so far would obviously not result in this 
“boot” process actually succeeding. For example, as part of its initialization, it will want to create a 
named pipe called ntsvcs, which will require communicating with \Device\NamedPipe, or as Services.
exe sees it, \Silos\JID\Device\NamedPipe. But no such device object exists!

As such, in order for device driver access to function, drivers must be enlightened and register their 
own silo monitors, which will then use the notifications to create their own per-silo device objects. The 
kernel provides an API, PsAttachSiloToCurrentThread (and matching PsDetachSiloFromCurrent-
Thread), which temporarily sets the Silo field of the ETHREAD object to the passed-in job object. This 
will cause all access, such as that to the object manager, to be treated as if it were coming from the silo. 
The named pipe driver, for example, can use this functionality to then create a NamedPipe object under 
the \Device namespace, which will now be part of \Silos\JID\.
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Another question is this: If applications launch in essentially a “service” session, how can they be 
interactive and process input and output? First, it is important to note that there is no GUI possible or 
permitted when launching under a Windows container, and attempting to use Remote Desktop (RDP) 
to access a container will also be impossible. As such, only command-line applications can execute. 
But even such applications normally need an “interactive” session. So how can those function? The 
secret lies in a special host process, CExecSvc.exe, which implements the container execution service. 
This service uses a named pipe to communicate with the Docker and Vmcompute services on the host, 
and is used to launch the actual containerized applications in the session. It is also used to emulate the 
console functionality that is normally provided by Conhost.exe, piping the input and output through 
the named pipe to the actual command prompt (or PowerShell) window that was used in the first place 
to execute the docker command on the host. This service is also used when using commands such as 
docker cp to transfer files from or to the container.

Container template
Even if we take into account all the device objects that can be created by drivers as silos are created, 
there are still countless other objects, created by the kernel as well as other components, with which 
services running in session 0 are expected to communicate, and vice-versa. In user mode, there is no 
silo monitor system that would somehow allow components to support this need, and forcing every 
driver to always create a specialized device object to represent each silo wouldn’t make sense.

If a silo wants to play music on the sound card, it shouldn’t have to use a separate device object to 
represent the exact same sound card as every other silo would access, as well as the host itself. This 
would only be needed if, say, per-silo object sound isolation was required. Another example is AFD. 
Although it does use a silo monitor, this is to identify which user-mode service hosts the DNS client that 
it needs to talk to service kernel-mode DNS requests, which will be per-silo, and not to create separate 
\Silos\JID\Device\Afd objects, as there is a single network/Winsock stack in the system.

Beyond drivers and objects, the registry also contains various pieces of global information that must 
be visible and exist across all silos, which the VReg component can then provide sandboxing around.

To support all these needs, the silo namespace, registry, and file system are defined by a specialized 
container template file, which is located in %SystemRoot%\System32\Containers\wsc.def by default, 
once the Windows Containers feature is enabled in the Add/Remove Windows Features dialog box. 
This file describes the object manager and registry namespace and rules surrounding it, allowing the 
definition of symbolic links as needed to the true objects on the host. It also describes which job object, 
volume mount points, and network isolation policies should be used. In theory, future uses of silo ob-
jects in the Windows operating system could allow different template files to be used to provide other 
kinds of containerized environments. The following is an excerpt from wsc.def on a system for which 
containers are enabled:
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<!-- This is a silo definition file for cmdserver.exe --> 
<container> 
    <namespace> 
        <ob shadow="false"> 
            <symlink name="FileSystem" path="\FileSystem" scope="Global" /> 
            <symlink name="PdcPort" path="\PdcPort" scope="Global" /> 
            <symlink name="SeRmCommandPort" path="\SeRmCommandPort" scope="Global" /> 
            <symlink name="Registry" path="\Registry" scope="Global" /> 
            <symlink name="Driver" path="\Driver" scope="Global" /> 
            <objdir name="BaseNamedObjects" clonesd="\BaseNamedObjects" shadow="false"/> 
            <objdir name="GLOBAL??" clonesd="\GLOBAL??" shadow="false"> 
                <!-- Needed to map directories from the host --> 
                <symlink name="ContainerMappedDirectories" path="\
ContainerMappedDirectories" scope="Local" /> 
 
                <!-- Valid links to \Device --> 
                <symlink name="WMIDataDevice" path="\Device\WMIDataDevice" scope="Local" 
/> 
                <symlink name="UNC" path="\Device\Mup" scope="Local" /> 
... 
            </objdir> 
            <objdir name="Device" clonesd="\Device" shadow="false"> 
                <symlink name="Afd" path="\Device\Afd" scope="Global" /> 
                <symlink name="ahcache" path="\Device\ahcache" scope="Global" /> 
                <symlink name="CNG" path="\Device\CNG" scope="Global" /> 
                <symlink name="ConDrv" path="\Device\ConDrv" scope="Global" /> 
... 
        <registry> 
            <load 
                key="$SiloHivesRoot$\Silo$TopLayerName$Software_Base" 
                path="$TopLayerPath$\Hives\Software_Base" 
                ReadOnly="true" 
                /> 
... 
                <mkkey 
                    name="ControlSet001" 
                    clonesd="\REGISTRY\Machine\SYSTEM\ControlSet001" 
                    /> 
                <mkkey 
                    name="ControlSet001\Control" 
                    clonesd="\REGISTRY\Machine\SYSTEM\ControlSet001\Control" 
                    />

Conclusion

This chapter examined the structure of processes, including the way processes are created and de-
stroyed. We’ve seen how jobs can be used to manage a group of processes as a unit and how server 
silos can be used to usher in a new era of container support to Windows Server versions. The next 
chapter delves into threads—their structure and operation, how they’re scheduled for execution, and 
the various ways they can be manipulated and used.
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C H A P T E R  4

Threads

This chapter explains the data structures and algorithms that deal with threads and thread schedul-
ing in Windows. The first section shows how to create threads. Then the internals of threads and 

thread scheduling are described. The chapter concludes with a discussion of thread pools.

Creating threads

Before discussing the internal structures used to manage threads, let’s take a look at creating threads 
from an API perspective to give a sense of the steps and arguments involved.

The simplest creation function in user mode is CreateThread. This function creates a thread in the 
current process, accepting the following arguments:

 ■ An optional security attributes structure This specifies the security descriptor to attach to 
the newly created thread. It also specifies whether the thread handle is to be created as inherit-
able. (Handle inheritance is discussed in Chapter 8, “System mechanisms,” in Windows Internals 
Part 2.)

 ■ An optional stack size If zero is specified, a default is taken from the executable’s header. 
This always applies to the first thread in a user-mode process. (Thread’s stack is discussed 
further in Chapter 5, “Memory management.”)

 ■ A function pointer This serves as the entry point for the new thread’s execution.

 ■ An optional argument This is to pass to the thread’s function.

 ■ Optional flags One controls whether the thread starts suspended (CREATE_SUSPENDED). The 
other controls the interpretation of the stack size argument (initial committed size or maximum 
reserved size).

On successful completion, a non-zero handle is returned for the new thread and, if requested by the 
caller, the unique thread ID.

An extended thread creation function is CreateRemoteThread. This function accepts an extra argu-
ment (the first), which is a handle to a target process where the thread is to be created. You can use this 
function to inject a thread into another process. One common use of this technique is for a debugger 
to force a break in a debugged process. The debugger injects the thread, which immediately causes 



194 CHAPTER 4 Threads

a breakpoint by calling the DebugBreak function. Another common use of this technique is for one 
process to obtain internal information about another process, which is easier when running within the 
target process context (for example, the entire address space is visible). This could be done for legiti-
mate or malicious purposes.

To make CreateRemoteThread work, the process handle must have been obtained with enough  
access rights to allow such operation. As an extreme example, protected processes cannot be injected 
in this way because handles to such processes can be obtained with very limited rights only.

The final function worth mentioning here is CreateRemoteThreadEx, which is a superset of Create-
Thread and CreateRemoteThread. In fact, the implementation of CreateThread and CreateRemote-
Thread simply calls CreateRemoteThreadEx with the appropriate defaults. CreateRemoteThreadEx 
adds the ability to provide an attribute list (similar to the STARTUPINFOEX structure’s role with an 
additional member over STARTUPINFO when creating processes). Examples of attributes include setting 
the ideal processor and group affinity (both discussed later in this chapter).

If all goes well, CreateRemoteThreadEx eventually calls NtCreateThreadEx in Ntdll.dll. This makes 
the usual transition to kernel mode, where execution continues in the executive function NtCreate-
ThreadEx. There, the kernel mode part of thread creation occurs (described later in this chapter, in the 
“Birth of a thread” section).

Creating a thread in kernel mode is achieved with the PsCreateSystemThread function (document-
ed in the WDK). This is useful for drivers that need independent work to be processes within the system 
process (meaning it’s not associated with any particular process). Technically, the function can be used 
to create a thread under any process, which is less useful for drivers.

Exiting a kernel thread’s function does not automatically destroy the thread object. Instead, driv-
ers must call PsTerminateSystemThread from within the thread function to properly terminate the 
thread. Consequently, this function never returns.

Thread internals

This section discusses the internal structures used within the kernel (and some in user mode) to man-
age a thread. Unless explicitly stated otherwise, you can assume that anything in this section applies to 
both user-mode threads and kernel-mode system threads.

Data structures
At the operating-system (OS) level, a Windows thread is represented by an executive thread object. The 
executive thread object encapsulates an ETHREAD structure, which in turn contains a KTHREAD structure 
as its first member. These are illustrated in Figure 4-1 (ETHREAD) and Figure 4-2 (KTHREAD). The ETHREAD 
structure and the other structures it points to exist in the system address space. The only exception is 
the thread environment block (TEB), which exists in the process address space (similar to a PEB, because 
user-mode components need to access it).
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FIGURE 4-1 Important fields of the executive thread structure (ETHREAD).

FIGURE 4-2 Important fields of the kernel thread structure (KTHREAD).

The Windows subsystem process (Csrss) maintains a parallel structure for each thread created in 
a Windows subsystem application, called the CSR_THREAD. For threads that have called a Windows 
subsystem USER or GDI function, the kernel-mode portion of the Windows subsystem (Win32k.sys) 
maintains a per-thread data structure (W32THREAD) that the KTHREAD structure points to.
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Note The fact that the executive, high-level, graphics-related, Win32k thread structure is 
pointed to by KTHREAD instead of the ETHREAD appears to be a layer violation or oversight in 
the standard kernel’s abstraction architecture. The scheduler and other low-level components 
do not use this field.

Most of the fields illustrated in Figure 4-1 are self-explanatory. The first member of the ETHREAD is 
called Tcb. This is short for thread control block, which is a structure of type KTHREAD. Following that are 
the thread identification information, the process identification information (including a pointer to the 
owning process so that its environment information can be accessed), security information in the form 
of a pointer to the access token and impersonation information, fields relating to Asynchronous Local 
Procedure Call (ALPC) messages, pending I/O requests (IRPs) and Windows 10–specific fields related to 
power management (described in Chapter 6 , “I/O system”) and CPU Sets (described later in this chapter). 
Some of these key fields are covered in more detail elsewhere in this book. For more details on the inter-
nal structure of an ETHREAD structure, you can use the kernel debugger dt command to display its format.

Let’s take a closer look at two of the key thread data structures referred to in the preceding text: 
ETHREAD and KTHREAD. The KTHREAD structure (which is the Tcb member of the ETHREAD) contains  
information that the Windows kernel needs to perform thread scheduling, synchronization, and time-
keeping functions.

EXPERIMENT: Displaying ETHREAD and KTHREAD structures
You can display the ETHREAD and KTHREAD structures with the dt command in the kernel debugger. 
The following output shows the format of an ETHREAD on a 64-bit Windows 10 system:

lkd> dt nt!_ethread 
   +0x000 Tcb              : _KTHREAD 
   +0x5d8 CreateTime       : _LARGE_INTEGER 
   +0x5e0 ExitTime         : _LARGE_INTEGER 
... 
   +0x7a0 EnergyValues     : Ptr64 _THREAD_ENERGY_VALUES 
   +0x7a8 CmCellReferences : Uint4B 
   +0x7b0 SelectedCpuSets  : Uint8B 
   +0x7b0 SelectedCpuSetsIndirect : Ptr64 Uint8B 
   +0x7b8 Silo             : Ptr64 _EJOB

You can display the KTHREAD with a similar command or by typing dt nt!_ETHREAD Tcb, as 
shown in the experiment “Displaying the format of an EPROCESS structure“ in Chapter 3, “Pro-
cesses and jobs.”

lkd> dt nt!_kthread 
   +0x000 Header           : _DISPATCHER_HEADER 
   +0x018 SListFaultAddress : Ptr64 Void 
   +0x020 QuantumTarget    : Uint8B 
   +0x028 InitialStack     : Ptr64 Void 
   +0x030 StackLimit       : Ptr64 Void 
   +0x038 StackBase        : Ptr64 Void 
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   +0x040 ThreadLock       : Uint8B 
   +0x048 CycleTime        : Uint8B 
   +0x050 CurrentRunTime   : Uint4B 
... 
   +0x5a0 ReadOperationCount : Int8B 
   +0x5a8 WriteOperationCount : Int8B 
   +0x5b0 OtherOperationCount : Int8B 
   +0x5b8 ReadTransferCount : Int8B 
   +0x5c0 WriteTransferCount : Int8B 
   +0x5c8 OtherTransferCount : Int8B 
   +0x5d0 QueuedScb        : Ptr64 _KSCB

EXPERIMENT: Using the kernel debugger !thread command
The kernel debugger !thread command dumps a subset of the information in the thread data 
structures. Some key elements of the information the kernel debugger displays can’t be displayed 
by any utility, including the following information:

 ■ Internal structure addresses

 ■ Priority details

 ■ Stack information

 ■ The pending I/O request list

 ■ For threads in a wait state, the list of objects the thread is waiting for

To display thread information, use either the !process command (which displays all the 
threads of a process after displaying the process information) or the !thread command with the 
address of a thread object to display a specific thread.

Let’s find all instances of explorer.exe:

lkd> !process 0 0 explorer.exe 
PROCESS ffffe00017f3e7c0 
    SessionId: 1  Cid: 0b7c    Peb: 00291000  ParentCid: 0c34 
    DirBase: 19b264000  ObjectTable: ffffc00007268cc0  HandleCount: 2248. 
    Image: explorer.exe 
 
PROCESS ffffe00018c817c0 
    SessionId: 1  Cid: 23b0    Peb: 00256000  ParentCid: 03f0 
    DirBase: 2d4010000  ObjectTable: ffffc0001aef0480  HandleCount: 2208. 
    Image: explorer.exe

We’ll select one of the instances and show its threads:

lkd> !process ffffe00018c817c0 2 
PROCESS ffffe00018c817c0 
    SessionId: 1  Cid: 23b0    Peb: 00256000  ParentCid: 03f0 
    DirBase: 2d4010000  ObjectTable: ffffc0001aef0480  HandleCount: 2232. 
    Image: explorer.exe 
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        THREAD ffffe0001ac3c080  Cid 23b0.2b88  Teb: 0000000000257000 Win32Thread: 
ffffe0001570ca20 WAIT: (UserRequest) UserMode Non-Alertable 
            ffffe0001b6eb470  SynchronizationEvent 
 
        THREAD ffffe0001af10800  Cid 23b0.2f40  Teb: 0000000000265000 Win32Thread: 
ffffe000156688a0 WAIT: (UserRequest) UserMode Non-Alertable 
            ffffe000172ad4f0  SynchronizationEvent 
            ffffe0001ac26420  SynchronizationEvent 
 
        THREAD ffffe0001b69a080  Cid 23b0.2f4c  Teb: 0000000000267000 Win32Thread: 
ffffe000192c5350 WAIT: (UserRequest) UserMode Non-Alertable 
            ffffe00018d83c00  SynchronizationEvent 
            ffffe0001552ff40  SynchronizationEvent 
 
... 
 
        THREAD ffffe00023422080  Cid 23b0.3d8c  Teb: 00000000003cf000 Win32Thread: 
ffffe0001eccd790 WAIT: (WrQueue) UserMode Alertable 
            ffffe0001aec9080  QueueObject 
 
        THREAD ffffe00023f23080  Cid 23b0.3af8  Teb: 00000000003d1000 Win32Thread: 
0000000000000000 WAIT: (WrQueue) UserMode Alertable 
            ffffe0001aec9080  QueueObject 
 
        THREAD ffffe000230bf800  Cid 23b0.2d6c  Teb: 00000000003d3000 Win32Thread: 
0000000000000000 WAIT: (WrQueue) UserMode Alertable 
            ffffe0001aec9080  QueueObject 
 
        THREAD ffffe0001f0b5800  Cid 23b0.3398  Teb: 00000000003e3000 Win32Thread: 
0000000000000000 WAIT: (UserRequest) UserMode Alertable 
            ffffe0001d19d790  SynchronizationEvent 
            ffffe00022b42660  SynchronizationTimer

The list of threads is truncated for the sake of space. Each thread shows its address (ETHREAD), 
which can be passed to the !thread command; its client ID (Cid)–process ID and thread ID (the 
process ID for all the preceding threads is the same, as they are part of the same explorer.exe 
process); the Thread Environment Block (TEB, discussed momentarily); and the thread state (most 
should be in the Wait state, with the reason for the wait in parentheses). The next line may show 
a list of synchronization objects the threads is waiting on.

To get more information on a specific thread, pass its address to the !thread command:

lkd> !thread ffffe0001d45d800 
THREAD ffffe0001d45d800  Cid 23b0.452c  Teb: 000000000026d000 Win32Thread: 
ffffe0001aace630 WAIT: (UserRequest) UserMode Non-Alertable 
    ffffe00023678350  NotificationEvent 
    ffffe00022aeb370  Semaphore Limit 0xffff 
    ffffe000225645b0  SynchronizationEvent 
Not impersonating 
DeviceMap                 ffffc00004f7ddb0 
Owning Process            ffffe00018c817c0       Image:         explorer.exe 
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Attached Process          N/A            Image:         N/A 
Wait Start TickCount      7233205        Ticks: 270 (0:00:00:04.218) 
Context Switch Count      6570           IdealProcessor: 7              
UserTime                  00:00:00.078 
KernelTime                00:00:00.046 
Win32 Start Address 0c 
Stack Init ffffd000271d4c90 Current ffffd000271d3f80 
Base ffffd000271d5000 Limit ffffd000271cf000 Call 0000000000000000 
Priority 9 BasePriority 8 PriorityDecrement 0 IoPriority 2 PagePriority 5 
GetContextState failed, 0x80004001 
Unable to get current machine context, HRESULT 0x80004001 
Child-SP          RetAddr           : Args to Child                      : Call Site 
ffffd000'271d3fc0 fffff803'bef086ca : 00000000'00000000 00000000'00000001 
00000000'00000000 00000000'00000000 : nt!KiSwapContext+0x76  
ffffd000'271d4100 fffff803'bef08159 : ffffe000'1d45d800 fffff803'00000000 
ffffe000'1aec9080 00000000'0000000f : nt!KiSwapThread+0x15a  
ffffd000'271d41b0 fffff803'bef09cfe : 00000000'00000000 00000000'00000000 
ffffe000'0000000f 00000000'00000003 : nt!KiCommitThreadWait+0x149  
ffffd000'271d4240 fffff803'bf2a445d : ffffd000'00000003 ffffd000'271d43c0 
00000000'00000000 fffff960'00000006 : nt!KeWaitForMultipleObjects+0x24e  
ffffd000'271d4300 fffff803'bf2fa246 : fffff803'bf1a6b40 ffffd000'271d4810 
ffffd000'271d4858 ffffe000'20aeca60 : nt!ObWaitForMultipleObjects+0x2bd  
ffffd000'271d4810 fffff803'befdefa3 : 00000000'00000fa0 fffff803'bef02aad 
ffffe000'1d45d800 00000000'1e22f198 : nt!NtWaitForMultipleObjects+0xf6  
ffffd000'271d4a90 00007ffe'f42b5c24 : 00000000'00000000 00000000'00000000 
00000000'00000000 00000000'00000000 : nt!KiSystemServiceCopyEnd+0x13 (TrapFrame @ 
ffffd000'271d4b00)  
00000000'1e22f178 00000000'00000000 : 00000000'00000000 00000000'00000000 
00000000'00000000 00000000'00000000 : 0x00007ffe'f42b5c24

There is a lot of information about the thread, such as its priority, stack details, user and kernel 
times, and much more. You’ll look at many of these details throughout this chapter and in Chapter 
5, “Memory management,” and Chapter 6, “I/O system.”

EXPERIMENT: Viewing thread information with tlist
The following output is the detailed display of a process produced by using tlist in the  
Debugging Tools for Windows. (Make sure you run tlist from the same “bitness” as the target 
process.) Notice that the thread list shows Win32StartAddr. This is the address passed to the 
CreateThread function by the application. All the other utilities (except Process Explorer) that 
show the thread start address show the actual start address (a function in Ntdll.dll), not the 
application-specified start address.

The following output is from running tlist on Word 2016 (truncated):

C:\Dbg\x86>tlist winword 
 120 WINWORD.EXE       Chapter04.docm - Word 
   CWD:     C:\Users\pavely\Documents\ 
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   CmdLine: "C:\Program Files (x86)\Microsoft Office\Root\Office16\WINWORD.EXE" /n 
"D:\OneDrive\WindowsInternalsBook\7thEdition\Chapter04\Chapter04.docm 
   VirtualSize:   778012 KB   PeakVirtualSize:   832680 KB 
   WorkingSetSize:185336 KB   PeakWorkingSetSize:227144 KB 
   NumberOfThreads: 45 
   12132 Win32StartAddr:0x00921000 LastErr:0x00000000 State:Waiting 
   15540 Win32StartAddr:0x6cc2fdd8 LastErr:0x00000000 State:Waiting 
   7096 Win32StartAddr:0x6cc3c6b2 LastErr:0x00000006 State:Waiting 
   17696 Win32StartAddr:0x77c1c6d0 LastErr:0x00000000 State:Waiting 
   17492 Win32StartAddr:0x77c1c6d0 LastErr:0x00000000 State:Waiting 
   4052 Win32StartAddr:0x70aa5cf7 LastErr:0x00000000 State:Waiting 
   14096 Win32StartAddr:0x70aa41d4 LastErr:0x00000000 State:Waiting 
   6220 Win32StartAddr:0x70aa41d4 LastErr:0x00000000 State:Waiting 
   7204 Win32StartAddr:0x77c1c6d0 LastErr:0x00000000 State:Waiting 
   1196 Win32StartAddr:0x6ea016c0 LastErr:0x00000057 State:Waiting 
   8848 Win32StartAddr:0x70aa41d4 LastErr:0x00000000 State:Waiting 
   3352 Win32StartAddr:0x77c1c6d0 LastErr:0x00000000 State:Waiting 
   11612 Win32StartAddr:0x77c1c6d0 LastErr:0x00000000 State:Waiting 
   17420 Win32StartAddr:0x77c1c6d0 LastErr:0x00000000 State:Waiting 
   13612 Win32StartAddr:0x77c1c6d0 LastErr:0x00000000 State:Waiting 
   15052 Win32StartAddr:0x77c1c6d0 LastErr:0x00000000 State:Waiting 
   ... 
   12080 Win32StartAddr:0x77c1c6d0 LastErr:0x00000000 State:Waiting 
   9456 Win32StartAddr:0x77c1c6d0 LastErr:0x00002f94 State:Waiting 
   9808 Win32StartAddr:0x77c1c6d0 LastErr:0x00000000 State:Waiting 
   16208 Win32StartAddr:0x77c1c6d0 LastErr:0x00000000 State:Waiting 
   9396 Win32StartAddr:0x77c1c6d0 LastErr:0x00000000 State:Waiting 
   2688 Win32StartAddr:0x70aa41d4 LastErr:0x00000000 State:Waiting 
   9100 Win32StartAddr:0x70aa41d4 LastErr:0x00000000 State:Waiting 
   18364 Win32StartAddr:0x70aa41d4 LastErr:0x00000000 State:Waiting 
   11180 Win32StartAddr:0x70aa41d4 LastErr:0x00000000 State:Waiting 
 16.0.6741.2037 shp  0x00920000  C:\Program Files (x86)\Microsoft Office\Root\
Office16\WINWORD.EXE 
 10.0.10586.122 shp  0x77BF0000  C:\windows\SYSTEM32\ntdll.dll 
   10.0.10586.0 shp  0x75540000  C:\windows\SYSTEM32\KERNEL32.DLL 
 10.0.10586.162 shp  0x77850000  C:\windows\SYSTEM32\KERNELBASE.dll 
  10.0.10586.63 shp  0x75AF0000  C:\windows\SYSTEM32\ADVAPI32.dll 
... 
   10.0.10586.0 shp  0x68540000  C:\Windows\SYSTEM32\VssTrace.DLL 
   10.0.10586.0 shp  0x5C390000  C:\Windows\SYSTEM32\adsldpc.dll 
 10.0.10586.122 shp  0x5DE60000  C:\Windows\SYSTEM32\taskschd.dll 
   10.0.10586.0 shp  0x5E3F0000  C:\Windows\SYSTEM32\srmstormod.dll 
   10.0.10586.0 shp  0x5DCA0000  C:\Windows\SYSTEM32\srmscan.dll 
   10.0.10586.0 shp  0x5D2E0000  C:\Windows\SYSTEM32\msdrm.dll 
   10.0.10586.0 shp  0x711E0000  C:\Windows\SYSTEM32\srm_ps.dll 
   10.0.10586.0 shp  0x56680000  C:\windows\System32\OpcServices.dll 
                     0x5D240000  C:\Program Files (x86)\Common Files\Microsoft 
Shared\Office16\WXPNSE.DLL 
 16.0.6701.1023 shp  0x77E80000  C:\Program Files (x86)\Microsoft Office\Root\
Office16\GROOVEEX.DLL 
   10.0.10586.0 shp  0x693F0000  C:\windows\system32\dataexchange.dll
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The TEB, illustrated in Figure 4-3, is one of the data structures explained in this section that exists in 
the process address space (as opposed to the system space). Internally, it is made up of a header called 
the Thread Information Block (TIB), which mainly existed for compatibility with OS/2 and Win9x appli-
cations. It also allows exception and stack information to be kept into a smaller structure when creating 
new threads by using an initial TIB.

FIGURE 4-3 Important fields of the thread environment block.

The TEB stores context information for the image loader and various Windows DLLs. Because these 
components run in user mode, they need a data structure writable from user mode. That’s why this 
structure exists in the process address space instead of in the system space, where it would be writable 
only from kernel mode. You can find the address of the TEB with the kernel debugger !thread command.

EXPERIMENT: Examining the TEB
You can dump the TEB structure with the !teb command in the kernel or user-mode debugger. 
The command can be used on its own to dump the TEB for the current thread of the debugger 
or with a TEB address to get it for an arbitrary thread. In case of a kernel debugger, the current 
process must be set before issuing the command on a TEB address so that the correct process 
context is used.
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 To view the TEB with a user-mode debugger, follow these steps. (You’ll learn how to view the 
TEB using a kernel debugger in the next experiment.)

1. Open WinDbg.

2. Open the File menu and choose Run Executable.

3. Navigate to c:\windows\system32\Notepad.exe. The debugger should break at the 
initial breakpoint.

4. Issue the !teb command to view the TEB of the only thread existing at the moment  
(the example is from 64 bit Windows):

0:000> !teb  
TEB at 000000ef125c1000 
    ExceptionList:        0000000000000000 
    StackBase:            000000ef12290000 
    StackLimit:           000000ef1227f000 
    SubSystemTib:         0000000000000000 
    FiberData:            0000000000001e00 
    ArbitraryUserPointer: 0000000000000000 
    Self:                 000000ef125c1000 
    EnvironmentPointer:   0000000000000000 
    ClientId:             00000000000021bc . 0000000000001b74 
    RpcHandle:            0000000000000000 
    Tls Storage:          00000266e572b600 
    PEB Address:          000000ef125c0000 
    LastErrorValue:       0 
    LastStatusValue:      0 
    Count Owned Locks:    0 
    HardErrorMode:        0

5. Enter the g command or press F5 to proceed with running Notepad.

6. In Notepad, open the File menu and choose Open. Then click Cancel to dismiss the 
Open File dialog box.

7. Press Ctrl+Break or open the Debug menu and choose Break to forcibly break into the 
process.

8. Enter the ~ (tilde) command to show all threads in the process. You should see something 
like this:

0:005> ~ 
   0  Id: 21bc.1b74 Suspend: 1 Teb: 000000ef'125c1000 Unfrozen 
   1  Id: 21bc.640 Suspend: 1 Teb: 000000ef'125e3000 Unfrozen 
   2  Id: 21bc.1a98 Suspend: 1 Teb: 000000ef'125e5000 Unfrozen 
   3  Id: 21bc.860 Suspend: 1 Teb: 000000ef'125e7000 Unfrozen 
   4  Id: 21bc.28e0 Suspend: 1 Teb: 000000ef'125c9000 Unfrozen 
.  5  Id: 21bc.23e0 Suspend: 1 Teb: 000000ef'12400000 Unfrozen 
   6  Id: 21bc.244c Suspend: 1 Teb: 000000ef'125eb000 Unfrozen 
   7  Id: 21bc.168c Suspend: 1 Teb: 000000ef'125ed000 Unfrozen 
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   8  Id: 21bc.1c90 Suspend: 1 Teb: 000000ef'125ef000 Unfrozen 
   9  Id: 21bc.1558 Suspend: 1 Teb: 000000ef'125f1000 Unfrozen 
  10  Id: 21bc.a64 Suspend: 1 Teb: 000000ef'125f3000 Unfrozen 
  11  Id: 21bc.20c4 Suspend: 1 Teb: 000000ef'125f5000 Unfrozen 
  12  Id: 21bc.1524 Suspend: 1 Teb: 000000ef'125f7000 Unfrozen 
  13  Id: 21bc.1738 Suspend: 1 Teb: 000000ef'125f9000 Unfrozen 
  14  Id: 21bc.f48 Suspend: 1 Teb: 000000ef'125fb000 Unfrozen 
  15  Id: 21bc.17bc Suspend: 1 Teb: 000000ef'125fd000 Unfrozen

9. Each thread shows its TEB address. You can examine a specific thread by specifying its 
TEB address to the !teb command. Here’s an example for thread 9 from the preceding 
output:

0:005> !teb 000000ef'125f1000 
TEB at 000000ef125f1000 
    ExceptionList:        0000000000000000 
    StackBase:            000000ef13400000 
    StackLimit:           000000ef133ef000 
    SubSystemTib:         0000000000000000 
    FiberData:            0000000000001e00 
    ArbitraryUserPointer: 0000000000000000 
    Self:                 000000ef125f1000 
    EnvironmentPointer:   0000000000000000 
    ClientId:             00000000000021bc . 0000000000001558 
    RpcHandle:            0000000000000000 
    Tls Storage:          00000266ea1af280 
    PEB Address:          000000ef125c0000 
    LastErrorValue:       0 
    LastStatusValue:      c0000034 
    Count Owned Locks:    0 
    HardErrorMode:        0

10. Of course, it’s possible to view the actual structure with the TEB address (truncated to 
conserve space):

0:005> dt ntdll!_teb 000000ef'125f1000  
   +0x000 NtTib            : _NT_TIB 
   +0x038 EnvironmentPointer : (null)  
   +0x040 ClientId         : _CLIENT_ID 
   +0x050 ActiveRpcHandle  : (null)  
   +0x058 ThreadLocalStoragePointer : 0x00000266'ea1af280 Void 
   +0x060 ProcessEnvironmentBlock : 0x000000ef'125c0000 _PEB 
   +0x068 LastErrorValue   : 0 
   +0x06c CountOfOwnedCriticalSections : 0 
... 
   +0x1808 LockCount        : 0 
   +0x180c WowTebOffset     : 0n0 
   +0x1810 ResourceRetValue : 0x00000266'ea2a5e50 Void 
   +0x1818 ReservedForWdf   : (null)  
   +0x1820 ReservedForCrt   : 0 
   +0x1828 EffectiveContainerId : _GUID {00000000-0000-0000-0000-000000000000}
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EXPERIMENT: Examining the TEB with a kernel debugger
Follow these steps to view the TEB with a kernel debugger:

1. Find the process for which a thread’s TEB is of interest. For example, the following looks for 
explorer.exe processes and lists its threads with basic information (truncated):

lkd> !process 0 2 explorer.exe 
PROCESS ffffe0012bea7840 
    SessionId: 2  Cid: 10d8    Peb: 00251000  ParentCid: 10bc 
    DirBase: 76e12000  ObjectTable: ffffc000e1ca0c80  HandleCount: <Data Not 
Accessible> 
    Image: explorer.exe 
 
        THREAD ffffe0012bf53080  Cid 10d8.10dc  Teb: 0000000000252000 
Win32Thread: ffffe0012c1532f0 WAIT: (WrUserRequest) UserMode Non-Alertable 
            ffffe0012c257fe0  SynchronizationEvent 
 
        THREAD ffffe0012a30f080  Cid 10d8.114c  Teb: 0000000000266000 
Win32Thread: ffffe0012c2e9a20 WAIT: (UserRequest) UserMode Alertable 
            ffffe0012bab85d0  SynchronizationEvent 
 
        THREAD ffffe0012c8bd080  Cid 10d8.1178  Teb: 000000000026c000 
Win32Thread: ffffe0012a801310 WAIT: (UserRequest) UserMode Alertable 
            ffffe0012bfd9250  NotificationEvent 
            ffffe0012c9512f0  NotificationEvent 
            ffffe0012c876b80  NotificationEvent 
            ffffe0012c010fe0  NotificationEvent 
            ffffe0012d0ba7e0  NotificationEvent 
            ffffe0012cf9d1e0  NotificationEvent 
... 
 
        THREAD ffffe0012c8be080  Cid 10d8.1180  Teb: 0000000000270000 
Win32Thread: 0000000000000000 WAIT: (UserRequest) UserMode Alertable 
            fffff80156946440  NotificationEvent 
 
        THREAD ffffe0012afd4040  Cid 10d8.1184  Teb: 0000000000272000 
Win32Thread: ffffe0012c7c53a0 WAIT: (UserRequest) UserMode Non-Alertable 
            ffffe0012a3dafe0  NotificationEvent 
            ffffe0012c21ee70  Semaphore Limit 0xffff 
            ffffe0012c8db6f0  SynchronizationEvent 
 
        THREAD ffffe0012c88a080  Cid 10d8.1188  Teb: 0000000000274000 
Win32Thread: 0000000000000000 WAIT: (UserRequest) UserMode Alertable 
            ffffe0012afd4920  NotificationEvent 
            ffffe0012c87b480  SynchronizationEvent 
            ffffe0012c87b400  SynchronizationEvent 
...

2. If more than one explorer.exe process exists, select one arbitrarily for the following steps.
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3. Each thread shows the address of its TEB. Because the TEB is in user space, the address has 
meaning only in the context of the relevant process. You need to switch to the process/thread 
as seen by the debugger. Select the first thread of explorer because its kernel stack is probably 
resident in physical memory. Otherwise, you’ll get an error.

lkd> .thread /p ffffe0012bf53080 
Implicit thread is now ffffe001'2bf53080 
Implicit process is now ffffe001'2bea7840

4. This switches the context to the specified thread (and by extension, the process). Now you can 
use the !teb command with the TEB address listed for that thread:

lkd> !teb 0000000000252000  
TEB at 0000000000252000 
    ExceptionList:        0000000000000000 
    StackBase:            00000000000d0000 
    StackLimit:           00000000000c2000 
    SubSystemTib:         0000000000000000 
    FiberData:            0000000000001e00 
    ArbitraryUserPointer: 0000000000000000 
    Self:                 0000000000252000 
    EnvironmentPointer:   0000000000000000 
    ClientId:             00000000000010d8 . 00000000000010dc 
    RpcHandle:            0000000000000000 
    Tls Storage:          0000000009f73f30 
    PEB Address:          0000000000251000 
    LastErrorValue:       0 
    LastStatusValue:      c0150008 
    Count Owned Locks:    0 
    HardErrorMode:        0

The CSR_THREAD, illustrated in Figure 4-4 is analogous to the data structure of CSR_PROCESS, but 
it’s applied to threads. As you might recall, this is maintained by each Csrss process within a session 
and identifies the Windows subsystem threads running within it. CSR_THREAD stores a handle that Csrss 
keeps for the thread, various flags, the client ID (thread ID and process ID), and a copy of the thread’s 
creation time. Note that threads are registered with Csrss when they send their first message to Csrss, 
typically due to some API that requires notifying Csrss of some operation or condition.

FIGURE 4-4 Fields of the CSR thread.
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EXPERIMENT: Examining the CSR_THREAD
You can dump the CSR_THREAD structure with the dt command in the kernel-mode debugger 
while the debugger context is set to a Csrss process. Follow the instructions in the experiment 
“Examining the CSR_PROCESS” in Chapter 3 to perform this operation. Here is an example output 
from Windows 10 x64 system:

lkd> dt csrss!_csr_thread 
   +0x000 CreateTime       : _LARGE_INTEGER 
   +0x008 Link             : _LIST_ENTRY 
   +0x018 HashLinks        : _LIST_ENTRY 
   +0x028 ClientId         : _CLIENT_ID 
   +0x038 Process          : Ptr64 _CSR_PROCESS 
   +0x040 ThreadHandle     : Ptr64 Void 
   +0x048 Flags            : Uint4B 
   +0x04c ReferenceCount   : Int4B 
   +0x050 ImpersonateCount : Uint4B

Finally, the W32THREAD structure, illustrated in Figure 4-5, is analogous to the data structure of 
W32PROCESS, but it’s applied to threads This structure mainly contains information useful for the GDI 
subsystem (brushes and Device Context attributes) and DirectX, as well as for the User Mode Print 
Driver (UMPD) framework that vendors use to write user-mode printer drivers. Finally, it contains a 
rendering state useful for desktop compositing and anti-aliasing.

FIGURE 4-5 Fields of the Win32k thread.

Birth of a thread
A thread’s life cycle starts when a process (in the context of some thread, such as the thread running the 
main function) creates a new thread. The request filters down to the Windows executive, where the 
process manager allocates space for a thread object and calls the kernel to initialize the thread control 
block (KTHREAD). As mentioned, the various thread-creation functions eventually end up at CreateRemote-
ThreadEx. The following steps are taken inside this function in Kernel32.dll to create a Windows thread:
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1. The function converts the Windows API parameters to native flags and builds a native structure 
describing object parameters (OBJECT_ATTRIBUTES, described in Chapter 8 in Part 2).

2. It builds an attribute list with two entries: client ID and TEB address. (For more information on 
attribute lists, see the section “Flow of CreateProcess” in Chapter 3.)

3. It determines whether the thread is created in the calling process or another process indicated 
by the handle passed in. If the handle is equal to the pseudo handle returned from GetCurrent-
Process (with a value of -1), then it’s the same process. If the process handle is different, it 
could still be a valid handle to the same process, so a call is made to NtQueryInformation-
Process (in Ntdll) to find out whether that is indeed the case.

4. It calls NtCreateThreadEx (in Ntdll) to make the transition to the executive in kernel mode and 
continues inside a function with the same name and arguments.

5. NtCreateThreadEx (inside the executive) creates and initializes the user-mode thread context 
(its structure is architecture-specific) and then calls PspCreateThread to create a suspended 
executive thread object. (For a description of the steps performed by this function, see the de-
scriptions of stage 3 and stage 5 in Chapter 3 in the section “Flow of CreateProcess.”) Then the 
function returns, eventually ending back in user mode at CreateRemoteThreadEx.

6. CreateRemoteThreadEx allocates an activation context for the thread used by side-by-side as-
sembly support. It then queries the activation stack to see if it requires activation and activates 
it if needed. The activation stack pointer is saved in the new thread’s TEB.

7. Unless the caller created the thread with the CREATE_SUSPENDED flag set, the thread is now 
resumed so that it can be scheduled for execution. When the thread starts running, it executes 
the steps described in Chapter 3 in the section “Stage 7: performing process initialization in the 
context of the new process” before calling the actual user’s specified start address.

8. The thread handle and the thread ID are returned to the caller.

Examining thread activity

Examining thread activity is especially important if you are trying to determine why a process that is 
hosting multiple services is running (such as Svchost.exe, Dllhost.exe, or Lsass.exe) or why a process has 
stopped responding.

There are several tools that expose various elements of the state of Windows threads: WinDbg (in 
user-process attach and kernel-debugging mode), Performance Monitor, and Process Explorer. (The 
tools that show thread-scheduling information are listed in the section “Thread scheduling.”)

To view the threads in a process with Process Explorer, select a process and double-click it to open 
its Properties dialog box. Alternatively, right-click the process and select the Properties menu item. 
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Then click the Threads tab. This tab shows a list of the threads in the process and four columns of 
information for each thread: its ID, the percentage of CPU consumed (based on the refresh interval 
configured), the number of cycles charged to the thread, and the thread start address. You can sort by 
any of these four columns.

New threads that are created are highlighted in green, and threads that exit are highlighted in red.  
(To configure the highlight duration, open the Options menu and choose Difference Highlight Dura-
tion.) This might be helpful to discover unnecessary thread creation occurring in a process. (In general, 
threads should be created at process startup, not every time a request is processed inside a process.)

As you select each thread in the list, Process Explorer displays the thread ID, start time, state, CPU 
time counters, number of cycles charged, number of context switches, the ideal processor and its 
group, and the I/O priority, memory priority, and base and current (dynamic) priority. There is a Kill 
button, which terminates an individual thread, but this should be used with extreme care. Another 
option is the Suspend button, which prevents the thread from forward execution and thus prevents 
a runaway thread from consuming CPU time. However, this can also lead to deadlocks and should be 
used with the same care as the Kill button. Finally, the Permissions button allows you to view the secu-
rity descriptor of the thread. (See Chapter 7, “Security,” for more information on security descriptors.)

Unlike Task Manager and all other process/processor monitoring tools, Process Explorer uses the 
clock cycle counter designed for thread run-time accounting (described later in this chapter) instead of 
the clock interval timer, so you will see a significantly different view of CPU consumption using Process 
Explorer. This is because many threads run for such a short time that they are seldom (if ever) the cur-
rently running thread when the clock interval timer interrupt occurs. As a result, they are not charged 
for much of their CPU time, leading clock-based tools to perceive a CPU usage of 0 percent. On the 
other hand, the total number of clock cycles represents the actual number of processor cycles that each 
thread in the process accrued. It is independent of the clock interval timer’s resolution because the 
count is maintained internally by the processor at each cycle and updated by Windows at each inter-
rupt entry. (A final accumulation is done before a context switch.)

The thread start address is displayed in the form module!function, where module is the name of  
the .EXE or .DLL. The function name relies on access to symbol files for the module (see the section 
“Experiment: Viewing process details with Process Explorer” in Chapter 1, “Concepts and tools”). If you 
are unsure what the module is, click the Module button to open an Explorer file Properties dialog box 
for the module containing the thread’s start address (for example, the .EXE or .DLL).

Note For threads created by the Windows CreateThread function, Process Explorer displays 
the function passed to CreateThread, not the actual thread start function. This is because all 
Windows threads start at a common thread startup wrapper function (RtlUserThreadStart 
in Ntdll.dll). If Process Explorer showed the actual start address, most threads in processes 
would appear to have started at the same address, which would not be helpful in trying to 
understand what code the thread was executing. However, if Process Explorer can’t query 
the user-defined startup address (such as in the case of a protected process), it will show the 
wrapper function, so you will see all threads starting at RtlUserThreadStart.
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The thread start address displayed might not be enough information to pinpoint what the thread 
is doing and which component within the process is responsible for the CPU consumed by the thread. 
This is especially true if the thread start address is a generic startup function—for example, if the func-
tion name does not indicate what the thread is actually doing. In this case, examining the thread stack 
might answer the question. To view the stack for a thread, double-click the thread of interest (or select 
it and click the Stack button). Process Explorer displays the thread’s stack (both user and kernel, if the 
thread was in kernel mode).

Note While the user-mode debuggers (WinDbg, Ntsd, and Cdb) permit you to attach to a 
process and display the user stack for a thread, Process Explorer shows both the user and 
kernel stack in one easy click of a button. You can also examine user and kernel thread stacks 
using WinDbg in local kernel debugging mode, as the next two experiments demonstrate.

When looking at 32-bit processes running on 64-bit systems as a Wow64 process (see Chapter 8 in 
Part 2 for more information on Wow64), Process Explorer shows both the 32-bit and 64-bit stack for 
threads. Because at the time of the real (64 bit) system call, the thread has been switched to a 64-bit 
stack and context, simply looking at the thread’s 64-bit stack would reveal only half the story—the  
64-bit part of the thread, with Wow64’s thunking code. So, when examining Wow64 processes, be sure 
to take into account both the 32-bit and 64-bit stacks.

EXPERIMENT: Viewing a thread stack with a user-mode debugger
Follow these steps to attach WinDbg to a process and view thread information and its stack:

1. Run notepad.exe and WinDbg.exe.

2. In WinDbg, open the File menu and select Attach to Process.

3. Find the notepad.exe instance and click OK to attach. The debugger should break into 
Notepad.

4. List the existing threads in the process with the ~ command. Each thread shows its de-
bugger ID, the client ID (ProcessID.ThreadID), its suspend count (this should be 1 most 
of the time, as it is suspended because of the breakpoint), the TEB address, and whether 
it has been frozen using a debugger command.

0:005> ~ 
   0  Id: 612c.5f68 Suspend: 1 Teb: 00000022'41da2000 Unfrozen 
   1  Id: 612c.5564 Suspend: 1 Teb: 00000022'41da4000 Unfrozen 
   2  Id: 612c.4f88 Suspend: 1 Teb: 00000022'41da6000 Unfrozen 
   3  Id: 612c.5608 Suspend: 1 Teb: 00000022'41da8000 Unfrozen 
   4  Id: 612c.cf4 Suspend: 1 Teb: 00000022'41daa000 Unfrozen 
.  5  Id: 612c.9f8 Suspend: 1 Teb: 00000022'41db0000 Unfrozen
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5. Notice the dot preceding thread 5 in the output. This is the current debugger thread. 
Issue the k command to view the call stack:

0:005> k 
 # Child-SP          RetAddr           Call Site 
00 00000022'421ff7e8 00007ff8'504d9031 ntdll!DbgBreakPoint 
01 00000022'421ff7f0 00007ff8'501b8102 ntdll!DbgUiRemoteBreakin+0x51 
02 00000022'421ff820 00007ff8'5046c5b4 KERNEL32!BaseThreadInitThunk+0x22 
03 00000022'421ff850 00000000'00000000 ntdll!RtlUserThreadStart+0x34

6. The debugger injected a thread into Notepad’s process that issues a breakpoint instruc-
tion (DbgBreakPoint). To view the call stack of another thread, use the ~nk command, 
where n is the thread number as seen by WinDbg. (This does not change the current 
debugger thread.) Here’s an example for thread 2:

0:005> ~2k 
 # Child-SP          RetAddr           Call Site 
00 00000022'41f7f9e8 00007ff8'5043b5e8 ntdll!ZwWaitForWorkViaWorkerFactory+0x14 
01 00000022'41f7f9f0 00007ff8'501b8102 ntdll!TppWorkerThread+0x298  
02 00000022'41f7fe00 00007ff8'5046c5b4 KERNEL32!BaseThreadInitThunk+0x22 
03 00000022'41f7fe30 00000000'00000000 ntdll!RtlUserThreadStart+0x34

7. To switch the debugger to another thread, use the ~ns command (again, n is the thread 
number). Let’s switch to thread 0 and show its stack:

0:005> ~0s 
USER32!ZwUserGetMessage+0x14: 
00007ff8'502e21d4 c3              ret 
0:000> k 
 # Child-SP          RetAddr           Call Site 
00 00000022'41e7f048 00007ff8'502d3075 USER32!ZwUserGetMessage+0x14 
01 00000022'41e7f050 00007ff6'88273bb3 USER32!GetMessageW+0x25 
02 00000022'41e7f080 00007ff6'882890b5 notepad!WinMain+0x27b  
03 00000022'41e7f180 00007ff8'341229b8 notepad!__mainCRTStartup+0x1ad 
04 00000022'41e7f9f0 00007ff8'5046c5b4 KERNEL32!BaseThreadInitThunk+0x22 
05 00000022'41e7fa20 00000000'00000000 ntdll!RtlUserThreadStart+0x34

8. Note that even though a thread might be in kernel mode at the time, a user-mode 
debugger shows its last function that’s still in user mode (ZwUserGetMessage in the 
preceding output).

EXPERIMENT: Viewing a thread stack with a local kernel-mode debugger
In this experiment, you’ll use a local kernel debugger to view a thread’s stack (both user mode 
and kernel mode). The experiment uses one of Explorer’s threads, but you can try it with other 
processes or threads.

1. Show all the processes running the image explorer.exe. (Note that you may see more 
than one instance of Explorer if the Launch Folder Windows in a Separate Process  
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option in Explorer options is selected. One process manages the desktop and taskbar, 
while the other manages Explorer windows.)

lkd> !process 0 0 explorer.exe 
PROCESS ffffe00197398080 
    SessionId: 1  Cid: 18a0    Peb: 00320000  ParentCid: 1840 
    DirBase: 17c028000  ObjectTable: ffffc000bd4aa880  HandleCount: <Data 
Not Accessible> 
    Image: explorer.exe 
 
PROCESS ffffe00196039080 
    SessionId: 1  Cid: 1f30    Peb: 00290000  ParentCid: 0238 
    DirBase: 24cc7b000  ObjectTable: ffffc000bbbef740  HandleCount: <Data 
Not Accessible> 
    Image: explorer.exe

2. Select one instance and show its thread summary:

lkd> !process ffffe00196039080 2 
PROCESS ffffe00196039080 
    SessionId: 1  Cid: 1f30    Peb: 00290000  ParentCid: 0238 
    DirBase: 24cc7b000  ObjectTable: ffffc000bbbef740  HandleCount: <Data 
Not Accessible> 
    Image: explorer.exe 
 
        THREAD ffffe0019758f080  Cid 1f30.0718  Teb: 0000000000291000 
Win32Thread: ffffe001972e3220 WAIT: (UserRequest) UserMode Non-Alertable 
            ffffe00192c08150  SynchronizationEvent 
 
        THREAD ffffe00198911080  Cid 1f30.1aac  Teb: 00000000002a1000 
Win32Thread: ffffe001926147e0 WAIT: (UserRequest) UserMode Non-Alertable 
            ffffe00197d6e150  SynchronizationEvent 
            ffffe001987bf9e0  SynchronizationEvent 
 
        THREAD ffffe00199553080  Cid 1f30.1ad4  Teb: 00000000002b1000 
Win32Thread: ffffe0019263c740 WAIT: (UserRequest) UserMode Non-Alertable 
            ffffe0019ac6b150  NotificationEvent 
            ffffe0019a7da5e0  SynchronizationEvent 
 
        THREAD ffffe0019b6b2800  Cid 1f30.1758  Teb: 00000000002bd000 
Win32Thread: 0000000000000000 WAIT: (Suspended) KernelMode Non-Alertable 
SuspendCount 1 
            ffffe0019b6b2ae0  NotificationEvent 
...

3. Switch to the context of the first thread in the process (you can select other threads):

lkd> .thread /p /r ffffe0019758f080 
Implicit thread is now ffffe001'9758f080 
Implicit process is now ffffe001'96039080 
Loading User Symbols 
..............................................
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4. Now look at the thread to show its details and its call stack (addresses are truncated in 
the shown output):

lkd> !thread ffffe0019758f080 
THREAD ffffe0019758f080  Cid 1f30.0718  Teb: 0000000000291000 Win32Thread : 
ffffe001972e3220 WAIT : (UserRequest)UserMode Non - Alertable 
ffffe00192c08150  SynchronizationEvent 
Not impersonating 
DeviceMap                 ffffc000b77f1f30 
Owning Process            ffffe00196039080       Image : explorer.exe 
Attached Process          N / A            Image : N / A 
Wait Start TickCount      17415276       Ticks : 146 (0:00 : 00 : 02.281) 
Context Switch Count      2788           IdealProcessor : 4 
UserTime                  00 : 00 : 00.031 
KernelTime                00 : 00 : 00.000 
*** WARNING : Unable to verify checksum for C : \windows\explorer.exe 
Win32 Start Address explorer!wWinMainCRTStartup(0x00007ff7b80de4a0) 
Stack Init ffffd0002727cc90 Current ffffd0002727bf80 
Base ffffd0002727d000 Limit ffffd00027277000 Call 0000000000000000 
Priority 8 BasePriority 8 PriorityDecrement 0 IoPriority 2 PagePriority 5 
 
... Call Site 
... nt!KiSwapContext + 0x76 
... nt!KiSwapThread + 0x15a 
... nt!KiCommitThreadWait + 0x149 
... nt!KeWaitForSingleObject + 0x375 
... nt!ObWaitForMultipleObjects + 0x2bd 
... nt!NtWaitForMultipleObjects + 0xf6 
... nt!KiSystemServiceCopyEnd + 0x13 (TrapFrame @ ffffd000'2727cb00) 
... ntdll!ZwWaitForMultipleObjects + 0x14 
... KERNELBASE!WaitForMultipleObjectsEx + 0xef 
... USER32!RealMsgWaitForMultipleObjectsEx + 0xdb  
... USER32!MsgWaitForMultipleObjectsEx + 0x152 
... explorerframe!SHProcessMessagesUntilEventsEx + 0x8a 
... explorerframe!SHProcessMessagesUntilEventEx + 0x22 
... explorerframe!CExplorerHostCreator::RunHost + 0x6d 
... explorer!wWinMain + 0xa04fd 
... explorer!__wmainCRTStartup + 0x1d6

Limitations on protected process threads
As discussed in Chapter 3, protected processes (classic protected or PPL) have several limitations in 
terms of which access rights will be granted, even to the users with the highest privileges on the system. 
These limitations also apply to threads inside such a process. This ensures that the actual code running 
inside the protected process cannot be hijacked or otherwise affected through standard Windows 
functions, which require access rights that are not granted for protected process threads. In fact, the 
only permissions granted are THREAD_SUSPEND_RESUME and THREAD_SET/QUERY_LIMITED_INFORMATION.
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EXPERIMENT: Viewing protected process thread information with Process 
Explorer
In this experiment, you’ll view protected process thread information. Follow these steps:

1. Find any protected or PPL process, such as the Audiodg.exe or Csrss.exe process inside 
the process list.

2. Open the process’s Properties dialog box and click the Threads tab. 

3. Process Explorer doesn't show the Win32 thread start address. Instead, it displays the 
standard thread start wrapper inside Ntdll.dll. If you click the Stack button, you’ll get an 
error, because Process Explorer needs to read the virtual memory inside the protected 
process, which it can’t do.

4. Note that although the base and dynamic priorities are shown, the I/O and memory 
priorities are not (nor is Cycles), which is another example of the limited access right 
THREAD_QUERY_LIMITED_INFORMATION versus full query information access right 
(THREAD_QUERY_INFORMATION).

5. Try to kill a thread inside a protected process. When you do, notice yet another access-
denied error: recall the lack of THREAD_TERMINATE access.
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Thread scheduling

This section describes the Windows scheduling policies and algorithms. The first subsection provides 
a condensed description of how scheduling works on Windows and a definition of key terms. Then 
Windows priority levels are described from both the Windows API and the Windows kernel points of 
view. After a review of the relevant Windows utilities and tools that relate to scheduling, the detailed 
data structures and algorithms that make up the Windows scheduling system are presented, including 
a description of common scheduling scenarios and how thread selection, as well as processor selection, 
occurs.

Overview of Windows scheduling
Windows implements a priority-driven, preemptive scheduling system. At least one of the highest-
priority runnable (ready) threads always runs, with the caveat that certain high-priority threads ready 
to run might be limited by the processors on which they might be allowed or preferred to run on—
phenomenon called processor affinity. Processor affinity is defined based on a given processor group, 
which collects up to 64 processors. By default, threads can run only on available processors within the 
processor group associated with the process. (This is to maintain compatibility with older versions of 
Windows, which supported only 64 processors). Developers can alter processor affinity by using the 
appropriate APIs or by setting an affinity mask in the image header, and users can use tools to change 
affinity at run time or at process creation. However, although multiple threads in a process can be as-
sociated with different groups, a thread on its own can run only on the processors available within its 
assigned group. Additionally, developers can choose to create group-aware applications, which use 
extended scheduling APIs to associate logical processors on different groups with the affinity of their 
threads. Doing so converts the process into a multigroup process that can theoretically run its threads 
on any available processor within the machine.

After a thread is selected to run, it runs for an amount of time called a quantum. A quantum is the 
length of time a thread is allowed to run before another thread at the same priority level is given a turn to 
run. Quantum values can vary from system to system and process to process for any of three reasons:

 ■ System configuration settings (long or short quantums, variable or fixed quantums, and priority 
separation)

 ■ Foreground or background status of the process

 ■ Use of the job object to alter the quantum

These details are explained in the “Quantum” section later in this chapter.

A thread might not get to complete its quantum, however, because Windows implements a pre-
emptive scheduler. That is, if another thread with a higher priority becomes ready to run, the currently 
running thread might be preempted before finishing its time slice. In fact, a thread can be selected to 
run next and be preempted before even beginning its quantum!

The Windows scheduling code is implemented in the kernel. There’s no single “scheduler” module  
or routine, however. The code is spread throughout the kernel in which scheduling-related events occur. 
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The routines that perform these duties are collectively called the kernel’s dispatcher. The following 
events might require thread dispatching:

 ■ A thread becomes ready to execute—for example, a thread has been newly created or has just 
been released from the wait state.

 ■ A thread leaves the running state because its time quantum ends, it terminates, it yields execu-
tion, or it enters a wait state.

 ■ A thread’s priority changes, either because of a system service call or because Windows itself 
changes the priority value.

 ■ A thread’s processor affinity changes so that it will no longer run on the processor on which it 
was running.

At each of these junctions, Windows must determine which thread should run next on the logical 
processor that was running the thread, if applicable, or on which logical processor the thread should 
now run. After a logical processor has selected a new thread to run, it eventually performs a context 
switch to it. A context switch is the procedure of saving the volatile processor state associated with a 
running thread, loading another thread’s volatile state, and starting the new thread’s execution.

As noted, Windows schedules at the thread granularity level. This approach makes sense when you con-
sider that processes don’t run; rather, they only provide resources and a context in which their threads run. 
Because scheduling decisions are made strictly on a thread basis, no consideration is given to what process 
the thread belongs to. For example, if process A has 10 runnable threads, process B has 2 runnable threads, 
and all 12 threads are at the same priority, each thread would theoretically receive one-twelfth of the CPU 
time. That is, Windows wouldn’t give 50 percent of the CPU to process A and 50 percent to process B.

Priority levels
To understand the thread-scheduling algorithms, one must first understand the priority levels that 
Windows uses. As illustrated in Figure 4-6, Windows uses 32 priority levels internally, ranging from 0  
to 31 (31 is the highest). These values divide up as follows:

 ■ Sixteen real-time levels (16 through 31)

 ■ Sixteen variable levels (0 through 15), out of which level 0 is reserved for the zero page thread 
(described in Chapter 5).

FIGURE 4-6 Thread priority levels.
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Thread priority levels are assigned from two different perspectives: those of the Windows API and 
those of the Windows kernel. The Windows API first organizes processes by the priority class to which 
they are assigned at creation (the numbers in parentheses represent the internal PROCESS_PRIORITY_
CLASS index recognized by the kernel):

 ■ Real-Time (4)

 ■ High (3)

 ■ Above Normal (6)

 ■ Normal (2)

 ■ Below Normal (5)

 ■ Idle (1)

The Windows API SetPriorityClass allows changing a process’s priority class to one of these levels.

It then assigns a relative priority of the individual threads within those processes. Here, the numbers 
represent a priority delta that is applied to the process base priority:

 ■ Time-Critical (15)

 ■ Highest (2)

 ■ Above-Normal (1)

 ■ Normal (0)

 ■ Below-Normal (–1)

 ■ Lowest (–2)

 ■ Idle (–15)

Time-Critical and Idle levels (+15 and –15) are called saturation values and represent specific levels 
that are applied rather than true offsets. These values can be passed to the SetThreadPriority Win-
dows API to change a thread’s relative priority.

Therefore, in the Windows API, each thread has a base priority that is a function of its process prior-
ity class and its relative thread priority. In the kernel, the process priority class is converted to a base 
priority by using the PspPriorityTable global array and the PROCESS_PRIORITY_CLASS indices shown 
earlier, which sets priorities of 4, 8, 13, 14, 6, and 10, respectively. (This is a fixed mapping that cannot be 
changed.) The relative thread priority is then applied as a differential to this base priority. For example, 
a Highest thread will receive a thread base priority of two levels higher than the base priority of its 
process.

This mapping from Windows priority to internal Windows numeric priority is shown graphically in 
Figure 4-7 and textually in Table 4-1.
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FIGURE 4-7 A graphic view of available thread priorities from a Windows API perspective.

TABLE 4-1 Mapping Windows kernel priorities to the Windows API

Priority Class Relative Priority Real-Time High Above-Normal Normal Below-Normal Idle

Time Critical (+Saturation) 31 15 15 15 15 15

Highest (+2) 26 15 12 10 8 6

Above Normal (+1) 25 14 11 9 7 5

Normal (0) 24 13 10 8 6 4

Below Normal (-1) 23 12 9 7 5 3

Lowest (-2) 22 11 8 6 4 2

Idle (–Saturation) 16 1 1 1 1 1

You’ll note that the Time-Critical and Idle relative thread priorities maintain their respective values 
regardless of the process priority class (unless it is Real-Time). This is because the Windows API requests 
saturation of the priority from the kernel, by passing in +16 or –16 as the requested relative priority. The 
formula used to get these values is as follows (HIGH_PRIORITY equals 31):

If Time-Critical: ((HIGH_PRIORITY+1) / 2

If Idle: -((HIGH_PRIORITY+1) / 2

These values are then recognized by the kernel as a request for saturation, and the Saturation field 
in KTHREAD is set. For positive saturation, this causes the thread to receive the highest possible priority 
within its priority class (dynamic or real-time); for negative saturation, it’s the lowest possible one. Addi-
tionally, future requests to change the base priority of the process will no longer affect the base priority 
of these threads because saturated threads are skipped in the processing code.
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As shown in Table 4-1, threads have seven levels of possible priorities to set as viewed from the 
Windows API (six levels for the High priority class). The Real-Time priority class actually allows setting 
all priority levels between 16 and 31 (as shown in Figure 4-7). The values not covered by the standard 
constants shown in the table can be specified with the values -7, -6, -5, -4, -3, 3, 4, 5, and 6 as an argu-
ment to SetThreadPriority. (See the upcoming section “Real-Time priorities” for more information.)

Regardless of how the thread’s priority came to be by using the Windows API (a combination of 
process priority class and a relative thread priority), from the point of view of the scheduler, only the 
final result matters. For example, priority level 10 can be obtained in two ways: a Normal priority class 
process (8) with a thread relative priority of Highest (+2), or an Above-Normal priority class process (10) 
and a Normal thread relative priority (0). From the scheduler’s perspectives, these settings lead to the 
same value (10), so these threads are identical in terms of their priority.

Whereas a process has only a single base priority value, each thread has two priority values: current 
(dynamic) and base. Scheduling decisions are made based on the current priority. As explained in the 
upcoming section called “Priority boosts,” under certain circumstances, the system increases the priority 
of threads in the dynamic range (1 through 15) for brief periods. Windows never adjusts the priority of 
threads in the Real-Time range (16 through 31), so they always have the same base and current priority.

A thread’s initial base priority is inherited from the process base priority. A process, by default, 
inherits its base priority from the process that created it. You can override this behavior on the Create-
Process function or by using the command-line start command. You can also change a process pri-
ority after it is created by using the SetPriorityClass function or by using various tools that expose 
that function, such as Task Manager or Process Explorer. (Right-click on the process and choose a new 
priority class.) For example, you can lower the priority of a CPU-intensive process so that it does not 
interfere with normal system activities. Changing the priority of a process changes the thread priorities 
up or down, but their relative settings remain the same.

Normally, user applications and services start with a normal base priority, so their initial thread 
typically executes at priority level 8. However, some Windows system processes (such as the Session 
manager, Service Control Manager, and local security authentication process) have a base process  
priority slightly higher than the default for the Normal class (8). This higher default value ensures that 
the threads in these processes will all start at a higher priority than the default value of 8.

Real-Time priorities
You can raise or lower thread priorities within the dynamic range in any application. However, you must 
have the increase scheduling priority privilege (SeIncreaseBasePriorityPrivilege) to enter the 
Real-Time range. Be aware that many important Windows kernel-mode system threads run in the Real-
Time priority range, so if threads spend excessive time running in this range, they might block critical 
system functions (such as in the memory manager, cache manager, or some device drivers).

Using the standard Windows APIs, once a process has entered the Real-Time range, all its threads 
(even Idle ones) must run at one of the Real-Time priority levels. It is thus impossible to mix real-time and 
dynamic threads within the same process through standard interfaces. This is because the SetThread-
Priority API calls the native NtSetInformationThread API with the ThreadBasePriority information 
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class, which allows priorities to remain only in the same range. Furthermore, this information class allows 
priority changes only in the recognized Windows API deltas of –2 to 2 (or Time-Critical/Idle) unless the 
request comes from CSRSS or another real-time process. In other words, this means that a real-time 
process can pick thread priorities anywhere between 16 and 31, even though the standard Windows API 
relative thread priorities would seem to limit its choices based on the table that was shown earlier.

As mentioned, calling SetThreadPriority with one of a set of special values causes a call to 
NtSetInformationThread with the ThreadActualBasePriority information class, the kernel base 
priority for the thread can be directly set, including in the dynamic range for a real-time process.

Note The name real-time does not imply that Windows is a real-time OS in the common 
definition of the term. This is because Windows doesn’t provide true, real-time OS facilities, 
such as guaranteed interrupt latency or a way for threads to obtain a guaranteed execution 
time. The term real-time really just means “higher than all the others.”

Using tools to interact with priority
You can change (and view) the base-process priority with Task Manager and Process Explorer. You can 
kill individual threads in a process with Process Explorer (which should be done, of course, with extreme 
care).

You can view individual thread priorities with Performance Monitor, Process Explorer, or WinDbg. 
Although it might be useful to increase or decrease the priority of a process, it typically does not make 
sense to adjust individual thread priorities within a process because only a person who thoroughly 
understands the program (in other words, the developer) would understand the relative importance of 
the threads within the process.

The only way to specify a starting priority class for a process is with the start command in the 
Windows command prompt. If you want to have a program start every time with a specific priority, you 
can define a shortcut to use the start command by beginning the command with cmd /c. This runs 
the command prompt, executes the command on the command line, and terminates the command 
prompt. For example, to run Notepad in the Idle-process priority, the command is cmd /c start /low 
Notepad.exe.

EXPERIMENT: Examining and specifying process and thread priorities
To examine and specify process and thread priorities, follow these steps:

1. Run notepad.exe normally—for example, by typing Notepad in a command window.

2. Open Task Manager and click to the Details tab.

3. Add a column named Base Priority. This is the name Task Manager uses for priority 
class.
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4. Find Notepad in the list. You should see something like the following:

5. Notice the Notepad process running with the Normal priority class (8) and that Task 
Manager shows the Idle priority class as Low.

6. Open Process Explorer.

7. Double-click the Notepad process to show its Properties dialog box and click the 
Threads tab.

8. Select the first thread (if there’s more than one). You should see something like this:
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9. Notice the thread’s priorities. Its base priority is 8 but its current (dynamic) priority is 10. 
(The reason for this priority boost is discussed in the upcoming “Priority boosts” section).

10. If you want, you can suspend and kill the thread. (Both operations must be used with 
caution, of course.)

11. In Task Manager, right-click the Notepad process, select Set Priority, and set the value 
to High, as shown here:

12. Accept the confirmation dialog box change and go back to Process Explorer. Notice that 
the thread’s priority has jumped to the new base for High (13). The dynamic priority has 
made the same relative jump:

13. In Task Manager, change the priority class to Realtime. (You must be an administrator 
on the machine for this to succeed. Note that you can also make this change in Process 
Manager.)
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14. In Process Manager, notice that the base and dynamic priorities of the thread are now 24. 
Recall that the kernel never applies priority boosts for threads in the Real-Time priority 
range.

Windows System Resource Manager
Windows Server 2012 R2 Standard Edition and higher SKUs include an optionally installable 
component called Windows System Resource Manager (WSRM). It permits the administrator to 
configure policies that specify CPU utilization, affinity settings, and memory limits (both physical 
and virtual) for processes. In addition, WSRM can generate resource-utilization reports that can 
be used for accounting and verification of service-level agreements with users.

Policies can be applied for specific applications (by matching the name of the image with or 
without specific command-line arguments), users, or groups. The policies can be scheduled to 
take effect at certain periods or can be enabled all the time.

After you set a resource-allocation policy to manage specific processes, the WSRM service 
monitors CPU consumption of managed processes and adjusts process base priorities when 
those processes do not meet their target CPU allocations.

The physical memory limitation uses the function SetProcessWorkingSetSizeEx to set a 
hard-working set maximum. The virtual memory limit is implemented by the service checking 
the private virtual memory consumed by the processes. (See Chapter 5 for an explanation of 
these memory limits.) If this limit is exceeded, WSRM can be configured to either kill the processes 
or write an entry to the event log. This behavior can be used to detect a process with a memory 
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leak before it consumes all the available committed memory on the system. Note that WSRM 
memory limits do not apply to Address Windowing Extensions (AWE) memory, large page memory, 
or kernel memory (non-paged or paged pool). (See Chapter 5 for more information on these terms.)

Thread states
Before looking at the thread-scheduling algorithms, you must understand the various execution states 
that a thread can be in. The thread states are as follows:

 ■ Ready A thread in the ready state is waiting to execute or to be in-swapped after completing 
a wait. When looking for a thread to execute, the dispatcher considers only the threads in the 
ready state.

 ■ Deferred ready This state is used for threads that have been selected to run on a specific 
processor but have not actually started running there. This state exists so that the kernel can 
minimize the amount of time the per-processor lock on the scheduling database is held.

 ■ Standby A thread in this state has been selected to run next on a particular processor. When 
the correct conditions exist, the dispatcher performs a context switch to this thread. Only one 
thread can be in the standby state for each processor on the system. Note that a thread can be 
preempted out of the standby state before it ever executes (if, for example, a higher-priority 
thread becomes runnable before the standby thread begins execution).

 ■ Running After the dispatcher performs a context switch to a thread, the thread enters the 
running state and executes. The thread’s execution continues until its quantum ends (and an-
other thread at the same priority is ready to run), it is preempted by a higher-priority thread, it 
terminates, it yields execution, or it voluntarily enters the waiting state.

 ■ Waiting A thread can enter the waiting state in several ways: A thread can voluntarily wait for 
an object to synchronize its execution, the OS can wait on the thread’s behalf (such as to resolve 
a paging I/O), or an environment subsystem can direct the thread to suspend itself. When the 
thread’s wait ends, depending on its priority, the thread either begins running immediately or is 
moved back to the ready state.

 ■ Transition A thread enters the transition state if it is ready for execution but its kernel stack is 
paged out of memory. After its kernel stack is brought back into memory, the thread enters the 
ready state. (Thread stacks are discussed in Chapter 5.)

 ■ Terminated When a thread finishes executing, it enters this state. After the thread is terminated, 
the executive thread object (the data structure in system memory that describes the thread) 
might or might not be deallocated. The object manager sets the policy regarding when to  
delete the object. For example, the object remains if there are any open handles to the thread. 
A thread can also enter the terminated state from other states if it’s killed explicitly by some 
other thread—for example, by calling the TerminateThread Windows API.

 ■ Initialized This state is used internally while a thread is being created.
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Figure 4-8 shows the main state transitions for threads. The numeric values shown represent the 
internal values of each state and can be viewed with a tool such as Performance Monitor. The ready and 
deferred ready states are represented as one. This reflects the fact that the deferred ready state acts 
as a temporary placeholder for the scheduling routines. This is true for the standby state as well. These 
states are almost always very short-lived. Threads in these states always transition quickly to ready, run-
ning, or waiting.

FIGURE 4-8 Thread states and transitions.

EXPERIMENT: Thread-scheduling state changes
You can watch thread-scheduling state changes with the Performance Monitor tool in Windows. 
This utility can be useful when you’re debugging a multithreaded application and you’re unsure 
about the state of the threads running in the process. To watch thread-scheduling state changes 
by using the Performance Monitor tool, follow these steps:

1. Download the CPU Stress tool from the book’s downloadable resources.

2. Run CPUSTRES.exe. Thread 1 should be active.

3. Activate thread 2 by selecting it in the list and clicking the Activate button or by right-
clicking it and selecting Activate from the context menu. The tool should look some-
thing like this:
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4. Click the Start button and type perfmon to start the Performance Monitor tool.

5. If necessary, select the chart view. Then remove the existing CPU counter.

6. Right-click the graph and choose Properties.

7. Click the Graph tab and change the chart vertical scale maximum to 7. (As you saw in 
Figure 4-8, the various states are associated with numbers 0 through 7.) Then click OK.

8. Click the Add button on the toolbar to open the Add Counters dialog box.

9. Select the Thread performance object and then select the Thread State counter.

10. Select the Show Description check box to see the definition of the values:

11. In the Instances box, select <All instances>. Then type cpustres and click Search.

12. Select the first three threads of cpustres (cpustres/0, cpustres/1, and cpustres/2) and 
click the Add >> button. Then click OK. Thread 0 should be in state 5 (waiting), because 
that’s the GUI thread and it’s waiting for user input. Threads 1 and 2 should be alternat-
ing between states 2 and 5 (running and waiting). (Thread 1 may be hiding thread 2 as 
they’re running with the same activity level and the same priority.)
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13. Go back to CPU Stress, right-click thread 2, and choose Busy from the activity context 
menu. You should see thread 2 in state 2 (running) more often than thread 1:

14. Right-click thread 1 and choose an activity level of Maximum. Then repeat this step 
for thread 2. Both threads now should be constantly in state 2 because they’re running 
essentially an infinite loop:
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If you’re trying this on a single processor system, you’ll see something different. Because 
there is only one processor, only one thread can execute at a time, so you’ll see the two 
threads alternating between states 1 (ready) and 2 (running):

15. If you’re on a multiprocessor system (very likely), you can get the same effect by going 
to Task Manager, right-clicking the CPUSTRES process, selecting Set Affinity, and then 
select just one processor—it doesn’t matter which one—as shown here. (You can also 
do it from CPU Stress by opening the Process menu and selecting Affinity.)
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16. There’s one more thing you can try. With this setting in place, go back to CPU Stress, 
right-click thread 1, and choose a priority of Above Normal. You’ll see that thread 1 is 
running continuously (state 2) and thread 2 is always in the ready state (state 1). This is 
because there’s only one processor, so in general, the higher priority thread wins out. 
From time to time, however, you’ll see a change in thread 1’s state to ready. This is be-
cause every 4 seconds or so, the starved thread gets a boost that enables it to run for a 
little while. (Often, this state change is not reflected by the graph because the granular-
ity of Performance Monitor is limited to 1 second, which is too coarse.) This is described 
in more detail later in this chapter in the section “Priority boosts.”

Dispatcher database
To make thread-scheduling decisions, the kernel maintains a set of data structures known collectively 
as the dispatcher database. The dispatcher database keeps track of which threads are waiting to execute 
and which processors are executing which threads.
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To improve scalability, including thread-dispatching concurrency, Windows multiprocessor systems 
have per-processor dispatcher ready queues and shared processor group queues, as illustrated in Fig-
ure 4-9. In this way, each CPU can check its own shared ready queue for the next thread to run without 
having to lock the system-wide ready queues.

FIGURE 4-9 Windows multiprocessor dispatcher database. (This example shows six processors. P represents  
processes; T represents threads.)

Windows versions prior to Windows 8 and Windows Server 2012 used per-processor ready queues 
and a per-processor ready summary, which were stored as part of processor control block (PRCB) struc-
ture. (To see the fields in the PRCB, type dt nt!_kprcb in the kernel debugger.) Starting with Windows 
8 and Windows Server 2012, a shared ready queue and ready summary are used for a group of proces-
sors. This enables the system to make better decisions about which processor to use next for that group 
of processors. (The per-CPU ready queues are still there and used for threads with affinity constraints.)

Note Because the shared data structure must be protected (by a spinlock), the group 
should not be too large. That way, contention on the queues is insignificant. In the current 
implementation, the maximum group size is four logical processors. If the number of logical 
processors is greater than four, then more than one group would be created, and the avail-
able processors spread evenly. For example, on a six-processor system, two groups of three 
processors each would be created.

The ready queues, ready summary (described next), and some other information is stored in a kernel 
structure named KSHARED_READY_QUEUE that is stored in the PRCB. Although it exists for every processor, 
it’s used only on the first processor of each processor group, sharing it with the rest of the processors in 
that group.
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The dispatcher ready queues (ReadListHead in KSHARED_READY_QUEUE) contain the threads that are 
in the ready state, waiting to be scheduled for execution. There is one queue for each of the 32 prior-
ity levels. To speed up the selection of which thread to run or preempt, Windows maintains a 32-bit 
bitmask called the ready summary (ReadySummary). Each bit set indicates one or more threads in the 
ready queue for that priority level (bit 0 represents priority 0, bit 1 priority 1, and so on).

Instead of scanning each ready list to see whether it is empty or not (which would make scheduling 
decisions dependent on the number of different priority threads), a single bit scan is performed as a 
native processor command to find the highest bit set. Regardless of the number of threads in the ready 
queue, this operation takes a constant amount of time.

The dispatcher database is synchronized by raising IRQL to DISPATCH_LEVEL (2). (For an explanation 
of interrupt priority levels, or IRQLs, see Chapter 6.) Raising IRQL in this way prevents other threads 
from interrupting thread dispatching on the processor because threads normally run at IRQL 0 or 1. 
However, more is required than just raising IRQL, because other processors can simultaneously raise to 
the same IRQL and attempt to operate on their dispatcher database. How Windows synchronizes access 
to the dispatcher database is explained later in this chapter in the section “Multiprocessor systems.”

EXPERIMENT: Viewing ready threads
You can view the list of ready threads with the kernel-debugger !ready command. This com-
mand displays the thread or list of threads that are ready to run at each priority level. Here is an 
example generated on a 32-bit machine with four logical processors:

0: kd> !ready 
KSHARED_READY_QUEUE 8147e800: (00) ****---------------------------- 
SharedReadyQueue 8147e800: Ready Threads at priority 8 
    THREAD 80af8bc0  Cid 1300.15c4  Teb: 7ffdb000 Win32Thread: 00000000 READY on 
processor 80000002 
    THREAD 80b58bc0  Cid 0454.0fc0  Teb: 7f82e000 Win32Thread: 00000000 READY on 
processor 80000003 
SharedReadyQueue 8147e800: Ready Threads at priority 7 
    THREAD a24b4700  Cid 0004.11dc  Teb: 00000000 Win32Thread: 00000000 READY on 
processor 80000001 
    THREAD a1bad040  Cid 0004.096c  Teb: 00000000 Win32Thread: 00000000 READY on 
processor 80000001 
SharedReadyQueue 8147e800: Ready Threads at priority 6 
    THREAD a1bad4c0  Cid 0004.0950  Teb: 00000000 Win32Thread: 00000000 READY on 
processor 80000002 
    THREAD 80b5e040  Cid 0574.12a4  Teb: 7fc33000 Win32Thread: 00000000 READY on 
processor 80000000 
SharedReadyQueue 8147e800: Ready Threads at priority 4 
    THREAD 80b09bc0  Cid 0004.12dc  Teb: 00000000 Win32Thread: 00000000 READY on 
processor 80000003 
SharedReadyQueue 8147e800: Ready Threads at priority 0 
    THREAD 82889bc0  Cid 0004.0008  Teb: 00000000 Win32Thread: 00000000 READY on 
processor 80000000 
Processor 0: No threads in READY state 
Processor 1: No threads in READY state 
Processor 2: No threads in READY state 
Processor 3: No threads in READY state
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The processor numbers have a 0x8000000 added to them, but the actual processor numbers 
are easy to see. The first line shows the address of the KSHARED_READY_QUEUE with the group 
number in parentheses (00 in the output) and then a graphic representation of the processors in 
this particular group (the four asterisks).

The last four lines seem odd, as they appear to indicate no ready threads, contradicting the 
preceding output. These lines indicate ready threads from the older DispatcherReadyListHead 
member of the PRCB because the per-processor ready queues are used for threads that have 
restrictive affinity (set to run on a subset of processors inside that processor group).

You can also dump the KSHARED_READY_QUEUE with the address given by the !ready command:

0: kd> dt nt!_KSHARED_READY_QUEUE 8147e800 
   +0x000 Lock             : 0 
   +0x004 ReadySummary     : 0x1d1 
   +0x008 ReadyListHead    : [32] _LIST_ENTRY [ 0x82889c5c - 0x82889c5c ] 
   +0x108 RunningSummary   : [32]  "???" 
   +0x128 Span             : 4 
   +0x12c LowProcIndex     : 0 
   +0x130 QueueIndex       : 1 
   +0x134 ProcCount        : 4 
   +0x138 Affinity         : 0xf

The ProcCount member shows the processor count in the shared group (4 in this example). 
Also note the ReadySummary value, 0x1d1. This translates to 111010001 in binary. Reading the 
binary one bits from right to left, this indicates that threads exist in priorities 0, 4, 6, 7, 8, which 
match the preceding output.

Quantum
As mentioned earlier in the chapter, a quantum is the amount of time a thread is permitted to run 
before Windows checks to see whether another thread at the same priority is waiting to run. If a thread 
completes its quantum and there are no other threads at its priority, Windows permits the thread to 
run for another quantum.

On client versions of Windows, threads run for two clock intervals by default. On server systems, 
threads runs for 12 clock intervals by default. (We’ll explain how to change these values in the “Controlling 
the quantum” section.) The rationale for the longer default value on server systems is to minimize context 
switching. By having a longer quantum, server applications that wake up because of a client request have 
a better chance of completing the request and going back into a wait state before their quantum ends.

The length of the clock interval varies according to the hardware platform. The frequency of the clock 
interrupts is up to the HAL, not the kernel. For example, the clock interval for most x86 uniprocessors is 
about 10 milliseconds (note that these machines are no longer supported by Windows and are used here 
only for example purposes), and for most x86 and x64 multiprocessors it is about 15 milliseconds. This 
clock interval is stored in the kernel variable KeMaximumIncrement as hundreds of nanoseconds.
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Although threads run in units of clock intervals, the system does not use the count of clock ticks as 
the gauge for how long a thread has run and whether its quantum has expired. This is because thread 
run-time accounting is based on processor cycles. When the system starts up, it multiplies the processor 
speed (CPU clock cycles per second) in hertz (Hz) by the number of seconds it takes for one clock tick to 
fire (based on the KeMaximumIncrement value described earlier) to calculate the number of clock cycles 
to which each quantum is equivalent. This value is stored in the kernel variable KiCyclesPerClock-
Quantum.

The result of this accounting method is that threads do not actually run for a quantum number 
based on clock ticks. Instead, they run for a quantum target, which represents an estimate of what the 
number of CPU clock cycles the thread has consumed should be when its turn would be given up. This 
target should be equal to an equivalent number of clock interval timer ticks. This is because, as you just 
saw, the calculation of clock cycles per quantum is based on the clock interval timer frequency, which 
you can check using the following experiment. Note, however, that because interrupt cycles are not 
charged to the thread, the actual clock time might be longer.

EXPERIMENT: Determining the clock interval frequency
The Windows GetSystemTimeAdjustment function returns the clock interval. To determine the 
clock interval, run the clockres tool from Sysinternals. Here’s the output from a quad-core  
64-bit Windows 10 system:

C:\>clockres 
 
ClockRes v2.0 - View the system clock resolution 
Copyright (C) 2009 Mark Russinovich 
SysInternals - www.sysinternals.com 
 
Maximum timer interval: 15.600 ms 
Minimum timer interval: 0.500 ms 
Current timer interval: 1.000 ms

The current interval may be lower than the maximum (default) clock interval because of 
multimedia timers. Multimedia timers are used with functions such as timeBeginPeriod and 
timeSetEvent that are used to receive callbacks with intervals of 1 millisecond (ms) at best. This 
causes a global reprogramming of the kernel interval timer, meaning the scheduler wakes up in 
more frequent intervals, which can degrade system performance. In any case, this does not affect 
quantum lengths, as described in the next section.

It’s also possible to read the value using the kernel global variable KeMaximumIncrement as 
shown here (not the same system as the previous example):

0: kd> dd nt!KeMaximumIncrement L1 
814973b4  0002625a 
0: kd> ? 0002625a 
Evaluate expression: 156250 = 0002625a

This corresponds to the default of 15.6 ms.

http://www.sysinternals.com
http://www.sysinternals.com
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Quantum accounting
Each process has a quantum reset value in the process control block (KPROCESS). This value is used 
when creating new threads inside the process and is duplicated in the thread control block (KTHREAD), 
which is then used when giving a thread a new quantum target. The quantum reset value is stored in 
terms of actual quantum units (we’ll discuss what these mean soon), which are then multiplied by the 
number of clock cycles per quantum, resulting in the quantum target.

As a thread runs, CPU clock cycles are charged at different events, such as context switches, inter-
rupts, and certain scheduling decisions. If, at a clock interval timer interrupt, the number of CPU clock 
cycles charged has reached (or passed) the quantum target, quantum end processing is triggered. If 
there is another thread at the same priority waiting to run, a context switch occurs to the next thread in 
the ready queue.

Internally, a quantum unit is represented as one-third of a clock tick. That is, one clock tick equals 
three quantums. This means that on client Windows systems, threads have a quantum reset value of 6 
(2 * 3) and that server systems have a quantum reset value of 36 (12 * 3) by default. For this reason, the 
KiCyclesPerClockQuantum value is divided by 3 at the end of the calculation previously described, 
because the original value describes only CPU clock cycles per clock interval timer tick.

The reason a quantum was stored internally as a fraction of a clock tick rather than as an entire tick 
was to allow for partial quantum decay-on-wait completion on versions of Windows prior to Windows 
Vista. Prior versions used the clock interval timer for quantum expiration. If this adjustment had not 
been made, it would have been possible for threads to never have their quantums reduced. For ex-
ample, if a thread ran, entered a wait state, ran again, and entered another wait state but was never the 
currently running thread when the clock interval timer fired, it would never have its quantum charged 
for the time it was running. Because threads now have CPU clock cycles charged instead of quantums, 
and because this no longer depends on the clock interval timer, these adjustments are not required.

EXPERIMENT: Determining the clock cycles per quantum
Windows doesn’t expose the number of clock cycles per quantum through any function. However, 
with the calculation and description we’ve given, you should be able to determine this on your 
own using the following steps and a kernel debugger such as WinDbg in local debugging mode:

1. Obtain your processor frequency as Windows has detected it. You can use the value 
stored in the PRCB’s MHz field, which you can display with the !cpuinfo command. 
Here is a sample output of a four-processor system running at 2794 megahertz (MHz):

lkd> !cpuinfo

CP  F/M/S Manufacturer  MHz PRCB Signature    MSR 8B Signature Features 
 0  6,60,3 GenuineIntel 2794 ffffffff00000000 >ffffffff00000000<a3cd3fff 
 1  6,60,3 GenuineIntel 2794 ffffffff00000000                   a3cd3fff 
 2  6,60,3 GenuineIntel 2794 ffffffff00000000                   a3cd3fff 
 3  6,60,3 GenuineIntel 2794 ffffffff00000000                   a3cd3fff
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2. Convert the number to hertz (Hz). This is the number of CPU clock cycles that occur 
each second on your system—in this case, 2,794,000,000 cycles per second.

3. Obtain the clock interval on your system by using clockres. This measures how long 
it takes before the clock fires. On the sample system used here, this interval was 15.625 
msec.

4. Convert this number to the number of times the clock interval timer fires each second. 
One second equals 1,000 ms, so divide the number derived in step 3 by 1,000. In this 
case, the timer fires every 0.015625 seconds.

5. Multiply this count by the number of cycles each second that you obtained in step 2.  
In this case, 43,656,250 cycles have elapsed after each clock interval.

6. Remember that each quantum unit is one-third of a clock interval, so divide the number 
of cycles by 3. This gives you 14,528,083, or 0xDE0C13 in hexadecimal. This is the num-
ber of clock cycles each quantum unit should take on a system running at 2,794 MHz 
with a clock interval of around 15.6 ms.

7. To verify your calculation, dump the value of KiCyclesPerClockQuantum on your  
system. It should match (or be close enough because of rounding errors).

lkd> dd nt!KiCyclesPerClockQuantum L1 
8149755c  00de0c10

Controlling the quantum
You can change the thread quantum for all processes, but you can choose only one of two settings: 
short (two clock ticks, which is the default for client machines) or long (12 clock ticks, which is the  
default for server systems).

Note By using the job object on a system running with long quantums, you can select 
other quantum values for the processes in the job.

To change this setting, right-click the This PC icon on the desktop. Alternatively, in Windows  
Explorer, choose Properties, click the Advanced System Settings label, click the Advanced tab, click 
the Settings button in the Performance section, and click yet another Advanced tab. Figure 4-10 
shows the resulting dialog box.
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FIGURE 4-10 Quantum configuration in the Performance Options dialog box.

This dialog box contains two key options:

 ■ Programs This setting designates the use of short, variable quantums, which is the default for 
client versions of Windows (and other client-like versions, such as mobile, XBOX, HoloLens, and 
so on). If you install Terminal Services on a server system and configure the server as an applica-
tion server, this setting is selected so that the users on the terminal server have the same quan-
tum settings that would normally be set on a desktop or client system. You might also select this 
manually if you were running Windows Server as your desktop OS.

 ■ Background Services This setting designates the use of long, fixed quantums—the default 
for server systems. The only reason you might select this option on a workstation system is if 
you were using the workstation as a server system. However, because changes in this option 
take effect immediately, it might make sense to use it if the machine is about to run a back-
ground or server-style workload. For example, if a long-running computation, encoding, or 
modeling simulation needs to run overnight, you could select the Background Services option 
at night and return the system to Programs mode in the morning.

Variable quantums
When variable quantums are enabled, the variable quantum table (PspVariableQuantums), which holds 
an array of six quantum numbers, is loaded into the PspForegroundQuantum table (a three-element 
array) that is used by the PspComputeQuantum function. Its algorithm will pick the appropriate quantum 
index based on whether the process is a foreground process—that is, whether it contains the thread 
that owns the foreground window on the desktop. If this is not the case, an index of 0 is chosen, which 
corresponds to the default thread quantum described earlier. If it is a foreground process, the quantum 
index corresponds to the priority separation.
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This priority separation value determines the priority boost (described in the upcoming section 
“Priority boosts”) that the scheduler will apply to foreground threads, and it is thus paired with an ap-
propriate extension of the quantum. For each extra priority level (up to 2), another quantum is given to 
the thread. For example, if the thread receives a boost of one priority level, it receives an extra quantum 
as well. By default, Windows sets the maximum possible priority boost to foreground threads, meaning 
that the priority separation will be 2, which means quantum index 2 is selected in the variable quantum 
table. This leads to the thread receiving two extra quantums, for a total of three quantums.

Table 4-2 describes the exact quantum value (recall that this is stored in a unit representing one-third 
of a clock tick) that will be selected based on the quantum index and which quantum configuration is  
in use.

TABLE 4-2 Quantum values

Short Quantum Index Long Quantum Index

Variable  6 12 18 12 24 36

Fixed 18 18 18 36 36 36

Thus, when a window is brought into the foreground on a client system, all the threads in the pro-
cess containing the thread that owns the foreground window have their quantums tripled. Threads in 
the foreground process run with a quantum of six clock ticks, whereas threads in other processes have 
the default client quantum of two clock ticks. In this way, when you switch away from a CPU-intensive 
process, the new foreground process will get proportionally more of the CPU. This is because when its 
threads run, they will have a longer turn than background threads (again, assuming the thread priori-
ties are the same in both the foreground and background processes).

Quantum settings registry value
The user interface that controls quantum settings described earlier modifies the registry value Win32-
PrioritySeparation in the key HKLM\SYSTEM\CurrentControlSet\Control\PriorityControl. In 
addition to specifying the relative length of thread quantums (short or long), this registry value also 
defines whether variable quantums should be used, as well as the priority separation (which, as you’ve 
seen, will determine the quantum index used when variable quantums are enabled). This value consists 
of 6 bits divided into the three 2-bit fields shown in Figure 4-11.

FIGURE 4-11 Fields of the Win32PrioritySeparation registry value.

The fields shown in Figure 4-11 can be defined as follows:

 ■ Short vs. Long A value of 1 specifies long quantums, and a value of 2 specifies short ones.  
A setting of 0 or 3 indicates that the default appropriate for the system will be used (short for 
client systems, long for server systems).
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 ■ Variable vs. Fixed A value of 1 means to enable the variable quantum table based on the 
algorithm shown in the “Variable quantums” section. A setting of 0 or 3 means that the default 
appropriate for the system will be used (variable for client systems, fixed for server systems).

 ■ Priority Separation This field (stored in the kernel variable PsPrioritySeparation) defines 
the priority separation (up to 2), as explained in the “Variable quantums” section.

When you use the Performance Options dialog box (refer to Figure 4-10), you can choose from 
only two combinations: short quantums with foreground quantums tripled, or long quantums with no 
quantum changes for foreground threads. However, you can select other combinations by modifying 
the Win32PrioritySeparation registry value directly. 

Threads that are part of a process running in the idle process priority class always receive a single 
thread quantum, ignoring any sort of quantum configuration settings, whether set by default or set 
through the registry.

On Windows Server systems configured as application servers, the initial value of the Win32Priori-
tySeparation registry value will be hex 26, which is identical to the value set by the Optimize Perfor-
mance for Programs option in the Performance Options dialog box. This selects quantum and priority-
boost behavior like that on Windows client systems, which is appropriate for a server used primarily to 
host users’ applications.

On Windows client systems and on servers not configured as application servers, the initial value 
of the Win32PrioritySeparation registry setting will be 2. This provides values of 0 for the Short 
vs. Long and Variable vs. Fixed Bit fields, relying on the default behavior of the system (depending on 
whether it is a client system or a server system) for these options. However, it provides a value of 2 for 
the Priority Separation field. After the registry value has been changed via the Performance Options 
dialog box, it cannot be restored to this original value other than by modifying the registry directly.

EXPERIMENT: Effects of changing the quantum configuration
Using a local kernel debugger, you can see how the two quantum configuration settings, Programs 
and Background Services, affect the PsPrioritySeparation and PspForegroundQuantum tables, 
as well as modify the QuantumReset value of threads on the system. Take the following steps:

1. Open the System utility in Control Panel or right-click the This PC icon on the desktop 
and choose Properties.

2. Click the Advanced System Settings label, click the Advanced tab, click the Settings 
button in the Performance section, and click the second Advanced tab.

3. Select the Programs option and click Apply. Keep this dialog box open for the duration 
of the experiment.

4. Dump the values of PsPrioritySeparation and PspForegroundQuantum, as shown 
here. The values shown are what you should see on a Windows system after making the 
change in steps 1–3. Notice how the variable short quantum table is being used and that 
a priority boost of 2 will apply to foreground applications:



238 CHAPTER 4 Threads

lkd> dd nt!PsPrioritySeparation L1 
fffff803'75e0e388  00000002 
lkd> db nt!PspForegroundQuantum L3

fffff803'76189d28  06 0c 12

5. Look at the QuantumReset value of any process on the system. As noted, this is the 
default full quantum of each thread on the system when it is replenished. This value is 
cached into each thread of the process, but the KPROCESS structure is easier to look at. 
Notice in this case it is 6, because WinDbg, like most other applications, gets the quan-
tum set in the first entry of the PspForegroundQuantum table:

lkd> .process 
Implicit process is now ffffe001'4f51f080 
lkd> dt nt!_KPROCESS ffffe001'4f51f080 QuantumReset 
   +0x1bd QuantumReset : 6 '' 

6. Change the Performance option to Background Services in the dialog box you 
opened in steps 1 and 2.

7. Repeat the commands shown in steps 4 and 5. You should see the values change in a 
manner consistent with our discussion in this section:

lkd> dd nt!PsPrioritySeparation L1 
fffff803'75e0e388  00000000  
lkd> db nt!PspForegroundQuantum L3 
fffff803'76189d28  24 24 24  
lkd> dt nt!_KPROCESS ffffe001'4f51f080 QuantumReset 
   +0x1bd QuantumReset : 36 '$' 

Priority boosts
The Windows scheduler periodically adjusts the current (dynamic) priority of threads through an 
internal priority-boosting mechanism. In many cases, it does so to decrease various latencies (that is, 
to make threads respond faster to the events they are waiting on) and increase responsiveness. In oth-
ers, it applies these boosts to prevent inversion and starvation scenarios. Here are some of the boost 
scenarios that will be described in this section (and their purpose):

 ■ Boosts due to scheduler/dispatcher events (latency reduction)

 ■ Boosts due to I/O completion (latency reduction)

 ■ Boosts due to user interface (UI) input (latency reduction/responsiveness)

 ■ Boosts due to a thread waiting on an executive resource (ERESOURCE) for too long (starvation 
avoidance)

 ■ Boosts when a thread that’s ready to run hasn’t been running for some time (starvation and 
priority-inversion avoidance)
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Like any scheduling algorithms, however, these adjustments aren’t perfect, and they might not 
benefit all applications.

Note Windows never boosts the priority of threads in the real-time range (16 through 31). 
Therefore, scheduling is always predictable with respect to other threads in this range. Windows 
assumes that if you’re using the real-time thread priorities, you know what you’re doing.

Client versions of Windows also include a pseudo-boosting mechanism that occurs during mul-
timedia playback. Unlike the other priority boosts, multimedia-playback boosts are managed by a 
kernel-mode driver called the Multimedia Class Scheduler Service (mmcss.sys). They are not really 
boosts, however. The driver merely sets new priorities for the threads as needed. Therefore, none of the 
rules regarding boosts apply. We’ll first cover the typical kernel-managed priority boosts and then talk 
about MMCSS and the kind of “boosting” it performs.

Boosts due to scheduler/dispatcher events
Whenever a dispatch event occurs, the KiExitDispatcher routine is called. Its job is to process the 
deferred ready list by calling KiProcessThreadWaitList and then call KzCheckForThreadDispatch 
to check whether any threads on the current processor should not be scheduled. Whenever such an 
event occurs, the caller can also specify which type of boost should be applied to the thread, as well as 
what priority increment the boost should be associated with. The following scenarios are considered as 
AdjustUnwait dispatch events because they deal with a dispatcher (synchronization) object entering a 
signaled state, which might cause one or more threads to wake up:

 ■ An asynchronous procedure call (APC; described in Chapter 6 and in more detail in Chapter 8 in 
Part 2) is queued to a thread.

 ■ An event is set or pulsed.

 ■ A timer was set, or the system time was changed, and timers had to be reset.

 ■ A mutex was released or abandoned.

 ■ A process exited.

 ■ An entry was inserted in a queue (KQUEUE), or the queue was flushed.

 ■ A semaphore was released.

 ■ A thread was alerted, suspended, resumed, frozen, or thawed.

 ■ A primary UMS thread is waiting to switch to a scheduled UMS thread.

For scheduling events associated with a public API (such as SetEvent), the boost increment applied 
is specified by the caller. Windows recommends certain values to be used by developers, which will 
be described later. For alerts, a boost of 2 is applied (unless the thread is put in an alert wait by calling 
KeAlertThreadByThreadId, in which case the applied boost is 1), because the alert API does not have 
a parameter allowing a caller to set a custom increment.
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The scheduler also has two special AdjustBoost dispatch events, which are part of the lock-ownership 
priority mechanism. These boosts attempt to fix situations in which a caller that owns the lock at prior-
ity x ends up releasing the lock to a waiting thread at priority < = x. In this situation, the new owner 
thread must wait for its turn (if running at priority x), or worse, it might not even get to run at all if its 
priority is lower than x. This means the releasing thread continues its execution, even though it should 
have caused the new owner thread to wake up and take control of the processor. The following two 
dispatcher events cause an AdjustBoost dispatcher exit:

 ■ An event is set through the KeSetEventBoostPriority interface, which is used by the  
ERESOURCE reader-writer kernel lock.

 ■ A gate is set through the KeSignalGate interface, which is used by various internal mechanisms 
when releasing a gate lock.

Unwait boosts
Unwait boosts attempt to decrease the latency between a thread waking up due to an object being 
signaled (thus entering the ready state) and the thread actually beginning its execution to process the 
unwait (thus entering the running state). Generally speaking, it is desirable that a thread that wakes up 
from a waiting state would be able to run as soon as possible.

The various Windows header files specify recommended values that kernel-mode callers of APIs 
such as KeReleaseMutex, KeSetEvent and KeReleaseSemaphore should use, which correspond to 
definitions such as MUTANT_INCREMENT, SEMAPHORE_INCREMENT, and EVENT_INCREMENT. These three 
definitions have always been set to 1 in the headers, so it is safe to assume that most unwaits on these 
objects result in a boost of 1. In the user-mode API, an increment cannot be specified, nor do the native 
system calls such as NtSetEvent have parameters to specify such a boost. Instead, when these APIs call 
the underlying Ke interface, they automatically use the default _INCREMENT definition. This is also the 
case when mutexes are abandoned or timers are reset due to a system time change: The system uses 
the default boost that normally would have been applied when the mutex would have been released. 
Finally, the APC boost is completely up to the caller. Soon, you’ll see a specific usage of the APC boost 
related to I/O completion.

Note Some dispatcher objects don’t have boosts associated with them. For example, when 
a timer is set or expires, or when a process is signaled, no boost is applied.

All these boosts of 1 attempt to solve the initial problem by assuming that both the releasing and 
waiting threads are running at the same priority. By boosting the waiting thread by one priority level, 
the waiting thread should preempt the releasing thread as soon as the operation completes. Unfortu-
nately, on uniprocessor systems, if this assumption does not hold, the boost might not do much. For 
example, if the waiting thread is at priority 4 and the releasing thread is at priority 8, waiting at priority 
5 won’t do much to reduce latency and force preemption. On multiprocessor systems, however, due to 
the stealing and balancing algorithms, this higher-priority thread may have a better chance of getting 
picked up by another logical processor. This is due to a design choice made in the initial NT architecture, 
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which is to not track lock ownership (except a few locks). This means the scheduler can’t be sure who  
really owns an event and if it’s really being used as a lock. Even with lock-ownership tracking, owner-
ship is not usually passed (to avoid convoy issues) other than in the executive resource case, explained 
in an upcoming section.

For certain kinds of lock objects that use events or gates as their underlying synchronization object, 
the lock-ownership boost resolves the dilemma. Also, on a multiprocessor machine, the ready thread 
might get picked up on another processor (due to the processor-distribution and load-balancing 
schemes you’ll see later), and its high priority might increase the chances of it running on that second-
ary processor instead.

Lock-ownership boosts
Because the executive-resource (ERESOURCE) and critical-section locks use underlying dispatcher ob-
jects, releasing these locks results in an unwait boost as described earlier. On the other hand, because 
the high-level implementation of these objects tracks the owner of the lock, the kernel can make a 
more informed decision as to what kind of boost should be applied by using the AdjustBoost reason. 
In these kinds of boosts, AdjustIncrement is set to the current priority of the releasing (or setting) 
thread, minus any graphical user interface (GUI) foreground separation boost. In addition, before the 
KiExitDispatcher function is called, KiRemoveBoostThread is called by the event and gate code 
to return the releasing thread back to its regular priority. This step is needed to avoid a lock-convoy 
situation, in which two threads repeatedly passing the lock between one another get ever-increasing 
boosts.

Note Pushlocks, which are unfair locks because ownership of the lock in a contended ac-
quisition path is not predictable (rather, it’s random, like a spinlock), do not apply priority 
boosts due to lock ownership. This is because doing so only contributes to preemption and 
priority proliferation, which isn’t required because the lock becomes immediately free as 
soon as it is released (bypassing the normal wait/unwait path).

Other differences between the lock-ownership boost and unwait boost will be exposed in the way 
the scheduler actually applies boosting, which is the subject of the next section.

Priority boosting after I/O completion
Windows gives temporary priority boosts upon completion of certain I/O operations so that threads 
that were waiting for an I/O have more of a chance to run right away and process whatever was being 
waited for. Although you’ll find recommended boost values in the Windows Driver Kit (WDK) header 
files (by searching for #define IO_ in Wdm.h or Ntddk.h), the actual value for the boost is up to the 
device driver. (These values are listed in Table 4-3.) It is the device driver that specifies the boost when 
it completes an I/O request on its call to the kernel function, IoCompleteRequest. In Table 4-3, notice 
that I/O requests to devices that warrant better responsiveness have higher boost values.
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TABLE 4-3 Recommended boost values

Device Boost

Disk, CD-ROM, parallel, video 1

Network, mailslot, named pipe, serial 2

Keyboard, mouse 6

Sound 8

Note You might intuitively expect better responsiveness from your video card or disk than 
a boost of 1. However, the kernel is in fact trying to optimize for latency, to which some de-
vices (as well as human sensory inputs) are more sensitive than others. To give you an idea, a 
sound card expects data around every 1 ms to play back music without perceptible glitches, 
while a video card needs to output at only 24 frames per second, or about once every 40 
ms, before the human eye can notice glitches.

As hinted earlier, these I/O completion boosts rely on the unwait boosts seen in the previous sec-
tion. Chapter 6 shows the mechanism of I/O completion in depth. For now, the important detail is that 
the kernel implements the signaling code in the IoCompleteRequest API through the use of either an 
APC (for asynchronous I/O) or through an event (for synchronous I/O). When a driver passes in—for 
example, IO_DISK_INCREMENT to IoCompleteRequest for an asynchronous disk read—the kernel calls 
KeInsertQueueApc with the boost parameter set to IO_DISK_INCREMENT. In turn, when the thread’s 
wait is broken due to the APC, it receives a boost of 1.

Be aware that the boost values given in Table 4-3 are merely recommendations by Microsoft. Driver 
developers are free to ignore them, and certain specialized drivers can use their own values. For example, 
a driver handling ultrasound data from a medical device, which must notify a user-mode visualization 
application of new data, would probably use a boost value of 8 as well, to satisfy the same latency as a 
sound card. In most cases, however, due to the way Windows driver stacks are built (again, see Chapter 6 
for more information), driver developers often write minidrivers, which call into a Microsoft-owned driver 
that supplies its own boost to IoCompleteRequest. For example, RAID or SATA controller card developers 
typically call StorPortCompleteRequest to complete processing their requests. This call does not have 
any parameter for a boost value, because the Storport.sys driver fills in the right value when calling the 
kernel. Additionally, whenever any file system driver (identified by setting its device type to FILE_ 
DEVICE_DISK_FILE_SYSTEM or FILE_DEVICE_NETWORK_FILE_SYSTEM) completes its request, a boost of 
IO_DISK_INCREMENT is always applied if the driver passed in IO_NO_INCREMENT (0) instead. So this boost 
value has become less of a recommendation and more of a requirement enforced by the kernel.

Boosts during waiting on executive resources
When a thread attempts to acquire an executive resource (ERESOURCE; see Chapter 8 in Part 2 for more 
information on kernel-synchronization objects) that is already owned exclusively by another thread, it 
must enter a wait state until the other thread has released the resource. To limit the risk of deadlocks, 
the executive performs this wait in intervals of 500 ms instead of doing an infinite wait on the resource. 
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At the end of these 500 ms, if the resource is still owned, the executive attempts to prevent CPU starvation 
by acquiring the dispatcher lock, boosting the owning thread or threads to 15 (if the original owner prior-
ity is less than the waiter’s and not already 15), resetting their quantums, and performing another wait.

Because executive resources can be either shared or exclusive, the kernel first boosts the exclusive 
owner and then checks for shared owners and boosts all of them. When the waiting thread enters the 
wait state again, the hope is that the scheduler will schedule one of the owner threads, which will have 
enough time to complete its work and release the resource. Note that this boosting mechanism is used 
only if the resource doesn’t have the Disable Boost flag set, which developers can choose to set if the 
priority-inversion mechanism described here works well with their usage of the resource.

Additionally, this mechanism isn’t perfect. For example, if the resource has multiple shared own-
ers, the executive boosts all those threads to priority 15. This results in a sudden surge of high-priority 
threads on the system, all with full quantums. Although the initial owner thread will run first (because 
it was the first to be boosted and therefore is first on the ready list), the other shared owners will run 
next because the waiting thread’s priority was not boosted. Only after all the shared owners have had 
a chance to run and their priority has been decreased below the waiting thread will the waiting thread 
finally get its chance to acquire the resource. Because shared owners can promote or convert their 
ownership from shared to exclusive as soon as the exclusive owner releases the resource, it’s possible 
for this mechanism not to work as intended.

Priority boosts for foreground threads after waits
As will be described shortly, whenever a thread in the foreground process completes a wait operation 
on a kernel object, the kernel boosts its current (not base) priority by the current value of PsPriori-
tySeparation. (The windowing system is responsible for determining which process is considered to 
be in the foreground.) As described earlier in this chapter in the section “Controlling the quantum,” 
PsPrioritySeparation reflects the quantum-table index used to select quantums for the threads of 
foreground applications. However, in this case, it is being used as a priority boost value.

The reason for this boost is to improve the responsiveness of interactive applications. By giving the 
foreground application a small boost when it completes a wait, it has a better chance of running right 
away, especially when other processes at the same base priority might be running in the background.

EXPERIMENT: Watching foreground priority boosts and decays
Using the CPU Stress tool, you can watch priority boosts in action. Take the following steps:

1. Open the System utility in Control Panel or right-click the This Computer icon on the 
desktop and choose Properties.

2. Click the Advanced System Settings label, click the Advanced tab, click the Settings 
button in the Performance section, and click the Advanced tab.

3. Select the Programs option. This gives PsPrioritySeparation a value of 2.
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4. Run CPU Stress, right-click thread 1, and choose Busy from the context menu.

5. Start the Performance Monitor tool.

6. Click the Add Counter toolbar button or press Ctrl+I to open the Add Counters dialog 
box.

7. Select the Thread object and then select the Priority Current counter.

8. In the Instances box, select <All Instances> and click Search.

9. Scroll down to the CPUSTRES process, select the second thread (thread 1; the first thread 
is the GUI thread) and click the Add button. You should see something like this:

10. Click OK.

11. Right-click the counter and select Properties.

12. Click the Graph tab and change the maximum vertical scale to 16. Then click OK.

13. Bring the CPUSTRES process to the foreground. You should see the priority of the  
CPUSTRES thread being boosted by 2 and then decaying back to the base priority. 
CPUSTRES periodically receives a boost of 2 because the thread you’re monitoring is 
sleeping about 25 percent of the time and then waking up. (This is the Busy activity 
level.) The boost is applied when the thread wakes up. If you set the activity level to 
Maximum, you won’t see any boosts because Maximum in CPUSTRES puts the thread 
into an infinite loop. Therefore, the thread doesn’t invoke any wait functions and there-
fore doesn’t receive any boosts.
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14. When you’ve finished, exit Performance Monitor and CPU Stress.

Priority boosts after GUI threads wake up
Threads that own windows receive an additional boost of 2 when they wake up because of windowing 
activity such as the arrival of window messages. The windowing system (Win32k.sys) applies this boost 
when it calls KeSetEvent to set an event used to wake up a GUI thread. The reason for this boost is 
similar to the previous one: to favor interactive applications.

EXPERIMENT: Watching priority boosts on GUI threads
You can see the windowing system apply its boost of 2 for GUI threads that wake up to process 
window messages by monitoring the current priority of a GUI application and moving the mouse 
across the window. Just follow these steps:

1. Open the System utility in Control Panel.

2. Click the Advanced System Settings label, click the Advanced tab, click the Settings 
button in the Performance section, and click the Advanced tab.

3. Select the Programs option. This gives PsPrioritySeparation a value of 2.

4. Run Notepad.
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5. Start the Performance Monitor tool.

6. Click the Add Counter toolbar button or press Ctrl+I to open the Add Counters dialog 
box.

7. Select the Thread object and then select the Priority Current counter.

8. In the Instances box, type Notepad. Then click Search.

9. Scroll down to the Notepad/0 entry, click it, click the Add button, and then click OK.

10. As in the previous experiment, change the maximum vertical scale to 16. You should see 
the priority of thread 0 in Notepad at 8 or 10. (Because Notepad entered a wait state 
shortly after it received the boost of 2 that threads in the foreground process receive, it 
might not yet have decayed from 10 to 8.)

11. With Performance Monitor in the foreground, move the mouse across the Notepad 
window. (Make both windows visible on the desktop.) Notice that the priority some-
times remains at 10 and sometimes at 9, for the reasons just explained.

Note You won’t likely catch Notepad at 8. This is because it runs so little after 
receiving the GUI thread boost of 2 that it never experiences more than one 
priority level of decay before waking up again. (This is due to additional win-
dowing activity and the fact that it receives the boost of 2 again.)

12. Bring Notepad to the foreground. You should see the priority rise to 12 and remain 
there. This is because the thread is receiving two boosts: the boost of 2 applied to GUI 
threads when they wake up to process windowing input and an additional boost of 2 
because Notepad is in the foreground. (Or, you may see it drop to 11 if it experiences the 
normal priority decay that occurs for boosted threads on the quantum end.)

13. Move the mouse over Notepad while it’s still in the foreground. You might see the priority 
drop to 11 (or maybe even 10) as it experiences the priority decay that normally occurs on  
boosted threads as they complete their turn. However, the boost of 2 that is applied be-
cause it’s the foreground process remains as long as Notepad remains in the foreground.

14. Exit Performance Monitor and Notepad.

Priority boosts for CPU starvation
Imagine the following situation: A priority 7 thread is running, preventing a priority 4 thread from ever 
receiving CPU time. However, a priority 11 thread is waiting for some resource that the priority 4 thread 
has locked. But because the priority 7 thread in the middle is eating up all the CPU time, the priority 4 
thread will never run long enough to finish whatever it’s doing and release the resource blocking the 
priority 11 thread. This scenario is known as priority inversion.
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What does Windows do to address this situation? An ideal solution (at least in theory) would be  
to track locks and owners and boost the appropriate threads so that forward progress can be made. 
This idea is implemented with a feature called Autoboost, described later in this chapter in the section 
“Autoboost.” However, for general starvation scenarios, the following mitigation is used.

You saw how the code responsible for executive resources manages this scenario by boosting 
the owner threads so that they can have a chance to run and release the resource. However, execu-
tive resources are only one of the many synchronization constructs available to developers, and the 
boosting technique will not apply to any other primitive. Therefore, Windows also includes a generic 
CPU starvation-relief mechanism as part of a thread called the balance-set manager. (This is a system 
thread that exists primarily to perform memory-management functions and is described in more detail 
in Chapter 5.) Once per second, this thread scans the ready queues for any threads that have been in 
the ready state (that is, haven’t run) for approximately 4 seconds. If it finds such a thread, the balance-
set manager boosts the thread’s priority to 15 and sets the quantum target to an equivalent CPU clock 
cycle count of 3 quantum units. After the quantum expires, the thread’s priority decays immediately 
to its original base priority. If the thread wasn’t finished and a higher-priority thread is ready to run, 
the decayed thread returns to the ready queue, where it again becomes eligible for another boost if it 
remains there for another 4 seconds.

The balance-set manager doesn’t actually scan all the ready threads every time it runs. To minimize 
the CPU time it uses, it scans only 16 ready threads, If there are more threads at that priority level, it 
remembers where it left off and picks up again on the next pass. Also, it boosts only 10 threads per 
pass. If it finds more than 10 threads meriting this particular boost (which indicates an unusually busy 
system), it stops the scan and picks up again on the next pass.

Note As mentioned, scheduling decisions in Windows are not affected by the number of 
threads and are made in constant time. Because the balance-set manager must scan ready 
queues manually, this operation depends on the number of threads on the system; more 
threads require more scanning time. However, the balance-set manager is not considered 
part of the scheduler or its algorithms and is simply an extended mechanism to increase 
reliability. Additionally, because of the cap on threads and queues to scan, the performance 
impact is minimized and predictable in a worst-case scenario.

EXPERIMENT: Watching priority boosts for CPU starvation
Using the CPU Stress tool, you can watch priority boosts in action. In this experiment, you’ll see 
CPU usage change when a thread’s priority is boosted. Take the following steps:

1. Run CPUSTRES.exe.

2. The activity level of thread 1 is Low. Change it to Maximum.

3. The thread priority of thread 1 is Normal. Change it to Lowest. 
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4. Click thread 2. Its activity level is Low. Change it to Maximum.

5. Change the process affinity mask to a single logical processor. To do so, open the  
Process menu and choose Affinity. (It doesn’t matter which processor.) Alternatively, 
use Task Manager to make the change. The screen should look something like this:

6. Start the Performance Monitor tool.

7. Click the Add Counter toolbar button or press Ctrl+I to open the Add Counters dialog box.

8. Select the Thread object and then select the Priority Current counter.

9. In the Instances box, type CPUSTRES and click Search.

10. Select threads 1 and 2 (thread 0 is the GUI thread), click the Add button, and click OK.

11. Change the vertical scale maximum to 16 for both counters.

12. Because Performance Monitor refreshes once per second, you may miss the priority 
boosts. To help with that, press Ctrl+F to freeze the display. Then force updates to occur 
more frequently by pressing and holding down Ctrl+U. With some luck, you may see a 
priority boost for the lower-priority thread to level 15 like so:

13. Exit Performance Monitor and CPU Stress.
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Applying boosts
Back in KiExitDispatcher, you saw that KiProcessThreadWaitList is called to process any threads 
in the deferred ready list. It is here that the boost information passed by the caller is processed. This 
is done by looping through each DeferredReady thread, unlinking its wait blocks (only Active and 
Bypassed blocks are unlinked), and setting two key values in the kernel’s thread control block: Adjust-
Reason and AdjustIncrement. The reason is one of the two Adjust possibilities seen earlier, and the 
increment corresponds to the boost value. KiDeferredReadyThread is then called. This makes the 
thread ready for execution by running two algorithms: the quantum and priority selection algorithm 
(which you are about to see in two parts) and the processor selection algorithm (which is shown in the 
“Processor selection” section later in this chapter).

Let’s first look at when the algorithm applies boosts, which happens only in cases when a thread is 
not in the real-time priority range. For an AdjustUnwait boost, it will be applied only if the thread is 
not already experiencing an unusual boost and only if the thread has not disabled boosting by calling 
SetThreadPriorityBoost, which sets the DisableBoost flag in the KTHREAD. Another situation that 
can disable boosting in this case is if the kernel has realized that the thread has actually exhausted its 
quantum (but the clock interrupt did not fire to consume it) and it has come out of a wait that lasted 
less than two clock ticks.

If these situations are not currently true, the new priority of the thread will be computed by adding 
the AdjustIncrement to the thread’s current base priority. Additionally, if the thread is known to be 
part of a foreground process (meaning that the memory priority is set to MEMORY_PRIORITY_FOREGROUND, 
which is configured by Win32k.sys when focus changes), this is where the priority-separation boost 
(PsPrioritySeparation) is applied by adding its value on top of the new priority. This is also known  
as the foreground priority boost, which was explained earlier.

Finally, the kernel checks whether this newly computed priority is higher than the current priority of 
the thread, and it limits this value to an upper bound of 15 to avoid crossing into the real-time range. It 
then sets this value as the thread’s new current priority. If any foreground separation boost was applied, 
it sets this value in the ForegroundBoost field of the KTHREAD, which results in a PriorityDecrement 
equal to the separation boost.

For AdjustBoost boosts, the kernel checks whether the thread’s current priority is lower than the 
AdjustIncrement (recall this is the priority of the setting thread) and whether the thread’s current pri-
ority is below 13. If so, and priority boosts have not been disabled for the thread, the AdjustIncrement 
priority is used as the new current priority, limited to a maximum of 13. Meanwhile, the UnusualBoost 
field of the KTHREAD contains the boost value, which results in a PriorityDecrement equal to the lock- 
ownership boost.

In all cases where a PriorityDecrement is present, the quantum of the thread is also recomputed 
to be the equivalent of only one clock tick, based on the value of KiLockQuantumTarget. This ensures 
that foreground and unusual boosts will be lost after one clock tick instead of the usual two (or other 
configured value), as will be shown in the next section. This also happens when an AdjustBoost is 
requested but the thread is running at priority 13 or 14 or with boosts disabled.

After this work is complete, AdjustReason is now set to AdjustNone.
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Removing boosts
Removing boosts is done in KiDeferredReadyThread as boosts and quantum recomputations are 
being applied (as shown in the previous section). The algorithm first begins by checking the type of 
adjustment being done.

For an AdjustNone scenario, which means the thread became ready perhaps due to a preemption, 
the thread’s quantum will be recomputed if it already hit its target but the clock interrupt has not yet 
noticed, as long as the thread was running at a dynamic priority level. Additionally, the thread’s priority 
will be recomputed. For an AdjustUnwait or AdjustBoost scenario on a non-real-time thread, the 
kernel checks whether the thread silently exhausted its quantum (as in the prior section). If so, or if the 
thread was running with a base priority of 14 or higher, or if no PriorityDecrement is present and 
the thread has completed a wait that lasted longer than two clock ticks, the quantum of the thread is 
recomputed, as is its priority.

Priority recomputation happens on non-real-time threads. It’s done by taking the thread’s current 
priority, subtracting its foreground boost, subtracting its unusual boost (the combination of these last 
two items is the PriorityDecrement), and finally subtracting 1. This new priority is bounded with the 
base priority as the lowest bound and any existing priority decrement is zeroed out (clearing unusual 
and foreground boosts). This means that in the case of a lock-ownership boost or any of the other unusual 
boosts explained, the entire boost value is now lost. On the other hand, for a regular AdjustUnwait 
boost, the priority naturally trickles down by 1 due to the subtraction by 1. This lowering eventually 
stops when the base priority is hit due to the lower bound check.

There is another instance where boosts must be removed, which goes through the KiRemoveBoost-
Thread function. This is a special-case boost removal that occurs due to the lock-ownership boost 
rule, which specifies that the setting thread must lose its boost when donating its current priority to 
the waking thread (to avoid a lock convoy). It is also used to undo the boost due to targeted deferred 
procedure calls (DPCs) as well as the boost against ERESOURCE lock-starvation boost. The only special 
detail about this routine is that when computing the new priority, it takes special care to separate the 
ForegroundBoost and UnusualBoost components of the PriorityDecrement to maintain any GUI 
foreground-separation boost that the thread accumulated. This behavior, which appeared starting with 
Windows 7, ensures that threads relying on the lock-ownership boost do not behave erratically when 
running in the foreground, or vice-versa.

Figure 4-12 displays an example of how normal boosts are removed from a thread as it experiences 
quantum end.

FIGURE 4-12 Priority boosting and decay.
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Priority boosts for multimedia applications and games
Although Windows’ CPU-starvation priority boosts might be enough to get a thread out of an abnor-
mally long wait state or potential deadlock, they simply cannot deal with the resource requirements 
imposed by a CPU-intensive application such as Windows Media Player or a 3D computer game.

Skipping and other audio glitches have long been a common source of irritation among Windows 
users. The Windows user-mode audio stack exacerbates this situation because it offers even more 
chances for preemption. To address this, client versions of Windows use the MMCSS driver (described 
earlier in this chapter), implemented in %SystemRoot%\System32\Drivers\MMCSS.sys. Its purpose is to 
ensure glitch-free multimedia playback for applications that register with it.

Note Windows 7 implements MMCSS as a service (rather than a driver). This posed a po-
tential risk, however. If the MMCSS managing thread blocked for any reason, the threads 
managed by it would retain their real-time priorities, potentially causing system-wide star-
vation. The solution was to move the code to the kernel where the managing thread (and 
other resources used by MMCSS) could not be touched. There are other benefits to being a 
kernel driver, such as holding a direct pointer to process and thread objects rather than IDs 
or handles. This bypasses searches based on IDs or handles and allows faster communication 
with the scheduler and Power Manager.

Client applications can register with MMCSS by calling AvSetMmThreadCharacteristics with  
a task name that must match one of the subkeys under HKLM\SOFTWARE\Microsoft\Windows NT\ 
CurrentVersion\Multimedia\SystemProfile\Tasks. (The list can be modified by OEMs to include 
other specific tasks as appropriate.) Out of the box, the following tasks exist:

 ■ Audio

 ■ Capture

 ■ Distribution

 ■ Games

 ■ Low Latency

 ■ Playback

 ■ Pro Audio

 ■ Window Manager

Each of these tasks includes information about the various properties that differentiate them. 
The most important one for scheduling is called the Scheduling Category, which is the primary factor 
determining the priority of threads registered with MMCSS. Table 4-4 shows the various scheduling 
categories.
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TABLE 4-4 Scheduling categories

Category Priority Description

High 23–26 Pro Audio threads running at a higher priority than any other thread on the 
system except for critical system threads

Medium 16–22 The threads part of a foreground application such as Windows Media Player

Low 8–15 All other threads that are not part of the previous categories

Exhausted 4–6 Threads that have exhausted their share of the CPU and will continue running 
only if no other higher-priority threads are ready to run

The main mechanism behind MMCSS boosts the priority of threads inside a registered process to 
the priority level matching their scheduling category and relative priority within this category for a 
guaranteed period. It then lowers those threads to the exhausted category so that other, non-multimedia 
threads on the system can also get a chance to execute.

By default, multimedia threads get 80 percent of the CPU time available, while other threads receive 
20 percent. (Based on a sample of 10 ms, that would be 8 ms and 2 ms, respectively.) You can change 
this percentage by modifying the SystemResponsiveness registry value under the HKLM\SOFTWARE\
Microsoft\Windows NT\CurrentVersion\Multimedia\SystemProfile key. The value can range 
from 10 to 100 percent (20 is the default; setting a value lower than 10 evaluates to 10), which indicates 
the CPU percentage guaranteed to the system (not the registered audio apps). MMCSS scheduling 
thread runs at priority 27 because they need to preempt any Pro Audio threads to lower their priority 
to the exhausted category.

As discussed, changing the relative thread priorities within a process does not usually make sense, 
and no tool allows this because only developers understand the importance of the various threads 
in their programs. On the other hand, because applications must manually register with MMCSS and 
provide it with information about what kind of thread this is, MMCSS does have the necessary data to 
change these relative thread priorities—and developers are well aware that this will happen.

EXPERIMENT: MMCSS priority boosting
In this experiment, you’ll see the effects of MMCSS priority boosting.

1. Run Windows Media Player (wmplayer.exe). (Other playback programs might not take 
advantage of the API calls required to register with MMCSS.)

2. Play some audio content.

3. Using Task Manager or Process Explorer, set the affinity of the Wmplayer.exe process so 
that it runs on only one CPU.

4. Start the Performance Monitor tool.

5. Using Task Manager, change Performance Monitor’s priority class to Realtime so it will 
have a better chance of recording activity.
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6. Click the Add Counter toolbar button or press Ctrl+I to open the Add Counters dialog box.

7. Select the Thread object and then select the Priority Current.

8. In the Instances box, type Wmplayer, click Search, and then select all its threads.

9. Click the Add button and click OK.

10. Open the Action menu and choose Properties.

11. On the Graph tab, change the maximum vertical scale to 32. You should see one or more 
priority-16 threads inside Wmplayer, which will be constantly running unless there is a 
higher-priority thread requiring the CPU after they are dropped to the exhausted category.

12. Run CPU Stress.

13. Set the activity level of thread 1 to Maximum.

14. The priority of thread 1 is Normal. Change it to Time Critical.

15. Change the CPUSTRES priority class to High.

16. Change the CPUSTRES affinity to use the same CPU used for Wmplayer. The system 
should slow down considerably, but the music playback should continue. Every so often, 
you’ll be able to get back some responsiveness from the rest of the system.

17. In Performance Monitor, notice that the WmPlayer priority 16 threads drop from time to 
time as shown here:
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MMCSS’ functionality does not stop at simple priority boosting, however. Because of the nature of 
network drivers on Windows and the NDIS stack, DPCs are quite common mechanisms for delaying 
work after an interrupt has been received from the network card. Because DPCs run at an IRQL level 
higher than user-mode code (see Chapter 6 for more information on DPCs and IRQLs), long-running 
network card driver code can still interrupt media playback—for example, during network transfers or 
when playing a game.

MMCSS sends a special command to the network stack, telling it to throttle network packets during 
the duration of the media playback. This throttling is designed to maximize playback performance—at 
the cost of some small loss in network throughput (which would not be noticeable for network opera-
tions usually performed during playback, such as playing an online game). The exact mechanisms 
behind it do not belong to any area of the scheduler, so we’ll leave them out of this description.

MMCSS also supports a feature called deadline scheduling. The idea is that an audio-playing pro-
gram does not always need the highest priority level in its category. If such a program uses buffering 
(obtaining audio data from disk or network) and then plays the buffer while building the next buffer, 
deadline scheduling allows a client thread to indicate a time when it must get the high priority level to 
avoid glitches, but live with a slightly lower priority (within its category) in the meantime. A thread can 
use the AvTaskIndexYield function to indicate the next time it must be allowed to run, specifying the 
time it needs to get the highest priority within its category. Until that time arrives, it gets the lowest 
priority within its category, potentially freeing more CPU time to the system.

Autoboost
Autoboost is a framework targeted at the priority-inversion problem described in the previous section. 
The idea is to track lock owners and lock waiters in such a way that would allow boosting the appropri-
ate threads’ priorities (I/O priority as well if needed) to allow threads to make forward progress. The 
lock information is stored in a static array of KLOCK_ENTRY objects inside the KTHREAD structure. The 
current implementation uses a maximum of six entries. Each KLOCK_ENTRY maintains two binary trees: 
one for locks owned by the thread and the other for locks waited on by the thread. These trees are 
keyed by priority so that constant time is required to determine the highest priority to which boost-
ing should be applied. If boost is required, the owner’s priority is set to the waiter’s priority. It may also 
boost I/O priority if these were issued with low priority. (See Chapter 6 for more on I/O priority.) As 
with all priority boosts, the maximum priority achievable by Autoboost is 15. (The priority of real-time 
threads is never boosted.)

Current implementation uses the Autoboost framework for pushlocks and guarded mutexes syn-
chronization primitives, which are exposed to kernel code only. (See Chapter 8 in Part 2 for more on 
these objects.) The framework is also used by some executive components for specialized cases. Future 
versions of Windows may implement Autoboost for user-mode accessible objects that have an owner-
ship concept, such as critical sections.
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Context switching
A thread’s context and the procedure for context switching vary depending on the processor’s archi-
tecture. A typical context switch requires saving and reloading the following data:

 ■ Instruction pointer

 ■ Kernel stack pointer

 ■ A pointer to the address space in which the thread runs (the process’s page table directory)

The kernel saves this information from the old thread by pushing it onto the current (old thread’s) 
kernel-mode stack, updating the stack pointer, and saving the stack pointer in the old thread’s KTHREAD 
structure. The kernel stack pointer is then set to the new thread’s kernel stack, and the new thread’s 
context is loaded. If the new thread is in a different process, it loads the address of its page table 
directory into a special processor register so that its address space is available. (See the description of 
address translation in Chapter 5.) If a kernel APC that needs to be delivered is pending, an interrupt at 
IRQL 1 is requested. (For more information on APCs, see Chapter 8 in Part 2.) Otherwise, control passes 
to the new thread’s restored instruction pointer and the new thread resumes execution.

Direct Switch
Windows 8 and Server 2012 introduced an optimization called Direct Switch, that allows a thread to 
donate its quantum and boost to another thread, which is then immediately scheduled on the same 
processor. In synchronous client/server scenarios, this can produce significant throughput improve-
ments because the client/server threads are not migrated to other processors that may be idle or 
parked. Another way to think about this is that at any given time, only the client or the server thread 
is running, so the thread scheduler should treat them as a single logical thread. Figure 4-13 shows the 
effect of using Direct Switch.

FIGURE 4-13 Direct Switch.
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The scheduler has no way of knowing that the first thread (T1 in Figure 4-13) is about to enter a wait 
state after signaling some synchronization object that the second thread (T2) is waiting on. Therefore, a 
special function must be called to let the scheduler know that this is the case (atomic signal and wait).

If possible, the KiDirectSwitchThread function performs the actual switch. It’s called by KiExit-
Dispatcher if passed a flag indicating to use Direct Switch if possible. Priority donation, in which the 
first thread’s priority is “donated” to the second thread (if the latter’s priority is lower than the former), 
is applied if specified by yet another bit flag to KiExitDispatcher. In the current implementation, 
these two flags are always specified together (or none at all), meaning in any Direct Switch attempt, 
priority donation is attempted as well. Direct Switch can fail—for example, if the target thread’s affinity 
precludes it from running on the current processor. However, if it succeeds, the quantum of the first 
thread is transferred to the target thread and the first thread loses its remaining quantum.

Direct Switch is currently used in the following scenarios:

 ■ If a thread calls the SignalObjectAndWait Windows API (or its kernel equivalent  
NtSignalAndWaitForSingleObject)

 ■ ALPC (described in Chapter 8 in Part 2)

 ■ Synchronous remote procedure call (RPC) calls

 ■ COM remote calls (currently MTA [multithreaded apartment] to MTA only)

Scheduling scenarios
Windows answers the question of “Who gets the CPU?” based on thread priority, but how does this 
approach work in practice? The following sections illustrate just how priority-driven preemptive multi-
tasking works on the thread level.

Voluntary switch
A thread might voluntarily relinquish use of the processor by entering a wait state on some object  
(such as an event, a mutex, a semaphore, an I/O completion port, a process, a thread, and so on) by 
calling one of the Windows wait functions such as WaitForSingleObject or WaitForMultipleObjects. 
(Waiting for objects is described in more detail in Chapter 8 in Part 2.)

Figure 4-14 illustrates a thread entering a wait state and Windows selecting a new thread to run. In 
Figure 4-14, the top block (thread) is voluntarily relinquishing the processor so that the next thread in 
the ready queue can run. (This is represented by the halo it has when in the Running column.) Although 
it might appear from this figure that the relinquishing thread’s priority is being reduced, it’s not. It’s just 
being moved to the wait queue of the objects the thread is waiting for.
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FIGURE 4-14 Voluntary switching.

Preemption
In this scheduling scenario, a lower-priority thread is preempted when a higher-priority thread be-
comes ready to run. This situation might occur for a couple of reasons:

 ■ A higher-priority thread’s wait completes (the event that the other thread was waiting for has 
occurred).

 ■ A thread priority is increased or decreased.

In either of these cases, Windows must determine whether the currently running thread should 
continue to run or be preempted to allow a higher-priority thread to run.

Note Threads running in user mode can preempt threads running in kernel mode. The 
mode in which the thread is running doesn’t matter; the thread priority is the determining 
factor.

When a thread is preempted, it is put at the head of the ready queue for the priority it was running 
at (see Figure 4-15).

FIGURE 4-15 Preemptive thread scheduling.
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In Figure 4-15, a thread with priority 18 emerges from a wait state and repossesses the CPU, causing 
the thread that had been running (at priority 16) to be bumped to the head of the ready queue. Notice 
that the bumped thread doesn’t go to the end of the queue. Rather, it goes to the beginning. When the 
preempting thread has finished running, the bumped thread can complete its quantum.

Quantum end
When the running thread exhausts its CPU quantum, Windows must determine whether the thread’s 
priority should be decremented and then whether another thread should be scheduled on the processor.

If the thread priority is reduced (for example, because of some boost it received before), Windows 
looks for a more appropriate thread to schedule, such as one in a ready queue with a higher priority 
than the new priority for the currently running thread. If the thread priority isn’t reduced and there 
are other threads in the ready queue at the same priority level, Windows selects the next thread in the 
ready queue at that same priority level. It then moves the previously running thread to the tail of that 
queue, giving it a new quantum value and changing its state from running to ready. This is illustrated 
in Figure 4-16. If no other thread of the same priority is ready to run, the thread gets to run for another 
quantum.

FIGURE 4-16 Quantum-end thread scheduling.

As you saw, instead of simply relying on a clock interval timer–based quantum to schedule threads, 
Windows uses an accurate CPU clock cycle count to maintain quantum targets. Windows also uses this 
count to determine whether quantum end is currently appropriate for the thread—something that 
might have happened previously and is important to discuss.

Using a scheduling model that relies only on the clock interval timer, the following situation can occur:

 ■ Threads A and B become ready to run during the middle of an interval. (Scheduling code runs 
not just at each clock interval, so this is often the case.)

 ■ Thread A starts running but is interrupted for a while. The time spent handling the interrupt is 
charged to the thread.

 ■ Interrupt processing finishes and thread A starts running again, but it quickly hits the next clock 
interval. The scheduler can assume only that thread A had been running all this time and now 
switches to thread B.
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 ■ Thread B starts running and has a chance to run for a full clock interval (barring preemption or 
interrupt handling).

In this scenario, thread A was unfairly penalized in two different ways. First, the time it spent han-
dling a device interrupt was counted against its own CPU time, even though the thread probably had 
nothing to do with the interrupt. (Interrupts are handled in the context of whichever thread was run-
ning at the time, as discussed in Chapter 6.) It was also unfairly penalized for the time the system was 
idling inside that clock interval before it was scheduled. Figure 4-17 illustrates this scenario.

FIGURE 4-17 Unfair time slicing in pre-Vista versions of Windows.

Windows keeps an accurate count of the exact number of CPU clock cycles spent doing work that 
the thread was scheduled to do (which means excluding interrupts). It also keeps a quantum target of 
clock cycles that should have been spent by the thread at the end of its quantum. Therefore, both of 
the unfair decisions that would have been made against thread A as described in the preceding para-
graph will not happen in Windows. Instead, the following situation occurs:

 ■ Threads A and B become ready to run during the middle of an interval.

 ■ Thread A starts running but is interrupted for a while. The CPU clock cycles spent handling the 
interrupt are not charged to the thread.

 ■ Interrupt processing finishes and thread A starts running again, but it quickly hits the next clock 
interval. The scheduler looks at the number of CPU clock cycles charged to the thread and com-
pares them to the expected CPU clock cycles that should have been charged at quantum end.

 ■ Because the former number is much smaller than it should be, the scheduler assumes that 
thread A started running in the middle of a clock interval and might have been additionally 
interrupted.

 ■ Thread A gets its quantum increased by another clock interval, and the quantum target is  
recalculated. Thread A now has its chance to run for a full clock interval.

 ■ At the next clock interval, thread A has finished its quantum, and thread B now gets a chance  
to run.

Figure 4-18 illustrates this scenario.
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FIGURE 4-18 Fair time slicing in current versions of Windows.

Termination
When a thread finishes running (either because it returned from its main routine, called ExitThread, 
or was killed with TerminateThread), it moves from the running state to the terminated state. If there 
are no handles open on the thread object, the thread is removed from the process thread list and the 
associated data structures are deallocated and released.

Idle threads
When no runnable thread exists on a CPU, Windows dispatches that CPU’s idle thread. Each CPU has 
its own dedicated idle thread. This is because on a multiprocessor system, one CPU can be executing a 
thread while other CPUs might have no threads to execute. Each CPU’s idle thread is found via a pointer 
in that CPU’s PRCB.

All the idle threads belong to the idle process. The idle process and idle threads are special cases in 
many ways. They are, of course, represented by EPROCESS/KPROCESS and ETHREAD/KTHREAD structures, 
but they are not executive manager processes and thread objects. Nor is the idle process on the system 
process list. (This is why it does not appear in the output of the kernel debugger’s !process 0 0 com-
mand.) However, the idle thread or threads and their process can be found in other ways.

EXPERIMENT: Displaying the structures of the idle threads and idle process
You can find the idle thread and process structures in the kernel debugger via the !pcr command. 
(PCR is short for processor control region.) This command displays a subset of information from 
the PCR and from the associated PRCB. !pcr takes a single numeric argument, which is the 
number of the CPU whose PCR is to be displayed. The boot processor is processor 0. It is always 
present, so !pcr 0 should always work. The following output shows the results of this command 
from a local kernel debugging session for a 64-bit, eight-processor system:

lkd> !pcr 
KPCR for Processor 0 at fffff80174bd0000: 
    Major 1 Minor 1 
    NtTib.ExceptionList: fffff80176b4a000 
        NtTib.StackBase: fffff80176b4b070 
       NtTib.StackLimit: 000000000108e3f8 
     NtTib.SubSystemTib: fffff80174bd0000 
          NtTib.Version: 0000000074bd0180 
      NtTib.UserPointer: fffff80174bd07f0 
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          NtTib.SelfTib: 00000098af072000 
 
                SelfPcr: 0000000000000000 
                   Prcb: fffff80174bd0180 
                   Irql: 0000000000000000 
                    IRR: 0000000000000000 
                    IDR: 0000000000000000 
          InterruptMode: 0000000000000000 
                    IDT: 0000000000000000 
                    GDT: 0000000000000000 
                    TSS: 0000000000000000 
 
          CurrentThread: ffffb882fa27c080 
             NextThread: 0000000000000000 
             IdleThread: fffff80174c4c940 
 
              DpcQueue: 

This output shows that CPU 0 was executing a thread other than its idle thread at the time the 
memory dump was obtained because the CurrentThread and IdleThread pointers are differ-
ent. (On a multi-CPU system you can try !pcr 1, !pcr 2, and so on, until you run out. Observe 
that each IdleThread pointer is different.)

Now use the !thread command on the indicated idle thread address:

lkd> !thread fffff80174c4c940 
THREAD fffff80174c4c940  Cid 0000.0000  Teb: 0000000000000000 Win32Thread: 
0000000000000000 RUNNING on processor 0 
Not impersonating 
DeviceMap                 ffff800a52e17ce0 
Owning Process            fffff80174c4b940       Image:         Idle 
Attached Process          ffffb882e7ec7640       Image:         System 
Wait Start TickCount      1637993        Ticks: 30 (0:00:00:00.468) 
Context Switch Count      25908837       IdealProcessor: 0              
UserTime                  00:00:00.000 
KernelTime                05:51:23.796 
Win32 Start Address nt!KiIdleLoop (0xfffff801749e0770) 
Stack Init fffff80176b52c90 Current fffff80176b52c20 
Base fffff80176b53000 Limit fffff80176b4d000 Call 0000000000000000 
Priority 0 BasePriority 0 PriorityDecrement 0 IoPriority 0 PagePriority 5

Finally, use the !process command on the owning process shown in the preceding output. 
For brevity, we’ll add a second parameter value of 3, which causes !process to emit only minimal 
information for each thread:

lkd> !process fffff80174c4b940 3 
PROCESS fffff80174c4b940 
    SessionId: none  Cid: 0000    Peb: 00000000  ParentCid: 0000 
    DirBase: 001aa000  ObjectTable: ffff800a52e14040  HandleCount: 2011. 
    Image: Idle 
    VadRoot ffffb882e7e1ae70 Vads 1 Clone 0 Private 7. Modified 1627. Locked 0. 
    DeviceMap 0000000000000000 
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    Token                             ffff800a52e17040 
    ElapsedTime                       07:07:04.015 
    UserTime                          00:00:00.000 
    KernelTime                        00:00:00.000 
    QuotaPoolUsage[PagedPool]         0 
    QuotaPoolUsage[NonPagedPool]      0 
    Working Set Sizes (now,min,max)  (7, 50, 450) (28KB, 200KB, 1800KB) 
    PeakWorkingSetSize                1 
    VirtualSize                       0 Mb 
    PeakVirtualSize                   0 Mb 
    PageFaultCount                    2 
    MemoryPriority                    BACKGROUND 
    BasePriority                      0 
    CommitCharge                      0 
 
        THREAD fffff80174c4c940  Cid 0000.0000  Teb: 0000000000000000 
Win32Thread: 0000000000000000 RUNNING on processor 0 
        THREAD ffff9d81e230ccc0  Cid 0000.0000  Teb: 0000000000000000 
Win32Thread: 0000000000000000 RUNNING on processor 1 
        THREAD ffff9d81e1bd9cc0  Cid 0000.0000  Teb: 0000000000000000 
Win32Thread: 0000000000000000 RUNNING on processor 2 
        THREAD ffff9d81e2062cc0  Cid 0000.0000  Teb: 0000000000000000 
Win32Thread: 0000000000000000 RUNNING on processor 3 
        THREAD ffff9d81e21a7cc0  Cid 0000.0000  Teb: 0000000000000000 
Win32Thread: 0000000000000000 RUNNING on processor 4 
        THREAD ffff9d81e22ebcc0  Cid 0000.0000  Teb: 0000000000000000 
Win32Thread: 0000000000000000 RUNNING on processor 5 
        THREAD ffff9d81e2428cc0  Cid 0000.0000  Teb: 0000000000000000 
Win32Thread: 0000000000000000 RUNNING on processor 6 
        THREAD ffff9d81e256bcc0  Cid 0000.0000  Teb: 0000000000000000 
Win32Thread: 0000000000000000 RUNNING on processor 7

These process and thread addresses can also be used with dt nt!_EPROCESS, dt nt!_
KTHREAD, and other such commands.

The preceding experiment shows some of the anomalies associated with the idle process and its 
threads. The debugger indicates an Image name of Idle (which comes from the EPROCESS structure’s 
ImageFileName member), but various Windows utilities report the idle process using different names. 
Task Manager and Process Explorer call it System Idle Process, while tlist calls it System Process. The 
process ID and thread IDs (the client IDs, or Cid in the debugger’s output) are 0, as are the PEB and TEB 
pointers and potentially many other fields in the idle process or its threads. Because the idle process 
has no user-mode address space and its threads execute no user-mode code, they have no need of the 
various data required to manage a user-mode environment. Also, the idle process is not an object-
manager process object, and its idle threads are not object-manager thread objects. Instead, the initial 
idle thread and idle process structures are statically allocated and used to bootstrap the system before 
the process manager and the object manager are initialized. Subsequent idle thread structures are  
allocated dynamically (as simple allocations from a non-paged pool, bypassing the object manager)  
as additional processors are brought online. Once process management initializes, it uses the special 
variable PsIdleProcess to refer to the idle process.
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Perhaps the most interesting anomaly regarding the idle process is that Windows reports the priority 
of the idle threads as 0. In reality, however, the values of the idle threads’ priority members are irrel-
evant because these threads are selected for dispatching only when there are no other threads to run. 
Their priority is never compared with that of any other thread. Nor is it used to put an idle thread on a 
ready queue, as idle threads are never part of any ready queues. (Only one thread per Windows system 
is actually running at priority 0—the zero page thread, explained in Chapter 5.)

Just as the idle threads are special cases in terms of selection for execution, they are also special 
cases for preemption. The idle thread’s routine, KiIdleLoop, performs a number of operations that 
preclude its being preempted by another thread in the usual fashion. When no non-idle threads are 
available to run on a processor, that processor is marked as idle in its PRCB. After that, if a thread is 
selected for execution on the idle processor, the thread’s address is stored in the NextThread pointer  
of the idle processor’s PRCB. The idle thread checks this pointer on each pass through its loop.

Although some details of the flow vary between architectures (this is one of the few routines written 
in assembly and not in C), the basic sequence of operations of the idle thread is as follows:

1. The idle thread briefly enables interrupts, allowing any pending interrupts to be delivered, and 
then disables them (using the STI and CLI instructions on x86 and x64 processors). This is desir-
able because significant parts of the idle thread execute with interrupts disabled.

2. On the debug build on some architectures, the idle thread checks whether there is a kernel 
debugger trying to break into the system. If so, it gives it access.

3. The idle thread checks whether any DPCs (described in Chapter 6) are pending on the proces-
sor. DPCs could be pending if a DPC interrupt was not generated when they were queued. If 
DPCs are pending, the idle loop calls KiRetireDpcList to deliver them. This will also perform 
timer expiration, as well as deferred ready processing; the latter is explained in the upcoming 
“Multiprocessor systems” section. KiRetireDpcList must be entered with interrupts disabled, 
which is why interrupts are left disabled at the end of step 1. KiRetireDpcList exits with inter-
rupts disabled as well.

4. The idle thread checks whether quantum end processing has been requested. If so, KiQuantum-
End is called to process the request.

5. The idle thread checks whether a thread has been selected to run next on the processor. If so,  
it dispatches that thread. This could be the case if, for example, a DPC or timer expiration pro-
cessed in step 3 resolved the wait of a waiting thread, or if another processor selected a thread 
for this processor to run while it was already in the idle loop.

6. If requested, the idle thread checks for threads ready to run on other processors and, if possible, 
schedules one of them locally. (This operation is explained in the upcoming “Idle scheduler” 
section).

7. The idle thread calls the registered power-management processor idle routine (in case any 
power-management functions need to be performed), which is either in the processor power 
driver (such as intelppm.sys) or in the HAL if such a driver is unavailable.
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Thread suspension
Threads can be suspended and resumed explicitly with the SuspendThread and ResumeThread API 
functions, respectively. Every thread has a suspend count, which is incremented by suspension and  
decremented by resuming. If the count is 0, the thread is free to execute. Otherwise, it will not execute.

Suspension works by queuing a kernel APC to the thread. When the thread is switched in to execute, 
the APC is executed first. This puts the thread in a wait state on event that is signaled when the thread is 
finally resumed.

This suspension mechanism has a noticeable drawback if the thread is in a wait state while a suspen-
sion request comes in, because it means that the thread needs to wake up just to be suspended. This 
can result in a kernel stack inswap (if the thread’s kernel stack was swapped out). Windows 8.1 and 
Server 2012 R2 added a mechanism called Lightweight Suspend to allow for the suspension of a thread 
that is in a wait state not by using the APC mechanism, but by directly manipulating the thread’s object 
in memory and marking it as suspended.

(Deep) freeze
Freezing is a mechanism by which processes enter a suspended state that cannot be changed by calling 
ResumeThread on threads in the process. This is useful when the system needs to suspend a UWP app. 
This happens when a Windows app goes to the background—for example, because another app comes 
to the foreground in Tablet mode or the app is minimized in Desktop mode. In this case, the system 
gives to the app roughly five seconds to do work, typically to save application state. Saving state is im-
portant because Windows apps may be killed without any notice if memory resources become low. If 
the app is killed, the state can be reloaded on the next launch and the user would have the perception 
that the app never really went away. Freezing a process means suspending all threads in such a way that 
ResumeThread is not able to wake. A flag in the KTHREAD structure indicates whether a thread is frozen. 
For a thread to be able to execute, its suspend count must be 0 and the frozen flag must be clear.

Deep freeze adds another constraint: Newly created threads in the process cannot start as well. For 
example, if a call to CreateRemoteThreadEx is used to create a new thread in a deep-frozen process, 
the thread will be frozen before actually starting. This is the typical usage of the freezing capability.

Process- and thread-freezing functionality is not exposed directly to user mode. It is used internally 
by the Process State Manager (PSM) service that is responsible for issuing the requests to the kernel for 
deep freezing and thawing (unfreezing).

You can also freeze processes using jobs. The ability to freeze and unfreeze a job is not publicly 
documented, but it’s possible to do using the standard NtSetInformationJobObject system call. This 
is typically used for Windows apps, as all Windows apps processes are contained in jobs. Such a job 
may contain a single process (the Windows app itself), but it can also contain background task-hosting 
processes related to the same Window app so that freezing or thawing (unfreezing) all processes under 
that job can be done in a single stroke. (See Chapter 8 in Part 2 for more on Windows apps.)
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EXPERIMENT: Deep freeze
In this experiment, you’ll watch deep freeze happening by debugging a virtual machine.

1. Open WinDbg with admin privileges and attach to a virtual machine running Windows 10.

2. Press Ctrl+Break to break into the VM.

3. Set a breakpoint when deep freeze begins with a command to show the process that is 
frozen:

bp nt!PsFreezeProcess "!process -1 0; g" 

4. Enter the g (go) command or press F5. You should see many deep freeze occurrences.

5. Start the Cortana UI from the taskbar and then close the UI. After about 5 seconds you 
should see something like the following:

PROCESS 8f518500  SessionId: 2  Cid: 12c8    Peb: 03945000  ParentCid: 02ac 
    DirBase: 054007e0  ObjectTable: b0a8a040  HandleCount: 988. 
    Image: SearchUI.exe

6. Now break into the debugger and show more info on that process:

1: kd> !process 8f518500 1 
PROCESS 8f518500  SessionId: 2  Cid: 12c8    Peb: 03945000  ParentCid: 02ac 
DeepFreeze 
    DirBase: 054007e0  ObjectTable: b0a8a040  HandleCount: 988. 
    Image: SearchUI.exe 
    VadRoot 95c1ffd8 Vads 405 Clone 0 Private 7682. Modified 201241. Locked 0. 
    DeviceMap a12509c0 
    Token                             b0a65bd0 
    ElapsedTime                       04:02:33.518 
    UserTime                          00:00:06.937 
    KernelTime                        00:00:00.703 
    QuotaPoolUsage[PagedPool]         562688 
    QuotaPoolUsage[NonPagedPool]      34392 
    Working Set Sizes (now,min,max)  (20470, 50, 345) (81880KB, 200KB, 1380KB) 
    PeakWorkingSetSize                25878 
    VirtualSize                       367 Mb 
    PeakVirtualSize                   400 Mb 
    PageFaultCount                    307764 
    MemoryPriority                    BACKGROUND 
    BasePriority                      8 
    CommitCharge                      8908 
    Job                               8f575030

7. Notice the DeepFreeze attribute written by the debugger. Also notice that the process 
is part of a job. Use the !job command to see more details:

1: kd> !job 8f575030 
Job at 8f575030 
  Basic Accounting Information 
    TotalUserTime:             0x0 
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    TotalKernelTime:           0x0 
    TotalCycleTime:            0x0 
    ThisPeriodTotalUserTime:   0x0 
    ThisPeriodTotalKernelTime: 0x0 
    TotalPageFaultCount:       0x0 
    TotalProcesses:            0x1 
    ActiveProcesses:           0x1 
    FreezeCount:               1 
    BackgroundCount:           0 
    TotalTerminatedProcesses:  0x0 
    PeakJobMemoryUsed:         0x38e2 
    PeakProcessMemoryUsed:     0x38e2 
  Job Flags 
    [cpu rate control] 
    [frozen] 
    [wake notification allocated] 
    [wake notification enabled] 
    [timers virtualized] 
    [job swapped] 
  Limit Information (LimitFlags: 0x0) 
  Limit Information (EffectiveLimitFlags: 0x3000) 
  CPU Rate Control 
    Rate = 100.00% 
    Scheduling Group: a469f330

8. The job is under CPU rate control (see the section “CPU rate limits” later in this chapter 
for more on CPU rate control) and is frozen. Detach from the VM and close the debugger.

Thread selection
Whenever a logical processor needs to pick the next thread to run, it calls the KiSelectNextThread 
scheduler function. This can happen in a variety of scenarios:

 ■ A hard affinity change has occurred, making the currently running or standby thread ineligible 
for execution on its selected logical processor. Therefore, another must be chosen.

 ■ The currently running thread reached its quantum end, and the Symmetric Multithreading 
(SMT) set it was running on has become busy while other SMT sets within the ideal node are 
fully idle. (Symmetric Multithreading is the technical name for the hyper-threading technol-
ogy described in Chapter 2.) The scheduler performs a quantum-end migration of the current 
thread, so another must be chosen.

 ■ A wait operation has finished, and there were pending scheduling operations in the wait status 
register (in other words, the priority and/or affinity bits were set).
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In these scenarios, the behavior of the scheduler is as follows:

 ■ The scheduler calls KiSelectReadyThreadEx to search for the next ready thread that the pro-
cessor should run and check whether one was found.

 ■ If a ready thread was not found, the idle scheduler is enabled, and the idle thread is selected for 
execution. If a ready thread was found, it is put in the ready state in the local or shared ready 
queue, as appropriate.

The KiSelectNextThread operation is performed only when the logical processor needs to pick—
but not yet run—the next schedulable thread (which is why the thread will enter the Ready state). Other 
times, however, the logical processor is interested in immediately running the next ready thread or per-
forming another action if one is not available (instead of going idle), such as when the following occurs:

 ■ A priority change causes the current standby or running thread to no longer be the highest-pri-
ority ready thread on its selected logical processor, meaning that a higher priority ready thread 
must now run.

 ■ The thread has explicitly yielded with YieldProcessor or NtYieldExecution and another 
thread might be ready for execution.

 ■ The quantum of the current thread has expired, and other threads at the same priority level 
need their chance to run as well.

 ■ A thread has lost its priority boost, causing a similar priority change to the scenario just de-
scribed.

 ■ The idle scheduler is running and needs to check whether a ready thread has not appeared in 
the interval between when the idle scheduling was requested and the idle scheduler ran.

A simple way to remember the difference between which routine runs is to check whether the logi-
cal processor must run a different thread (in which case KiSelectNextThread is called) or if it should 
if possible run a different thread (in which case KiSelectReadyThreadEx is called). In either case, 
because each processor belongs to a shared ready queue (pointed to by the KPRCB), KiSelectReady-
ThreadEx can simply check the current logical processor’s (LP’s) queues, removing the first highest-
priority thread that it finds unless this priority is lower than the one of the currently running thread 
(depending on whether the current thread is still allowed to run, which would not be the case in the 
KiSelectNextThread scenario). If there is no higher-priority thread (or no threads are ready at all), no 
thread is returned.

Idle scheduler
Whenever the idle thread runs, it checks whether idle scheduling has been enabled. If so, the idle 
thread begins scanning other processors’ ready queues for threads it can run by calling KiSearch-
ForNewThread. The run-time costs associated with this operation are not charged as idle thread time, 
but are instead charged as interrupt and DPC time (charged to the processor), so idle scheduling time 
is considered system time. The KiSearchForNewThread algorithm, which is based on the functions 
described earlier in this section, is explained shortly.
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Multiprocessor systems
On a uniprocessor system, scheduling is relatively simple: The highest-priority thread that wants to run 
is always running. On a multiprocessor system, it is more complex. This is because Windows attempts 
to schedule threads on the most optimal processor for the thread, taking into account the thread’s 
preferred and previous processors as well as the configuration of the multiprocessor system. Therefore, 
although Windows attempts to schedule the highest-priority runnable threads on all available CPUs, 
it guarantees only to be running one of the highest-priority threads somewhere. With shared ready 
queues (for threads with no affinity restrictions), the guarantee is stronger. Each shared group of pro-
cessors is running at least one of the highest-priority threads.

Before we describe the specific algorithms used to choose which threads run where and when, 
let’s examine the additional information Windows maintains to track thread and processor state on 
multiprocessor systems and the three different types of multiprocessor systems supported by Windows 
(SMT, multicore, and NUMA).

Package sets and SMT sets
Windows uses five fields in the KPRCB to determine correct scheduling decisions when dealing with 
logical processor topologies. The first field, CoresPerPhysicalProcessor, determines whether this 
logical processor is part of a multicore package. It’s computed from the CPUID returned by the proces-
sor and rounded to a power of 2. The second field, LogicalProcessorsPerCore, determines whether 
the logical processor is part of an SMT set, such as on an Intel processor with hyper-threading enabled, 
and is also queried through CPUID and rounded. Multiplying these two numbers yields the number of 
logical processors per package, or an actual physical processor that fits into a socket. With these num-
bers, each PRCB can then populate its PackageProcessorSet value. This is the affinity mask describing 
which other logical processors within this group (because packages are constrained to a group) belong 
to the same physical processor. Similarly, the CoreProcessorSet value connects other logical processors to 
the same core, also called an SMT set. Finally, the GroupSetMember value defines which bitmask within 
the current processor group identifies this very logical processor. For example, the logical processor 3 
normally has a GroupSetMember value of 8 (which equals 2 to the third power).

EXPERIMENT: Viewing logical processor information
You can examine the information Windows maintains for SMT processors using the !smt com-
mand in the kernel debugger. The following output is from a quad-core Intel Core i7 system with 
SMT (eight logical processors):

lkd> !smt 
SMT Summary: 
------------ 
 
KeActiveProcessors: 
********-------------------------------------------------------- (00000000000000ff) 
IdleSummary: 
-****--*-------------------------------------------------------- (000000000000009e) 
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 No PRCB             SMT Set                                               APIC Id 
  0 fffff803d7546180 **------------------------------- (0000000000000003) 0x00000000 
  1 ffffba01cb31a180 **------------------------------- (0000000000000003) 0x00000001 
  2 ffffba01cb3dd180 --**----------------------------- (000000000000000c) 0x00000002 
  3 ffffba01cb122180 --**----------------------------- (000000000000000c) 0x00000003 
  4 ffffba01cb266180 ----**--------------------------- (0000000000000030) 0x00000004 
  5 ffffba01cabd6180 ----**--------------------------- (0000000000000030) 0x00000005 
  6 ffffba01cb491180 ------**------------------------- (00000000000000c0) 0x00000006 
  7 ffffba01cb5d4180 ------**------------------------- (00000000000000c0) 0x00000007 
 
Maximum cores per physical processor:   8 
Maximum logical processors per core:    2

NUMA systems
Another type of multiprocessor system supported by Windows is one with a non-uniform memory 
architecture (NUMA). In a NUMA system, processors are grouped together in smaller units called 
nodes. Each node has its own processors and memory and is connected to the larger system through 
a cache-coherent interconnect bus. These systems are called non-uniform because each node has its 
own local high-speed memory. Although any processor in any node can access all of memory, node-
local memory is much faster to access.

The kernel maintains information about each node in a NUMA system in a data structure called KNODE. 
The kernel variable KeNodeBlock is an array of pointers to the KNODE structures for each node. You can 
reveal the format of the KNODE structure using the dt command in the kernel debugger, as shown here:

lkd> dt nt!_KNODE 
   +0x000 IdleNonParkedCpuSet : Uint8B 
   +0x008 IdleSmtSet       : Uint8B 
   +0x010 IdleCpuSet       : Uint8B 
   +0x040 DeepIdleSet      : Uint8B 
   +0x048 IdleConstrainedSet : Uint8B 
   +0x050 NonParkedSet     : Uint8B 
   +0x058 ParkLock         : Int4B 
   +0x05c Seed             : Uint4B 
   +0x080 SiblingMask      : Uint4B 
   +0x088 Affinity         : _GROUP_AFFINITY 
   +0x088 AffinityFill     : [10] UChar 
   +0x092 NodeNumber       : Uint2B 
   +0x094 PrimaryNodeNumber : Uint2B 
   +0x096 Stride           : UChar 
   +0x097 Spare0           : UChar 
   +0x098 SharedReadyQueueLeaders : Uint8B 
   +0x0a0 ProximityId      : Uint4B 
   +0x0a4 Lowest           : Uint4B 
   +0x0a8 Highest          : Uint4B 
   +0x0ac MaximumProcessors : UChar 
   +0x0ad Flags            : _flags 
   +0x0ae Spare10          : UChar 
   +0x0b0 HeteroSets       : [5] _KHETERO_PROCESSOR_SET
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EXPERIMENT: Viewing NUMA information
You can examine the information Windows maintains for each node in a NUMA system using the 
!numa command in the kernel debugger. To experiment with NUMA systems even when such 
hardware is not available, it’s possible to configure a Hyper-V virtual machine to include more 
than one NUMA node that the guest VM will use. To configure a Hyper-V VM to use NUMA, do 
the following. (You will need a host machine with more than four logical processors.)

1. Click Start, type hyper, and click the Hyper-V Manager option.

2. Make sure the VM is powered off. Otherwise the following changes cannot be made.

3. Right-click the VM in Hyper-V Manager and select Settings to open the VM’s settings.

4. Click the Memory node and make sure Dynamic Memory is unchecked.

5. Click the Processor node and enter 4 in the Number of Virtual Processors box:

6. Expand the Processor node and select the NUMA sub-node.

7. Enter 2 in the Maximum Number of Processors and Maximum NUMA Nodes  
Allowed on a Socket boxes:

8. Click OK to save the settings.

9. Power up the VM.

10. Use a kernel debugger to issue the !numa command. Here’s an example of output for 
the previously configured VM:

2: kd> !numa 
NUMA Summary: 
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------------ 
    Number of NUMA nodes : 2 
    Number of Processors : 4 
unable to get nt!MmAvailablePages 
    MmAvailablePages     : 0x00000000 
    KeActiveProcessors   : 
    ****---------------------------- (0000000f) 
 
    NODE 0 (FFFFFFFF820510C0): 
   Group            : 0 (Assigned, Committed, Assignment Adjustable) 
   ProcessorMask    : **------------------------------ (00000003) 
   ProximityId      : 0 
   Capacity         : 2 
   Seed             : 0x00000001 
   IdleCpuSet       : 00000003 
   IdleSmtSet       : 00000003 
   NonParkedSet     : 00000003 
Unable to get MiNodeInformation 
 
    NODE 1 (FFFFFFFF8719E0C0): 
   Group            : 0 (Assigned, Committed, Assignment Adjustable) 
   ProcessorMask    : --**---------------------------- (0000000c) 
   ProximityId      : 1 
   Capacity         : 2 
   Seed             : 0x00000003 
   IdleCpuSet       : 00000008 
   IdleSmtSet       : 00000008 
   NonParkedSet     : 0000000c 
Unable to get MiNodeInformation

Applications that want to gain the most performance out of NUMA systems can set the affinity mask 
to restrict a process to the processors in a specific node, although Windows already restricts nearly all 
threads to a single NUMA node due to its NUMA-aware scheduling algorithms.

How the scheduling algorithms account for NUMA systems is covered later in this chapter in the 
section “Processor selection.” (The optimizations in the memory manager to take advantage of node-
local memory are covered in Chapter 5.)

Processor group assignment
While querying the topology of the system to build the various relationships between logical proces-
sors, SMT sets, multicore packages, and physical sockets, Windows assigns processors to an appropri-
ate group that will describe their affinity (through the extended affinity mask seen earlier). This work is 
done by the KePerformGroupConfiguration routine, which is called during initialization before any 
other phase 1 work is done. The steps of this process are as follows:

1. The function queries all detected nodes (KeNumberNodes) and computes the capacity of each 
node—that is, how many logical processors can be part of the node. This value is stored in 
MaximumProcessors in the KeNodeBlock array, which identifies all NUMA nodes on the system. 
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If the system supports NUMA proximity IDs, the proximity ID is queried for each node and 
saved in the node block. 

2. The NUMA distance array is allocated (KeNodeDistance) and the distance between each 
NUMA node is computed.

The next series of steps deal with specific user-configuration options that override default 
NUMA assignments. For example, consider a system with Hyper-V installed and with the hyper-
visor configured to auto-start. If the CPU does not support the extended hypervisor interface, 
then only one processor group will be enabled, and all NUMA nodes (that can fit) will be as-
sociated with group 0. Therefore, in this case, Hyper-V cannot take advantage of machines with 
more than 64 processors.

3. The function checks whether any static group assignment data was passed by the loader (and 
thus configured by the user). This data specifies the proximity information and group assign-
ment for each NUMA node.

Note Users dealing with large NUMA servers who might need custom control of proximity in-
formation and group assignments for testing or validation purposes can enter this data through 
the Group Assignment and Node Distance registry values. These are found in the HKLM\SYSTEM\
CurrentControlSet\Control\NUMA registry key. The exact format of this data includes a count 
followed by an array of proximity IDs and group assignments, which are all 32-bit values.

4. Before treating this data as valid, the kernel queries the proximity ID to match the node number 
and then associates group numbers as requested. It then makes sure that NUMA node 0 is asso-
ciated with group 0, and that the capacity for all NUMA nodes is consistent with the group size. 
Finally, the function checks how many groups still have remaining capacity.

Note NUMA node 0 is always assigned to group 0, no matter what.

5. The kernel dynamically attempts to assign NUMA nodes to groups while respecting any stati-
cally configured nodes if passed in as just described. Normally, the kernel tries to minimize the 
number of groups created, combining as many NUMA nodes as possible per group. However, if 
this behavior is not desired, it can be configured differently with the /MAXGROUP loader param-
eter, configured through the maxgroup BCD option. Turning this value on overrides the default 
behavior and causes the algorithm to spread as many NUMA nodes as possible into as many 
groups as possible, while respecting that the currently implemented group limit is 20. If there 
is only one node, or if all nodes can fit into a single group (and maxgroup is off), the system 
performs the default setting of assigning all nodes to group 0.

6. If there is more than one node, Windows checks the static NUMA node distances (if any). It 
then sorts all the nodes by their capacity so that the largest nodes come first. In the group-
minimization mode, the kernel figures out the maximum processors there can be by adding up 
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all the capacities. By dividing that by the number of processors per group, the kernel assumes 
there will be this many total groups on the machine (limited to a maximum of 20). In group-
maximization mode, the initial estimate is that there will be as many groups as nodes (limited 
again to 20).

7. The kernel begins the final assignment process. All fixed assignments from earlier are now com-
mitted and groups are created for those assignments.

8. All the NUMA nodes are reshuffled to minimize the distance between the different nodes 
within a group. In other words, closer nodes are put in the same group and sorted by distance.

9. The same process is performed for any dynamically configured node to group assignments.

10. Any remaining empty nodes are assigned to group 0.

Logical processors per group
Generally, Windows assigns 64 processors per group. But you can also customize this configuration by 
using different load options such as the /GROUPSIZE option, which is configured through the group-
size BCD element. By specifying a number that is a power of 2, you can force groups to contain fewer 
processors than normal for purposes such as testing group awareness in the system. For example, a 
system with eight logical processors can be made to appear to have one, two, or four groups. To force 
the issue, the /FORCEGROUPAWARE option (BCD element groupaware) causes the kernel to avoid group 
0 whenever possible, assigning the highest group number available in actions such as thread and DPC 
affinity selection and process group assignment. You should avoid setting a group size of 1 because this 
will force almost all applications on the system to behave as if they’re running on a uniprocessor ma-
chine. This is because the kernel sets the affinity mask of a given process to span only one group until 
the application requests otherwise (which most applications will not do).

In the edge case where the number of logical processors in a package cannot fit into a single group, 
Windows adjusts these numbers so that a package can fit into a single group. It does so by shrinking 
the CoresPerPhysicalProcessor number and, if the SMT cannot fit, the LogicalProcessorsPerCore 
number. The exception to this rule is if the system actually contains multiple NUMA nodes within a 
single package (uncommon, but possible). In these multi-chip modules (MCMs), two sets of cores as 
well as two memory controllers are on the same die/package. If the ACPI Static Resource Affinity Table 
(SRAT) defines the MCM as having two NUMA nodes, Windows might associate the two nodes with 
two different groups (depending on group-configuration algorithms). In this scenario, the MCM pack-
age would span more than one group.

Other than causing significant driver and application compatibility problems—which they are de-
signed to identify and root out, when used by developers—these options have an even greater impact 
on the machine: They force NUMA behaviors even on a non-NUMA machine. This is because Windows 
will never allow a NUMA node to span multiple groups, as was shown in the assignment algorithms. 
So, if the kernel is creating artificially small groups, those two groups must each have their own NUMA 
node. For example, on a quad-core processor with a group size of 2, this will create two groups, and thus 
two NUMA nodes, which will be subnodes of the main node. This will affect scheduling and memory-
management policies in the same way a true NUMA system would, which can be useful for testing.
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Logical processor state
In addition to the shared and local ready queues and summaries, Windows maintains two bitmasks 
that track the state of the processors on the system. (How these bitmasks are used is explained in the 
upcoming “Processor selection” section.) Following are the bitmasks that Windows maintains:

 ■ KeActiveProcessors This is the active processor mask, which has a bit set for each usable 
processor on the system. These might be fewer than the number of actual processors if the 
licensing limits of the version of Windows running supports fewer than the number of available 
physical processors. Use the KeRegisteredProcessors variable to see how many processors 
are actually licensed on the machine. In this instance, processors refers to physical packages.

 ■ KeMaximumProcessors This is the maximum number of logical processors (including all future 
possible dynamic processor additions) bounded within the licensing limit. It also reveals any 
platform limitations that are queried by calling the HAL and checking with the ACPI SRAT table, 
if any.

Part of the node’s data (KNODE) is the set of idle CPUs in this node (the IdleCpuSet member), idle 
CPUs that are not parked (IdleNonParkedCpuSet), and idle SMT sets (IdleSmtSet).

Scheduler scalability
On a multiprocessor system, one processor might need to modify another processor’s per-CPU 
scheduling data structures—for example, inserting a thread that would like to run on a certain proces-
sor. For this reason, you synchronize these structures by using a per-PRCB queued spinlock, which is 
held at DISPATCH_LEVEL. Thus, thread selection can occur while locking only an individual processor’s 
PRCB. If needed, one more processor’s PRCB can also be locked, such as in scenarios of thread stealing 
(described later). Thread context switching is also synchronized by using a finer-grained per-thread 
spinlock.

There is also a per-CPU list of threads in the deferred ready state (DeferredReadyListHead). These 
represent threads that are ready to run but have not yet been readied for execution; the actual ready 
operation has been deferred to a more appropriate time. Because each processor manipulates only its 
own per-processor deferred ready list, this list is not synchronized by the PRCB spinlock. The deferred 
ready thread list is processed by KiProcessDeferredReadyList after a function has already done 
modifications to process or thread affinity, priority (including due to priority boosting), or quantum 
values.

This function calls KiDeferredReadyThread for each thread on the list, which performs the algo-
rithm shown later in this chapter in the “Processor selection” section. This could cause the thread to 
run immediately; to be put on the ready list of the processor; or, if the processor is unavailable, to be 
potentially put on a different processor’s deferred ready list, in a standby state or immediately executed. 
This property is used by the core parking engine when parking a core: All threads are put into the  
deferred ready list, and it is then processed. Because KiDeferredReadyThread skips parked cores ( 
as will be shown), it causes all of this processor’s threads to wind up on other processors.



 CHAPTER 4 Threads 275

Affinity
Each thread has an affinity mask that specifies the processors on which the thread is allowed to run. The 
thread affinity mask is inherited from the process affinity mask. By default, all processes (and therefore 
all threads) begin with an affinity mask that is equal to the set of all active processors on their assigned 
group. In other words, the system is free to schedule all threads on any available processor within the 
group associated with the process. However, to optimize throughput, partition workloads to a specific 
set of processors, or both, applications can choose to change the affinity mask for a thread. This can be 
done at several levels:

 ■ By calling the SetThreadAffinityMask function to set the affinity for an individual thread.

 ■ By calling the SetProcessAffinityMask function to set the affinity for all the threads in a 
process.

 ■ Task Manager and Process Explorer provide a GUI to this function. To access it, right-click a 
process and choose Set Affinity. In addition, the Psexec tool (from Sysinternals) provides a 
command-line interface to this function. (See the –a switch in its help output.)

 ■ By making a process a member of a job that has a job-wide affinity mask set using the  
SetInformationJobObject function (described in Chapter 3).

 ■ By specifying an affinity mask in the image header when compiling the application.

Tip For a detailed specification of the Windows images format, search for Portable 
Executable and Common Object File Format Specification on http://msdn.microsoft.com.

An image can also have the uniprocessor flag set at link time. If this flag is set, the system chooses 
a single processor at process-creation time (MmRotatingProcessorNumber) and assigns that as the 
process affinity mask, starting with the first processor and then going round-robin across all the pro-
cessors within the group. For example, on a dual-processor system, the first time an image marked with 
the uniprocessor flag is launched, it is assigned to CPU 0; the second time, CPU 1; the third time, CPU 
0; the fourth time, CPU 1; and so on. This flag can be useful as a temporary workaround for programs 
that have multithreaded synchronization bugs that surface on multiprocessor systems due to race con-
ditions but not on uniprocessor systems. If an image exhibits such symptoms and is unsigned, you can 
add the flag manually editing the image header with a Portable Executable (PE) image-editing tool. A 
better solution, also compatible with signed executables, is to use the Microsoft Application Compat-
ibility Toolkit and add a shim to force the compatibility database to mark the image as uniprocessor-
only at launch time.

EXPERIMENT: Viewing and changing process affinity
In this experiment, you will modify the affinity settings for a process and see that process affinity 
is inherited by new processes:

http://www.msdn.microsoft.com
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1. Run the command prompt (Cmd.exe).

2. Run Task Manager or Process Explorer and find the Cmd.exe process in the process list.

3. Right-click the process and select Set Affinity. A list of processors should be displayed. 
For example, on a system with eight logical processes, you will see this:

4. Select a subset of the available processors on the system and click OK. The process’s 
threads are now restricted to run on the processors you just selected.

5. At the command prompt, type Notepad to run Notepad.exe.

6. Go back to Task Manager or Process Explorer and find the new Notepad process.

7. Right-click the process and choose Affinity. You should see the same list of processors 
you chose for the command-prompt process. This is because processes inherit their  
affinity settings from their parent.

Windows won’t move a running thread that could run on a different processor from one CPU to a 
second processor to permit a thread with an affinity for the first processor to run on the first processor. 
For example, consider this scenario: CPU 0 is running a priority 8 thread that can run on any processor, 
and CPU 1 is running a priority 4 thread that can run on any processor. A priority 6 thread that can run 
on only CPU 0 becomes ready. What happens? Windows won’t move the priority 8 thread from CPU 0 
to CPU 1 (preempting the priority 4 thread) so that the priority 6 thread can run; the priority 6 thread 
must stay in the ready state. Therefore, changing the affinity mask for a process or thread can result in 
threads getting less CPU time than they normally would because Windows is restricted from running 
the thread on certain processors. Therefore, setting affinity should be done with extreme care. In most 
cases, it is optimal to let Windows decide which threads run where.

Extended affinity mask
To support more than 64 processors, which is the limit enforced by the original affinity mask structure 
(composed of 64 bits on a 64-bit system), Windows uses an extended affinity mask, KAFFINITY_EX. 
This is an array of affinity masks, one for each supported processor group (currently defined at 20). 
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When the scheduler needs to refer to a processor in the extended affinity masks, it first de-references 
the correct bitmask by using its group number and then accesses the resulting affinity directly. In the 
kernel API, extended affinity masks are not exposed; instead, the caller of the API inputs the group 
number as a parameter and receives the legacy affinity mask for that group. In the Windows API, on 
the other hand, only information about a single group can usually be queried, which is the group of the 
currently running thread (which is fixed).

The extended affinity mask and its underlying functionality are also how a process can escape the 
boundaries of its original assigned processor group. By using the extended affinity APIs, threads in a 
process can choose affinity masks on other processor groups. For example, if a process has four threads 
and the machine has 256 processors, thread 1 can run on processor 4, thread 2 can run on processor 
68, thread 3 on processor 132, and thread 4 on processor 196, if each thread set an affinity mask of 0x10 
(0b10000 in binary) on groups 0, 1, 2, and 3. Alternatively, the threads can each set an affinity of all 1 bits 
(0xFFFF…) for their given group, and the process then can execute its threads on any available processor 
on the system (with the limitation that each thread is restricted to running within its own group only).

You can take advantage of extended affinity at creation time by specifying a group number in the 
thread attribute list (PROC_THREAD_ATTRIBUTE_GROUP_AFFINITY) when creating a new thread or by 
calling SetThreadGroupAffinity on an existing thread.

System affinity mask
Windows drivers usually execute in the context of the calling thread or an arbitrary thread (that is, 
not in the safe confines of the System process). Therefore, currently running driver code might be 
subject to affinity rules set by the application developer. These are not currently relevant to the driver 
code and might even prevent correct processing of interrupts and other queued work. Driver devel-
opers therefore have a mechanism to temporarily bypass user thread affinity settings, by using the 
KeSetSystemAffinityThread(Ex)/KeSetSystemGroupAffinityThread and KeRevertToUser-
AffinityThread(Ex)/KeRevertToUserGroupAffinityThread APIs.

Ideal and last processor
Each thread has three CPU numbers stored in the kernel thread control block:

 ■ Ideal processor This is the preferred processor that this thread should run on.

 ■ Last processor This is the processor the thread last ran on.

 ■ Next processor This is the processor that the thread will be or is already running on.

The ideal processor for a thread is chosen when a thread is created using a seed in the process 
control block. The seed is incremented each time a thread is created so that the ideal processor for 
each new thread in the process rotates through the available processors on the system. For example, 
the first thread in the first process on the system is assigned an ideal processor of 0 and the second 
thread in that process is assigned an ideal processor of 1. However, the next process in the system has 
its first thread’s ideal processor set to 1, the second to 2, and so on. In that way, the threads within each 
process are spread across the processors. On SMT systems (hyper-threading), the next ideal processor 
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is selected from the next SMT set. For example, on a quad-core, hyper-threaded system, ideal proces-
sors for threads in a certain process could be 0, 2, 4, 6, 0, …; 3, 5, 7, 1, 3, …; etc. In this way, the threads 
are spread evenly across the physical processors.

Note that this assumes the threads within a process are doing an equal amount of work. This is typi-
cally not the case in a multithreaded process, which normally has one or more housekeeping threads and 
numerous worker threads. Therefore, a multithreaded application that wants to take full advantage of 
the platform might find it advantageous to specify the ideal processor numbers for its threads by using 
the SetThreadIdealProcessor function. To take advantage of processor groups, developers should call 
SetThreadIdealProcessorEx instead, which allows selection of a group number for the affinity.

In 64-bit Windows, the Stride field in the KNODE is used to balance the assignment of newly created 
threads within a process. The stride is a scalar number that represents the number of affinity bits within 
a given NUMA node that must be skipped to attain a new independent logical processor slice, where 
independent means on another core (if dealing with an SMT system) or another package (if dealing with 
a non-SMT but multicore system). Because 32-bit Windows doesn’t support large processor-configura-
tion systems, it doesn’t use a stride. It simply selects the next processor number, trying to avoid sharing 
the same SMT set if possible.

Ideal node
On NUMA systems, when a process is created, an ideal node for the process is selected. The first pro-
cess is assigned to node 0, the second process to node 1, and so on. Then the ideal processors for the 
threads in the process are chosen from the process’s ideal node. The ideal processor for the first thread 
in a process is assigned to the first processor in the node. As additional threads are created in processes 
with the same ideal node, the next processor is used for the next thread’s ideal processor, and so on.

CPU sets
You’ve seen how affinity (sometimes referred to as hard affinity) can limit threads to certain proces-
sors, which is always honored by the scheduler. The ideal processor mechanism tries to run threads on 
their ideal processors (sometimes referred to as soft affinity), generally expecting to have the thread’s 
state be part of the processor’s cache. The ideal processor may or may not be used, and it does not 
prevent the thread from being scheduled on other processors. Both these mechanisms don’t work on 
system-related activity, such as system threads activity. Also, there is no easy way to set hard affinity to 
all processes on a system in one stroke. Even walking the process would not work. System processes are 
generally protected from external affinity changes because they require the PROCESS_SET_INFORMATION 
access right, which is not granted for protected processes.

Windows 10 and Server 2016 introduce a mechanism called CPU sets. These are a form of affinity that 
you can set for use by the system as a whole (including system threads activity), processes, and even 
individual threads. For example, a low-latency audio application may want to use a processor exclusively 
while the rest of the system is diverted to use other processors. CPU sets provide a way to achieve that.

The documented user mode API is somewhat limited at the time of this writing. GetSystemCpuSet-
Information returns an array of SYSTEM_CPU_SET_INFORMATION that contains data for each CPU set. 
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In the current implementation, a CPU set is equivalent to a single CPU. This means the returned array’s 
length is the number of logical processors on the system. Each CPU set is identified by its ID, which is 
arbitrarily selected to be 256 (0x100) plus the CPU index (0, 1, …). These IDs are the ones that must be 
passed to SetProcessDefaultCpuSets and SetThreadSelectedCpuSets functions to set default CPU 
sets for a process and a CPU set for a specific thread, respectively.

An example for setting thread CPU set would be for an “important” thread that should not be inter-
rupted if possible. This thread could have a CPU set that contains one CPU, while setting the default 
process CPU set to include all other CPUs.

One missing function in the Windows API is the ability to reduce the system CPU set. This can be 
achieved by a call to the NtSetSystemInformation system call. For this to succeed, the caller must 
have SeIncreaseBasePriorityPrivilege.

EXPERIMENT: CPU sets
In this experiment, you’ll view and modify CPU sets and watch the resulting effects.

1. Download the CpuSet.exe tool from the book’s downloadable resources.

2. Open an administrative command window and navigate to the directory where  
CPUSET.exe exists.

3. At the command window, type cpuset.exe without arguments to see the current system 
CPU sets. The output should be similar to the following:

System CPU Sets 
--------------- 
Total CPU Sets: 8 
 
CPU Set 0 
  Id: 256 (0x100) 
  Group: 0 
  Logical Processor: 0 
  Core: 0 
  Last Level Cache: 0 
  NUMA Node: 0 
  Flags: 0 (0x0)  Parked: False  Allocated: False  Realtime: False  Tag: 0 
 
CPU Set 1 
  Id: 257 (0x101) 
  Group: 0 
  Logical Processor: 1 
  Core: 0 
  Last Level Cache: 0 
  NUMA Node: 0 
  Flags: 0 (0x0)  Parked: False  Allocated: False  Realtime: False  Tag: 0 
...

4. Run CPUSTRES.exe and configure it to run a thread or two with maximum activity level. 
(Aim for something around 25 percent CPU usage.)
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5. Open Task Manager, click the Performance tab, and select the CPU label.

6. Change the CPU graph view to show individual processors (if the view is configured for 
overall utilization).

7. At the command window, run the following command, replacing the number after -p 
with the process ID of the CPUSTRES process on your system:

CpuSet.exe -p 18276 -s 3

The -s argument specifies the processor mask to set as the default for the process. Here, 3 
means CPU 0 and 1. You should see Task Manager hard at work on these two CPUs:

8. Let’s look at CPU 0 more closely to see what threads it’s running. For this, you’ll use 
Windows Performance Recorder (WPR) and Windows Performance Analyzer (WPA) from 
the Windows SDK. Click the Start button, type WPR, and select Windows Performance 
Recorder. Then accept the elevation prompt. You should see the following dialog box:
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9. The default is to record CPU usage, which is what we want. This tool records Event Tracing 
for Windows (ETW) events. (See Chapter 8 in Part 2 for more on ETW.) Click the Start 
button in the dialog box and, after a second or two click the same button, now labeled 
Save.

10. WPR will suggest a location to save the recorded data. Accept it or change to some 
other file/folder.

11. After the file is saved, WPR suggests opening the file with WPA. Accept the suggestion.

12. The WPA tool opens and loads the saved file. (WPA is a rich tool, well beyond the scope 
of this book). On the left, you’ll see the various categories of information captured, 
something like so:

13. Expand the Computation node and then expand the CPU Usage (Precise) node.

14. Double-click the Utilization by CPU graph. It should open in the main display:

15. At the moment, we’re interested in CPU 0. In the next step, you’ll make CPU 0 work for 
CPUSTRES only. To begin, expand the CPU 0 node. You should see various processes, 
including CPUSTRES, but certainly not exclusively:
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16. Enter the following command to restrict the system to use all processors except the first. 
In this system, the number of processors is eight, so a full mask is 255 (0xff). Removing 
CPU 0 produces 254 (0xfe). Replace the mask with the correct one for your system:

CpuSet.exe -s 0xfe

17. The view in Task Manager should look about the same. Let’s take a closer look at CPU 0. 
Run WPR again, and record a second or two with the same settings as before.

18. Open the trace in WPA and navigate to Utilization by CPU.

19. Expand CPU 0. You should see CPUSTRES almost exclusively, with the System process 
appearing occasionally:

20. Notice in the CPU Usage (in View) (ms) column that the time spent in the System process 
is very small (micro seconds). Clearly, CPU 0 is dedicated to the CPUSTRES process.

21. Run CPUSET.exe with no arguments again. The first set (CPU 0) is marked Allocated: True 
because it’s now allocated to a particular process and not for general system use.
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22. Close CPU Stress.

23. Enter the following command to restore the system CPU set to its default:

Cpuset -s 0

Thread selection on multiprocessor systems
Before covering multiprocessor systems in more detail, let’s summarize the algorithms discussed earlier in 
the “Thread selection” section. They either continued executing the current thread (if no new candidate 
was found) or started running the idle thread (if the current thread had to block). However, there is a third 
algorithm for thread selection called KiSearchForNewThread, which was hinted at earlier. This algorithm 
is called in one specific instance: when the current thread is about to block due to a wait on an object, 
including when doing an NtDelayExecutionThread call, also known as the Sleep API in Windows.

Note This shows a subtle difference between the commonly used Sleep(1) call, which 
makes the current thread block until the next timer tick, and the SwitchToThread call, which 
was shown earlier. The Sleep(1) call uses the algorithm about to be described, while the 
SwitchToThread call uses the previously shown logic.

KiSearchForNewThread initially checks whether there is already a thread that was selected for this 
processor (by reading the NextThread field). If so, it dispatches this thread immediately in the running 
state. Otherwise, it calls the KiSelectReadyThreadEx routine and, if a thread was found, performs the 
same steps.

If no thread was found, the processor is marked as idle (even though the idle thread is not yet 
executing) and a scan of the queues of other logical processors (shared) is initiated (unlike the other 
standard algorithms, which would now give up). If, however, the processor core is parked, the algorithm 
will not attempt to check other logical processors, as it is preferable to allow the core to enter the park-
ing state instead of keeping it busy with new work.

Barring these two scenarios, the work-stealing loop now runs. This code looks at the current NUMA 
node and removes any idle processors (because they shouldn’t have threads that need stealing). Then 
the code looks at the current CPU’s shared ready queue and calls KiSearchForNewThreadOnProces-
sor in a loop. If no thread is found, the affinity is changed to the next group and the function is called 
again. This time, however, the target CPU points it to the next group’s shared queue instead of the cur-
rent one, causing this processor to find the best ready thread from the other processor group’s ready 
queue. If this fails to find a thread to run, local queues of processors in that group are searched in the 
same manner. If this is unsuccessful, and if DFSS is enabled, a thread from the idle-only queue of the 
remote logical processor is released on the current processor instead, if possible.

If no candidate ready thread is found, the next–lower numbered logical processor is attempted,  
and so on, until all logical processors have been exhausted on the current NUMA node. In this case, 
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the algorithm keeps searching for the next-closest node, and so on, until all nodes in the current group 
have been exhausted. (Recall that Windows allows a given thread to have affinity only on a single group.) 
If this process fails to find any candidates, the function returns NULL and the processor enters the idle 
thread in the case of a wait (which will skip idle scheduling). If this work was already being done from 
the idle scheduler, the processor enters a sleep state.

Processor selection
We’ve described how Windows picks a thread when a logical processor needs to make a selection (or 
when a selection must be made for a given logical processor) and assumed the various scheduling 
routines have an existing database of ready threads to choose from. Now we’ll see how this database 
gets populated in the first place—in other words, how Windows chooses which LP’s ready queues to 
associate with a given ready thread. Having described the types of multiprocessor systems supported 
by Windows as well as thread-affinity and ideal processor settings, we’re now ready to examine how 
this information is used for this purpose.

Choosing a processor for a thread when there are idle processors
When a thread becomes ready to run, the KiDeferredReadyThread scheduler function is called. This 
prompts Windows to perform two tasks:

 ■ Adjust priorities and refresh quantums as needed (as explained in the “Priority boosts” section).

 ■ Pick the best logical processor for the thread.

Windows first looks up the thread’s ideal processor and then it computes the set of idle processors 
within the thread’s hard affinity mask. This set is then pruned as follows:

1. Any idle logical processors that have been parked by the core-parking mechanism are re-
moved. (See Chapter 6 for more information on core parking.) If this causes no idle processors 
to remain, idle processor selection is aborted, and the scheduler behaves as if no idle proces-
sors were available (described in the next section).

2. Any idle logical processors that are not on the ideal node (defined as the node containing the 
ideal processor) are removed (unless this would cause all idle processors to be eliminated).

3. On an SMT system, any non-idle SMT sets are removed, even if this might cause the elimination 
of the ideal processor itself. In other words, Windows prioritizes a non-ideal, idle SMT set over 
an ideal processor.

4. Windows checks whether the ideal processor is among the remaining set of idle processors. If 
not, it must then find the most appropriate idle processor. To do this, it first checks whether the 
processor that the thread last ran on is part of the remaining idle set. If so, it considers this pro-
cessor to be a temporary ideal processor and selects it. (Recall that the ideal processor attempts 
to maximize processor cache hits, and picking the last processor a thread ran on is a good way 
of doing so.) If the last processor is not part of the remaining idle set, Windows checks whether 
the current processor (that is, the processor currently executing this scheduling code) is part of 
this set. If so, it applies the same logic as before.
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5. If neither the last nor the current processor is idle, Windows performs one more pruning opera-
tion, removing any idle logical processors that are not on the same SMT set as the ideal proces-
sor. If there are none left, Windows instead removes any processors not on the SMT set of the 
current processor (unless this, too, eliminates all idle processors). In other words, Windows 
prefers idle processors that share the same SMT set as the unavailable ideal processor and/or 
last processor it would’ve liked to pick in the first place. Because SMT implementations share 
the cache on the core, this has nearly the same effect as picking the ideal or last processor from 
a caching perspective.

6. If after the previous step more than one processor remains in the idle set, Windows picks the 
lowest-numbered processor as the thread’s current processor.

After a processor has been selected for the thread to run on, that thread is put in the standby state 
and the idle processor’s PRCB is updated to point to this thread. If the processor is idle but not halted, 
a DPC interrupt is sent so that the processor handles the scheduling operation immediately. Whenever 
such a scheduling operation is initiated, KiCheckForThreadDispatch is called. It detects that a new 
thread has been scheduled on the processor and causes an immediate context switch if possible (as 
well as notifying Autoboost of the switch and delivering pending APCs). Alternatively, if no thread is 
pending, it causes a DPC interrupt to be sent.

Choosing a processor for a thread when there are no idle processors
If there are no idle processors when a thread wants to run, or if the only idle processors were eliminated 
by the first pruning (which got rid of parked idle processors), Windows first checks whether the latter 
situation has occurred. In this scenario, the scheduler calls KiSelectCandidateProcessor to ask the 
core-parking engine for the best candidate processor. The core-parking engine selects the highest-
numbered processor that is unparked within the ideal node. If there are no such processors, the engine 
forcefully overrides the park state of the ideal processor and causes it to be unparked. Upon returning 
to the scheduler, it checks whether the candidate it received is idle; if so, it picks this processor for the 
thread, following the same last steps as in the previous scenario.

If this fails, Windows must decide whether to preempt the currently running thread. First, a target 
processor needs to be selected. The preference is in order of precedence: the ideal processor of the 
thread, the last processor the thread ran on, the first available processor in the current NUMA node,  
the closest processor on another NUMA node, and all these, barring affinity constraints, if any.

After a processor is selected, the next question is whether the new thread should preempt the cur-
rent one on that processor. This is done by comparing the ranks of the two threads. This is an internal 
scheduling number that indicates the relative power of a thread based on its scheduling group and 
other factors. (See the section “Group-based scheduling” later in this chapter for a detailed discussion 
of group scheduling and rank.) If the rank of the new thread is zero (highest) or lower than the current 
thread’s rank, or the ranks are equal but the priority of the new thread is higher than the currently ex-
ecuting one, then preemption should occur. The currently running thread is marked to be preempted, 
and Windows queues a DPC interrupt to the target processor to preempt the currently running thread 
in favor of this new thread.
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If the ready thread cannot be run right away, it is moved into the ready state on the shared or local 
queue (as appropriate based on affinity constraints), where it will await its turn to run. As seen in the 
scheduling scenarios earlier, the thread will be inserted either at the head or the tail of the queue, 
based on whether it entered the ready state due to preemption. 

Note Regardless of the underlying scenario and various possibilities, threads are mostly 
put on their ideal processor’s per-processor ready queues, guaranteeing the consistency of 
the algorithms that determine how a logical processor picks a thread to run.

Heterogeneous scheduling (big.LITTLE)
The kernel assumes an SMP system, as previously described. However, some ARM-based processors 
contain multiple cores that are not the same. A typical ARM CPU (for example, from Qualcomm) con-
tains some powerful cores, which should run for short periods at a time (and consume more energy), 
and a set of weaker cores, which can run for longer periods (and consume less energy). This is some-
times called big.LITTLE.

Windows 10 introduced the ability to distinguish between these cores and schedule threads based 
on the core’s size and policy, including the foreground status of the thread, its priority, and its expected 
run time. Windows initializes the set of processors when the Power Manager is initialized by calling Po-
pInitializeHeteroProcessors (and if processors are hot-added to the system). The function allows 
the simulation of hetero systems (for example, for testing purposes) by adding keys under the registry 
key HKLM\System\CurrentControlSet\Control\Session Manager\Kernel\KGroups as follows:

 ■ A key should use two decimal digits to identify a processor group number. (Recall that each 
group holds at most 64 processors.) For example, 00 is the first group, 01 is the second, etc.  
(On most systems, one group would suffice.)

 ■ Each key should contain a DWORD value named SmallProcessorMask that is a mask of proces-
sors that would be considered small. For example, if the value is 3 (the first two bits are on) and 
the group has six total processors, that would mean processors 0 and 1 (3 = 1 or 2) are small, 
while the other four processors are big. This is essentially the same as an affinity mask.

The kernel has several policy options that can be tweaked when dealing with hetero systems, stored 
in global variables. Table 4-5 shows some of these variables and their meaning.

TABLE 4-5 Hetero kernel variables

Variable Name Meaning Default Value

KiHeteroSystem Is the system heterogeneous? False

PopHeteroSystem System hetero type:
None (0)
Simulated (1)
EfficiencyClass (2)
FavoredCore (3)

None (0)
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PpmHeteroPolicy Scheduling policy:
None (0)
Manual (1)
SmallOnly (2)
LargeOnly (3)
Dynamic (4)

Dynamic (4)

KiDynamicHeteroCpuPolicyMask Determine what is considered in 
assessing whether a thread is im-
portant

7 (foreground status = 
1, priority = 2, expected 
run time = 4)

KiDefaultDynamicHeteroCpuPolicy Behavior of Dynamic hetero policy 
(see above):
All (0) (all available)
Large (1)
LargeOrIdle (2)
Small (3)
SmallOrIdle (4)
Dynamic (5) (use priority and other 
metrics to decide)
BiasedSmall (6) (use priority and 
other metrics, but prefer small)
BiasedLarge (7)

Small (3)

KiDynamicHeteroCpuPolicyImportant Policy for a dynamic thread that is 
deemed important (see possible 
values above)

LargeOrIdle (2)

KiDynamicHeterCpuPolicyImportantShort Policy for dynamic thread that is 
deemed important but run a short 
amount of time

Small (3)

KiDynamicCpuPolicyExpectedRuntime Run-time value that is considered 
heavy

5,200 msec

KiDynamicHeteroCpuPolicyImportantPriority Priority above which threads are 
considered important if priority-
based dynamic policy is chosen

8

Dynamic policies (refer to Table 4-5) must be translated to an importance value based on KiDynamic- 
HeteroPolicyMask and the thread’s state. This is done by the KiConvertDynamicHeteroPolicy 
function, which checks, in order, the foreground state of the thread, its priority relative to KiDynamic-
HeteroCpuPolicyImportantPriority, and its expected run time. If the thread is deemed important 
(if running time is the determining factor, then it could be short as well), the important-related policy 
is used for scheduling decisions. (In Table 4-5, this would be KiDynamicHeteroCpuPolicyImportant-
Short or KiDynamicHeteroCpuPolicyImportant.)

Group-based scheduling

The previous section described the standard thread-based scheduling implementation of Windows. 
Since its appearance in the first release of Windows NT (with scalability improvements done with 
each subsequent release), it has reliably served general user and server scenarios. However, because 
thread-based scheduling attempts to fairly share the processor or processors only among competing 
threads of the same priority, it does not account for higher-level requirements such as the distribution 
of threads to users and the potential for certain users to benefit from more overall CPU time at the 
expense of other users. This is problematic in terminal-services environments, in which dozens of users 
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compete for CPU time. If only thread-based scheduling is used, a single high-priority thread from a 
given user has the potential to starve threads from all users on the machine.

Windows 8 and Server 2012 introduced a group-based scheduling mechanism, built around the 
concept of a scheduling group (KSCHEDULING_GROUP). A scheduling group maintains a policy, sched-
uling parameters (described shortly), and a list of kernel scheduling control blocks (KSCBs), one per 
processor, that are part of the scheduling group. The flip side is that a thread points to a scheduling 
group it belongs to. If that pointer is null, it means the thread is outside any scheduling group’s control. 
Figure 4-19 shows the structure of a scheduling group. In this figure, threads T1, T2, and T3 belong to 
the scheduling group, while thread T4 does not.

FIGURE 4-19 Scheduling group.

Here are some terms related to group scheduling:

 ■ Generation This is the amount of time over which to track CPU usage.

 ■ Quota This is the amount of CPU usage allowed to a group per generation. Over quota means 
the group has used up all its budget. Under quota means the group has not used its full budget.

 ■ Weight This is the relative importance of a group, between 1 and 9, where the default is 5.

 ■ Fair-share scheduling With this type of scheduling, idle cycles can be given to threads that 
are over quota if no under-quota threads want to run.

The KSCB structure contains CPU-related information as follows:

 ■ Cycle usage for this generation

 ■ Long-term average cycle usage, so that a burst of thread activity can be distinguished from a 
true hog

 ■ Control flags such as hard capping, which means that even if CPU time is available above the 
assigned quota, it will not be used to give the thread extra CPU time 

 ■ Ready queues, based on the standard priorities (0 to 15 only because real-time threads are 
never part of a scheduling group)

An important parameter maintained by a scheduling group is called rank, which can be considered 
a scheduling priority of the entire group of threads. A rank with a value of 0 is the highest. A higher-
rank number means the group has used more CPU time and so is less likely to get more CPU time. 
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Rank always trumps priority. This means that given two threads with different ranks, the lower value 
rank is preferred, regardless of priority. Equal-rank threads are compared based on priority. The rank is 
adjusted periodically as cycle usage increases.

Rank 0 is the highest (so it always wins out) against a higher number rank, and is implicit for some 
threads. This can indicate one of the following:

 ■ The thread is not in any scheduling group (“normal” threads)

 ■ Under-quota threads

 ■ Real-time priority threads (16–31)

 ■ Threads executing at IRQL APC_LEVEL (1) within a kernel critical or guarded region  
(see Chapter 8 in Part 2 for more on APCs and regions)

At various scheduling choices (for example, KiQuantumEnd), the decision of which thread to sched-
ule next accounts for the scheduling group (if any) of the current and ready threads. If a scheduling 
group exists, the lowest value rank wins out, followed by priority (if ranks are equal), followed by the 
first arriving thread (if priorities are equal; round-robin at quantum end).

Dynamic fair share scheduling
Dynamic fair share scheduling (DFSS) is a mechanism that can be used to fairly distribute CPU time 
among sessions running on a machine. It prevents one session from potentially monopolizing the CPU 
if some threads running under that session have a relatively high priority and run a lot. It’s enabled by 
default on a Windows Server system that has the Remote Desktop role. However, it can be configured 
on any system, client or server. Its implementation is based on group scheduling described in the previ-
ous section.

During the very last parts of system initialization, as the registry SOFTWARE hive is initialized by Smss.
exe, the process manager initiates the final post-boot initialization in PsBootPhaseComplete, which 
calls PspIsDfssEnabled. Here, the system decides which of the two CPU quota mechanisms (DFSS or 
legacy) will be employed. For DFSS to be enabled, the EnableCpuQuota registry value must be set to a 
non-zero value in both of the quota keys. The first of these is HKLM\SOFTWARE\Policies\Microsoft\
Windows\Session Manager\Quota System, for the policy-based setting. The second is HKLM\SYSTEM\
CurrentControlSet\Control\Session Manager\Quota System, under the system key. This deter-
mines whether the system supports the functionality (which, by default, is set to TRUE on Windows 
Server with the Remote Desktop role).

If DFSS is enabled, the PsCpuFairShareEnabled global variable is set to TRUE, which makes all 
threads belong to scheduling groups (except session 0 processes). DFSS configuration parameters are 
read from the aforementioned keys by a call to PspReadDfssConfigurationValues and stored in 
global variables. These keys are monitored by the system. If modified, the notification callback calls 
PspReadDfssConfigurationValues again to update the configuration values. Table 4-6 shows the 
values and their meaning.
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TABLE 4-6 DFSS registry configuration parameters

Registry Value Name Kernel Variable Name Meaning Default 
Value

DfssShortTermSharingMS PsDfssShortTermSharingMS The time it takes for the group rank to 
increase within a generation cycle

30 ms

DfssLongTermSharingMS PsDfssLongTermSharingMS The time it takes to jump from rank 0 
to a non-zero rank when the threads 
exceed their quota within the genera-
tion cycle

15 ms

DfssGenerationLengthMS PsDfssGenerationLengthMS The generation time over which to 
track CPU usage

600 ms

DfssLongTermFraction1024 PsDfssLongTermFraction1024 The value used in a formula for an 
exponential moving average used for 
long-term cycles computation

512

After DFSS is enabled, whenever a new session is created (other than session 0), MiSessionObject-
Create allocates a scheduling group associated with the session with the default weight of 5, which is the 
middle ground between the minimum of 1 and the maximum of 9. A scheduling group manages either 
DFSS or CPU rate-control (see the next section) information based on a policy structure (KSCHEDULING_
GROUP_POLICY) that is part of a scheduling group. The Type member indicates whether it’s configured for 
DFSS (WeightBased=0) or rate control (RateControl=1). MiSessionObjectCreate calls KeInsertSched-
ulingGroup to insert the scheduling group into a global system list (maintained in the global variable 
KiSchedulingGroupList, needed for weight recalculation if processors are hot-added). The resulting 
scheduling group is also pointed to by the SESSION_OBJECT structure for the particular session.

EXPERIMENT: DFSS in action
In this experiment, you’ll configure a system to use DFSS and watch it “do its thing”.

1. Add the registry keys and values as described in this section to enable DFSS on the 
system. (You can try this experiment on a VM as well.) Then restart the system for the 
changes to take effect.

2. To make sure DFSS is active, open a live kernel debug session and inspect the value of 
PsCpuFairShareEnabled by issuing the following command. A value of 1 indicates 
DFSS is active.

lkd> db nt!PsCpuFairShareEnabled L1 
fffff800'5183722a  01

3. In the debugger, look at the current thread. (It should be one of the threads running 
WinDbg.) Notice that the thread is part of a scheduling group and that its KSCB is not 
NULL because the thread was running at the time of display.

lkd> !thread 
THREAD ffffd28c07231640  Cid 196c.1a60  Teb: 000000f897f4b000 Win32Thread: 
ffffd28c0b9b0b40 RUNNING on processor 1 
IRP List: 
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    ffffd28c06dfac10: (0006,0118) Flags: 00060000  Mdl: 00000000 
Not impersonating 
DeviceMap                 ffffac0d33668340 
Owning Process            ffffd28c071fd080       Image:         windbg.exe 
Attached Process          N/A            Image:         N/A 
Wait Start TickCount      6146           Ticks: 33 (0:00:00:00.515) 
Context Switch Count      877            IdealProcessor: 0              
UserTime                  00:00:00.468 
KernelTime                00:00:00.156 
Win32 Start Address 0x00007ff6ac53bc60 
Stack Init ffffbf81ae85fc90 Current ffffbf81ae85f980 
Base ffffbf81ae860000 Limit ffffbf81ae85a000 Call 0000000000000000 
Priority 8 BasePriority 8 PriorityDecrement 0 IoPriority 2 PagePriority 5 
Scheduling Group: ffffd28c089e7a40 KSCB: ffffd28c089e7c68 rank 0

4. Enter the dt command to view the scheduling group:

lkd> dt nt!_kscheduling_group ffffd28c089e7a40 
   +0x000 Policy           : _KSCHEDULING_GROUP_POLICY 
   +0x008 RelativeWeight   : 0x80 
   +0x00c ChildMinRate     : 0x2710 
   +0x010 ChildMinWeight   : 0 
   +0x014 ChildTotalWeight : 0 
   +0x018 QueryHistoryTimeStamp : 0xfed6177 
   +0x020 NotificationCycles : 0n0 
   +0x028 MaxQuotaLimitCycles : 0n0 
   +0x030 MaxQuotaCyclesRemaining : 0n-73125382369 
   +0x038 SchedulingGroupList : _LIST_ENTRY [ 0xfffff800'5179b110 - 
0xffffd28c'081b7078 ] 
   +0x038 Sibling          : _LIST_ENTRY [ 0xfffff800'5179b110 - 
0xffffd28c'081b7078 ] 
   +0x048 NotificationDpc  : 0x0002eaa8'0000008e _KDPC 
   +0x050 ChildList        : _LIST_ENTRY [ 0xffffd28c'062a7ab8 - 
0xffffd28c'05c0bab8 ] 
   +0x060 Parent           : (null)  
   +0x080 PerProcessor     : [1] _KSCB

5. Create another local user on the machine.

6. Run CPU Stress in the current session.

7. Make a few threads run at maximum activity, but not enough to overwhelm the machine. 
For example, the following image shows two threads running at maximum activity on a 
three-processor virtual machine:
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8. Press Ctrl+Alt+Del and select Switch User. Then select and log in to the account for 
the other user you created.

9. Run CPU Stress again, making the same number of threads run with maximum activity.

10. For the CPUSTRES process, open the Process menu, choose Priority Class, and select 
High to change the process priority class. Without DFSS, that higher-priority process 
should consume most of the CPU. This is because there are four threads competing for 
three processors. One of these will lose out, and it should be from the lower-priority 
process.

11. Open Process Explorer, double-click both CPUSTRES processes, and select the Perfor-
mance Graph tab.

12. Place both windows side by side. You should see the CPU consumed roughly evenly 
between the processes, even though their priorities are not the same:

13. Disable DFSS by removing the registry keys. Then restart the system.

14. Rerun the experiment. You should clearly see the difference with the higher-priority 
process receiving the most CPU time.

CPU rate limits
DFSS works by automatically placing new threads inside the session-scheduling group. This is fine for 
a terminal-services scenario, but is not good enough as a general mechanism to limit the CPU time of 
threads or processes.

The scheduling-group infrastructure can be used in a more granular fashion by using a job object. 
Recall from Chapter 3 that a job can manage one or more processes. One of the limitations you can 
place on a job is a CPU rate control, which you do by calling SetInformationJobObject with Job-
ObjectCpuRateControlInformation as the job information class and a structure of type JOBOBJECT_
CPU_RATE_CONTROL_INFORMATION containing the actual control data. The structure contains a set of 
flags that enable you to apply one of three settings to limit CPU time:

 ■ CPU rate This value can be between 1 and 10000 and represents a percent multiplied by 100 
(for example, for 40 percent the value should be 4000).
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 ■ Weight-based This value can be between 1 and 9, relative to the weight of other jobs. (DFSS 
is configured with this setting.)

 ■ Minimum and maximum CPU rates These values are specified similarly to the first option. 
When the threads in the job reach the maximum percentage specified in the measuring interval 
(600 ms by default), they cannot get any more CPU time until the next interval begins. You can 
use a control flag to specify whether to use hard capping to enforce the limit even if there is 
spare CPU time available.

The net result of setting these limits is to place all threads from all processes that are in the job in a 
new scheduling group and configuring the group as specified.

EXPERIMENT: CPU rate limit
In this experiment, you’ll look at CPU rate limit using a job object. It’s best to perform this experi-
ment on a virtual machine and attach to its kernel rather than using the local kernel because of a 
debugger bug at the time of writing.

1. Run CPU Stress on the test VM and configure a few threads to consume about 50 per-
cent of CPU time. For example, on an eight-processor system, activate four threads that 
run with maximum activity level:

2. Open Process Explorer, find the CPUSTRES instance, open its properties, and select the 
Performance Graph tab. The CPU usage should be roughly 50 percent.

3. Download the CPULIMIT tool from the book’s downloadable resources. This is a simple 
tool that allows you to limit the CPU usage of a single process through hard capping.

4. Run the command shown to limit the CPU usage to 20 percent for the CPUSTRES process. 
(Replace the number 6324 with your process ID.)

CpuLimit.exe 6324 20

5. Look at the Process Explorer window. You should see the drop to around 20 percent:
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6. Open WinDbg on the host system.

7. Attach to the kernel of the test system and break into it.

8. Enter the following command to locate the CPUSTRES process:

0: kd> !process 0 0 cpustres.exe 
PROCESS ffff9e0629528080 
    SessionId: 1  Cid: 18b4    Peb: 009e4000  ParentCid: 1c4c 
    DirBase: 230803000  ObjectTable: ffffd78d1af6c540  HandleCount: <Data 
Not Accessible> 
    Image: CPUSTRES.exe

9. Type the following command to list basic information for the process:

0: kd> !process ffff9e0629528080 1 
PROCESS ffff9e0629528080 
    SessionId: 1  Cid: 18b4    Peb: 009e4000  ParentCid: 1c4c 
    DirBase: 230803000  ObjectTable: ffffd78d1af6c540  HandleCount: <Data 
Not Accessible> 
    Image: CPUSTRES.exe 
    VadRoot ffff9e0626582010 Vads 88 Clone 0 Private 450. Modified 4. Locked 0. 
    DeviceMap ffffd78cd8941640 
    Token                             ffffd78cfe3db050 
    ElapsedTime                       00:08:38.438 
    UserTime                          00:00:00.000 
    KernelTime                        00:00:00.000 
    QuotaPoolUsage[PagedPool]         209912 
    QuotaPoolUsage[NonPagedPool]      11880 
    Working Set Sizes (now,min,max)  (3296, 50, 345) (13184KB, 200KB, 1380KB) 
    PeakWorkingSetSize                3325 
    VirtualSize                       108 Mb 
    PeakVirtualSize                   128 Mb 
    PageFaultCount                    3670 
    MemoryPriority                    BACKGROUND 
    BasePriority                      8 
    CommitCharge                      568 
    Job                               ffff9e06286539a0

10. Notice there is a non-NULL job object. Show its properties with the !job command. The 
tool creates a job (CreateJobObject), adds the process to the job (AssignProcessTo-
JobObject), and calls SetInformationJobObject with the CPU rate information class 
and rate value of 2000 (20 percent).

0: kd> !job ffff9e06286539a0 
Job at ffff9e06286539a0 
  Basic Accounting Information 
    TotalUserTime:             0x0 
    TotalKernelTime:           0x0 
    TotalCycleTime:            0x0 
    ThisPeriodTotalUserTime:   0x0 
    ThisPeriodTotalKernelTime: 0x0 
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    TotalPageFaultCount:       0x0 
    TotalProcesses:            0x1 
    ActiveProcesses:           0x1 
    FreezeCount:               0 
    BackgroundCount:           0 
    TotalTerminatedProcesses:  0x0 
    PeakJobMemoryUsed:         0x248 
    PeakProcessMemoryUsed:     0x248 
  Job Flags 
    [close done] 
    [cpu rate control] 
  Limit Information (LimitFlags: 0x0) 
  Limit Information (EffectiveLimitFlags: 0x800) 
  CPU Rate Control 
    Rate = 20.00% 
    Hard Resource Cap 
    Scheduling Group: ffff9e0628d7c1c0

11. Rerun the CPULIMIT tool on the same process and again set the CPU rate to 20 percent. 
You should see the CPU consumption of CPUSTRES drop down to around 4 percent. This 
is because of job nesting. A new job is created, as is the process assigned to it, nested 
under the first job. The net result is 20 percent of 20 percent, which is 4 percent.

Dynamic processor addition and replacement
As you’ve seen, developers can fine-tune which threads are allowed to (and in the case of the ideal 
processor, should) run on which processor. This works fine on systems that have a constant number of 
processors during their run time. For example, desktop machines require shutting down the computer 
to make any sort of hardware changes to the processor or their count. Today’s server systems, however, 
cannot afford the downtime that CPU replacement or addition normally requires. In fact, you may be 
required to add a CPU at times of high load that is above what the machine can support at its current level 
of performance. Having to shut down the server during a period of peak usage would defeat the purpose.

To address this requirement, the latest generation of server motherboards and systems support the 
addition of processors (as well as their replacement) while the machine is still running. The ACPI BIOS 
and related hardware on the machine have been specifically built to allow and be aware of this need, 
but OS participation is required for full support.

Dynamic processor support is provided through the HAL, which notifies the kernel of a new proces-
sor on the system through the KeStartDynamicProcessor function. This routine does similar work to 
that performed when the system detects more than one processor at startup and needs to initialize the 
structures related to them. When a dynamic processor is added, various system components perform 
some additional work. For example, the memory manager allocates new pages and memory structures 
optimized for the CPU. It also initializes a new DPC kernel stack while the kernel initializes the global 
descriptor table (GDT), the interrupt dispatch table (IDT), the processor control region (PCR), the pro-
cess control block (PRCB), and other related structures for the processor.
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Other executive parts of the kernel are also called, mostly to initialize the per-processor look-aside 
lists for the processor that was added. For example, the I/O manager, executive look-aside list code, 
cache manager, and object manager all use per-processor look-aside lists for their frequently allocated 
structures.

Finally, the kernel initializes threaded DPC support for the processor and adjusts exported kernel 
variables to report the new processor. Different memory-manager masks and process seeds based on 
processor counts are also updated, and processor features need to be updated for the new proces-
sor to match the rest of the system—for example, enabling virtualization support on the newly added 
processor. The initialization sequence completes with the notification to the Windows Hardware Error 
Architecture (WHEA) component that a new processor is online.

The HAL is also involved in this process. It is called once to start the dynamic processor after the ker-
nel is aware of it, and called again after the kernel has finished initialization of the processor. However, 
these notifications and callbacks only make the kernel aware and respond to processor changes. Al-
though an additional processor increases the throughput of the kernel, it does nothing to help drivers.

To handle drivers, the system has a default executive callback object, ProcessorAdd, with which 
drivers can register for notifications. Similar to the callbacks that notify drivers of power state or system 
time changes, this callback allows driver code to, for example, create a new worker thread if desirable 
so that it can handle more work at the same time.

Once drivers are notified, the final kernel component called is the Plug and Play manager, which 
adds the processor to the system’s device node and rebalances interrupts so that the new processor 
can handle interrupts that were already registered for other processors. CPU-hungry applications are 
also able to take advantage of the new processors.

However, a sudden change of affinity can have potentially breaking changes for a running applica-
tion—especially when going from a single-processor to a multiprocessor environment—through the 
appearance of potential race conditions or simply misdistribution of work (because the process might 
have calculated the perfect ratios at startup, based on the number of CPUs it was aware of). As a result, 
applications do not take advantage of a dynamically added processor by default. They must request it.

The SetProcessAffinityUpdateMode and QueryProcessAffinityUpdateMode Windows APIs, 
which use the undocumented NtSet/QueryInformationProcess system call) tell the process manager 
that these applications should have their affinity updated (by setting the AffinityUpdateEnable flag 
in EPROCESS) or that they do not want to deal with affinity updates (by setting the AffinityPermanent 
flag in EPROCESS). This is a one-time change. After an application has told the system that its affinity is 
permanent, it cannot later change its mind and request affinity updates.

As part of KeStartDynamicProcessor, a new step has been added after interrupts are rebalanced: 
calling the process manager to perform affinity updates through PsUpdateActiveProcessAffinity. 
Some Windows core processes and services already have affinity updates enabled, while third-party 
software will need to be recompiled to take advantage of the new API call. The System process, Svchost 
processes, and Smss are all compatible with dynamic processor addition.
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Worker factories (thread pools)

Worker factories are the internal mechanism used to implement user-mode thread pools. The legacy 
thread-pool routines were completely implemented in user mode inside the Ntdll.dll library. In addi-
tion, the Windows API provided several functions for developers to call, which provided waitable timers 
(CreateTimerQueue, CreateTimerQueueTimer, and friends), wait callbacks (RegisterWaitForS-
ingleObject), and work item processing with automatic thread creation and deletion (QueueUser-
WorkItem), depending on the amount of work being done.

One issue with the old implementation was that only one thread pool could be created in a process, 
which made some scenarios difficult to implement. For example, trying to prioritize work items by 
building two thread pools which would serve a different set of requests was not directly possible. The 
other issue was the implementation itself, which was in user mode (in Ntdll.dll). Because the kernel can 
have direct control over thread scheduling, creation, and termination without the typical costs associ-
ated with doing these operations from user mode, most of the functionality required to support the 
user-mode thread pool implementation in Windows is now located in the kernel. This also simplifies 
the code that developers need to write. For example, creating a worker pool in a remote process can be 
done with a single API call instead of the complex series of virtual memory calls this normally requires. 
Under this model, Ntdll.dll merely provides the interfaces and high-level APIs required for interfacing 
with the worker factory kernel code.

This kernel thread pool functionality in Windows is managed by an object manager type called  
TpWorkerFactory, as well as four native system calls for managing the factory and its workers 
(NtCreateWorkerFactory, NtWorkerFactoryWorkerReady, NtReleaseWorkerFactoryWorker, and 
NtShutdownWorkerFactory); two query/set native calls (NtQueryInformationWorkerFactory and  
NtSetInformationWorkerFactory); and a wait call (NtWaitForWorkViaWorkerFactory). Just like 
other native system calls, these calls provide user mode with a handle to the TpWorkerFactory object, 
which contains information such as the name and object attributes, the desired access mask, and a 
security descriptor. Unlike other system calls wrapped by the Windows API, however, thread-pool man-
agement is handled by Ntdll.dll’s native code. This means developers work with opaque descriptors: a 
TP_POOL pointer for a thread pool and other opaque pointers for object created from a pool, including 
TP_WORK (work callback), TP_TIMER (timer callback), TP_WAIT (wait callbacks), etc. These structures hold 
various pieces of information, such as the handle to the TpWorkerFactory object.

As its name suggests, the worker factory implementation is responsible for allocating worker 
threads (and calling the given user-mode worker thread entry point) and maintaining a minimum and 
maximum thread count (allowing for either permanent worker pools or totally dynamic pools) as well 
as other accounting information. This enables operations such as shutting down the thread pool to be 
performed with a single call to the kernel because the kernel has been the only component responsible 
for thread creation and termination.

Because the kernel dynamically creates new threads as needed (based on minimum and maximum 
numbers provided), this increases the scalability of applications using the new thread-pool implemen-
tation. A worker factory will create a new thread whenever all of the following conditions are met:
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 ■ Dynamic thread creation is enabled.

 ■ The number of available workers is lower than the maximum number of workers configured for 
the factory (default of 500).

 ■ The worker factory has bound objects (for example, an ALPC port that this worker thread is 
waiting on) or a thread has been activated into the pool.

 ■ There are pending I/O request packets (IRPs; see Chapter 6 for more information) associated 
with a worker thread.

In addition, it will terminate threads whenever they’ve become idle—that is, they haven’t processed 
any work item—for more than 10 seconds (by default). Furthermore, although developers have always 
been able to take advantage of as many threads as possible (based on the number of processors on the 
system) through the old implementation, it’s now possible for applications using thread pools to auto-
matically take advantage of new processors added at run time. This is through its support for dynamic 
processors in Windows Server (as discussed earlier in this chapter).

Worker factory creation
The worker factory support is merely a wrapper to manage mundane tasks that would otherwise have 
to be performed in user mode (at a loss of performance). Much of the logic of the new thread-pool 
code remains in the Ntdll.dll side of this architecture. (Theoretically, by using undocumented functions, 
a different thread-pool implementation can be built around worker factories.) Also, it is not the worker 
factory code that provides the scalability, wait internals, and efficiency of work processing. Instead, it is 
a much older component of Windows: I/O completion ports or, more correctly, kernel queues (KQUEUE). 
In fact, when creating a worker factory, an I/O completion port must have already been created by user 
mode, and the handle needs to be passed in.

It is through this I/O completion port that the user-mode implementation will queue and wait for 
work—but by calling the worker factory system calls instead of the I/O completion port APIs. Internally, 
however, the “release” worker factory call (which queues work) is a wrapper around IoSetIoComple-
tionEx, which increases pending work, while the “wait” call is a wrapper around IoRemoveIoComple-
tion. Both these routines call into the kernel queue implementation. Therefore, the job of the worker 
factory code is to manage either a persistent, static, or dynamic thread pool; wrap the I/O completion 
port model into interfaces that try to prevent stalled worker queues by automatically creating dynamic 
threads; and simplify global cleanup and termination operations during a factory shutdown request (as 
well as easily block new requests against the factory in such a scenario).

The executive function that creates the worker factory, NtCreateWorkerFactory, accepts several 
arguments that allow customization of the thread pool, such as the maximum threads to create and 
the initial committed and reserved stack sizes. The CreateThreadpool Windows API, however, uses the 
default stack sizes embedded in the executable image ( just like a default CreateThread would). The 
Windows API does not, however, provide a way to override these defaults. This is somewhat unfortu-
nate, as in many cases thread-pool threads don’t require deep call stacks, and it would be beneficial to 
allocate smaller stacks.
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The data structures used by the worker factory implementation are not in the public symbols, but 
it is still possible to look at some worker pools, as you’ll see in the next experiment. Additionally, the 
NtQueryInformationWorkerFactory API dumps almost every field in the worker factory structure.

EXPERIMENT: Looking at thread pools
Because of the advantages of the thread-pool mechanism, many core system components and 
applications use it, especially when dealing with resources such as ALPC ports (to dynamically 
process incoming requests at an appropriate and scalable level). One of the ways to identify 
which processes are using a worker factory is to look at the handle list in Process Explorer. Follow 
these steps to look at some details behind them:

1. Run Process Explorer.

2. Open the View menu and select Show Unnamed Handles and Mappings. (Unfortu-
nately, worker factories aren’t named by Ntdll.dll, so you need to take this step to see 
the handles.)

3. Select an instance of svchost.exe from the list of processes.

4. Open the View menu and choose Show Lower Pane to display the lower pane of the 
handle table.

5. Open the View menu, choose Lower Pane View, and select Handles to display the 
table in handle mode.

6. Right-click the lower pane column headers and choose Select Columns.

7. Make sure the Type and Handle Value columns are checked.

8. Click the Type header to sort by type.

9. Scroll down the handles, looking at the Type column, until you find a handle of type 
TpWorkerFactory.

10. Click the Handle header to sort by handle value. You should see something similar to 
the following screenshot. Notice how the TpWorkerFactory handle is immediately  
preceded by an IoCompletion handle. As discussed, this occurs because a handle to 
an I/O completion port on which work will be sent must be created before creating a 
worker factory.
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11. Double-click the selected process in the list of processes, click the Threads tab, and 
click the Start Address column. You should see something similar to the following 
screenshot. Worker factory threads are easily identified by their Ntdll.dll’s entry point, 
TppWorkerThread. (Tpp stands for thread pool private.)

If you look at other worker threads, you’ll see some are waiting for objects such as events. A process 
can have multiple thread pools, and each thread pool can have a variety of threads doing completely 
unrelated tasks. It’s up to the developer to assign work and to call the thread-pool APIs to register this 
work through Ntdll.dll.

Conclusion

This chapter examined the structure of threads, how they are created and managed, and how Windows 
decides which threads should run, for how long, and on which processor or processors. In the next 
chapter, you’ll look at one of the most important aspects of any OS: memory management.
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Memory management

In this chapter, you’ll learn how Windows implements virtual memory and how it manages the subset 
of virtual memory kept in physical memory. We’ll also describe the internal structure and components 

that make up the memory manager, including key data structures and algorithms. Before examining 
these mechanisms, we’ll review the basic services provided by the memory manager and key concepts 
such as reserved memory versus committed memory and shared memory.

Introduction to the memory manager

By default, the virtual size of a process on 32-bit Windows is 2 GB. If the image is marked specifically as large 
address space–aware, and the system is booted with a special option (described in the section “x86 address 
space layouts” later in this chapter), a 32-bit process can grow to be up to 3 GB on 32-bit Windows and to 4 
GB on 64-bit Windows. The process virtual address space size on 64-bit Windows 8 and Server 2012 is 8192 
GB (8 TB) and on 64 bit Windows 8.1 (and later) and Server 2012 R2 (and later), it is 128 TB.

As you saw in Chapter 2, “System architecture”—specifically in Table 2-2—the maximum amount 
of physical memory currently supported by Windows ranges from 2 GB to 24 TB, depending on which 
version and edition of Windows you are running. Because the virtual address space might be larger or 
smaller than the physical memory on the machine, the memory manager has two primary tasks:

 ■ Translating, or mapping, a process’s virtual address space into physical memory so that when 
a thread running in the context of that process reads or writes to the virtual address space, the 
correct physical address is referenced. (The subset of a process’s virtual address space that is 
physically resident is called the working set. Working sets are described in more detail in the 
section “Working sets” later in this chapter.)

 ■ Paging some of the contents of memory to disk when it becomes overcommitted—that is, 
when running threads try to use more physical memory than is currently available—and bring-
ing the contents back into physical memory when needed.

In addition to providing virtual memory management, the memory manager provides a core set 
of services on which the various Windows environment subsystems are built. These services include 
memory-mapped files (internally called section objects), copy-on-write memory, and support for ap-
plications using large, sparse address spaces. The memory manager also provides a way for a process 
to allocate and use larger amounts of physical memory than can be mapped into the process virtual 
address space at one time—for example, on 32-bit systems with more than 3 GB of physical memory. 
This is explained in the section “Address Windowing Extensions” later in this chapter.
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Note There is a Control Panel applet (System) that provides control over the size, number, 
and locations of paging files. Its nomenclature suggests that virtual memory is the same 
thing as the paging file. This is not the case. The paging file is only one aspect of virtual 
memory. In fact, even if you run with no page file at all, Windows will still be using virtual 
memory. This distinction is explained in more detail later in this chapter.

Memory manager components
The memory manager is part of the Windows executive and therefore exists in the file Ntoskrnl.exe. 
It’s the largest component in the executive, hinting at its importance and complexity. No parts of the 
memory manager exist in the HAL. The memory manager consists of the following components:

 ■ A set of executive system services for allocating, deallocating, and managing virtual memory, 
most of which are exposed through the Windows API or kernel-mode device driver interfaces

 ■ A translation-not-valid and access fault trap handler for resolving hardware-detected memory-
management exceptions and making virtual pages resident on behalf of a process

 ■ Six key top-level routines, each running in one of six different kernel-mode threads in the System 
process:

• The balance set manager (KeBalanceSetManager, priority 17) This calls an inner routine, 
the working set manager (MmWorkingSetManager), once per second as well as when free 
memory falls below a certain threshold. The working set manager drives the overall memory- 
management policies, such as working set trimming, aging, and modified page writing.

• The process/stack swapper (KeSwapProcessOrStack, priority 23) This performs both 
process and kernel thread stack inswapping and outswapping. The balance set manager and 
the thread-scheduling code in the kernel awaken this thread when an inswap or outswap 
operation needs to take place.

• The modified page writer (MiModifiedPageWriter, priority 18) This writes dirty pages 
on the modified list back to the appropriate paging files. This thread is awakened when the 
size of the modified list needs to be reduced.

• The mapped page writer (MiMappedPageWriter, priority 18) This writes dirty pages in 
mapped files to disk or remote storage. It is awakened when the size of the modified list 
needs to be reduced or if pages for mapped files have been on the modified list for more 
than 5 minutes. This second modified page writer thread is necessary because it can gener-
ate page faults that result in requests for free pages. If there were no free pages and only 
one modified page writer thread, the system could deadlock waiting for free pages.

• The segment dereference thread (MiDereferenceSegmentThread, priority 19) This is 
responsible for cache reduction as well as for page file growth and shrinkage. For example, if 
there is no virtual address space for paged pool growth, this thread trims the page cache so 
that the paged pool used to anchor it can be freed for reuse.
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• The zero page thread (MiZeroPageThread, priority 0) This zeroes out pages on the free 
list so that a cache of zero pages is available to satisfy future demand-zero page faults. In 
some cases, memory zeroing is done by a faster function called MiZeroInParallel. See the 
note in the “Page list dynamics” section later in this chapter.

Each of these components is covered in more detail later in the chapter except for the segment 
dereference thread, which is covered in Chapter 14, “Cache manager,” in Part 2.

Large and small pages
Memory management is done in distinct chunks called pages. This is because the hardware memory 
management unit translates virtual to physical addresses at the granularity of a page. Hence, a page is 
the smallest unit of protection at the hardware level. (The various page-protection options are de-
scribed in the section “Protecting memory” later in this chapter.) The processors on which Windows 
runs support two page sizes: small and large. The actual sizes vary based on the processor architecture, 
and they are listed in Table 5-1.

TABLE 5-1 Page sizes

Architecture Small Page Size Large Page Size Small Pages per Large Page

x86 (PAE) 4 KB 2 MB 512 

x64 4 KB 2 MB 512

ARM 4 KB 4 MB 1024

Note Some processors support configurable page sizes, but Windows does not use this 
feature.

The primary advantage of large pages is speed of address translation for references to data within 
the large page. This advantage exists because the first reference to any byte within a large page will 
cause the hardware’s translation look-aside buffer (TLB) (described in the section “Address translation” 
later in this chapter), to have in its cache the information necessary to translate references to any other 
byte within the large page. If small pages are used, more TLB entries are needed for the same range of 
virtual addresses, thus increasing the recycling of entries as new virtual addresses require translation. 
This, in turn, means having to go back to the page table structures when references are made to virtual 
addresses outside the scope of a small page whose translation has been cached. The TLB is a very small 
cache; thus, large pages make better use of this limited resource.

To take advantage of large pages on systems with more than 2 GB of RAM, Windows maps with 
large pages the core operating system images (Ntoskrnl.exe and Hal.dll) as well as core operating 
system data (such as the initial part of non-paged pool and the data structures that describe the state 
of each physical memory page). Windows also automatically maps I/O space requests (calls by device 
drivers to MmMapIoSpace) with large pages if the request is of a satisfactorily large page length and 
alignment. In addition, Windows allows applications to map their images, private memory, and page 



304 CHAPTER 5 Memory management

file–backed sections with large pages (see the MEM_LARGE_PAGES flag on the VirtualAlloc, Virtual-
AllocEx, and VirtualAllocExNuma functions). You can also specify other device drivers to be mapped 
with large pages by adding a multistring registry value LargePageDrivers to the key HKLM\SYSTEM\
CurrentControlSet\Control\Session Manager\Memory Management and specifying the names of the 
drivers as separately null-terminated strings.

Attempts to allocate large pages may fail after the operating system has been running for an 
extended period because the physical memory for each large page must occupy a significant number 
(refer to Table 5-1) of physically contiguous small pages. This extent of physical pages must furthermore 
begin on a large page boundary. For example, physical pages 0–511 could be used as a large page on 
an x64 system, as could physical pages 512–1,023, but pages 10–521 could not. Free physical memory 
does become fragmented as the system runs. This is not a problem for allocations using small pages 
but can cause large page allocations to fail.

The memory is also always non-pageable because the page file system does not support large 
pages. Because the memory is non-pageable, the caller is required to have the SeLockMemoryPrivi-
lege to be able to allocate using large pages. Also, the allocated memory is not considered part of the 
process working set (described in the section “Working sets” later in this chapter); nor are large page 
allocations subject to job-wide limits on virtual memory usage.

On Windows 10 version 1607 x64 and Server 2016 systems, large pages may also be mapped with 
huge pages, which are 1 GB in size. This is done automatically if the allocation size requested is larger 
than 1 GB, but it does not have to be a multiple of 1 GB. For example, an allocation of 1040 MB would 
result in using one huge page (1024 MB) plus 8 “normal” large pages (16 MB divided by 2 MB).

There is an unfortunate side effect of large pages. Each page (whether huge, large, or small) must 
be mapped with a single protection that applies to the entire page. This is because hardware memory 
protection is on a per-page basis. If a large page contains, for example, both read-only code and read/
write data, the page must be marked as read/write, meaning that the code will be writable. As a result, 
device drivers or other kernel-mode code could, either maliciously or due to a bug, modify what is 
supposed to be read-only operating system or driver code without causing a memory access violation. 
If small pages are used to map the operating system’s kernel-mode code, the read-only portions of 
Ntoskrnl.exe and Hal.dll can be mapped as read-only pages. Using small pages does reduce efficiency 
of address translation, but if a device driver (or other kernel-mode code) attempts to modify a read-
only part of the operating system, the system will crash immediately with the exception information 
pointing at the offending instruction in the driver. If the write were allowed to occur, the system would 
likely crash later (in a harder-to-diagnose way) when some other component tried to use the corrupted 
data.

If you suspect you are experiencing kernel code corruptions, enable Driver Verifier (described in 
Chapter 6, “I/O system”), which will disable the use of large pages.

Note The term page used in this and later chapters refers to a small page unless otherwise 
indicated or apparent by context.
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Examining memory usage
The Memory and Process performance-counter categories provide access to most of the details about 
system and process memory utilization. Throughout this chapter, we’ll include references to specific 
performance counters that contain information related to the component being described. We’ve 
included relevant examples and experiments throughout the chapter. One word of caution, however:  
Different utilities use varying and sometimes inconsistent or confusing names when displaying 
memory information. The following experiment illustrates this point. (We’ll explain the terms used in 
this example in subsequent sections.)

EXPERIMENT: Viewing system memory information
The Performance tab in the Windows Task Manager, shown in the following screenshot from a 
Windows 10 version 1607 system (click the Memory tab on the left in the Performance tab), 
displays basic system memory information. This information is a subset of the detailed memory 
information available through performance counters. It includes data on both physical and vir-
tual memory usage. The table that follows shows the meaning of the memory-related values.

Task Manager Value Definition

Memory usage histogram The chart’s line height reflects physical memory in use by Windows (not 
available as a performance counter). The area above the line is equal to the 
Available value in the bottom section. The total height of the graph is equal 
to the total value shown at the top right of the graph (31.9 GB in this example). 
This represents the total RAM usable by the operating system, and does not 
include BIOS shadow pages, device memory, and so on.

Memory composition This details the relation between memory that is actively used, standby,  
modified, and free+zero (all described later in this chapter).
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Task Manager Value Definition

Total physical memory (top 
right of graph)

This shows the physical memory usable by Windows.

In Use (Compressed) This is the physical memory currently being used. The amount of compressed 
physical memory is in parentheses. Hovering over the value shows the amount 
of memory saved by the compression. (Memory compression is discussed in 
the section “Memory compression” later in this chapter.)

Cached This is the sum of the following performance counters in the Memory  
category: Cache Bytes, Modified Page List Bytes, Standby Cache Core Bytes, 
Standby Cache Normal Priority Bytes, and Standby Cache Reserve Bytes.

Available This is the amount of memory that is immediately available for use by the 
operating system, processes, and drivers. It is equal to the combined size of 
the standby, free, and zero page lists.

Free This shows the free and zero-page list bytes. To see this information, hover 
over the right-most part of the Memory Composition bar (assuming you have 
enough free memory to hover over it).

Committed The two numbers shown here are equal to the values in the Committed Bytes 
and Commit Limit performance counters, respectively.

Paged Pool This is the total size of the paged pool, including both free and allocated 
regions.

Non-Paged Pool This is the total size of the non-paged pool, including both free and allocated 
regions.

To see the specific usage of the paged and non-paged pool, use the Poolmon utility, described 
later in this chapter in the “Monitoring pool usage” section.

The Process Explorer tool from Sysinternals can show considerably more data about physical 
and virtual memory. On its main screen, click the View menu, choose System Information, and 
click the Memory tab. Here is an example of a display from a 64-bit Windows 10 system. (We will 
explain most of these counters in the relevant sections later in this chapter.)
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Two other Sysinternals tools show extended memory information:

 ■ VMMap This shows the usage of virtual memory within a process to a fine level of detail.

 ■ RAMMap This shows detailed physical memory usage.

These tools are featured in experiments found later in this chapter.

Finally, the !vm command in the kernel debugger shows the basic memory-management 
information available through the memory-related performance counters. This command can be 
useful if you’re looking at a crash dump or hung system. Here’s an example of its output from a 
64-bit Windows 10 system with 32 GB of RAM:

lkd> !vm 
Page File: \??\C:\pagefile.sys 
  Current:   1048576 Kb  Free Space:   1034696 Kb 
  Minimum:   1048576 Kb  Maximum:      4194304 Kb 
Page File: \??\C:\swapfile.sys 
  Current:     16384 Kb  Free Space:     16376 Kb 
  Minimum:     16384 Kb  Maximum:     24908388 Kb 
No Name for Paging File 
  Current:  58622948 Kb  Free Space:  57828340 Kb 
  Minimum:  58622948 Kb  Maximum:     58622948 Kb 
 
Physical Memory:          8364281 (   33457124 Kb) 
Available Pages:          4627325 (   18509300 Kb) 
ResAvail Pages:           7215930 (   28863720 Kb) 
Locked IO Pages:                0 (          0 Kb) 
Free System PTEs:      4295013448 (17180053792 Kb) 
Modified Pages:             68167 (     272668 Kb) 
Modified PF Pages:          68158 (     272632 Kb) 
Modified No Write Pages:        0 (          0 Kb) 
NonPagedPool Usage:           495 (       1980 Kb) 
NonPagedPoolNx Usage:      269858 (    1079432 Kb) 
NonPagedPool Max:      4294967296 (17179869184 Kb) 
PagedPool 0 Usage:         371703 (    1486812 Kb) 
PagedPool 1 Usage:          99970 (     399880 Kb) 
PagedPool 2 Usage:         100021 (     400084 Kb) 
PagedPool 3 Usage:          99916 (     399664 Kb) 
PagedPool 4 Usage:          99983 (     399932 Kb) 
PagedPool Usage:           771593 (    3086372 Kb) 
PagedPool Maximum:     4160749568 (16642998272 Kb) 
Session Commit:             12210 (      48840 Kb) 
Shared Commit:             344197 (    1376788 Kb) 
Special Pool:                   0 (          0 Kb) 
Shared Process:             19244 (      76976 Kb) 
Pages For MDLs:            419675 (    1678700 Kb) 
Pages For AWE:                  0 (          0 Kb) 
NonPagedPool Commit:       270387 (    1081548 Kb) 
PagedPool Commit:          771593 (    3086372 Kb) 
Driver Commit:              24984 (      99936 Kb) 
Boot Commit:               100044 (     400176 Kb) 
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System PageTables:           5948 (      23792 Kb) 
VAD/PageTable Bitmaps:      18202 (      72808 Kb) 
ProcessLockedFilePages:       299 (       1196 Kb) 
Pagefile Hash Pages:           33 (        132 Kb) 
Sum System Commit:        1986816 (    7947264 Kb) 
Total Private:            2126069 (    8504276 Kb) 
Misc/Transient Commit:      18422 (      73688 Kb) 
Committed pages:          4131307 (   16525228 Kb) 
Commit limit:             9675001 (   38700004 Kb) 
...

The values not in parentheses are in small pages (4 KB). We will describe many of the details of 
the output of this command throughout this chapter.

Internal synchronization
Like all other components of the Windows executive, the memory manager is fully reentrant and 
supports simultaneous execution on multiprocessor systems. That is, it allows two threads to acquire 
resources in such a way that they don’t corrupt each other’s data. To accomplish the goal of being fully 
reentrant, the memory manager uses several different internal synchronization mechanisms, such as 
spinlocks and interlocked instructions, to control access to its own internal data structures. (Synchroni-
zation objects are discussed in Chapter 8, “System mechanisms”, in Part 2.)

Some of the system-wide resources to which the memory manager must synchronize access include:

 ■ Dynamically allocated portions of the system virtual address space

 ■ System working sets

 ■ Kernel memory pools

 ■ The list of loaded drivers

 ■ The list of paging files

 ■ Physical memory lists

 ■ Image base randomization address space layout randomization (ASLR) structures

 ■ Each individual entry in the page frame number (PFN) database

Per-process memory-management data structures that require synchronization include the following:

 ■ Working set lock This is held while changes are made to the working set list.

 ■ Address space lock This is held whenever the address space is being changed. 

Both these locks are implemented using pushlocks. These are described in Chapter 8 in Part 2.
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Services provided by the memory manager

The memory manager provides a set of system services to allocate and free virtual memory, share mem-
ory between processes, map files into memory, flush virtual pages to disk, retrieve information about a 
range of virtual pages, change the protection of virtual pages, and lock the virtual pages into memory.

Like other Windows executive services, memory-management services allow their caller to supply 
a process handle indicating the particular process whose virtual memory is to be manipulated. The 
caller can thus manipulate either its own memory or (with proper permissions) the memory of another 
process. For example, if a process creates a child process, by default it has the right to manipulate the 
child process’s virtual memory. Thereafter, the parent process can allocate, deallocate, read, and write 
memory on behalf of the child process by calling virtual memory services and passing a handle to the 
child process as an argument. This feature is used by subsystems to manage the memory of their client 
processes. It is also essential for implementing debuggers because debuggers must be able to read and 
write to the memory of the process being debugged.

Most of these services are exposed through the Windows API. As shown in Figure 5-1, the Windows 
API has four groups of functions for managing memory in applications:

 ■ Virtual API This is the lowest-level API for general memory allocations and deallocations. It 
always works on page granularity. It is also the most powerful, supporting the full capabilities 
of the memory manager. Functions include VirtualAlloc, VirtualFree, VirtualProtect, 
VirtualLock, and others. 

 ■ Heap API This provides functions for small allocations (typically less than a page). It uses 
the Virtual API internally, but adds management on top of it. Heap manager functions include 
HeapAlloc, HeapFree, HeapCreate, HeapReAlloc and others. The heap manager is discussed in 
the section “Heap manager” later in this chapter.

 ■ Local/Global APIs These are leftovers from 16-bit Windows and are now implemented using 
the Heap API. 

 ■ Memory-mapped files These functions allow mapping files as memory and/or sharing 
memory between cooperating processes. Memory-mapped file functions include Create-
FileMapping, OpenFileMapping, MapViewOfFile, and others.

FIGURE 5-1 Memory API groups in user mode.
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The dotted box shows a typical C/C++ runtime implementation of memory management (functions 
such as malloc, free, realloc, C++ operator new and delete) using the Heap API. The box is dotted 
because this implementation is compiler-dependent and certainly not mandatory (although quite 
common). The C runtime equivalents that are implemented in Ntdll.dll use the Heap API.

The memory manager also provides several services to other kernel-mode components inside the 
executive as well as to device drivers. These include allocating and deallocating physical memory and 
locking pages in physical memory for direct memory access (DMA) transfers. These functions begin 
with the prefix Mm. In addition, although not strictly part of the memory manager, some executive 
support routines that begin with Ex are used to allocate and deallocate from the system heaps (paged 
and non-paged pool) as well as to manipulate look-aside lists. We’ll touch on these topics later in this 
chapter in the section “Kernel-mode heaps (system memory pools).”

Page states and memory allocations
Pages in a process virtual address space are either free, reserved, committed, or shareable. Committed 
and shareable pages are pages that, when accessed, ultimately translate to valid pages in physical 
memory. Committed pages are also referred to as private pages. This is because committed pages  
cannot be shared with other processes, whereas shareable pages can be (but might be in use by only 
one process).

Private pages are allocated through the Windows VirtualAlloc, VirtualAllocEx, and Virtual-
AllocExNuma functions, which lead eventually to the executive in the function NtAllocateVirtual-
Memory inside the memory manager. These functions are capable of committing memory as well as 
reserving memory. Reserving memory means setting aside a range of contiguous virtual addresses for 
possible future use (such as an array) while consuming negligible system resources, and then com-
mitting portions of the reserved space as needed as the application runs. Or, if the size requirements 
are known in advance, a process can reserve and commit in the same function call. In either case, the 
resulting committed pages can then be accessed by any thread in the process. Attempting to access 
free or reserved memory results in an access violation exception because the page isn’t mapped to any 
storage that can resolve the reference.

If committed (private) pages have never been accessed before, they are created at the time of first 
access as zero-initialized pages (or demand zero). Private committed pages may later be automatically 
written to the paging file by the operating system if required by demand for physical memory. Private 
refers to the fact that these pages are normally inaccessible to any other process.

Note Some functions, such as ReadProcessMemory and WriteProcessMemory, appear to 
permit cross-process memory access, but these are implemented by running kernel-mode 
code in the context of the target process. (This is referred to as attaching to the process.) 
They also require that the security descriptor of the target process grant the accessor the 
PROCESS_VM_READ or PROCESS_VM_WRITE right, respectively, or that the accessor holds the 
SeDebugPrivilege, which is by default granted only to members of the administrators group.
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Shared pages are usually mapped to a view of a section. This in turn is part or all of a file, but may 
instead represent a portion of page file space. All shared pages can potentially be shared with other 
processes. Sections are exposed in the Windows API as file-mapping objects.

When a shared page is first accessed by any process, it will be read in from the associated mapped 
file unless the section is associated with the paging file, in which case it is created as a zero-initialized 
page. Later, if it is still resident in physical memory, the second and subsequent processes accessing it 
can simply use the same page contents that are already in memory. Shared pages might also have been 
prefetched by the system.

Two upcoming sections of this chapter, “Shared memory and mapped files” and “Section objects,” 
go into much more detail about shared pages. Pages are written to disk through a mechanism called 
modified page writing. This occurs as pages are moved from a process’s working set to a system-wide 
list called the modified page list. From there, they are written to disk or remote storage. (Working sets 
and the modified list are explained later in this chapter.) Mapped file pages can also be written back 
to their original files on disk with an explicit call to FlushViewOfFile or by the mapped page writer as 
memory demands dictate.

You can decommit private pages and/or release address space with the VirtualFree or Virtual-
FreeEx function. The difference between decommittal and release is similar to the difference between 
reservation and committal. Decommitted memory is still reserved, but released memory has been 
freed; it is neither committed nor reserved.

Using the two-step process of reserving and then committing virtual memory defers committing 
pages—and, thereby, defers adding to the system commit charge described in the next section—until 
needed, but keeps the convenience of virtual contiguity. Reserving memory is a relatively inexpensive op-
eration because it consumes very little actual memory. All that needs to be updated or constructed is the 
relatively small internal data structures that represent the state of the process address space. We’ll explain 
these data structures, called page tables and Virtual Address Descriptors (VADs), later in this chapter.

One extremely common use for reserving a large space and committing portions of it as needed 
is the user-mode stack for each thread. When a thread is created, a stack is created by reserving a 
contiguous portion of the process address space. (The default size is 1 MB but you can override this size 
with the CreateThread and CreateRemoteThread(Ex) function calls or change it on an executable 
image basis by using the /STACK linker flag.) By default, the initial page in the stack is committed and 
the next page is marked as a guard page (which isn’t committed) that traps references beyond the end 
of the committed portion of the stack and expands it.

EXPERIMENT: Reserved versus committed pages
You can use the TestLimit Sysinternals utility to allocate large amounts of reserved or private 
committed virtual memory. You can then observe the difference via Process Explorer. Follow 
these steps:

1. Open two command prompt windows.
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2. Invoke TestLimit in one of the command prompt windows to create a large amount of 
reserved memory:

C:\temp>testlimit -r 1 -c 800 
 
Testlimit v5.24 - test Windows limits 
Copyright (C) 2012-2015 Mark Russinovich 
Sysinternals - wwww.sysinternals.com 
 
Process ID: 18468 
 
Reserving private bytes 1 MB at a time ... 
Leaked 800 MB of reserved memory (800 MB total leaked). Lasterror: 0 
The operation completed successfully.

3. In the other command prompt window, create a similar amount of committed memory:

C:\temp>testlimit -m 1 -c 800 
 
Testlimit v5.24 - test Windows limits 
Copyright (C) 2012-2015 Mark Russinovich 
Sysinternals - wwww.sysinternals.com 
 
Process ID: 14528 
 
Leaking private bytes 1 KB at a time ... 
Leaked 800 MB of private memory (800 MB total leaked). Lasterror: 0 
The operation completed successfully.

4. Run Task Manager, click the Details tab, and add a Commit Size column.

5. Find the two instances of TestLimit.exe in the list. They should look something like the 
following:

6. Notice that Task Manager shows the committed size but it has no counters that reveal 
the reserved memory in the other TestLimit process.

http://wwww.sysinternals.com
http://wwww.sysinternals.com
http://wwww.sysinternals.com
http://wwww.sysinternals.com
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7. Open Process Explorer. 

8. Click the Process Memory tab and enable the Private Bytes and Virtual Size columns.

9. Find the two TestLimit.exe processes in the main display:

10. Notice that the virtual sizes of the two processes are identical, but only one shows a 
Private Bytes value that is comparable to the Virtual Size value. The large difference in 
the other TestLimit process (process ID 18468) is due to the reserved memory. You could 
make the same comparison in Performance Monitor by looking at the Virtual Bytes and 
Private Bytes counters in the Process category.

Commit charge and commit limit
On the Performance tab in Task Manager, on the Memory page, there is a Committed label with two 
numbers underneath it. The memory manager keeps track of private committed memory usage on a 
global basis, termed commitment or commit charge. This is the first of the two numbers, which repre-
sents the total of all committed virtual memory in the system.

There is a system-wide limit, called the system commit limit or simply the commit limit, on the 
amount of committed virtual memory that can exist at any one time. This limit corresponds to the  
current total size of all paging files plus the amount of RAM that is usable by the operating system.  
This is the second of the two numbers displayed under the Committed label. The memory manager  
can increase the commit limit automatically by expanding one or more of the paging files if they are 
not already at their configured maximum size. 

Commit charge and the system commit limit are explained in more detail in the section “Commit 
charge and the system commit limit” later in this chapter.
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Locking memory
In general, it’s better to let the memory manager decide which pages remain in physical memory. 
However, there might be special circumstances when it might be necessary for an application or device 
driver to lock pages in physical memory. Pages can be locked in memory in two ways:

 ■ Windows applications can call the VirtualLock function to lock pages in their process work-
ing set. Pages locked using this mechanism remain in memory until explicitly unlocked or until 
the process that locked them terminates. The number of pages a process can lock can’t exceed 
its minimum working set size minus eight pages. If a process needs to lock more pages, it can 
increase its working set minimum with the SetProcessWorkingSetSizeEx function, discussed 
later in this chapter in the section “Working set management.”

 ■ Device drivers can call the MmProbeAndLockPages, MmLockPagableCodeSection, MmLockPagable-
DataSection, or MmLockPagableSectionByHandle kernel-mode functions. Pages locked using 
this mechanism remain in memory until explicitly unlocked. The last three of these APIs enforce 
no quota on the number of pages that can be locked in memory because the resident avail-
able page charge is obtained when the driver first loads. This ensures that it can never cause a 
system crash due to overlocking. For the first API, quota charges must be obtained or the API 
will return a failure status.

Allocation granularity
Windows aligns each region of reserved process address space to begin on an integral boundary de-
fined by the value of the system allocation granularity, which can be retrieved from the Windows Get-
SystemInfo or GetNativeSystemInfo functions. This value is 64 KB, a granularity that is used by the 
memory manager to efficiently allocate metadata (for example, VADs, bitmaps, and so on) to support 
various process operations. In addition, if support were added for future processors with larger page 
sizes (for example, up to 64 KB) or virtually indexed caches that require system-wide physical-to-virtual 
page alignment, the risk of requiring changes to applications that made assumptions about allocation 
alignment would be reduced.

Note Windows kernel-mode code isn’t subject to the same restrictions. It can reserve 
memory on a single-page granularity (although this is not exposed to device drivers for the 
reasons detailed earlier). This level of granularity is primarily used to pack TEB allocations 
more densely. Because this mechanism is internal only, this code can easily be changed if 
a future platform requires different values. Also, for the purposes of supporting 16-bit and 
MS-DOS applications on x86 systems only, the memory manager provides the MEM_DOS_LIM 
flag to the MapViewOfFileEx API, which is used to force the use of single-page granularity.

Finally, when a region of address space is reserved, Windows ensures that the size and base of the 
region is a multiple of the system page size, whatever that might be. For example, because x86 systems 
use 4 KB pages, if you tried to reserve a region of memory 18 KB in size, the actual amount reserved on 
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an x86 system would be 20 KB. If you specified a base address of 3 KB for an 18 KB region, the actual 
amount reserved would be 24 KB. Note that the VAD for the allocation would then also be rounded to 
64 KB alignment/length, thus making the remainder of it inaccessible.

Shared memory and mapped files
As is true with most modern operating systems, Windows provides a mechanism to share memory 
among processes and the operating system. Shared memory can be defined as memory that is visible to 
more than one process or that is present in more than one process virtual address space. For example, 
if two processes use the same DLL, it would make sense to load the referenced code pages for that DLL 
into physical memory only once and share those pages between all processes that map the DLL, as 
illustrated in Figure 5-2.

FIGURE 5-2 Sharing memory between processes.

Each process would still maintain its private memory areas to store private data but the DLL code 
and unmodified data pages could be shared without harm. As we’ll explain later, this kind of sharing 
happens automatically because the code pages in executable images—EXE and DLL files, and several 
other types like screen savers (SCR), which are essentially DLLs under other names—are mapped as 
execute-only and writable pages are mapped as copy-on-write. (See the “Copy-on-write” section later 
in this chapter for more information.)

Figure 5-2 shows two processes, based on different images, that share a DLL mapped just once to 
physical memory. The images (EXE) code itself is not shared in this case because the two processes run 
different images. The EXE code would be shared between processes that run the same image, such as 
two or more processes running Notepad.exe.

The underlying primitives in the memory manager used to implement shared memory are called 
section objects, which are exposed as file-mapping objects in the Windows API. The internal structure 
and implementation of section objects are described later in this chapter in the section “Section objects.”

This fundamental primitive in the memory manager is used to map virtual addresses whether in 
main memory, in the page file, or in some other file that an application wants to access as if it were in 
memory. A section can be opened by one process or by many. In other words, section objects don’t 
necessarily equate to shared memory.
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A section object can be connected to an open file on disk (called a mapped file) or to committed 
memory (to provide shared memory). Sections mapped to committed memory are called page-file-backed 
sections because the pages are written to the paging file (as opposed to a mapped file) if demands on 
physical memory require it. (Because Windows can run with no paging file, page-file-backed sections 
might in fact be “backed” only by physical memory.) As with any other empty page that is made visible 
to user mode (such as private committed pages), shared committed pages are always zero-filled when 
they are first accessed to ensure that no sensitive data is ever leaked.

To create a section object, call the Windows CreateFileMapping, CreateFileMappingFromApp, 
or CreateFileMappingNuma(Ex) function, specifying a previously opened file handle to map it to (or 
INVALID_HANDLE_VALUE for a page-file-backed section) and optionally a name and security descriptor. 
If the section has a name, other processes can open it with OpenFileMapping or the CreateFileMap-
ping* functions. Or you can grant access to section objects through either handle inheritance (by 
specifying that the handle be inheritable when opening or creating the handle) or handle duplication 
(by using DuplicateHandle). Device drivers can also manipulate section objects with the ZwOpenSection, 
ZwMapViewOfSection, and ZwUnmapViewOfSection functions.

A section object can refer to files that are much larger than can fit in the address space of a process. 
(If the paging file backs a section object, sufficient space must exist in the paging file and/or RAM to 
contain it.) To access a very large section object, a process can map only the portion of the section ob-
ject that it requires (called a view of the section) by calling the MapViewOfFile(Ex), MapViewOfFile-
FromApp, or MapViewOfFileExNuma function and then specifying the range to map. Mapping views 
permits processes to conserve address space because only the views of the section object needed at 
the time must be mapped into memory.

Windows applications can use mapped files to conveniently perform I/O to files by simply making 
them appear as data in memory within their address space. User applications aren’t the only consumers 
of section objects; the image loader uses section objects to map executable images, DLLs, and device 
drivers into memory, and the cache manager uses them to access data in cached files. (For informa-
tion on how the cache manager integrates with the memory manager, see Chapter 14 in Part 2.) The 
implementation of shared memory sections, both in terms of address translation and the internal data 
structures, is explained in the section “Section objects” later in this chapter.

EXPERIMENT: Viewing memory-mapped files
You can list the memory-mapped files in a process by using Process Explorer. To do so, config-
ure the lower pane to show the DLL view. (Open the View menu, select Lower Pane View, and 
choose DLLs.) Note that this is more than just a list of DLLs—it represents all memory-mapped 
files in the process address space. Some of these are DLLs, one is the image file (EXE) being run, 
and additional entries might represent memory-mapped data files.

The following display from Process Explorer shows a WinDbg process using several differ-
ent memory mappings to access the memory dump file being examined. Like most Windows 
programs, it (or one of the Windows DLLs it is using) is also using memory mapping to access a 
Windows data file called Locale.nls, which is part of the internationalization support in Windows.
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You can also search for memory-mapped files by opening the Find menu and choosing 
Find Handle or DLL (or pressing Ctrl+F). This can be useful when trying to determine which 
process(es) is using a DLL or a memory-mapped file that you are trying to replace.

Protecting memory
As explained in Chapter 1, “Concepts and tools,” Windows provides memory protection so that no user 
process can inadvertently or deliberately corrupt the address space of another process or the operating 
system. Windows provides this protection in four primary ways.

 ■ All system-wide data structures and memory pools used by kernel-mode system components 
can be accessed only while in kernel mode. User-mode threads can’t access these pages. If they 
attempt to do so, the hardware generates a fault, which the memory manager reports to the 
thread as an access violation.

 ■ Each process has a separate, private address space, protected from access by any thread belong-
ing to another process. Even shared memory is not really an exception to this because each pro-
cess accesses the shared regions using addresses that are part of its own virtual address space. The 
only exception is if another process has virtual memory read or write access to the process object 
(or holds SeDebugPrivilege) and thus can use the ReadProcessMemory or WriteProcessMemory 
function. Each time a thread references an address, the virtual memory hardware, in concert 
with the memory manager, intervenes and translates the virtual address into a physical one. By 
controlling how virtual addresses are translated, Windows can ensure that threads running in one 
process don’t inappropriately access a page belonging to another process.

 ■ In addition to the implicit protection offered by virtual-to-physical address translation, all pro-
cessors supported by Windows provide some form of hardware-controlled memory protection 
such as read/write, read-only, and so on. (The exact details of such protection vary according to 
the processor.) For example, code pages in the address space of a process are marked read-only 
and are thus protected from modification by user threads. Table 5-2 lists the memory-protection 
options defined in the Windows API. (See the documentation for the VirtualProtect, Virtual-
ProtectEx, VirtualQuery, and VirtualQueryEx functions.)
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TABLE 5-2 Memory-protection options defined in the Windows API

Attribute Description

PAGE_NOACCESS Any attempt to read from, write to, or execute code in this region causes an access 
violation.

PAGE_READONLY Any attempt to write to (and on processors with no execute support, execute code 
in) memory causes an access violation, but reads are permitted.

PAGE_READWRITE The page is readable and writable but not executable.

PAGE_EXECUTE Any attempt to write to code in memory in this region causes an access violation, but 
execution (and read operations on all existing processors) is permitted.

PAGE_EXECUTE_READ* Any attempt to write to memory in this region causes an access violation, but executes 
and reads are permitted.

PAGE_EXECUTE_READWRITE* The page is readable, writable, and executable. Any attempted access will succeed. 

PAGE_WRITECOPY Any attempt to write to memory in this region causes the system to give the process 
a private copy of the page. On processors with no-execute support, attempts to 
execute code in memory in this region cause an access violation.

PAGE_EXECUTE_WRITECOPY Any attempt to write to memory in this region causes the system to give the process 
a private copy of the page. Reading and executing code in this region is permitted. 
(No copy is made in this case.)

PAGE_GUARD Any attempt to read from or write to a guard page raises an EXCEPTION_GUARD_PAGE 
exception and turns off the guard page status. Guard pages thus act as a one-shot 
alarm. Note that this flag can be specified with any of the page protections listed in 
this table except PAGE_NOACCESS.

PAGE_NOCACHE This uses physical memory that is not cached. This is not recommended for general 
usage. It is useful for device drivers—for example, mapping a video frame buffer 
with no caching.

PAGE_WRITECOMBINE This enables write-combined memory accesses. When enabled, the processor does 
not cache memory writes (possibly causing significantly more memory traffic than if 
memory writes were cached), but it does try to aggregate write requests to optimize 
performance. For example, if multiple writes are made to the same address, only the 
most recent write might occur. Separate writes to adjacent addresses may be simi-
larly collapsed into a single large write. This is not typically used for general applica-
tions, but it is useful for device drivers—for example, mapping a video frame buffer 
as write combined.

PAGE_TARGETS_INVALID and 
PAGE_TARGETS_NO_UPDATE 
(Windows 10 and Windows 
Server 2016)

These values control behavior of Control Flow Guard (CFG) for executable code in 
these pages. Both constants have the same value but are used in different calls, es-
sentially acting as a toggle. PAGE_TARGETS_INVALID indicates indirect calls should 
fail CFG and crash the process. PAGE_TARGETS_NO_UPDATE allows VirtualProtect 
calls that change the page range to allow execution to not update CFG state. See 
Chapter 7, “Security,” for more information on CFG.

*No execute protection is supported on processors that have the necessary hardware support (for example, all x64 processors) but not in older x86 
processors. If unsupported, “execute” translates to “read.”

 ■ Shared memory section objects have standard Windows access control lists (ACLs) that are 
checked when processes attempt to open them, thus limiting access of shared memory to those 
processes with the proper rights. Access control also comes into play when a thread creates a 
section to contain a mapped file. To create the section, the thread must have at least read  
access to the underlying file object or the operation will fail.

Once a thread has successfully opened a handle to a section, its actions are still subject to the  
memory manager and the hardware-based page protections described earlier. A thread can change 
the page-level protection on virtual pages in a section if the change doesn’t violate the permissions 
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in the ACL for that section object. For example, the memory manager allows a thread to change the 
pages of a read-only section to have copy-on-write access but not to have read/write access. The  
copy-on-write access is permitted because it has no effect on other processes sharing the data.

Data Execution Prevention
Data Execution Prevention (DEP), or no-execute (NX) page protection, causes an attempt to transfer 
control to an instruction in a page marked as “no execute” to generate an access fault. This can prevent 
certain types of malware from exploiting bugs in the system through the execution of code placed 
in a data page such as the stack. DEP can also catch poorly written programs that don’t correctly set 
permissions on pages from which they intend to execute code. If an attempt is made in kernel mode to 
execute code in a page marked as “no execute,” the system will crash with the bug check code ATTEMPTED_ 
EXECUTE_OF_NOEXECUTE_MEMORY (0xFC). (See Chapter 15, “Crash dump analysis,” in Part 2 for an 
explanation of these codes.) If this occurs in user mode, a STATUS_ACCESS_VIOLATION (0xC0000005) 
exception is delivered to the thread attempting the illegal reference. If a process allocates memory that 
needs to be executable, it must explicitly mark such pages by specifying the PAGE_EXECUTE, PAGE_ 
EXECUTE_READ, PAGE_EXECUTE_READWRITE, or PAGE_EXECUTE_WRITECOPY flags on the page-granularity 
memory-allocation functions.

On 32-bit x86 systems that support DEP, bit 63 in the page table entry (PTE) is used to mark a page as 
non-executable. Therefore, the DEP feature is available only when the processor is running in Physical 
Address Extension (PAE) mode, without which page table entries are only 32 bits wide. (See the section 
“x86 virtual address translation” later in this chapter.) Thus, support for hardware DEP on 32-bit systems 
requires loading the PAE kernel (%SystemRoot%\System32\Ntkrnlpa.exe), which currently is the only 
supported kernel on x86 systems. 

On ARM systems, DEP is set to AlwaysOn.

On 64-bit versions of Windows, execution protection is always applied to all 64-bit processes and 
device drivers and can be disabled only by setting the nx BCD option to AlwaysOff. Execution pro-
tection for 32-bit programs depends on system configuration settings, described shortly. On 64-bit 
Windows, execution protection is applied to thread stacks (both user and kernel mode), user-mode 
pages not specifically marked as executable, the kernel paged pool, and the kernel session pool. For 
a description of kernel memory pools, see the section “Kernel-mode heaps (system memory pools).” 
However, on 32-bit Windows, execution protection is applied only to thread stacks and user-mode 
pages, not to the paged pool and session pool.

The application of execution protection for 32-bit processes depends on the value of the BCD nx 
option. To change the settings, open the Data Execution Prevention tab in the Performance Options 
dialog box (see Figure 5-3). (To open this dialog box, right-click Computer, select Properties, click 
Advanced System Settings, and choose Performance Settings.) When you configure no-execute 
protection in the Performance Options dialog box, the BCD nx option is set to the appropriate value. 
Table 5-3 lists the variations of the values and how they correspond to the Data Execution Prevention 
tab. The registry lists 32-bit applications that are excluded from execution protection under the HKLM\
SOFTWARE\Microsoft\Windows NT\CurrentVersion\AppCompatFlags\Layers key, with the value name 
being the full path of the executable and the data set to DisableNXShowUI.
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FIGURE 5-3 Data Execution Prevention tab settings.

TABLE 5-3 BCD nx values

BCD nx Value Option on Data Execution 
Prevention Tab Explanation

OptIn Turn on DEP for Essential Windows 
Programs and Services Only

This enables DEP for core Windows system images. It enables 
32-bit processes to dynamically configure DEP for their life-
time.

OptOut Turn on DEP for All Programs and 
Services Except Those I Select

This enables DEP for all executables except those specified. 
It enables 32-bit processes to dynamically configure DEP for 
their lifetime. It also enables system compatibility fixes for DEP.

AlwaysOn There is no dialog box option for 
this setting

This enables DEP for all components with no ability to exclude 
certain applications. It disables dynamic configuration for  
32-bit processes and disables system compatibility fixes.

AlwaysOff There is no dialog box option for 
this setting

This disables DEP (not recommended). It also disables dynamic 
configuration for 32-bit processes.

On Windows client versions (both 64-bit and 32-bit), execution protection for 32-bit processes is 
configured by default to apply only to core Windows operating system executables. That is, the nx BCD 
option is set to OptIn. This is to avoid breaking 32-bit applications that might rely on being able to 
execute code in pages not specifically marked as executable, such as self-extracting or packed applica-
tions. On Windows server systems, execution protection for 32-bit applications is configured by default 
to apply to all 32-bit programs. That is, the nx BCD option is set to OptOut.

Even if you force DEP to be enabled, there are still other methods through which applications can 
disable DEP for their own images. For example, regardless of which execution-protection options are 
enabled, the image loader will verify the signature of the executable against known copy-protection 
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mechanisms (such as SafeDisc and SecuROM) and disable execution protection to provide compatibil-
ity with older copy-protected software such as computer games. (See Chapter 3 for more information 
about the image loader.)

EXPERIMENT: Looking at DEP protection on processes
Process Explorer can show you the current DEP status for all the processes on your system, in-
cluding whether the process is opted in or benefiting from permanent protection. To look at the 
DEP status for processes, right-click any column in the process tree, choose Select Columns, and 
then select DEP Status on the Process Image tab. There are three possible values:

 ■ DEP (permanent) This means the process has enabled DEP because it is a “necessary 
Windows program or service.”

 ■ DEP This means the process opted in to DEP. This may be due to a system-wide policy 
to opt in to all 32-bit processes, because of an API call such as SetProcessDEPPolicy, or 
because the /NXCOMPAT linker flag was set when the image was built.

 ■ Nothing If the column displays no information for this process, DEP is disabled because 
of either a system-wide policy or an explicit API call or shim.

Additionally, to provide compatibility with older versions of the Active Template Library (ATL) frame-
work (version 7.1 or earlier), the Windows kernel provides an ATL thunk emulation environment. This 
environment detects ATL thunk code sequences that have caused the DEP exception and emulates the 
expected operation. Application developers can request that ATL thunk emulation not be applied by 
using the latest Microsoft C++ compiler and specifying the /NXCOMPAT flag (which sets the IMAGE_DLL-
CHARACTERISTICS_NX_COMPAT flag in the PE header), which tells the system that the executable fully 
supports DEP. Note that ATL thunk emulation is permanently disabled if the AlwaysOn value is set.

Finally, if the system is in OptIn or OptOut mode and executing a 32-bit process, the SetProcess-
DEPPolicy function allows a process to dynamically disable DEP or to permanently enable it. When it  
is enabled through this API, DEP cannot be disabled programmatically for the lifetime of the process. 
This function can also be used to dynamically disable ATL thunk emulation if the image wasn’t compiled 
with the /NXCOMPAT flag. On 64-bit processes or systems booted with AlwaysOff or AlwaysOn, the 
function always returns a failure. The GetProcessDEPPolicy function returns the 32-bit per-process 
DEP policy (it fails on 64-bit systems, where the policy is always the same—enabled), while GetSystem-
DEPPolicy can be used to return a value corresponding to the policies in Table 5-3.

Copy-on-write
Copy-on-write page protection is an optimization the memory manager uses to conserve physical memory. 
When a process maps a copy-on-write view of a section object that contains read/write pages, the memory 
manager delays the copying of pages until the page is written to instead of making a process private copy 
at the time the view is mapped. For example, in Figure 5-4, two processes are sharing three pages, each 
marked copy-on-write, but neither of the two processes has attempted to modify any data on the pages.
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FIGURE 5-4 The “before” of copy-on-write.

If a thread in either process writes to a page, a memory-management fault is generated. The 
memory manager sees that the write is to a copy-on-write page, so instead of reporting the fault as an 
access violation, it does the following:

1. It allocates a new read/write page in physical memory.

2. It copies the contents of the original page to the new page.

3. It updates the corresponding page-mapping information (explained later in this chapter) in this 
process to point to the new location.

4. It dismisses the exception, causing the instruction that generated the fault to be re-executed. 

This time, the write operation succeeds. However, as shown in Figure 5-5, the newly copied page is 
now private to the process that did the writing and isn’t visible to the other process still sharing the copy-
on-write page. Each new process that writes to that same shared page will also get its own private copy.

FIGURE 5-5 The “after” of copy-on-write.

One application of copy-on-write is to implement breakpoint support in debuggers. For example, 
by default, code pages start out as execute-only. If a programmer sets a breakpoint while debugging 
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a program, however, the debugger must add a breakpoint instruction to the code. It does this by first 
changing the protection on the page to PAGE_EXECUTE_READWRITE and then changing the instruction 
stream. Because the code page is part of a mapped section, the memory manager creates a private 
copy for the process with the breakpoint set, while other processes continue using the unmodified 
code page.

Copy-on-write is one example of an evaluation technique called lazy evaluation that the memory 
manager uses as often as possible. Lazy-evaluation algorithms avoid performing an expensive opera-
tion until absolutely required. If the operation is never required, no time is wasted on it.

To examine the rate of copy-on-write faults, see the Write Copies/Sec performance counter in the 
Memory category of the Performance Monitor tool.

Address Windowing Extensions
Although the 32-bit version of Windows can support up to 64 GB of physical memory (refer to Table 
2-2), each 32-bit user process has only a 2 GB virtual address space by default. (You can configure this 
to up to 3 GB when using the increaseuserva BCD option, described in the upcoming section “Virtual 
address space layouts.”) An application that needs to make more than 2 GB (or 3 GB) of data easily 
available in a single process could do so via file mapping, remapping a part of its address space into 
various portions of a large file. However, significant paging would be involved upon each remap.

For higher performance (and more fine-grained control), Windows provides a set of functions called 
Address Windowing Extensions (AWE). These functions allow a process to allocate more physical memory 
than can be represented in its virtual address space. It then can access the physical memory by mapping  
a portion of its virtual address space into selected portions of the physical memory at various times.

You allocate and use memory via the AWE functions in three steps:

1. You allocate the physical memory to be used. The application uses the Windows functions  
AllocateUserPhysicalPages or AllocateUserPhysicalPagesNuma. (These require the  
SeLockMemoryPrivilege.)

2. You create one or more regions of virtual address space to act as windows to map views of the 
physical memory. The application uses the Win32 VirtualAlloc, VirtualAllocEx, or Virtual- 
AllocExNuma function with the MEM_PHYSICAL flag.

3. Steps 1 and 2 are, generally speaking, initialization steps. To actually use the memory, the applica-
tion uses MapUserPhysicalPages or MapUserPhysicalPagesScatter to map a portion of the 
physical region allocated in step 1 into one of the virtual regions, or windows, allocated in step 2.

Figure 5-6 shows an example. The application has created a 256 MB window in its address space and 
has allocated 4 GB of physical memory. It can then use MapUserPhysicalPages or MapUserPhysical-  
PagesScatter to access any portion of the physical memory by mapping the desired portion of mem-
ory into the 256 MB window. The size of the application’s virtual address space window determines 
the amount of physical memory the application can access with any given mapping. To access another 
portion of the allocated RAM, the application can simply remap the area.
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FIGURE 5-6 Using AWE to map physical memory.

The AWE functions exist on all editions of Windows and are usable regardless of how much physical 
memory a system has. However, AWE is most useful on 32-bit systems with more than 2 GB of physi-
cal memory because it provides a way for a 32-bit process to access more RAM than its virtual address 
space would otherwise allow. Another use is for security purposes. Because AWE memory is never 
paged out, the data in AWE memory can never have a copy in the paging file that someone could 
examine by rebooting into an alternate operating system. (VirtualLock provides the same guarantee 
for pages in general.)

Finally, there are some restrictions on memory allocated and mapped by the AWE functions:

 ■ Pages can’t be shared between processes.

 ■ The same physical page can’t be mapped to more than one virtual address.

 ■ Page protection is limited to read/write, read-only, and no access.

AWE is less useful on 64 bit Windows systems because these systems support 128 TB of virtual address 
space per process, while allowing a maximum of only 24 TB of RAM (on Windows Server 2016 systems). 
Therefore, AWE is not necessary to allow an application to use more RAM than it has virtual address 
space; the amount of RAM on the system will always be smaller than the process virtual address space. 
AWE remains useful, however, for setting up non-pageable regions of a process address space. It provides 
finer granularity than the file-mapping APIs. (The system page size is 4 KB rather than 64 KB.)

For a description of the page table data structures used to map memory on systems with more than 
4 GB of physical memory, see the section “x86 virtual address translation.”

Kernel-mode heaps (system memory pools)

At system initialization, the memory manager creates two dynamically sized memory pools, or heaps, 
that most kernel-mode components use to allocate system memory:
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 ■ Non-paged pool This consists of ranges of system virtual addresses that are guaranteed to 
reside in physical memory at all times. Thus, they can be accessed at any time without incurring 
a page fault—meaning they can be accessed from any IRQL. One of the reasons a non-paged 
pool is required is because page faults can’t be satisfied at DPC/dispatch level or above. There-
fore, any code and data that might execute or be accessed at or above DPC/dispatch level must 
be in non-pageable memory.

 ■ Paged pool This is a region of virtual memory in system space that can be paged into and out 
of the system. Device drivers that don’t need to access the memory from DPC/dispatch level or 
above can use paged pool. It is accessible from any process context.

Both memory pools are in the system part of the address space and are mapped in the virtual 
address space of every process. The executive provides routines to allocate and deallocate from these 
pools. For information on these routines, see the functions that start with ExAllocatePool, ExAllocate- 
PoolWithTag, and ExFreePool in the Windows Development Kit (WDK) documentation.

Systems start with four paged pools, which are combined to make the overall system paged pool, 
and two non-paged pools. More are created—as many as 64—depending on the number of NUMA 
nodes on the system. Having more than one paged pool reduces the frequency of system code block-
ing on simultaneous calls to pool routines. Additionally, the different pools created are mapped across 
different virtual address ranges that correspond to different NUMA nodes on the system. The different 
data structures, such as the large page look-aside lists, to describe pool allocations are also mapped 
across different NUMA nodes. 

In addition to the paged and non-paged pools, there are a few other pools with special attributes 
or uses. For example, there is a pool region in session space that is used for data that is common to all 
processes in the session. Allocations from another pool, called special pool, are surrounded by pages 
marked as “no access” to help isolate problems in code that accesses memory before or after the re-
gion of pool it allocated.

Pool sizes
A non-paged pool starts at an initial size based on the amount of physical memory on the system and 
then grows as needed. For a non-paged pool, the initial size is 3 percent of system RAM. If this is less 
than 40 MB, the system will instead use 40 MB as long as 10 percent of RAM results in more than 40 MB. 
Otherwise, 10 percent of RAM is chosen as a minimum. Windows dynamically chooses the maximum size 
of the pools and allows a given pool to grow from its initial size to the maximums shown in Table 5-4.

TABLE 5-4 Maximum pool sizes

Pool Type Maximum on 32-Bit Systems Maximum on 64 bit Systems 
(Windows 8, Server 2012)

Maximum on 64-Bit Systems 
(Windows 8.1, 10, Server 2012 
R2, 2016)

Non-paged 75 percent of physical memory  
or 2 GB, whichever is smaller

75 percent of physical memory 
or 128 GB, whichever is smaller

16 TB

Paged 2 GB 384 GB 15.5 TB
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Four of these computed sizes are stored in kernel variables in Windows 8.x and Server 2012/R2. 
Three of these are exposed as performance counters and one is computed only as a performance 
counter value. Windows 10 and Server 2016 moved the global variables into fields in a global memory 
management structure (MI_SYSTEM_INFORMATION) named MiState. Within this lies a variable named 
Vs (of type _MI_VISIBLE_STATE) where this information resides. The global variable MiVisibleState 
also points to that Vs member. These variables and counters are listed in Table 5-5.

TABLE 5-5 System pool size variables and performance counters

Kernel Variable Performance Counter Description

MmSizeOfNonPagedPoolInBytes Memory: Pool non-
paged bytes

This is the size of the initial non-paged pool. It 
can be reduced or enlarged automatically by 
the system if memory demands dictate. The 
kernel variable will not show these changes, 
but the performance counter will.

MmMaximumNonPagedPoolInBytes 
(Windows 8.x and Server 2012/R2)

Not available This is the maximum size of a non-paged 
pool.

MiVisibleState->MaximumNonPagePool 
InBytes (Windows 10 and Server 2016) 

Not available This is the maximum size of a non-paged 
pool.

Not available Memory: Pool paged 
bytes

This is the current total virtual size of paged 
pool.

WorkingSetSize (number of pages) in the 
MmPagedPoolWs struct (type MMSUPPORT) 
(Windows 8.x and Server 2012/R2)

Memory: Pool paged 
resident bytes

This is the current physical (resident) size of 
paged pool.

MmSizeOfPagedPoolInBytes (Windows 8.x 
and Server 2012/R2)

Not available This is the maximum (virtual) size of a paged 
pool.

MiState.Vs.SizeOfPagedPoolIn Bytes 
(Windows 10 and Server 2016)

Not available This is the maximum (virtual) size of a paged 
pool.

EXPERIMENT: Determining the maximum pool sizes
You can obtain the pool maximums by using either Process Explorer or live kernel debugging 
(explained in Chapter 1). To view pool maximums with Process Explorer, select the View menu, 
choose System Information, and then click the Memory tab. The pool limits are displayed in 
the Kernel Memory section, as shown here:
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Note For Process Explorer to retrieve this information, it must have access to 
the symbols for the kernel running on your system. For a description of how to 
configure Process Explorer to use symbols, see the experiment “Viewing pro-
cess details with Process Explorer” in Chapter 1.

To view the same information by using the kernel debugger, you can use the !vm command as 
was shown previously in this chapter.

Monitoring pool usage
The Memory performance counter object has separate counters for the non-paged pool and paged 
pool (both virtual and physical). In addition, the Poolmon utility (in the WDK Tools directory) allows you 
to monitor the detailed usage of non-paged and paged pool. When you run Poolmon, you should see 
a display like the one shown in Figure 5-7.

FIGURE 5-7 Poolmon output.

Any highlighted lines you might see represent changes to the display. (You can disable the high-
lighting feature by typing / while running Poolmon; type / again to re-enable highlighting.) Type ? 
while Poolmon is running to bring up its help screen. You can configure which pools you want to moni-
tor (paged, non-paged, or both) and the sort order. For example, by pressing the P key until only non-
paged allocations are shown, and then the D key to sort by the Diff (differences) column, you can find 
out what kind of structures are most numerous in non-paged pool. Also, the command-line options are 
shown, which allow you to monitor specific tags (or every tag but one tag). For example, the command 
poolmon –iCM will monitor only CM tags (allocations from the configuration manager, which manages 
the registry). The columns have the meanings shown in Table 5-6.
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TABLE 5-6 Poolmon columns

Column Explanation

Tag This is a four-byte tag given to the pool allocation.

Type This is the pool type (paged or non-paged).

Allocs This is a count of all allocations. The number in parentheses shows the difference in the Allocs column 
since the last update.

Frees This is the count of all frees. The number in parentheses shows the difference in the Frees column since 
the last update.

Diff This is the count of allocations minus frees.

Bytes This is the total bytes consumed by this tag. The number in parentheses shows the difference in the Bytes 
column since the last update.

Per Alloc This is the size in bytes of a single instance of this tag.

For a description of the meaning of the pool tags used by Windows, see the Pooltag.txt file in the 
Triage subdirectory where the Debugging tools for Windows are located. Because third-party device-
driver pool tags are not listed in this file, you can use the –c switch on the 32-bit version of Poolmon 
that comes with the WDK to generate a local pool tag file (Localtag.txt). This file will contain pool tags 
used by drivers found on your system, including third-party drivers. (Note that if a device-driver binary 
has been deleted after it was loaded, its pool tags will not be recognized.)

Alternatively, you can search the device drivers on your system for a pool tag by using the Strings.exe 
tool from Sysinternals. For example, the following command displays drivers that contain the string "abcd":

strings %SYSTEMROOT%\system32\drivers\*.sys | findstr /i "abcd"

Device drivers do not necessarily have to be located in %SystemRoot%\System32\Drivers. They can 
be in any folder. To list the full path of all loaded drivers, follow these steps:

1. Open the Start menu and type Msinfo32 (System Information should appear).

2. Run System Information. 

3. Select Software Environment.

4. Choose System Drivers. If a device driver has been loaded and then deleted from the system, 
it will not be listed here.

An alternative way to view pool usage by device driver is to enable the pool-tracking feature of Driver 
Verifier, explained in Chapter 6. While this makes the mapping from pool tag to device driver unneces-
sary, it does require a reboot (to enable Driver Verifier on the desired drivers). After rebooting with pool 
tracking enabled, you can either run the graphical Driver Verifier Manager (%SystemRoot%\System32\
Verifier.exe) or use the Verifier /Log command to send the pool-usage information to a file.

Finally, you can view pool usage with the kernel debugger !poolused command. The !poolused 2 
command shows non-paged pool usage sorted by pool tag using the most amount of pool. The 
!poolused 4 command lists paged-pool usage, again sorted by pool tag using the most amount of 
pool. The following example shows the partial output from these two commands:
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lkd> !poolused 2 
........ 
Sorting by NonPaged Pool Consumed 
 
               NonPaged                  Paged 
Tag     Allocs         Used     Allocs         Used 
 
 File    626381    260524032          0           0        File objects 
 Ntfx    733204    227105872          0           0        General Allocation , Binary: 
                                                           ntfs.sys 
MmCa    513713    148086336           0           0        Mm control areas for mapped 
                                                           files , Binary: nt!mm 
FMsl    732490    140638080           0           0        STREAM_LIST_CTRL structure , 
                                                           Binary: fltmgr.sys 
 CcSc    104420     56804480          0           0        Cache Manager Shared Cache Map 
                                                           , Binary: nt!cc 
SQSF    283749     45409984           0           0        UNKNOWN pooltag 'SQSF', please 
                                                           update pooltag.txt 
 FMfz    382318     42819616          0           0        FILE_LIST_CTRL structure , 
                                                           Binary: fltmgr.sys 
 FMsc     36130     32950560          0           0        SECTION_CONTEXT structure , 
                                                           Binary: fltmgr.sys 
 EtwB       517     31297568        107    105119744       Etw Buffer , Binary: nt!etw 
 DFmF    382318     30585440     382318     91756320       UNKNOWN pooltag 'DFmF', please 
                                                           update pooltag.txt 
 DFmE    382318     18351264          0           0        UNKNOWN pooltag 'DFmE', please 
                                                           update pooltag.txt 
 FSfc    382318     18351264          0           0        Unrecoginzed File System Run 
                                                           Time allocations (update 
                                                           pooltag.w) , Binary: nt!fsrtl 
 smNp      4295     17592320          0           0        ReadyBoost store node pool 
                                                           allocations , Binary: nt!store 
                                                           or rdyboost.sys 
 Thre      5780     12837376          0           0        Thread objects , Binary: nt!ps 
 Pool         8     12834368          0           0        Pool tables, etc. 

EXPERIMENT: Troubleshooting a pool leak
In this experiment, you will fix a real paged pool leak on your system so that you can use the 
techniques described in the previous section to track down the leak. The leak will be generated 
by the Notmyfault tool from Sysinternals. Follow these steps:

1. Run Notmyfault.exe for your OS bitness (for example, the 64 bit on a 64-bit system).

2. Notmyfault.exe loads the Myfault.sys device driver and presents a Not My Fault dialog 
box with the Crash tab selected. Click the Leak tab. It should look something like this:



330 CHAPTER 5 Memory management

3. Ensure that the Leak/Second setting is set to 1000 KB.

4. Click the Leak Paged button. This causes Notmyfault to begin sending requests to the 
Myfault device driver to allocate paged pool. Notmyfault will continue sending requests 
until you click the Stop Paged button. Paged pool is not normally released even when 
you close a program that has caused it to occur (by interacting with a buggy device 
driver). The pool is permanently leaked until you reboot the system. However, to make 
testing easier, the Myfault device driver detects that the process was closed and frees its 
allocations.

5. While the pool is leaking, open Task Manager, click the Performance tab, and select 
the Memory label. Notice the Paged Pool value climbing. You can also check this with 
Process Explorer’s System Information display (select the View menu, choose System 
Information, and click the Memory tab).

6. To determine which pool tag is leaking, run Poolmon and press the B key to sort by the 
number of bytes. 

7. Press P twice so that Poolmon shows only paged pool. Notice the Leak pool tag climb-
ing to the top of the list. (Poolmon shows changes to pool allocations by highlighting 
the lines that change.)

8. Click the Stop Paged button so that you don’t exhaust paged pool on your system.

9. Using the technique described in the previous section, run Strings (from Sysinternals) to 
look for driver binaries that contain the Leak pool tag. This should display a match on 
the file Myfault.sys, thus confirming it as the driver using the Leak pool tag.

Strings %SystemRoot%\system32\drivers\*.sys | findstr Leak
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Look-aside lists
Windows provides a fast memory-allocation mechanism called look-aside lists. The basic difference 
between pools and look-aside lists is that while general pool allocations can vary in size, a look-aside 
list contains only fixed-sized blocks. Although the general pools are more flexible in terms of what they 
can supply, look-aside lists are faster because they don’t use any spinlocks.

Executive components and device drivers can create look-aside lists that match the size of frequent-
ly allocated data structures by using the ExInitializeNPagedLookasideList (for non-paged alloca-
tions) and ExInitializePagedLookasideList (for paged allocation) functions, as documented in the 
WDK. To minimize the overhead of multiprocessor synchronization, several executive subsystems such 
as the I/O manager, cache manager, and object manager create separate look-aside lists for each pro-
cessor for their frequently accessed data structures. The executive also creates a general per-processor 
paged and non-paged look-aside list for small allocations (256 bytes or less).

If a look-aside list is empty (as it is when it’s first created), the system must allocate from the paged 
or non-paged pool. But if it contains a freed block, the allocation can be satisfied very quickly. (The 
list grows as blocks are returned to it.) The pool-allocation routines automatically tune the number of 
freed buffers that look-aside lists store according to how often a device driver or executive subsystem 
allocates from the list. The more frequent the allocations, the more blocks are stored on a list. Look-
aside lists are automatically reduced in size if they aren’t being allocated from. (This check happens 
once per second when the balance set manager system thread wakes up and calls the ExAdjustLook-
asideDepth function.)

EXPERIMENT: Viewing the system look-aside lists
You can display the contents and sizes of the various system look-aside lists with the kernel  
debugger !lookaside command. The following excerpt is from the output of this command:

lkd> !lookaside 
 
Lookaside "nt!CcTwilightLookasideList" @ 0xfffff800c6f54300  Tag(hex): 0x6b576343 "CcWk" 
    Type           =       0200  NonPagedPoolNx 
    Current Depth  =          0  Max Depth  =          4 
    Size           =        128  Max Alloc  =        512 
    AllocateMisses =     728323  FreeMisses =     728271 
    TotalAllocates =    1030842  TotalFrees =    1030766 
    Hit Rate       =         29% Hit Rate   =         29% 
 
Lookaside "nt!IopSmallIrpLookasideList" @ 0xfffff800c6f54500  Tag(hex): 0x73707249 "Irps" 
    Type           =       0200  NonPagedPoolNx 
    Current Depth  =          0  Max Depth  =          4 
    Size           =        280  Max Alloc  =       1120 
    AllocateMisses =      44683  FreeMisses =      43576 
    TotalAllocates =     232027  TotalFrees =     230903 
    Hit Rate       =         80% Hit Rate   =         81% 
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Lookaside "nt!IopLargeIrpLookasideList" @ 0xfffff800c6f54600  Tag(hex): 0x6c707249 "Irpl" 
    Type           =       0200  NonPagedPoolNx 
    Current Depth  =          0  Max Depth  =          4 
    Size           =       1216  Max Alloc  =       4864 
    AllocateMisses =     143708  FreeMisses =     142551 
    TotalAllocates =     317297  TotalFrees =     316131 
    Hit Rate       =         54% Hit Rate   =         54% 
... 
 
Total NonPaged currently allocated for above lists =        0 
Total NonPaged potential for above lists           =    13232 
Total Paged currently allocated for above lists    =        0 
Total Paged potential for above lists              =     4176

Heap manager

Most applications allocate smaller blocks than the 64-KB minimum allocation granularity possible 
using page-granularity functions such as VirtualAlloc. Allocating such a large area for relatively 
small allocations is not optimal from a memory usage and performance standpoint. To address this, 
Windows provides a component called the heap manager, which manages allocations inside larger 
memory areas reserved using the page-granularity memory-allocation functions. The allocation 
granularity in the heap manager is relatively small: 8 bytes on 32-bit systems, and 16 bytes on 64-bit 
systems. The heap manager has been designed to optimize memory usage and performance in the 
case of these smaller allocations.

The heap manager exists in two places: Ntdll.dll and Ntoskrnl.exe. The subsystem APIs (such as 
the Windows heap APIs) call the functions in Ntdll.dll, and various executive components and device 
drivers call the functions in Ntoskrnl.exe. Its native interfaces (prefixed with Rtl) are available only for 
use in internal Windows components or kernel-mode device drivers. The documented Windows API in-
terfaces to the heap (prefixed with Heap) are forwarders to the native functions in Ntdll.dll. In addition, 
legacy APIs (prefixed with either Local or Global) are provided to support older Windows applica-
tions. These also internally call the heap manager, using some of its specialized interfaces to support 
legacy behavior. The most common Windows heap functions are:

 ■ HeapCreate or HeapDestroy These create or delete, respectively, a heap. The initial reserved 
and committed size can be specified at creation.

 ■ HeapAlloc This allocates a heap block. It is forwarded to RtlAllocateHeap in Ntdll.dll.

 ■ HeapFree This frees a block previously allocated with HeapAlloc.

 ■ HeapReAlloc This changes the size of an existing allocation, growing or shrinking an existing 
block. It is forwarded to RtlReAllocateHeap in Ntdll.dll.

 ■ HeapLock and HeapUnlock These control mutual exclusion to heap operations.

 ■ HeapWalk This enumerates the entries and regions in a heap.
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Process heaps
Each process has at least one heap: the default process heap. The default heap is created at process 
startup and is never deleted during the process’s lifetime. It defaults to 1 MB in size, but you can make 
it bigger by specifying a starting size in the image file by using the /HEAP linker flag. This size is just the 
initial reserve, however. It will expand automatically as needed. You can also specify the initial commit-
ted size in the image file.

The default heap can be explicitly used by a program or implicitly used by some Windows internal 
functions. An application can query the default process heap by making a call to the Windows GetPro-
cessHeap function. Processes can also create additional private heaps with the HeapCreate function. 
When a process no longer needs a private heap, it can recover the virtual address space by calling 
HeapDestroy. An array with all heaps is maintained in each process, and a thread can query them with 
the Windows GetProcessHeaps function.

A Universal Windows Platform (UWP) app process includes at least three heaps:

 ■ The default process heap just described. 

 ■ A shared heap used to pass large arguments to the process’ session Csrss.exe instance.  
This is created by the CsrClientConnectToServer Ntdll.dll function, which executes early in  
the process initialization done by Ntdll.dll. The heap handle is available in the global variable 
CsrPortHeap (in Ntdll.dll). 

 ■ A heap created by the Microsoft C runtime library. Its handle is stored in the global variable 
_crtheap (in the msvcrt module). This heap is the one used internally by the C/C++ memory-
allocation functions such as malloc, free, operator new/delete, and so on.

A heap can manage allocations either in large memory regions reserved from the memory manager 
via VirtualAlloc or from memory-mapped file objects mapped in the process address space. The 
latter approach is rarely used in practice (and is not exposed by the Windows API), but it’s suitable for 
scenarios where the content of the blocks needs to be shared between two processes or between a 
kernel-mode and a user-mode component. The Win32 GUI subsystem driver (Win32k.sys) uses such a 
heap for sharing GDI and USER objects with user mode. If a heap is built on top of a memory-mapped 
file region, certain constraints apply with respect to the component that can call heap functions:

 ■ The internal heap structures use pointers, and therefore do not allow remapping to different 
addresses in other processes. 

 ■ The synchronization across multiple processes or between a kernel component and a user pro-
cess is not supported by the heap functions. 

 ■ In the case of a shared heap between user mode and kernel mode, the user-mode mapping 
should be read-only to prevent user-mode code from corrupting the heap’s internal structures, 
which would result in a system crash. The kernel-mode driver is also responsible for not putting 
any sensitive data in a shared heap to avoid leaking it to user mode.
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Heap types
Until Windows 10 and Server 2016, there was just one heap type, which we’ll call the NT heap. The NT 
heap is augmented by an optional front-end layer, which if used, consists of the low-fragmentation 
heap (LFH). 

Windows 10 introduced a new heap type called segment heap. The two heap types include common 
elements but are structured and implemented differently. By default, the segment heap is used by all 
UWP apps and some system processes, while the NT heap is used by all other processes. This can be 
changed in the registry as described in the section “The segment heap” later in this chapter.

The NT heap
As shown in Figure 5-8, the NT heap in user mode is structured in two layers: a front-end layer and 
the heap back end (sometimes called the heap core). The back end handles the basic functionality and 
includes the management of blocks inside segments, the management of the segments, policies for 
extending the heap, committing and decommitting memory, and management of large blocks.

FIGURE 5-8 NT heap layers in user mode.

For user-mode heaps only, a front-end heap layer can exist on top of the core functionality. 
Windows supports one optional front end layer, the LFH, described in the upcoming section  
“The low-fragmentation heap.”

Heap synchronization
The heap manager supports concurrent access from multiple threads by default. However, if a process 
is single threaded or uses an external mechanism for synchronization, it can tell the heap manager 
to avoid the overhead of synchronization by specifying the HEAP_NO_SERIALIZE flag either at heap 
creation or on a per-allocation basis. If heap synchronization is enabled, there is one lock per heap that 
protects all internal heap structures.
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A process can also lock the entire heap and prevent other threads from performing heap operations 
for operations that would require consistent states across multiple heap calls. For instance, enumerat-
ing the heap blocks in a heap with the Windows function HeapWalk requires locking the heap if mul-
tiple threads can perform heap operations simultaneously. Locking and unlocking a heap can be done 
with the HeapLock and HeapUnlock functions, respectively.

The low-fragmentation heap
Many applications running in Windows have relatively small heap memory usage—usually less than 1 
MB. For this class of applications, the heap manager’s best-fit policy helps keep a low memory footprint 
for each process. However, this strategy does not scale for large processes and multiprocessor ma-
chines. In these cases, memory available for heap usage might be reduced due to heap fragmentation. 
Performance can suffer in scenarios where only certain sizes are often used concurrently from different 
threads scheduled to run on different processors. This happens because several processors need to 
modify the same memory location (for example, the head of the look-aside list for that particular size) 
at the same time, thus causing significant contention for the corresponding cache line.

The LFH avoids fragmentation by managing allocated blocks in predetermined different block-size 
ranges called buckets. When a process allocates memory from the heap, the LFH chooses the bucket 
that maps to the smallest block large enough to hold the required size. (The smallest block is 8 bytes.) 
The first bucket is used for allocations between 1 and 8 bytes, the second for allocations between 9 and 
16 bytes, and so on, until the 32nd bucket, which is used for allocations between 249 and 256 bytes, fol-
lowed by the 33rd bucket, which is used for allocations between 257 and 272 bytes, and so on. Finally, 
the 128th bucket, which is the last, is used for allocations between 15,873 and 16,384 bytes. (This is 
known as a binary buddy system.) If the allocation is larger than 16,384 bytes, the LFH simply forwards it 
to the underlying heap back end. Table 5-7 summarizes the different buckets, their granularity, and the 
range of sizes they map to.

TABLE 5-7 LFH buckets

Buckets Granularity Range

1–32 8 1–256

33–48 16 257–512

49–64 32 513–1,024

65–80 64 1,025–2,048

81–96 128 2,049–4,096

97–112 256 4,097–8,192

113–128 512 8,193–16,384

The LFH addresses these issues by using the core heap manager and look-aside lists. The Windows 
heap manager implements an automatic tuning algorithm that can enable the LFH by default under 
certain conditions, such as lock contention or the presence of popular size allocations that have shown 
better performance with the LFH enabled. For large heaps, a significant percentage of allocations is  
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frequently grouped in a relatively small number of buckets of certain sizes. The allocation strategy used 
by LFH is to optimize the usage for these patterns by efficiently handling same-size blocks.

To address scalability, the LFH expands the frequently accessed internal structures to a number of 
slots that is two times larger than the current number of processors on the machine. The assignment 
of threads to these slots is done by an LFH component called the affinity manager. Initially, the LFH 
starts using the first slot for heap allocations; however, if a contention is detected when accessing some 
internal data, the LFH switches the current thread to use a different slot. Further contentions will spread 
threads on more slots. These slots are controlled for each size bucket to improve locality and minimize 
the overall memory consumption.

Even if the LFH is enabled as a front-end heap, the less frequent allocation sizes may continue to use 
the core heap functions to allocate memory, while the most popular allocation classes will be performed 
from the LFH. Once the LFH is enabled for a specific heap, it cannot be disabled. The HeapSetInfor-
mation API with the HeapCompatibilityInformation class that was able to remove the LFH layer in 
Windows 7 and earlier versions of Windows is now ignored.

The segment heap
Figure 5-9 shows the architecture of the segment heap, introduced in Windows 10.

FIGURE 5-9 Segment heap.

The actual layer that manages an allocation depends on the allocation size as follows:

 ■ For small sizes (less than or equal to 16,368 bytes), the LFH allocator is used, but only if the size is 
determined to be a common one. This is a similar logic to the LFH front layer of the NT heap. If 
the LFH has not kicked in yet, the variable size (VS) allocator will be used instead.
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 ■ For sizes less than or equal to 128 KB (and not serviced by the LFH), the VS allocator is used. Both 
VS and LFH allocators use the back end to create the required heap sub-segments as necessary.

 ■ Allocations larger than 128 KB and less than or equal to 508 KB are serviced directly by the heap 
back end.

 ■ Allocations larger than 508 KB are serviced by calling the memory manager directly (Virtual-
Alloc) since these are so large that using the default 64 KB allocation granularity (and rounding 
to the nearest page size) is deemed good enough.

Here is a quick comparison of the two heap implementations:

 ■ In some scenarios, the segment heap may be somewhat slower than the NT heap. However, it’s 
likely that future Windows versions would make it on par with the NT heap.

 ■ The segment heap has a lower memory footprint for its metadata, making it better suited for 
low-memory devices such as phones.

 ■ The segment heap’s metadata is separated from the actual data, while the NT heap’s metadata 
is interspersed with the data itself. This makes the segment heap more secure, as it’s more dif-
ficult to get to the metadata of an allocation given just a block address.

 ■ The segment heap can be used only for a growable heap. It cannot be used with a user-supplied 
memory mapped file. If such a segment heap creation is attempted, an NT heap is created 
instead.

 ■ Both heaps support LFH-type allocations, but their internal implementation is completely dif-
ferent. The segment heap has a more efficient implementation in terms of memory consump-
tion and performance.

As mentioned, UWP apps use segment heaps by default. This is mainly because of their lower mem-
ory footprint, which is suitable for low-memory devices. It’s also used with certain system processes 
based on executable name: csrss.exe, lsass.exe, runtimebroker.exe, services.exe, smss.exe, and svchost.
exe.

The segment heap is not the default heap for desktop apps because there are some compatibility 
concerns that may affect existing applications. It’s likely that in future versions, however, it will become 
the default. To enable or disable the segment heap for a specific executable, you can set an Image File 
Execution Options value named FrontEndHeapDebugOptions (DWORD):

 ■ Bit 2 (4) to disable segment heap

 ■ Bit 3 (8) to enable segment heap

You can also globally enable or disable the segment heap by adding a value named Enabled 
(DWORD) to the HKLM\ SYSTEM\CurrentControlSet\Control\Session Manager\Segment Heap registry 
key. A zero value disables the segment heap and a non-zero value enables it.
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EXPERIMENT: Viewing basic heap information
In this experiment, we’ll examine some heaps of a UWP process.

1. Using Windows 10, run the Windows calculator. (Click the Start button and type  
Calculator to find it.)

2. The calculator in Windows 10 has been turned into a UWP app (Calculator.Exe). Run 
WinDbg and attach to the calculator process.

3. Once attached, WinDbg breaks into the process. Issue the !heap command to get a 
quick summary of heaps in the process:

0:033> !heap 
        Heap Address      NT/Segment Heap 
 
         2531eb90000         Segment Heap 
         2531e980000              NT Heap 
         2531eb10000         Segment Heap 
         25320a40000         Segment Heap 
         253215a0000         Segment Heap 
         253214f0000         Segment Heap 
         2531eb70000         Segment Heap 
         25326920000         Segment Heap 
         253215d0000              NT Heap

4. Notice the various heaps with their handle and type (segment or NT). The first heap is 
the default process heap. Because it’s growable and not using any preexisting memory 
block, it’s created as a segment heap. The second heap is used with a user-defined 
memory block (described earlier in the “Process heaps” section). Because this feature is 
currently unsupported by the segment heap, it’s created as an NT heap.

5. An NT heap is managed by the NtDll!_HEAP structure. Let’s view this structure for the 
second heap:

0:033> dt ntdll!_heap 2531e980000 
   +0x000 Segment          : _HEAP_SEGMENT 
   +0x000 Entry            : _HEAP_ENTRY 
   +0x010 SegmentSignature : 0xffeeffee 
   +0x014 SegmentFlags     : 1 
   +0x018 SegmentListEntry : _LIST_ENTRY [ 0x00000253'1e980120 - 
0x00000253'1e980120 ] 
   +0x028 Heap             : 0x00000253'1e980000 _HEAP 
   +0x030 BaseAddress      : 0x00000253'1e980000 Void 
   +0x038 NumberOfPages    : 0x10 
   +0x040 FirstEntry       : 0x00000253'1e980720 _HEAP_ENTRY 
   +0x048 LastValidEntry   : 0x00000253'1e990000 _HEAP_ENTRY 
   +0x050 NumberOfUnCommittedPages : 0xf 
   +0x054 NumberOfUnCommittedRanges : 1 
   +0x058 SegmentAllocatorBackTraceIndex : 0 
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   +0x05a Reserved         : 0 
   +0x060 UCRSegmentList   : _LIST_ENTRY [ 0x00000253'1e980fe0 - 
0x00000253'1e980fe0 ] 
   +0x070 Flags            : 0x8000 
   +0x074 ForceFlags       : 0 
   +0x078 CompatibilityFlags : 0 
   +0x07c EncodeFlagMask   : 0x100000 
   +0x080 Encoding         : _HEAP_ENTRY 
   +0x090 Interceptor      : 0 
   +0x094 VirtualMemoryThreshold : 0xff00 
   +0x098 Signature        : 0xeeffeeff 
   +0x0a0 SegmentReserve   : 0x100000 
   +0x0a8 SegmentCommit    : 0x2000 
   +0x0b0 DeCommitFreeBlockThreshold : 0x100 
   +0x0b8 DeCommitTotalFreeThreshold : 0x1000 
   +0x0c0 TotalFreeSize    : 0x8a 
   +0x0c8 MaximumAllocationSize : 0x00007fff'fffdefff 
   +0x0d0 ProcessHeapsListIndex : 2 
   ... 
   +0x178 FrontEndHeap     : (null) 
   +0x180 FrontHeapLockCount : 0 
   +0x182 FrontEndHeapType : 0 '' 
   +0x183 RequestedFrontEndHeapType : 0 '' 
   +0x188 FrontEndHeapUsageData : (null) 
   +0x190 FrontEndHeapMaximumIndex : 0 
   +0x192 FrontEndHeapStatusBitmap : [129]  "" 
   +0x218 Counters         : _HEAP_COUNTERS 
   +0x290 TuningParameters : _HEAP_TUNING_PARAMETERS

6. Notice the FrontEndHeap field. This field indicates whether a front-end layer exists. In 
the preceding output, it’s null, meaning there is no front-end layer. A non-null value 
indicates an LFH front-end layer (since it’s the only one defined).

7. A segment heap is defined with the NtDll!_SEGMENT_HEAP structure. Here’s the default 
process heap:

0:033> dt ntdll!_segment_heap 2531eb90000 
   +0x000 TotalReservedPages : 0x815 
   +0x008 TotalCommittedPages : 0x6ac 
   +0x010 Signature        : 0xddeeddee 
   +0x014 GlobalFlags      : 0 
   +0x018 FreeCommittedPages : 0 
   +0x020 Interceptor      : 0 
   +0x024 ProcessHeapListIndex : 1 
   +0x026 GlobalLockCount  : 0 
   +0x028 GlobalLockOwner  : 0 
   +0x030 LargeMetadataLock : _RTL_SRWLOCK 
   +0x038 LargeAllocMetadata : _RTL_RB_TREE 
   +0x048 LargeReservedPages : 0 
   +0x050 LargeCommittedPages : 0 
   +0x058 SegmentAllocatorLock : _RTL_SRWLOCK 
   +0x060 SegmentListHead  : _LIST_ENTRY [ 0x00000253'1ec00000 - 
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0x00000253'28a00000 ] 
   +0x070 SegmentCount     : 8 
   +0x078 FreePageRanges   : _RTL_RB_TREE 
   +0x088 StackTraceInitVar : _RTL_RUN_ONCE 
   +0x090 ContextExtendLock : _RTL_SRWLOCK 
   +0x098 AllocatedBase    : 0x00000253'1eb93200  "" 
   +0x0a0 UncommittedBase  : 0x00000253'1eb94000  "--- memory read error at 
address 0x00000253'1eb94000 ---" 
   +0x0a8 ReservedLimit    : 0x00000253'1eba5000  "--- memory read error at 
address 0x00000253'1eba5000 ---" 
   +0x0b0 VsContext        : _HEAP_VS_CONTEXT 
   +0x120 LfhContext       : _HEAP_LFH_CONTEXT

8. Notice the Signature field. It’s used to distinguish between the two types of heaps. 

9. Notice the SegmentSignature field of the _HEAP structure. It is in the same offset 
(0x10). This is how functions such as RtlAllocateHeap know which implementation to 
turn to based on the heap handle (address) alone. 

10. Notice the last two fields in the _SEGMENT_HEAP. These contain the VS and LFH allocator 
information.

11. To get more information on each heap, issue the !heap -s command:

0:033> !heap -s 
 
                                      Process    Total      Total 
                              Global     Heap Reserved  Committed 
    Heap Address  Signature    Flags     List    Bytes      Bytes 
                                        Index      (K)        (K) 
 
     2531eb90000   ddeeddee        0        1     8276       6832 
     2531eb10000   ddeeddee        0        3     1108        868 
     25320a40000   ddeeddee        0        4     1108         16 
     253215a0000   ddeeddee        0        5     1108         20 
     253214f0000   ddeeddee        0        6     3156        816 
     2531eb70000   ddeeddee        0        7     1108         24 
     25326920000   ddeeddee        0        8     1108         32 
 
****************************************************************************
************* 
                          NT HEAP STATS BELOW 
****************************************************************************
************* 
LFH Key                   : 0xd7b666e8f56a4b98 
Termination on corruption : ENABLED 
Affinity manager status: 
   - Virtual affinity limit 8 
   - Current entries in use 0 
   - Statistics:  Swaps=0, Resets=0, Allocs=0 
 
          Heap     Flags   Reserv  Commit  Virt   Free  List   UCR  Virt  
Lock  Fast 
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                            (k)     (k)    (k)     (k) length      blocks 
cont. heap 
---------------------------------------------------------------------------
---------- 
000002531e980000 00008000      64      4     64      2     1     1    0      
0 
00000253215d0000 00000001      16     16     16     10     1     1    0    
N/A 
---------------------------------------------------------------------------
----------

12. Notice the first part of the output. It shows extended information on segment heaps (if 
any). The second part shows extended information on NT heaps in the process.

The !heap debugger command provides a multitude of options for viewing, investigating, and 
searching heaps. See the “Debugger Tools for Windows” documentation for more information.

Heap security features
As the heap manager has evolved, it has taken an increased role in early detection of heap usage errors 
and in mitigating effects of potential heap-based exploits. These measures exist to lessen the security 
effect of potential vulnerabilities in applications. Both the NT-heap and the segment-heap implemen-
tations have multiple mechanisms that reduce the likelihood of memory exploitation.

The metadata used by the heaps for internal management is packed with a high degree of random-
ization to make it difficult for an attempted exploit to patch the internal structures to prevent crashes 
or conceal the attack attempt. These blocks are also subject to an integrity-check mechanism on the 
header to detect simple corruptions such as buffer overruns. Finally, the heap uses a small degree of 
randomization of the base address or handle. By using the HeapSetInformation API with the Heap-
EnableTerminationOnCorruption class, processes can opt in for an automatic termination in case of 
detected inconsistencies to avoid executing unknown code.

As an effect of block metadata randomization, using the debugger to simply dump a block header 
as an area of memory is not that useful. For example, the size of the block and whether it is busy are not 
easy to spot from a regular dump. The same applies to LFH blocks. They have a different type of meta-
data stored in the header, also partially randomized. To dump these details, the !heap –i command 
in the debugger does all the work to retrieve the metadata fields from a block, also flagging checksum 
or free-list inconsistencies if they exist. The command works for both LFH and regular heap blocks. The 
total size of the blocks, the user-requested size, the segment owning the block, and the header partial 
checksum are available in the output, as shown in the following sample. Because the randomization al-
gorithm uses the heap granularity, the !heap –i command should be used only in the proper context 
of the heap containing the block. In the example, the heap handle is 0x001a0000. If the current heap 
context were different, the decoding of the header would be incorrect. To set the proper context, the 
same !heap –i command with the heap handle as an argument must be executed first.
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0:004> !heap -i 000001f72a5e0000 
Heap context set to the heap 0x000001f72a5e0000 

0:004> !heap -i 000001f72a5eb180 
Detailed information for block entry 000001f72a5eb180 
Assumed heap       : 0x000001f72a5e0000 (Use !heap -i NewHeapHandle to change) 
Header content     : 0x2FB544DC 0x1000021F (decoded : 0x7F01007E 0x10000048) 
Owning segment     : 0x000001f72a5e0000 (offset 0) 
Block flags        : 0x1 (busy ) 
Total block size   : 0x7e units (0x7e0 bytes) 
Requested size     : 0x7d0 bytes (unused 0x10 bytes) 
Previous block size: 0x48 units (0x480 bytes) 
Block CRC          : OK - 0x7f 
Previous block     : 0x000001f72a5ead00 
Next block         : 0x000001f72a5eb960 

Segment heap-specific security features
The segment heap implementation uses many security mechanisms to make it harder to corrupt 
memory or to allow code injection by an attacker. Here are a few of them:

 ■ Fail fast on linked list node corruption The segment heap uses linked lists to track seg-
ments and sub-segments. As with the NT heap, checks are added in the list node insertion and 
removal to prevent arbitrary memory writes due to corrupted list nodes. If a corrupted node is 
detected, the process is terminated via a call to RtlFailFast.

 ■ Fail fast on red-black (RB) tree node corruption The segment heap uses RB trees to track 
free back-end and VS allocations. Node insertion and deletion functions validate the nodes 
involved or, if corrupted, invoke the fail-fast mechanism.

 ■ Function pointer decoding Some aspects of the segment heap allow for callbacks (in 
VsContext and LfhContext structures, part of the _SEGMENT_HEAP structure). An attacker can 
override these callbacks to point to his or her own code. However, the function pointers are en-
coded by using a XOR function with an internal random heap key and the context address, both 
of which cannot be guessed in advance.

 ■ Guard pages When LFH and VS sub-segments and large blocks are allocated, a guard page is 
added at the end. This helps to detect overflows and corruption of adjacent data. See the sec-
tion “Stacks” later in this chapter for more information on guard pages.

Heap debugging features
The heap manager includes several features to help detect bugs by using the following heap settings:

 ■ Enable tail checking The end of each block carries a signature that is checked when the 
block is released. If a buffer overrun destroys the signature entirely or partially, the heap will 
report this error.



 CHAPTER 5 Memory management 343

 ■ Enable free checking A free block is filled with a pattern that is checked at various points 
when the heap manager needs to access the block, such as at removal from the free list to sat-
isfy an allocate request. If the process continues to write to the block after freeing it, the heap 
manager will detect changes in the pattern and the error will be reported.

 ■ Parameter checking This function consists of extensive checking of the parameters passed 
to the heap functions.

 ■ Heap validation The entire heap is validated at each heap call.

 ■ Heap tagging and stack traces support This function supports the specification of tags for 
allocation and/or captures user-mode stack traces for the heap calls to help narrow the possible 
causes of a heap error.

The first three options are enabled by default if the loader detects that a process is started under 
the control of a debugger. (A debugger can override this behavior and turn off these features.) You can 
specify the heap debugging features for an executable image by setting various debugging flags in the 
image header using the Gflags tool. (See the next experiment and the section “Windows global flags” 
in Chapter 8 in Part 2.) Alternatively, you can enable heap debugging options using the !heap com-
mand in the standard Windows debuggers. (See the debugger help for more information.)

Enabling heap-debugging options affects all heaps in the process. Also, if any of the heap-debug-
ging options are enabled, the LFH will be disabled automatically and the core heap will be used (with 
the required debugging options enabled). The LFH is also not used for heaps that are not expandable 
(because of the extra overhead added to the existing heap structures) or for heaps that do not allow 
serialization.

Pageheap
Because the tail and free checking options described in the preceding sections might discover corrup-
tions that occurred well before the problem was detected, an additional heap debugging capability, 
called pageheap, is provided. Pageheap directs all or part of the heap calls to a different heap manager. 
You can enable pageheap using the Gflags tool (part of the Debugging Tools for Windows). When 
enabled, the heap manager places allocations at the end of pages and reserves the page that imme-
diately follows. Because reserved pages are not accessible, any buffer overruns that occur will cause 
an access violation, making it easier to detect the offending code. Optionally, pageheap allows for the 
placement of blocks at the beginning of the pages, with the preceding page reserved, to detect buffer 
underrun problems (a rare occurrence). Pageheap also can protect freed pages against any access to 
detect references to heap blocks after they have been freed.

Note that using the pageheap can cause you to run out of address space (in 32-bit processes) 
because of the significant overhead added for small allocations. Also, performance can suffer due to 
the increase of references to demand zero pages, loss of locality, and additional overhead caused by 
frequent calls to validate heap structures. A process can reduce the impact by specifying that the page-
heap be used only for blocks of certain sizes, address ranges, and/or originating DLLs.
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EXPERIMENT: Using pageheap
In this experiment, you’ll turn on pageheap for Notepad.exe and see its effects.

1. Run Notepad.exe.

2. Open Task Manager, click to the Details tab, and add the Commit Size column to the 
display. 

3. Notice the commit size of the notepad instance you just launched.

4. Run Gflags.exe, located in the folder where Debugging Tools for Windows is installed 
(requires elevation).

5. Click the Image File tab.

6. In the Image text box, type notepad.exe. Then press the Tab key. The various check 
boxes should be selected.

7. Select the Enable Page Heap check box. The dialog box should look like this:

8. Click Apply.

9. Run another instance of Notepad. (Don’t close the first one.)

10. In Task Manager, compare the commit size of both notepad instances. Notice that the 
second instance has a much larger commit size even though both are empty notepad 
processes. This is due to the extra allocations that pageheap provides. Here’s a screen-
shot from 32-bit Windows 10:
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11. To get a better sense of the extra memory allocated, use the VMMap Sysinternals tool. 
While the notepad processes are still running, open VMMap.exe and select the notepad 
instance that is using pageheap:

12. Open another instance of VMMap and select the other notepad instance. Place the 
windows side by side to see both:
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13. Notice that the difference in the commit size is clearly visible in the Private Data (yellow) 
part. 

14. Click the Private Data line in the middle display on both VMMap instances to see its 
parts in the bottom display (sorted by size in the screenshot):

15. The left screenshot (notepad with pageheap) clearly consumes more memory. Open 
one of the 1,024 KB chunks. You should see something like this:

16. You can clearly see the reserved pages between committed pages that help catch buffer 
overruns and underruns courtesy of pageheap. Uncheck the Enable Page Heap option 
in Gflags and click Apply so future instances of notepad will run without pageheap.

For more information on pageheap, see the “Debugging Tools for Windows” help file.
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Fault-tolerant heap
Microsoft has identified the corruption of heap metadata as one of the most common causes of ap-
plication failures. Windows includes a feature called the fault-tolerant heap (FTH) to mitigate these 
problems and to provide better problem-solving resources to application developers. The FTH is 
implemented in two primary components: 

 ■ The detection component (FTH server)

 ■ The mitigation component (FTH client)

The detection component is a DLL called Fthsvc.dll that is loaded by the Windows Security Center 
service (Wscsvc.dll), which in turn runs in one of the shared service processes under the local service 
account. It is notified of application crashes by the Windows Error Reporting (WER) service.

Suppose an application crashes in Ntdll.dll with an error status indicating either an access violation 
or a heap-corruption exception. If it is not already on the FTH service’s list of watched applications, 
the service creates a “ticket” for the application to hold the FTH data. If the application subsequently 
crashes more than four times in an hour, the FTH service configures the application to use the FTH cli-
ent in the future.

The FTH client is an application-compatibility shim. This mechanism has been used since Windows 
XP to allow applications that depend on a particular behavior of older Windows systems to run on later 
systems. In this case, the shim mechanism intercepts the calls to the heap routines and redirects them 
to its own code. The FTH code implements numerous mitigations that attempt to allow the application 
to survive despite various heap-related errors.

For example, to protect against small buffer overrun errors, the FTH adds 8 bytes of padding and 
an FTH reserved area to each allocation. To address a common scenario in which a block of heap is ac-
cessed after it is freed, HeapFree calls are implemented only after a delay. “Freed” blocks are put on a 
list, and freed only when the total size of the blocks on the list exceeds 4 MB. Attempts to free regions 
that are not actually part of the heap, or not part of the heap identified by the heap handle argument 
to HeapFree, are simply ignored. In addition, no blocks are actually freed once exit or RtlExitUser-
Process has been called.

The FTH server continues to monitor the failure rate of the application after the mitigations have 
been installed. If the failure rate does not improve, the mitigations are removed.

You can observe the activity of the fault-tolerant heap in the Event Viewer. Follow these steps:

1. Open a Run prompt and type eventvwr.msc.

2. In the left pane, choose Event Viewer, select Applications and Services Logs, choose  
Microsoft, select Windows, and click Fault-Tolerant-Heap. 

3. Click the Operational log. 

4. The FTH may be disabled completely in the registry. in the HKLM\Software\Microsoft\FTH key, 
set the Enabled value to 0. 
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That same key contains the various FTH settings, such as the delay mentioned earlier and an exclu-
sion list of executables (which includes by default system processes such as smss.exe, csrss.exe, wininit.
exe, services.exe, winlogon.exe and taskhost.exe). A rule list is also included (RuleList value), which 
lists the modules and exception type (and some flags) to watch for in order for FTH to kick in. By de-
fault, a single rule is listed, indicating heap problems in Ntdll.dll of type STATUS_ACCESS_VIOLATION 
(0xc0000005).

The FTH does not normally operate on services, and it is disabled on Windows server systems for 
performance reasons. A system administrator can manually apply the shim to an application or service 
executable by using the Application Compatibility Toolkit.

Virtual address space layouts

This section describes the components in the user and system address space, followed by the specific 
layouts on 32-bit (x86 and ARM) and 64-bit (x64) systems. This information will help you to understand 
the limits on process and system virtual memory on these platforms.

Three main types of data are mapped into the virtual address space in Windows: 

 ■ Per-process private code and data As explained in Chapter 1, each process has a private 
address space that cannot be accessed by other processes. That is, a virtual address is always 
evaluated in the context of the current process and cannot refer to an address defined by any 
other process. Threads within the process can therefore never access virtual addresses outside 
this private address space. Even shared memory is not an exception to this rule, because shared 
memory regions are mapped into each participating process, and so are accessed by each 
process using per-process addresses. Similarly, the cross-process memory functions (Read- 
ProcessMemory and WriteProcessMemory) operate by running kernel-mode code in the con-
text of the target process. The process virtual address space, called page tables, is described in 
the “Address translation” section. Each process has its own set of page tables. They are stored  
in kernel-mode-only accessible pages so that user-mode threads in a process cannot modify 
their own address space layout.

 ■ Session-wide code and data Session space contains information that is common to each 
session. (For a description of sessions, see Chapter 2.) A session consists of the processes and 
other system objects such as the window station, desktops, and windows that represent a single 
user’s logon session. Each session has a session-specific paged pool area used by the kernel-mode 
portion of the Windows subsystem (Win32k.sys) to allocate session-private GUI data structures. 
In addition, each session has its own copy of the Windows subsystem process (Csrss.exe) and 
logon process (Winlogon.exe). The Session Manager process (Smss.exe) is responsible for 
creating new sessions, which includes loading a session-private copy of Win32k.sys, creating 
the session-private object manager namespace (see Chapter 8 in Part 2 for more details on the 
object manager), and creating the session-specific instances of the Csrss.exe and Winlogon.exe 
processes. To virtualize sessions, all session-wide data structures are mapped into a region of 
system space called session space. When a process is created, this range of addresses is mapped 
to the pages associated with the session that the process belongs to.
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 ■ System-wide code and data System space contains global operating system code and data 
structures visible by kernel-mode code regardless of which process is currently executing. System 
space consists of the following components:

• System code This contains the OS image, HAL, and device drivers used to boot the system.

• Nonpaged pool This is the non-pageable system memory heap.

• Paged pool This is the pageable system memory heap.

• System cache This is virtual address space used to map files open in the system cache. 
(See Chapter 11, “Startup and shutdown,” in Part 2 for detailed information.)

• System page table entries (PTEs) This is the pool of system PTEs used to map system 
pages such as I/O space, kernel stacks, and memory descriptor lists. You can see how many 
system PTEs are available by using Performance Monitor to examine the value of the Memory: 
Free System Page Table Entries counter.

• System working set lists These are the working set list data structures that describe the 
three system working sets: system cache, paged pool, and system PTEs.

• System mapped views This is used to map Win32k.sys, the loadable kernel-mode part of 
the Windows subsystem, as well as kernel-mode graphics drivers it uses. (See Chapter 2 for 
more information on Win32k.sys.)

• Hyperspace This is a special region used to map the process working set list and other 
per-process data that doesn’t need to be accessible in arbitrary process context. Hyperspace 
is also used to temporarily map physical pages into the system space. One example of this is 
invalidating page table entries in page tables of processes other than the current one, such 
as when a page is removed from the standby list.

• Crash dump information This is reserved to record information about the state of a 
system crash.

• HAL usage This is system memory reserved for HAL-specific structures.

Now that we’ve described the basic components of the virtual address space in Windows, let’s  
examine the specific layout on the x86, ARM, and x64 platforms.

x86 address space layouts
By default, each user process on 32-bit versions of Windows has a 2 GB private address space. (The 
operating system takes the remaining 2 GB.) However, for x86, the system can be configured with the 
increaseuserva BCD boot option to permit user address spaces up to 3 GB. Two possible address 
space layouts are shown in Figure 5-10.

The ability of a 32-bit process to grow beyond 2 GB was added to accommodate the need for 32-bit 
applications to keep more data in memory than could be done with a 2 GB address space. Of course, 
64-bit systems provide a much larger address space.
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FIGURE 5-10 x86 virtual address space layouts (2 GB on the left, 3 GB on the right).

For a process to grow beyond 2 GB of address space, the image file must have the IMAGE_FILE_
LARGE_ADDRESS_AWARE flag set in the image header (in addition to the global increaseuserva set-
ting). Otherwise, Windows reserves the additional address space for that process so that the applica-
tion won’t see virtual addresses greater than 0x7FFFFFFF. Access to the additional virtual memory is 
opt-in because some applications assume they’ll be given at most 2 GB of the address space. Because 
the high bit of a pointer referencing an address below 2 GB is always zero (31 bits are needed to refer-
ence a 2 GB address space), these applications would use the high bit in their pointers as a flag for their 
own data—clearing it, of course, before referencing the data. If they ran with a 3 GB address space, 
they would inadvertently truncate pointers that have values greater than 2 GB, causing program errors, 
including possible data corruption. You set this flag by specifying the /LARGEADDRESSAWARE linker flag 
when building the executable. Alternatively, use the Property page in Visual Studio (choose Linker, 
select System, and click Enable Large Addresses). You can add the flag to an executable image even 
without building (no source code required) by using a tool such as Editbin.exe (part of the Windows 
SDK tools), assuming the file is not signed. This flag has no effect when running the application on a 
system with a 2 GB user address space.

Several system images are marked as large address space aware so that they can take advantage of 
systems running with large process address spaces. These include the following:

 ■ Lsass.exe The Local Security Authority Subsystem

 ■ Inetinfo.exe Internet Information Server

 ■ Chkdsk.exe The Check Disk utility
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 ■ Smss.exe The Session Manager

 ■ Dllhst3g.exe A special version of Dllhost.exe (for COM+ applications)

EXPERIMENT: Checking whether an application is large address aware
You can use the Dumpbin utility from the Visual Studio Tools (and older versions of the Windows 
SDK) to check other executables to see if they support large address spaces. Use the /headers 
flag to display the results. Here’s a sample output of Dumpbin on the Session Manager:

dumpbin /headers c:\windows\system32\smss.exe 
Microsoft (R) COFF/PE Dumper Version 14.00.24213.1 
Copyright (C) Microsoft Corporation.  All rights reserved. 
Dump of file c:\windows\system32\smss.exe 
PE signature found 
File Type: EXECUTABLE IMAGE 
FILE HEADER VALUES 
             14C machine (x86) 
               5 number of sections 
        57898F8A time date stamp Sat Jul 16 04:36:10 2016 
               0 file pointer to symbol table 
               0 number of symbols 
              E0 size of optional header 
             122 characteristics 
                   Executable 
                   Application can handle large (>2GB) addresses 
                   32 bit word machine

Finally, memory allocations using VirtualAlloc, VirtualAllocEx, and VirtualAllocExNuma start 
with low virtual addresses and grow higher by default. Unless a process allocates a lot of memory or 
has a very fragmented virtual address space, it will never get back very high virtual addresses. There-
fore, for testing purposes, you can force memory allocations to start from high addresses by using 
the MEM_TOP_DOWN flag to the VirtualAlloc* functions or by adding a DWORD registry value named 
AllocationPreference to the HKLM\SYSTEM\CurrentControlSet\Control\Session Manager\Memory 
Management key and setting its value to 0x100000.

The following output shows runs of the TestLimit utility (shown in previous experiments) leaking 
memory on a 32-bit Windows machine booted without the increaseuserva option:

Testlimit.exe -r 
 
Testlimit v5.24 - test Windows limits 
Copyright (C) 2012-2015 Mark Russinovich 
Sysinternals - www.sysinternals.com 
 
Process ID: 5500 
 
Reserving private bytes (MB)... 
Leaked 1978 MB of reserved memory (1940 MB total leaked). Lasterror: 8

http://www.sysinternals.com
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The process managed to reserve close to the 2 GB limit (but not quite). The process address space 
has the EXE code and various DLLs mapped, so naturally it’s not possible in a normal process to reserve 
the entire address space.

On that same system, you can switch to a 3 GB address space by running the following command 
from an administrative command window:

C:\WINDOWS\system32>bcdedit /set increaseuserva 3072

The operation completed successfully.

Notice that the command allows you to specify any number (in MB) between 2,048 (the 2 GB 
default) to 3,072 (the 3 GB maximum). After you restart the system so that the setting can take effect, 
running TestLimit again produces the following:

Testlimit.exe -r 
 
Testlimit v5.24 - test Windows limits 
Copyright (C) 2012-2015 Mark Russinovich 
Sysinternals - www.sysinternals.com 
 
Process ID: 2308 
 
Reserving private bytes (MB)... 
Leaked 2999 MB of reserved memory (2999 MB total leaked). Lasterror: 8

TestLimit was able to leak close to 3 GB, as expected. This is only possible because TestLimit was 
linked with /LARGEADDRESSAWARE. Had it not been, the results would have been essentially the same as 
on the system booted without increaseuserva.

Note To revert a system to the normal 2 GB address space per process, run the bcdedit /
deletevalue increaseuserva command.

x86 system address space layout
The 32-bit versions of Windows implement a dynamic system address space layout by using a virtual 
address allocator. (We’ll describe this functionality later in this section.) There are still a few specifically 
reserved areas, as shown in Figure 5-10. However, many kernel-mode structures use dynamic address 
space allocation. These structures are therefore not necessarily virtually contiguous with themselves. 
Each can easily exist in several disjointed pieces in various areas of system address space. The uses of 
system address space that are allocated in this way include the following:

 ■ Non-paged pool

 ■ Paged pool

 ■ Special pool

http://www.sysinternals.com
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 ■ System PTEs

 ■ System mapped views

 ■ File system cache

 ■ PFN database

 ■ Session space

x86 session space
For systems with multiple sessions (which is almost always the case, as session 0 is used by system 
processes and services, while session 1 is used for the first logged on user), the code and data unique to 
each session are mapped into system address space but shared by the processes in that session. Figure 
5-11 shows the general layout of session space. The sizes of the components of session space, just like 
the rest of kernel system address space, are dynamically configured and resized by the memory man-
ager on demand.

FIGURE 5-11 x86 session space layout (not proportional).

EXPERIMENT: Viewing sessions
You can display which processes are members of which sessions by examining the session ID. 
You can do this using Task Manager, Process Explorer, or the kernel debugger. Using the kernel 
debugger, you can list the active sessions with the !session command as follows:

lkd> !session 
Sessions on machine: 3 
Valid Sessions: 0 1 2 
Current Session 2

You can then set the active session using the !session -s command and display the address 
of the session data structures and the processes in that session with the !sprocess command:

lkd> !session -s 1 
Sessions on machine: 3 
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Implicit process is now d4921040 
Using session 1 
 
lkd> !sprocess 
Dumping Session 1 
 
_MM_SESSION_SPACE d9306000 
_MMSESSION        d9306c80 
PROCESS d4921040  SessionId: 1  Cid: 01d8    Peb: 00668000  ParentCid: 0138 
    DirBase: 179c5080  ObjectTable: 00000000  HandleCount:   0. 
    Image: smss.exe 
 
PROCESS d186c180  SessionId: 1  Cid: 01ec    Peb: 00401000  ParentCid: 01d8 
    DirBase: 179c5040  ObjectTable: d58d48c0  HandleCount: <Data Not Accessible> 
    Image: csrss.exe 
 
PROCESS d49acc40  SessionId: 1  Cid: 022c    Peb: 03119000  ParentCid: 01d8 
    DirBase: 179c50c0  ObjectTable: d232e5c0  HandleCount: <Data Not Accessible> 
    Image: winlogon.exe 
 
PROCESS dc0918c0  SessionId: 1  Cid: 0374    Peb: 003c4000  ParentCid: 022c 
    DirBase: 179c5160  ObjectTable: dc28f6c0  HandleCount: <Data Not Accessible> 
    Image: LogonUI.exe 
 
PROCESS dc08e900  SessionId: 1  Cid: 037c    Peb: 00d8b000  ParentCid: 022c 
    DirBase: 179c5180  ObjectTable: dc249640  HandleCount: <Data Not Accessible> 
    Image: dwm.exe

To view the details of the session, dump the MM_SESSION_SPACE structure using the dt com-
mand, as follows:

lkd> dt nt!_mm_session_space d9306000 
   +0x000 ReferenceCount   : 0n4 
   +0x004 u                : <unnamed-tag> 
   +0x008 SessionId        : 1 
   +0x00c ProcessReferenceToSession : 0n6 
   +0x010 ProcessList      : _LIST_ENTRY [ 0xd4921128 - 0xdc08e9e8 ] 
   +0x018 SessionPageDirectoryIndex : 0x1617f 
   +0x01c NonPagablePages  : 0x28 
   +0x020 CommittedPages   : 0x290 
   +0x024 PagedPoolStart   : 0xc0000000 Void 
   +0x028 PagedPoolEnd     : 0xffbfffff Void 
   +0x02c SessionObject    : 0xd49222b0 Void 
   +0x030 SessionObjectHandle : 0x800003ac Void 
   +0x034 SessionPoolAllocationFailures : [4] 0 
   +0x044 ImageTree        : _RTL_AVL_TREE 
   +0x048 LocaleId         : 0x409 
   +0x04c AttachCount      : 0 
   +0x050 AttachGate       : _KGATE 
   +0x060 WsListEntry      : _LIST_ENTRY [ 0xcdcde060 - 0xd6307060 ] 
   +0x080 Lookaside        : [24] _GENERAL_LOOKASIDE 
   +0xc80 Session          : _MMSESSION 
...
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EXPERIMENT: Viewing session space utilization
You can view session space memory utilization with the !vm 4 command in the kernel debugger. 
For example, the following output was taken from a 32-bit Windows client system with a remote 
desktop connection, resulting in three sessions—the default two sessions plus the remote session. 
(The addresses are for the MM_SESSION_SPACE objects shown earlier.)

lkd> !vm 4 
... 
Terminal Server Memory Usage By Session: 
 
Session ID 0 @ d6307000: 
Paged Pool Usage:     2012 Kb 
NonPaged Usage:        108 Kb 
Commit Usage:         2292 Kb 
 
Session ID 1 @ d9306000: 
Paged Pool Usage:     2288 Kb 
NonPaged Usage:        160 Kb 
Commit Usage:         2624 Kb 
 
Session ID 2 @ cdcde000: 
Paged Pool Usage:     7740 Kb 
NonPaged Usage:        208 Kb 
Commit Usage:         8144 Kb 
 
Session Summary 
Paged Pool Usage:    12040 Kb 
NonPaged Usage:        476 Kb 
Commit Usage:        13060 Kb

System page table entries
System page table entries (PTEs) are used to dynamically map system pages such as I/O space, kernel 
stacks, and the mapping for memory descriptor lists (MDLs, discussed to some extent in Chapter 6).  
System PTEs aren’t an infinite resource. On 32-bit Windows, the number of available system PTEs is such 
that the system can theoretically describe 2 GB of contiguous system virtual address space. On Windows 
10 64 bit and Server 2016, system PTEs can describe up to 16 TB of contiguous virtual address space.

EXPERIMENT: Viewing system PTE information
You can see how many system PTEs are available by examining the value of the Memory: Free 
System Page Table Entries counter in Performance Monitor or by using the !sysptes or !vm 
command in the debugger. You can also dump the _MI_SYSTEM_PTE_TYPE structure as part 
of the memory state (MiState) variable (or the MiSystemPteInfo global variable on Windows 
8.x/2012/R2). This will also show you how many PTE allocation failures occurred on the system.  
A high count indicates a problem and possibly a system PTE leak.
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kd> !sysptes 
System PTE Information 
  Total System Ptes 216560 
    starting PTE: c0400000 
  free blocks: 969   total free: 16334    largest free block: 264 
 
kd> ? MiState 
Evaluate expression: -2128443008 = 81228980 

 
kd> dt nt!_MI_SYSTEM_INFORMATION SystemPtes 
   +0x3040 SystemPtes : _MI_SYSTEM_PTE_STATE

kd> dt nt!_mi_system_pte_state SystemViewPteInfo 81228980+3040 
   +0x10c SystemViewPteInfo : _MI_SYSTEM_PTE_TYPE

kd> dt nt!_mi_system_pte_type 81228980+3040+10c 
   +0x000 Bitmap           : _RTL_BITMAP 
   +0x008 BasePte          : 0xc0400000 _MMPTE 
   +0x00c Flags            : 0xe 
   +0x010 VaType           : c ( MiVaDriverImages ) 
   +0x014 FailureCount     : 0x8122bae4  -> 0 
   +0x018 PteFailures      : 0 
   +0x01c SpinLock         : 0 
   +0x01c GlobalPushLock   : (null) 
   +0x020 Vm               : 0x8122c008 _MMSUPPORT_INSTANCE 
   +0x024 TotalSystemPtes  : 0x120 
   +0x028 Hint             : 0x2576 
   +0x02c LowestBitEverAllocated : 0xc80 
   +0x030 CachedPtes       : (null) 
   +0x034 TotalFreeSystemPtes : 0x73

If you are seeing lots of system PTE failures, you can enable system PTE tracking by creating a 
new DWORD value in the HKLM\SYSTEM\CurrentControlSet\Control\Session Manager\Memory 
Management key called TrackPtes and setting its value to 1. You can then use !sysptes 4 to 
show a list of allocators.

ARM address space layout
As shown in Figure 5-12, the ARM address space layout is nearly identical to the x86 address space. The 
memory manager treats ARM-based systems exactly as x86 systems in terms of pure memory manage-
ment. The differences are at the address translation layer, described in the section “Address translation” 
later in this chapter.
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FIGURE 5-12 ARM virtual address space layout.

64-bit address space layout
The theoretical 64-bit virtual address space is 16 exabytes (EB), or 18,446,744,073,709,551,616 bytes. 
Current processor limitations allow for 48 address lines only, limiting the possible address space to 
256 TB (2 to the 48th power). The address space is divided in half, where the lower 128 TB are available 
as private user processes and the upper 128 TB are system space. System space is divided into several 
different-sized regions (Windows 10 and Server 2016), as shown in Figure 5-13. Clearly, 64 bits provides 
a tremendous leap in terms of address space sizes as opposed to 32 bit. The actual starts of various 
kernel sections are not necessarily those shown, as ASLR is in effect in kernel space in the latest versions 
of Windows.
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FIGURE 5-13 x64 address space layout.

Note Windows 8 and Server 2012 are limited to 16 TB of address space. This is because of 
Windows implementation limitations, described in Chapter 10 of the sixth edition of Windows 
Internals Part 2. Of these, 8 TB is per process and the other 8 TB is used for system space.

Thirty-two–bit images that are large address space aware receive an extra benefit while running on 
64-bit Windows (under Wow64). Such an image will actually receive all 4 GB of user address space avail-
able. After all, if the image can support 3 GB pointers, 4 GB pointers should not be any different, because 
unlike the switch from 2 GB to 3 GB, there are no additional bits involved. The following output shows 
TestLimit running as a 32-bit application, reserving address space on a 64-bit Windows machine.

C:\Tools\Sysinternals>Testlimit.exe -r 
 
Testlimit v5.24 - test Windows limits 
Copyright (C) 2012-2015 Mark Russinovich 
Sysinternals - www.sysinternals.com 
 
Process ID: 264 
 
Reserving private bytes (MB)... 
Leaked 4008 MB of reserved memory (4008 MB total leaked). Lasterror: 8 
Not enough storage is available to process this command.

http://www.sysinternals.com
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These results depend on TestLimit having been linked with the /LARGEADDRESSAWARE option. Had it 
not been, the results would have been about 2 GB for each. Sixty-four–bit applications linked without /
LARGEADDRESSAWARE are constrained to the first 2 GB of the process virtual address space, just like 32-
bit applications. (This flag is set by default in Visual Studio for 64-bit builds.)

x64 virtual addressing limitations
As discussed, 64 bits of virtual address space allow for a possible maximum of 16 EB of virtual memory 
—a notable improvement over the 4 GB offered by 32-bit addressing. Obviously, neither today’s com-
puters nor tomorrow’s are even close to requiring support for that much memory.

Accordingly, to simplify chip architecture and avoid unnecessary overhead—particularly in address 
translation (described later)—AMD’s and Intel’s current x64 processors implement only 256 TB of 
virtual address space. That is, only the low-order 48 bits of a 64-bit virtual address are implemented. 
However, virtual addresses are still 64 bits wide, occupying 8 bytes in registers or when stored in 
memory. The high-order 16 bits (bits 48 through 63) must be set to the same value as the highest-order 
implemented bit (bit 47), in a manner similar to sign extension in two’s complement arithmetic. An  
address that conforms to this rule is said to be a canonical address.

Under these rules, the bottom half of the address space starts at 0x0000000000000000 as expected, 
but ends at 0x00007FFFFFFFFFFF. The top half of the address space starts at 0xFFFF800000000000 and 
ends at 0xFFFFFFFFFFFFFFFF. Each canonical portion is 128 TB. As newer processors implement more of 
the address bits, the lower half of memory will expand upward toward 0x7FFFFFFFFFFFFFFF, while the 
upper half will expand downward toward 0x8000000000000000.

Dynamic system virtual address space management
Thirty-two–bit versions of Windows manage the system address space through an internal kernel vir-
tual allocator mechanism, described in this section. Currently, 64-bit versions of Windows have no need 
to use the allocator for virtual address space management (and thus bypass the cost) because each 
region is statically defined (refer to Figure 5-13).

When the system initializes, the MiInitializeDynamicVa function sets up the basic dynamic ranges 
and sets the available virtual address to all available kernel space. It then initializes the address space 
ranges for boot loader images, process space (hyperspace), and the HAL through the MiInitialize-
SystemVaRange function, which is used to set hard-coded address ranges (on 32-bit systems only). 
Later, when non-paged pool is initialized, this function is used again to reserve the virtual address 
ranges for it. Finally, whenever a driver loads, the address range is relabeled to a driver-image range 
instead of a boot-loaded range.

After this point, the rest of the system virtual address space can be dynamically requested and  
released through MiObtainSystemVa (and its analogous MiObtainSessionVa) and MiReturnSystemVa. 
Operations such as expanding the system cache, the system PTEs, non-paged pool, paged pool, and/or 
special pool; mapping memory with large pages; creating the PFN database; and creating a new  
session all result in dynamic virtual address allocations for a specific range.



360 CHAPTER 5 Memory management

Each time the kernel virtual address space allocator obtains virtual memory ranges for use by a certain 
type of virtual address, it updates the MiSystemVaType array, which contains the virtual address type for 
the newly allocated range. The values that can appear in MiSystemVaType are shown in Table 5-8.

TABLE 5-8 System virtual address types

Region Description Limitable

MiVaUnused (0) Unused N/A

MiVaSessionSpace (1) Addresses for session space Yes

MiVaProcessSpace (2) Addresses for process address space No

MiVaBootLoaded (3) Addresses for images loaded by the boot 
loader

No

MiVaPfnDatabase (4) Addresses for the PFN database No

MiVaNonPagedPool (5) Addresses for the non-paged pool Yes

MiVaPagedPool (6) Addresses for the paged pool Yes

MiVaSpecialPoolPaged (7) Addresses for the special pool (paged) No

MiVaSystemCache (8) Addresses for the system cache No

MiVaSystemPtes (9) Addresses for system PTEs Yes

MiVaHal (10) Addresses for the HAL No

MiVaSessionGlobalSpace (11) Addresses for session global space No

MiVaDriverImages (12) Addresses for loaded driver images No

MiVaSpecialPoolNonPaged (13) Addresses for the special pool (non-paged) Yes

MiVaSystemPtesLarge (14) Addresses for large page PTEs Yes

Although the ability to dynamically reserve virtual address space on demand allows better manage-
ment of virtual memory, it would be useless without the ability to free this memory. As such, when the 
paged pool or system cache can be shrunk, or when special pool and large page mappings are freed, 
the associated virtual address is freed. Another case is when the boot registry is released. This allows 
dynamic management of memory depending on each component’s use. Additionally, components can 
reclaim memory through MiReclaimSystemVa, which requests virtual addresses associated with the 
system cache to be flushed out (through the dereference segment thread) if available virtual address 
space has dropped below 128 MB. Reclaiming can also be satisfied if initial non-paged pool has been 
freed.

In addition to better proportioning and better management of virtual addresses dedicated to dif-
ferent kernel memory consumers, the dynamic virtual address allocator also has advantages when it 
comes to memory footprint reduction. Instead of having to manually pre-allocate static page table 
entries and page tables, paging-related structures are allocated on demand. On both 32-bit and 64-bit 
systems, this reduces boot-time memory usage because unused addresses won’t have their page tables 
allocated. It also means that on 64-bit systems, the large address space regions that are reserved don’t 
need to have their page tables mapped in memory. This allows them to have arbitrarily large limits, 
especially on systems that have little physical RAM to back the resulting paging structures.
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EXPERIMENT: Querying system virtual address usage  
(Windows 10 and Server 2016)
You can look at the current and peak usage of each system virtual address type by using the 
kernel debugger. The global variable MiVisibleState (of type MI_VISIBLE_STATE) provides 
information available in the public symbols. (The example is on x86 Windows 10.)

1. To get a sense of the data provided by MiVisibleState, dump the structure with values:

lkd> dt nt!_mi_visible_state poi(nt!MiVisibleState) 
   +0x000 SpecialPool      : _MI_SPECIAL_POOL 
   +0x048 SessionWsList    : _LIST_ENTRY [ 0x91364060 - 0x9a172060 ] 
   +0x050 SessionIdBitmap  : 0x8220c3a0 _RTL_BITMAP 
   +0x054 PagedPoolInfo    : _MM_PAGED_POOL_INFO 
   +0x070 MaximumNonPagedPoolInPages : 0x80000 
   +0x074 SizeOfPagedPoolInPages : 0x7fc00 
   +0x078 SystemPteInfo    : _MI_SYSTEM_PTE_TYPE 
   +0x0b0 NonPagedPoolCommit : 0x3272 
   +0x0b4 BootCommit       : 0x186d 
   +0x0b8 MdlPagesAllocated : 0x105 
   +0x0bc SystemPageTableCommit : 0x1e1 
   +0x0c0 SpecialPagesInUse : 0 
   +0x0c4 WsOverheadPages  : 0x775 
   +0x0c8 VadBitmapPages   : 0x30 
   +0x0cc ProcessCommit    : 0xb40 
   +0x0d0 SharedCommit     : 0x712a 
   +0x0d4 DriverCommit     : 0n7276 
   +0x100 SystemWs         : [3] _MMSUPPORT_FULL 
   +0x2c0 SystemCacheShared : _MMSUPPORT_SHARED 
   +0x2e4 MapCacheFailures : 0 
   +0x2e8 PagefileHashPages : 0x30 
   +0x2ec PteHeader        : _SYSPTES_HEADER 
   +0x378 SessionSpecialPool : 0x95201f48 _MI_SPECIAL_POOL 
   +0x37c SystemVaTypeCount : [15] 0 
   +0x3b8 SystemVaType     : [1024]  "" 
   +0x7b8 SystemVaTypeCountFailures : [15] 0 
   +0x7f4 SystemVaTypeCountLimit : [15] 0 
   +0x830 SystemVaTypeCountPeak : [15] 0 
   +0x86c SystemAvailableVa : 0x38800000

2. Notice the last arrays with 15 elements each, corresponding to the system virtual 
address types from Table 5-8. Here are the SystemVaTypeCount and SystemVaType-
CountPeak arrays:

lkd> dt nt!_mi_visible_state poi(nt!mivisiblestate) -a SystemVaTypeCount 
   +0x37c SystemVaTypeCount : 
    [00] 0 
    [01] 0x1c 
    [02] 0xb 
    [03] 0x15 
    [04] 0xf 
    [05] 0x1b 
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    [06] 0x46 
    [07] 0 
    [08] 0x125 
    [09] 0x38 
    [10] 2 
    [11] 0xb 
    [12] 0x19 
    [13] 0 
    [14] 0xd 
lkd> dt nt!_mi_visible_state poi(nt!mivisiblestate) -a SystemVaTypeCountPeak 
   +0x830 SystemVaTypeCountPeak : 
    [00] 0 
    [01] 0x1f 
    [02] 0 
    [03] 0x1f 
    [04] 0xf 
    [05] 0x1d 
    [06] 0x51 
    [07] 0 
    [08] 0x1e6 
    [09] 0x55 
    [10] 0 
    [11] 0xb 
    [12] 0x5d 
    [13] 0 
    [14] 0xe

EXPERIMENT: Querying system virtual address usage  
(Windows 8.x and Server 2012/R2)
You can look at the current and peak usage of each system virtual address type by using the 
kernel debugger. For each system virtual address type described in Table 5-8, the MiSystemVa-
TypeCount, MiSystemVaTypeCountFailures, and MiSystemVaTypeCountPeak global arrays in 
the kernel contain the sizes, count failures, and peak sizes for each type. The size is in multiples of 
a PDE mapping (see the “Address translation” section later in this chapter), which is effectively the 
size of a large page (2 MB on x86). Here’s how you can dump the usage for the system, followed 
by the peak usage. You can use a similar technique for the failure counts. (The example is from a 
32-bit Windows 8.1 system.)

lkd> dd /c 1 MiSystemVaTypeCount L f 
81c16640  00000000 
81c16644  0000001e 
81c16648  0000000b 
81c1664c  00000018 
81c16650  0000000f 
81c16654  00000017 
81c16658  0000005f 
81c1665c  00000000 
81c16660  000000c7 
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81c16664  00000021 
81c16668  00000002 
81c1666c  00000008 
81c16670  0000001c 
81c16674  00000000 
81c16678  0000000b 
lkd> dd /c 1 MiSystemVaTypeCountPeak L f 
81c16b60  00000000 
81c16b64  00000021 
81c16b68  00000000 
81c16b6c  00000022 
81c16b70  0000000f 
81c16b74  0000001e 
81c16b78  0000007e 
81c16b7c  00000000 
81c16b80  000000e3 
81c16b84  00000027 
81c16b88  00000000 
81c16b8c  00000008 
81c16b90  00000059 
81c16b94  00000000 
81c16b98  0000000b 

Theoretically, the different virtual address ranges assigned to components can grow arbitrarily in 
size if enough system virtual address space is available. In practice, on 32-bit systems, the kernel alloca-
tor implements the ability to set limits on each virtual address type for the purposes of both reliability 
and stability. (On 64-bit systems, kernel address space exhaustion is currently not a concern.) Although 
no limits are imposed by default, system administrators can use the registry to modify these limits for 
the virtual address types that are currently marked as limitable (see Table 5-8).

If the current request during the MiObtainSystemVa call exceeds the available limit, a failure is marked 
(see the previous experiment) and a reclaim operation is requested regardless of available memory. This 
should help alleviate memory load and might allow the virtual address allocation to work during the next 
attempt. Recall, however, that reclaiming affects only system cache and non-paged pool.

EXPERIMENT: Setting system virtual address limits
The MiSystemVaTypeCountLimit array contains limitations for system virtual address usage 
that can be set for each type. Currently, the memory manager allows only certain virtual address 
types to be limited, and it provides the ability to use an undocumented system call to set limits 
for the system dynamically during run time. (These limits can also be set through the registry, as 
described at http://msdn.microsoft.com/en-us/library/bb870880.aspx.) These limits can be set for 
those types marked in Table 5-8.

You can use the MemLimit utility (found in this book’s downloadable resources) on 32-bit sys-
tems to query and set the different limits for these types and to see the current and peak virtual 
address space usage. Here’s how you can query the current limits with the -q flag:

http://msdn.microsoft.com/en-us/library/bb870880.aspx
http://www.msdn.microsoft.com/en-us/library/bb870880.aspx
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C:\Tools>MemLimit.exe -q 
 
MemLimit v1.01 - Query and set hard limits on system VA space consumption 
Copyright (C) 2008-2016 by Alex Ionescu 
www.alex-ionescu.com 
 
System Va Consumption: 
 
Type                    Current            Peak            Limit 
Non Paged Pool            45056 KB        55296 KB            0 KB 
Paged Pool               151552 KB       165888 KB            0 KB 
System Cache             446464 KB       479232 KB            0 KB 
System PTEs               90112 KB       135168 KB            0 KB 
Session Space             63488 KB        73728 KB            0 KB 

As an experiment, use the following command to set a limit of 100 MB for paged pool:

memlimit.exe -p 100M

Now use the Sysinternals TestLimit tool to create as many handles as possible. Normally, with 
enough paged pool, the number should be around 16 million. But with the limit to 100 MB, it’s less:

C:\Tools\Sysinternals>Testlimit.exe -h 
 
Testlimit v5.24 - test Windows limits 
Copyright (C) 2012-2015 Mark Russinovich 
Sysinternals - www.sysinternals.com 
 
Process ID: 4780 
 
Creating handles... 
Created 10727844 handles. Lasterror: 1450

See Chapter 8 in Part 2 for more information about objects, handles, and page-pool con-
sumption.

System virtual address space quotas
The system virtual address space limits described in the previous section allow for the limiting of 
system-wide virtual address space usage of certain kernel components. However, they work only on 
32-bit systems when applied to the system as a whole. To address more specific quota requirements 
that system administrators might have, the memory manager collaborates with the process manager to 
enforce either system-wide or user-specific quotas for each process.

You can configure the PagedPoolQuota, NonPagedPoolQuota, PagingFileQuota, and Working-
SetPagesQuota values in the HKLM\SYSTEM\CurrentControlSet\Control\Session Manager\Memory 
Management key to specify how much memory of each type a given process can use. This information 
is read at initialization, and the default system quota block is generated and then assigned to all system 
processes. (User processes get a copy of the default system quota block unless per-user quotas have 
been configured, as explained next.)

http://www.alex-ionescu.com
http://www.sysinternals.com
http://www.alex-ionescu.com
http://www.sysinternals.com
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To enable per-user quotas, you can create subkeys under the HKLM\SYSTEM\CurrentControlSet\
Session Manager\Quota System registry key, each one representing a given user SID. The values men-
tioned previously can then be created under this specific SID subkey, enforcing the limits only for the 
processes created by that user. Table 5-9 shows how to configure these values (which can be done at 
run time or not) and which privileges are required.

TABLE 5-9 Process quota types

Value Name Description Value Type Dynamic Privilege

PagedPoolQuota This is the maxi-
mum size of paged 
pool that can be 
allocated by this 
process.

Size in MB Only for 
processes 
running with 
the system 
token

SeIncreaseQuotaPrivilege

NonPagedPoolQuota This is the maxi-
mum size of non-
paged pool that 
can be allocated by 
this process.

Size in MB Only for 
processes 
running with 
the system 
token

SeIncreaseQuotaPrivilege

PagingFileQuota This is the maxi-
mum number 
of pages that a 
process can have 
backed by the 
page file.

Pages Only for 
processes 
running with 
the system 
token

SeIncreaseQuotaPrivilege

WorkingSetPagesQuota This is the maxi-
mum number of 
pages that a pro-
cess can have in 
its working set (in 
physical memory).

Pages Yes SeIncreaseBasePriorityPrivilege 
unless operation is a purge request

User address space layout
Just as address space in the kernel is dynamic, the user address space is also built dynamically. The 
addresses of the thread stacks, process heaps, and loaded images (such as DLLs and an application’s 
executable) are dynamically computed (if the application and its images support it) through the ASLR 
mechanism.

At the operating system level, user address space is divided into a few well-defined regions of 
memory, as shown in Figure 5-14. The executable and DLLs themselves are present as memory-mapped 
image files, followed by the heap(s) of the process and the stack(s) of its thread(s). Apart from these 
regions (and some reserved system structures such as the TEBs and PEB), all other memory allocations 
are run-time dependent and generated. ASLR is involved with the location of all these run time– 
dependent regions and, combined with DEP, provides a mechanism for making remote exploitation 
of a system through memory manipulation harder to achieve. Because Windows code and data are 
placed at dynamic locations, an attacker cannot typically hard-code a meaningful offset into either a 
program or a system-supplied DLL.
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FIGURE 5-14 User address space layout with ASLR enabled.

EXPERIMENT: Analyzing user virtual address space
The VMMap utility from Sysinternals can show you a detailed view of the virtual memory being 
used by any process on your machine. This information is divided into categories for each type of 
allocation, summarized as follows:

 ■ Image This displays memory allocations used to map the executable and its dependencies 
(such as dynamic libraries) and any other memory-mapped image (portable executable 
format) files.

 ■ Mapped File This displays memory allocations for memory mapped data files.

 ■ Shareable This displays memory allocations marked as shareable, typically including 
shared memory (but not memory-mapped files, which are listed under either Image or 
Mapped File).

 ■ Heap This displays memory allocated for the heap(s) that this process owns.

 ■ Managed Heap This displays memory allocated by the .NET CLR (managed objects).  
It would show nothing for a process that does not use .NET.

 ■ Stack This displays memory allocated for the stack of each thread in this process.

 ■ Private Data This displays memory allocations marked as private other than the stack and 
heap, such as internal data structures.

The following shows a typical view of Explorer (64 bit) as seen through VMMap:
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Depending on the type of memory allocation, VMMap can show additional information such 
as file names (for mapped files), heap IDs and types (for heap allocations), and thread IDs (for 
stack allocations). Furthermore, each allocation’s cost is shown both in committed memory and 
working set memory. The size and protection of each allocation is also displayed.

ASLR begins at the image level, with the executable for the process and its dependent DLLs. Any 
image file that has specified ASLR support in its PE header (IMAGE_DLL_CHARACTERISTICS_DYNAMIC_
BASE), typically specified by using the /DYNAMICBASE linker flag in Microsoft Visual Studio, and contains 
a relocation section will be processed by ASLR. When such an image is found, the system selects an 
image offset valid globally for the current boot. This offset is selected from a bucket of 256 values, all of 
which are 64 KB aligned.

Image randomization
For executables, the load offset is calculated by computing a delta value each time an executable is 
loaded. This value is a pseudo-random 8-bit number from 0x10000 to 0xFE0000, calculated by taking 
the current processor’s time stamp counter (TSC), shifting it by four places, and then performing a 
division modulo 254 and adding 1. This number is then multiplied by the allocation granularity of 64 KB 
discussed earlier. By adding 1, the memory manager ensures that the value can never be 0, so executa-
bles will never load at the address in the PE header if ASLR is being used. This delta is then added to the 
executable’s preferred load address, creating one of 256 possible locations within 16 MB of the image 
address in the PE header.
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For DLLs, computing the load offset begins with a per-boot, system-wide value called the image 
bias. This is computed by MiInitializeRelocations and stored in the global memory state structure 
(MI_SYSTEM_INFORMATION) in the MiState.Sections.ImageBias fields (MiImageBias global variable 
in Windows 8.x/2012/R2). This value corresponds to the TSC of the current CPU when this function was 
called during the boot cycle, shifted and masked into an 8-bit value. This provides 256 possible values 
on 32 bit systems; similar computations are done for 64-bit systems with more possible values as the 
address space is vast. Unlike executables, this value is computed only once per boot and shared across 
the system to allow DLLs to remain shared in physical memory and relocated only once. If DLLs were 
remapped at different locations inside different processes, the code could not be shared. The loader 
would have to fix up address references differently for each process, thus turning what had been share-
able read-only code into process-private data. Each process using a given DLL would have to have its 
own private copy of the DLL in physical memory.

Once the offset is computed, the memory manager initializes a bitmap called ImageBitMap (MiIm-
ageBitMap global variable in Windows 8.x/2012/R2), which is part of the MI_SECTION_STATE structure. 
This bitmap is used to represent ranges from 0x50000000 to 0x78000000 for 32-bit systems (see the 
numbers for 64-bit systems below), and each bit represents one unit of allocation (64 KB, as men-
tioned). Whenever the memory manager loads a DLL, the appropriate bit is set to mark its location in 
the system. When the same DLL is loaded again, the memory manager shares its section object with 
the already relocated information.

As each DLL is loaded, the system scans the bitmap from top to bottom for free bits. The ImageBias 
value computed earlier is used as a start index from the top to randomize the load across different 
boots as suggested. Because the bitmap will be entirely empty when the first DLL (which is always Ntdll.
dll) is loaded, its load address can easily be calculated. (Sixty-four–bit systems have their own bias.)

 ■ 32 bit 0x78000000 – (ImageBias + NtDllSizein64KBChunks) * 0x10000 

 ■ 64 bit 0x7FFFFFFF0000 – (ImageBias64High + NtDllSizein64KBChunks) * 0x10000

Each subsequent DLL will then load in a 64 KB chunk below. Because of this, if the address of Ntdll.
dll is known, the addresses of other DLLs could easily be computed. To mitigate this possibility, the or-
der in which known DLLs are mapped by the Session Manager during initialization is also randomized 
when Smss.exe loads.

Finally, if no free space is available in the bitmap (which would mean that most of the region defined 
for ASLR is in use), the DLL relocation code defaults back to the executable case, loading the DLL at a 64 
KB chunk within 16 MB of its preferred base address.

EXPERIMENT: Calculating the load address of Ntdll.dll
With what you learned in the previous section, you can calculate the load address of Ntdll.dll with 
the kernel variable information. The following calculation is done on a Windows 10 x86 system:

1. Start local kernel debugging.
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2. Find the ImageBias value:

lkd> ? nt!mistate 
Evaluate expression: -2113373760 = 820879c0 
lkd> dt nt!_mi_system_information sections.imagebias 820879c0 
   +0x500 Sections           : 
      +0x0dc ImageBias          : 0x6e

3. Open Explorer and find the size of Ntdll.dll in the System32 directory. On this system, it’s 
1547 KB = 0x182c00, so the size in 64 KB chunks is 0x19 (always rounding up). The result 
is 0x78000000 – (0x6E + 0x19) * 0x10000 = 0x77790000.

4. Open Process Explorer, find any process, and look at the load address (in the Base or 
Image Base columns) of Ntdll.dll. You should see the same value.

5. Try to do the same for a 64-bit system.

Stack randomization
The next step in ASLR is to randomize the location of the initial thread’s stack and, subsequently, of 
each new thread. This randomization is enabled unless the StackRandomizationDisabled flag was 
enabled for the process, and consists of first selecting one of 32 possible stack locations separated by 
either 64 KB or 256 KB. You select this base address by finding the first appropriate free memory region 
and then choosing the xth available region, where x is once again generated based on the current pro-
cessor’s TSC shifted and masked into a 5-bit value. (This allows for 32 possible locations.)

When this base address has been selected, a new TSC-derived value is calculated—this one 9 bits 
long. The value is then multiplied by 4 to maintain alignment, which means it can be as large as 2,048 
bytes (half a page). It is added to the base address to obtain the final stack base.

Heap randomization
ASLR randomizes the location of the initial process heap and subsequent heaps when created in user 
mode. The RtlCreateHeap function uses another pseudo-random TSC-derived value to determine the 
base address of the heap. This value, 5 bits this time, is multiplied by 64 KB to generate the final base 
address, starting at 0, giving a possible range of 0x00000000 to 0x001F0000 for the initial heap. Ad-
ditionally, the range before the heap base address is manually deallocated to force an access violation 
if an attack is doing a brute-force sweep of the entire possible heap address range.

ASLR in kernel address space
ASLR is also active in kernel address space. There are 64 possible load addresses for 32-bit drivers and 
256 for 64-bit drivers. Relocating user-space images requires a significant amount of work area in 
kernel space, but if kernel space is tight, ASLR can use the user-mode address space of the System pro-
cess for this work area. On Windows 10 (version 1607) and Server 2016, ASLR is implemented for most 
system memory regions, such as paged and non-paged pools, system cache, page tables, and the PFN 
database (initialized by MiAssignTopLevelRanges).
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Controlling security mitigations
As you’ve seen, ASLR and many other security mitigations in Windows are optional because of their  
potential compatibility effects: ASLR applies only to images with the IMAGE_DLL_CHARACTERISTICS_
DYNAMIC_BASE bit in their image headers, hardware no-execute (DEP) can be controlled by a combina-
tion of boot options and linker options, and so on. To allow both enterprise customers and individual 
users more visibility and control of these features, Microsoft publishes the Enhanced Mitigation Experi-
ence Toolkit (EMET). EMET offers centralized control of the mitigations built into Windows and adds 
several more mitigations not yet part of the Windows product. Additionally, EMET provides notification 
capabilities through the event log to let administrators know when certain software has experienced 
access faults because mitigations have been applied. Finally, EMET enables manual opt-out for certain 
applications that might exhibit compatibility issues in certain environments, even though they were 
opted in by the developer.

Note EMET is in version 5.51 at the time of this writing. Its end of support has been extended 
to the end of July 2018. However, some of its features are integrated in current Windows  
versions.

EXPERIMENT: Looking at ASLR protection on processes
You can use Process Explorer from Sysinternals to look over your processes (and, just as impor-
tant, the DLLs they load) to see if they support ASLR. Even if just one DLL loaded by a process 
does not support ASLR, it can make the process much more vulnerable to attacks.

To look at the ASLR status for processes, follow these steps:

1. Right-click any column in the process tree and choose Select Columns.

2. Select ASLR Enabled on the Process Image and DLL tabs. 

3. Notice that all in-box Windows programs and services are running with ASLR enabled, 
but third-party applications may or may not run with ASLR.

In the example, we have highlighted the Notepad.exe process. In this case, its load address 
is 0x7FF7D76B0000. If you were to close all instances of Notepad and then start another, you 
would find it at a different load address. If you shut down and reboot the system and then try the 
experiment again, you will find that the ASLR-enabled DLLs are at different load addresses after 
each boot.
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Address translation

Now that you’ve seen how Windows structures the virtual address space, let’s look at how it maps these 
address spaces to real physical pages. User applications and system code reference virtual addresses. 
This section starts with a detailed description of 32-bit x86 address translation in PAE mode (the only 
mode supported in recent versions of Windows) and continues with a description of the differences on 
the ARM and x64 platforms. The next section describes what happens when such a translation doesn’t 
resolve to a physical memory address (page fault) and explains how Windows manages physical 
memory via working sets and the page frame database.

x86 virtual address translation
The original x86 kernel supported no more than 4 GB of physical memory, based on the CPU hardware 
available at the time. The Intel x86 Pentium Pro processor introduced a memory-mapping mode called 
Physical Address Extension (PAE). With the proper chipset, the PAE mode allows 32-bit operating systems 
access to up to 64 GB of physical memory on current Intel x86 processors (up from 4 GB without PAE) 
and up to 1,024 GB of physical memory when running on x64 processors in legacy mode (although 
Windows currently limits this to 64 GB due to the size of the PFN database required to describe so much 
memory). Since then, Windows has maintained two separate x86 kernels—one that did not support 
PAE and one that did. Starting with Windows Vista, an x86 Windows installation always installs the PAE 
kernel even if the system’s physical memory is not higher than 4 GB. This allows Microsoft to maintain a 
single x86 kernel, as the benefits of the non-PAE kernel in terms of performance and memory footprint 
became negligible (and is required for hardware no-execute support). Thus, we’ll describe only x86 PAE 
address translation. Interested readers can read the relevant section in the sixth edition of this book for 
the non-PAE case.
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Using data structures that the memory manager creates and maintains called page tables, the CPU 
translates virtual addresses into physical addresses. Each page of virtual address space is associated with a 
system-space structure called a page table entry (PTE), which contains the physical address to which the vir-
tual one is mapped. For example, Figure 5-15 shows how three consecutive virtual pages might be mapped 
to three physically discontiguous pages on an x86 system. There may not even be any PTEs for regions that 
have been marked as reserved or committed but never accessed, because the page table itself might be 
allocated only when the first page fault occurs. (The dashed line connecting the virtual pages to the PTEs in 
Figure 5-15 represents the indirect relationship between virtual pages and physical memory.)

FIGURE 5-15 Mapping virtual addresses to physical memory (x86).

Note Even kernel-mode code (such as device drivers) cannot reference physical memory 
addresses directly, but it may do so indirectly by first creating virtual addresses mapped  
to them. For more information, see the memory descriptor list (MDL) support routines  
described in the WDK documentation.

The actual translation process and the layout of the page tables and page directories (described 
shortly), are determined by the CPU. The operating system must follow suit and build the structures 
correctly in memory for the whole concept to work. Figure 5-16 depicts a general diagram of x86  
translation. The general concept, however, is the same for other architectures.

As shown in Figure 5-16, the input to the translation system consists of a 32-bit virtual address (since 
this is the addressable range with 32 bit) and a bunch of memory-related structures (page tables, page 
directories, a single page directory pointer table [PDPT], and translation lookaside buffers, all described 
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shortly). The output should be a 36-bit physical address in RAM where the actual byte is located. The 
number 36 comes from the way the page tables are structured and, as mentioned, dictated by the  
processor. When mapping small pages (the common case, shown in Figure 5-16), the least significant  
12 bits from the virtual address are copied directly to the resulting physical address. 12 bits is exactly  
4 KB—the size of a small page.

FIGURE 5-16 Virtual address translation overview.

If the address cannot be translated successfully (for example, the page may not be in physical 
memory but resides in a page file), the CPU throws an exception known as a page fault that indicates  
to the OS that the page cannot be located. Because the CPU has no idea where to find the page  
(page file, mapped file, or something else), it relies on the OS to get the page from wherever it’s located  
(if possible), fix the page tables to point to it, and request that the CPU tries translation again. (Page 
faults are described in the section “Page files” later in this chapter.) 

Figure 5-17 depicts the entire process of translating x86 virtual to physical addresses.

FIGURE 5-17 x86 virtual address translation.
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The 32-bit virtual address to be translated is logically segregated into four parts. As you’ve seen, the 
lower 12 bits are used as-is to select a specific byte within a page. The translation process starts with a 
single PDPT per process, which resides in physical memory at all times. (Otherwise, how would the sys-
tem locate it?) Its physical address is stored in the KPROCESS structure for each process. The special x86 
register CR3 stores this value for the currently executing process (that is, one of its threads made the 
access to the virtual address). This means that when a context switch occurs on a CPU, if the new thread 
is running under a different process than the old thread, then the CR3 register must be loaded with the 
new process’s page directory pointer address from its KROCESS structure. The PDPT must be aligned on 
a 32-byte boundary and must furthermore reside in the first 4 GB of RAM (because CR3 on x86 is still a 
32-bit register).

Given the layout in Figure 5-17, the sequence of translating a virtual address to a physical one goes 
as follows:

1. The two most significant bits of the virtual address (bits 30 and 31) provide an index into 
the PDPT. This table has four entries. The entry selected—the page directory pointer entry 
(PDPE)—points to the physical address of a page directory.

2. A page directory contains 512 entries, one of which is selected by bits 21 to 29 (9 bits) from the 
virtual address. The selected page directory entry (PDE) points to the physical address of a page 
table.

3. A page table also contains 512 entries, one of which is selected by bits 13 to 28 (9 bits) from the 
virtual address. The selected page table entry (PTE) points to the physical address of the start of 
the page.

4. The virtual address offset (lower 12 bits) is added to the PTE pointed-to address to give the final 
physical address requested by the caller.

Every entry value in the various tables is also called a page frame number (PFN) because it points 
to a page-aligned address. Each entry is 64 bits wide—so the size of a page directory or page table is 
no larger than a 4 KB page—but only 24 bits are strictly necessary to describe a 64 GB physical range 
(combined with the 12 bits of the offset for an address range with a total of 36 bits). This means there 
are more bits than needed for the actual PFN values.

One of the extra bits in particular is paramount to the whole mechanism: the valid bit. This bit indi-
cates whether the PFN data is indeed valid and therefore whether the CPU should execute the proce-
dure just outlined. If the bit is clear, however, it indicates a page fault. The CPU raises an exception and 
expects the OS to handle the page fault in some meaningful way. For example, if the page in question 
was previously written to disk, then the memory manager should read it back to a free page in RAM, fix 
the PTE, and tell the CPU to try again. 

Because Windows provides a private address space for each process, each process has its own PDPT, 
page directories, and page tables to map that process’s private address space. However, the page 
directories and page tables that describe system space are shared among all processes (and session 
space is shared only among processes in a session). To avoid having multiple page tables describing 
the same virtual memory, the page directory entries that describe system space are initialized to point 
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to the existing system page tables when a process is created. If the process is part of a session, session 
space page tables are also shared by pointing the session space page directory entries to the existing 
session page tables.

Page tables and page table entries
Each PDE points to a page table. A page table is a simple array of PTEs. So, too, is a PDPT. Every page 
table has 512 entries and each PTE maps a single page (4 KB). This means a page table can map a 2 MB 
address space (512 x 4 KB). Similarly, a page directory has 512 entries, each pointing to a page table. 
This means a page directory can map 512 x 2 MB or 1 GB of address space. This makes sense because 
there are four PDPEs, which together can map the entire 32-bit 4 GB address space.

For large pages, the PDE points with 11 bits to the start of a large page in physical memory, where 
the byte offset is taken for the low 21 bits of the original virtual address. This means such a PDE map-
ping a large page does not point to any page table.

The layout of a page directory and page table is essentially the same. You can use the kernel debug-
ger !pte command to examine PTEs. (See the upcoming experiment “Translating addresses.”) We’ll 
discuss valid PTEs here and invalid PTEs in the section “Page fault handling.” Valid PTEs have two main 
fields: the PFN of the physical page containing the data or of the physical address of a page in memory, 
and some flags that describe the state and protection of the page. (See Figure 5-18.)

FIGURE 5-18 Valid x86 hardware PTEs.

The bits labeled “Software” and “Reserved” in Figure 5-18 are ignored by the memory management 
unit (MMU) inside the CPU regardless of whether the PTE is valid. These bits are stored and interpreted 
by the memory manager. Table 5-10 briefly describes the hardware-defined bits in a valid PTE.

TABLE 5-10 PTE status and protection bits

Name of Bit Meaning

Accessed The page has been accessed.

Cache disabled This disables CPU caching for that page.

Copy-on-write The page is using copy-on-write (described earlier).
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TABLE 5-10 PTE status and protection bits  (continued)

Name of Bit Meaning

Dirty The page has been written to.

Global Translation applies to all processes. For example, a translation buffer flush won’t affect this PTE.

Large page This indicates that the PDE maps a 2 MB page. (Refer to the section “Large and small pages”  
earlier in this chapter.)

No execute This indicates that code cannot execute in the page. (It can be used for data only.)

Owner This indicates whether user-mode code can access the page or whether the page is limited to 
kernel-mode access.

Prototype The PTE is a prototype PTE, which is used as a template to describe shared memory associated 
with section objects.

Valid This indicates whether the translation maps to a page in physical memory.

Write through This marks the page as write-through or, if the processor supports the page attribute table, write-
combined. This is typically used to map video frame buffer memory.

Write This indicates to the MMU whether the page is writable.

On x86 systems, a hardware PTE contains two bits that can be changed by the MMU: the dirty bit 
and the accessed bit. The MMU sets the accessed bit whenever the page is read or written (provided 
it is not already set). The MMU sets the dirty bit whenever a write operation occurs to the page. The 
operating system is responsible for clearing these bits at the appropriate times. They are never cleared 
by the MMU.

The x86 MMU uses a write bit to provide page protection. When this bit is clear, the page is read-
only. When it is set, the page is read/write. If a thread attempts to write to a page with the write bit 
clear, a memory-management exception occurs. In addition, the memory manager’s access fault han-
dler (described later in the section “Page fault handling”) must determine whether the thread can be 
allowed to write to the page (for example, if the page was really marked copy-on-write) or whether an 
access violation should be generated.

Hardware versus software write bits in page table entries
The additional write bit implemented in software (refer to Table 5-10) is used to force an update of  
the dirty bit to be synchronized with updates to Windows memory management data. In a simple 
implementation, the memory manager would set the hardware write bit (bit 1) for any writable page.  
A write to any such page will cause the MMU to set the dirty bit in the PTE. Later, the dirty bit will tell 
the memory manager that the contents of that physical page must be written to backing store before 
the physical page can be used for something else.

In practice, on multiprocessor systems, this can lead to race conditions that are expensive to resolve.  
At any time, the MMUs of the various processors can set the dirty bit of any PTE that has its hardware 
write bit set. The memory manager must, at various times, update the process working set list to reflect 
the state of the dirty bit in a PTE. The memory manager uses a pushlock to synchronize access to the 
working set list. But on a multiprocessor system, even while one processor is holding the lock, the dirty bit 
might be changed by MMUs of other CPUs. This raises the possibility of missing an update to a dirty bit.
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To avoid this, the Windows memory manager initializes both read-only and writable pages with the 
hardware write bit (bit 1) of their PTEs set to 0 and records the true writable state of the page in the 
software write bit (bit 11). On the first write access to such a page, the processor will raise a memory-
management exception because the hardware write bit is clear, just as it would be for a true read-only 
page. In this case, though, the memory manager learns that the page actually is writable (via the 
software write bit), acquires the working set pushlock, sets the dirty bit and the hardware write bit in 
the PTE, updates the working set list to note that the page has been changed, releases the working set 
pushlock, and dismisses the exception. The hardware write operation then proceeds as usual, but the 
setting of the dirty bit is made to happen with the working set list pushlock held.

On subsequent writes to the page, no exceptions occur because the hardware write bit is set. The 
MMU will redundantly set the dirty bit, but this is benign because the “written-to” state of the page is 
already recorded in the working set list. Forcing the first write to a page to go through this exception 
handling may seem to be excessive overhead. However, it happens only once per writable page as long 
as the page remains valid. Furthermore, the first access to almost any page already goes through mem-
ory-management exception handling because pages are usually initialized in the invalid state (the PTE 
bit 0 is clear). If the first access to a page is also the first write access to the page, the dirty bit handling 
just described will occur within the handling of the first-access page fault, so the additional overhead 
is small. Finally, on both uniprocessor and multiprocessor systems, this implementation allows flushing 
of the translation look-aside buffer (described in the next section) without holding a lock for each page 
being flushed.

Translation look-aside buffer
As you’ve learned, each hardware address translation requires three lookups: 

 ■ One to find the right entry in the PDPT

 ■ One to find the right entry in the page directory (which provides the location of the page table)

 ■ One to find the right entry in the page table

Because doing three additional memory lookups for every reference to a virtual address would 
quadruple the required bandwidth to memory, resulting in poor performance, all CPUs cache address 
translations so that repeated accesses of the same addresses don’t have to be repeatedly translated. 
This cache is an array of associative memory called the translation lookaside buffer (TLB). Associative 
memory is a vector whose cells can be read simultaneously and compared to a target value. In the 
case of the TLB, the vector contains the virtual-to-physical page mappings of the most recently used 
pages, as shown in Figure 5-19, and the type of page protection, size, attributes, and so on applied to 
each page. Each entry in the TLB is like a cache entry whose tag holds portions of the virtual address 
and whose data portion holds a physical page number, protection field, valid bit, and usually a dirty 
bit indicating the condition of the page to which the cached PTE corresponds. If a PTE’s global bit is 
set (as is done by Windows for system space pages that are visible to all processes), the TLB entry isn’t 
invalidated on process context switches.
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FIGURE 5-19 Accessing the TLB.

Frequently used virtual addresses are likely to have entries in the TLB, which provides extremely 
fast virtual-to-physical address translation and, therefore, fast memory access. If a virtual address 
isn’t in the TLB, it might still be in memory, but multiple memory accesses are needed to find it, which 
makes the access time slightly slower. If a virtual page has been paged out of memory or if the memory 
manager changes the PTE, the memory manager is required to explicitly invalidate the TLB entry. If 
a process accesses it again, a page fault occurs, and the memory manager brings the page back into 
memory (if needed) and re-creates its PTE (which then results in an entry for it in the TLB).

EXPERIMENT: Translating addresses
To clarify how address translation works, this experiment shows an example of translating a 
virtual address on an x86 PAE system using the available tools in the kernel debugger to examine 
the PDPT, page directories, page tables, and PTEs. In this example, you’ll work with a process that 
has virtual address 0x3166004, currently mapped to a valid physical address. In later examples, 
you’ll see how to follow address translation for invalid addresses with the kernel debugger.

First convert 0x3166004 to binary and break it into the three fields used to translate an address. 
In binary, 0x3166004 is 11.0001.0110.0110.0000.0000.0100. Breaking it into the component fields 
yields the following:



 CHAPTER 5 Memory management 379

To start the translation process, the CPU needs the physical address of the process’s PDPT. This 
is found in the CR3 register while a thread in that process is running. You can display this address 
by looking at the DirBase field in the output of the !process command, as shown here:

lkd> !process -1 0 
PROCESS 99aa3040  SessionId: 2  Cid: 1690    Peb: 03159000  ParentCid: 0920 
    DirBase: 01024800  ObjectTable: b3b386c0  HandleCount: <Data Not Accessible> 
    Image: windbg.exe

The DirBase field shows that the PDPT is at physical address 0x1024800. As shown in the 
preceding illustration, the PDPT index field in the sample virtual address is 0. Therefore, the PDPT 
entry that contains the physical address of the relevant page directory is the first entry in the 
PDPT, at physical address 0x1024800.

The kernel debugger !pte command displays the PDE and PTE that describe a virtual address, 
as shown here:

lkd> !pte 3166004 
                    VA 03166004 
PDE at C06000C0            PTE at C0018B30 
contains 0000000056238867  contains 800000005DE61867 
pfn 56238     ---DA--UWEV  pfn 5de61     ---DA--UW-V

The debugger does not show the PDPT, but it is easy to display given its physical address:

lkd> !dq 01024800 L4 
# 1024800 00000000'53c88801 00000000'53c89801 
# 1024810 00000000'53c8a801 00000000'53c8d801

Here we have used the debugger extension command !dq. This is similar to the dq command 
(display as quadwords—64 bit values) but lets us examine memory by physical rather than virtual 
address. Because we know the PDPT is only four entries long, we added the L 4 length argument 
to keep the output uncluttered.

As illustrated, the PDPT index (the two most significant bits) from the sample virtual address 
equal 0, so the PDPT entry you want is the first displayed quadword. PDPT entries have a format 
similar to PDEs and PTEs, so you can see that this one contains a PFN of 0x53c88 (always page-
aligned), for a physical address of 0x53c88000. That’s the physical address of the page directory.

The !pte output shows the PDE address 0xC06000C0 as a virtual address, not physical. On 
x86 systems, the first process page directory starts at virtual address 0xC0600000. In this case, 
the PDE address is 0xC0—that is, 8 bytes (the size of an entry) times 24 added to the page direc-
tory start address. Therefore, the page directory index field of the sample virtual address is 24. 
That means you’re looking at the 25th PDE in the page directory.

The PDE provides the PFN of the needed page table. In this example, the PFN is 0x56238, so 
the page table starts at physical address 0x56238000. To this the MMU will add the page table 
index field (0x166) from the virtual address multiplied by 8 (the size of a PTE in bytes). The result-
ing physical address of the PTE is 0x56238B30.
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The debugger shows that this PTE is at virtual address 0xC0018B30. Notice that the byte offset 
portion (0xB30) is the same as that from the physical address, as is always the case in address 
translation. Because the memory manager maps page tables starting at 0xC0000000, adding 
0xB30 to 0xC0018000 (the 0x18 is entry 24 as you’ve seen) yields the virtual address shown in 
the kernel debugger output: 0xC0018B30. The debugger shows that the PFN field of the PTE is 
0x5DE61.

Finally, you can consider the byte offset from the original address. As described, the MMU 
concatenates the byte offset to the PFN from the PTE, giving a physical address of 0x5DE61004. 
This is the physical address that corresponds to the original virtual address of 0x3166004…at the 
moment.

The flags bits from the PTE are interpreted to the right of the PFN number. For example, 
the PTE that describes the page being referenced has flags of ---DA--UW-V. Here, A stands for 
accessed (the page has been read), U for user-mode accessible (as opposed to kernel-mode ac-
cessible only), W for writable page (rather than just readable), and V for valid (the PTE represents a 
valid page in physical memory).

To confirm the calculation of the physical address, look at the memory in question via both its 
virtual and its physical addresses. First, using the debugger’s dd (display dwords) command on 
the virtual address, you see the following:

lkd> dd 3166004 L 10 
03166004  00000034 00000006 00003020 0000004e 
03166014  00000000 00020020 0000a000 00000014

And with the !dd command on the physical address just computed, you see the same contents:

lkd> !dd 5DE61004 L 10 
#5DE61004 00000034 00000006 00003020 0000004e 
#5DE61014 00000000 00020020 0000a000 00000014

You could similarly compare the displays from the virtual and physical addresses of the PTE 
and PDE.

x64 virtual address translation
Address translation on x64 is similar to x86, but with a fourth level added. Each process has a top-level 
extended page directory called the page map level 4 table that contains the physical locations of 512 
third-level structures, called page directory pointers. The page parent directory is analogous to the x86 
PAE PDPT, but there are 512 of them instead of just one, and each page parent directory is an entire 
page containing 512 entries instead of just four. Like the PDPT, the page parent directory’s entries con-
tain the physical locations of second-level page directories, each of which in turn contains 512 entries 
providing the locations of the individual page tables. Finally, the page tables, each of which contains 
512 page table entries, contain the physical locations of the pages in memory. All the “physical loca-
tions” in the preceding description are stored in these structures as PFNs.
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Current implementations of the x64 architecture limit virtual addresses to 48 bits. The components 
that make up this 48-bit virtual address and the connection between the components for translation 
purposes are shown in Figure 5-20, and the format of an x64 hardware PTE is shown in Figure 5-21.

FIGURE 5-20 x64 address translation.

FIGURE 5-21 x64 hardware PTE.

ARM virtual address translation
Virtual address translation on ARM 32-bit processors uses a single page directory with 1,024 entries, 

each 32 bits in size. The translation structures are shown in Figure 5-22.
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FIGURE 5-22 ARM virtual address translation structures.

Every process has a single page directory, with its physical address stored in the TTBR register (simi-
lar to the CR3 x86/x64 register). The 10 most significant bits of the virtual address select a PDE that may 
point to one of 1,024 page tables. A specific PTE is selected by the next 10 bits of the virtual address. 
Each valid PTE points to the start of a page in physical memory, where the offset is given by the lower 
12 bits of the address ( just as in the x86 and x64 cases). The scheme in Figure 5-22 suggests that the  
addressable physical memory is 4 GB because each PTE is smaller (32 bits) than the x86/x64 case (64 
bits), and indeed only 20 bits are used for the PFN. ARM processors do support a PAE mode (similar to 
x86), but Windows does not use this functionality. Future Windows versions may support the ARM  
64-bit architecture, which will alleviate the physical address limitations as well as dramatically increase 
the virtual address space for processes and the system.

Curiously, the layout of valid PTE, PDE, and large page PDE are not the same. Figure 5-23 shows the 
layout of a valid PTE for ARMv7, currently used by Windows. For more information, consult the official 
ARM documentation.

FIGURE 5-23 ARM valid PTE layout.
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Page fault handling

Earlier, you saw how address translations are resolved when the PTE is valid. When the PTE valid bit is 
clear, this indicates that the desired page is for some reason not currently accessible to the process. This 
section describes the types of invalid PTEs and how references to them are resolved.

Note Only the 32-bit x86 PTE formats are detailed in this section. PTEs for 64-bit and ARM 
systems contain similar information, but their detailed layout is not presented.

A reference to an invalid page is called a page fault. The kernel trap handler (see the section “Trap 
dispatching” in Chapter 8 in Part 2) dispatches this kind of fault to the memory manager fault handler 
function, MmAccessFault, to resolve. This routine runs in the context of the thread that incurred the 
fault and is responsible for attempting to resolve the fault (if possible) or raise an appropriate exception. 
These faults can be caused by a variety of conditions, as listed in Table 5-11.

TABLE 5-11 Reasons for access faults

Reason for Fault Result

Corrupt PTE/PDE Bug-check (crash) the system with code 0x1A  
(MEMORY_MANAGEMENT).

Accessing a page that isn’t resident in memory but is on disk in 
a page file or a mapped file

Allocate a physical page and read the desired page 
from disk and into the relevant working set.

Accessing a page that is on the standby or modified list Transition the page to the relevant process, session, or 
system working set.

Accessing a page that isn’t committed (for example, reserved 
address space or address space that isn’t allocated)

Access violation exception.

Accessing a page from user mode that can be accessed only in 
kernel mode

Access violation exception.

Writing to a page that is read-only Access violation exception.

Accessing a demand-zero page Add a zero-filled page to the relevant working set.

Writing to a guard page Guard-page violation (if there is a reference to a user-
mode stack, perform automatic stack expansion).

Writing to a copy-on-write page Make a process-private (or session-private) copy of the 
page and use it to replace the original in the process, 
session, or system working set.

Writing to a page that is valid but hasn’t been written to the 
current backing store copy

Set the dirty bit in the PTE.

Executing code in a page that is marked as no execute Access violation exception.

PTE permissions don’t match enclave permissions (see the sec-
tion “Memory enclaves” later in this chapter and the Windows 
SDK documentation for the CreateEnclave function)

User mode: access violation exception.
Kernel mode: bug-check with code 0x50  
(PAGE_FAULT_IN_NONPAGED_AREA).

The following section describes the four basic kinds of invalid PTEs that are processed by the access 
fault handler. Following that is an explanation of a special case of invalid PTEs, called prototype PTEs, 
which are used to implement shareable pages.
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Invalid PTEs
If the valid bit of a PTE encountered during address translation is zero, the PTE represents an invalid 
page—one that will raise a memory-management exception, or page fault, upon reference. The MMU 
ignores the remaining bits of the PTE, so the operating system can use these bits to store information 
about the page that will assist in resolving the page fault.

The following list details the four kinds of invalid PTEs and their structure. These are often referred 
to as software PTEs because they are interpreted by the memory manager rather than the MMU. Some 
of the flags are the same as those for a hardware PTE, as described in Table 5-10, and some of the bit 
fields have either the same or similar meanings to corresponding fields in the hardware PTE.

 ■ Page file The desired page resides within a paging file. As illustrated in Figure 5-24, 4 bits in 
the PTE indicate in which of 16 possible page files the page resides, and 32 bits provide the page 
number within the file. The pager initiates an in-page operation to bring the page into memory 
and make it valid. The page file offset is always non-zero and never all ones (that is, the very first 
and last pages in the page file are not used for paging) to allow for other formats, described next.

FIGURE 5-24 A PTE representing a page in a page file.

 ■ Demand zero This PTE format is the same as the page file PTE shown in the previous entry 
but the page file offset is zero. The desired page must be satisfied with a page of zeroes. The 
pager looks at the zero page list. If the list is empty, the pager takes a page from the free list and 
zeroes it. If the free list is also empty, it takes a page from one of the standby lists and zeroes it.

 ■ Virtual Address Descriptor This PTE format is the same as the page file PTE shown previous-
ly but in this case the page file offset field is all one. This indicates a page whose definition and 
backing store, if any, can be found in the process’s Virtual Address Descriptor (VAD) tree. This 
format is used for pages that are backed by sections in mapped files. The pager finds the VAD 
that defines the virtual address range encompassing the virtual page and initiates an in-page 
operation from the mapped file referenced by the VAD. (VADs are described in more detail in 
the section “Virtual address descriptors” later in this chapter.)

 ■ Transition The transition bit is one. The desired page is in memory on either the standby, 
modified, or modified-no-write list or not on any list. The pager will remove the page from 
the list (if it is on one) and add it to the process working set. This is known as a soft page fault 
because no I/O is involved.

 ■ Unknown The PTE is zero or the page table doesn’t yet exist. (The PDE that would provide 
the physical address of the page table contains zero.) In both cases, the memory manager must 
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examine the VADs to determine whether this virtual address has been committed. If so, page 
tables are built to represent the newly committed address space. If not—that is, if the page is 
reserved or hasn’t been defined at all—the page fault is reported as an access violation exception.

Prototype PTEs
If a page can be shared between two processes, the memory manager uses a software structure 
called prototype page table entries (prototype PTEs) to map these potentially shared pages. For page-
file–backed sections, an array of prototype PTEs is created when a section object is first created. For 
mapped files, portions of the array are created on demand as each view is mapped. These prototype 
PTEs are part of the segment structure (described in the section “Section objects” later in this chapter).

When a process first references a page mapped to a view of a section object (recall that VADs are 
created only when the view is mapped), the memory manager uses the information in the prototype PTE 
to fill in the real PTE used for address translation in the process page table. When a shared page is made 
valid, both the process PTE and the prototype PTE point to the physical page containing the data. To track 
the number of process PTEs that reference a valid shared page, a counter in its PFN database entry is 
incremented. Thus, the memory manager can determine when a shared page is no longer referenced by 
any page table and thus can be made invalid and moved to a transition list or written out to disk.

When a shareable page is invalidated, the PTE in the process page table is filled in with a special PTE 
that points to the prototype PTE that describes the page, as shown in Figure 5-25. Thus, when the page 
is accessed, the memory manager can locate the prototype PTE using the information encoded in this 
PTE, which in turn describes the page being referenced.

FIGURE 5-25 Structure of an invalid PTE that points to the prototype PTE.

A shared page can be in one of six different states, as described by the prototype PTE:

 ■ Active/valid The page is in physical memory because of another process that accessed it.

 ■ Transition The desired page is in memory on the standby or modified list (or not on any list).

 ■ Modified-no-write The desired page is in memory and on the modified-no-write list. (Refer 
to Table 5-11.)

 ■ Demand zero The desired page should be satisfied with a page of zeroes.

 ■ Page file The desired page resides within a page file.

 ■ Mapped file The desired page resides within a mapped file.
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Although the format of these prototype PTEs is the same as that of the real PTEs described earlier, 
the prototype PTEs aren’t used for address translation. They are a layer between the page table and the 
PFN database and never appear directly in page tables.

By having all the accessors of a potentially shared page point to a prototype PTE to resolve faults, 
the memory manager can manage shared pages without needing to update the page tables of each 
process sharing the page. For example, a shared code or data page might be paged out to disk at some 
point. When the memory manager retrieves the page from disk, it needs only to update the prototype 
PTE to point to the page’s new physical location. The PTEs in each of the processes sharing the page 
remain the same, with the valid bit clear and still pointing to the prototype PTE. Later, as processes 
reference the page, the real PTE will get updated.

Figure 5-26 illustrates two virtual pages in a mapped view. One is valid and the other is invalid. As 
shown, the first page is valid and is pointed to by the process PTE and the prototype PTE. The second 
page is in the paging file—the prototype PTE contains its exact location. The process PTE (and any 
other processes with that page mapped) points to this prototype PTE.

FIGURE 5-26 Prototype page table entries.

In-paging I/O
In-paging I/O occurs when a read operation must be issued to a file (paging or mapped) to satisfy a 
page fault. Also, because page tables are themselves pageable, the processing of a page fault can incur 
additional I/O if necessary when the system is loading the page table page that contains the PTE or the 
prototype PTE that describes the original page being referenced.

The in-page I/O operation is synchronous—that is, the thread waits on an event until the I/O com-
pletes—and isn’t interruptible by asynchronous procedure call (APC) delivery. The pager uses a special 
modifier in the I/O request function to indicate paging I/O. Upon completion of paging I/O, the I/O 
system triggers an event, which wakes up the pager and allows it to continue in-page processing.

While the paging I/O operation is in progress, the faulting thread doesn’t own any critical memory 
management synchronization objects. Other threads within the process can issue virtual memory 
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functions and handle page faults while the paging I/O takes place. But there are a few interesting  
conditions that the pager must recognize when the I/O completes are exposed:

 ■ Another thread in the same process or a different process could have faulted the same page 
(called a collided page fault and described in the next section).

 ■ The page could have been deleted and remapped from the virtual address space.

 ■ The protection on the page could have changed.

 ■ The fault could have been for a prototype PTE, and the page that maps the prototype PTE could 
be out of the working set.

The pager handles these conditions by saving enough state on the thread’s kernel stack before 
the paging I/O request such that when the request is complete, it can detect these conditions and, if 
necessary, dismiss the page fault without making the page valid. When and if the faulting instruction is 
reissued, the pager is again invoked and the PTE is reevaluated in its new state.

Collided page faults
The case when another thread in the same process or a different process faults a page that is cur-
rently being in-paged is known as a collided page fault. The pager detects and handles collided page 
faults optimally because they are common occurrences in multithreaded systems. If another thread 
or process faults the same page, the pager detects the collided page fault, noticing that the page is 
in transition and that a read is in progress. (This information is in the PFN database entry.) In this case, 
the pager may issue a wait operation on the event specified in the PFN database entry. Alternatively, it 
can choose to issue a parallel I/O to protect the file systems from deadlocks. (The first I/O to complete 
“wins,” and the others are discarded.) This event was initialized by the thread that first issued the I/O 
needed to resolve the fault.

When the I/O operation completes, all threads waiting on the event have their wait satisfied. The 
first thread to acquire the PFN database lock is responsible for performing the in-page completion 
operations. These operations consist of checking I/O status to ensure that the I/O operation completed 
successfully, clearing the read-in-progress bit in the PFN database, and updating the PTE.

When subsequent threads acquire the PFN database lock to complete the collided page fault, the 
pager recognizes that the initial updating has been performed because the read-in-progress bit is clear 
and checks the in-page error flag in the PFN database element to ensure that the in-page I/O completed 
successfully. If the in-page error flag is set, the PTE isn’t updated, and an in-page error exception is 
raised in the faulting thread.

Clustered page faults
The memory manager prefetches large clusters of pages to satisfy page faults and populate the system 
cache. The prefetch operations read data directly into the system’s page cache instead of into a work-
ing set in virtual memory. Therefore, the prefetched data does not consume virtual address space, and 
the size of the fetch operation is not limited to the amount of virtual address space that is available. 
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Also, no expensive TLB-flushing inter-processor interrupt (IPI) is needed if the page will be repurposed. 
The prefetched pages are put on the standby list and marked as in transition in the PTE. If a prefetched 
page is subsequently referenced, the memory manager adds it to the working set. However, if it is 
never referenced, no system resources are required to release it. If any pages in the prefetched cluster 
are already in memory, the memory manager does not read them again. Instead, it uses a dummy page 
to represent them so that an efficient single large I/O can still be issued, as shown in Figure 5-27.

FIGURE 5-27 Usage of dummy page during virtual-address-to-physical-address mapping in an MDL.

In the figure, the file offsets and virtual addresses that correspond to pages A, Y, Z, and B are logi-
cally contiguous, although the physical pages themselves are not necessarily contiguous. Pages A and 
B are nonresident, so the memory manager must read them. Pages Y and Z are already resident in 
memory, so it is not necessary to read them. (In fact, they might already have been modified since they 
were last read in from their backing store, in which case it would be a serious error to overwrite their 
contents.) However, reading pages A and B in a single operation is more efficient than performing one 
read for page A and a second read for page B. Therefore, the memory manager issues a single read re-
quest that comprises all four pages (A, Y, Z, and B) from the backing store. Such a read request includes 
as many pages as it makes sense to read, based on the amount of available memory, the current system 
usage, and so on.

When the memory manager builds the MDL that describes the request, it supplies valid pointers to 
pages A and B. However, the entries for pages Y and Z point to a single system-wide dummy page X. 
The memory manager can fill the dummy page X with the potentially stale data from the backing store 
because it does not make X visible. However, if a component accesses the Y and Z offsets in the MDL, it 
sees the dummy page X instead of Y and Z.

The memory manager can represent any number of discarded pages as a single dummy page, and 
that page can be embedded multiple times in the same MDL or even in multiple concurrent MDLs that 
are being used for different drivers. Consequently, the contents of the locations that represent the 
discarded pages can change at any time. (See Chapter 6 for more on MDLs.)
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Page files
Page files store modified pages that are still in use by some process but have had to be written to disk 
because they were unmapped or memory pressure resulted in a trim. Page file space is reserved when 
the pages are initially committed, but the actual optimally clustered page file locations cannot be cho-
sen until pages are written out to disk.

When the system boots, the Session Manager process (Smss.exe) reads the list of page files to open 
by examining the HKLM\SYSTEM\CurrentControlSet\Control\Session Manager\Memory Management\
PagingFiles registry value. This multistring registry value contains the name, minimum size, and maxi-
mum size of each paging file. Windows supports up to 16 paging files on x86 and x64 and up to 2 page 
files on ARM. On x86 and x64 systems, each page file can be up to 16 TB in size, while the maximum is 
4 GB on ARM systems. Once open, the page files can’t be deleted while the system is running because 
the System process maintains an open handle to each page file.

Because the page file contains parts of process and kernel virtual memory, for security reasons, the 
system can be configured to clear the page file at system shutdown. To enable this, set the ClearPage-
FileAtShutdown registry value in the HKLM\SYSTEM\CurrentControlSet\Control\Session Manager\
Memory Management key to 1. Otherwise, after shutdown, the page file will contain whatever data 
happened to have been paged out while the system was up. This data could then be accessed by some-
one who gained physical access to the machine.

If the minimum and maximum paging file sizes are both zero (or not specified), this indicates a 
system-managed paging file. Windows 7 and Server 2008 R2 used a simple scheme based on RAM size 
alone as follows:

 ■ Minimum size Set to the amount of RAM or 1 GB, whichever is larger

 ■ Maximum size Set to 3 * RAM or 4 GB, whichever is larger

These settings are not ideal. For example, today’s laptops and desktop machines can easily have 32 
GB or 64 GB of RAM, and server machines can have hundreds of gigabytes of RAM. Setting the initial 
page file size to the size of RAM may result in a considerable loss of disk space, especially if disk sizes 
are relatively small and based on solid-state device (SSD). Furthermore, the amount of RAM in a system 
is not necessarily indicative of the typical memory workload on that system.

The current implementation uses a more elaborate scheme to derive a “good” minimum page file 
size based not only on RAM size, but also on page file history usage and other factors. As part of page-
file creation and initialization, Smss.exe calculates page file minimum sizes based on four factors, stored 
in global variables:

 ■ RAM (SmpDesiredPfSizeBasedOnRAM) This is the recommended page file size based on RAM.

 ■ Crash dump (SmpDesiredPfSizeForCrashDump) This is the recommended page file size 
needed to be able to store a crash dump.

 ■ History (SmpDesiredPfSizeBasedOnHistory) This is the recommended page file size based on 
usage history. Smss.exe uses a timer that triggers once an hour and records the page file usage.
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 ■ Apps (SmpDesiredPfSizeForApps) This is the recommended page file for Windows apps.

 ■ These values are computed as shown in Table 5-12.

TABLE 5-12 Base calculation for page file size recommendation

Recommendation Base Recommended Page File Size

RAM If RAM <= 1 GB, then size = 1 GB.  If RAM > 1 GB, then add 1/8 GB for every extra gigabyte 
of RAM, up to a maximum of 32 GB.

Crash dump If a dedicated dump file is configured, then no page file is required for storing a dump file, 
and the size = 0. (You can configure this for a dedicated dump file by adding the value 
DedicatedDumpFile in the HKLM\System\CurrentControlSet\Control\CrashControl key.)
If the dump type configured is set to Automatic (the default), then:
   If RAM < 4 GB, then size = RAM / 6.
   Otherwise, size = 2/3 GB + 1/8 GB for each extra gigabyte above 4 GB, capped to 32 GB.
If there was a recent crash for which the page file was not large enough, then recommend-
ed size is increased to RAM size or 32 GB, whichever is smaller.
If a full dump is configured, returned size = RAM size plus additional information size pres-
ent in a dump file.
If a kernel dump is configured, then size = RAM.

History If enough samples have been logged, returns the 90th percentile as the recommended size. 
Otherwise, returns the size based on RAM (above).

Apps If it’s a server, return zero.
The recommended size is based on a factor that the Process Lifecycle Manager (PLM) uses 
to determine when to terminate an app. Current factor is 2.3 * RAM, which was considered 
with RAM = 1 GB (rough minimum for mobile devices). The recommended size (based 
on the mentioned factor) is around 2.5 GB. If this is more than RAM, RAM is subtracted. 
Otherwise, zero is returned.

The maximum page file size for a system-managed size is set at three times the size of RAM or 4 GB, 
whichever is larger. The minimum (initial) page file size is determined as follows:

 ■ If it’s the first system-managed page file, then the base size is set based on page file history 
(refer to Table 5-12). Otherwise, the base size is based on RAM.

 ■ If it’s the first system-managed page file:

• If the base size is smaller than the computed page file size for apps (SmpDesiredPfSize-
ForApps), then set the new base as the size computed for apps (refer to Table 5-12).

• If the (new) base size is smaller than the computed size for crash dumps (SmpDesiredPf-
SizeForCrashDump), then set the new base to be the size computed for crash dumps.

EXPERIMENT: Viewing page files
To view the list of page files, look in the registry at the PagingFiles value in the HKLM\SYSTEM\
CurrentControlSet\Control\Session Manager\Memory Management key. This entry contains the 
paging file configuration settings modified through the Advanced System Settings dialog box. To 
access these settings, follow these steps:

1. Open Control Panel.
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2. Click System and Security and then click System. This opens the System Properties 
dialog box, which you can also access by right-clicking on Computer in Explorer and 
selecting Properties. 

3. Click Advanced System Settings.

4. In the Performance area, click Settings. This opens the Performance Options dialog 
box.

5. Click the Advanced tab.

6. In the Virtual Memory area, click Change.

EXPERIMENT: Viewing page file recommended sizes
To view the actual variables calculated in Table 5-12, follow these steps (this experiment was done 
using an x86 Windows 10 system):

1. Start local kernel debugging.

2. Locate Smss.exe processes:

lkd> !process 0 0 smss.exe 
PROCESS 8e54bc40  SessionId: none  Cid: 0130    Peb: 02bab000  ParentCid: 
0004 
    DirBase: bffe0020  ObjectTable: 8a767640  HandleCount: <Data Not 
Accessible> 
    Image: smss.exe 
 
PROCESS 9985bc40  SessionId: 1  Cid: 01d4    Peb: 02f9c000  ParentCid: 0130 
    DirBase: bffe0080  ObjectTable: 00000000  HandleCount:   0. 
    Image: smss.exe 
 
PROCESS a122dc40  SessionId: 2  Cid: 02a8    Peb: 02fcd000  ParentCid: 0130 
    DirBase: bffe0320  ObjectTable: 00000000  HandleCount:   0. 
    Image: smss.exe

3. Locate the first one (with a session ID of none), which is the master Smss.exe. (Refer to 
Chapter 2 for more details.) 

4. Switch the debugger context to that process:

lkd> .process /r /p 8e54bc40 
Implicit process is now 8e54bc40 
Loading User Symbols 
..

5. Show the four variables described in the previous section. (Each one is 64 bits in size.)

lkd> dq smss!SmpDesiredPfSizeBasedOnRAM L1 
00974cd0  00000000'4fff1a00 
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lkd> dq smss!SmpDesiredPfSizeBasedOnHistory L1 
00974cd8  00000000'05a24700 
lkd> dq smss!SmpDesiredPfSizeForCrashDump L1 
00974cc8  00000000'1ffecd55 
lkd> dq smss!SmpDesiredPfSizeForApps L1 
00974ce0  00000000'00000000

6. Because there is a single volume (C:\) on this machine, a single page file would be cre-
ated. Assuming it wasn’t specifically configured, it would be system managed. You can 
look at the actual file size of C:\PageFile.Sys on disk or use the !vm debugger command:

lkd> !vm 1 
Page File: \??\C:\pagefile.sys 
  Current:    524288 Kb  Free Space:    524280 Kb 
  Minimum:    524288 Kb  Maximum:      8324476 Kb 
Page File: \??\C:\swapfile.sys 
  Current:    262144 Kb  Free Space:    262136 Kb 
  Minimum:    262144 Kb  Maximum:      4717900 Kb 
No Name for Paging File 
  Current:  11469744 Kb  Free Space:  11443108 Kb 
  Minimum:  11469744 Kb  Maximum:     11469744 Kb 
...

Notice the minimum size of C:\PageFIle.sys (524288 KB). (We’ll discuss the other page file 
entries in the next section). According to the variables, SmpDesiredPfSizeForCrashDump is the 
largest, so must be the determining factor (0x1FFECD55 = 524211 KB), which is very close to the 
listed value. (Page file sizes round up to multiple of 64 MB.)

To add a new page file, Control Panel uses the internal NtCreatePagingFile system service defined 
in Ntdll.dll. (This requires the SeCreatePagefilePrivilege.) Page files are always created as non-
compressed files, even if the directory they are in is compressed. Their names are PageFile.Sys (except 
some special ones described in the next section). They are created in the root of partitions with the 
Hidden file attribute so they are not immediately visible. To keep new page files from being deleted, a 
handle is duplicated into the System process so that even after the creating process closes the handle 
to the new page file, a handle is nevertheless always open to it.

The swap file
In the UWP apps world, when an app goes to the background—for example, it is minimized—the 
threads in that process are suspended so that the process does not consume any CPU. The private 
physical memory used by the process can potentially be reused for other processes. If memory pres-
sure is high, the private working set (physical memory used by the process) may be swapped out to disk 
to allow the physical memory to be used for other processes.

Windows 8 added another page file called a swap file. It is essentially the same as a normal page file 
but is used exclusively for UWP apps. It’s created on client SKUs only if at least one normal page file 
was created (the normal case). Its name is SwapFile.sys and it resides in the system root partition—for 
example, C:\SwapFile.Sys.
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After the normal page files are created, the HKLM\System\CurrentControlSet\Control\Session 
Manager\Memory Management registry key is consulted. If a DWORD value named SwapFileControl 
exists and its value is zero, swap file creation is aborted. If a value named SwapFile exists, it’s read as a 
string with the same format as a normal page file, with a filename, an initial size, and a maximum size. 
The difference is that a value of zero for the sizes is interpreted as no swap file creation. These two reg-
istry values do not exist by default, which results in the creation of a SwapFile.sys file on the system root 
partition with a minimum size of 16 MB on fast (and small) disks (for example, SSD) or 256 MB on slow 
(or large SSD) disks. The maximum size of the swap file is set to 1.5 * RAM or 10 percent of the system 
root partition size, whichever is smaller. See Chapter 7 in this book and Chapter 8, “System mechanisms,” 
and Chapter 9, “Management mechanisms,” in Part 2 for more on UWP apps.

Note The swap file is not counted against the maximum page files supported.

The virtual page file
The !vm debugger command hints at another page file called “No Name for Paging File.” This is a 
virtual page file. As the name suggests, it has no actual file, but is used indirectly as the backing store 
for memory compression (described later in this chapter in the section “Memory compression”). It is 
large, but its size is set arbitrarily as not to run out of free space. The invalid PTEs for pages that have 
been compressed point to this virtual page file and allow the memory compression store to get to the 
compressed data when needed by interpreting the bits in the invalid PTE leading to the correct store, 
region, and index. 

EXPERIMENT: Viewing swap file and virtual page file information
The !vm debugger command shows the information on all page files, including the swap file and 
the virtual page file:

lkd> !vm 1 
Page File: \??\C:\pagefile.sys 
  Current:    524288 Kb  Free Space:    524280 Kb 
  Minimum:    524288 Kb  Maximum:      8324476 Kb 
Page File: \??\C:\swapfile.sys 
  Current:    262144 Kb  Free Space:    262136 Kb 
  Minimum:    262144 Kb  Maximum:      4717900 Kb 
No Name for Paging File 
  Current:  11469744 Kb  Free Space:  11443108 Kb 
  Minimum:  11469744 Kb  Maximum:     11469744 Kb

On this system, the swap file minimum size is 256 MB, as the system is a Windows 10 virtual 
machine. (The VHD behind the disk is considered a slow disk.) The maximum size of the swap file 
is about 4.5 GB, as the RAM on the system is 3 GB and disk partition size is 64 GB (the minimum 
of 4.5 GB and 6.4 GB).
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Commit charge and the system commit limit
We are now in a position to more thoroughly discuss the concepts of commit charge and the system 
commit limit. 

Whenever virtual address space is created—for example, by a VirtualAlloc (for committed 
memory) or MapViewOfFile call—the system must ensure that there is room to store it, either in RAM 
or in backing store, before successfully completing the create request. For mapped memory (other 
than sections mapped to the page file), the file associated with the mapping object referenced by the 
MapViewOfFile call provides the required backing store. All other virtual allocations rely on system-
managed shared resources for storage: RAM and the paging file(s). The purpose of the system commit 
limit and commit charge is to track all uses of these resources to ensure they are never overcommit-
ted—that is, that there is never more virtual address space defined than there is space to store its 
contents, either in RAM or in backing store (on disk).

Note This section makes frequent references to paging files. It is possible (though not gen-
erally recommended) to run Windows without any paging files. Essentially, this means that 
when RAM is exhausted, there is no room to grow and memory allocations fail, generating a 
blue screen. You can consider every reference to paging files here to be qualified by “if one 
or more paging files exist.”

Conceptually, the system commit limit represents the total committed virtual address space that 
can be created in addition to virtual allocations that are associated with their own backing store—that 
is, in addition to sections mapped to files. Its numeric value is simply the amount of RAM available to 
Windows plus the current sizes of any page files. If a page file is expanded or new page files are created, 
the commit limit increases accordingly. If no page files exist, the system commit limit is simply the total 
amount of RAM available to Windows.

Commit charge is the system-wide total of all committed memory allocations that must be kept in 
either RAM or in a paging file. From the name, it should be apparent that one contributor to commit 
charge is process-private committed virtual address space. However, there are many other contribu-
tors, some of them not so obvious.

Windows also maintains a per-process counter called the process page file quota. Many of the allo-
cations that contribute to commit charge also contribute to the process page file quota. This represents 
each process’s private contribution to the system commit charge. Note, however, that this does not 
represent current page file usage. It represents the potential or maximum page file usage, should all 
these allocations have to be stored there.

The following types of memory allocations contribute to the system commit charge and, in many cases, 
to the process page file quota. (Some of these will be described in detail in later sections of this chapter.)

 ■ Private committed memory This is memory allocated with the VirtualAlloc call with the 
MEM_COMMIT option. This is the most common type of contributor to the commit charge. These 
allocations are also charged to the process page file quota.
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 ■ Page-file-backed mapped memory This is memory allocated with a MapViewOfFile call 
that references a section object, which in turn is not associated with a file. The system uses a 
portion of the page file as the backing store instead. These allocations are not charged to the 
process page file quota.

 ■ Copy-on-write regions of mapped memory (even if it is associated with ordinary mapped 
files) The mapped file provides backing store for its own unmodified content. However, 
should a page in the copy-on-write region be modified, it can no longer use the original 
mapped file for backing store. It must be kept in RAM or in a paging file. These allocations are 
not charged to the process page file quota.

 ■ Non-paged and paged pool and other allocations in system space that are not backed 
by explicitly associated files Even the currently free regions of the system memory pools 
contribute to commit charge. The non-pageable regions are counted in the commit charge 
even though they will never be written to the page file because they permanently reduce the 
amount of RAM available for private pageable data. These allocations are not charged to the 
process page file quota.

 ■ Kernel stacks Threads’ stacks when executing in kernel mode.

 ■ Page tables Most of these are themselves pageable, and they are not backed by mapped 
files. However, even if they are not pageable, they occupy RAM. Therefore, the space required 
for them contributes to commit charge.

 ■ Space for page tables that are not yet actually allocated As you’ll see, where large areas 
of virtual space have been defined but not yet referenced (for example, private committed vir-
tual space), the system need not actually create page tables to describe it. However, the space 
for these as-yet-nonexistent page tables is charged to commit charge to ensure that the page 
tables can be created when they are needed.

 ■ Allocations of physical memory made via the Address Windowing Extension (AWE) APIs 
As discussed previously, consume physical memory directly.

For many of these items, the commit charge may represent the potential use of storage rather than 
its actual use. For example, a page of private committed memory does not actually occupy either a 
physical page of RAM or the equivalent page file space until it’s been referenced at least once. Until 
then, it is a demand-zero page (described later). But commit charge accounts for such pages when the 
virtual space is first created. This ensures that when the page is later referenced, actual physical storage 
space will be available for it.

A region of a file mapped as copy-on-write has a similar requirement. Until the process writes to the re-
gion, all pages in it are backed by the mapped file. However, the process may write to any of the pages in the 
region at any time. When that happens, those pages are thereafter treated as private to the process. Their 
backing store is, thereafter, the page file. Charging the system commit for them when the region is first cre-
ated ensures that there will be private storage for them later, if and when the write accesses occur.

A particularly interesting case occurs when reserving private memory and later committing it. When 
the reserved region is created with VirtualAlloc, system commit charge is not charged for the actual 
virtual region. On Windows 8 and Server 2012 and earlier versions, it is charged for any new page table 
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pages that will be required to describe the region, even though these might not yet exist or even be 
eventually needed. Starting with Windows 8.1 and Server 2012 R2, page table hierarchies for reserved 
regions are not charged immediately; this means that huge reserved memory regions can be allocated 
without exhausting page tables. This becomes important in some security features, such as Control Flow 
Guard (CFG, see Chapter 7 for more details). If the region or a part of it is later committed, system com-
mit is charged to account for the size of the region (and page tables), as is the process page file quota.

To put it another way, when the system successfully completes, for example, a VirtualAlloc com-
mit or MapViewOfFile call, it makes a commitment that the necessary storage will be available when 
needed, even if it wasn’t needed at that moment. Thus, a later memory reference to the allocated re-
gion can never fail for lack of storage space. (Of course, it could still fail for other reasons, such as page 
protection, the region being deallocated, and so on.) The commit charge mechanism allows the system 
to keep this commitment.

The commit charge appears in the Performance Monitor counters as Memory: Committed Bytes. It 
is also the first of the two numbers displayed on the Task Manager’s Performance tab with the legend 
Commit (the second being the commit limit), and it is displayed by Process Explorer’s System Informa-
tion Memory tab as Commit Charge – Current.

The process page file quota appears in the performance counters as Process: Page File Bytes. The 
same data appears in the Process: Private Bytes performance counter. (Neither term exactly describes 
the true meaning of the counter.)

If the commit charge ever reaches the commit limit, the memory manager will attempt to increase 
the commit limit by expanding one or more page files. If that is not possible, subsequent attempts to 
allocate virtual memory that uses commit charge will fail until some existing committed memory is 
freed. The performance counters listed in Table 5-13 allow you to examine private committed memory 
usage on a system-wide, per-process, or per-page-file, basis.

TABLE 5-13 Committed memory and page file performance counters

Performance Counter Description

Memory: Committed Bytes This is the number of bytes of virtual (not reserved) memory that has been committed. 
This number doesn’t necessarily represent page file usage because it includes private 
committed pages in physical memory that have never been paged out. Rather, it repre-
sents the charged amount that must be backed by page file space and/or RAM.

Memory: Commit Limit This is the number of bytes of virtual memory that can be committed without having to 
extend the paging files. If the paging files can be extended, this limit is soft.

Process: Page File Quota This is the process’s contribution to Memory: Committed Bytes.

Process: Private Bytes This is the same as Process: Page File Quota.

Process: Working Set ‒ Private This is the subset of Process: Page File Quota that is currently in RAM and can be refer-
enced without a page fault. It is also a subset of Process: Working Set. 

Process: Working Set This is the subset of Process: Virtual Bytes that is currently in RAM and can be refer-
enced without a page fault.

Process: Virtual Bytes This is the total virtual memory allocation of the process, including mapped regions, 
private committed regions, and private reserved regions.

Paging File: % Usage This is the percentage of the page file space that is currently in use. 

Paging File: % Usage Peak This is the highest observed value of Paging File: % Usage.
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Commit charge and page file size
The counters in Table 5-13 can assist you in choosing a custom page file size. The default policy based 
on the amount of RAM works acceptably for most machines, but depending on the workload, it can 
result in a page file that’s unnecessarily large or not large enough.

To determine how much page-file space your system really needs based on the mix of applications 
that have run since the system booted, examine the peak commit charge in the Memory tab of Process 
Explorer’s System Information display. This number represents the peak amount of page file space since 
the system booted that would have been needed if the system had to page out the majority of private 
committed virtual memory (which rarely happens).

If the page file on your system is too big, the system will not use it any more or less. In other words, 
increasing the size of the page file does not change system performance. It simply means the system 
can have more committed virtual memory. If the page file is too small for the mix of applications you 
are running, you might get a “system running low on virtual memory” error message. In this case, check 
to see whether a process has a memory leak by examining the process private bytes count. If no pro-
cess appears to have a leak, check the system paged pool size. If a device driver is leaking paged pool, 
this might also explain the error. Refer to the “Troubleshooting a pool leak” experiment in the “Kernel-
mode heaps (system memory pools)” section for information on troubleshooting a pool leak.

EXPERIMENT: Viewing page file usage with Task Manager
You can view committed memory usage with Task Manager. To do so, click its Performance tab. 
You’ll see the following counters related to page files:
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The system commit total is displayed under the Committed label as two numbers. The first 
number represents potential page file usage, not actual page file usage. It is how much page file 
space would be used if all the private committed virtual memory in the system had to be paged 
out all at once. The second number displayed is the commit limit, which is the maximum virtual 
memory usage that the system can support before running out of virtual memory. (This includes 
virtual memory backed in physical memory as well as by the paging files.) The commit limit is es-
sentially the size of RAM plus the current size of the paging files. It therefore does not account for 
possible page file expansion.

Process Explorer’s System Information display shows an additional piece of information about 
system commit usage—namely, the percentage of the peak as compared to the limit and the 
current usage as compared to the limit:

Stacks

Whenever a thread runs, it must have access to a temporary storage location in which to store function 
parameters, local variables, and the return address after a function call. This part of memory is called a 
stack. On Windows, the memory manager provides two stacks for each thread: the user stack and the 
kernel stack, as well as per-processor stacks called DPC stacks. Chapter 2 briefly discussed how system 
calls cause the thread to switch from a user stack to its kernel stack. Now we’ll look at some extra ser-
vices the memory manager provides to efficiently use stack space.
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User stacks
When a thread is created, the memory manager automatically reserves a predetermined amount of 
virtual memory, which by default is 1 MB. This amount can be configured in the call to the Create-
Thread or CreateRemoteThread(Ex) function or when compiling the application by using the /
STACK:reserve switch in the Microsoft C/C++ compiler, which stores the information in the image 
header. Although 1 MB is reserved, only the first page of the stack will be committed (unless the PE 
header of the image specifies otherwise), along with a guard page. When a thread’s stack grows large 
enough to touch the guard page, an exception occurs, causing an attempt to allocate another guard. 
Through this mechanism, a user stack doesn’t immediately consume all 1 MB of committed memory 
but instead grows with demand. (However, it will never shrink back.)

EXPERIMENT: Creating the maximum number of threads
With only 2 GB of user address space available to each 32-bit process, the relatively large 
memory that is reserved for each thread’s stack allows for an easy calculation of the maximum 
number of threads that a process can support: a little less than 2,048, for a total of nearly 2 GB of 
memory (unless the increaseuserva BCD option is used and the image is large address space 
aware). By forcing each new thread to use the smallest possible stack reservation size, 64 KB, the 
limit can grow to about 30,000 threads. You can test this for yourself by using the TestLimit utility 
from Sysinternals. Here is some sample output:

C:\Tools\Sysinternals>Testlimit.exe -t -n 64 
 
Testlimit v5.24 - test Windows limits 
Copyright (C) 2012-2015 Mark Russinovich 
Sysinternals - www.sysinternals.com 
 
Process ID: 17260 
 
Creating threads with 64 KB stacks... 
Created 29900 threads. Lasterror: 8 

If you attempt this experiment on a 64-bit Windows installation (with 128 TB of user address 
space available), you would expect to see potentially hundreds of thousands of threads created 
(assuming sufficient memory was available). Interestingly, however, TestLimit actually creates 
fewer threads than on a 32-bit machine. This has to do with the fact that Testlimit.exe is a 32-bit 
application and thus runs under the Wow64 environment. (See Chapter 8 in Part 2 for more 
information on Wow64.) Each thread will therefore have not only its 32-bit Wow64 stack but 
also its 64-bit stack, thus consuming more than twice the memory, while keeping only 2 GB of 
address space. To properly test the thread-creation limit on 64-bit Windows, use the Testlimit64.
exe binary instead.

You will need to terminate TestLimit with Process Explorer or Task Manager. You cannot use 
Ctrl+C to break the application because this operation itself creates a new thread, which will not 
be possible once memory is exhausted.

http://www.sysinternals.com
http://www.sysinternals.com
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Kernel stacks
Although user stack sizes are typically 1 MB, the amount of memory dedicated to the kernel stack is 
significantly smaller: 12 KB on 32-bit systems and 16 KB on 64-bit systems, followed by another guard 
page, for a total of 16 or 20 KB of virtual address space. Code running in the kernel is expected to have 
less recursion than user code, as well as contain more efficient variable use and keep stack buffer sizes 
low. Because kernel stacks live in system address space (which is shared by all processes), their memory 
usage has a bigger impact of the system.

Although kernel code is usually not recursive, interactions between graphics system calls handled by 
Win32k.sys and its subsequent callbacks into user mode can cause recursive re-entries in the kernel on 
the same kernel stack. As such, Windows provides a mechanism for dynamically expanding and shrink-
ing the kernel stack from its initial size. As each additional graphics call is performed from the same 
thread, another 16 KB kernel stack is allocated. (This happens anywhere in system address space. The 
memory manager provides the ability to jump stacks when nearing the guard page.) Whenever each 
call returns to the caller (unwinding), the memory manager frees the additional kernel stack that had 
been allocated, as shown in Figure 5-28. This mechanism allows reliable support for recursive system 
calls as well as efficient use of system address space. It is provided for use by driver developers when 
performing recursive callouts through the KeExpandKernelStackAndCallout(Ex) APIs, as necessary.

FIGURE 5-28 Kernel stack jumping.

EXPERIMENT: Viewing kernel-stack usage
You can use the RamMap tool from Sysinternals to display the physical memory currently being 
occupied by kernel stacks. Here’s a screenshot from the Use Counts tab:

To view kernel-stack usage, try the following:

1. Repeat the previous TestLimit experiment, but don’t terminate TestLimit yet. 

2. Switch to RamMap.

3. Open the File menu and select Refresh (or press F5). You should see a much higher 
kernel stack size:
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Running TestLimit a few more times (without closing previous instances) would easily exhaust 
physical memory on a 32-bit system, and this limitation results in one of the primary limits on 
system-wide 32-bit thread count.

DPC stack
Windows keeps a per-processor DPC stack available for use by the system whenever DPCs are executing. 
This approach isolates the DPC code from the current thread’s kernel stack. (This is unrelated to the 
DPC’s actual operation because DPCs run in arbitrary thread context. See Chapter 6 for more on DPCs.) 
The DPC stack is also configured as the initial stack for handling the sysenter (x86), svc (ARM), or  
syscall (x64) instruction during a system call. The CPU is responsible for switching the stack when 
these instructions are executed, based on one of the model-specific registers (MSRs on x86/x64). 
However, Windows does not want to reprogram the MSR for every context switch because that is an 
expensive operation. Windows therefore configures the per-processor DPC stack pointer in the MSR.

Virtual address descriptors

The memory manager uses a demand-paging algorithm to know when to load pages into memory, 
waiting until a thread references an address and incurs a page fault before retrieving the page from 
disk. Like copy-on-write, demand paging is a form of lazy evaluation—waiting to perform a task until it 
is required.

The memory manager uses lazy evaluation not only to bring pages into memory but also to con-
struct the page tables required to describe new pages. For example, when a thread commits a large 
region of virtual memory with VirtualAlloc, the memory manager could immediately construct the 
page tables required to access the entire range of allocated memory. But what if some of that range 
is never accessed? Creating page tables for the entire range would be a wasted effort. Instead, the 
memory manager waits to create a page table until a thread incurs a page fault. It then creates a page 
table for that page. This method significantly improves performance for processes that reserve and/or 
commit a lot of memory but access it sparsely.

The virtual address space that would be occupied by such as-yet-nonexistent page tables is charged 
to the process page file quota and to the system commit charge. This ensures that space will be avail-
able for them should they actually be created. With the lazy-evaluation algorithm, allocating even 
large blocks of memory is a fast operation. When a thread allocates memory, the memory manager 
must respond with a range of addresses for the thread to use. To do this, the memory manager 
maintains another set of data structures to keep track of which virtual addresses have been reserved 
in the process’s address space and which have not. These data structures are known as Virtual Address 
Descriptors (VADs). VADs are allocated in non-paged pool.
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Process VADs
For each process, the memory manager maintains a set of VADs that describes the status of the process’s 
address space. VADs are organized into a self-balancing AVL tree (named after its inventors, Adelson-
Velsky and Landis, where the heights of the two child subtrees of any node differ by at most 1; this makes 
the insertion, lookup, and deletion very fast). On average, this results in the fewest comparisons when 
searching for a VAD corresponding with a virtual address. There is one VAD for each virtually contiguous 
range of not-free virtual addresses that all have the same characteristics (reserved versus committed 
versus mapped, memory access protection, and so on). Figure 5-29 shows a diagram of a VAD tree.

FIGURE 5-29 VADs.

When a process reserves address space or maps a view of a section, the memory manager creates a 
VAD to store any information supplied by the allocation request, such as the range of addresses being 
reserved, whether the range will be shared or private, whether a child process can inherit the contents 
of the range, and the page protection applied to pages in the range.

When a thread first accesses an address, the memory manager must create a PTE for the page con-
taining the address. To do so, it finds the VAD whose address range contains the accessed address and 
uses the information it finds to fill in the PTE. If the address falls outside the range covered by the VAD or 
in a range of addresses that are reserved but not committed, the memory manager knows that the thread 
didn’t allocate the memory before attempting to use it and therefore generates an access violation.

EXPERIMENT: Viewing VADs
You can use the kernel debugger’s !vad command to view the VADs for a given process. First find 
the address of the root of the VAD tree with the !process command. Then specify that address 
to the !vad command, as shown in the following example of the VAD tree for a process running 
Explorer.exe:

lkd> !process 0 1 explorer.exe 
PROCESS ffffc8069382e080 
    SessionId: 1  Cid: 43e0    Peb: 00bc5000  ParentCid: 0338 
    DirBase: 554ab7000  ObjectTable: ffffda8f62811d80  HandleCount: 823. 
    Image: explorer.exe 
    VadRoot ffffc806912337f0 Vads 505 Clone 0 Private 5088. Modified 2146. Locked 0. 
... 
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lkd> !vad ffffc8068ae1e470 
VAD           Level     Start       End Commit 
ffffc80689bc52b0  9       640       64f      0 Mapped       READWRITE          
Pagefile section, shared commit 0x10 
ffffc80689be6900  8       650       651      0 Mapped       READONLY           
Pagefile section, shared commit 0x2 
ffffc80689bc4290  9       660       675      0 Mapped       READONLY           
Pagefile section, shared commit 0x16 
ffffc8068ae1f320  7       680       6ff     32 Private      READWRITE 
ffffc80689b290b0  9       700       701      2 Private      READWRITE 
ffffc80688da04f0  8       710       711      2 Private      READWRITE 
ffffc80682795760  6       720       723      0 Mapped       READONLY           
Pagefile section, shared commit 0x4 
ffffc80688d85670 10       730       731      0 Mapped       READONLY           
Pagefile section, shared commit 0x2 
ffffc80689bdd9e0  9       740       741      2 Private      READWRITE 
ffffc80688da57b0  8       750       755      0 Mapped       READONLY            
\Windows\en-US\explorer.exe.mui 
... 
Total VADs: 574, average level: 8, maximum depth: 10 
Total private commit: 0x3420 pages (53376 KB) 
Total shared commit:  0x478 pages (4576 KB)

Rotate VADs
A video card driver must typically copy data from the user-mode graphics application to various other 
system memory, including the video card memory and the AGP port’s memory, both of which have 
different caching attributes as well as addresses. To quickly allow these different views of memory to be 
mapped into a process, and to support the different cache attributes, the memory manager implements 
rotate VADs, which allow video drivers to transfer data directly by using the GPU and to rotate unneeded 
memory in and out of the process view pages on demand. Figure 5-30 shows an example of how the 
same virtual address can rotate between video RAM and virtual memory.

FIGURE 5-30 Rotate VADs.
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NUMA

Each new release of Windows provides new enhancements to the memory manager to make better use 
of non-uniform memory architecture (NUMA) machines, such as large server systems as well as Intel 
i7 and AMD Opteron SMP workstations. The NUMA support in the memory manager adds intelligent 
knowledge of node information such as location, topology, and access costs to allow applications and 
drivers to take advantage of NUMA capabilities, while abstracting the underlying hardware details.

When the memory manager is initializing, it calls the MiComputeNumaCosts function to perform 
various page and cache operations on different nodes. It then computes the time it took for those 
operations to complete. Based on this information, it builds a node graph of access costs (the distance 
between a node and any other node on the system). When the system requires pages for a given 
operation, it consults the graph to choose the most optimal node (that is, the closest). If no memory is 
available on that node, it chooses the next closest node, and so on.

Although the memory manager ensures that, whenever possible, memory allocations come from 
the ideal processor’s node (the ideal node) of the thread making the allocation, it also provides func-
tions that allow applications to choose their own node, such as the VirtualAllocExNuma, Create-
FileMappingNuma, MapViewOfFileExNuma, and AllocateUserPhysicalPagesNuma APIs. 

The ideal node isn’t used only when applications allocate memory but also during kernel operation 
and page faults. For example, when a thread running on a non-ideal processor takes a page fault, the 
memory manager won’t use the current node. Instead, it will allocate memory from the thread’s ideal 
node. Although this might result in slower access time while the thread is still running on this CPU, 
overall memory access will be optimized as the thread migrates back to its ideal node. In any case, if 
the ideal node is out of resources, the closest node to the ideal node is chosen and not a random other 
node. Just like user-mode applications, however, drivers can specify their own node when using APIs 
such as MmAllocatePagesForMdlEx or MmAllocateContiguousMemorySpecifyCacheNode.

Various memory manager pools and data structures are also optimized to take advantage of NUMA 
nodes. The memory manager tries to evenly use physical memory from all the nodes on the system to 
hold the non-paged pool. When a non-paged pool allocation is made, the memory manager uses the 
ideal node as an index to choose a virtual memory address range inside non-paged pool that cor-
responds to physical memory belonging to this node. In addition, per-NUMA node pool free lists are 
created to efficiently leverage these types of memory configurations. Apart from non-paged pool, 
the system cache and system PTEs are also similarly allocated across all nodes, as well as the memory 
manager’s look-aside lists.

Finally, when the system needs to zero pages, it does so in parallel across different NUMA nodes by 
creating threads with NUMA affinities that correspond to the nodes in which the physical memory is 
located. The logical prefetcher and SuperFetch (described in the section “Proactive memory manage-
ment [SuperFetch]”) also use the ideal node of the target process when prefetching, while soft page 
faults cause pages to migrate to the ideal node of the faulting thread.
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Section objects

As noted earlier in this chapter in the “Shared memory and mapped files” section, the section object, 
which the Windows subsystem calls a file mapping object, represents a block of memory that two or 
more processes can share. A section object can be mapped to the paging file or to another file on disk.

The executive uses sections to load executable images into memory, and the cache manager uses them 
to access data in a cached file. (See Chapter 14 in Part 2 for more information on how the cache manager 
uses section objects.) You can also use section objects to map a file into a process address space. The file can 
then be accessed as a large array by mapping different views of the section object and reading or writing to 
memory rather than to the file—an activity called mapped file I/O. When the program accesses an invalid 
page (one not in physical memory), a page fault occurs and the memory manager automatically brings 
the page into memory from the mapped file or page file. If the application modifies the page, the memory 
manager writes the changes back to the file during its normal paging operations. (Alternatively, the applica-
tion can flush a view explicitly by using the Windows FlushViewOfFile function.)

Like other objects, section objects are allocated and deallocated by the object manager. The object 
manager creates and initializes an object header, which it uses to manage the objects; the memory 
manager defines the body of the section object. (See Chapter 8 in Part 2 for more on the object man-
ager). The memory manager also implements services that user-mode threads can call to retrieve and 
change the attributes stored in the body of section objects. The structure of a section object is shown 
in Figure 5-31. Table 5-14 summarizes the unique attributes stored in section objects.

FIGURE 5-31 A section object.

TABLE 5-14 Section object body attributes

Attribute Purpose

Maximum size This is the largest size to which the section can grow in bytes. If mapping a file, this is the maximum 
size of the file.

Page protection This is page-based memory protection assigned to all pages in the section when it is created.

Paging file or 
mapped file

This indicates whether the section is created empty (backed by the paging file—as explained earlier, 
page-file-backed sections use page-file resources only when the pages need to be written out to 
disk) or loaded with a file (backed by the mapped file).

Based or not 
based

This indicates whether a section is a based section, which must appear at the same virtual address 
for all processes sharing it, or a non-based section, which can appear at different virtual addresses 
for different processes.
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EXPERIMENT: Viewing section objects
You can use Process Explorer from Sysinternals to see files mapped by a process. Follow these steps:

1. Open the View menu, choose Lower Pane View, and select DLLs.

2. Open the View menu, choose Select Columns, choose DLL, and enable the Mapping 
Type column. 

3. Notice the files marked as Data in the Mapping column. These are mapped files rather 
than DLLs and other files the image loader loads as modules. Section objects that are 
backed by a page file are indicated in the Name column as <Pagefile Backed>. Other-
wise, the file name is shown.

Another way to view section objects is to switch to handle view (open the View menu, choose 
Lower Pane View, and select Handles) and look for objects of type Section. In the following 
screenshot, the object name (if it exists) is shown. This is not the file name backing the section  
(if any); it’s the name given to the section in the object manager’s namespace. (See Chapter 8 in 
Part 2 for more on the object manager.) Double-clicking the entry shows more information on 
the object, such as the number of open handles and its security descriptor.
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The data structures maintained by the memory manager that describe mapped sections are shown 
in Figure 5-32. These structures ensure that data read from mapped files is consistent regardless of the 
type of access (open file, mapped file, and so on). For each open file (represented by a file object), there 
is a single section object pointers structure. This structure is the key to maintaining data consistency 
for all types of file access as well as to providing caching for files. The section object pointers structure 
points to one or two control areas. One control area is used to map the file when it is accessed as a 
data file and the other is used to map the file when it is run as an executable image. A control area in 
turn points to subsection structures that describe the mapping information for each section of the file 
(read-only, read/write, copy-on-write, and so on). The control area also points to a segment structure 
allocated in paged pool, which in turn points to the prototype PTEs used to map to the actual pages 
mapped by the section object. As described earlier in this chapter, process page tables point to these 
prototype PTEs, which in turn map the pages being referenced.

FIGURE 5-32 Internal section structures.



408 CHAPTER 5 Memory management

Although Windows ensures that any process that accesses (reads or writes) a file will always see 
the same consistent data, there is one case in which two copies of pages of a file can reside in physical 
memory. (Even in this case, all accessors get the latest copy and data consistency is maintained.) This 
duplication can happen when an image file has been accessed as a data file (having been read or writ-
ten) and is then run as an executable image. (An example might be when an image is linked and then 
run; the linker had the file open for data access, and then when the image was run, the image loader 
mapped it as an executable.) Internally, the following actions occur:

1. If the executable file was created using the file-mapping APIs or the cache manager, a data 
control area is created to represent the data pages in the image file being read or written.

2. When the image is run and the section object is created to map the image as an executable,  
the memory manager finds that the section object pointers for the image file point to a data 
control area and flushes the section. This step is necessary to ensure that any modified pages 
have been written to disk before accessing the image through the image control area.

3. The memory manager creates a control area for the image file.

4. As the image begins execution, its (read-only) pages are faulted in from the image file or cop-
ied directly over from the data file if the corresponding data page is resident.

Because the pages mapped by the data control area might still be resident (on the standby list), this 
is the one case in which two copies of the same data are in two different pages in memory. However, 
this duplication doesn’t result in a data consistency issue. This is because, as mentioned, the data con-
trol area has already been flushed to disk, so the pages read from the image are up to date (and these 
pages are never written back to disk).

EXPERIMENT: Viewing control areas
To find the address of the control area structures for a file, you must first get the address of the 
file object in question. You can obtain this address through the kernel debugger by dumping the 
process handle table with the !handle command and noting the object address of a file object. 
Although the kernel debugger !file command displays the basic information in a file object, it 
doesn’t display the pointer to the section object pointers structure. Then, using the dt command, 
format the file object to get the address of the section object pointers structure. This structure 
consists of three pointers: a pointer to the data control area, a pointer to the shared cache map 
(explained in Chapter 14 in Part 2), and a pointer to the image control area. From the section ob-
ject pointers structure, you can obtain the address of a control area for the file (if one exists) and 
feed that address into the !ca command.

For example, if you open a PowerPoint file and use !handle to display the handle table for 
that process, you will find an open handle to the PowerPoint file (you can do a text search). (For 
more information on using !handle, see the “Object manager” section in Chapter 8 in Part 2 or 
the debugger documentation.)

lkd> !process 0 0 powerpnt.exe 
PROCESS ffffc8068913e080 
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    SessionId: 1  Cid: 2b64    Peb: 01249000  ParentCid: 1d38 
    DirBase: 252e25000  ObjectTable: ffffda8f49269c40  HandleCount: 1915. 
    Image: POWERPNT.EXE 
lkd> .process /p ffffc8068913e080 
Implicit process is now ffffc806'8913e080 
lkd> !handle 
... 
0c08: Object: ffffc8068f56a630  GrantedAccess: 00120089 Entry: ffffda8f491d0020 
Object: ffffc8068f56a630  Type: (ffffc8068256cb00) File 
    ObjectHeader: ffffc8068f56a600 (new version) 
        HandleCount: 1  PointerCount: 30839 
        Directory Object: 00000000  Name: \WindowsInternals\7thEdition\Chapter05\
diagrams.pptx {HarddiskVolume2} 
...

Taking the file object address (FFFFC8068F56A630) and formatting it with dt results in this:

lkd> dt nt!_file_object ffffc8068f56a630 
   +0x000 Type             : 0n5 
   +0x002 Size             : 0n216 
   +0x008 DeviceObject     : 0xffffc806'8408cb40 _DEVICE_OBJECT 
   +0x010 Vpb              : 0xffffc806'82feba00 _VPB 
   +0x018 FsContext        : 0xffffda8f'5137cbd0 Void 
   +0x020 FsContext2       : 0xffffda8f'4366d590 Void 
   +0x028 SectionObjectPointer : 0xffffc806'8ec0c558 _SECTION_OBJECT_POINTERS 
...

Taking the address of the section object pointers structure and formatting it with dt results in 
this:

lkd> dt nt!_section_object_pointers 0xffffc806'8ec0c558 
   +0x000 DataSectionObject : 0xffffc806'8e838c10 Void 
   +0x008 SharedCacheMap   : 0xffffc806'8d967bd0 Void 
   +0x010 ImageSectionObject : (null)

Finally, you can use !ca to display the control area using the address:

lkd> !ca 0xffffc806'8e838c10 
ControlArea  @ ffffc8068e838c10 
  Segment      ffffda8f4d97fdc0  Flink      ffffc8068ecf97b8  Blink        
ffffc8068ecf97b8 
  Section Ref                 1  Pfn Ref                 58  Mapped Views          2 
  User Ref                    0  WaitForDel               0  Flush Count           0 
  File Object  ffffc8068e5d3d50  ModWriteCount            0  System Views          2 
  WritableRefs                0 
  Flags (8080) File WasPurged   \WindowsInternalsBook\7thEdition\Chapter05\diagrams.pptx 
 
Segment @ ffffda8f4d97fdc0 
  ControlArea     ffffc8068e838c10  ExtendInfo    0000000000000000 
  Total Ptes                    80 
  Segment Size               80000  Committed                    0 
  Flags (c0000) ProtectionMask 
 



410 CHAPTER 5 Memory management

Subsection 1 @ ffffc8068e838c90 
  ControlArea  ffffc8068e838c10  Starting Sector        0  Number Of Sectors   58 
  Base Pte     ffffda8f48eb6d40  Ptes In Subsect       58  Unused Ptes          0 
  Flags                       d  Sector Offset          0  Protection           6 
  Accessed 
  Flink        ffffc8068bb7fcf0  Blink   ffffc8068bb7fcf0  MappedViews          2 
 
Subsection 2 @ ffffc8068c2e05b0 
  ControlArea  ffffc8068e838c10  Starting Sector       58  Number Of Sectors   28 
  Base Pte     ffffda8f3cc45000  Ptes In Subsect       28  Unused Ptes        1d8 
  Flags                       d  Sector Offset          0  Protection           6 
  Accessed 
  Flink        ffffc8068c2e0600  Blink   ffffc8068c2e0600  MappedViews          1

Another technique is to display the list of all control areas with the !memusage command. The 
following excerpt is from the output of this command. (The command might take a long time to 
complete on a system with a large amount of memory.)

lkd> !memusage 
 loading PFN database 
loading (100% complete) 
 
Compiling memory usage data (99% Complete). 
 
             Zeroed:    98533 (  394132 kb) 
               Free:     1405 (    5620 kb) 
            Standby:   331221 ( 1324884 kb) 
           Modified:    83806 (  335224 kb) 
    ModifiedNoWrite:      116 (     464 kb) 
       Active/Valid:  1556154 ( 6224616 kb) 
         Transition:        5 (      20 kb) 
          SLIST/Bad:     1614 (    6456 kb) 
            Unknown:        0 (       0 kb) 
              TOTAL:  2072854 ( 8291416 kb) 
 
Dangling Yes Commit:      130 (     520 kb) 
 Dangling No Commit:   514812 ( 2059248 kb) 
  Building kernel map 
  Finished building kernel map 
 
 (Master1 0 for 1c0) 
 
 (Master1 0 for e80) 
 
 (Master1 0 for ec0) 
 
 (Master1 0 for f00) 
Scanning PFN database - (02% complete) 
 
 (Master1 0 for de80) 
Scanning PFN database - (100% complete) 
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  Usage Summary (in Kb): 
Control       Valid Standby Dirty Shared Locked PageTables  name 
ffffffffd 1684540      0     0     0 1684540     0    AWE 
ffff8c0b7e4797d0    64      0     0     0     0     0  mapped_file( Microsoft-
Windows-Kernel-PnP%4Configuration.evtx ) 
ffff8c0b7e481650     0      4     0     0     0     0  mapped_file( No name for file ) 
ffff8c0b7e493c00     0     40     0     0     0     0  mapped_file( FSD-{ED5680AF-
0543-4367-A331-850F30190B44}.FSD ) 
ffff8c0b7e4a1b30     8     12     0     0     0     0  mapped_file( msidle.dll ) 
ffff8c0b7e4a7c40   128      0     0     0     0     0  mapped_file( Microsoft-
Windows-Diagnosis-PCW%4Operational.evtx ) 
ffff8c0b7e4a9010    16      8     0    16     0     0  mapped_file( netjoin.dll 
)8a04db00     ... 
ffff8c0b7f8cc360  8212      0     0     0     0     0  mapped_file( OUTLOOK.EXE ) 
ffff8c0b7f8cd1a0    52     28     0     0     0     0  mapped_file( verdanab.ttf ) 
ffff8c0b7f8ce910     0      4     0     0     0     0  mapped_file( No name for file ) 
ffff8c0b7f8d3590     0      4     0     0     0     0  mapped_file( No name for file ) 
…

The Control column points to the control area structure that describes the mapped file. You 
can display control areas, segments, and subsections with the kernel debugger !ca command. 
For example, to dump the control area for the mapped file Outlook.exe in this example, type the 
!ca command followed by the Control column number, as shown here:

lkd> !ca ffff8c0b7f8cc360 
 
ControlArea  @ ffff8c0b7f8cc360 
  Segment      ffffdf08d8a55670  Flink      ffff8c0b834f1fd0  Blink        
ffff8c0b834f1fd0 
  Section Ref                 1  Pfn Ref               806  Mapped Views           1 
  User Ref                    2  WaitForDel              0  Flush Count         c5a0 
  File Object  ffff8c0b7f0e94e0  ModWriteCount           0  System Views        ffff 
  WritableRefs         80000161 
  Flags (a0) Image File 
 
      \Program Files (x86)\Microsoft Office\root\Office16\OUTLOOK.EXE 
 
Segment @ ffffdf08d8a55670 
  ControlArea     ffff8c0b7f8cc360  BasedAddress  0000000000be0000 
  Total Ptes                  1609 
  Segment Size             1609000  Committed                    0 
  Image Commit                  f4  Image Info    ffffdf08d8a556b8 
  ProtoPtes       ffffdf08dab6b000 
  Flags (c20000) ProtectionMask 
 
Subsection 1 @ ffff8c0b7f8cc3e0 
  ControlArea  ffff8c0b7f8cc360  Starting Sector        0  Number Of Sectors    2 
  Base Pte     ffffdf08dab6b000  Ptes In Subsect        1  Unused Ptes          0 
  Flags                       2  Sector Offset          0  Protection           1 
 
Subsection 2 @ ffff8c0b7f8cc418 
  ControlArea  ffff8c0b7f8cc360  Starting Sector        2  Number Of Sectors 7b17 
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  Base Pte     ffffdf08dab6b008  Ptes In Subsect      f63  Unused Ptes          0 
  Flags                       6  Sector Offset          0  Protection           3 
 
Subsection 3 @ ffff8c0b7f8cc450 
  ControlArea  ffff8c0b7f8cc360  Starting Sector     7b19  Number Of Sectors 19a4 
  Base Pte     ffffdf08dab72b20  Ptes In Subsect      335  Unused Ptes          0 
  Flags                       2  Sector Offset          0  Protection           1 
 
Subsection 4 @ ffff8c0b7f8cc488 
  ControlArea  ffff8c0b7f8cc360  Starting Sector     94bd  Number Of Sectors  764 
  Base Pte     ffffdf08dab744c8  Ptes In Subsect       f2  Unused Ptes          0 
  Flags                       a  Sector Offset          0  Protection           5 
 
Subsection 5 @ ffff8c0b7f8cc4c0 
  ControlArea  ffff8c0b7f8cc360  Starting Sector     9c21  Number Of Sectors    1 
  Base Pte     ffffdf08dab74c58  Ptes In Subsect        1  Unused Ptes          0 
  Flags                       a  Sector Offset          0  Protection           5 
 
Subsection 6 @ ffff8c0b7f8cc4f8 
  ControlArea  ffff8c0b7f8cc360  Starting Sector     9c22  Number Of Sectors    1 
  Base Pte     ffffdf08dab74c60  Ptes In Subsect        1  Unused Ptes          0 
  Flags                       a  Sector Offset          0  Protection           5 
 
Subsection 7 @ ffff8c0b7f8cc530 
  ControlArea  ffff8c0b7f8cc360  Starting Sector     9c23  Number Of Sectors  c62 
  Base Pte     ffffdf08dab74c68  Ptes In Subsect      18d  Unused Ptes          0 
  Flags                       2  Sector Offset          0  Protection           1 
 
Subsection 8 @ ffff8c0b7f8cc568 
  ControlArea  ffff8c0b7f8cc360  Starting Sector     a885  Number Of Sectors  771 
  Base Pte     ffffdf08dab758d0  Ptes In Subsect       ef  Unused Ptes          0 
  Flags                       2  Sector Offset          0  Protection           1

Working sets

Now that you’ve looked at how Windows keeps track of physical memory and how much memory it 
can support, we’ll explain how Windows keeps a subset of virtual addresses in physical memory.

As you’ll recall, a subset of virtual pages resident in physical memory is called a working set. There 
are three kinds of working sets:

 ■ Process working sets These contain the pages referenced by threads within a single process.

 ■ System working sets These contain the resident subset of the pageable system code (for 
example, Ntoskrnl.exe and drivers), paged pool, and the system cache.

 ■ Session’s working set Each session has a working set that contains the resident subset of the 
kernel-mode session-specific data structures allocated by the kernel-mode part of the Windows 
subsystem (Win32k.sys), session paged pool, session mapped views, and other session-space 
device drivers.
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Before examining the details of each type of working set, let’s look at the overall policy for deciding 
which pages are brought into physical memory and how long they remain.

Demand paging
The Windows memory manager uses a demand-paging algorithm with clustering to load pages into 
memory. When a thread receives a page fault, the memory manager loads into memory the faulted 
page plus a small number of pages preceding and/or following it. This strategy attempts to minimize 
the number of paging I/Os a thread will incur. Because programs—especially large ones—tend to ex-
ecute in small regions of their address space at any given time, loading clusters of virtual pages reduces 
the number of disk reads. For page faults that reference data pages in images, the cluster size is three 
pages. For all other page faults, the cluster size is seven pages.

However, a demand-paging policy can result in a process incurring many page faults when its 
threads first begin executing or when they resume execution at a later point. To optimize the startup of 
a process (and the system), Windows has an intelligent prefetch engine called the logical prefetcher, de-
scribed in the next section. Further optimization and prefetching is performed by another component, 
called SuperFetch, described later in the chapter.

Logical prefetcher and ReadyBoot
During a typical system boot or application startup, the order of faults is such that some pages are 
brought in from one part of a file, then perhaps from a distant part of the same file, then from a dif-
ferent file, then perhaps from a directory, and then again from the first file. This jumping around slows 
down each access considerably. Indeed, analysis shows that disk seek times are a dominant factor 
in slowing boot and application startup times. By prefetching batches of pages all at once, you can 
achieve a more sensible ordering of access without excessive backtracking, thus improving the overall 
time for system and application startup. The pages that are needed can be known in advance because 
of the high correlation in accesses across boots or application starts.

The prefetcher tries to speed the boot process and application startup by monitoring the data 
and code accessed by boot and application startups and using that information at the beginning of 
a subsequent boot or application startup to read in the code and data. When the prefetcher is active, 
the memory manager notifies the prefetcher code in the kernel of page faults—those that require that 
data be read from disk (hard faults) and those that simply require data already in memory to be added 
to a process’s working set (soft faults). The prefetcher monitors the first 10 seconds of application 
startup. For boot, the prefetcher by default traces from system start through the 30 seconds following 
the start of the user’s shell (typically Explorer) or, failing that, through 60 seconds following Windows 
service initialization or through 120 seconds, whichever comes first.

The trace assembled in the kernel notes faults taken on the NTFS master file table (MFT) metadata 
file (if the application accesses files or directories on NTFS volumes), referenced files, and referenced 
directories. With the trace assembled, the kernel prefetcher code waits for requests from the prefetcher 
component of the Superfetch service (%SystemRoot%\System32\Sysmain.dll), running in an instance of 
Svchost. The Superfetch service is responsible for both the logical prefetching component in the kernel 
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and the SuperFetch component that we’ll talk about later. The prefetcher signals the \KernelObjects\
PrefetchTracesReady event to inform the Superfetch service that it can now query trace data.

Note You can enable or disable prefetching of the boot or application startups by editing 
the DWORD registry value EnablePrefetcher in the HKLM\SYSTEM\CurrentControlSet\
Control\Session Manager\Memory Management\PrefetchParameters key. Set it to 0 to dis-
able prefetching altogether, 1 to enable prefetching of only applications, 2 for prefetching 
of boot only, and 3 for both boot and applications.

The Superfetch service (which hosts the logical prefetcher, although it is a completely separate 
component from the actual SuperFetch functionality) performs a call to the internal NtQuerySystem-
Information system call requesting the trace data. The logical prefetcher post-processes the trace 
data, combining it with previously collected data, and writes it to a file in the %SystemRoot%\Prefetch 
folder. (See Figure 5-33.) The file’s name is the name of the application to which the trace applies followed 
by a dash and the hexadecimal representation of a hash of the file’s path. The file has a .pf extension. 
An example would be NOTEPAD.EXE-9FB27C0E.PF.

FIGURE 5-33 Prefetch folder.

There is an exception to the file name rule for images that host other components, including the 
Microsoft Management Console (%SystemRoot%\System32\Mmc.exe), the service hosting process 
(%SystemRoot%\System32\Svchost.exe), the RunDLL component (%SystemRoot%\System32\Rundll32.exe), 
and Dllhost (%SystemRoot%\System32\Dllhost.exe). Because add-on components are specified on the 
command line for these applications, the prefetcher includes the command line in the generated hash. 
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Thus, invocations of these applications with different components on the command line will result in 
different traces.

For a system boot, a different mechanism is used, called ReadyBoot. ReadyBoot tries to optimize I/O 
operations by creating large and efficient I/O reads and storing the data in RAM. When system compo-
nents require the data, it’s serviced through the stored RAM. This especially benefits mechanical disks, 
but can be also useful for SSDs. Information on the files to prefetch is stored after boot in the ReadyBoot 
subdirectory of the Prefetch directory shown in Figure 5-33. Once boot is complete, the cached data in 
RAM is deleted. For very fast SSDs, ReadyBoot is off by default because its gains are marginal, if any.

When the system boots or an application starts, the prefetcher is called to give it an opportunity 
to prefetch. The prefetcher looks in the prefetch directory to see if a trace file exists for the prefetch 
scenario in question. If it does, the prefetcher calls NTFS to prefetch any MFT metadata file references, 
reads in the contents of each of the directories referenced, and finally opens each file referenced. It 
then calls the memory manager function MmPrefetchPages to read in any data and code specified in 
the trace that’s not already in memory. The memory manager initiates all the reads asynchronously and 
then waits for them to complete before letting an application’s startup continue.

EXPERIMENT: Watching prefetch file reads and writes
If you capture a trace of application startup with Process Monitor from Sysinternals on a client 
edition of Windows (Windows Server editions disable prefetching by default), you can see the 
prefetcher check for and read the application’s prefetch file (if it exists). In addition, you can see 
the prefetcher write out a new copy of the file roughly 10 seconds after the application starts. 
Here is a capture of Notepad startup with an Include filter set to prefetch so that Process 
Monitor shows only accesses to the %SystemRoot%\Prefetch directory:
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Lines 0–3 show the Notepad prefetch file being read in the context of the Notepad process 
during its startup. Lines 7–19 (which have time stamps 10 seconds later than the first four lines) 
show the Superfetch service—running in the context of a Svchost process—writing out the 
updated prefetch file.

To minimize seeking even further, every three days or so, during system idle periods, the Superfetch 
service organizes a list of files and directories in the order that they are referenced during a boot or  
application start and stores it in a file named %SystemRoot%\Prefetch\Layout.ini (see Figure 5-34).  
This list also includes frequently accessed files tracked by Superfetch.

FIGURE 5-34 Prefetch defragmentation layout file.

It then launches the system defragmenter with a command-line option that tells the defragmenter 
to defragment based on the contents of the file instead of performing a full defrag. The defragmenter 
finds a contiguous area on each volume large enough to hold all the listed files and directories that 
reside on that volume and then moves them in their entirety into that area so that they are stored one 
after the other. Thus, future prefetch operations will even be more efficient because all the data read 
in is now stored physically on the disk in the order it will be read. Because the files defragmented for 
prefetching usually number only in the hundreds, this defragmentation is much faster than full-volume 
defragmentations.

Placement policy
When a thread receives a page fault, the memory manager must determine where in physical memory 
to put the virtual page. The set of rules it uses to determine the best position is called a placement 
policy. Windows considers the size of CPU memory caches when choosing page frames to minimize 
unnecessary thrashing of the cache.
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If physical memory is full when a page fault occurs, Windows uses a replacement policy to deter-
mine which virtual page must be removed from memory to make room for the new page. Common re-
placement policies include least recently used (LRU) and first in, first out (FIFO). The LRU algorithm (also 
known as the clock algorithm, as implemented in most versions of UNIX) requires the virtual memory 
system to track when a page in memory is used. When a new page frame is required, the page that 
hasn’t been used for the greatest amount of time is removed from the working set. The FIFO algorithm 
is somewhat simpler: It removes the page that has been in physical memory for the greatest amount of 
time, regardless of how often it’s been used.

Replacement policies can be further characterized as either global or local. A global replacement 
policy allows a page fault to be satisfied by any page frame, regardless of whether that frame is owned 
by another process. For example, a global replacement policy using the FIFO algorithm would locate 
the page that has been in memory the longest and would free it to satisfy a page fault. A local replace-
ment policy would limit its search for the oldest page to the set of pages already owned by the process 
that incurred the page fault. Be aware that global replacement policies make processes vulnerable to 
the behavior of other processes. For example, an ill-behaved application can undermine the entire 
operating system by inducing excessive paging activity in all processes.

Windows implements a combination of local and global replacement policies. When a working set 
reaches its limit and/or needs to be trimmed because of demands for physical memory, the memory 
manager removes pages from working sets until it has determined there are enough free pages.

Working set management
Every process starts with a default working set minimum of 50 pages and a working set maximum of 
345 pages. Although it has little effect, you can change these working set limits with the Windows 
SetProcessWorkingSetSize function, although you must have the increase scheduling priority (SeIn-
creaseBasePriorityPrivilege) privilege to do this. However, unless you have configured the pro-
cess to use hard working set limits, these limits are ignored. That is, the memory manager will permit 
a process to grow beyond its maximum if it is paging heavily and there is ample memory. (Conversely 
the memory manager will shrink a process below its working set minimum if it is not paging and there 
is a high demand for physical memory on the system.) You can set hard working set limits using the 
SetProcessWorkingSetSizeEx function along with the QUOTA_LIMITS_HARDWS_MAX_ENABLE flag, but 
it is almost always better to let the system manage your working set.

On 32 bit systems, the maximum working set size can’t exceed the system-wide maximum calcu-
lated at system initialization time, stored in the MiMaximumWorkingSet kernel variable. On x64 systems, 
physical memory would be the practical upper limit, as the virtual address space is so vast. The working 
set maximums are listed in Table 5-15.

TABLE 5-15 Upper limit for working set maximums

Windows Version Working Set Maximum

x86, ARM 2 GB—64 KB (0x7FFF0000)

x86 versions of Windows booted with increaseuserva 2 GB—64 KB + user virtual address increase

x64 (Windows 8, Server 2012) 8,192 GB (8 TB)

X64 (Windows 8.1, 10, Server 2012 R2, 2016) 128 TB
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When a page fault occurs, the process’s working set limits and the amount of free memory on 
the system are examined. If conditions permit, the memory manager allows a process to grow to its 
working set maximum (or beyond if the process does not have a hard working set limit and there are 
enough free pages available). However, if memory is tight, Windows replaces rather than adds pages in 
a working set when a fault occurs.

Windows attempts to keep memory available by writing modified pages to disk. Still, when modified 
pages are being generated at a very high rate, more memory is required to meet memory demands. 
Therefore, when physical memory runs low, the working set manager, a routine that runs in the context 
of the balance set manager system thread (described in the next section), initiates automatic working 
set trimming to increase the amount of free memory available in the system. You can also initiate work-
ing set trimming of your own process—for example, after process initialization—with the aforemen-
tioned Windows SetProcessWorkingSetSizeEx function.

The working set manager examines available memory and decides which, if any, working sets need 
to be trimmed. If there is ample memory, the working set manager calculates how many pages could 
be removed from working sets if needed. If trimming is needed, it looks at working sets that are above 
their minimum setting. It also dynamically adjusts the rate at which it examines working sets and 
arranges the list of processes that are candidates to be trimmed into an optimal order. For example, 
processes with many pages that have not been accessed recently are examined first; larger processes 
that have been idle longer are considered before smaller processes that are running more often; the 
process running the foreground application is considered last; and so on.

When the working set manager finds processes that are using more than their minimums, it looks 
for pages to remove from the working sets, making the pages available for other uses. If the amount of 
free memory is still too low, the working set manager continues removing pages from processes’ work-
ing sets until it achieves a minimum number of free pages on the system.

The working set manager tries to remove pages that haven’t been accessed recently by checking the 
accessed bit in the hardware PTE to see whether a page has been accessed. If the bit is clear, the page 
is said to be aged. That is, a count is incremented indicating that the page hasn’t been referenced since 
the last working set trim scan. Later, the age of pages is used to locate candidate pages to remove from 
the working set.

If the hardware PTE accessed bit is set, the working set manager clears it and goes on to examine 
the next page in the working set. In this way, if the accessed bit is clear the next time the working set 
manager examines the page, it knows that the page hasn’t been accessed since the last time it was 
examined. This scan for pages to remove continues through the working set list until either the number 
of desired pages has been removed or the scan has returned to the starting point. The next time the 
working set is trimmed, the scan picks up where it left off last.

EXPERIMENT: Viewing process working set sizes
You can use Performance Monitor to examine process working set sizes by looking at the perfor-
mance counters shown in the following table. Several other process viewer utilities (such as Task 
Manager and Process Explorer) also display the process working set size.
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Counter Description

Process: Working Set This notes the current size of the selected process’s working set in bytes.

Process: Working Set Peak This tracks the peak size of the selected process’s working set in bytes.

Process: Page Faults/Sec This indicates the number of page faults for the process that occur each 
second.

You can also get the total of all the process working sets by selecting the _Total process in 
the instance box in Performance Monitor. This process isn’t real; it’s simply a total of the process-
specific counters for all processes currently running on the system. The total you see is larger 
than the actual RAM being used, however, because the size of each process working set includes 
pages being shared by other processes. Thus, if two or more processes share a page, the page is 
counted in each process’s working set.

EXPERIMENT: Working set versus virtual size
Earlier in this chapter, you used the TestLimit utility to create two processes: one with a large 
amount of memory that was merely reserved, and one in which the memory was private commit-
ted. You then examined the difference between them with Process Explorer. Now we will create a 
third TestLimit process—one that not only commits the memory but also accesses it, thus bring-
ing it into its working set. Follow these steps:

1. Create a new TestLimit process.

C:\Users\pavely>testlimit -d 1 -c 800 
 
Testlimit v5.24 - test Windows limits 
Copyright (C) 2012-2015 Mark Russinovich 
Sysinternals - www.sysinternals.com 
 
Process ID: 13008 
 
Leaking private bytes with touch 1 MB at a time... 
Leaked 800 MB of private memory (800 MB total leaked). Lasterror: 0 
The operation completed successfully.

2. Open Process Explorer. 

3. Open the View menu, choose Select Columns, and click the Process Memory tab.

4. Enable the Private Bytes, Virtual Size, Working Set Size, WS Shareable Bytes, and 
WS Private Bytes counters. 

5. Find the three instances of TestLimit, as shown in the display:

http://www.sysinternals.com
http://www.sysinternals.com
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The new TestLimit process is the third one shown, PID 13008. It is the only one of the three that 
actually referenced the memory allocated, so it is the only one with a working set that reflects 
the size of the test allocation.

Note that this result is possible only on a system with enough RAM to allow the process to 
grow to such a size. Even on this system, not quite all of the private bytes (821,888 K) are in the 
WS Private portion of the working set. A small number of the private pages have been pushed 
out of the process working set due to replacement or have not been paged in yet.

EXPERIMENT: Viewing the working set list in the debugger
You can view the individual entries in the working set by using the kernel debugger !wsle command. 
The following example shows a partial output of the working set list of WinDbg (32-bit system):

lkd> !wsle 7 
 
Working Set Instance @ c0802d50 
Working Set Shared @ c0802e30 
 
    FirstFree      f7d  FirstDynamic        6 
    LastEntry     203d  NextSlot            6  LastInitialized     2063 
    NonDirect        0  HashTable           0  HashTableSize          0 
 
Reading the WSLE data .............................................................
....... 
 
Virtual Address           Age  Locked  ReferenceCount 
        c0603009          0        0        1 
        c0602009          0        0        1 
        c0601009          0        0        1 
        c0600009          0        0        1 
        c0802d59          6        0        1 
        c0604019          0        0        1 
        c0800409          2        0        1 
        c0006209          1        0        1 
        77290a05          5        0        1 
        7739aa05          5        0        1 
        c0014209          1        0        1 
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        c0004209          1        0        1 
        72a37805          4        0        1 
          b50409          2        0        1 
          b52809          4        0        1 
        7731dc05          6        0        1 
          bbec09          6        0        1 
          bbfc09          6        0        1 
        6c801805          4        0        1 
        772a1405          2        0        1 
          944209          1        0        1 
        77316a05          5        0        1 
        773a4209          1        0        1 
        77317405          2        0        1 
        772d6605          3        0        1 
          a71409          2        0        1 
          c1d409          2        0        1 
        772d4a05          5        0        1 
        77342c05          6        0        1 
        6c80f605          3        0        1 
        77320405          2        0        1 
        77323205          1        0        1 
        77321405          2        0        1 
        7ffe0215          1        0        2 
          a5fc09          6        0        1 
        7735cc05          6        0        1 
…

Notice that some entries in the working set list are page table pages (the ones with addresses 
greater than 0xC0000000), some are from system DLLs (the ones in the 0x7nnnnnnn range), and 
some are from the code of Windbg.exe itself.

Balance set manager and swapper
Working set expansion and trimming take place in the context of a system thread called the balance set 
manager (KeBalanceSetManager function). The balance set manager is created during system initial-
ization. Although the balance set manager is technically part of the kernel, it calls the memory man-
ager’s working set manager (MmWorkingSetManager) to perform working set analysis and adjustment.

The balance set manager waits for two different event objects: an event that is signaled when a 
periodic timer set to fire once per second expires and an internal working set manager event that the 
memory manager signals at various points when it determines that working sets need to be adjusted. 
For example, if the system is experiencing a high page fault rate or the free list is too small, the memory 
manager wakes up the balance set manager so that it will call the working set manager to begin trim-
ming working sets. When memory is more plentiful, the working set manager permits faulting process-
es to gradually increase the size of their working sets by faulting pages back into memory. However, the 
working sets will grow only as needed.
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When the balance set manager wakes up because its 1-second timer has expired, it takes the follow-
ing steps:

1. If the system supports Virtual Secure Mode (VSM, Windows 10 and Server 2016), then the 
secure kernel is called to do its periodic housekeeping (VslSecureKernelPeriodicTick).

2. Calls a routine to adjust IRP credits to optimize the usage of the per-processor look-aside lists 
used in IRP completion (IoAdjustIrpCredits). This allows better scalability when certain  
processors are under heavy I/O load. (See Chapter 6 for more on IRPs.)

3. Checks the look-aside lists and adjusts their depths (if necessary) to improve access time and 
reduce pool usage and pool fragmentation (ExAdjustLookasideDepth).

4. Calls to adjust the Event Tracing for Windows (ETW) buffer pool size to use ETW memory buf-
fers more efficiently (EtwAdjustTraceBuffers). (For more on ETW, see Chapter 8 in Part 2.)

5. Calls the memory manager’s working set manager. The working set manager has its own inter-
nal counters that regulate when to perform working set trimming and how aggressively to trim.

6. Enforces execution time for jobs (PsEnforceExecutionLimits).

7. Every eighth time the balance set manager wakes up because its 1-second timer has expired, 
it signals an event that wakes up another system thread called the swapper (KeSwapProcess-
OrStack). It attempts to outswap kernel stacks for threads that have not executed for a long 
time. The swapper thread (which runs at priority 23) looks for threads that have been in a user 
mode wait state for 15 seconds. If it finds one, it puts the thread’s kernel stack in transition 
(moving the pages to the modified or standby lists) to reclaim its physical memory, operating 
on the principle that if a thread has been waiting that long, it’s going to be waiting even longer. 
When the last thread in a process has its kernel stack removed from memory, the process is 
marked to be entirely outswapped. That’s why, for example, processes that have been idle for a 
long time (such as Wininit or Winlogon) can have a working set size of zero.

System working sets
Just as processes have working sets that manage pageable portions of the process address space, the 
pageable code and data in the system address space is managed using three global working sets, col-
lectively known as the system working sets. These global working sets are as follows:

 ■ System cache working set This contains pages that are resident in the system cache.

 ■ Paged pool working set This contains pages that are resident in the paged pool.

 ■ System PTEs working set This contains pageable code and data from loaded drivers and the 
kernel image and pages from sections that have been mapped into the system space.

Table 5-16 shows where these system working set types are stored.
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TABLE 5-16 System working sets

System Working Set Type Stored in (Windows 8.x, Server 2012/R2) Stored in (Windows 10, Server 2016)

System cache MmSystemCacheWs MiState.SystemVa.SystemWs[0]

Paged pool MmPagedPoolWs MiState.SystemVa.SystemWs[2]

System PTEs MmSystemPtesWs MiState.SystemVa.SystemWs[1]

You can examine the sizes of these working sets or the sizes of the components that contribute to 
them with the performance counters or system variables shown in Table 5-17. (Note that the perfor-
mance counter values are in bytes, whereas the system variables are measured in pages.)

TABLE 5-17 System working set performance counters

Performance Counter (in Bytes) System Variable (in Pages) Description

Memory: Cache Bytes
Memory: System Cache Resident 
Bytes

WorkingSetSize member This is the physical memory 
consumed by the file system 
cache.

Memory: Cache Bytes Peak PeakWorkingSetSize member (Windows 10 
and 2016)
Peak member (Windows 8.x and 2012/R2)

This is the peak system  
working set size.

Memory: System Driver Resident 
Bytes

SystemPageCounts.SystemDriverPage 
(global, Windows 10 and Server 2016)
MmSystemDriverPage (global, Windows 8.x 
and Server 2012/R2)

This is the physical memory 
consumed by pageable  
device driver code.

Memory: Pool Paged Resident Bytes WorkingSetSize member This is the physical memory 
consumed by paged pool.

You can also examine the paging activity in the system cache working set by examining the Memory: 
Cache Faults/Sec performance counter. This counter describes page faults that occur in the system 
cache working set (both hard and soft). The PageFaultCount member in the system cache working set 
structure contains the value for this counter.

Memory notification events
Windows provides a way for user-mode processes and kernel-mode drivers to be notified when physi-
cal memory, paged pool, non-paged pool, and commit charge are low and/or plentiful. This informa-
tion can be used to determine memory usage as appropriate. For example, if available memory is 
low, the application can reduce memory consumption. If available paged pool is high, the driver can 
allocate more memory. Finally, the memory manager also provides an event that permits notification 
when corrupted pages have been detected.

User-mode processes can be notified only of low or high memory conditions. An application can call 
the CreateMemoryResourceNotification function, specifying whether low or high memory notifica-
tion is desired. The returned handle can be provided to any of the wait functions. When memory is low 
(or high), the wait completes, thus notifying the thread of the condition. Alternatively, the QueryMemory- 
ResourceNotification can be used to query the system memory condition at any time without 
blocking the calling thread.



424 CHAPTER 5 Memory management

Drivers, on the other hand, use the specific event name that the memory manager has set up in the \
KernelObjects object manager directory. This is because notification is implemented by the memory 
manager signaling one of the globally named event objects it defines, shown in Table 5-18. When a given 
memory condition is detected, the appropriate event is signaled, thus waking up any waiting threads.

TABLE 5-18 Memory manager notification events

Event Name Description

HighCommitCondition This event is set when the commit charge is near the maximum commit limit—in 
other words, memory usage is very high, very little space is available in physical 
memory or paging files, and the operating system cannot increase the size of its 
paging files.

HighMemoryCondition This event is set whenever the amount of free physical memory exceeds the  
defined amount.

HighNonPagedPoolCondition This event is set whenever the amount of non-paged pool exceeds the defined 
amount.

HighPagedPoolCondition This event is set whenever the amount of paged pool exceeds the defined 
amount.

LowCommitCondition This event is set when the commit charge is low relative to the current commit 
limit—in other words, memory usage is low and a lot of space is available in  
physical memory or paging files.

LowMemoryCondition This event is set whenever the amount of free physical memory falls below the 
defined amount.

LowNonPagedPoolCondition This event is set whenever the amount of free non-paged pool falls below the 
defined amount.

LowPagedPoolCondition This event is set whenever the amount of free paged pool falls below the defined 
amount.

MaximumCommitCondition This event is set when the commit charge is near the maximum commit limit—in 
other words, memory usage is very high, very little space is available in physical 
memory or paging files, and the operating system cannot increase the size or 
number of paging files.

MemoryErrors This indicates that a bad page (non-zeroed zero page) has been detected.

Note You can override the high and low memory values by adding the LowMemoryThreshold 
or HighMemoryThreshold DWORD registry value under HKLM\SYSTEM\CurrentControlSet\
Session Manager\Memory Management. This specifies the number of megabytes to use as 
the low or high threshold. You can also configure the system to crash when a bad page is 
detected instead of signaling a memory error event by setting the PageValidationAction 
DWORD registry value in the same key to 1.

EXPERIMENT: Viewing the memory resource notification events
To see the memory resource notification events, run WinObj from Sysinternals and click the 
KernelObjects folder. You will see both the low and high memory condition events shown in the 
pane on the right:
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If you double-click either event, you can see how many handles and/or references have been 
made to the objects. To see whether any processes in the system have requested memory resource 
notification, search the handle table for references to LowMemoryCondition or HighMemoryCondition. 
To do so, use Process Explorer’s Find menu (choose Find Handle or DLL) or use WinDbg. (For a 
description of the handle table, see the section “Object manager” in Chapter 8 in Part 2.)

Page frame number database

Several previous sections concentrated on the virtual view of a Windows process—page tables, PTEs, 
and VADs. The remainder of this chapter will explain how Windows manages physical memory, start-
ing with how Windows keeps track of physical memory. Whereas working sets describe the resident 
pages owned by a process or the system, the PFN database describes the state of each page in physical 
memory. The page states are listed in Table 5-19.

TABLE 5-19 Physical page states

Status Description

Active (also called valid) The page is part of a working set (either a process working set, a session working set, or a sys-
tem working set), or it’s not in any working set (for example, a non-paged kernel page) and a 
valid PTE usually points to it.

Transition This is a temporary state for a page that isn’t owned by a working set and isn’t on any paging 
list. A page is in this state when an I/O to the page is in progress. The PTE is encoded so that 
collided page faults can be recognized and handled properly. (This use of the term transition 
differs from the use of the word in the section on invalid PTEs. An invalid transition PTE refers 
to a page on the standby or modified list.)

Standby The page previously belonged to a working set but was removed or was prefetched/clustered 
directly into the standby list. The page wasn’t modified since it was last written to disk. The 
PTE still refers to the physical page but it is marked invalid and in transition.
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TABLE 5-19 Physical page states  (continued)

Status Description

Modified The page previously belonged to a working set but was removed. However, the page was modified while 
it was in use and its current contents haven’t yet been written to disk or remote storage. The PTE still refers 
to the physical page but is marked invalid and in transition. It must be written to the backing store before 
the physical page can be reused.

Modified 
no-write

This is the same as a modified page except that the page has been marked so that the memory manager’s 
modified page writer won’t write it to disk. The cache manager marks pages as modified no-write at the 
request of file system drivers. For example, NTFS uses this state for pages containing file system metadata 
so that it can first ensure that transaction log entries are flushed to disk before the pages they are protect-
ing are written to disk. (NTFS transaction logging is explained in Chapter 13, “File systems,” in Part 2.)

Free The page is free but has unspecified dirty data in it. For security reasons, these pages can’t be given as a 
user page to a user process without being initialized with zeroes, but they can be overwritten with new 
data (for example, from a file) before being given to a user process.

Zeroed The page is free and has been initialized with zeroes by the zero page thread or was determined to already 
contain zeroes.

Rom The page represents read-only memory.

Bad The page has generated parity or other hardware errors and can’t be used (or used as part of an enclave). 

The PFN database consists of an array of structures that represent each physical page of memory 
on the system. The PFN database and its relationship to page tables are shown in Figure 5-35. As this 
figure shows, valid PTEs usually point to entries in the PFN database (and the PFN index points to the 
page in physical memory), and the PFN database entries (for non-prototype PFNs) point back to the page 
table that is using them (if it is being used by a page table). For prototype PFNs, they point back to the 
prototype PTE.

FIGURE 5-35 Page tables and the PFN database.
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Of the page states listed in Table 5-19, six are organized into linked lists so that the memory man-
ager can quickly locate pages of a specific type. (Active/valid pages, transition pages, and overloaded 
“bad” pages aren’t in any system-wide page list.) Additionally, the standby state is associated with eight 
different lists ordered by priority. (We’ll talk about page priority later in this section.) Figure 5-36 shows 
an example of how these entries are linked together.

FIGURE 5-36 Page lists in the PFN database.

In the next section, you’ll find out how these linked lists are used to satisfy page faults and how 
pages move to and from the various lists.

EXPERIMENT: Viewing the PFN database
You can use the MemInfo tool from the Windows Internals book’s website to dump the size of the 
various paging lists by using the –s flag. The following is the output from this command:

C:\Tools>MemInfo.exe -s 
MemInfo v3.00 - Show PFN database information 
Copyright (C) 2007-2016 Alex Ionescu 
www.alex-ionescu.com 
 
Initializing PFN Database... Done 
 
PFN Database List Statistics 
              Zeroed:    4867 (   19468 kb) 

http://www.alex-ionescu.com
http://www.alex-ionescu.com
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                Free:    3076 (   12304 kb) 
             Standby: 4669104 (18676416 kb) 
            Modified:    7845 (   31380 kb) 
     ModifiedNoWrite:     117 (     468 kb) 
        Active/Valid: 3677990 (14711960 kb) 
          Transition:       5 (      20 kb) 
                 Bad:       0 (       0 kb) 
             Unknown:    1277 (    5108 kb) 
               TOTAL: 8364281 (33457124 kb)

Using the kernel debugger !memusage command, you can obtain similar information, al-
though this will take considerably longer to execute.

Page list dynamics
Figure 5-37 shows a state diagram for page frame transitions. For simplicity, the modified-no-write, 
bad and ROM lists aren’t shown.

FIGURE 5-37 State diagram for physical pages.

Page frames move between the paging lists in the following ways:

 ■ When the memory manager needs a zero-initialized page to service a demand-zero page fault 
(a reference to a page that is defined to be all zeroes or to a user-mode committed private page 
that has never been accessed), it first attempts to get one from the zero page list. If the list is 
empty, it gets one from the free page list and zeroes the page. If the free list is empty, it goes to 
the standby list and zeroes that page. 
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  One reason zero-initialized pages are needed is to meet security requirements such as the 
Common Criteria (CC). Most CC profiles specify that user-mode processes be given initialized 
page frames to prevent them from reading a previous process’s memory contents. Thus, the 
memory manager gives user-mode processes zeroed page frames unless the page is being 
read in from a backing store. In that case, the memory manager prefers to use non-zeroed page 
frames, initializing them with the data off the disk or remote storage. The zero page list is popu-
lated from the free list by the zero page thread system thread (thread 0 in the System process). 
The zero page thread waits on a gate object to signal it to go to work. When the free list has 
eight or more pages, this gate is signaled. However, the zero page thread will run only if at least 
one processor has no other threads running, because the zero page thread runs at priority 0 
and the lowest priority that a user thread can be set to is 1.

Note When memory needs to be zeroed as a result of a physical page allocation by 
a driver that calls MmAllocatePagesForMdl(Ex), by a Windows application that calls 
AllocateUserPhysicalPages or AllocateUserPhysicalPagesNuma, or when an application 
allocates large pages, the memory manager zeroes the memory by using a higher-perform-
ing function called MiZeroInParallel that maps larger regions than the zero page thread, 
which only zeroes a page at a time. In addition, on multiprocessor systems, the memory 
manager creates additional system threads to perform the zeroing in parallel (and in a 
NUMA-optimized fashion on NUMA platforms).

 ■ When the memory manager doesn’t require a zero-initialized page, it goes first to the free list. 
If that’s empty, it goes to the zeroed list. If the zeroed list is empty, it goes to the standby lists. 
Before the memory manager can use a page frame from the standby lists, it must first backtrack 
and remove the reference from the invalid PTE (or prototype PTE) that still points to the page 
frame. Because entries in the PFN database contain pointers back to the previous user’s page 
table page (or to a page of prototype PTE pool for shared pages), the memory manager can 
quickly find the PTE and make the appropriate change.

 ■ When a process must give up a page out of its working set either because it referenced a new 
page and its working set was full or the memory manager trimmed its working set, the page 
goes to the standby lists if the page was clean (not modified) or to the modified list if the page 
was modified while it was resident.

 ■ When a process exits, all the private pages go to the free list. Also, when the last reference to 
a page-file-backed section is closed, and the section has no remaining mapped views, these 
pages also go to the free list.

EXPERIMENT: The free and zero page lists
You can observe the release of private pages at process exit with Process Explorer’s System Infor-
mation display. Begin by creating a process with numerous private pages in its working set. We 
did this in an earlier experiment with the TestLimit utility:
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C:\Tools\Sysinternals>Testlimit.exe -d 1 -c 1500 
 
Testlimit v5.24 - test Windows limits 
Copyright (C) 2012-2015 Mark Russinovich 
Sysinternals - www.sysinternals.com 
 
Process ID: 13928 
 
Leaking private bytes with touch 1 MB at a time... 
Leaked 1500 MB of private memory (1500 MB total leaked). Lasterror: 0 
The operation completed successfully.

The –d option causes TestLimit to not only allocate the memory as private committed, but to 
touch it—that is, to access it. This causes physical memory to be allocated and assigned to the 
process to realize the area of private committed virtual memory. If there is sufficient available 
RAM on the system, the entire 1,500 MB should be in RAM for the process. The process will now 
wait until you cause it to exit or terminate (perhaps by pressing Ctrl+C in its command window). 
After you do, follow these steps:

1. Open Process Explorer.

2. Open the View menu, choose System Information, and click the Memory tab. 

3. Observe the size of the Free and Zeroed lists.

4. Terminate or exit the TestLimit process. 

You may see the free page list briefly increase in size. We say “may” because the zero page 
thread is awakened as soon as there are only eight pages on the free list, and it acts very quickly. 
Process Explorer updates this display only once per second, and it is likely that most of the pages 
were already zeroed and moved to the zeroed page list before it happened to “catch” this state. 
If you can see the temporary increase in the free list, you will then see it drop to zero, and a cor-
responding increase will occur in the zeroed page list. If not, you will simply see the increase in 
the zeroed list.

EXPERIMENT: The modified and standby page lists
You can observe the movement of pages from process working set to the modified page list and 
then to the standby page list with the VMMap and RAMMap Sysinternals tools and the live kernel 
debugger. Follow these steps:

1. Open RAMMap and observe the state of the quiet system. This is an x86 system with 
3 GB of RAM. The columns in this display represent the various page states shown in 
Figure 5-37 (a few of the columns not important to this discussion have been narrowed 
for ease of reference).

http://www.sysinternals.com
http://www.sysinternals.com
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2. The system has about 420 MB of RAM free (sum of the free and zeroed page lists). 
About 580 MB is on the standby list (hence part of “available,” but likely containing data 
recently lost from processes or being used by SuperFetch). About 830 MB is “active,” 
being mapped directly to virtual addresses via valid page table entries.

3. Each row further breaks down into page state by usage or origin (process private, 
mapped file, and so on). For example, at the moment, of the active 830 MB, about 400 
MB is due to process private allocations.

4. Now, as in the previous experiment, use the TestLimit utility to create a process with 
a large number of pages in its working set. Again, we will use the –d option to cause 
TestLimit to write to each page, but this time we will use it without a limit, so as to create 
as many private modified pages as possible:

C:\Tools\Sysinternals>Testlimit.exe -d 
 
Testlimit v5.24 - test Windows limits 
Copyright (C) 2012-2015 Mark Russinovich 
Sysinternals - www.sysinternals.com 
 
Process ID: 7548 
 
Leaking private bytes with touch (MB)... 
Leaked 1975 MB of private memory (1975 MB total leaked). Lasterror: 8

5. TestLimit has now created 1975 allocations of 1 MB each. In RAMMap, use the File |  
Refresh command to update the display (because of the cost of gathering its informa-
tion, RAMMap does not update continuously).

http://www.sysinternals.com
http://www.sysinternals.com
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6. You will see that over 2.8 GB are now active, of which 2.4 GB are in the Process Private 
row. This is due to the memory allocated and accessed by the TestLimit process. Note 
also that the standby, zeroed, and free lists are now much smaller. Most of the RAM  
allocated to TestLimit came from these lists.

7. Next, in RAMMap, check the process’s physical page allocations. Change to the  
Physical Pages tab, and set the filter at the bottom to the Process column and the 
value Testlimit.exe. This display shows all the physical pages that are part of the  
process working set.
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8. We would like to identify a physical page involved in the allocation of virtual address 
space done by TestLimit’s –d option. RAMMap does not give an indication about which 
virtual allocations are associated with RAMMap’s VirtualAlloc calls. However, we can 
get a good hint of this through the VMMap tool. Using VMMap on the same process, 
we find the following:

9. In the lower part of the display, we find hundreds of allocations of process private data, 
each 1 MB in size and with 1 MB committed. These match the size of the allocations 
done by TestLimit. One of these is highlighted in the preceding screenshot. Note the 
starting virtual address, 0x310000.

10. Now go back to RAMMap’s physical memory display. Arrange the columns to make the 
Virtual Address column easily visible, click it to sort by that value, and you can find that 
virtual address:
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11. This shows that the virtual page starting at 0x310000 is currently mapped to physical 
address 0x212D1000. TestLimit’s –d option writes the program’s own name to the first 
bytes of each allocation. We can demonstrate this with the !dc (display characters using 
physical address) command in the local kernel debugger:

lkd> !dc 0x212d1000 
#212d1000 74736554 696d694c 00000074 00000000 TestLimit....... 
#212d1010 00000000 00000000 00000000 00000000 ................ 
...

12. If you’re not quick enough, this may fail—the page may be removed from the working 
set. For the final leg of the experiment, we will demonstrate that this data remains intact 
(for a while, anyway) after the process working set is reduced and this page is moved to 
the modified and then the standby page list.

13. In VMMap, having selected the TestLimit process, open the View menu and choose 
Empty Working Set to reduce the process’s working set to the bare minimum.  
VMMap’s display should now look like this:
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14. Notice that the Working Set bar graph is practically empty. In the middle section, the 
process shows a total working set of only 4 KB, and almost all of it is in page tables. Now 
return to RAMMap and refresh it. On the Use Counts tab, you will find that active pages 
have been reduced tremendously, with a large number of pages on the modified list 
and some on the standby list:

15. RAMMap’s Processes tab confirms that the TestLimit process contributed most of those 
pages to those lists:
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Page priority
Every physical page in the system has a page priority value assigned to it by the memory manager. The 
page priority is a number in the range 0 to 7. Its main purpose is to determine the order in which pages 
are consumed from the standby list. The memory manager divides the standby list into eight sublists 
that each stores pages of a particular priority. When the memory manager wants to take a page from 
the standby list, it takes pages from low-priority lists first.

Each thread and process in the system is also assigned a page priority. A page’s priority usually 
reflects the page priority of the thread that first causes its allocation. (If the page is shared, it reflects 
the highest page priority among the sharing threads.) A thread inherits its page-priority value from 
the process to which it belongs. The memory manager uses low priorities for pages it reads from disk 
speculatively when anticipating a process’s memory accesses.

By default, processes have a page-priority value of 5, but the SetProcessInformation and 
SetThreadInformation user-mode functions allow applications to change process and thread page-
priority values. These functions call the native NtSetInformationProcess and NtSetInformation-
Thread functions. You can look at the memory priority of a thread with Process Explorer (per-page 
priority can be displayed by looking at the PFN entries, as you’ll see in an experiment later in the chap-
ter). Figure 5-38 shows Process Explorer’s Threads tab displaying information about Winlogon’s main 
thread. Although the thread priority itself is high, the memory priority is still the standard 5.

FIGURE 5-38 Process Explorer’s Threads tab.

The real power of memory priorities is realized only when the relative priorities of pages are under-
stood at a high level, which is the role of SuperFetch, covered at the end of this chapter.
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EXPERIMENT: Viewing the prioritized standby lists
You can use Process Explorer to look at the size of each standby paging list by opening the System 
Information dialog box and selecting the Memory tab:

On the recently started x86 system used in this experiment, there is about 9 MB of data 
cached at priority 0, about 47 MB at priority 1, about 68 MB at priority 2, etc. The following shows 
what happens when we use the TestLimit tool from Sysinternals to commit and touch as much 
memory as possible:

C:\Tools\Sysinternals>Testlimit.exe -d

Note how the lower-priority standby page lists were used first (shown by the repurposed 
count) and are now much smaller, while the higher lists still contain valuable cached data.
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Modified page writer and mapped page writer
The memory manager employs two system threads to write pages back to disk and move those 
pages back to the standby lists (based on their priority). One system thread writes out modified pages 
(MiModifiedPageWriter) to the paging file, and a second one writes modified pages to mapped files 
(MiMappedPageWriter). Two threads are required to avoid creating a deadlock. This would occur if the 
writing of mapped file pages caused a page fault that in turn required a free page when no free pages 
were available, thus requiring the modified page writer to create more free pages. By having the modi-
fied page writer perform mapped file paging I/Os from a second system thread, that thread can wait 
without blocking regular page file I/O.

Both threads run at priority 18, and after initialization they wait for separate event objects to trigger 
their operation. The mapped page writer waits on 18 event objects:

 ■ An exit event, signaling the thread to exit (not relevant to this discussion).

 ■ The mapped writer event, stored in the global variable MiSystemPartition.Modwriter.
MappedPageWriterEvent (MmMappedPageWriterEvent on Windows 8.x and Server 2012/R2). 
This event can be signaled in the following instances:

• During a page list operation (MiInsertPageInList); this routine inserts a page into one of 
the lists (standby, modified, etc.) based on its input arguments. The routine signals this event 
if the number of file-system-destined pages on the modified page list has reached more 
than 16 and the number of available pages has fallen below 1024.

• In an attempt to obtain free pages (MiObtainFreePages).

• By the memory manager’s working set manager (MmWorkingSetManager), which runs as part 
of the kernel’s balance set manager (once every second). The working set manager signals 
this event if the number of file-system-destined pages on the modified page list has reached 
more than 800.

• Upon a request to flush all modified pages (MmFlushAllPages).

• Upon a request to flush all file-system-destined modified pages (MmFlushAllFilesystem-
Pages). Note that in most cases, writing modified mapped pages to their backing store files 
does not occur if the number of mapped pages on the modified page list is less than the 
maximum write cluster size, which is 16 pages. This check is not made in MmFlushAllFile-
systemPages or MmFlushAllPages.

 ■ An array of 16 events associated with 16 mapped page lists, stored in MiSystemPartition.
PageLists.MappedPageListHeadEvent (MiMappedPageListHeadEvent on Windows 8.x and 
Server 2012/R2). Each time a mapped page is dirtied, it is inserted into one of these 16 mapped 
page lists based on a bucket number, stored in MiSystemPartition.WorkingSetControl-
>CurrentMappedPageBucket (MiCurrentMappedPageBucket on Windows 8.x and Server 
2012/R2). This bucket number is updated by the working set manager whenever the system 
considers that mapped pages have gotten old enough, which is currently 100 seconds (stored 
in the WriteGapCounter variable in the same structure [MiWriteGapCounter on Windows 8.x 
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and Server 2012/R2] and incremented whenever the working set manager runs). The reason 
for these additional events is to reduce data loss in the case of a system crash or power failure 
by eventually writing out modified mapped pages even if the modified list hasn’t reached its 
threshold of 800 pages.

The modified page writer waits on two events: the first is an Exit event, and the second stored in 
MiSystemPartition.Modwriter.ModifiedPageWriterEvent (on Windows 8.x and Server 2012/R2 
waits on a kernel gate stored in MmModifiedPageWriterGate), which can be signaled in the following 
scenarios:

 ■ A request to flush all pages has been received.

 ■ The number of available pages—stored in MiSystemPartition.Vp.AvailablePages  
(MmAvailablePages on Windows 8.x and Server 2012/R2)—drops below 128 pages.

 ■ The total size of the zeroed and free page lists drops below 20,000 pages, and the number of 
modified pages destined for the paging file is greater than the smaller of one-sixteenth of the 
available pages or 64 MB (16,384 pages).

 ■ When a working set is being trimmed to accommodate additional pages, if the number of 
pages available is less than 15,000.

 ■ During a page list operation (MiInsertPageInList). This routine signals this event if the num-
ber of page-file-destined pages on the modified page list has reached more than 16 pages and 
the number of available pages has fallen below 1,024.

Additionally, the modified page writer waits on two other events after the preceding event is  
signaled. One is used to indicate rescanning of the paging file is required (for example, a new page  
file may have been created), stored in MiSystemPartition.Modwriter.RescanPageFilesEvent  
(MiRescanPageFilesEvent on Windows 8.x and Server 2012/R2). The second event is internal to the 
paging file header (MiSystemPartition.Modwriter.PagingFileHeader [MmPagingFileHeader on 
Windows 8.x and Server 2012/R2]), which allows the system to manually request flushing out data to 
the paging file when needed.

When invoked, the mapped page writer attempts to write as many pages as possible to disk with 
a single I/O request. It accomplishes this by examining the original PTE field of the PFN database ele-
ments for pages on the modified page list to locate pages in contiguous locations on the disk. Once a 
list is created, the pages are removed from the modified list, an I/O request is issued, and, at successful 
completion of the I/O request, the pages are placed at the tail of the standby list corresponding to their 
priority.

Pages that are in the process of being written can be referenced by another thread. When this hap-
pens, the reference count and the share count in the PFN entry that represents the physical page are 
incremented to indicate that another process is using the page. When the I/O operation completes, the 
modified page writer notices that the reference count is no longer 0 and doesn’t place the page on any 
standby list.
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PFN data structures
Although PFN database entries are of fixed length, they can be in several different states, depending 
on the state of the page. Thus, individual fields have different meanings depending on the state. Figure 
5-39 shows the formats of PFN entries for different states.

FIGURE 5-39 States of PFN database entries (specific layouts are conceptual).

Several fields are the same for several PFN types, but others are specific to a given type of PFN. The 
following fields appear in more than one PFN type:

 ■ PTE address This is the virtual address of the PTE that points to this page. Also, since PTE  
addresses will always be aligned on a 4-byte boundary (8 bytes on 64-bit systems), the two  
low-order bits are used as a locking mechanism to serialize access to the PFN entry.

 ■ Reference count This is the number of references to this page. The reference count is incre-
mented when a page is first added to a working set and/or when the page is locked in memory for 
I/O (for example, by a device driver). The reference count is decremented when the share count be-
comes 0 or when pages are unlocked from memory. When the share count becomes 0, the page is 
no longer owned by a working set. Then, if the reference count is also zero, the PFN database entry 
that describes the page is updated to add the page to the free, standby, or modified list.

 ■ Type This is the type of page represented by this PFN. (Types include active/valid, standby, 
modified, modified-no-write, free, zeroed, bad, and transition.)

 ■ Flags The information contained in the flags field is shown in Table 5-20.

 ■ Priority This is the priority associated with this PFN, which will determine on which standby 
list it will be placed.



 CHAPTER 5 Memory management 441

 ■ Original PTE contents All PFN database entries contain the original contents of the PTE that 
pointed to the page (which could be a prototype PTE). Saving the contents of the PTE allows it 
to be restored when the physical page is no longer resident. PFN entries for AWE allocations are 
exceptions; they store the AWE reference count in this field instead.

 ■ PFN of PTE This is the physical page number of the page table page containing the PTE that 
points to this page.

 ■ Color Besides being linked together on a list, PFN database entries use an additional field to 
link physical pages by “color,” which is the page’s NUMA node number.

 ■ Flags A second flags field is used to encode additional information on the PTE. These flags are 
described in Table 5-21.

TABLE 5-20 Flags within PFN database entries

Flag Meaning

Write in progress This indicates that a page write operation is in progress. The first DWORD contains the ad-
dress of the event object that will be signaled when the I/O is complete.

Modified state This indicates whether the page was modified. (If the page was modified, its contents must 
be saved to disk before removing it from memory.)

Read in progress This indicates that an in-page operation is in progress for the page. The first DWORD  
contains the address of the event object that will be signaled when the I/O is complete.

ROM This indicates that this page comes from the computer’s firmware or another piece of  
read-only memory such as a device register.

In-page error This indicates that an I/O error occurred during the in-page operation on this page.  
(In this case, the first field in the PFN contains the error code.)

Kernel stack This indicates that this page is being used to contain a kernel stack. In this case, the PFN  
entry contains the owner of the stack and the next stack PFN for this thread.

Removal requested This indicates that the page is the target of a remove (due to ECC/scrubbing or hot memory 
removal).

Parity error This indicates that the physical page contains parity or error correction control errors.

TABLE 5-21 Secondary flags within PFN database entries

Flag Meaning

PFN image verified This indicates that the code signature for this PFN (contained in the cryptographic signature 
catalog for the image being backed by this PFN) has been verified.

AWE allocation This indicates that this PFN backs an AWE allocation.

Prototype PTE This indicates that the PTE referenced by the PFN entry is a prototype PTE. For example, this 
page is shareable.

The remaining fields are specific to the type of PFN. For example, the first PFN in Figure 5-39 repre-
sents a page that is active and part of a working set. The share count field represents the number of PTEs 
that refer to this page. (Pages marked read-only, copy-on-write, or shared read/write can be shared by 
multiple processes.) For page table pages, this field is the number of valid and transition PTEs in the page 
table. As long as the share count is greater than 0, the page isn’t eligible for removal from memory.
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The working set index field is an index into the process working set list (or the system or session 
working set list, or zero if not in any working set) where the virtual address that maps this physical page 
resides. If the page is a private page, the working set index field refers directly to the entry in the work-
ing set list because the page is mapped only at a single virtual address. In the case of a shared page, the 
working set index is a hint that is guaranteed to be correct only for the first process that made the page 
valid. (Other processes will try to use the same index where possible.) The process that initially sets this 
field is guaranteed to refer to the proper index and doesn’t need to add a working set list hash entry 
referenced by the virtual address into its working set hash tree. This guarantee reduces the size of the 
working set hash tree and makes searches faster for these entries.

The second PFN in Figure 5-39 is for a page on either the standby or the modified list. In this case, 
the forward and backward link fields link the elements of the list together within the list. This linking 
allows pages to be easily manipulated to satisfy page faults. When a page is on one of the lists, the 
share count is by definition 0 (because no working set is using the page) and therefore can be overlaid 
with the backward link. The reference count is also 0 if the page is on one of the lists. If it is non-zero 
(because an I/O could be in progress for this page—for example, when the page is being written to 
disk), it is first removed from the list.

The third PFN in Figure 5-39 is for a page that belongs to a kernel stack. As mentioned earlier, kernel 
stacks in Windows are dynamically allocated, expanded, and freed whenever a callback to user mode 
is performed and/or returns, or when a driver performs a callback and requests stack expansion. For 
these PFNs, the memory manager must keep track of the thread actually associated with the kernel 
stack, or if it is free it keeps a link to the next free look-aside stack.

The fourth PFN in Figure 5-39 is for a page that has an I/O in progress (for example, a page read). 
While the I/O is in progress, the first field points to an event object that will be signaled when the I/O 
completes. If an in-page error occurs, this field contains the Windows error status code representing 
the I/O error. This PFN type is used to resolve collided page faults.

In addition to the PFN database, the system variables in Table 5-22 describe the overall state of 
physical memory.

TABLE 5-22 System variables that describe physical memory

Variable (Windows 10 and Server 2016) Variable (Windows 8.x and 
Server 2012/R2) Description

MiSystemPartition.Vp.NumberOfPhysicalPages MmNumberOfPhysicalPages This is the total number 
of physical pages avail-
able on the system.

MiSystemPartition.Vp.AvailablePages MmAvailablePages This is the total number 
of available pages on 
the system—the sum of 
the pages on the zeroed, 
free, and standby lists.

MiSystemPartition.Vp.ResidentAvailablePages MmResidentAvailablePages This is the total number of 
physical pages that would 
be available if every pro-
cess was trimmed to its 
minimum working set size 
and all modified pages 
were flushed to disk.
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EXPERIMENT: Viewing PFN entries
You can examine individual PFN entries with the kernel debugger !pfn command. You need to 
supply the PFN as an argument. (For example, !pfn 0 shows the first entry, !pfn 1 shows the 
second, and so on.) In the following example, the PTE for virtual address 0xD20000 is displayed, 
followed by the PFN that contains the page directory, and then the actual page:

lkd> !pte d20000 
                    VA 00d20000 
PDE at C0600030            PTE at C0006900 
contains 000000003E989867  contains 8000000093257847 
pfn 3e989     ---DA--UWEV  pfn 93257     ---D---UW-V 
 
lkd> !pfn 3e989 
    PFN 0003E989 at address 868D8AFC 
    flink       00000071  blink / share count 00000144  pteaddress C0600030 
    reference count 0001   Cached     color 0   Priority 5 
    restore pte 00000080  containing page 0696B3  Active     M 
    Modified 
lkd> !pfn 93257 
    PFN 00093257 at address 87218184 
    flink       000003F9  blink / share count 00000001  pteaddress C0006900 
    reference count 0001   Cached     color 0   Priority 5 
    restore pte 00000080  containing page 03E989  Active     M 
    Modified                                       

You can also use the MemInfo tool to obtain information about a PFN. MemInfo can some-
times give you more information than the debugger’s output, and it does not require being 
booted into debugging mode. Here’s MemInfo’s output for those same two PFNs:

C:\Tools>MemInfo.exe -p 3e989

0x3E989000 Active      Page Table       5   N/A            0xC0006000 0x8E499480

 
C:\Tools>MemInfo.exe -p 93257 
 
0x93257000 Active      Process Private  5   windbg.exe     0x00D20000 N/A

From left to right, the information shown includes the physical address, type, page priority, 
process name, virtual address, and potential extra information. MemInfo correctly recognized 
that the first PFN was a page table and that the second PFN belongs to WinDbg, which was the 
active process when the !pte d20000 command was used in the debugger.

Page file reservation
We have already seen some mechanisms used by the memory manager to attempt to reduce physical 
memory consumption and thus reduce accessing page files. Using the standby and modified list is one 
such mechanism, and so is memory compression (see the “Memory compression” section later in this 
chapter). Another optimization the memory uses is directly related to accessing page files themselves.
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Rotational hard disks have a moving head that travels to a target sector before the disk can actually 
read or write. This seek time is relatively expensive (in the order of milliseconds) and so the total disk 
activity is the seek time added to the actual read/write time. If the amount of data accessed contigu-
ously from the seek position is large, then the seek time may be negligible. But if the head must seek a 
lot while accessing scattered data on the disk, the aggregated seek time becomes the main issue.

When the Session Manager (Smss.exe) creates a page file, it queries the disk of the file’s partition to 
find whether it’s a rotational disk or a solid-state drive (SSD). If it’s rotational, it activates a mechanism 
called page file reservations that tries to keep contiguous pages in physical memory contiguous in the 
page file as well. If the disk is an SSD (or a hybrid, which for the sake of page file reservation is treated 
as SSD), then page file reservation adds no real value (since there is no moving head), and the feature is 
not utilized for this particular page file.

Page file reservation is handled in three locations within the memory manager: working set man-
ager, modified page writer, and page fault handler. The working set manager performs working set 
trimming by calling the MiFreeWsleList routine. The routine takes a list of pages from a working set 
and for each page it decrements its share count. If it reaches zero, the page can be placed on the modi-
fied list, changing the relevant PTE into a transition PTE. The old valid PTE is saved in the PFN.

The invalid PTE has two bits related to page file reservation: page file reserved and page file al-
located (refer to Figure 5-24). When a physical page is needed and is taken from one of the “free” page 
lists (free, zero or standby) to become an active (valid) page, an invalid PTE is saved into the Original 
PTE field of the PFN. This field is the key for tracking page file reservation. 

The MiCheckReservePageFileSpace routine tries to create page file reservation cluster starting 
from a specified page. It checks if page file reservation is disabled for the target page file and if there 
is already page file reservation for this page (based on the original PTE), and if any of these conditions 
is true, the function aborts further processing for this page. The routine also checks if the page type is 
of user pages, and if not, it bails out. Page file reservation is not attempted for other page types (such 
as paged pool), because it was not found to be particularly beneficial (because of unpredictable usage 
patterns, for example), which led to small clusters. Finally, MiCheckReservePageFileSpace calls MiRe-
servePageFileSpace to do the actual work.

The search for page file reservation starts backward from the initial PTE. The goal is to locate eligible 
consecutive pages where reservation is possible. If the PTE that maps the neighboring page represents 
a decommitted page, a non-paged pool page, or if it’s already reserved, then the page cannot be used; 
the current page will become the lower limit of the reservation cluster. Otherwise, the search continues 
backward. Then the search starts from the initial page forward, trying to gather as many eligible pages 
as possible. The cluster size must be at least 16 pages for the reservation to take place (the maximum 
cluster size is 512 pages). Figure 5-40 shows an example of a cluster bound by invalid page on one hand 
and an existing cluster on the other (note that it can span page tables within the same page directory).
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FIGURE 5-40 Page file reservation cluster.

Once the page cluster is computed, free page file space must be located to be reserved for this clus-
ter of pages. Page file allocations are managed by a bitmap (where each set bit indicates a used page in 
the file). For page file reservation, a second bitmap is used that indicates pages that have been reserved 
(but not necessarily written to yet—this is the job of the page file allocation bitmap). Once there is page 
file space that is not reserved and not allocated (based on these bitmaps), the relevant bits are set in 
the reservation bitmap only. It is the job of the modified page writer to set these bits in the allocation 
bitmap when it writes the contents of the pages to disk. If not enough page file space could be found 
for the required cluster size, page file expansion is attempted, and if that already happened (or the 
maximum page file size is the expanded size), then the cluster size is reduced to fit in the reservation 
size that was located.

Note The clustered pages (except the original starting PTE) are not linked to any of the 
physical page lists. The reservation information is placed in the Original PTE of the PFN.

The modified page writer needs to handle writing pages that have reservations as a special case. It 
uses all the gathered information described previously to build an MDL that contains the correct PFNs 
for the cluster that is used as part of writing to the page file. Building the cluster includes finding con-
tiguous pages that can span reservation clusters. If there are “holes” between clusters, a dummy page 
is added in between (a page that contains all bytes with 0xFF value). If the dummy page count is above 
32, the cluster is broken. This “walk” is done going forward and then backward to build the final cluster 
to write. Figure 5-41 shows an example of the state of pages after such a cluster has been built by the 
modified page writer.
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FIGURE 5-41 Cluster built before writing.

Finally, the page fault handler uses the built information from the reservation bitmap and the PTEs 
to determine the start and end points of clusters, to efficiently load back needed pages with minimal 
seeking of the mechanical disk head.

Physical memory limits

Now that you’ve learned how Windows keeps track of physical memory, we’ll describe how much of 
it Windows can actually support. Because most systems access more code and data than can fit in 
physical memory as they run, physical memory is essentially a window into the code and data used 
over time. The amount of memory can therefore affect performance because when data or code that a 
process or the operating system needs is not present, the memory manager must bring it in from disk 
or remote storage.

Besides affecting performance, the amount of physical memory affects other resource limits. For 
example, the amount of non-paged pool is backed by physical memory, thus obviously constrained by 
physical memory. Physical memory also contributes to the system virtual memory limit, which is the 
sum of roughly the size of physical memory plus the current configured size of all paging files. Physical 
memory also can indirectly limit the maximum number of processes.

Windows support for physical memory is dictated by hardware limitations, licensing, operating 
system data structures, and driver compatibility. The following URL shows the memory limits of the 
various Windows editions: https://msdn.microsoft.com/en-us/library/windows/desktop/aa366778.aspx. 
Table 5-23 summarizes the limits in Windows 8 and higher versions.

https://www.msdn.microsoft.com/en-us/library/windows/desktop/aa366778.aspx
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TABLE 5-23 Limitations on physical memory support in Windows

Operating System Version/Edition 32-Bit Maximum 64-Bit Maximum

Windows 8.x Professional and Enterprise 4 GB 512

Windows 8.x (all other editions) 4 GB 128 GB

Windows Server 2012/R2 Standard and Datacenter N/A 4 TB

Windows Server 2012/R2 Essentials N/A 64 GB

Windows Server 2012/R2 Foundation N/A 32 GB

Windows Storage Server 2012 Workgroup N/A 32 GB

Windows Storage Server 2012 Standard
Hyper-V Server 2012

N/A 4 TB

Windows 10 Home 4 GB 128 GB

Windows 10 Pro, Education and Enterprise 4 GB 2 TB

Windows Server 2016 Standard and Datacenter N/A 24 TB

At the time of this writing, the maximum supported physical memory is 4 TB on some Server 2012/R2 
editions and 24 TB on Server 2016 editions. The limitations don’t come from any implementation or 
hardware limitation, but because Microsoft will support only configurations it can test. As of this writ-
ing, these were the largest tested and supported memory configurations.

Windows client memory limits
64-bit Windows client editions support different amounts of memory as a differentiating feature, with 
the low end being 4 GB increasing to 2 TB for Enterprise and Professional editions. All 32-bit Windows 
client editions, however, support a maximum of 4 GB of physical memory, which is the highest physical 
address accessible with the standard x86 memory management mode.

Although client SKUs support PAE addressing modes on x86 systems in order to provide hardware 
no-execute protection (which would also enable access to more than 4 GB of physical memory), test-
ing revealed that systems would crash, hang, or become unbootable because some device drivers, 
commonly those for video and audio devices found typically on clients but not servers, were not 
programmed to expect physical addresses larger than 4 GB. As a result, the drivers truncated such ad-
dresses, resulting in memory corruptions and corruption side effects. Server systems commonly have 
more generic devices, with simpler and more stable drivers, and therefore had not generally revealed 
these problems. The problematic client driver ecosystem led to the decision for client editions to ignore 
physical memory that resides above 4 GB, even though they can theoretically address it. Driver devel-
opers are encouraged to test their systems with the nolowmem BCD option, which will force the kernel 
to use physical addresses above 4 GB only if sufficient memory exists on the system to allow it. This will 
immediately lead to the detection of such issues in faulty drivers.

Although 4 GB is the licensed limit for 32-bit client editions, the effective limit is actually lower and 
depends on the system’s chipset and connected devices. This is because the physical address map 
includes not only RAM but device memory, and x86 and x64 systems typically map all device memory 
below the 4 GB address boundary to remain compatible with 32-bit operating systems that don’t know 
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how to handle addresses larger than 4 GB. Newer chipsets do support PAE-based device remapping, 
but client editions of Windows do not support this feature for the driver compatibility problems ex-
plained earlier. (Otherwise, drivers would receive 64-bit pointers to their device memory.)

If a system has 4 GB of RAM and devices such as video, audio, and network adapters that implement 
windows into their device memory that sum to 500 MB, then 500 MB of the 4 GB of RAM will reside 
above the 4 GB address boundary, as shown in Figure 5-42.

FIGURE 5-42 Physical memory layout on a 4 GB system.

The result is that if you have a system with 3 GB or more of memory and you are running a 32-bit 
Windows client, you may not get the benefit of all the RAM. You can see how much RAM Windows has 
detected as being installed in the System Properties dialog box, but to see how much memory is really 
available to Windows, you need to look at Task Manager’s Performance page or the Msinfo32 utility. 
For example, on a Hyper-V virtual machine configured with 4 GB of RAM, with 32-bit Windows 10 
installed, the amount of physical memory available is 3.87 GB, as shown in the Msinfo32 utility:

Installed Physical Memory (RAM)  4.00 GB 

Total Physical Memory            3.87 GB

You can see the physical memory layout with the MemInfo tool. The following output is from  
MemInfo when run on a 32-bit system, using the –r switch to dump physical memory ranges:

C:\Tools>MemInfo.exe -r 
MemInfo v3.00 - Show PFN database information 
Copyright (C) 2007-2016 Alex Ionescu 
www.alex-ionescu.com 
 
Physical Memory Range: 00001000 to 0009F000 (158 pages, 632 KB) 
Physical Memory Range: 00100000 to 00102000 (2 pages, 8 KB) 
Physical Memory Range: 00103000 to F7FF0000 (1015533 pages, 4062132 KB) 
MmHighestPhysicalPage: 1015792

Note the gap in the memory address range from A0000 to 100000 (384 KB), and another gap from 
F8000000 to FFFFFFFF (128 MB).

http://www.alex-ionescu.com
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You can use Device Manager on your machine to see what is occupying the various reserved 
memory regions that can’t be used by Windows (and that will show up as holes in MemInfo’s output). 
To check Device Manager, follow these steps:

1. Run Devmgmt.msc.

2. Open the View menu and select Resources by Connection.

3. Expand the Memory node. On the laptop computer used for the output shown in Figure 5-43, 
the primary consumer of mapped device memory is, unsurprisingly, the video card (Hyper-V S3 
Cap), which consumes 128 MB in the range F8000000–FBFFFFFF.

FIGURE 5-43 Hardware-reserved memory ranges on a 32-bit Windows system.

Other miscellaneous devices account for most of the rest, and the PCI bus reserves additional ranges 
for devices as part of the conservative estimation the firmware uses during boot.

Memory compression

The Windows 10 memory manager implements a mechanism that compresses private and page-file-
backed section pages that are on the modified page list. The primary candidates for compression 
are private pages belonging to UWP apps because compression works very well with the working set 
swapping and emptying that already occurs for such applications if memory is tight. After an applica-
tion is suspended and its working set is outswapped, the working set can be emptied at any time and 
dirty pages can be compressed. This will create additional available memory that may be enough to 
hold another application in memory without making the first application’s pages leave memory.

Note Experiments have shown that pages compress to around 30–50 percent of their 
original size using Microsoft’s Xpress algorithm, which balances speed with size, thus  
resulting in considerable memory savings.

The memory compression architecture must adhere to the following requirements:

 ■ A page cannot be in memory in a compressed and an uncompressed form because this would 
waste physical memory due to duplication. This means that whenever a page is compressed, it 
must become a free page after successful compression.
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 ■ The compression store must maintain its data structures and store the compressed data such 
that it is always saving memory for the system overall. This means that if a page doesn’t com-
press well enough, it will not be added to the store.

 ■ Compressed pages must appear as available memory (because they can really be repurposed 
if needed) to avoid creating a perception issue that compressing memory somehow increases 
memory consumption.

Memory compression is enabled by default on client SKUs (phone, PC, Xbox, and so on). Server SKUs 
do not currently use memory compression, but that is likely to change in future server versions.

Note In Windows 2016, Task Manager still shows a number in parentheses for compressed 
memory, but that number is always zero. Also, the memory compression process does not exist.

During system startup, the Superfetch service (sysmain.dll, hosted in a svchost.exe instance, de-
scribed in the upcoming “Proactive memory management (SuperFetch)” section) instructs the Store Man-
ager in the executive through a call to NtSetSystemInformation to create a single system store (always 
the first store to be created), to be used by non-UWP applications. Upon app startup, each UWP applica-
tion communicates with the Superfetch service and requests the creation of a store for itself.

Compression illustration
To get a sense of how memory compression works, let’s look at an illustrative example. Assume that at 
some point in time, the following physical pages exist:

The zero and free page lists contain pages that have garbage and zeroes, respectively, and can be 
used to satisfy memory commits; for the sake of this discussion, we’ll treat them as one list. The active 
pages belong to various processes, while the modified pages have dirty data that has not yet been 
written to a page file, but can be soft-faulted without an I/O operation to a process working set if that 
process references a modified page.

Now assume the memory manager decides to trim the modified page list—for example, because 
it has become too large or the zero/free pages have become too small. Assume three pages are to be 
removed from the modified list. The memory manager compresses their contents into a single page 
(taken from the zero/free list):
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Pages 11, 12 and 13 are compressed into page 1. After that’s done, page 1 is no longer free and is in 
fact active, part of the working set of the memory compression process (described in the next section). 
Pages 11, 12, and 13 are no longer needed and move to the free list; the compression saved two pages:

Suppose the same process repeats. This time, pages 14, 15, and 16 are compressed into (say) two 
pages (2 and 3) as shown here:

The result is that pages 2 and 3 join the working set of the memory compression process, while 
pages 14, 15, and 16 become free:
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Suppose the memory manager later decides to trim the working set of the memory compression 
process. In that case, such pages are moved to the modified list because they contain data not yet 
written to a page file. Of course, they can at any time be soft-faulted back into their original process 
(decompressing in the process by using free pages). The following shows pages 1 and 2 being removed 
from the active pages of the memory compression process and moved to the modified list:

If memory becomes tight, the memory manager may decide to write the compressed modified 
pages to a page file:
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Finally, after such pages have been written to a page file, they move to the standby list because their 
content is saved, so they can be repurposed if necessary. They can also be soft-faulted (as when they 
are part of the modified list) by decompressing them and moving the resulting pages to the active 
state under the relevant process working set. When in the standby list, they are attached to the appro-
priate sub-list, depending on their priority (as described in the “Page priority and rebalancing” section 
later in this chapter):

Compression architecture
The compression engine needs a “working area” memory to store compressed pages and the data 
structures that manage them. In Windows 10 versions prior to 1607, the user address space of the System 
process was used. Starting with Windows 10 Version 1607, a new dedicated process called Memory 
Compression is used instead. One reason for creating this new process was that the System process 
memory consumption looked high to a casual observer, which implied the system was consuming a lot 
of memory. That was not the case, however, because compressed memory does not count against the 
commit limit. Nevertheless, sometimes perception is everything. 

The Memory Compression process is a minimal process, which means it does not load any DLLs.
Rather, it just provides an address space to work with. It’s not running any executable image either—
the kernel is just using its user mode address space. (See Chapter 3, “Processes and jobs,” for more 
information on minimal processes.)

Note By design, Task Manager does not show the Memory Compression process in its 
details view, but Process Explorer does. Using a kernel debugger, the compression process 
image name is MemCompression.
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For each store, the Store Manager allocates memory in regions with a configurable region size.  
Currently, the size used is 128 KB. The allocations are done by normal VirtualAlloc calls as needed. 
The actual compressed pages are stored in 16 byte chunks within a region. Naturally, a compressed 
page (4 KB) can span many chunks. Figure 5-44 shows a store with an array of regions and some of the 
data structures associated with managing such a store.

FIGURE 5-44 Store data structures.

As shown in Figure 5-44, pages are managed with a B+Tree—essentially a tree where a node can 
have any number of children—where each page entry points to its compressed content within one 
of the regions. A store starts with zero regions, and regions are allocated and deallocated as needed. 
Regions are also associated with priorities, as described in the “Page priority and rebalancing” section 
later in this chapter. 

Adding a page involves the following major steps:

1. If there is no current region with the page’s priority, allocate a new region, lock it in physi-
cal memory, and assign it the priority of the page to be added. Set the current region for that 
priority to the allocated region.

2. Compress the page and store it in the region, rounding up to the granularity unit (16 bytes). For 
example, if a page compresses to 687 bytes, it consumes 43 16-byte units (always rounding up). 
Compression is done on the current thread, with low CPU priority (7) to minimize interference. 
When decompression is needed, it’s performed in parallel using all available processors.

3. Update the page and region information in the Page and Region B+Trees.
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4. If the remaining space in the current region is not large enough to store the compressed page, a 
new region is allocated (with the same page priority) and set as the current region for that priority.

Removing a page from the store involves the following steps:

1. Find the page entry in the Page B+Tree and the region entry in the Region B+Tree.

2. Remove the entries and update the space used in the region.

3. If the region becomes empty, deallocate the region.

Regions become fragmented over time as compressed pages are added and removed. The memory 
for a region is not freed until the region is completely empty. This means some kind of compaction is 
necessary to reduce memory waste. A compaction operation is lazily scheduled with aggressiveness 
depending on the amount of fragmentation. Region priorities are taken into account when consolidat-
ing regions.

EXPERIMENT: Memory compression
There is very little visibility to the memory compression going on in the system. You can view the 
memory compression process with Process Explorer or a kernel debugger. The following figure 
shows the Performance tab in the properties of the Memory Compression process in Process 
Explorer (which must run with admin privileges):

Notice that the process has no user time (since only kernel threads “work” within this process), 
and its working set is private only (not shared). This is because the compressed memory is not 
sharable in any sense. Compare that to the Memory view in Task Manager:
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Here, the compressed memory in parentheses should correlate with the working set of the 
Memory Compression process—this screenshot was taken about a minute after the previous 
one—because this is the amount of space that the compressed memory is consuming.

Memory partitions

Traditionally, virtual machines (VMs) are used to isolate applications so that separate VMs can run com-
pletely isolated applications (or groups of applications) at least from a security standpoint. VMs cannot 
interact with each other, providing strong security and resource boundaries. Although this works, VMs 
have a high resource cost in terms of hardware that hosts the VMs and management costs. This gave a 
rise to container-based technologies, such as Docker. These technologies attempt to lower the barrier 
for isolation and resource management by creating sandbox containers that host applications, all on 
the same physical or virtual machine.

Creating such containers is difficult, as it would require kernel drivers that perform some form of 
virtualization on top of the regular Windows. Some of these drivers are the following (a single driver 
can encompass all these functionalities):

 ■ File system (mini) filter that would create an illusion of an isolated file system

 ■ Registry virtualization driver, creating an illusion of a separate registry (CmRegisterCallbacksEx)

 ■ Private object manager namespace, by utilizing silos (see Chapter 3 for more details)

 ■ Process management for associating processes with the correct container by using process create/  
notifications (PsSetCreateNotifyRoutineEx)
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Even with these in place, some things are difficult to virtualize, specifically memory management. Each 
container may want to use its own PFN database, its own page file, and so on. Windows 10 (64-bit versions 
only) and Windows Server 2016 provide such possible memory control through Memory Partitions.

A memory partition consists of its own memory-related management structures, such as page lists 
(standby, modified, zero, free, etc.), commit charge, working set, page trimmer, modified page writer, 
zero-page thread, and so on, but isolated from other partitions. Memory partitions are represented 
in the system by Partition objects, which are securable, nameable objects ( just like other executive 
objects). One partition always exists, called the System Partition, and it represents the system as a whole 
and is the ultimate parent of any explicitly created partition. The system partition’s address is stored in 
a global variable (MiSystemPartition) and its name is KernelObjects\MemoryPartition0, visible 
with tools such as WinObj from Sysinternals as shown in Figure 5-45.

FIGURE 5-45 The System Partition in WinObj.

All partition objects are stored in global list, where the current maximum partition count is 1024 (10 
bits), because the partition index must be encoded in PTEs for quick access to partition information 
where applicable. One of these indices is the system partition and two other values are used as special 
sentinels, leaving 1021 partitions available.

Memory partitions can be created from user mode or kernel mode by using the NtCreatePartition 
internal (and undocumented) function; user mode callers must have the SeLockMemory privilege for 
the call to succeed. The function can accept a parent partition, which initial pages will come from  
and eventually return to, when the partition is destroyed; the system partition is the default parent if 
none is specified. NtCreatePartition delegates the actual work to the internal memory manager 
MiCreatePartition function.

An existing partition can be opened by name using NtOpenPartition (no special privilege required 
for this as the object can be protected by ACLs as usual). The actual manipulation of a partition is 
reserved for the NtManagePartition function. This is the function that can be used to add memory 
to the partition, add a paging file, copy memory from one partition to another, and generally obtain 
information about a partition.
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EXPERIMENT: Viewing memory partitions
In this experiment, you’ll use the kernel debugger to look at partition objects.

1. Start local kernel debugging and issue the !partition command. It lists all the parti-
tion objects in the system.

lkd> !partition 
Partition0 fffff803eb5b2480 MemoryPartition0

2. By default, the always existing system partition is shown. The !parti-

tion command can accept the address of a partition object and show more 

details:

lkd> !partition fffff803eb5b2480 
PartitionObject @ ffffc808f5355920 (MemoryPartition0) 
_MI_PARTITION 0 @ fffff803eb5b2480 
  MemoryRuns: 0000000000000000 
  MemoryNodeRuns: ffffc808f521ade0 
  AvailablePages:         0n4198472 ( 16 Gb 16 Mb 288 Kb) 
  ResidentAvailablePages: 0n6677702 ( 25 Gb 484 Mb 792 Kb) 
     0 _MI_NODE_INFORMATION @ fffff10000003800 
           TotalPagesEntireNode:   0x7f8885 
                            Zeroed                        Free 
           1GB                0 ( 0)                              0 ( 
0) 
           2MB               41 ( 82 Mb)                          0 ( 
0) 
           64KB            3933 ( 245 Mb 832 Kb)                  0 ( 
0) 
           4KB            82745 ( 323 Mb 228 Kb)                  0 ( 
0) 
           Node Free Memory:     ( 651 Mb 36 Kb ) 
           InUse Memory:         ( 31 Gb 253 Mb 496 Kb ) 
           TotalNodeMemory:      ( 31 Gb 904 Mb 532 Kb )

The output shows some of the information stored in the underlying MI_PARTITION structure 
(whose address is given as well). Notice that the command shows memory information on a 
NUMA node basis ( just one in this case). Since this is the system partition, the numbers related 
to used, free, and total memory should correspond to the values reported by tools such as Task 
Manager and Process Explorer. You can also examine the MI_PARTITION structure with the usual 
dt command.

Future scenarios may leverage the memory partitioning capability for specific processes (through 
job objects) to be associated with a partition, such as when exclusive control over physical memory may 
be beneficial. One such scenario slated for the Creators Update release is game mode (more informa-
tion on game mode is included in Chapter 8 in Part 2).
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Memory combining

The memory manager uses several mechanisms in an attempt to save as much RAM as possible, such as 
sharing pages for images, copy-on-write for data pages, and compression. In this section, we’ll take a 
look at yet another such mechanism called memory combining.

The general idea is simple: Find duplicates of pages in RAM and combine them into one, thus  
removing the rest of the duplicates. Clearly there are a few issues to resolve:

 ■ What are the “best” pages to use as candidates for combining?

 ■ When is it appropriate to initiate memory combining?

 ■ Should combining be targeted at a particular process, a memory partition, or the entire system?

 ■ How can the combining process be made quick so it does not adversely impact normally  
executing code?

 ■ If a writeable combined page is later modified by one of its clients, how would it get a private copy?

We’ll answer these questions throughout this section, starting with the last. The copy-on-write 
mechanism is used here: as long as a combined page is not written to, do nothing. If a process tries to 
write to the page, make a private copy for the writing process, and remove the copy-on-write flag for 
that newly allocated private page.

Note Page combining can be disabled by setting a DWORD value named DisablePageCombining 
to 1 in the HKLM\System\CurrentControlSet\Control\Session Manager\Memory 
Management registry key.

Note In this section, the terms CRC and hash are used interchangeably. They indicate a 
statistically unique (with high probability) 64-bit number referencing a page’s contents.

The memory manager’s initialization routine, MmInitSystem, creates the system partition (see the 
previous section on memory partitions). Within the MI_PARTITION structure that describes a partition 
lies an array of 16 AVL trees that identify the duplicated pages. The array is sorted by the last 4 bits of a 
combined page CRC value. We’ll see in a moment how this fits into the algorithm.

Two special page types are called common pages. One includes an all zero bytes, and the other in-
cludes an all one bits (filled with the byte 0xFF); their CRC is calculated just once and stored. Such pages 
can easily be identified when scanning pages’ contents.

To initiate memory combining, the NtSetSystemInformation native API is called with the System-
CombinePhysicalMemoryInformation system information class. The caller must have the SeProfile-
SingleProcessPrivilege in its token, normally granted to the local administrators group. The argu-
ment to the API provides the following options through a combination of flags:
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 ■ Perform memory combining on the entire (system) partition or just the current process.

 ■ Search for common pages (all zeros or all ones) to combine only, or any duplicate pages regard-
less of content.

The input structure also provides an optional event handle that can be passed in, and if signaled  
(by another thread), will abort the page combining. Currently, the Superfetch service (see the section 
“SuperFetch” at the end of this chapter for more information) has a special thread, running in low prior-
ity (4) that initiates memory combining for the entire system partition when the user is away, or if the 
user is busy, every 15 minutes.

In the Creators Update, if the amount of physical memory is higher than 3.5 GB (3584 MB), most 
built-in Svchost-ed services host a single service in each Svchost process. This creates dozens of 
processes out of the box but removes the likelihood of one service affecting another (either because 
of some instability or security issues). In this scenario, the Service Control Manager (SCM) uses a new 
option of the memory combining API, and initiates page combining in each of the Svchost processes 
every three minutes by utilizing a thread pool timer running with base priority of 6 (ScPerformPage-
CombineOnServiceImages routine). The rationale is to try to reduce RAM consumption that may be 
higher than with fewer Svchost instances. Note that non-Svchost services are not page combined, nor 
are services running with per-user or private user accounts.

The MiCombineIdenticalPages routine is the actual entry point to the page combining process. For 
each NUMA node of the memory partition, it allocates and stores a list of pages with their CRC inside the 
page combing support (PCS) structure, which is the one managing all the needed information for the 
page combining operation. (That’s the one holding the AVL trees array mentioned earlier.) The request-
ing thread is the one doing the work; it should run on CPUs belonging to the current NUMA node, and its 
affinity is modified accordingly if needed. We’ll divide the memory combining algorithm into three stages 
to simplify the explanation: search, classification, and page sharing. The following sections assume that a 
complete page combining is requested (rather than for the current process) and for all pages (not just the 
common pages); the other cases are similar in principle, and somewhat simpler.

The search phase
The goal of this initial stage is to calculate the CRC of all the physical pages. The algorithm analyses 
each physical page that belongs to the active, modified, or standby list, skipping the zeroed and free 
pages (since they are effectively unused).

A good page candidate for memory combining should be an active non-shared page that belongs to 
a working set, and that should not map a paging structure. The candidate could be even in the standby or 
modified state, but needs to have a reference counter of 0. Basically, the system identifies three types of 
pages for combining: user process, paged pool, and session space. Other types of pages are skipped.

To correctly calculate the CRC of the page, the system should map the physical page to a system 
address (because the process context is mostly different from the calling thread, making the page inac-
cessible in low user-mode addresses) using a new system PTE. The CRC of the page is then calculated 
with a customized algorithm (MiComputeHash64 routine), and the system PTE freed (the page is now 
unmapped from system address space).
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The page hashing algorithm
The algorithm that the system uses to calculate an 8-bytes page hash (CRC) is the following: two 
64-bit large prime numbers are multiplied together, and the result is used as the starting hash. 
The page is scanned from the end to the beginning; the algorithm hashes 64 bytes per cycle. 
Each read 8-byte value from the page in question is added to the starting hash, then the hash is 
rotated right a prime-number of bits (starting with 2, then 3, 5, 7, 11, 13, 17 and 19). 512 memory 
access operations (4096/8) are needed to completely hash a page. 

The classification phase
When all the hashes of the pages that belong to a NUMA node have been successfully calculated, the 
second part of the algorithm commences. The goal of this phase is to process each CRC/PFN entry in 
the list and organize them in a strategic way. The page sharing algorithm must minimize the process 
contexts switches, and be as fast as possible.

The MiProcessCrcList routine starts by sorting the CRC/PFN list by hash (using a quick sort algo-
rithm). Another key data structure, combine block, is used to keep track of all the pages that share the 
same hash, and, more importantly, to store the new prototype PTE that will map the new combined 
page. Each CRC/PFN of the new sorted list is processed in order. The system needs to verify if the cur-
rent hash is common (belongs to a zeroed or a complete-filled page) and if it’s equal to the previous or 
next hash (remember that the list is sorted). If this is not the case, the system checks if a combine block 
already exists in the PCS structure. If so, it means that a combined page has been already identified in a 
previous execution of the algorithm or in another node of the system. Otherwise it means that the CRC 
is unique and the page couldn’t be combined, and the algorithm continues to the next page in the list. 

If the found common hash has never been seen before, the algorithm allocates a new empty 
combine block (used for the master PFN) and inserts it in a list used by the actual page-sharing code 
(next stage). Otherwise if the hash already existed (the page is not the master copy), a reference to the 
combine block is added in the current CRC/PFN entry.

At this point, the algorithm has prepared all the data that the page-sharing algorithm needs: a list 
of combine blocks used to store the master physical pages and their prototype PTEs, a list of CRC/PFN 
entries organized by the owning working set, and some physical memory needed to store the content 
of the new shared pages.

The algorithm then obtains the address of the physical page (that should exist, due to the initial 
check performed previously by the MiCombineIdenticalPages routine) and searches a data structure 
used to store all the pages that belongs to the specific working set (from now on we will call this struc-
ture WS CRC node). If this doesn’t exist, it allocates a new one and inserts it in another AVL tree. The 
CRC/PFN and virtual address of the page are linked together inside the WS CRC node.

After all the identified pages have been processed, the system allocates the physical memory for the 
new master shared pages (using an MDL), and processes each WS CRC node; for performance reasons, 
the candidate pages located inside the node are sorted by their original virtual address. The system is 
now ready to perform the actual page combining.
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The page combining phase
The page combining phase starts with a WS CRC node structure that contains all the pages that belong 
to a specific working set and are all candidates for combining, and with a list of free combine blocks, 
used to store the prototype PTE and the actual shared page. The algorithm attaches to the target pro-
cess and locks its working set (raising IRQL to dispatch level). In this way, it will be able to directly read 
and write each page without the need to remap it.

The algorithm processes every CRC/PFN entry in the list, but since it’s running at dispatch level IRQL 
and execution could take some time, it checks if the processor has some DPCs or scheduled items in its 
queue (by calling KeShouldYieldProcessor) before analyzing the next entry. If the answer is yes, the 
algorithm does the right thing and takes appropriate precautions to maintain state.

The actual page sharing strategy expects three possible scenarios:

 ■ The page is active and valid, but it contains all zeroes, so rather than combining, it replaces 
its PTE with a demand-zero PTE. Recall that this is the initial state of normal VirtualAlloc-like 
memory allocation.

 ■ The page is active and valid, but it is not zeroed out, meaning it has to be shared. The algorithm 
checks if the page has to be promoted as the master: if the CRC/PFN entry has a pointer to a 
valid combine block, it means that it’s not the master page; otherwise, the page is the master 
copy. The master page hash is rechecked and a new physical page assigned for the sharing. 
Otherwise, the already existing combine block is used (and its reference count incremented). 
The system is now ready to convert the private page into a shared one, and calls the MiConvert-
PrivateToProto routine to perform the actual job. 

 ■ The page is in the modified or standby list. In this case, it’s mapped to a system address as a 
valid page and its hash recalculated. The algorithm performs the same step as the previous  
scenario, with the only difference being that the PTE is converted from shared to prototype  
using the MiConvertStandbyToProto routine.

When the sharing of the current page ends, the system inserts the combine block of the master 
copy into the PCS structure. This is important because the combine block becomes the link between 
each private PTE and the combined page.

From private to shared PTE
The goal of MiConvertPrivateToProto is to convert a PTE of an active and valid page. If the routine de-
tects that the prototype PTE inside the combine block is zero, it means that the master page must be cre-
ated (together with the master shared prototype PTE). It then maps the free physical page into a system 
address and copies the content of the private page into the new shared one. Before actually creating the 
shared PTE, the system should free any page file reservation (see the section “Page file reservation” earlier 
in this chapter) and fill the PFN descriptor of the shared page. The shared PFN has the prototype bit set, 
and the PTE frame pointer set to the PFN of the physical page that contains the Prototype PTE. Most im-
portantly, it has the PTE pointer set to the PTE located inside the combine block, but with the 63rd bit set 
to zero. This signifies to the system that the PFN belongs to a page that has been combined. 
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Next, the system needs to modify the PTE of the private page so that its target PFN is set to the 
shared physical page, its protection mask changed to copy-on-write, and the private page PTE is 
marked as valid. The prototype PTE inside the combine block is marked as a valid hardware PTE too: 
the content is identical to the new PTE of the private page. Finally, the page file space allocated for the 
private page is freed and the original PFN of the private page is marked as deleted. The TLB cache is 
flushed and the private process working set size is decremented by one page.

Otherwise (the prototype PTE inside the combine block is non-zero), it means that the private page 
should be a copy of the master one. Only the active PTE of the private page must be converted. The 
PFN of the shared page is mapped to a system address and the content of the two pages is compared. 
This is important because the CRC algorithm does not produce unique values in the general case. If the 
two pages don’t match, the function stops processing and returns. Otherwise, it unmaps the shared 
page and sets the page priority of the shared PFN to the higher of the two. Figure 5-46 shows the state 
where only a master page exists.

FIGURE 5-46 Combined master page.

The algorithm now calculates the new invalid software prototype PTE that should be inserted into 
the process private page table. To do that, it reads the address of the hardware PTE that maps the 
shared page (located in the combine block), shifts it, and sets the Prototype and Combined bits. A 
check is made that the share count of the private PFN is 1. If it is not, processing is aborted. The algo-
rithm writes the new software PTE in the private page table of the process and decrements the share 
count of the page table of the old private PFN (keep in mind that an active PFN always has a pointer to 
its page table). The target process working set size is decremented by one page and the TLB is flushed. 
The old private page is moved into the transition state, and its PFN is marked for deletion. Figure 5-47 
shows two pages, where the new page points to the prototype PTE but is not yet valid.

Finally, the system uses another trick to prevent working set trimming on the shared pages by 
simulating a page fault. That way the share count of the shared PFN is again incremented, and no fault 
would occur at a time the process will try to read the shared page. The end result is that the private PTE 
is again a valid hardware PTE. Figure 5-48 shows the effect of a soft page fault on the second page, 
making it valid and incrementing the share count.
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FIGURE 5-47 Combined pages before simulated page fault.

FIGURE 5-48 Combined pages after simulated page fault.

Combined pages release
When the system needs to free a particular virtual address, it first locates the address of the PTE that maps 
it. The pointed PFN of a combined page has the prototype and combined bits set. The free request for a 
combined PFN is managed exactly like the one for a prototype PFN. The only difference is that the system 
(if the combined bit is set) calls MiDecrementCombinedPte after processing the prototype PFN.
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MiDecrementCombinedPte is a simple function that decrements the reference count of the combine 
block of the Prototype PTE. (Keep in mind that at this stage the PTE is in transition because the memory 
manager has already dereferenced the physical page that it maps. The share count of the physical page 
has already dropped to zero, and so the system put the PTE in transition.) If the reference count drops 
to zero, the prototype PTE will be freed, the physical page put in the free list, and the combine block 
returned to the combine free list of the PCS structure of the memory partition.

EXPERIMENT: Memory combining
In this experiment, you will see the effects of memory combing. Follow these steps:

1. Start a kernel debugging session with a VM target (as described in Chapter 4, “Threads”).

2. Copy the MemCombine32.exe (for 32 bit targets) or MemCombine64.exe (for 64 bit  
targets), and MemCombineTest.exe executables from this book’s downloadable resources 
to the target machine.

3. Run MemCombineTest.exe on the target machine. You should see something like the 
following:

4. Note the two addresses shown. These are two buffers filled with a random generated 
pattern of bytes, repeated so that each page has the same content. 

5. Break into the debugger. Locate the MemCombineTest process:

0: kd> !process 0 0 memcombinetest.exe 
PROCESS ffffe70a3cb29080 
    SessionId: 2  Cid: 0728    Peb: 00d08000  ParentCid: 11c4 
    DirBase: c7c95000  ObjectTable: ffff918ede582640  HandleCount: <Data Not 
Accessible> 
    Image: MemCombineTest.exe

6. Switch to the located process:

0: kd> .process /i /r ffffe70a3cb29080 
You need to continue execution (press 'g' <enter>) for the context 
to be switched. When the debugger breaks in again, you will be in 
the new process context. 
0: kd> g 
Break instruction exception - code 80000003 (first chance) 
nt!DbgBreakPointWithStatus: 
fffff801'94b691c0 cc              int     3
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7. Use the !pte command to locate the PFN where the two buffers are stored:

0: kd> !pte b80000 
                                           VA 0000000000b80000 
PXE at FFFFA25128944000    PPE at FFFFA25128800000    PDE at 
FFFFA25100000028    PTE at FFFFA20000005C00 
contains 00C0000025BAC867  contains 0FF00000CAA2D867  contains 
00F000003B22F867  contains B9200000DEDFB867 
pfn 25bac     ---DA--UWEV  pfn caa2d     ---DA--UWEV  pfn 3b22f     ---DA--
UWEV  pfn dedfb     ---DA--UW-V 
 
0: kd> !pte b90000 
                                           VA 0000000000b90000 
PXE at FFFFA25128944000    PPE at FFFFA25128800000    PDE at 
FFFFA25100000028    PTE at FFFFA20000005C80 
contains 00C0000025BAC867  contains 0FF00000CAA2D867  contains 
00F000003B22F867  contains B9300000F59FD867 
pfn 25bac     ---DA--UWEV  pfn caa2d     ---DA--UWEV  pfn 3b22f     ---DA--
UWEV  pfn f59fd     ---DA--UW-V

8. Notice the PFN values are different, indicating that these pages are mapped to different 
physical addresses. Resume the target.

9. On the target, open an elevated command window, navigate to the directory where 
you copied MemCombine(32/64), and run it. The tool forces a full memory combining, 
which may take a few seconds.

10. When it’s finished, break into the debugger again. Repeat steps 6 and 7. You should see 
the PFNs change:

1: kd> !pte b80000 
                                           VA 0000000000b80000 
PXE at FFFFA25128944000    PPE at FFFFA25128800000    PDE at 
FFFFA25100000028    PTE at FFFFA20000005C00 
contains 00C0000025BAC867  contains 0FF00000CAA2D867  contains 
00F000003B22F867  contains B9300000EA886225 
pfn 25bac     ---DA--UWEV  pfn caa2d     ---DA--UWEV  pfn 3b22f     ---DA--
UWEV  pfn ea886     C---A--UR-V 
 
1: kd> !pte b90000 
                                           VA 0000000000b90000 
PXE at FFFFA25128944000    PPE at FFFFA25128800000    PDE at 
FFFFA25100000028    PTE at FFFFA20000005C80 
contains 00C0000025BAC867  contains 0FF00000CAA2D867  contains 
00F000003B22F867  contains BA600000EA886225 
pfn 25bac     ---DA--UWEV  pfn caa2d     ---DA--UWEV  pfn 3b22f     ---DA--
UWEV  pfn ea886     C---A--UR-V

11. Notice the PFN values are the same, meaning the pages are mapped to the exact same 
address in RAM. Also note the C flag in the PFN, indicating copy-on-write.

12. Resume the target and press any key in the MemCombineTest window. This changes a 
single byte in the first buffer.
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13. Break into the target again and repeat steps 6 and 7 yet again:

1: kd> !pte b80000 
                                           VA 0000000000b80000 
PXE at FFFFA25128944000    PPE at FFFFA25128800000    PDE at 
FFFFA25100000028    PTE at FFFFA20000005C00 
contains 00C0000025BAC867  contains 0FF00000CAA2D867  contains 
00F000003B22F867  contains B9300000813C4867 
pfn 25bac     ---DA--UWEV  pfn caa2d     ---DA--UWEV  pfn 3b22f     ---DA--
UWEV  pfn 813c4     ---DA--UW-V 
 
1: kd> !pte b90000 
                                           VA 0000000000b90000 
PXE at FFFFA25128944000    PPE at FFFFA25128800000    PDE at 
FFFFA25100000028    PTE at FFFFA20000005C80 
contains 00C0000025BAC867  contains 0FF00000CAA2D867  contains 
00F000003B22F867  contains BA600000EA886225 
pfn 25bac     ---DA--UWEV  pfn caa2d     ---DA--UWEV  pfn 3b22f     ---DA--
UWEV  pfn ea886     C---A--UR-V

14. The PFN for the first buffer has changed, and the copy-on-write flag was removed. The 
page has changed and was relocated to a different address in RAM.

Memory enclaves

Threads executing in a process have access to the entire process address space (as determined by page 
protection, which can be changed). This is desirable most of the time; however, in case malicious code 
manages to get itself injected into a process, it has the exact same power. It can freely read data that 
may contain sensitive information and even change it.

Intel has created a technology called Intel Software Guard Extensions (SGX) that allows the cre-
ation of protected memory enclaves—secure zones in a process address space where code and data 
are protected by the CPU from code running outside the enclave. Conversely, code running inside an 
enclave has full (normal) access to process address space outside the enclave. Naturally, the protection 
extends to access from other processes and even code running in kernel mode. A simplified diagram of 
memory enclaves is shown in Figure 5-49.

FIGURE 5-49 Memory enclaves.
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Intel SGX is supported by sixth generation Core processors (“Skylake”) and later generations. Intel 
has its own SDK for application developers that can be used on Windows 7 and later systems (64 bit 
only). Starting with Windows 10 version 1511 and Server 2016, Windows provide an abstraction using 
Windows API functions that removes the need to use Intel’s SDK. Other CPU vendors may create similar 
solutions in the future, and these will also be wrapped by the same API, providing a relatively portable 
layer for application developers to use for creating and populating enclaves.

Note Not all sixth generation Core processors support SGX. Also, an appropriate BIOS update 
must be installed on the system for SGX to work. Consult the Intel SGX documentation for 
more information. The Intel SGX website can be found at https://software.intel.com/en-us/sgx.

Note At the time of this writing, Intel produced two versions of SGX (versions 1.0 and 2.0). 
Windows currently supports version 1.0 only. The differences are outside the scope of this 
book; consult the SGX documentation for more information.

Note Current SGX versions do not support enclaves in ring 0 (kernel mode). Only ring 3 
(user mode) enclaves are supported.

Programmatic interface
From an application developer’s perspective, creating and working with an enclave consists of the fol-
lowing steps. (The internal details are described in the following sections.)

1. Initially the program should determine whether memory enclaves are supported by calling  
IsEnclaveTypeSupported, passing a value representing the enclave technology, which cur-
rently can only be ENCLAVE_TYPE_SGX.

2. A new enclave is created by calling the CreateEnclave function, which is similar in its arguments 
to VirtualAllocEx. For example, it’s possible to create an enclave in a different process than 
the caller process. The complication in this function is the need to provide a vendor-specific 
configuration structure, which for Intel means a 4 KB data structure called SGX Enclave Control 
Structure (SECS), which Microsoft does not define explicitly. Instead, developers are expected  
to create their own structure based on the particular technology used and defined in its docu-
mentation.

3. Once an empty enclave is created, the next step is to populate the enclave with code and data 
from outside of the enclave. This is accomplished by calling LoadEnclaveData where an external 
memory to the enclave is used to copy data to the enclave. Multiple calls to LoadEnclaveData 
may be used to populate the enclave.

https://www.software.intel.com/en-us/sgx
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4. The last step that is required to “activate” the enclave is achieved with the InitializeEnclave 
function. At that point, code that was configured to execute within the enclave can start executing.

5. Unfortunately, executing the code in the enclave is not wrapped by the API. Direct use of as-
sembly language is required. The EENTER instruction transfers execution to the enclave and the 
EEXIT instruction causes return to the calling function. Abnormal termination of the enclave 
execution is also possible with Asynchronous Enclave Exit (AEX), such as due to a fault. The 
exact details are beyond the scope of this book, as they are not Windows-specific. Consult the 
SGX documentation to get the fine details.

6. Finally, to destroy the enclave, a normal VirtualFree(Ex) function can be used on the pointer 
to the enclave obtained in CreateEnclave.

Memory enclave initializations
During boot, Winload (the Windows Boot Loader) calls OslEnumerateEnclavePageRegions, which 
first checks if SGX is supported using the CPUID instruction. If it is, it issues instructions to enumerate 
Enclave Page Cache (EPC) descriptors. EPC is the protected memory provided by the processor for cre-
ating and using enclaves. For each enumerated EPC, OslEnumerateEnclavePageRegions calls BlMm- 
AddEnclavePageRange to add the page range information to a sorted list of memory descriptors with 
a type value of LoaderEnclaveMemory. This list is eventually stored in the MemoryDescriptorListHead 
member of the LOADER_PARAMETER_BLOCK structure used to pass information from the boot loader to 
the kernel.

During phase 1 initialization, the memory manager routine MiCreateEnclaveRegions is called to 
create an AVL tree for the discovered enclave regions (allowing quick lookups when needed); the tree 
is stored in the MiState.Hardrware.EnclaveRegions data member. The kernel adds a new enclave 
page list, and a special flag passed to MiInsertPageInFreeOrZeroedList enables functionality to 
utilize this new list. However, since the memory manager has actually run out of list identifiers (3 bits 
are used for a maximum of 8 values, all taken), the kernel actually identifies these pages as being “bad” 
pages currently suffering an in-page error. The memory manager knows never to use bad pages, so 
calling enclave pages “bad” keeps them from being used by normal memory management operations, 
and so such pages end up in the bad page list.

Enclave construction
The CreateEnclave API ends up calling NtCreateEnclave in the kernel. As noted, a SECS structure 
must be passed in, documented by Intel SGX as shown in Table 5-24.

NtCreateEnclave first checks if memory enclaves are supported by looking at the root of the AVL 
tree (not by using the slower CPUID instruction). It then creates a copy of the passed-in structure  
(as is usual for kernel functions obtaining data from user mode) and attaches to the target process 
(KeStackAttachProcess) if the enclave is to be created in a different process than the caller’s. Then  
it transfers control to MiCreateEnclave to begin the actual work.
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TABLE 5-24 SECS structure layout

Field Offset (bytes) Size (bytes) Description

SIZE 0 8 Size of enclave in bytes; must be power of 2

BASEADDR 8 8 Enclave base linear address must be naturally aligned to size

SSAFRAMESIZE 16 4 Size of one SSA frame in pages (including XSAVE, pad, GPR, 
and conditionally MISC)

MRSIGNER 128 32 Measurement register extended with the public key that 
verified the enclave. See SIGSTRUCT for proper format

RESERVED 160 96

ISVPRODID 256 2 Product ID of enclave

ISVSVN 258 2 Security version number (SVN) of the enclave

EID Implementation 
dependent

8 Enclave identifier

PADDING Implementation 
dependent

352 Padding pattern from the signature (used for key derivation 
strings)

RESERVED 260 3836 Includes EID, other non-zero reserved field and must-be-zero 
fields

The first thing MiCreateEnclave does is allocate the Address Windowing Extension (AWE) informa-
tion structure that AWE APIs also utilize. This is because similar to the AWE functionality, an enclave 
allows a user-mode application to directly have access over physical pages (that is to say, the physical 
pages that are EPC pages based on the detection described earlier). Anytime a user-mode application 
has such direct control over physical pages, AWE data structures and locks must be used. This data 
structure is stored in the AweInfo field of the EPROCESS structure.

Next, MiCreateEnclave calls MiAllocateEnclaveVad to allocate an enclave-type VAD describing 
the enclave virtual memory range. This VAD has the VadAwd flag (as all AWE VADs) but also an addition-
al Enclave flag, to differentiate it from a true AWE VAD. Finally, as part of VAD allocation, this is where 
the user-mode address for the enclave memory will be chosen (if not explicitly specified in the original 
CreateEnclave call).

The next step in MiCreateEnclave is to acquire an enclave page regardless of the enclave size 
or initial commitment. This is because, as per Intel’s SGX documentation, all enclaves require at least 
a one-page control structure to be associated with them. MiGetEnclavePage is used to obtain the 
required allocation. This function simply scans the enclave page list described earlier, and extracts one 
page as needed. The returned page is mapped using a system PTE stored as part of the enclave VAD; 
the MiInitializeEnclavePfn function sets up the related PFN data structure and marks it Modified 
and ActiveAndValid.

There are no actual bits that would help you differentiate this enclave PFN from any other active 
region of memory (such as non-paged pool). This is where the enclave regions AVL tree comes into 
play, and MI_PFN_IS_ENCLAVE is a function that the kernel uses whenever it needs to check if a PFN is 
indeed describing an EPC region. 
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With the PFN initialized, the system PTE is now converted to a final global kernel PTE, and its result-
ing virtual address is computed. The final step in MiCreateEnclave is to call KeCreateEnclave, which 
will now do the low-level kernel enclave creation steps, including communication with the actual 
SGX hardware implementation. One job that KeCreateEnclave is responsible for is filling in the base 
address required by the SECS structure if the caller did not specify one, as it must be set in the SECS 
structure before communicating with the SGX hardware to create an enclave.

Loading data into an enclave
Once an enclave has been created, it’s time to load information into it. The LoadEnclaveData func-
tion is exposed for that purpose. The function merely forwards the request to the underlying executive 
function, NtLoadEnclaveData. The function resembles a combination of a memory copy operation 
with some VirtualAlloc attributes (such as page protection).

If the enclave created with CreateEnclave doesn’t yet have any committed enclave pages, they 
must first be obtained, which will result in zeroed out memory being added to the enclave, which can 
then be filled with non-zero memory from outside the enclave. Otherwise, if an initial pre-committed 
initialization size was passed in, then the enclave’s pages can directly be filled in with non-zero memory 
from outside of the enclave.

Because enclave memory is described by a VAD, many of the traditional memory management APIs 
will function, at least partly, on this memory as well. For example, calling VirtualAlloc (ending up in 
NtAllocateVirtualMemory) on such an address with the MEM_COMMIT flag will result in MiCommitEn-
clavePages being called, which will validate that the protection mask for the new pages is compat-
ible (i.e., a combination of read, write, and/or execute, without any special caching or write combining 
flags), and then call MiAddPagesToEnclave, passing a pointer to the enclave VAD associated with the 
address range, the protection mask that was specified to VirtualAlloc, and the PTE addresses that 
correspond to the virtual address range being committed. 

MiAddPagesToEnclave first checks if the enclave VAD has any existing EPC pages associated with it, 
and if there’s enough of them to satisfy the commit. If not, MiReserveEnclavePages is called to obtain 
a sufficient amount. MiReserveEnclavePages looks at the current enclave page list and counts the 
total. If there aren’t enough physical EPC pages provided by the processor (based on the information 
obtained at boot), the function fails. Otherwise, it calls MiGetEnclavePage in a loop for the required 
amount of pages.

For each PFN entry that is retrieved, it is linked into the PFN array in the enclave VAD. Essentially, this 
means that once an enclave PFN is removed from the enclave page list and put into an active state, the 
enclave VAD acts as the list of active enclave PFNs.

Once the required committed pages have been obtained, MiAddPagesToEnclave translates the 
page protection passed to LoadEnclaveData into their SGX equivalents. Next, it reserves the appropri-
ate number of system PTEs to hold paging information for each EPC pages that will be required. With 
this information in hand, it will eventually call KeAddEnclavePage that calls the SGX hardware to do the 
actual page adding.
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One special page protection attribute is PAGE_ENCLAVE_THREAD_CONTROL, which indicates the 
memory is for a Thread Control Structure (TCS) defined by SGX. Each TCS represents a different thread 
that can execute independently within the enclave.

NtLoadEnclaveData validates parameters and then calls MiCopyPagesIntoEnclave to do the actual 
work, which may require getting committed pages as described earlier.

Initializing an enclave
Now that the enclave has been created and data has been transferred into it, there is another last step 
to perform before actual code in the enclave can execute. InitializeEnclave must be called to notify 
SGX that the enclave is in its final state before execution can begin. InitializeEnclave requires two 
SGX-specific structures to be passed in (SIGSTRUCT and EINITTOKEN; see the SGX documentation for 
the details).

The executive function NtInitializeEnclave called by InitializeEnclave does some parameter 
validation and makes sure the enclave VAD obtained has the correct attributes and then passed the 
structures along to the SGX hardware. Note that an enclave can only be initialized once.

The final step would be to use the Intel assembly instruction EENTER to start code execution (again, 
see the SGX documentation for the details).

Proactive memory management (SuperFetch)

Traditional memory management in operating systems has focused on the demand-paging model 
discussed thus far, with some advances in clustering and prefetching so that disk I/O can be optimized 
at the time of the demand-page fault. Client versions of Windows, however, include a significant im-
provement in the management of physical memory with the implementation of SuperFetch, a memory 
management scheme that enhances the least–recently accessed approach with historical file access 
information and proactive memory management.

The standby list management in older versions of Windows had two limitations. First, the prioritiza-
tion of pages relies only on the recent past behavior of processes and does not anticipate their future 
memory requirements. Second, the data used for prioritization is limited to the list of pages owned by 
a process at any given point in time. These shortcomings can result in scenarios in which the computer 
is left unattended for a brief period of time, during which a memory-intensive system application runs 
(doing work such as an antivirus scan or a disk defragmentation) and then causes subsequent interac-
tive application use (or launch) to be sluggish. The same thing can happen when a user purposely runs 
a data- and/or memory-intensive application and then returns to use other programs, which appear to 
be significantly less responsive.

This decline in performance occurs because the memory-intensive application forces the code and 
data that active applications had cached in memory to be overwritten by the memory-intensive activi-
ties—applications perform sluggishly as they have to request their data and code from disk. Client 
versions of Windows take a big step toward resolving these limitations with SuperFetch.
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Components
SuperFetch has several components in the system that work hand in hand to proactively manage 
memory and limit the impact on user activity when SuperFetch is performing its work. These compo-
nents include the following:

 ■ Tracer The tracer mechanisms are part of a kernel component (Pf) that allows SuperFetch to 
query detailed page-usage, session, and process information at any time. SuperFetch also uses 
the FileInfo mini-filter driver (%SystemRoot%\System32\Drivers\Fileinfo.sys) to track file usage.

 ■ Trace collector and processor This collector works with the tracing components to provide 
a raw log based on the tracing data that has been acquired. This tracing data is kept in memory 
and handed off to the processor. The processor then hands the log entries in the trace to the 
agents, which maintain history files (described next) in memory and persist them to disk when 
the service stops, such as during a reboot.

 ■ Agents SuperFetch keeps file page access information in history files, which keep track of 
virtual offsets. Agents group pages by attributes, such as the following:

• Page access while the user was active

• Page access by a foreground process

• Hard fault while the user was active

• Page access during an application launch

• Page access upon the user returning after a long idle period

 ■ Scenario manager This component, also called the context agent, manages the three Super-
Fetch scenario plans: hibernation, standby, and fast-user switching. The kernel-mode part of the 
scenario manager provides APIs for initiating and terminating scenarios, managing the current 
scenario state, and associating tracing information with these scenarios.

 ■ Rebalancer Based on the information provided by the SuperFetch agents, as well as the 
current state of the system (such as the state of the prioritized page lists), the rebalancer—a 
specialized agent in the Superfetch user-mode service—queries the PFN database and repri-
oritizes it based on the associated score of each page, thus building the prioritized standby lists. 
The rebalancer can also issue commands to the memory manager that modify the working sets 
of processes on the system, and it is the only agent that actually takes action on the system. 
Other agents merely filter information for the rebalancer to use in its decisions. In addition to 
reprioritization, the rebalancer initiates prefetching through the prefetcher thread, which uses 
FileInfo and kernel services to preload memory with useful pages.

All these components use facilities inside the memory manager that allow for the querying of 
detailed information about the state of each page in the PFN database, the current page counts for 
each page list and prioritized list, and more. Figure 5-50 shows an architectural diagram of SuperFetch’s 
multiple components. SuperFetch components also use prioritized I/O to minimize user impact. (See 
Chapter 8 in Part 2 for more on I/O priority.)
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FIGURE 5-50 SuperFetch architectural diagram.

Tracing and logging
SuperFetch makes most of its decisions based on information that has been integrated, parsed, and 
post-processed from raw traces and logs, making these two components among the most critical. 
Tracing is like ETW in some ways because it uses certain triggers in code throughout the system to 
generate events, but it also works in conjunction with facilities already provided by the system, such as 
power-manager notification, process callbacks, and file-system filtering. The tracer also uses traditional 
page-aging mechanisms that exist in the memory manager, as well as newer working-set aging and 
access tracking implemented for SuperFetch.

SuperFetch always keeps a trace running and continuously queries trace data from the system, 
which tracks page usage and access through the memory manager’s access bit tracking and working-
set aging. To track file-related information, which is as critical as page usage because it allows priori-
tization of file data in the cache, SuperFetch leverages existing filtering functionality with the addi-
tion of the FileInfo driver. (See Chapter 6 for more information on filter drivers.) This driver sits on the 
file-system device stack and monitors access and changes to files at the stream level, which provides 
it with fine-grained understanding of file access. (For more information on NTFS data streams, see 
Chapter 13 in Part 2.) The main job of the FileInfo driver is to associate streams—identified by a unique 
key, currently implemented as the FsContext field of the respective file object—with file names so that 
the user-mode Superfetch service can identify the specific file stream and offset that a page in the 
standby list belonging to a memory-mapped section is associated with. It also provides the interface 
for prefetching file data transparently, without interfering with locked files and other file-system state. 
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The rest of the driver ensures that the information stays consistent by tracking deletions, renaming 
operations, truncations, and the reuse of file keys by implementing sequence numbers.

At any time during tracing, the rebalancer might be invoked to repopulate pages differently. These 
decisions are made by analyzing information such as the distribution of memory within working sets, 
the zero page list, the modified page list and the standby page lists, the number of faults, the state of 
PTE access bits, the per-page usage traces, current virtual address consumption, and working set size.

A given trace can be a page-access trace, in which the tracer uses the access bit to keep track of 
which pages were accessed by the process (both file page and private memory). Or, it can be a name-
logging trace, which monitors the file name–to–file key mapping updates to the actual file on disk. 
These allow SuperFetch to map a page associated with a file object.

Although a SuperFetch trace only keeps track of page accesses, the Superfetch service processes 
this trace in user mode and goes much deeper, adding its own richer information such as where the 
page was loaded from (for example, in resident memory or a hard page fault), whether this was the ini-
tial access to that page, and what the rate of page access actually is. Additional information, such as the 
system state, is also kept, as well as information about recent scenarios in which each traced page was 
last referenced. The generated trace information is kept in memory through a logger into data struc-
tures, which—in the case of page-access traces—identify traces, a virtual address–to–working set pair, 
or, in the case of a name-logging trace, a file-to-offset pair. SuperFetch can thus keep track of which 
range of virtual addresses for a given process have page-related events and which range of offsets for a 
given file have similar events.

Scenarios
One aspect of SuperFetch that is distinct from its primary page reprioritization and prefetching mecha-
nisms (covered in more detail in the next section) is its support for scenarios, which are specific actions 
on the machine for which SuperFetch strives to improve the user experience. These scenarios are as 
follows:

 ■ Hibernation The goal of hibernation is to intelligently decide which pages are saved in the 
hibernation file other than the existing working-set pages. The idea is to minimize the amount 
of time it takes for the system to become responsive after a resume.

 ■ Standby The goal of standby is to completely remove hard faults after resume. Because a typ-
ical system can resume in less than 2 seconds, but can take 5 seconds to spin up the hard drive 
after a long sleep, a single hard fault could cause such a delay in the resume cycle. SuperFetch 
prioritizes pages needed after a standby to remove this chance.

 ■ Fast user switching The goal of fast user switching is to keep an accurate priority and un-
derstanding of each user’s memory. That way, switching to another user will cause the user’s 
session to be immediately usable, and won’t require a large amount of lag time to allow pages 
to be faulted in.

Each of these scenarios has different goals, but all are centered around the main purpose of mini-
mizing or removing hard faults.
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Scenarios are hardcoded, and SuperFetch manages them through the NtSetSystemInformation 
and NtQuerySystemInformation APIs that control system state. For SuperFetch purposes, a special 
information class, SystemSuperfetchInformation, is used to control the kernel-mode components 
and to generate requests such as starting, ending, and querying a scenario or associating one or more 
traces with a scenario.

Each scenario is defined by a plan file, which contains, at minimum, a list of pages associated with 
the scenario. Page priority values are also assigned according to certain rules (described next). When a 
scenario starts, the scenario manager is responsible for responding to the event by generating the list 
of pages that should be brought into memory and at which priority.

Page priority and rebalancing
You’ve already seen that the memory manager implements a system of page priorities to define which 
standby list pages will be repurposed for a given operation and in which list a given page will be in-
serted. This mechanism provides benefits when processes and threads have associated priorities—for 
example, ensuring that a defragmenter process doesn’t pollute the standby page list and/or steal pages 
from an interactive foreground process. But its real power is unleashed through SuperFetch’s page-
prioritization schemes and rebalancing, which don’t require manual application input or hardcoded 
knowledge of process importance.

SuperFetch assigns page priority based on an internal score it keeps for each page, part of which is 
based on frequency-based usage. This usage counts how many times a page was used in given relative 
time intervals, such as by hour, day, or week. The system also keeps track of time of use, recording how 
long it’s been since a given page was accessed. Finally, data such as where this page comes from (which 
list) and other access patterns is used to compute this score. 

The score is translated into a priority number, which can be anywhere from 1 to 6. (A priority of 7 is 
used for another purpose, described later.) Going down each level, the lower standby page list priori-
ties are repurposed first, as shown in the “Viewing the prioritized standby lists” experiment. Priority 
5 is typically used for normal applications, while priority 1 is meant for background applications that 
third-party developers can mark as such. Finally, priority 6 is used to keep a certain number of high-im-
portance pages as far away as possible from repurposing. The other priorities are a result of the score 
associated with each page.

Because SuperFetch “learns” a user’s system, it can start from scratch with no existing historical data 
and slowly build an understanding of the different page accesses associated with the user. However, 
this would result in a significant learning curve whenever a new application, user, or service pack was 
installed. Instead, by using an internal tool, Windows can pre-train SuperFetch to capture SuperFetch 
data and then turn it into prebuilt traces. These prebuilt traces were generated by the SuperFetch team, 
who traced common usages and patterns that all users will probably encounter, such as clicking the 
Start menu, opening Control Panel, or using the File Open/Save dialog box. This trace data was then 
saved to history files (which ship as resources in Sysmain.dll) and is used to prepopulate the special 
priority 7 list. This list is where the most critical data is placed and is rarely repurposed. Pages at priority 
7 are file pages kept in memory even after the process has exited and even across reboots (by being  
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repopulated at the next boot). Finally, pages with priority 7 are static, in that they are never reprioritized, 
and SuperFetch will never dynamically load pages at priority 7 other than the static pretrained set.

The prioritized list is loaded into memory (or prepopulated) by the rebalancer, but the actual act 
of rebalancing is handled by both SuperFetch and the memory manager. As shown, the prioritized 
standby page list mechanism is internal to the memory manager, and decisions as to which pages to 
throw out first and which to protect are innate, based on the priority number. The rebalancer does its 
job not by manually rebalancing memory but by reprioritizing it, which causes the memory manager 
to perform the needed tasks. The rebalancer is also responsible for reading the actual pages from disk, 
if needed, so that they are present in memory (prefetching). It then assigns the priority that is mapped 
by each agent to the score for each page, and the memory manager ensures that the page is treated 
according to its importance.

The rebalancer can take action without relying on other agents—for example, if it notices that 
the distribution of pages across paging lists is suboptimal or that the number of repurposed pages 
across different priority levels is detrimental. The rebalancer can also trigger working-set trimming, 
which might be required for creating an appropriate budget of pages that will be used for SuperFetch 
prepopulated cache data. The rebalancer will typically take low-utility pages—such as those that are 
already marked as low priority, that are zeroed, or that have valid content but not in any working set 
and have been unused—and build a more useful set of pages in memory, given the budget it has al-
located itself. After the rebalancer has decided which pages to bring into memory and at which priority 
level they need to be loaded (as well as which pages can be thrown out), it performs the required disk 
reads to prefetch them. It also works in conjunction with the I/O manager’s prioritization schemes so 
that I/Os are performed with very low priority and do not interfere with the user.

The memory consumption used by prefetching is backed by standby pages. As described in the 
discussion of page dynamics, standby memory is available memory because it can be repurposed as 
free memory for another allocator at any time. In other words, if SuperFetch is prefetching the wrong 
data, there is no real impact on the user because that memory can be reused when needed and doesn’t 
actually consume resources.

Finally, the rebalancer also runs periodically to ensure that pages it has marked as high priority have 
actually been recently used. Because these pages will rarely (sometimes never) be repurposed, it is 
important not to waste them on data that is rarely accessed but may have appeared to be frequently 
accessed during a certain period. If such a situation is detected, the rebalancer runs again to push those 
pages down in the priority lists.

A special agent called the application launch agent is involved in a different kind of prefetching 
mechanism, which attempts to predict application launches and builds a Markov chain model that 
describes the probability of certain application launches given the existence of other application 
launches within a time segment. These time segments are divided across four different periods of 
roughly 6 hours each—morning, noon, evening, and night—and by weekday or weekend. For example, 
if on Saturday and Sunday evening a user typically launches Outlook after having launched Word, the 
application launch agent will likely prefetch Outlook based on the high probability of it running after 
Word during weekend evenings.
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Because systems today have sufficiently large amounts of memory—on average more than 2 GB 
(although SuperFetch works well on low-memory systems, too)—the actual real amount of memory 
that frequently used processes on a machine need resident for optimal performance ends up being a 
manageable subset of their entire memory footprint. Often, SuperFetch can fit all the pages required 
into RAM. When it can’t, technologies such as ReadyBoost and ReadyDrive can further prevent disk 
usage.

Robust performance
A final performance-enhancing functionality of SuperFetch is called robustness, or robust performance. 
This component—managed by the user-mode Superfetch service but ultimately implemented in 
the kernel (Pf routines)—watches for specific file I/O access that might harm system performance by 
populating the standby lists with unneeded data. For example, if a process were to copy a large file 
across the file system, the standby list would be populated with the file’s contents, even though that file 
might never be accessed again (or not for a long period of time). This would throw out any other data 
within that priority—and if this was an interactive and useful program, chances are its priority would be 
at least 5.

SuperFetch responds to two specific kinds of I/O access patterns: 

 ■ Sequential file access With this type of I/O access pattern, the system goes through all the 
data in a file.

 ■ Sequential directory access With this type of I/O access, the system goes through every file 
in a directory.

When SuperFetch detects that a certain amount of data past an internal threshold has been popu-
lated in the standby list as a result of this kind of access, it applies aggressive deprioritization (called 
robustion) to the pages being used to map this file. This occurs within the targeted process only so 
as not to penalize other applications. These pages, which are said to be robusted, essentially become 
reprioritized to priority 2.

Because this component of SuperFetch is reactive and not predictive, it does take some time for the 
robustion to kick in. SuperFetch will therefore keep track of this process for the next time it runs. Once 
SuperFetch has determined that it appears that this process always performs this kind of sequential ac-
cess, it remembers this and robusts the file pages as soon as they’re mapped instead of waiting for the 
reactive behavior. At this point, the entire process is now considered robusted for future file access.

Just by applying this logic, however, SuperFetch could potentially hurt many legitimate applications 
or user scenarios that perform sequential access in the future. For example, by using the Sysinternals 
Strings.exe utility, you can look for a string in all executables that are part of a directory. If there are 
many files, SuperFetch would likely perform robustion. Now, next time you run Strings.exe with a dif-
ferent search parameter, it would run just as slowly as it did the first time even though you’d expect it 
to run much faster. To prevent this, SuperFetch keeps a list of processes that it watches into the future, 
as well as an internal hard-coded list of exceptions. If a process is detected to later re-access robusted 
files, robustion is disabled on the process to restore the expected behavior.
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The main point to remember when thinking about robustion—and SuperFetch optimizations in 
general—is that SuperFetch constantly monitors usage patterns and updates its understanding of 
the system to avoid fetching useless data. Although changes in a user’s daily activities or application 
startup behavior might cause SuperFetch to pollute the cache with irrelevant data or to throw out data 
that it might think is useless, it will quickly adapt to any pattern changes. If the user’s actions are erratic 
and random, the worst that can happen is that the system will behave in a similar state as if SuperFetch 
were not present at all. If SuperFetch is ever in doubt or cannot track data reliably, it quiets itself and 
doesn’t make changes to a given process or page.

ReadyBoost
These days, RAM is easily available and relatively cheap compared to a decade ago. Still, it doesn’t beat 
the cost of secondary storage such as hard disk drives. Unfortunately, mechanical hard disks contain 
many moving parts, are fragile, and, more importantly, are relatively slow compared to RAM, especially 
during seeking. As a result, storing active SuperFetch data on the drive would be as bad as paging out a 
page and hard-faulting it inside memory. 

Solid state disks and hybrid drives offset some of these disadvantages but they are still pricier and 
slower compared to RAM. Portable solid state media such as USB flash disk (UFD), CompactFlash cards, 
and Secure Digital cards, however, provide a useful compromise. They are cheaper than RAM and avail-
able in larger sizes, but also have shorter seek times than mechanical hard drives because of the lack of 
moving parts. 

Note In practice, CompactFlash cards and Secure Digital cards are almost always inter-
faced through a USB adapter, so they all appear to the system as USB flash disks.

Random disk I/O is especially expensive because disk head seek time plus rotational latency for typi-
cal desktop hard drives total about 10 milliseconds—an eternity for today’s 3 or 4 GHz processors. Flash 
memory, however, can service random reads up to 10 times faster than a typical hard disk. Windows 
therefore includes a feature called ReadyBoost to take advantage of flash memory storage devices by 
creating an intermediate caching layer on them that logically sits between memory and disks.

ReadyBoost (not to be confused with ReadyBoot) is implemented with the aid of a driver (%System-
Root%\System32\Drivers\Rdyboost.sys) that is responsible for writing the cached data to the non-
volatile RAM (NVRAM) device. When you insert a USB flash disk into a system, ReadyBoost looks at the 
device to determine its performance characteristics and stores the results of its test in HKLM\SOFTWARE\ 
Microsoft\Windows NT\CurrentVersion\Emdmgmt. (Emd is short for external memory device, the work-
ing name for ReadyBoost during its development.)

If the new device is between 256 MB and 32 GB in size, has a transfer rate of 2.5 MB per second or 
higher for random 4 KB reads, and has a transfer rate of 1.75 MB per second or higher for random 512 
KB writes, then ReadyBoost will ask if you’d like to dedicate some of the space for disk caching. If you 
agree, ReadyBoost creates a file named ReadyBoost.sfcache in the root of the device, which it uses to 
store cached pages.
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After initializing caching, ReadyBoost intercepts all reads and writes to local hard disk volumes  
(C:\, for example) and copies any data being read or written into the caching file that the service created. 
There are exceptions—for example, data that hasn’t been read in a long while or data that belongs to 
Volume Snapshot requests. Data stored on the cached drive is compressed and typically achieves a 2:1 
compression ratio, so a 4 GB cache file will usually contain 8 GB of data. Each block is encrypted as it is 
written using Advanced Encryption Standard (AES) encryption with a randomly generated per-boot 
session key to guarantee the privacy of the data in the cache if the device is removed from the system.

When ReadyBoost sees random reads that can be satisfied from the cache, it services them from 
there. However, because hard disks have better sequential read access than flash memory, it lets reads 
that are part of sequential access patterns go directly to the disk even if the data is in the cache. Like-
wise, when reading the cache, if large I/Os must be done, the on-disk cache will be read instead.

One disadvantage of depending on flash media is that the user can remove it at any time, which 
means the system can never solely store critical data on the media. (As you’ve seen, writes always go to 
the secondary storage first.) A related technology, ReadyDrive, covered in the next section, offers ad-
ditional benefits and solves this problem.

ReadyDrive
ReadyDrive is a Windows feature that takes advantage of hybrid hard disk drives (H-HDDs). An H-HDD 
is a disk with embedded NVRAM. Typical H-HDDs include between 50 MB and 512 MB of cache.

Under ReadyDrive, the drive’s flash memory does not simply act as an automatic, transparent cache, 
as does the RAM cache common on most hard drives. Instead, Windows uses ATA-8 commands to 
define the disk data to be held in the flash memory. For example, Windows saves boot data to the 
cache when the system shuts down, allowing for faster restarting. It also stores portions of hibernation 
file data in the cache when the system hibernates so that the subsequent resume is faster. Because the 
cache is enabled even when the disk is spun down, Windows can use the flash memory as a disk-write 
cache, which avoids spinning up the disk when the system is running on battery power. Keeping the 
disk spindle turned off can save much of the power consumed by the disk drive under normal usage.

Another consumer of ReadyDrive is SuperFetch. It offers the same advantages as ReadyBoost with 
some enhanced functionality, such as not requiring an external flash device and having the ability to 
work persistently. Because the cache is on the actual physical hard drive, which a user typically cannot 
remove while the computer is running, the hard drive controller typically doesn’t have to worry about 
the data disappearing and can avoid making writes to the actual disk using solely the cache.

Process reflection
There are often cases where a process exhibits problematic behavior, but because it’s still providing 
service, suspending it to generate a full memory dump or interactively debug it is undesirable. The 
length of time a process is suspended to generate a dump can be minimized by taking a minidump, 
which captures thread registers and stacks along with pages of memory referenced by registers, but 
that dump type has a very limited amount of information, which many times is sufficient for diagnosing 
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crashes but not for troubleshooting general problems. With process reflection, the target process is 
suspended only long enough to generate a minidump and create a suspended cloned copy of the  
target, and then the larger dump that captures all of a process’s valid user-mode memory can be  
generated from the clone while the target is allowed to continue executing.

Several Windows Diagnostic Infrastructure (WDI) components make use of process reflection to 
capture minimally intrusive memory dumps of processes their heuristics identify as exhibiting suspi-
cious behavior. For example, the Memory Leak Diagnoser component of Windows Resource Exhaustion 
Detection and Resolution (also known as RADAR), generates a reflected memory dump of a process 
that appears to be leaking private virtual memory so that it can be sent to Microsoft via Windows Error 
Reporting (WER) for analysis. WDI’s hung process detection heuristic does the same for processes that 
appear to be deadlocked with one another. Because these components use heuristics, they can’t be certain 
the processes are faulty and therefore can’t suspend them for long periods of time or terminate them.

The RtlCreateProcessReflection function in Ntdll.dll drives the implementation of process 
reflection. It works as follows:

1. It creates a shared memory section.

2. It populates the shared memory section with parameters.

3. It maps the shared memory section into the current and target processes.

4. It creates two event objects and duplicates them into the target process so that the current 
process and target process can synchronize their operations. 

5. It injects a thread into the target process via a call to RtlpCreateUserThreadEx. The thread 
is directed to begin execution in Ntdll’s RtlpProcessReflectionStartup function. (Because 
Ntdll.dll is mapped at the same address (randomly generated at boot) into every process’s ad-
dress space, the current process can simply pass the address of the function it obtains from its 
own Ntdll.dll mapping. 

6. If the caller of RtlCreateProcessReflection specified that it wants a handle to the cloned 
process, RtlCreateProcessReflection waits for the remote thread to terminate, otherwise it 
returns to the caller.

7. The injected thread in the target process allocates an additional event object that it will use to 
synchronize with the cloned process once it’s created. 

8. The injected thread calls RtlCloneUserProcess, passing parameters it obtains from the 
memory mapping it shares with the initiating process. 

9. If the RtlCreateProcessReflection option that specifies the creation of the clone when the 
process is not executing in the loader, performing heap operations, modifying the process 
environment block (PEB), or modifying fiber-local storage is present, then RtlCreateProcess-
Reflection acquires the associated locks before continuing. This can be useful for debugging 
because the memory dump’s copy of the data structures will be in a consistent state.
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10. RtlCloneUserProcess finishes by calling RtlpCreateUserProcess, the user-mode function 
responsible for general process creation, passing flags that indicate the new process should be 
a clone of the current one. RtlpCreateUserProcess in turn calls ZwCreateUserProcess to 
request the kernel to create the process.

When creating a cloned process, ZwCreateUserProcess executes most of the same code paths as 
when it creates a new process, with the exception that PspAllocateProcess, which it calls to create the 
process object and initial thread, calls MmInitializeProcessAddressSpace with a flag specifying that 
the address should be a copy-on-write copy of the target process instead of an initial process address 
space. The memory manager uses the same support it provides for the Services for Unix Applications 
fork API to efficiently clone the address space. Once the target process continues execution, any 
changes it makes to its address space are seen only by it, not the clone. This enables the clone’s address 
space to represent a consistent point-in-time view of the target process.

The clone’s execution begins at the point just after the return from RtlpCreateUserProcess. If the 
clone’s creation is successful, its thread receives the STATUS_PROCESS_CLONED return code, whereas the 
cloning thread receives STATUS_SUCCESS. The cloned process then synchronizes with the target and, as 
its final act, calls a function optionally passed to RtlCreateProcessReflection, which must be imple-
mented in Ntdll.dll. RADAR, for instance, specifies RtlDetectHeapLeaks, which performs heuristic 
analysis of the process heaps and reports the results back to the thread that called RtlCreateProcess-
Reflection. If no function was specified, the thread suspends itself or terminates, depending on the 
flags passed to RtlCreateProcessReflection.

When RADAR and WDI use process reflection, they call RtlCreateProcessReflection, asking for 
the function to return a handle to the cloned process and for the clone to suspend itself after it has ini-
tialized. Then they generate a minidump of the target process, which suspends the target for the dura-
tion of the dump generation. Next, they generate a more comprehensive dump of the cloned process. 
After they finish generating the dump of the clone, they terminate the clone. The target process can 
execute during the time window between the minidump’s completion and the creation of the clone, 
but for most scenarios any inconsistencies do not interfere with troubleshooting. The Procdump utility 
from Sysinternals also follows these steps when you specify the –r switch to have it create a reflected 
dump of a target process.

Conclusion

This chapter examined how the Windows memory manager implements virtual memory management. 
As with most modern operating systems, each process is given access to a private address space, pro-
tecting one process’s memory from another’s but allowing processes to share memory efficiently and 
securely. Advanced capabilities, such as the inclusion of mapped files and the ability to sparsely allocate 
memory, are also available. The Windows environment subsystem makes most of the memory manager’s 
capabilities available to applications through the Windows API.

The next chapter covers another critical part of any operating system—the I/O system.
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I/O system

The Windows I/O system consists of several executive components that, together, manage hardware 
devices and provide interfaces to hardware devices for applications and the system. This chapter 

lists the design goals of the I/O system, which have influenced its implementation. It then covers the 
components that make up the I/O system, including the I/O manager, Plug and Play (PnP) manager, 
and power manager. Then it examines the structure and components of the I/O system and the various 
types of device drivers. It discusses the key data structures that describe devices, device drivers, and I/O 
requests, after which it describes the steps necessary to complete I/O requests as they move through 
the system. Finally, it presents the way device detection, driver installation, and power management work.

I/O system components

The design goals for the Windows I/O system are to provide an abstraction of devices, both hardware 
(physical) and software (virtual or logical), to applications with the following features:

 ■ Uniform security and naming across devices to protect shareable resources. (See Chapter 7, 
“Security,” for a description of the Windows security model.)

 ■ High-performance asynchronous packet-based I/O to allow for the implementation of scalable 
applications.

 ■ Services that allow drivers to be written in a high-level language and easily ported between  
different machine architectures.

 ■ Layering and extensibility to allow for the addition of drivers that transparently modify the be-
havior of other drivers or devices, without requiring any changes to the driver whose behavior 
or device is modified.

 ■ Dynamic loading and unloading of device drivers so that drivers can be loaded on demand and 
not consume system resources when unneeded.

 ■ Support for Plug and Play, where the system locates and installs drivers for newly detected 
hardware, assigns them hardware resources they require, and allows applications to discover 
and activate device interfaces.

 ■ Support for power management so that the system or individual devices can enter low-power 
states.
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 ■ Support for multiple installable file systems, including FAT (and its variants, FAT32 and exFAT), 
the CD-ROM file system (CDFS), the Universal Disk Format (UDF) file system, the Resilient File 
System (ReFS), and the Windows file system (NTFS). (See Chapter 13, “File systems,” in Part 2 of 
this book for more specific information on file system types and architecture.)

 ■ Windows Management Instrumentation (WMI) support and diagnosability so that drivers can 
be managed and monitored through WMI applications and scripts. (WMI is described in Chap-
ter 9, “Management mechanisms,” in Part 2.)

To implement these features, the Windows I/O system consists of several executive components as 
well as device drivers, which are shown in Figure 6-1.

FIGURE 6-1 I/O system components.

 ■ The I/O manager is the heart of the I/O system. It connects applications and system compo-
nents to virtual, logical, and physical devices, and it defines the infrastructure that supports 
device drivers.

 ■ A device driver typically provides an I/O interface for a particular type of device. A driver is a 
software module that interprets high-level commands, such as read or write commands, and 
issues low-level, device-specific commands, such as writing to control registers. Device drivers 
receive commands routed to them by the I/O manager that are directed at the devices they 
manage, and they inform the I/O manager when those commands are complete. Device drivers 
often use the I/O manager to forward I/O commands to other device drivers that share in the 
implementation of a device’s interface or control.
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 ■ The PnP manager works closely with the I/O manager and a type of device driver called a bus 
driver to guide the allocation of hardware resources as well as to detect and respond to the 
arrival and removal of hardware devices. The PnP manager and bus drivers are responsible for 
loading a device’s driver when the device is detected. When a device is added to a system that 
doesn’t have an appropriate device driver, the executive Plug and Play component calls on the 
device-installation services of the user-mode PnP manager.

 ■ The power manager also works closely with the I/O manager and the PnP manager to guide the 
system, as well as individual device drivers, through power-state transitions.

 ■ WMI support routines, called the Windows Driver Model (WDM) WMI provider, allow device 
drivers to indirectly act as providers, using the WDM WMI provider as an intermediary to com-
municate with the WMI service in user mode. 

 ■ The registry serves as a database that stores a description of basic hardware devices attached 
to the system as well as driver initialization and configuration settings. (See the section “The 
registry” in Chapter 9 in Part 2 for more information.)

 ■ INF files, which are designated by the .inf extension, are driver-installation files. INF files are the 
link between a particular hardware device and the driver that assumes primary control of that 
device. They are made up of script-like instructions describing the device they correspond to, 
the source and target locations of driver files, required driver-installation registry modifications, 
and driver-dependency information. Digital signatures that Windows uses to verify that a driver 
file has passed testing by the Microsoft Windows Hardware Quality Labs (WHQL) are stored in 
.cat files. Digital signatures are also used to prevent tampering of the driver or its INF file.

 ■ The hardware abstraction layer (HAL) insulates drivers from the specifics of the processor and 
interrupt controller by providing APIs that hide differences between platforms. In essence, the 
HAL is the bus driver for all the devices soldered onto the computer’s motherboard that aren’t 
controlled by other drivers.

The I/O manager
The I/O manager is the core of the I/O system. It defines the orderly framework, or model, within which 
I/O requests are delivered to device drivers. The I/O system is packet driven. Most I/O requests are 
represented by an I/O request packet (IRP), which is a data structure that contains information com-
pletely describing an I/O request. The IRP travels from one I/O system component to another. (As you’ll 
discover in the section “Fast I/O,” fast I/O is the exception; it doesn’t use IRPs.) The design allows an 
individual application thread to manage multiple I/O requests concurrently. (For more information on 
IRPs, see the section “I/O request packets” later in this chapter.)

The I/O manager creates an IRP in memory to represent an I/O operation, passing a pointer to the 
IRP to the correct driver and disposing of the packet when the I/O operation is complete. In contrast, a 
driver receives an IRP, performs the operation the IRP specifies, and passes the IRP back to the I/O man-
ager, either because the requested I/O operation has been completed or because it must be passed on 
to another driver for further processing.
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In addition to creating and disposing of IRPs, the I/O manager supplies code that is common to dif-
ferent drivers and that the drivers can call to carry out their I/O processing. By consolidating common 
tasks in the I/O manager, individual drivers become simpler and more compact. For example, the I/O 
manager provides a function that allows one driver to call other drivers. It also manages buffers for I/O 
requests, provides timeout support for drivers, and records which installable file systems are loaded 
into the operating system. There are about 100 different routines in the I/O manager that can be called 
by device drivers.

The I/O manager also provides flexible I/O services that allow environment subsystems, such as 
Windows and POSIX (the latter is no longer supported), to implement their respective I/O functions. 
These services include support for asynchronous I/O that allow developers to build scalable, high-
performance server applications.

The uniform, modular interface that drivers present allows the I/O manager to call any driver with-
out requiring any special knowledge of its structure or internal details. The operating system treats all 
I/O requests as if they were directed at a file; the driver converts the requests from requests made to 
a virtual file to hardware-specific requests. Drivers can also call each other (using the I/O manager) to 
achieve layered, independent processing of an I/O request.

Besides providing the normal open, close, read, and write functions, the Windows I/O system pro-
vides several advanced features, such as asynchronous, direct, buffered, and scatter/gather I/O, which 
are described in the “Types of I/O” section later in this chapter.

Typical I/O processing
Most I/O operations don’t involve all the components of the I/O system. A typical I/O request starts 
with an application executing an I/O-related function (for example, reading data from a device) that is 
processed by the I/O manager, one or more device drivers, and the HAL.

As mentioned, in Windows, threads perform I/O on virtual files. A virtual file refers to any source 
or destination for I/O that is treated as if it were a file (such as devices, files, directories, pipes, and 
mailslots). A typical user mode client calls the CreateFile or CreateFile2 functions to get a handle 
to a virtual file. The function name is a little misleading—it’s not just about files, it’s anything that is 
known as a symbolic link within the object manager’s directory called GLOBAL??. The suffix “File” in the 
CreateFile* functions really means a virtual file object (FILE_OBJECT) that is the entity created by the 
executive as a result of these functions. Figure 6-2 shows a screenshot of the WinObj Sysinternals tool 
for the GLOBAL?? directory.

As shown in Figure 6-2, a name such as C: is just a symbolic link to an internal name under the Device 
object manager directory (in this case, \Device\HarddiskVolume7). (See Chapter 8, “System mechanisms,” 
in Part 2 for more on the object manager and the object manager namespace.) All the names in the 
GLOBAL?? directory are candidates for arguments to CreateFile(2). Kernel mode clients such as 
device drivers can use the similar ZwCreateFile to obtain a handle to a virtual file.
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FIGURE 6-2 The object manager’s GLOBAL?? directory.

Note Higher-level abstractions such as the .NET Framework and the Windows Runtime 
have their own APIs for working with files and devices (for example, the System.IO.File 
class in .NET or the Windows.Storage.StorageFile class in WinRT), but these eventually call 
CreateFile(2) to get the actual handle they hide under the covers.

Note The GLOBAL?? object manager directory is sometimes called DosDevices, which is 
an older name. DosDevices still works because it’s defined as a symbolic link to GLOBAL?? in 
the root of the object manager’s namespace. In driver code, the ?? string is typically used to 
reference the GLOBAL?? directory.

The operating system abstracts all I/O requests as operations on a virtual file because the I/O 
manager has no knowledge of anything but files, therefore making it the responsibility of the driver to 
translate file-oriented comments (open, close, read, write) into device-specific commands. This abstrac-
tion thereby generalizes an application’s interface to devices. User-mode applications call documented 
functions, which in turn call internal I/O system functions to read from a file, write to a file, and perform 
other operations. The I/O manager dynamically directs these virtual file requests to the appropriate 
device driver. Figure 6-3 illustrates the basic structure of a typical I/O read request flow. (Other types  
of I/O requests, such as write, are similar; they just use different APIs.)
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FIGURE 6-3 The flow of a typical I/O request.

The following sections look at these components more closely, covering the various types of device 
drivers, how they are structured, how they load and initialize, and how they process I/O requests. Then 
we’ll cover the operation and roles of the PnP manager and the power manager.

Interrupt Request Levels and Deferred Procedure Calls

Before we proceed, we must introduce two very important concepts of the Windows kernel that play an 
important role within the I/O system: Interrupt Request Levels (IRQL) and Deferred Procedure Calls (DPC). 
A thorough discussion of these concepts is reserved for Chapter 8 in Part 2, but we’ll provide enough 
information in this section to enable you to understand the mechanics of I/O processing that follow.

Interrupt Request Levels
The IRQL has two somewhat distinct meanings, but they converge in certain situations:

 ■ An IRQL is a priority assigned to an interrupt source from a hardware device This num-
ber is set by the HAL (in conjunction with the interrupt controller to which devices that require 
interrupt servicing are connected).

 ■ Each CPU has its own IRQL value It should be considered a register of the CPU (even though 
current CPUs do not implement it as such).
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The fundamental rule of IRQLs is that lower IRQL code cannot interfere with higher IRQL code and 
vice versa—code with a higher IRQL can preempt code running at a lower IRQL. You’ll see examples 
of how this works in practice in a moment. A list of IRQLs for the Windows-supported architectures is 
shown in Figure 6-4. Note that IRQLs are not the same as thread priorities. In fact, thread priorities have 
meaning only when the IRQL is less than 2.

FIGURE 6-4 IRQLs.

Note IRQL is not the same as IRQ (interrupt request). IRQs are hardware lines connecting 
devices to an interrupt controller. See Chapter 8 in Part 2 for more on interrupts, IRQs, and 
IRQLs.

Normally, the IRQL of a processor is 0. This means “nothing special” is happening in that regard, and 
that the kernel’s scheduler that schedules threads based on priorities and so on works as described in 
Chapter 4, “Threads.” In user mode, the IRQL can only be 0. There is no way to raise IRQL from user mode. 
(That’s why user-mode documentation never mentions the IRQL concept at all; there would be no point.)

Kernel-mode code can raise and lower the current CPU IRQL with the KeRaiseIrql and KeLower-
Irql functions. However, most of the time-specific functions are called with the IRQL raised to some 
expected level, as you’ll see shortly when we discuss a typical I/O processing by a driver.

The most important IRQLs for this I/O-related discussions are the following:

 ■ Passive(0) This is defined by the PASSIVE_LEVEL macro in the WDK header wdm.h. It is the 
normal IRQL where the kernel scheduler is working normally, as described at length in Chapter 4.
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 ■ Dispatch/DPC (2) (DISPATCH_LEVEL) This is the IRQL the kernel’s scheduler works at. This 
means if a thread raises the current IRQL to 2 (or higher), the thread has essentially an infinite 
quantum and will not be preempted by another thread. Effectively, the scheduler cannot wake 
up on the current CPU until the IRQL drops below 2. This implies a few things:

• With the IRQL at level 2 or above, any waiting on kernel dispatcher objects (such as mutexes, 
semaphores, and events) would crash the system. This is because waiting implies that the 
thread might enter a wait state and another should be scheduled on the same CPU. How-
ever, because the scheduler is not around at this level, this cannot happen; instead, the 
system will bug-check (the only exception is if the wait timeout is zero, meaning no waiting 
is requested, just getting back the signaled state of the object).

• No page faults can be handled. This is because a page fault would require a context switch 
to one of the modified page writers. However, context switches are not allowed, so the 
system would crash. This means code running at IRQL 2 or above can access only non-paged 
memory—typically memory allocated from non-paged pool, which by definition is always 
resident in physical memory.

 ■ Device IRQL (3–26 on x86; 3–12 on x64 and ARM) (DIRQL) These are the levels assigned to 
hardware interrupts. When an interrupt arrives, the kernel’s trap dispatcher calls the appropri-
ate interrupt service routine (ISR) and raises its IRQL to that of the associated interrupt. Because 
this value is always higher than DISPATCH_LEVEL (2), all rules associated with IRQL 2 apply for 
DIRQL as well.

Running at a particular IRQL masks interrupts with that and lower IRQLs. For example, an ISR run-
ning with IRQL of 8 would not let any code interfere (on that CPU) with IRQL of 7 or lower. Specifically, 
no user mode code is able to run because it always runs at IRQL 0. This implies that running in high 
IRQL is not desirable in the general case; there are a few specific scenarios (which we’ll look at in this 
chapter) where this makes sense and is in fact required for normal system operation.

Deferred Procedure Calls
A Deferred Procedure Call (DPC) is an object that encapsulates calling a function at IRQL DPC_LEVEL 
(2). DPCs exist primarily for post-interrupt processing because running at DIRQL masks (and thus de-
lays) other interrupts waiting to be serviced. A typical ISR would do the minimum work possible, mostly 
reading the state of the device and telling it to stop its interrupt signal and then deferring further 
processing to a lower IRQL (2) by requesting a DPC. The term Deferred means the DPC will not execute 
immediately—it can’t because the current IRQL is higher than 2. However, when the ISR returns, if there 
are no pending interrupts waiting to be serviced, the CPU IRQL will drop to 2 and it will execute the 
DPCs that have accumulated (maybe just one). Figure 6-5 shows a simplified example of the sequence 
of events that may occur when interrupts from hardware devices (which are asynchronous in nature, 
meaning they can arrive at any time) occur while code executes normally at IRQL 0 on some CPU.
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FIGURE 6-5 Example of interrupt and DPC processing.

Here is a rundown of the sequence of events shown in Figure 6-5:

1. Some user-mode or kernel-mode code is executing while the CPU is at IRQL 0, which is the case 
most of the time.

2. A hardware interrupt arrives with an IRQL of 5 (remember that Device IRQLs have a minimum 
value of 3). Because 5 is greater than zero (the current IRQL), the CPU state is saved, the IRQL 
is raised to 5, and the ISR associated with that interrupt is called. Note that there is no context 
switch; it’s the same thread that now happens to execute the ISR code. (If the thread was in user 
mode, it switches to kernel mode whenever an interrupt arrives.)

3. ISR 1 starts executing while the CPU IRQL is 5. At this point, any interrupt with IRQL 5 or lower 
cannot interrupt.

4. Suppose another interrupt arrives with an IRQL of 8. Assume the system decides that the same 
CPU should handle it. Because 8 is greater than 5, the code is interrupted again, the CPU state is 
saved, the IRQL is raised to 8, and the CPU jumps to ISR 2. Note again that it’s the same thread. 
No context switch can happen because the thread scheduler cannot wake up if the IRQL is 2 or 
higher.

5. ISR 2 is executing. Before it’s done, ISR 2 would like to do some more processing at a lower IRQL 
so that interrupts with IRQLs less than 8 could be services as well.

6. As its final act, ISR 2 inserts a DPC initialized properly to point to a driver routine to do any post 
processing after the interrupt is dismissed by calling the KeInsertQueueDpc function. (We’ll 
discuss what this post-processing typically includes in the next section.) Then the ISR returns, 
restoring the CPU state saved before entering ISR 2.

7. At this point, the IRQL drops to its previous level (5) and the CPU continues execution of ISR 1 
that was interrupted before.



492 CHAPTER 6 I/O system

8. Just before ISR 1 finishes, it queues a DPC of its own to do its required post-processing. These 
DPCs are collected in a DPC queue that has not been examined yet. Then ISR 1 returns, restor-
ing the CPU state saved before ISR 1 started execution.

9. At this point, the IRQL would want to drop to the old value of zero before all the interrupt han-
dling began. However, the kernel notices that there are DPCs pending and so drops the IRQL to 
level 2 (DPC_LEVEL) and enters a DPC processing loop that iterates over the accumulated DPCs 
and calls each DPC routine in sequence. When the DPC queue is empty, DPC processing ends.

10. Finally, the IRQL can drop back to zero, restore the state of the CPU again, and resume execu-
tion of the original user or kernel code that got interrupted in the first place. Again, notice that 
all the processing described was done by the same thread (whichever one that may be). This 
fact implies that ISRs and DPC routines should not rely on any particular thread (and hence part 
of a particular process) to execute their code. It could be any thread, the significance of which 
will be discussed in the next section.

The preceding description is a bit simplified. It doesn’t mention DPC importance, other CPUs that 
may handle DPCs for quicker DPC processing, and more. These details are not important for the discus-
sion in this chapter. However, they are described fully in Chapter 8 in Part 2.

Device drivers

To integrate with the I/O manager and other I/O system components, a device driver must conform to 
implementation guidelines specific to the type of device it manages and the role it plays in managing 
the device. This section discusses the types of device drivers Windows supports as well as the internal 
structure of a device driver.

Note Most kernel-mode device drivers are written in C. Starting with the Windows Driver 
Kit 8.0, drivers can also be safely written in C++ due to specific support for kernel-mode C++ 
in the new compilers. Use of assembly language is highly discouraged because of the com-
plexity it introduces and its effect of making a driver difficult to port between the hardware 
architectures supported by Windows (x86, x64, and ARM).

Types of device drivers
Windows supports a wide range of device-driver types and programming environments. Even within a 
particular type of device driver, programming environments can differ depending on the specific type 
of device for which a driver is intended.

The broadest classification of a driver is whether it is a user-mode or kernel-mode driver. Windows 
supports a couple of types of user-mode drivers:
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 ■ Windows subsystem printer drivers These translate device-independent graphics requests 
to printer-specific commands. These commands are then typically forwarded to a kernel-mode 
port driver such as the universal serial bus (USB) printer port driver (Usbprint.sys).

 ■ User-Mode Driver Framework (UMDF) drivers These are hardware device drivers that run 
in user mode. They communicate to the kernel-mode UMDF support library through advanced 
local procedure calls (ALPC). See the “User-Mode Driver Framework” section later in this chap-
ter for more information.

In this chapter, the focus is on kernel-mode device drivers. There are many types of kernel-mode 
drivers, which can be divided into the following basic categories:

 ■ File-system drivers These accept I/O requests to files and satisfy the requests by issuing their 
own more explicit requests to mass storage or network device drivers.

 ■ Plug and Play drivers These work with hardware and integrate with the Windows power 
manager and PnP manager. They include drivers for mass storage devices, video adapters, input 
devices, and network adapters.

 ■ Non–Plug and Play drivers These include kernel extensions, which are drivers or modules 
that extend the functionality of the system. They do not typically integrate with the PnP 
manager or power manager because they usually do not manage an actual piece of hardware. 
Examples include network API and protocol drivers. The Sysinternals tool Process Monitor has a 
driver, and is an example of a non-PnP driver.

Within the category of kernel-mode drivers are further classifications based on the driver model to 
which the driver adheres and its role in servicing device requests.

WDM drivers
WDM drivers are device drivers that adhere to the Windows Driver Model (WDM). WDM includes sup-
port for Windows power management, Plug and Play, and WMI, and most Plug and Play drivers adhere 
to WDM. There are three types of WDM drivers:

 ■ Bus drivers These manage a logical or physical bus. Examples of buses include PCMCIA, PCI, 
USB, and IEEE 1394. A bus driver is responsible for detecting and informing the PnP manager of 
devices attached to the bus it controls and for managing the power setting of the bus. These are 
typically provided by Microsoft out of the box.

 ■ Function drivers These manage a particular type of device. Bus drivers present devices to 
function drivers via the PnP manager. The function driver is the driver that exports the opera-
tional interface of the device to the operating system. In general, it’s the driver with the most 
knowledge about the operation of the device.

 ■ Filter drivers These logically layer either above function drivers (these are called upper filters or 
function filters) or above the bus driver (these are called lower filters or bus filters), augmenting or 
changing the behavior of a device or another driver. For example, a keyboard-capture utility could 
be implemented with a keyboard filter driver that layers above the keyboard function driver.
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Figure 6-6 shows a device node (also called a devnode) with a bus driver that creates a physical 
device object (PDO), lower filters, a function driver that creates a functional device object (FDO), and 
upper filters. The only required layers are the PDO and FDO. The various filters may or may not exist.

FIGURE 6-6 WDM device node (devnode).

In WDM, no one driver is responsible for controlling all aspects of a particular device. The bus driver 
is responsible for detecting bus membership changes (device addition or removal), assisting the PnP 
manager in enumerating the devices on the bus, accessing bus-specific configuration registers, and, 
in some cases, controlling power to devices on the bus. The function driver is generally the only driver 
that accesses the device’s hardware. The exact manner in which these devices came to be is described 
in “The Plug and Play manager” section later in this chapter.

Layered drivers
Support for an individual piece of hardware is often divided among several drivers, each providing a 
part of the functionality required to make the device work properly. In addition to WDM bus drivers, 
function drivers, and filter drivers, hardware support might be split between the following components:

 ■ Class drivers These implement the I/O processing for a particular class of devices, such as 
disk, keyboard, or CD-ROM, where the hardware interfaces have been standardized so one 
driver can serve devices from a wide variety of manufacturers.

 ■ Miniclass drivers These implement I/O processing that is vendor-defined for a particular 
class of devices. For example, although Microsoft has written a standardized battery class driver, 
both uninterruptible power supplies (UPS) and laptop batteries have highly specific interfaces 
that differ wildly between manufacturers, such that a miniclass is required from the vendor. 
Miniclass drivers are essentially kernel-mode DLLs and do not perform IRP processing directly. 
Instead, the class driver calls into them and they import functions from the class driver.

 ■ Port drivers These implement the processing of an I/O request specific to a type of I/O port, 
such as SATA, and are implemented as kernel-mode libraries of functions rather than actual 
device drivers. Port drivers are almost always written by Microsoft because the interfaces are 
typically standardized in such a way that different vendors can still share the same port driver. 
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However, in certain cases, third parties may need to write their own for specialized hardware.  
In some cases, the concept of I/O port extends to cover logical ports as well. For example,  
Network Driver Interface Specification (NDIS) is the network “port” driver.

 ■ Miniport drivers These map a generic I/O request to a type of port into an adapter type, 
such as a specific network adapter. Miniport drivers are actual device drivers that import the 
functions supplied by a port driver. Miniport drivers are written by third parties, and they pro-
vide the interface for the port driver. Like miniclass drivers, they are kernel-mode DLLs and do 
not perform IRP processing directly.

Figure 6-7 shows a simplified example for illustrative purposes that will help demonstrate how 
device drivers and layering work at a high level. As you can see, a file-system driver accepts a request 
to write data to a certain location within a particular file. It translates the request into a request to write 
a certain number of bytes to the disk at a particular (that is, the logical) location. It then passes this 
request (via the I/O manager) to a simple disk driver. The disk driver, in turn, translates the request into 
a physical location on the disk and communicates with the disk to write the data.

FIGURE 6-7 Layering of a file-system driver and a disk driver.

This figure illustrates the division of labor between two layered drivers. The I/O manager receives a 
write request that is relative to the beginning of a particular file. The I/O manager passes the request to 
the file-system driver, which translates the write operation from a file-relative operation to a starting 
location (a sector boundary on the disk) and a number of bytes to write. The file-system driver calls the 
I/O manager to pass the request to the disk driver, which translates the request to a physical disk loca-
tion and transfers the data.
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Because all drivers—both device drivers and file-system drivers—present the same framework to 
the operating system, another driver can easily be inserted into the hierarchy without altering the exist-
ing drivers or the I/O system. For example, several disks can be made to seem like a very large single 
disk by adding a driver. This logical volume manager driver is located between the file system and  
the disk drivers, as shown in the conceptual simplified architectural diagram presented in Figure 6-8. 
(For the actual storage driver stack diagram as well as volume manager drivers, see Chapter 12, “Storage 
management” in Part 2.)

FIGURE 6-8 Adding a layered driver.

EXPERIMENT: Viewing the loaded driver list
You can see a list of registered drivers by executing the Msinfo32.exe utility from the Run dialog 
box, accessible from the Start menu. Select the System Drivers entry under Software Environ-
ment to see the list of drivers configured on the system. Those that are loaded contain the text 
Yes in the Started column, as shown here:
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The list of drivers comes from the registry subkeys under HKLM\System\CurrentControlSet\
Services. This key is shared between drivers and services. Both can be started by the Service 
Control Manager (SCM). The way to distinguish between a driver and a service for each subkey 
is by looking at the Type value. A small value (1, 2, 4, 8) indicates a driver, while 16 (0x10) and 
32 (0x20) indicate a Windows service. For more information on the Services subkey, consult 
Chapter 9 in Part 2.

You can also view the list of loaded kernel-mode drivers with Process Explorer. Run Process 
Explorer, select the System process, and select DLLs from the Lower Pane View menu entry in 
the View menu:

Process Explorer lists the loaded drivers, their names, version information (including company 
and description), and load address (assuming you have configured Process Explorer to display 
the corresponding columns).

Finally, if you’re looking at a crash dump (or live system) with the kernel debugger, you can get 
a similar display with the kernel debugger lm kv command:

kd> lm kv 
start    end        module name 
80626000 80631000   kdcom      (deferred) 
    Image path: kdcom.dll 
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    Image name: kdcom.dll 
    Browse all global symbols  functions  data 
    Timestamp:        Sat Jul 16 04:27:27 2016 (57898D7F) 
    CheckSum:         0000821A 
    ImageSize:        0000B000 
    Translations:     0000.04b0 0000.04e4 0409.04b0 0409.04e4 
81009000 81632000   nt         (pdb symbols)          e:\symbols\ntkrpamp.
pdb\A54DF85668E54895982F873F58C984591\ntkrpamp.pdb 
    Loaded symbol image file: ntkrpamp.exe 
    Image path: ntkrpamp.exe 
    Image name: ntkrpamp.exe 
    Browse all global symbols  functions  data 
    Timestamp:        Wed Sep 07 07:35:39 2016 (57CF991B) 
    CheckSum:         005C6B08 
    ImageSize:        00629000 
    Translations:     0000.04b0 0000.04e4 0409.04b0 0409.04e4 
81632000 81693000   hal        (deferred) 
    Image path: halmacpi.dll 
    Image name: halmacpi.dll 
    Browse all global symbols  functions  data 
    Timestamp:        Sat Jul 16 04:27:33 2016 (57898D85) 
    CheckSum:         00061469 
    ImageSize:        00061000 
    Translations:     0000.04b0 0000.04e4 0409.04b0 0409.04e4 
8a800000 8a84b000   FLTMGR     (deferred) 
    Image path: \SystemRoot\System32\drivers\FLTMGR.SYS 
    Image name: FLTMGR.SYS 
    Browse all global symbols  functions  data 
    Timestamp:        Sat Jul 16 04:27:37 2016 (57898D89) 
    CheckSum:         00053B90 
    ImageSize:        0004B000 
    Translations:     0000.04b0 0000.04e4 0409.04b0 0409.04e4 
 ...

Structure of a driver
The I/O system drives the execution of device drivers. Device drivers consist of a set of routines that 
are called to process the various stages of an I/O request. Figure 6-9 illustrates the key driver-function 
routines, which are described next.

FIGURE 6-9 Primary device driver routines.
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 ■ An initialization routine The I/O manager executes a driver’s initialization routine, which  
is set by the WDK to GSDriverEntry when it loads the driver into the operating system.  
GSDriverEntry initializes the compiler’s protection against stack-overflow errors (called 
a cookie) and then calls DriverEntry, which is what the driver writer must implement. The 
routine fills in system data structures to register the rest of the driver’s routines with the I/O 
manager and performs any necessary global driver initialization.

 ■ An add-device routine A driver that supports Plug and Play implements an add-device 
routine. The PnP manager sends a notification to the driver via this routine whenever a device 
for which the driver is responsible is detected. In this routine, a driver typically creates a device 
object (described later in this chapter) to represent the device.

 ■ A set of dispatch routines Dispatch routines are the main entry points that a device driver 
provides. Some examples are open, close, read, write, and Plug and Play. When called on to 
perform an I/O operation, the I/O manager generates an IRP and calls a driver through one of 
the driver’s dispatch routines.

 ■ A start I/O routine A driver can use a start I/O routine to initiate a data transfer to or from a 
device. This routine is defined only in drivers that rely on the I/O manager to queue their incom-
ing I/O requests. The I/O manager serializes IRPs for a driver by ensuring that the driver processes 
only one IRP at a time. Drivers can process multiple IRPs concurrently, but serialization is usually 
required for most devices because they cannot concurrently handle multiple I/O requests.

 ■ An interrupt service routine (ISR) When a device interrupts, the kernel’s interrupt dis-
patcher transfers control to this routine. In the Windows I/O model, ISRs run at device interrupt 
request level (DIRQL), so they perform as little work as possible to avoid blocking lower IRQL 
interrupts (as discussed in the previous section). An ISR usually queues a DPC, which runs at a 
lower IRQL (DPC/dispatch level) to execute the remainder of interrupt processing. Only drivers 
for interrupt-driven devices have ISRs; a file-system driver, for example, doesn’t have one.

 ■ An interrupt-servicing DPC routine A DPC routine performs most of the work involved in 
handling a device interrupt after the ISR executes. The DPC routine executes at IRQL 2, which 
is a “compromise” between the high DIRQL and the low passive level (0). A typical DPC routine 
initiates I/O completion and starts the next queued I/O operation on a device.

Although the following routines aren’t shown in Figure 6-9, they’re found in many types of device 
drivers:

 ■ One or more I/O completion routines A layered driver might have I/O completion routines 
that notify it when a lower-level driver finishes processing an IRP. For example, the I/O manager 
calls a file-system driver’s I/O completion routine after a device driver finishes transferring data 
to or from a file. The completion routine notifies the file-system driver about the operation’s 
success, failure, or cancellation, and allows the file-system driver to perform cleanup operations.

 ■ A cancel I/O routine If an I/O operation can be canceled, a driver can define one or more 
cancel I/O routines. When the driver receives an IRP for an I/O request that can be canceled, it 
assigns a cancel routine to the IRP. As the IRP goes through various stages of processing, this 
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routine can change or outright disappear if the current operation is not cancellable. If a thread 
that issues an I/O request exits before the request is completed or the operation is cancelled 
(for example, with the CancelIo or CancelIoEx Windows functions), the I/O manager executes 
the IRP’s cancel routine if one is assigned to it. A cancel routine is responsible for performing 
whatever steps are necessary to release any resources acquired during the processing that has 
already taken place for the IRP as well as for completing the IRP with a canceled status.

 ■ Fast-dispatch routines Drivers that make use of the cache manager, such as file-system driv-
ers, typically provide these routines to allow the kernel to bypass typical I/O processing when 
accessing the driver. (See Chapter 14, “Cache manager,” in Part 2, for more information on the 
cache manager.) For example, operations such as reading or writing can be quickly performed by 
accessing the cached data directly instead of taking the I/O manager’s usual path that generates 
discrete I/O operations. Fast dispatch routines are also used as a mechanism for callbacks from the 
memory manager and cache manager to file-system drivers. For instance, when creating a sec-
tion, the memory manager calls back into the file-system driver to acquire the file exclusively.

 ■ An unload routine An unload routine releases any system resources a driver is using so that 
the I/O manager can remove the driver from memory. Any resources acquired in the initializa-
tion routine (DriverEntry) are usually released in the unload routine. A driver can be loaded 
and unloaded while the system is running if the driver supports it, but the unload routine will be 
called only after all file handles to the device are closed.

 ■ A system shutdown notification routine This routine allows driver cleanup on system 
shutdown.

 ■ Error-logging routines When unexpected errors occur (for example, when a disk block goes 
bad), a driver’s error-logging routines note the occurrence and notify the I/O manager. The I/O 
manager then writes this information to an error log file.

Driver objects and device objects
When a thread opens a handle to a file object (described in the “I/O processing” section later in this 
chapter), the I/O manager must determine from the file object’s name which driver it should call to 
process the request. Furthermore, the I/O manager must be able to locate this information the next 
time a thread uses the same file handle. The following system objects fill this need:

 ■ A driver object This represents an individual driver in the system (DRIVER_OBJECT structure). 
The I/O manager obtains the address of each of the driver’s dispatch routines (entry points) 
from the driver object.

 ■ A device object This represents a physical or logical device on the system and describes its 
characteristics (DEVICE_OBJECT structure), such as the alignment it requires for buffers and the 
location of its device queue to hold incoming IRPs. It is the target for all I/O operations because 
this object is what the handle communicates with.

The I/O manager creates a driver object when a driver is loaded into the system. It then calls the driver’s 
initialization routine (DriverEntry), which fills in the object attributes with the driver’s entry points.
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At any time after loading, a driver creates device objects to represent logical or physical devices—or 
even a logical interface or endpoint to the driver—by calling IoCreateDevice or IoCreateDevice-
Secure. However, most Plug and Play drivers create devices in their add-device routine when the PnP 
manager informs them of the presence of a device for them to manage. Non–Plug and Play drivers, on 
the other hand, usually create device objects when the I/O manager invokes their initialization routine. 
The I/O manager unloads a driver when the driver’s last device object has been deleted and no refer-
ences to the driver remain.

The relationship between a driver object and its device objects is shown in Figure 6-10.

FIGURE 6-10 A driver object and its device objects.

A driver object holds a pointer to its first device object in the DeviceObject member. The second 
device object is pointed to by the NextDevice member of DEVICE_OBJECT until the last one points to 
NULL. Each device object points back to its driver object with the DriverObject member. All the arrows 
shown in Figure 6-10 are built by the device-creation functions (IoCreateDevice or IoCreateDevice-
Secure). The DeviceExtension pointer shown is a way a driver can allocate an extra piece of memory 
that is attached to each device object it manages.

Note It’s important to distinguish driver objects from device objects. A driver object rep-
resents the behavior of a driver, while individual device objects represent communication 
endpoints. For example, on a system with four serial ports, there would be one driver object 
(and one driver binary) but four instances of device objects, each representing a single serial 
port, that can be opened individually with no effect on the other serial ports. For hardware 
devices, each device also represents a distinct set of hardware resources, such as I/O ports, 
memory-mapped I/O, and interrupt line. Windows is device-centric, rather than driver-centric.

When a driver creates a device object, the driver can optionally assign the device a name. A name 
places the device object in the object manager namespace. A driver can either explicitly define a name 
or let the I/O manager auto-generate one. By convention, device objects are placed in the \Device 
directory in the namespace, which is inaccessible by applications using the Windows API.
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Note Some drivers place device objects in directories other than \Device. For example, the 
IDE driver creates the device objects that represent IDE ports and channels in the \Device\
Ide directory. See Chapter 12 in Part 2 for a description of storage architecture, including the 
way storage drivers use device objects.

If a driver needs to make it possible for applications to open the device object, it must create a  
symbolic link in the \GLOBAL?? directory to the device object’s name in the \Device directory. (The  
IoCreateSymbolicLink function accomplishes this.) Non–Plug and Play and file-system drivers  
typically create a symbolic link with a well-known name (for example, \Device\HarddiskVolume2). 
Because well-known names don’t work well in an environment in which hardware appears and disap-
pears dynamically, PnP drivers expose one or more interfaces by calling the IoRegisterDeviceInter-
face function, specifying a globally unique identifier (GUID) that represents the type of functionality 
exposed. GUIDs are 128-bit values that can be generated by using tools such as uuidgen and guidgen, 
which are included with the WDK and the Windows SDK. Given the range of values that 128 bits repre-
sents (and the formula used to generate them), it’s statistically almost certain that each GUID gener-
ated will be forever and globally unique.

IoRegisterDeviceInterface generates the symbolic link associated with a device instance. How-
ever, a driver must call IoSetDeviceInterfaceState to enable the interface to the device before the 
I/O manager actually creates the link. Drivers usually do this when the PnP manager starts the device 
by sending the driver a start-device IRP—in this case, IRP_MJ_PNP (major function code) with IRP_MN_
START_DEVICE (minor function code). IRPs are discussed in the “I/O request packets” section later in 
this chapter.

An application that wants to open a device object whose interfaces are represented with a GUID can 
call Plug and Play setup functions in user space, such as SetupDiEnumDeviceInterfaces, to enumer-
ate the interfaces present for a particular GUID and to obtain the names of the symbolic links it can use 
to open the device objects. For each device reported by SetupDiEnumDeviceInterfaces, the applica-
tion executes SetupDiGetDeviceInterfaceDetail to obtain additional information about the device, 
such as its auto-generated name. After obtaining a device’s name from SetupDiGetDeviceInterface- 
Detail, the application can execute the Windows function CreateFile or CreateFile2 to open the 
device and obtain a handle.

EXPERIMENT: Looking at device objects
You can use the WinObj tool from Sysinternals or the !object kernel debugger command to 
view the device names under \Device in the object manager namespace. The following screen-
shot shows an I/O manager–assigned symbolic link that points to a device object in \Device with 
an auto-generated name:
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When you run the !object kernel debugger command and specify the \Device directory, you 
should see output similar to the following:

1: kd> !object \device 
Object: 8200c530  Type: (8542b188) Directory 
    ObjectHeader: 8200c518 (new version) 
    HandleCount: 0  PointerCount: 231 
    Directory Object: 82007d20  Name: Device 
 
    Hash Address  Type                      Name 
    ---- -------  ----                      ---- 
     00  d024a448 Device                    NisDrv 
         959afc08 Device                    SrvNet 
         958beef0 Device                    WUDFLpcDevice 
         854c69b8 Device                    FakeVid1 
         8befec98 Device                    RdpBus 
         88f7c338 Device                    Beep 
         89d64500 Device                    Ndis 
         8a24e250 SymbolicLink              ScsiPort2 
         89d6c580 Device                    KsecDD 
         89c15810 Device                    00000025 
         89c17408 Device                    00000019 
     01  854c6898 Device                    FakeVid2 
         88f98a70 Device                    Netbios 
         8a48c6a8 Device                    NameResTrk 
         89c2fe88 Device                    00000026 
     02  854c6778 Device                    FakeVid3 
         8548fee0 Device                    00000034 
         8a214b78 SymbolicLink              Ip 
         89c31038 Device                    00000027 
     03  9c205c40 Device                    00000041 
         854c6658 Device                    FakeVid4 
         854dd9d8 Device                    00000035 
         8d143488 Device                    Video0 
         8a541030 Device                    KeyboardClass0 
         89c323c8 Device                    00000028 
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         8554fb50 Device                    KMDF0 
     04  958bb040 Device                    ProcessManagement 
         97ad9fe0 SymbolicLink              MailslotRedirector 
         854f0090 Device                    00000036 
         854c6538 Device                    FakeVid5 
         8bf14e98 Device                    Video1 
         8bf2fe20 Device                    KeyboardClass1 
         89c332a0 Device                    00000029 
         89c05030 Device                    VolMgrControl 
         89c3a1a8 Device                    VMBus 
    ...

When you enter the !object command and specify an object manager directory object, the 
kernel debugger dumps the contents of the directory according to the way the object manager 
organizes it internally. For fast lookups, a directory stores objects in a hash table based on a hash 
of the object names, so the output shows the objects stored in each bucket of the directory’s 
hash table.

As Figure 6-10 illustrates, a device object points back to its driver object, which is how the I/O man-
ager knows which driver routine to call when it receives an I/O request. It uses the device object to find 
the driver object representing the driver that services the device. It then indexes into the driver object 
by using the function code supplied in the original request. Each function code corresponds to a driver 
entry point (called a dispatch routine).

A driver object often has multiple device objects associated with it. When a driver is unloaded from 
the system, the I/O manager uses the queue of device objects to determine which devices will be af-
fected by the removal of the driver.

EXPERIMENT: Displaying driver and device objects
You can display driver and device objects with the !drvobj and !devobj kernel debugger com-
mands, respectively. In the following example, the driver object for the keyboard class driver is 
examined, and one of its device objects viewed:

1: kd> !drvobj kbdclass 
Driver object (8a557520) is for: 
 \Driver\kbdclass 
Driver Extension List: (id , addr) 
 
Device Object list: 
9f509648  8bf2fe20  8a541030 
1: kd> !devobj 9f509648 
Device object (9f509648) is for: 
 KeyboardClass2 \Driver\kbdclass DriverObject 8a557520 
Current Irp 00000000 RefCount 0 Type 0000000b Flags 00002044 
Dacl 82090960 DevExt 9f509700 DevObjExt 9f5097f0 
ExtensionFlags (0x00000c00)  DOE_SESSION_DEVICE, DOE_DEFAULT_SD_PRESENT 
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Characteristics (0x00000100)  FILE_DEVICE_SECURE_OPEN 
AttachedTo (Lower) 9f509848 \Driver\terminpt 
Device queue is not busy.

Notice that the !devobj command also shows you the addresses and names of any device objects 
that the object you’re viewing is layered over (the AttachedTo line). It can also show the device  
objects layered on top of the object specified (the AttachedDevice line), although not in this case.

The !drvobj command can accept an optional argument that indicates more information to 
show. Here is an example with the most information to show:

1: kd> !drvobj kbdclass 7 
Driver object (8a557520) is for: 
 \Driver\kbdclass 
Driver Extension List: (id , addr) 
 
Device Object list: 
9f509648  8bf2fe20  8a541030 
 
DriverEntry:   8c30a010     kbdclass!GsDriverEntry 
DriverStartIo: 00000000 
DriverUnload:  00000000 
AddDevice:     8c307250     kbdclass!KeyboardAddDevice 
 
Dispatch routines: 
[00] IRP_MJ_CREATE                      8c301d80        kbdclass!KeyboardClassCreate 
[01] IRP_MJ_CREATE_NAMED_PIPE           81142342        nt!IopInvalidDeviceRequest 
[02] IRP_MJ_CLOSE                       8c301c90        kbdclass!KeyboardClassClose 
[03] IRP_MJ_READ                        8c302150        kbdclass!KeyboardClassRead 
[04] IRP_MJ_WRITE                       81142342        nt!IopInvalidDeviceRequest 
[05] IRP_MJ_QUERY_INFORMATION           81142342        nt!IopInvalidDeviceRequest 
[06] IRP_MJ_SET_INFORMATION             81142342        nt!IopInvalidDeviceRequest 
[07] IRP_MJ_QUERY_EA                    81142342        nt!IopInvalidDeviceRequest 
[08] IRP_MJ_SET_EA                      81142342        nt!IopInvalidDeviceRequest 
[09] IRP_MJ_FLUSH_BUFFERS               8c303678        kbdclass!KeyboardClassFlush 
[0a] IRP_MJ_QUERY_VOLUME_INFORMATION    81142342        nt!IopInvalidDeviceRequest 
[0b] IRP_MJ_SET_VOLUME_INFORMATION      81142342        nt!IopInvalidDeviceRequest 
[0c] IRP_MJ_DIRECTORY_CONTROL           81142342        nt!IopInvalidDeviceRequest 
[0d] IRP_MJ_FILE_SYSTEM_CONTROL         81142342        nt!IopInvalidDeviceRequest 
[0e] IRP_MJ_DEVICE_CONTROL              8c3076d0        kbdclass!KeyboardClassDevice 
Control 
[0f] IRP_MJ_INTERNAL_DEVICE_CONTROL     8c307ff0        kbdclass!KeyboardClassPass 
Through 
[10] IRP_MJ_SHUTDOWN                    81142342        nt!IopInvalidDeviceRequest 
[11] IRP_MJ_LOCK_CONTROL                81142342        nt!IopInvalidDeviceRequest 
[12] IRP_MJ_CLEANUP                     8c302260         kbdclass!KeyboardClassCleanup 
[13] IRP_MJ_CREATE_MAILSLOT             81142342        nt!IopInvalidDeviceRequest 
[14] IRP_MJ_QUERY_SECURITY              81142342        nt!IopInvalidDeviceRequest 
[15] IRP_MJ_SET_SECURITY                81142342        nt!IopInvalidDeviceRequest 
[16] IRP_MJ_POWER                       8c301440        kbdclass!KeyboardClassPower 
[17] IRP_MJ_SYSTEM_CONTROL              8c307f40        kbdclass!KeyboardClassSystem 
Control 
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[18] IRP_MJ_DEVICE_CHANGE               81142342        nt!IopInvalidDeviceRequest 
[19] IRP_MJ_QUERY_QUOTA                 81142342        nt!IopInvalidDeviceRequest 
[1a] IRP_MJ_SET_QUOTA                   81142342        nt!IopInvalidDeviceRequest 
[1b] IRP_MJ_PNP                         8c301870        kbdclass!KeyboardPnP

The dispatch routines array is clearly shown, and will be discussed in the next section.  
Note that operations that are not supported by the driver point to an I/O manager’s routine 
IopInvalidDeviceRequest.

The address to the !drvobj command is for a DRIVER_OBJECT structure, and the address for 
the !devobj command is for a DEVICE_OBJECT. You can view these structures directly using the 
debugger:

1: kd> dt nt!_driver_object 8a557520 
   +0x000 Type             : 0n4 
   +0x002 Size             : 0n168 
   +0x004 DeviceObject     : 0x9f509648 _DEVICE_OBJECT 
   +0x008 Flags            : 0x412 
   +0x00c DriverStart      : 0x8c300000 Void 
   +0x010 DriverSize       : 0xe000 
   +0x014 DriverSection    : 0x8a556ba8 Void 
   +0x018 DriverExtension  : 0x8a5575c8 _DRIVER_EXTENSION 
   +0x01c DriverName       : _UNICODE_STRING "\Driver\kbdclass" 
   +0x024 HardwareDatabase : 0x815c2c28 _UNICODE_STRING "\REGISTRY\MACHINE\HARDWARE\
DESCRIPTION\SYSTEM" 
   +0x028 FastIoDispatch   : (null) 
   +0x02c DriverInit       : 0x8c30a010     long  +ffffffff8c30a010 
   +0x030 DriverStartIo    : (null) 
   +0x034 DriverUnload     : (null) 
   +0x038 MajorFunction    : [28] 0x8c301d80     long  +ffffffff8c301d80 
1: kd> dt nt!_device_object 9f509648 
   +0x000 Type             : 0n3 
   +0x002 Size             : 0x1a8 
   +0x004 ReferenceCount   : 0n0 
   +0x008 DriverObject     : 0x8a557520 _DRIVER_OBJECT 
   +0x00c NextDevice       : 0x8bf2fe20 _DEVICE_OBJECT 
   +0x010 AttachedDevice   : (null) 
   +0x014 CurrentIrp       : (null) 
   +0x018 Timer            : (null) 
   +0x01c Flags            : 0x2044 
   +0x020 Characteristics  : 0x100 
   +0x024 Vpb              : (null) 
   +0x028 DeviceExtension  : 0x9f509700 Void 
   +0x02c DeviceType       : 0xb 
   +0x030 StackSize        : 7 '' 
   +0x034 Queue            : <unnamed-tag> 
   +0x05c AlignmentRequirement : 0 
   +0x060 DeviceQueue      : _KDEVICE_QUEUE 
   +0x074 Dpc              : _KDPC 
   +0x094 ActiveThreadCount : 0 
   +0x098 SecurityDescriptor : 0x82090930 Void 
   ...

There are some interesting fields in these structures, which we’ll discuss in the next section.
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Using objects to record information about drivers means that the I/O manager doesn’t need to 
know details about individual drivers. The I/O manager merely follows a pointer to locate a driver, 
thereby providing a layer of portability and allowing new drivers to be loaded easily.

Opening devices
A file object is a kernel-mode data structure that represents a handle to a device. File objects clearly 
fit the criteria for objects in Windows: They are system resources that two or more user-mode pro-
cesses can share; they can have names; they are protected by object-based security; and they support 
synchronization. Shared resources in the I/O system, like those in other components of the Windows 
executive, are manipulated as objects. (See Chapter 8 in Part 2 for more on object management.)

File objects provide a memory-based representation of resources that conform to an I/O-centric 
interface, in which they can be read from or written to. Table 6-1 lists some of the file object’s attributes. 
For specific field declarations and sizes, see the structure definition for FILE_OBJECT in wdm.h.

TABLE 6-1 File object attributes

Attribute Purpose

File name This identifies the virtual file that the file object refers to, which was passed in to 
the CreateFile or CreateFile2 APIs.

Current byte offset This identifies the current location in the file (valid only for synchronous I/O).

Share modes These indicate whether other callers can open the file for read, write, or delete 
operations while the current caller is using it.

Open mode flags These indicate whether I/O will be synchronous or asynchronous, cached or 
non-cached, sequential or random, and so on.

Pointer to device object This indicates the type of device the file resides on.

Pointer to the volume parameter 
block (VPB)

This indicates the volume, or partition, that the file resides on (in the case of file 
system files).

Pointer to section object pointers This indicates a root structure that describes a mapped/cached file. This structure 
also contains the shared cache map, which identifies which parts of the file are 
cached (or rather, mapped) by the cache manager and where they reside in  
the cache.

Pointer to private cache map This is used to store per-handle caching information such as the read patterns 
for this handle or the page priority for the process. See Chapter 5, “Memory 
management,” for more information on page priority.

List of I/O request packets (IRPs) If thread-agnostic I/O (described in the section “Thread-agnostic I/O” later in 
this chapter) is used and the file object is associated with a completion port 
(described in the section “I/O completion ports”), this is a list of all the I/O  
operations that are associated with this file object.

I/O completion context This is context information for the current I/O completion port, if one is active.

File object extension This stores the I/O priority (explained later in this chapter) for the file and whether 
share-access checks should be performed on the file object, and contains op-
tional file object extensions that store context-specific information.

To maintain some level of opacity toward driver code that uses the file object, and to enable extending 
the file object functionality without enlarging the structure, the file object also contains an extension 
field, which allows for up to six different kinds of additional attributes, described in Table 6-2.
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TABLE 6-2 File object extensions

Extension Purpose

Transaction parameters This contains the transaction parameter block, which contains information about a 
transacted file operation. It’s returned by IoGetTransactionParameterBlock.

Device object hint This identifies the device object of the filter driver with which this file should be associ-
ated. It’s set with IoCreateFileEx or IoCreateFileSpecifyDeviceObjectHint.

I/O status block range This allows applications to lock a user-mode buffer into kernel-mode memory to  
optimize asynchronous I/Os. It’s set with SetFileIoOverlappedRange.

Generic This contains filter driver–specific information, as well as extended create parameters 
(ECPs) that were added by the caller. It’s set with IoCreateFileEx.

Scheduled file I/O This stores a file’s bandwidth reservation information, which is used by the storage 
system to optimize and guarantee throughput for multimedia applications. (See the 
section “Bandwidth reservation (scheduled file I/O)” later in this chapter.) It’s set with 
SetFileBandwidthReservation.

Symbolic link This is added to the file object upon creation, when a mount point or directory junc-
tion is traversed (or a filter explicitly reparses the path). It stores the caller-supplied 
path, including information about any intermediate junctions, so that if a relative 
symbolic link is hit, it can walk back through the junctions. See Chapter 13 in Part 2 for 
more information on NTFS symbolic links, mount points, and directory junctions.

When a caller opens a file or a simple device, the I/O manager returns a handle to a file object. 
Before that happens, the driver responsible for the device in question is asked via its Create dispatch 
routine (IRP_MJ_CREATE) whether it’s OK to open the device and allow the driver to perform any initial-
ization necessary if the open request is to succeed.

Note File objects represent open instances of files, not files themselves. Unlike UNIX  
systems, which use vnodes, Windows does not define the representation of a file; Windows 
file-system drivers define their own representations.

Similar to executive objects, files are protected by a security descriptor that contains an access con-
trol list (ACL). The I/O manager consults the security subsystem to determine whether a file’s ACL allows 
the process to access the file in the way its thread is requesting. If it does, the object manager grants 
the access and associates the granted access rights with the file handle that it returns. If this thread 
or another thread in the process needs to perform additional operations not specified in the original 
request, the thread must open the same file again with a different request (or duplicate the handle with 
the requested access) to get another handle, which prompts another security check. (See Chapter 7 for 
more information about object protection.)

EXPERIMENT: Viewing device handles
Any process that has an open handle to a device will have a file object in its handle table correspond-
ing to the open instance. You can view these handles with Process Explorer by selecting a process and 
checking Handles in the Lower Pane View submenu of the View menu. Sort by the Type column 
and scroll to where you see the handles that represent file objects, which are labeled as File.
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In this example, the Desktop Windows Manager (dwm.exe) process has a handle open to a  
device created by the kernel security device driver (Ksecdd.sys). You can look at the specific 
file object in the kernel debugger by first identifying the address of the object. The following 
command reports information on the highlighted handle (handle value 0xD4) in the preceding 
screenshot, which is in the Dwm.exe process that has a process ID of 452 decimal:

lkd> !handle 348 f 0n452 
 
PROCESS ffffc404b62fb780 
    SessionId: 1  Cid: 01c4    Peb: b4c3db0000  ParentCid: 0364 
    DirBase: 7e607000  ObjectTable: ffffe688fd1c38c0  HandleCount: <Data Not Accessible> 
    Image: dwm.exe 
 
Handle Error reading handle count. 
 
0348: Object: ffffc404b6406ef0  GrantedAccess: 00100003 (Audit) Entry: ffffe688fd396d20 
Object: ffffc404b6406ef0  Type: (ffffc404b189bf20) File 
    ObjectHeader: ffffc404b6406ec0 (new version) 
        HandleCount: 1  PointerCount: 32767

Because the object is a file object, you can get information about it with the !fileobj command 
(notice it’s also the same object address shown in Process Explorer):

lkd> !fileobj ffffc404b6406ef0 
 
Device Object: 0xffffc404b2fa7230   \Driver\KSecDD 
Vpb is NULL 
Event signalled 
 
Flags:  0x40002 
         Synchronous IO 
         Handle Created 
 
CurrentByteOffset: 0
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Because a file object is a memory-based representation of a shareable resource and not the re-
source itself, it’s different from other executive objects. A file object contains only data that is unique to 
an object handle, whereas the file itself contains the data or text to be shared. Each time a thread opens 
a file, a new file object is created with a new set of handle-specific attributes. For example, for files 
opened synchronously, the current byte offset attribute refers to the location in the file at which the 
next read or write operation using that handle will occur. Each handle to a file has a private byte offset 
even though the underlying file is shared. A file object is also unique to a process—except when a pro-
cess duplicates a file handle to another process (by using the Windows DuplicateHandle function) or 
when a child process inherits a file handle from a parent process. In these situations, the two processes 
have separate handles that refer to the same file object.

Although a file handle is unique to a process, the underlying physical resource is not. Therefore, 
as with any shared resource, threads must synchronize their access to shareable resources such as 
files, file directories, and devices. If a thread is writing to a file, for example, it should specify exclusive 
write access when opening the file to prevent other threads from writing to the file at the same time. 
Alternatively, by using the Windows LockFile function, the thread could lock a portion of the file while 
writing to it when exclusive access is required.

When a file is opened, the file name includes the name of the device object on which the file resides. 
For example, the name \Device\HarddiskVolume1\Myfile.dat may refer to the file Myfile.dat on the  
C: volume. The substring \Device\HarddiskVolume1 is the name of the internal Windows device object 
representing that volume. When opening Myfile.dat, the I/O manager creates a file object and stores 
a pointer to the HarddiskVolume1 device object in the file object and then returns a file handle to the 
caller. Thereafter, when the caller uses the file handle, the I/O manager can find the HarddiskVolume1 
device object directly.

Keep in mind that internal Windows device names can’t be used in Windows applications—instead, 
the device name must appear in a special directory in the object manager’s namespace, which is  
\GLOBAL??. This directory contains symbolic links to the real, internal Windows device names. As was 
described earlier, device drivers are responsible for creating links in this directory so that their devices 
will be accessible to Windows applications. You can examine or even change these links programmati-
cally with the Windows QueryDosDevice and DefineDosDevice functions.

I/O processing

Now that we’ve covered the structure and types of drivers and the data structures that support them, 
let’s look at how I/O requests flow through the system. I/O requests pass through several predictable 
stages of processing. The stages vary depending on whether the request is destined for a device oper-
ated by a single-layered driver or for a device reached through a multilayered driver. Processing varies 
further depending on whether the caller specified synchronous or asynchronous I/O, so we’ll begin our 
discussion of I/O types with these two and then move on to others.
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Types of I/O
Applications have several options for the I/O requests they issue. Furthermore, the I/O manager gives 
drivers the choice of implementing a shortcut I/O interface that can often mitigate IRP allocation for 
I/O processing. In this section, we’ll explain these options for I/O requests.

Synchronous and asynchronous I/O
Most I/O operations issued by applications are synchronous (which is the default). That is, the applica-
tion thread waits while the device performs the data operation and returns a status code when the I/O 
is complete. The program can then continue and access the transferred data immediately. When used 
in their simplest form, the Windows ReadFile and WriteFile functions are executed synchronously. 
They complete the I/O operation before returning control to the caller.

Asynchronous I/O allows an application to issue multiple I/O requests and continue executing while 
the device performs the I/O operation. This type of I/O can improve an application’s throughput be-
cause it allows the application thread to continue with other work while an I/O operation is in progress. 
To use asynchronous I/O, you must specify the FILE_FLAG_OVERLAPPED flag when you call the Windows 
CreateFile or CreateFile2 functions. Of course, after issuing an asynchronous I/O operation, the 
thread must be careful not to access any data from the I/O operation until the device driver has finished 
the data operation. The thread must synchronize its execution with the completion of the I/O request 
by monitoring a handle of a synchronization object (whether that’s an event object, an I/O completion 
port, or the file object itself) that will be signaled when the I/O is complete.

Regardless of the type of I/O request, I/O operations issued to a driver on behalf of the application 
are performed asynchronously. That is, once an I/O request has been initiated, the device driver must 
return to the I/O system as soon as possible. Whether or not the I/O system returns immediately to the 
caller depends on whether the handle was opened for synchronous or asynchronous I/O. Figure 6-3 
illustrates the flow of control when a read operation is initiated. Notice that if a wait is done, which de-
pends on the overlapped flag in the file object, it is done in kernel mode by the NtReadFile function.

You can test the status of a pending asynchronous I/O operation with the Windows HasOverlapped- 
IoCompleted macro or get more details with the GetOverlappedResult(Ex) functions. If you’re using 
I/O completion ports (described in the “I/O completion ports” section later in this chapter), you can use 
the GetQueuedCompletionStatus(Ex) function(s).

Fast I/O
Fast I/O is a special mechanism that allows the I/O system to bypass the generation of an IRP and 
instead go directly to the driver stack to complete an I/O request. This mechanism is used for optimiz-
ing certain I/O paths, which are somewhat slower when using IRPs. (Fast I/O is described in detail in 
Chapter 13 and Chapter 14 in Part 2.) A driver registers its fast I/O entry points by entering them in a 
structure pointed to by the PFAST_IO_DISPATCH pointer in its driver object.
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EXPERIMENT: Looking at a driver’s registered fast I/O routines
The !drvobj kernel debugger command can list the fast I/O routines that a driver registers in its 
driver object. Typically, however, only file-system drivers have any use for fast I/O routines— 
although there are exceptions, such as network protocol drivers and bus filter drivers. The following 
output shows the fast I/O table for the NTFS file-system driver object:

lkd> !drvobj \filesystem\ntfs 2 
Driver object (ffffc404b2fbf810) is for: 
 \FileSystem\NTFS 
DriverEntry:   fffff80e5663a030 NTFS!GsDriverEntry 
DriverStartIo: 00000000 
DriverUnload:  00000000 
AddDevice:     00000000 
 
Dispatch routines: 
... 
Fast I/O routines: 
FastIoCheckIfPossible                fffff80e565d6750 
NTFS!NtfsFastIoCheckIfPossible 
FastIoRead                           fffff80e56526430 NTFS!NtfsCopyReadA 
FastIoWrite                          fffff80e56523310 NTFS!NtfsCopyWriteA 
FastIoQueryBasicInfo                 fffff80e56523140 
NTFS!NtfsFastQueryBasicInfo 
FastIoQueryStandardInfo              fffff80e56534d20 NTFS!NtfsFastQueryStdInfo 
FastIoLock                           fffff80e5651e610 NTFS!NtfsFastLock 
FastIoUnlockSingle                   fffff80e5651e3c0 NTFS!NtfsFastUnlockSingle 
FastIoUnlockAll                      fffff80e565d59e0 NTFS!NtfsFastUnlockAll 
FastIoUnlockAllByKey                 fffff80e565d5c50 
NTFS!NtfsFastUnlockAllByKey 
ReleaseFileForNtCreateSection        fffff80e5644fd90 NTFS!NtfsReleaseForCreate
Section 
FastIoQueryNetworkOpenInfo           fffff80e56537750 NTFS!NtfsFastQueryNetwork
OpenInfo 
AcquireForModWrite                   fffff80e5643e0c0 
NTFS!NtfsAcquireFileForModWrite 
MdlRead                              fffff80e5651e950 NTFS!NtfsMdlReadA 
MdlReadComplete                      fffff802dc6cd844 
nt!FsRtlMdlReadCompleteDev 
PrepareMdlWrite                      fffff80e56541a10 NTFS!NtfsPrepareMdlWriteA 
MdlWriteComplete                     fffff802dcb76e48 
nt!FsRtlMdlWriteCompleteDev 
FastIoQueryOpen                      fffff80e5653a520 
NTFS!NtfsNetworkOpenCreate 
ReleaseForModWrite                   fffff80e5643e2c0 
NTFS!NtfsReleaseFileForModWrite 
AcquireForCcFlush                    fffff80e5644ca60 
NTFS!NtfsAcquireFileForCcFlush 
ReleaseForCcFlush                    fffff80e56450cf0 
NTFS!NtfsReleaseFileForCcFlush
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The output shows that NTFS has registered its NtfsCopyReadA routine as the fast I/O table’s 
FastIoRead entry. As the name of this fast I/O entry implies, the I/O manager calls this function 
when issuing a read I/O request if the file is cached. If the call doesn’t succeed, the standard IRP 
path is selected.

Mapped-file I/O and file caching
Mapped-file I/O is an important feature of the I/O system—one that the I/O system and the memory 
manager produce jointly. (See Chapter 5 for details on how mapped files are implemented.) Mapped-
file I/O refers to the ability to view a file residing on disk as part of a process’s virtual memory. A 
program can access the file as a large array without buffering data or performing disk I/O. The program 
accesses memory, and the memory manager uses its paging mechanism to load the correct page 
from the disk file. If the application writes to its virtual address space, the memory manager writes the 
changes back to the file as part of normal paging.

Mapped-file I/O is available in user mode through the Windows CreateFileMapping, MapViewOf-
File, and related functions. Within the operating system, mapped-file I/O is used for important 
operations such as file caching and image activation (loading and running executable programs). The 
other major consumer of mapped-file I/O is the cache manager. File systems use the cache manager to 
map file data in virtual memory to provide better response time for I/O-bound programs. As the caller 
uses the file, the memory manager brings accessed pages into memory. Whereas most caching systems 
allocate a fixed number of bytes for caching files in memory, the Windows cache grows or shrinks de-
pending on how much memory is available. This size variability is possible because the cache manager 
relies on the memory manager to automatically expand (or shrink) the size of the cache using the nor-
mal working set mechanisms explained in Chapter 5—in this case applied to the system working set. By 
taking advantage of the memory manager’s paging system, the cache manager avoids duplicating the 
work that the memory manager already performs. (The workings of the cache manager are explained 
in detail in Chapter 14 in Part 2.)

Scatter/gather I/O
Windows supports a special kind of high-performance I/O called scatter/gather, available via the Win-
dows ReadFileScatter and WriteFileGather functions. These functions allow an application to issue 
a single read or write from more than one buffer in virtual memory to a contiguous area of a file on 
disk instead of issuing a separate I/O request for each buffer. To use scatter/gather I/O, the file must be 
opened for non-cached I/O, the user buffers being used must be page-aligned, and the I/Os must be 
asynchronous (overlapped). Furthermore, if the I/O is directed at a mass storage device, the I/O must 
be aligned on a device sector boundary and have a length that is a multiple of the sector size.

I/O request packets
An I/O request packet (IRP) is where the I/O system stores information it needs to process an I/O 
request. When a thread calls an I/O API, the I/O manager constructs an IRP to represent the operation 
as it progresses through the I/O system. If possible, the I/O manager allocates IRPs from one of three 
per-processor IRP non-paged look-aside lists: 
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 ■ The small-IRP look-aside list This stores IRPs with one stack location. (IRP stack locations are 
described shortly.)

 ■ The medium-IRP look-aside list This contains IRPs with four stack locations (which can also 
be used for IRPs that require only two or three stack locations).

 ■ The large-IRP look-aside list This contains IRPs with more than four stack locations. By 
default, the system stores IRPs with 14 stack locations on the large-IRP look-aside list, but once 
per minute, the system adjusts the number of stack locations allocated and can increase it up to 
a maximum of 20, based on how many stack locations have been recently required.

These lists are also backed by global look-aside lists as well, allowing efficient cross-CPU IRP flow. If 
an IRP requires more stack locations than are contained in the IRPs on the large-IRP look-aside list, the 
I/O manager allocates IRPs from non-paged pool. The I/O manager allocates IRPs with the IoAllocate-
Irp function, which is also available for device-driver developers, because in some cases a driver may 
want to initiate an I/O request directly by creating and initializing its own IRPs. After allocating and 
initializing an IRP, the I/O manager stores a pointer to the caller’s file object in the IRP.

Note If defined, the DWORD registry value LargeIrpStackLocations in the HKLM\
System\CurrentControlSet\Session Manager\I/O System key specifies how many stack 
locations are contained in IRPs stored on the large-IRP look-aside list. Similarly, the 
MediumIrpStackLocations value in the same key can be used to change the size of IRP stack 
locations on the medium-IRP look-aside list.

Figure 6-11 shows some of the important members of the IRP structure. It is always accompanied by 
one or more IO_STACK_LOCATION objects (described in the next section).

FIGURE 6-11 Important members of the IRP structure.
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Here is a quick rundown of the members:

 ■ IoStatus This is the status of the IRP, consisting of two members; Status, which is the actual 
code itself and Information, a polymorphic value that has meaning in some cases. For ex-
ample, for a read or write operation, this value (set by the driver) indicates the number of bytes 
read or written. This same value is the one reported as an output value from the functions 
ReadFile and WriteFile.

 ■ MdlAddress This is an optional pointer to a memory descriptor list (MDL). An MDL is a struc-
ture that represents information for a buffer in physical memory. We’ll discuss its main usage in 
device drivers in the next section. If an MDL was not requested, the value is NULL.

 ■ I/O stack locations count and current stack location These store the total number of trail-
ing I/O stack location objects and point to the current one that this driver layer should look at, 
respectively. The next section discusses I/O stack locations in detail.

 ■ User buffer This is the pointer to the buffer provided by the client that initiated the I/O op-
eration. For example, it is the buffer provided to the ReadFile or WriteFile functions.

 ■ User event This is the kernel event object that was used with an overlapped (asynchronous) 
I/O operation (if any). An event is one way to be notified when the I/O operation completes.

 ■ Cancel routine This is the function to be called by the I/O manager in case the IRP is can-
celled.

 ■ AssociatedIrp This is a union of one of three fields. The SystemBuffer member is used in case 
the I/O manager used the buffered I/O technique for passing the user’s buffer to the driver. The 
next section discusses buffered I/O, as well as other options for passing user mode buffers to 
drivers. The MasterIrp member provides a way to create a “master IRP” that splits its work into 
sub-IRPs, where the master is considered complete only when all its sub-IRPs have completed.

I/O stack locations
An IRP is always followed by one or more I/O stack locations. The number of stack locations is equal to 
the number of layered devices in the device node the IRP is destined for. The I/O operation information is 
split between the IRP body (the main structure) and the current I/O stack location, where current means 
the one set up for the particular layer of devices. Figure 6-12 shows the important fields of an I/O stack 
location. When an IRP is created, the number of requested I/O stack locations is passed to IoAllocateIrp. 
The I/O manager then initializes the IRP body and the first I/O stack location only, destined for the top-
most device in the device node. Each layer in the device node is responsible for initializing the next I/O 
stack location if it decides to pass the IRP down to the next device.

Here is a rundown of the members shown in Figure 6-12:

 ■ Major function This is the primary code that indicates the type of request (read, write, create, 
Plug and Play, and so on), also known as dispatch routine code. It’s one of 28 constants (0 to 27) 
starting with IRP_MJ_ in wdm.h. This index is used by the I/O manager into the MajorFunction 
array of function pointers in the driver object to jump to the appropriate routine within a driver. 
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Most drivers specify dispatch routines to handle only a subset of possible major function codes, 
including create (open), read, write, device I/O control, power, Plug and Play, system control (for 
WMI commands), cleanup, and close. File-system drivers are an example of a driver type that 
often fills in most or all of its dispatch entry points with functions. In contrast, a driver for a sim-
ple USB device would probably fill in only the routines needed for open, close, read, write, and 
sending I/O control codes. The I/O manager sets any dispatch entry points that a driver doesn’t 
fill to point to its own IopInvalidDeviceRequest, which completes the IRP with an error status 
indicating that the major function specified in the IRP is invalid for that device.

 ■ Minor function This is used to augment the major function code for some functions. For 
example, IRP_MJ_READ (read) and IRP_MJ_WRITE (write) have no minor functions. But Plug and 
Play and Power IRPs always have a minor IRP code that specializes the general major code. For 
example, the Plug and Play IRP_MJ_PNP major code is too generic; the exact instruction is given 
by the minor IRP, such as IRP_MN_START_DEVICE, IRP_MN_REMOVE_DEVICE, and so on.

 ■ Parameters This is a monstrous union of structures, each of which valid for a particular  
major function code or a combination of major/minor codes. For example, for a read operation 
(IRP_MJ_READ), the Parameters.Read structure holds information on the read request, such as 
the buffer size.

 ■ File object and Device object These point to the associated FILE_OBJECT and DEVICE_ 
OBJECT for this I/O request.

 ■ Completion routine This is an optional function that a driver can register with the 
IoSetCompletionRoutine(Ex) DDI, to be called when the IRP is completed by a lower layer 
driver. At that point, the driver can look at the completion status of the IRP and do any needed 
post-processing. It can even undo the completion (by returning the special value STATUS_MORE_
PROCESSING_REQUIRED from the function) and resend the IRP (perhaps with modified param-
eters) to the device node—or even a different device node—again.

 ■ Context This is an arbitrary value set with the IoSetCompletionRoutine(Ex) call that is 
passed, as is, to the completion routine.

FIGURE 6-12 Important members of the IO_STACK_LOCATION structure.
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The split of information between the IRP body and its I/O stack location allows for the changing of 
I/O stack location parameters for the next device in the device stack, while keeping the original request 
parameters. For example, a read IRP targeted at a USB device is often changed by the function driver to 
a device I/O control IRP where the input buffer argument of the device control points to a USB request 
packet (URB) that is understood by the lower-layer USB bus driver. Also, note that completion routines 
can be registered by any layer (except the bottom-most one), each having its own place in an I/O stack 
location (the completion routine is stored in the next lower I/O stack location).

EXPERIMENT: Looking at driver dispatch routines
You can obtain a list of the functions a driver has defined for its dispatch routines by using bit 1 
(value of 2) with the !drvobj kernel debugger command. The following output shows the major 
function codes supported by the NTFS driver. (This is the same experiment as with fast I/O.)

lkd> !drvobj \filesystem\ntfs 2 
Driver object (ffffc404b2fbf810) is for: 
 \FileSystem\NTFS 
DriverEntry:   fffff80e5663a030 NTFS!GsDriverEntry 
DriverStartIo: 00000000 
DriverUnload:  00000000 
AddDevice:     00000000 
 
Dispatch routines: 
[00] IRP_MJ_CREATE                    fffff80e565278e0 NTFS!NtfsFsdCreate 
[01] IRP_MJ_CREATE_NAMED_PIPE         fffff802dc762c80 nt!IopInvalidDeviceRequest 
[02] IRP_MJ_CLOSE                     fffff80e565258c0 NTFS!NtfsFsdClose 
[03] IRP_MJ_READ                      fffff80e56436060 NTFS!NtfsFsdRead 
[04] IRP_MJ_WRITE                     fffff80e564461d0 NTFS!NtfsFsdWrite 
[05] IRP_MJ_QUERY_INFORMATION         fffff80e565275f0 NTFS!NtfsFsdDispatchWait 
[06] IRP_MJ_SET_INFORMATION           fffff80e564edb80 NTFS!NtfsFsdSetInformation 
[07] IRP_MJ_QUERY_EA                  fffff80e565275f0 NTFS!NtfsFsdDispatchWait 
[08] IRP_MJ_SET_EA                    fffff80e565275f0 NTFS!NtfsFsdDispatchWait 
[09] IRP_MJ_FLUSH_BUFFERS             fffff80e5653c9a0 NTFS!NtfsFsdFlushBuffers 
[0a] IRP_MJ_QUERY_VOLUME_INFORMATION  fffff80e56538d10 NTFS!NtfsFsdDispatch 
[0b] IRP_MJ_SET_VOLUME_INFORMATION    fffff80e56538d10 NTFS!NtfsFsdDispatch 
[0c] IRP_MJ_DIRECTORY_CONTROL         fffff80e564d7080 
NTFS!NtfsFsdDirectoryControl 
[0d] IRP_MJ_FILE_SYSTEM_CONTROL       fffff80e56524b20 
NTFS!NtfsFsdFileSystemControl 
[0e] IRP_MJ_DEVICE_CONTROL            fffff80e564f9de0 NTFS!NtfsFsdDeviceControl 
[0f] IRP_MJ_INTERNAL_DEVICE_CONTROL   fffff802dc762c80 nt!IopInvalidDeviceRequest 
[10] IRP_MJ_SHUTDOWN                  fffff80e565efb50 NTFS!NtfsFsdShutdown 
[11] IRP_MJ_LOCK_CONTROL              fffff80e5646c870 NTFS!NtfsFsdLockControl 
[12] IRP_MJ_CLEANUP                   fffff80e56525580 NTFS!NtfsFsdCleanup 
[13] IRP_MJ_CREATE_MAILSLOT           fffff802dc762c80 nt!IopInvalidDeviceRequest 
[14] IRP_MJ_QUERY_SECURITY            fffff80e56538d10 NTFS!NtfsFsdDispatch 
[15] IRP_MJ_SET_SECURITY                fffff80e56538d10 NTFS!NtfsFsdDispatch 
[16] IRP_MJ_POWER                       fffff802dc762c80 nt!IopInvalidDeviceRequest 
[17] IRP_MJ_SYSTEM_CONTROL              fffff802dc762c80 nt!IopInvalidDeviceRequest 
[18] IRP_MJ_DEVICE_CHANGE               fffff802dc762c80 nt!IopInvalidDeviceRequest 
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[19] IRP_MJ_QUERY_QUOTA              fffff80e565275f0 NTFS!NtfsFsdDispatchWait 
[1a] IRP_MJ_SET_QUOTA                fffff80e565275f0 NTFS!NtfsFsdDispatchWait 
[1b] IRP_MJ_PNP                      fffff80e56566230 NTFS!NtfsFsdPnp 
 
Fast I/O routines: 
...

While active, each IRP is usually queued in an IRP list associated with the thread that requested the 
I/O. (Otherwise, it is stored in the file object when performing thread-agnostic I/O, which is described 
in the “Thread agnostic I/O” section, later in this chapter.) This allows the I/O system to find and cancel 
any outstanding IRPs if a thread terminates with I/O requests that have not been completed. Addition-
ally, paging I/O IRPs are also associated with the faulting thread (although they are not cancellable). 
This allows Windows to use the thread-agnostic I/O optimization—when an asynchronous procedure 
call (APC) is not used to complete I/O if the current thread is the initiating thread. This means page 
faults occur inline instead of requiring APC delivery.

EXPERIMENT: Looking at a thread’s outstanding IRPs
The !thread command prints any IRPs associated with the thread. The !process command 
does this as well, if requested. Run the kernel debugger with local or live debugging and list the 
threads of an explorer process:

lkd> !process 0 7 explorer.exe 
PROCESS ffffc404b673c780 
    SessionId: 1  Cid: 10b0    Peb: 00cbb000  ParentCid: 1038 
    DirBase: 8895f000  ObjectTable: ffffe689011b71c0  HandleCount: <Data Not 
Accessible> 
    Image: explorer.exe 
    VadRoot ffffc404b672b980 Vads 569 Clone 0 Private 7260. Modified 366527. Locked 784. 
    DeviceMap ffffe688fd7a5d30 
    Token                             ffffe68900024920 
    ElapsedTime                       18:48:28.375 
    UserTime                          00:00:17.500 
    KernelTime                        00:00:13.484 
    ... 
    MemoryPriority                    BACKGROUND 
    BasePriority                      8 
    CommitCharge                      10789 
    Job                               ffffc404b6075060 
 
        THREAD ffffc404b673a080  Cid 10b0.10b4  Teb: 0000000000cbc000 Win32Thread: 
ffffc404b66e7090 WAIT: (WrUserRequest) UserMode Non-Alertable 
            ffffc404b6760740  SynchronizationEvent 
        Not impersonating 
... 
 
        THREAD ffffc404b613c7c0  Cid 153c.15a8  Teb: 00000000006a3000 Win32Thread: 
ffffc404b6a83910 WAIT: (UserRequest) UserMode Non-Alertable 
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            ffffc404b58d0d60  SynchronizationEvent 
            ffffc404b566f310  SynchronizationEvent 
        IRP List: 
            ffffc404b69ad920: (0006,02c8) Flags: 00060800  Mdl: 00000000 
...

You should see many threads, with most of them having IRPs reported in the IRP List section 
of the thread information (note that the debugger will show only the first 17 IRPs for a thread that 
has more than 17 outstanding I/O requests). Choose an IRP and examine it with the !irp command:

lkd> !irp ffffc404b69ad920 
Irp is active with 2 stacks 1 is current (= 0xffffc404b69ad9f0) 
 No Mdl: No System Buffer: Thread ffffc404b613c7c0:  Irp stack trace. 
     cmd  flg cl Device   File     Completion-Context 
>[IRP_MJ_FILE_SYSTEM_CONTROL(d), N/A(0)] 
            5 e1 ffffc404b253cc90 ffffc404b5685620 fffff80e55752ed0-ffffc404b63c0e00 
Success Error Cancel pending 
                \FileSystem\Npfs      FLTMGR!FltpPassThroughCompletion 
                            Args: 00000000 00000000 00110008 00000000 
 [IRP_MJ_FILE_SYSTEM_CONTROL(d), N/A(0)] 
            5  0 ffffc404b3cdca00 ffffc404b5685620 00000000-00000000 
                \FileSystem\FltMgr 
                            Args: 00000000 00000000 00110008 00000000

The IRP has two stack locations and is targeted at a device owned by the Named Pipe File 
System (NPFS) driver. (NPFS is described in Chapter 10, “Networking,” in Part 2.)

IRP flow
IRPs are typically created by the I/O manager, and then sent to the first device on the target device 
node. Figure 6-13 shows a typical IRP flow for hardware-based device drivers.

FIGURE 6-13 IRP flow.
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The I/O manager is not the only entity that creates IRPs. The Plug and Play manager and the Power 
manager are also responsible for creating IRPs with major function code IRP_MJ_PNP and IRP_MJ_ 
POWER, respectively.

Figure 6-13 shows an example device node with six layered device objects: two upper filters, the 
FDO, two lower filters, and the PDO. This means an IRP targeted at this devnode is created with six I/O 
stack locations—one for each layer. An IRP is always delivered to the highest layered device, even if a 
handle was opened to a named device that is lower in the device stack.

A driver that receives an IRP can do one of the following:

 ■ It can complete the IRP then and there by calling IoCompleteRequest. This could be because 
the IRP has some invalid parameters (for example, insufficient buffer size or bad I/O control 
code), or because the operation requested is quick and can be accomplished immediately, such 
as getting some status from the device or reading a value from the registry. The driver calls 
IoGetCurrentIrpStackLocation to get a pointer to the stack location that it should refer to.

 ■ The driver can forward the IRP to the next layer after optionally doing some processing. For 
example, an upper filter can do some logging of the operation and send the IRP down to be 
executed normally. Before sending the request down, the driver must prepare the next I/O stack 
location that would be looked at by the next driver in line. It can use the IoSkipCurrentIrp-
StackLocation macro if it does not wish to make changes, or it can make a copy with IoCopy-
IrpStackLocationToNext and make changes to the copied stack location by getting a pointer 
with IoGetNextIrpStackLocation and making appropriate changes. Once the next I/O stack 
location is prepared, the driver calls IoCallDriver to do the actual IRP forwarding.

 ■ As an extension of the previous point, the driver can also register for a completion routine 
by calling IoSetCompletionRoutine(Ex) before passing down the IRP. Any layer except the 
bottom-most one can register a completion routine (there is no point in registering for the 
bottom-most layer since that driver must complete the IRP, so no callback is needed). After 
IoCompleteRequest is called by a lower-layer driver, the IRP travels up (refer to Figure 6-13), 
calling any completion routines on the way up in reverse order of registration. In fact, the IRP 
originator (I/O manager, PnP manager, or power manager) use this mechanism to do any post-
IRP processing and finally free the IRP.

Note Because the number of devices on a given stack is known in advance, the I/O manager 
allocates one stack location per device driver on the stack. However, there are situations in 
which an IRP might be directed into a new driver stack. This can happen in scenarios involving 
the filter manager, which allows one filter to redirect an IRP to another filter (for example, 
going from a local file system to a network file system). The I/O manager exposes an API, 
IoAdjustStackSizeForRedirection, that enables this functionality by adding the required 
stack locations because of devices present on the redirected stack.
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EXPERIMENT: Viewing a device stack
The !devstack kernel debugger command shows you the device stack of layered device objects 
associated with a specified device object. This example shows the device stack associated with a 
device object, \device\keyboardclass0, which is owned by the keyboard class driver:

lkd> !devstack keyboardclass0 
  !DevObj           !DrvObj            !DevExt           ObjectName 
> ffff9c80c0424440  \Driver\kbdclass   ffff9c80c0424590  KeyboardClass0 
  ffff9c80c04247c0  \Driver\kbdhid     ffff9c80c0424910 
  ffff9c80c0414060  \Driver\mshidkmdf  ffff9c80c04141b0  0000003f 
!DevNode ffff9c80c0414d30 : 
  DeviceInst is "HID\MSHW0029&Col01\5&1599b1c7&0&0000" 
  ServiceName is "kbdhid"

The output highlights the entry associated with KeyboardClass0 with the > character in the 
first column. The entries above that line are drivers layered above the keyboard class driver, and 
those below are layered beneath it.

EXPERIMENT: Examining IRPs
In this experiment, you’ll find an uncompleted IRP on the system, and will determine the IRP 
type, the device at which it’s directed, the driver that manages the device, the thread that issued 
the IRP, and what process the thread belongs to. This experiment is best performed on a 32-bit 
system with non-local kernel debugging. It will work with local kernel debugging as well, but 
IRPs may complete during the period between when commands are issued, so some instability of 
data should be expected.

At any point in time, there are at least a few uncompleted IRPs on a system. This occurs 
because there are many devices to which applications can issue IRPs that a driver will complete 
only when a particular event occurs, such as data becoming available. One example is a blocking 
read from a network endpoint. You can see the outstanding IRPs on a system with the !irpfind 
kernel debugger command (this may take some time; you can stop after some IRPs appear):

kd> !irpfind 
Scanning large pool allocation table for tag 0x3f707249 (Irp?) (a5000000 : a5200000) 
 
  Irp    [ Thread ] irpStack: (Mj,Mn)   DevObj  [Driver]         MDL Process 
9515ad68 [aa0c04c0] irpStack: ( e, 5)  8bcb2ca0 [ \Driver\AFD] 0xaa1a3540 
8bd5c548 [91deeb80] irpStack: ( e,20)  8bcb2ca0 [ \Driver\AFD] 0x91da5c40 
 
Searching nonpaged pool (80000000 : ffc00000) for tag 0x3f707249 (Irp?) 
 
86264a20 [86262040] irpStack: ( e, 0)  8a7b4ef0 [ \Driver\vmbus] 
86278720 [91d96b80] irpStack: ( e,20)  8bcb2ca0 [ \Driver\AFD] 0x86270040 
86279e48 [91d96b80] irpStack: ( e,20)  8bcb2ca0 [ \Driver\AFD] 0x86270040 
862a1868 [862978c0] irpStack: ( d, 0)  8bca4030 [ \FileSystem\Npfs] 
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862a24c0 [86297040] irpStack: ( d, 0)  8bca4030 [ \FileSystem\Npfs] 
862c3218 [9c25f740] irpStack: ( c, 2)  8b127018 [ \FileSystem\NTFS] 
862c4988 [a14bf800] irpStack: ( e, 5)  8bcb2ca0 [ \Driver\AFD] 0xaa1a3540 
862c57d8 [a8ef84c0] irpStack: ( d, 0)  8b127018 [ \FileSystem\NTFS] 0xa8e6f040 
862c91c0 [99ac9040] irpStack: ( 3, 0)  8a7ace48 [ \Driver\vmbus] 0x9517ac40 
862d2d98 [9fd456c0] irpStack: ( e, 5)  8bcb2ca0 [ \Driver\AFD] 0x9fc11780 
862d6528 [9aded800] irpStack: ( c, 2)  8b127018 [ \FileSystem\NTFS] 
862e3230 [00000000] Irp is complete (CurrentLocation 2 > StackCount 1) 
862ec248 [862e2040] irpStack: ( d, 0)  8bca4030 [ \FileSystem\Npfs] 
862f7d70 [91dd0800] irpStack: ( d, 0)  8bca4030 [ \FileSystem\Npfs] 
863011f8 [00000000] Irp is complete (CurrentLocation 2 > StackCount 1) 
86327008 [00000000] Irp is complete (CurrentLocation 43 > StackCount 42) 
86328008 [00000000] Irp is complete (CurrentLocation 43 > StackCount 42) 
86328960 [00000000] Irp is complete (CurrentLocation 43 > StackCount 42) 
86329008 [00000000] Irp is complete (CurrentLocation 43 > StackCount 42) 
863296d8 [00000000] Irp is complete (CurrentLocation 2 > StackCount 1) 
86329960 [00000000] Irp is complete (CurrentLocation 43 > StackCount 42) 
89feeae0 [00000000] irpStack: ( e, 0)  8a765030 [ \Driver\ACPI] 
8a6d85d8 [99aa1040] irpStack: ( d, 0)  8b127018 [ \FileSystem\NTFS] 0x00000000 
8a6dc828 [8bc758c0] irpStack: ( 4, 0)  8b127018 [ \FileSystem\NTFS] 0x00000000 
8a6f42d8 [8bc728c0] irpStack: ( 4,34)  8b0b8030 [ \Driver\disk] 0x00000000 
8a6f4d28 [8632e6c0] irpStack: ( 4,34)  8b0b8030 [ \Driver\disk] 0x00000000 
8a767d98 [00000000] Irp is complete (CurrentLocation 6 > StackCount 5) 
8a788d98 [00000000] irpStack: ( f, 0)  00000000 [00000000: Could not read device 
object or _DEVICE_OBJECT not found 
] 
8a7911a8 [9fdb4040] irpStack: ( e, 0)  86325768 [ \Driver\DeviceApi] 
8b03c3f8 [00000000] Irp is complete (CurrentLocation 2 > StackCount 1) 
8b0b8bc8 [863d6040] irpStack: ( e, 0)  8a78f030 [ \Driver\vmbus] 
8b0c48c0 [91da8040] irpStack: ( e, 5)  8bcb2ca0 [ \Driver\AFD] 0xaa1a3540 
8b118d98 [00000000] Irp is complete (CurrentLocation 9 > StackCount 8) 
8b1263b8 [00000000] Irp is complete (CurrentLocation 8 > StackCount 7) 
8b174008 [aa0aab80] irpStack: ( 4, 0)  8b127018 [ \FileSystem\NTFS] 0xa15e1c40 
8b194008 [aa0aab80] irpStack: ( 4, 0)  8b127018 [ \FileSystem\NTFS] 0xa15e1c40 
8b196370 [8b131880] irpStack: ( e,31)  8bcb2ca0 [ \Driver\AFD] 
8b1a8470 [00000000] Irp is complete (CurrentLocation 2 > StackCount 1) 
8b1b3510 [9fcd1040] irpStack: ( e, 0)  86325768 [ \Driver\DeviceApi] 
8b1b35b0 [a4009b80] irpStack: ( e, 0)  86325768 [ \Driver\DeviceApi] 
8b1cd188 [9c3be040] irpStack: ( e, 0)  8bc73648 [ \Driver\Beep] 
…

Some IRPs are complete, and may be de-allocated very soon, or they have been de-allocated, 
but because the allocation from lookaside lists, the IRP has not yet been replaced with a new one.

For each IRP, its address is given, followed by the thread that issued the request. Next, the 
major and minor function codes for the current stack location are shown in parentheses. You can 
examine any IRP with the !irp command:

kd> !irp 8a6f4d28 
Irp is active with 15 stacks 6 is current (= 0x8a6f4e4c) 
 Mdl=8b14b250: No System Buffer: Thread 8632e6c0:  Irp stack trace. 
     cmd  flg cl Device   File     Completion-Context 
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 [N/A(0), N/A(0)] 
            0  0 00000000 00000000 00000000-00000000 
 
                            Args: 00000000 00000000 00000000 00000000 
 [N/A(0), N/A(0)] 
            0  0 00000000 00000000 00000000-00000000 
 
                            Args: 00000000 00000000 00000000 00000000 
 [N/A(0), N/A(0)] 
            0  0 00000000 00000000 00000000-00000000 
 
                            Args: 00000000 00000000 00000000 00000000 
 [N/A(0), N/A(0)] 
            0  0 00000000 00000000 00000000-00000000 
 
                            Args: 00000000 00000000 00000000 00000000 
 [N/A(0), N/A(0)] 
            0  0 00000000 00000000 00000000-00000000 
 
                            Args: 00000000 00000000 00000000 00000000 
>[IRP_MJ_WRITE(4), N/A(34)] 
           14 e0 8b0b8030 00000000 876c2ef0-00000000 Success Error Cancel 
                \Driver\disk          partmgr!PmIoCompletion 
                            Args: 0004b000 00000000 4b3a0000 00000002 
 [IRP_MJ_WRITE(4), N/A(3)] 
           14 e0 8b0fc058 00000000 876c36a0-00000000 Success Error Cancel 
                \Driver\partmgr       partmgr!PartitionIoCompletion 
                            Args: 4b49ace4 00000000 4b3a0000 00000002 
 [IRP_MJ_WRITE(4), N/A(0)] 
           14 e0 8b121498 00000000 87531110-8b121a30 Success Error Cancel 
                \Driver\partmgr       volmgr!VmpReadWriteCompletionRoutine 
                            Args: 0004b000 00000000 2bea0000 00000002 
 [IRP_MJ_WRITE(4), N/A(0)] 
            4 e0 8b121978 00000000 82d103e0-8b1220d9 Success Error Cancel 
                \Driver\volmgr        fvevol!FvePassThroughCompletionRdpLevel2 
                            Args: 0004b000 00000000 4b49acdf 00000000 
 [IRP_MJ_WRITE(4), N/A(0)] 
            4 e0 8b122020 00000000 82801a40-00000000 Success Error Cancel 
                \Driver\fvevol        rdyboost!SmdReadWriteCompletion 
                            Args: 0004b000 00000000 2bea0000 00000002 
 [IRP_MJ_WRITE(4), N/A(0)] 
            4 e1 8b118538 00000000 828637d0-00000000 Success Error Cancel pending 
                \Driver\rdyboost      iorate!IoRateReadWriteCompletion 
                            Args: 0004b000 3fffffff 2bea0000 00000002 
 [IRP_MJ_WRITE(4), N/A(0)] 
            4 e0 8b11ab80 00000000 82da1610-8b1240d8 Success Error Cancel 
                \Driver\iorate        volsnap!VspRefCountCompletionRoutine 
                            Args: 0004b000 00000000 2bea0000 00000002 
 [IRP_MJ_WRITE(4), N/A(0)] 
            4 e1 8b124020 00000000 87886ada-89aec208 Success Error Cancel pending 
                \Driver\volsnap       NTFS!NtfsMasterIrpSyncCompletionRoutine 
                            Args: 0004b000 00000000 2bea0000 00000002 
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 [IRP_MJ_WRITE(4), N/A(0)] 
            4 e0 8b127018 a6de4bb8 871227b2-9ef8eba8 Success Error Cancel 
                \FileSystem\NTFS           FLTMGR!FltpPassThroughCompletion 
                            Args: 0004b000 00000000 00034000 00000000 
 [IRP_MJ_WRITE(4), N/A(0)] 
            4  1 8b12a3a0 a6de4bb8 00000000-00000000    pending 
                \FileSystem\FltMgr 
                            Args: 0004b000 00000000 00034000 00000000 
 
Irp Extension present at 0x8a6f4fb4:

This is a monstrous IRP with 15 stack locations (6 is current, shown in bold above, and is also 
specified by the debugger with the > character). The major and minor functions are shown for 
each stack location along with information on the device object and completion routines  
addresses.

The next step is to see what device object the IRP is targeting by executing the !devobj  
command on the device object address in the active stack location:

kd> !devobj 8b0b8030 
Device object (8b0b8030) is for: 
 DR0 \Driver\disk DriverObject 8b0a7e30 
Current Irp 00000000 RefCount 1 Type 00000007 Flags 01000050 
Vpb 8b0fc420 SecurityDescriptor 87da1b58 DevExt 8b0b80e8 DevObjExt 8b0b8578 Dope 
8b0fc3d0 
ExtensionFlags (0x00000800)  DOE_DEFAULT_SD_PRESENT 
Characteristics (0x00000100)  FILE_DEVICE_SECURE_OPEN 
AttachedDevice (Upper) 8b0fc058 \Driver\partmgr 
AttachedTo (Lower) 8b0a4d10 \Driver\storflt 
Device queue is not busy.

Finally, you can see details about the thread and process that issued the IRP by using the 
!thread command:

kd> !thread 8632e6c0 
THREAD 8632e6c0  Cid 0004.0058  Teb: 00000000 Win32Thread: 00000000 WAIT: 
(Executive) KernelMode Non-Alertable 
    89aec20c  NotificationEvent 
IRP List: 
    8a6f4d28: (0006,02d4) Flags: 00060043  Mdl: 8b14b250 
Not impersonating 
DeviceMap                 87c025b0 
Owning Process            86264280       Image:         System 
Attached Process          N/A            Image:         N/A 
Wait Start TickCount      8083           Ticks: 1 (0:00:00:00.015) 
Context Switch Count      2223           IdealProcessor: 0 
UserTime                  00:00:00.000 
KernelTime                00:00:00.046 
Win32 Start Address nt!ExpWorkerThread (0x81e68710) 
Stack Init 89aecca0 Current 89aebeb4 Base 89aed000 Limit 89aea000 Call 00000000 
Priority 13 BasePriority 13 PriorityDecrement 0 IoPriority 2 PagePriority 5
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I/O request to a single-layered hardware-based driver
This section traces I/O requests to a single-layered kernel-mode device driver. Figure 6-14 shows a typi-
cal IRP processing scenario for such a driver.

FIGURE 6-14 Typical single layer I/O request processing for hardware drivers.

Before we dig into the various steps outlined in Figure 6-14, some general comments are in order:

 ■ There are two types of horizontal divider lines. The first (solid line) is the usual user-mode/
kernel-mode divider. The second (dotted line) separates code that runs in the requesting thread 
context versus the arbitrary thread context. These contexts are defined as follows:

• The requesting thread context region indicates that the executing thread is the original one 
that requested the I/O operation. This is important because if the thread is the one that made 
the original call, it means the process context is the original process, and so the user-mode ad-
dress space that contains the user’s buffer supplied to the I/O operation is directly accessible.

• The arbitrary thread context region indicates that the thread running those functions 
can be any thread. More specifically, it’s most likely not the requesting thread, and so the 
user-mode process address space visible is not likely to be the original one. In this context, 
accessing the user’s buffer with a user-mode address can be disastrous. You’ll see in the next 
section how this issue is handled.

Note The explanations for the steps outlined in Figure 6-14 will prove why the 
divider lines reside where they are.
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 ■ The large rectangle consisting of the four blocks (labeled Dispatch Routine, Start I/O Routine, 
ISR, and DPC Routine) represents the driver-provided code. All other blocks are provided by the 
system.

 ■ The figure assumes the hardware device can handle one operation at a time, which is true of 
many types of devices. Even if the device can handle multiple requests, the basic flow of opera-
tions is still the same.

Here is the sequence of events as outlined in Figure 6-14:

1. A client application calls a Windows API such as ReadFile. ReadFile calls the native NtReadFile 
(in Ntdll.dll), which makes the thread transition to kernel mode to the executive NtReadFile 
(these steps have already been discussed earlier in this chapter).

2. The I/O manager, in its NtReadFile implementation, performs some sanity checks on the 
request, such as whether the buffer provided by the client is accessible with the right page 
protection. Next, the I/O manager locates the associated driver (using the file handle provided), 
allocates and initializes an IRP, and calls the driver into the appropriate dispatch routine (in this 
case, corresponding to the IRP_MJ_READ index) using IoCallDriver with the IRP.

3. This is the first time the driver sees the IRP. This call is usually invoked using the requesting 
thread; the only way for that not to happen is if an upper filter held on to the IRP and called 
IoCallDriver later from a different thread. For the sake of this discussion, we’ll assume this 
is not the case (and in most cases involving hardware devices, this does not happen; even if 
there are upper filters, they do some processing and call the lower driver immediately from the 
same thread). The dispatch read callback in the driver has two tasks on its hand: first, it should 
perform more checking that the I/O manager can’t do because it has no idea what the request 
really means. For example, the driver could check if the buffer provided to a read or write op-
eration is large enough; or for a DeviceIoControl operation, the driver would check whether 
the I/O control code provided is a supported one. If any such check fails, the driver completes 
the IRP (IoCompleteRequest) with the failed status and returns immediately. If the checks turn 
up OK, the driver calls its Start I/O routine to initiate the operation. However, if the hardware 
device is currently busy (handling a previous IRP), then the IRP should be inserted into a queue 
managed by the driver and a STATUS_PENDING is returned without completing the IRP. The I/O 
manager caters for such a scenario with the IoStartPacket function, that checks a busy bit in 
the device object and, if the device is busy, inserts the IRP into a queue (also part of the device 
object structure). If the device is not busy, it sets the device bit as busy and calls the registered 
Start I/O routine (recall that there is such a member in the driver object that would have been 
initialized in DriverEntry). Even if a driver chooses not to use IoStartPacket, it would still 
follow similar logic.

4. If the device is not busy, the Start I/O routine is called from the dispatch routine directly—
meaning it’s still the requesting thread that is making the call. Figure 6-14, however, shows that 
the Start I/O routine is called in an arbitrary thread context; this will be proven to be true in the 
general case when we look at the DPC routine in step 8. The purpose of the Start I/O routine is 
to take the IRP relevant parameters and use them to program the hardware device (for example, 
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by writing to its ports or registers using HAL hardware access routines such as WRITE_PORT_UCHAR, 
WRITE_REGISTER_ULONG, etc.). After the Start I/O completes, the call returns, and no particular 
code is running in the driver, the hardware is working and “does its thing.” While the hard-
ware device is working, more requests can come in to the device by the same thread (if using 
asynchronous operations) or other threads that also opened handles to the device. In this case 
the dispatch routine would realize the device is busy and insert the IRP into the IRP queue (as 
mentioned, one way to achieve this is with a call to IoStartPacket).

5. When the device is done with the current operation, it raises an interrupt. The kernel trap 
handler saves the CPU context for whatever thread was running on the CPU that was selected 
to handle the interrupt, raises the IRQL of that CPU to the IRQL associated with the interrupt 
(DIRQL) and jumps to the registered ISR for the device.

6. The ISR, running at Device IRQL (above 2) does as little work as possible, telling the device to 
stop the interrupt signal and getting the status or other required information from the hard-
ware device. As its last act, the ISR queues a DPC for further processing at a lower IRQL. The 
advantage of using a DPC to perform most of the device servicing is that any blocked interrupt 
whose IRQL lies between the Device IRQL and the DPC/dispatch IRQL (2) is allowed to occur be-
fore the lower-priority DPC processing occurs. Intermediate-level interrupts are thus serviced 
more promptly than they otherwise would be, and this reduces latency on the system.

7. After the interrupt is dismissed, the kernel notices that the DPC queue is not empty and so uses 
a software interrupt at IRQL DPC_LEVEL (2) to jump to the DPC processing loop.

8. Eventually, the DPC is de-queued and executes at IRQL 2, typically performing two main operations:

• It gets the next IRP in the queue (if any) and starts the new operation for the device. This is done 
first to prevent the device from being idle for too long. If the dispatch routine used IoStart-
Packet, then the DPC routine would call its counterpart, IoStartNextPacket, which does 
just that. If an IRP is available, the Start I/O routine is called from the DPC. This is why in the 
general case, the Start I/O routine is called in an arbitrary thread context. If there are no IRPs 
in the queue, the device is marked not busy—that is, ready for the next request that comes in.

• It completes the IRP, whose operation has just finished by the driver by calling IoComplete-
Request. From that point, the driver is no longer responsible for the IRP and it shouldn’t 
be touched, as it can be freed at any moment after the call. IoCompleteRequest calls any 
completion routines that have been registered. Finally, the I/O manager frees the IRP (it’s 
actually using a completion routine of its own to do that).

9. The original requesting thread needs to be notified of the completion. Because the current 
thread executing the DPC is arbitrary, it’s not the original thread with its original process ad-
dress space. To execute code in the context of the requesting thread, a special kernel APC is 
issued to the thread. An APC is a function that is forced to execute in the context of a particular 
thread. When the requesting thread gets CPU time, the special kernel APC executes first (at 
IRQL APC_LEVEL=1). It does what’s needed, such as releasing the thread from waiting, signaling 
an event that was registered in an asynchronous operation, and so on. (For more on APCs, see 
Chapter 8 in Part 2.)
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A final note about I/O completion: the asynchronous I/O functions ReadFileEx and WriteFileEx 
allow a caller to supply a callback function as a parameter. If the caller does so, the I/O manager queues 
a user mode APC to the caller’s thread APC queue as the last step of I/O completion. This feature allows 
a caller to specify a subroutine to be called when an I/O request is completed or canceled. User-mode 
APC completion routines execute in the context of the requesting thread and are delivered only when 
the thread enters an alertable wait state (by calling functions such as SleepEx, WaitForSingleObjectEx, 
or WaitForMultipleObjectsEx).

User address space buffer access
As shown in Figure 6-14, there are four main driver functions involved in processing an IRP. Some or all 
of these routines may need to access the buffer in user space provided by the client application. When 
an application or a device driver indirectly creates an IRP by using the NtReadFile, NtWriteFile, 
or NtDeviceIoControlFile system services (or the Windows API functions corresponding to these 
services, which are ReadFile, WriteFile, and DeviceIoControl), the pointer to the user’s buffer is 
provided in the UserBuffer member of the IRP body. However, accessing this buffer directly can be 
done only in the requesting thread context (the client’s process address space is visible) and in IRQL 0 
(paging can be handled normally).

As discussed in the previous section, only the dispatch routine meets the criteria of running in the 
requesting thread context and in IRQL 0. And even this is not always the case—it’s possible for an 
upper filter to hold on to the IRP and not pass it down immediately, possibly passing it down later on 
using a different thread, and could even be done when the CPU IRQL is 2 or higher.

The other three functions (Start I/O, ISR, DPC) clearly run on an arbitrary thread (could be any thread), 
and with IRQL 2 (DIRQL for the ISR). Accessing the user’s buffer directly from any of these routine is 
mostly fatal. Here’s why:

 ■ Because the IRQL is 2 or higher, paging is not allowed. Since the user’s buffer (or part of it) may 
be paged out, accessing the non-resident memory would crash the system.

 ■ Because the thread executing these functions could be any thread, and thus a random process 
address space would be visible, the original user’s address has no meaning and would likely lead 
to an access violation, or worse—accessing data from some random process (the parent process 
of whatever thread was running at the time).

Clearly, there must be a safe way to access the user’s buffer in any of these routines. The I/O man-
ager provides two options, for which it does the heavy lifting. These are known as Buffered I/O and 
Direct I/O. A third option, which is not really an option, is called Neither I/O, in which the I/O manager 
does nothing special and lets the driver handle the problem on its own.

A driver selects the method in the following way:

 ■ For read and write requests (IRP_MJ_READ and IRP_MJ_WRITE), it sets the Flags member (with 
an OR boolean operation so as not to disturb other flags) of the device object (DEVICE_OBJECT) 
to DO_BUFFERED_IO (for buffered I/O) or DO_DIRECT_IO (for direct I/O). If neither flag is set, 
neither I/O is implied. (DO is short for device object.)
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 ■ For device I/O control requests (IRP_MJ_DEVICE_CONTROL), each control code is constructed  
using the CTL_CODE macro, where some of the bits indicate the buffering method. This means 
the buffering method can be set on a control code–by–control code basis, which is very useful.

The following sections describe each buffering method in detail.

Buffered I/O With buffered I/O, the I/O manager allocates a mirror buffer that is the same size as 
the user’s buffer in non-paged pool and stores the pointer to the new buffer in the AssociatedIrp.
SystemBuffer member of the IRP body. Figure 6-15 shows the main stages in buffered I/O for a read 
operation (write is similar).

FIGURE 6-15 Buffered I/O.

The driver can access the system buffer (address q in Figure 6-15) from any thread and any IRQL:

 ■ The address is in system space, meaning it’s valid in any process context.

 ■ The buffer is allocated from non-paged pool, so a page fault will not happen.

For write operations, the I/O manager copies the caller’s buffer data into the allocated buffer when 
creating the IRP. For read operations, the I/O manager copies data from the allocated buffer to the 
user’s buffer when the IRP completes (using a special kernel APC) and then frees the allocated buffer.

Buffered I/O clearly is very simple to use because the I/O manager does practically everything. Its 
main downside is that it always requires copying, which is inefficient for large buffers. Buffered I/O is 
commonly used when the buffer size is no larger than one page (4 KB) and when the device does not 
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support direct memory access (DMA), because DMA is used to transfer data from a device to RAM or 
vice versa without CPU intervention—but with buffered I/O, there is always copying done with the 
CPU, which makes DMA pointless.

Direct I/O Direct I/O provides a way for a driver to access the user’s buffer directly without any need 
for copying. Figure 6-16 shows the main stages in direct I/O for a read or write operation.

FIGURE 6-16 Direct I/O.

When the I/O manager creates the IRP, it locks the user’s buffer into memory (that is, makes it non-
pageable) by calling the MmProbeAndLockPages function (documented in the WDK). The I/O manager 
stores a description of the memory in the form of a memory descriptor list (MDL), which is a structure 
that describes the physical memory occupied by a buffer. Its address is stored in the MdlAddress mem-
ber of the IRP body. Devices that perform DMA require only physical descriptions of buffers, so an MDL 
is sufficient for the operation of such devices. If a driver must access the contents of a buffer, however, it 
can map the buffer into the system’s address space using the MmGetSystemAddressForMdlSafe func-
tion, passing in the provided MDL. The resulting pointer (q in Figure 6-16) is safe to use in any thread 
context (it’s a system address) and in any IRQL (the buffer cannot be paged out). The user’s buffer is 
effectively double-mapped, where the user’s direct address (p in Figure 6-16) is usable only from the 
original process context, but the second mapping into system space is usable in any context. Once the 
IRP is complete, the I/O manager unlocks the buffer (making it pageable again) by calling MmUnlock-
Pages (documented in the WDK).

Direct I/O is useful for large buffers (more than one page) because no copying is done, especially for 
DMA transfers (for the same reason).
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Neither I/O With neither I/O, the I/O manager doesn’t perform any buffer management. Instead, 
buffer management is left to the discretion of the device driver, which can choose to manually perform 
the steps the I/O manager performs with the other buffer-management types. In some cases, access-
ing the buffer in the dispatch routine is sufficient, so the driver may get away with neither I/O. The main 
advantage of neither I/O is its zero overhead.

Drivers that use neither I/O to access buffers that might be located in user space must take special care 
to ensure that buffer addresses are valid and do not reference kernel-mode memory. Scalar values, 
however, are perfectly safe to pass, although very few drivers have only a scalar value to pass around. 
Failure to do so could result in crashes or in security vulnerabilities, where applications have access to 
kernel-mode memory or can inject code into the kernel. The ProbeForRead and ProbeForWrite func-
tions that the kernel makes available to drivers verify that a buffer resides entirely in the user-mode 
portion of the address space. To avoid a crash from referencing an invalid user-mode address, drivers 
can access user-mode buffers protected with structured exception handling (SEH), expressed with 
__try/__except blocks in C/C++, that catch any invalid memory faults and translate them into error 
codes to return to the application. (See Chapter 8 in Part 2 for more information on SEH.) Additionally, 
drivers should also capture all input data into a kernel buffer instead of relying on user-mode addresses 
because the caller could always modify the data behind the driver’s back, even if the memory address 
itself is still valid.

Synchronization
Drivers must synchronize their access to global driver data and hardware registers for two reasons:

 ■ The execution of a driver can be preempted by higher-priority threads and time-slice (or quan-
tum) expiration or can be interrupted by higher IRQL interrupts.

 ■ On multiprocessor systems (the norm), Windows can run driver code simultaneously on more 
than one processor.

Without synchronization, corruption could occur—for example, device-driver code running at pas-
sive IRQL (0) (say, a dispatch routine) when a caller initiates an I/O operation can be interrupted by a  
device interrupt, causing the device driver’s ISR to execute while its own device driver is already running.  
If the device driver was modifying data that its ISR also modifies—such as device registers, heap storage, 
or static data—the data can become corrupted when the ISR executes.

To avoid this situation, a device driver written for Windows must synchronize its access to any data 
that can be accessed at more than one IRQL. Before attempting to update shared data, the device 
driver must lock out all other threads (or, in the case of a multiprocessor system, CPUs) to prevent them 
from updating the same data structure.

On a single-CPU system, synchronizing between two or more functions that run at different IRQLs is 
easy enough. Such function just needs to raise the IRQL (KeRaiseIrql) to the highest IRQL these func-
tions execute in. For example, to synchronize between a dispatch routine (IRQL 0) and a DPC routine 
(IRQL 2), the dispatch routine needs to raise IRQL to 2 before accessing the shared data. If synchroniza-
tion between a DPC and ISR is required, the DPC would raise IRQL to the Device IRQL (this information 
is provided to the driver when the PnP manager informs the driver of the hardware resources a device 
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is connected to.) On multiprocessing systems, raising IRQL is not enough because the other routine—
for example, ISR—could be serviced on another CPU (remember that IRQL is a CPU attribute, and not a 
global system attribute).

To allow high IRQL synchronization across CPUs, the kernel provides a specialized synchronization 
object: the spinlock. Here, we’ll take a brief look at spinlocks as they apply to driver synchronization.  
(A full treatment of spinlocks is reserved for Chapter 8 in Part 2.) In principle, a spinlock resembles a 
mutex (also discussed in detail in Chapter 8 in Part 2) in the sense that it allows one piece of code to 
access shared data, but it works and is used quite differently. Table 6-3 summarizes the differences 
between mutexes and spinlocks.

TABLE 6-3 Mutexes versus spinlocks

Mutex Spinlock

Synchronization nature One thread out of any number of threads 
that is allowed enters a critical region and 
accesses shared data.

One CPU out of any number of CPUs that is 
allowed enters a critical region and accesses 
shared data.

Usable at IRQL < DISPATCH_LEVEL (2) >= DISPATCH_LEVEL (2)

Wait kind Normal. That is, it does not waste CPU cycles 
while waiting.

Busy. That is, the CPU is constantly testing the 
spinlock bit until it’s free.

Ownership The owner thread is tracked, and recursive 
acquisition is allowed.

The CPU owner is not tracked, and recursive 
acquisition will cause a deadlock.

A spinlock is just a bit in memory that is accessed by an atomic test and modify operation. A spin-
lock may be owned by a CPU or free (unowned). As shown in Table 6-3, spinlocks are necessary when 
synchronization is needed in high IRQLs (>=2), because a mutex can’t be used in these cases as a sched-
uler is needed, but as we’ve seen the scheduler cannot wake up on a CPU whose IRQL is 2 or higher. 
This is why waiting for a spinlock is a busy wait operation: The thread cannot go to a normal wait state 
because that implies the scheduler waking up and switching to another thread on that CPU.

Acquiring a spinlock by a CPU is always a two-step operation. First, the IRQL is raised to the associ-
ated IRQL on which synchronization is to occur—that is, the highest IRQL on which the function that 
needs to synchronize executes. For example, synchronizing between a dispatch routine (IRQL 0) and a 
DPC (2) would need to raise IRQL to 2; synchronizing between DPC (2) and ISR (DIRQL) would need to 
raise IRQL to DIRQL (the IRQL for that particular interrupt). Second, the spinlock is attempted acquisi-
tion by atomically testing and setting the spinlock bit. 

Note The steps outlined for spinlock acquisition are simplified and omit some details that 
are not important for this discussion. The complete spinlock story is described in Chapter 8 
in Part 2.

The functions that acquire spinlocks determine the IRQL on which to synchronize, as we shall see in 
a moment.

Figure 6-17 shows a simplified view of the two-step process of acquiring a spinlock.



 CHAPTER 6 I/O system 533

FIGURE 6-17 Spinlock acquisition.

When synchronizing at IRQL 2—for example, between a dispatch routine and a DPC or between a 
DPC and another DPC (running on another CPU, of course)—the kernel provides the KeAcquireSpin-
Lock and KeReleaseSpinLock functions (there are other variations that are discussed in Chapter 8 in 
Part 2). These functions perform the steps in Figure 6-17 where the “associated IRQL” is 2. The driver in 
this case must allocate a spinlock (KSPIN_LOCK, which is just 4 bytes on 32-bit systems and 8 bytes on 
64-bit systems), typically in the device extension (where driver-managed data for the device is kept) 
and initialize it with KeInitializeSpinLock.

For synchronizing between any function (such as DPC or a dispatch routine) and the ISR, differ-
ent functions must be used. Every interrupt object (KINTERRUPT) holds inside it a spinlock, which is 
acquired before the ISR executes (this implies that the same ISR cannot run concurrently on other 
CPUs). Synchronization in this case would be with that particular spinlock (no need to allocate another 
one), which can be acquired indirectly with the KeAcquireInterruptSpinLock function and released 
with KeReleaseInterruptSpinLock. Another option is to use the KeSynchronizeExecution function, 
which accepts a callback function the driver provides that is called between the acquisition and release 
of the interrupt spinlock.

By now, you should realize that although ISRs require special attention, any data that a device driver 
uses is subject to being accessed by the same device driver (one of its functions) running on another 
processor. Therefore, it’s critical for device-driver code to synchronize its use of any global or shared 
data or any accesses to the physical device itself.

I/O requests to layered drivers
The “IRP flow” section showed the general options drivers have for dealing with IRPs, with a focus on 
a standard WDM device node. The preceding section showed how an I/O request to a simple device 
controlled by a single device driver is handled. I/O processing for file-based devices or for requests 
to other layered drivers happens in much the same way, but it’s worthwhile to take a closer look at a 
request targeted at file-system drivers. Figure 6-18 shows a very simplified illustrative example of how 
an asynchronous I/O request might travel through layered drivers for non–hardware based devices as 
primary targets. It uses as an example a disk controlled by a file system.
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FIGURE 6-18 Queuing an asynchronous request to layered drivers.

Once again, the I/O manager receives the request and creates an IRP to represent it. This time, howev-
er, it delivers the packet to a file-system driver. The file-system driver exercises great control over the I/O 
operation at that point. Depending on the type of request the caller made, the file system can send the 
same IRP to the disk driver or it can generate additional IRPs and send them separately to the disk driver.

The file system is most likely to reuse an IRP if the request it receives translates into a single straight-
forward request to a device. For example, if an application issues a read request for the first 512 bytes in 
a file stored on a volume, the NTFS file system would simply call the volume manager driver, asking it to 
read one sector from the volume, beginning at the file’s starting location.

After the disk controller’s DMA adapter finishes a data transfer, the disk controller interrupts the 
host, causing the ISR for the disk controller to run, which requests a DPC callback completing the IRP, as 
shown in Figure 6-19.

As an alternative to reusing a single IRP, a file system can establish a group of associated IRPs that 
work in parallel on a single I/O request. For example, if the data to be read from a file is dispersed 
across the disk, the file-system driver might create several IRPs, each of which reads some portion of 
the request from a different sector. This queuing is illustrated in Figure 6-20.
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FIGURE 6-19 Completing a layered I/O request.

FIGURE 6-20 Queuing associated IRPs.
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The file-system driver delivers the associated IRPs to the volume manager, which in turn sends them 
to the disk-device driver, which queues them to the disk device. They are processed one at a time, and 
the file-system driver keeps track of the returned data. When all the associated IRPs complete, the I/O 
system completes the original IRP and returns to the caller, as shown in Figure 6-21.

FIGURE 6-21 Completing associated IRPs.

Note All Windows file-system drivers that manage disk-based file systems are part of a 
stack of drivers that is at least three layers deep. The file-system driver sits at the top, a vol-
ume manager in the middle, and a disk driver at the bottom. In addition, any number of 
filter drivers can be interspersed above and below these drivers. For clarity, the preceding 
example of layered I/O requests includes only a file-system driver and the volume-manager 
driver. See Chapter 12 in Part 2 for more information.

Thread-agnostic I/O
In the I/O models described thus far, IRPs are queued to the thread that initiated the I/O and are com-
pleted by the I/O manager issuing an APC to that thread so that process-specific and thread-specific 
context are accessible by completion processing. Thread-specific I/O processing is usually sufficient 
for the performance and scalability needs of most applications, but Windows also includes support for 
thread-agnostic I/O via two mechanisms:
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 ■ I/O completion ports, which are described at length in the section “I/O completion ports” later 
in this chapter

 ■ Locking the user buffer into memory and mapping it into the system address space

With I/O completion ports, the application decides when it wants to check for the completion of I/O. 
Therefore, the thread that happens to have issued an I/O request is not necessarily relevant because any 
other thread can perform the completion request. As such, instead of completing the IRP inside the specific 
thread’s context, it can be completed in the context of any thread that has access to the completion port.

Likewise, with a locked and kernel-mapped version of the user buffer, there’s no need to be in the 
same memory address space as the issuing thread because the kernel can access the memory from 
arbitrary contexts. Applications can enable this mechanism by using SetFileIoOverlappedRange as 
long as they have the SeLockMemoryPrivilege.

With both completion port I/O and I/O on file buffers set by SetFileIoOverlappedRange, the I/O 
manager associates the IRPs with the file object to which they have been issued instead of with the issu-
ing thread. The !fileobj extension in WinDbg shows an IRP list for file objects that are used with these 
mechanisms.

In the next sections, you’ll see how thread-agnostic I/O increases the reliability and performance of 
applications in Windows.

I/O cancellation
While there are many ways in which IRP processing occurs and various methods to complete an I/O 
request, a great many I/O processing operations actually end in cancellation rather than completion. 
For example, a device may require removal while IRPs are still active, or the user might cancel a long-
running operation to a device—for example, a network operation. Another situation that requires I/O 
cancellation support is thread and process termination. When a thread exits, the I/Os associated with 
the thread must be cancelled. This is because the I/O operations are no longer relevant and the thread 
cannot be deleted until the outstanding I/Os have completed.

The Windows I/O manager, working with drivers, must deal with these requests efficiently and reli-
ably to provide a smooth user experience. Drivers manage this need by registering a cancel routine, by 
calling IoSetCancelRoutine, for their cancellable I/O operations (typically, those operations that are 
still enqueued and not yet in progress), which is invoked by the I/O manager to cancel an I/O operation. 
When drivers fail to play their role in these scenarios, users may experience unkillable processes, which 
have disappeared visually but linger and still appear in Task Manager or Process Explorer.

User-initiated I/O cancellation
Most software uses one thread to handle user interface (UI) input and one or more threads to perform 
work, including I/O. In some cases, when a user wants to abort an operation that was initiated in the 
UI, an application might need to cancel outstanding I/O operations. Operations that complete quickly 
might not require cancellation, but for operations that take arbitrary amounts of time—like large data 
transfers or network operations—Windows provides support for cancelling both synchronous and 
asynchronous operations.



538 CHAPTER 6 I/O system

 ■ Cancelling synchronous I/Os A thread can call CancelSynchronousIo. This enables even 
create (open) operations to be cancelled when supported by a device driver. Several drivers in 
Windows support this functionality. These include drivers that manage network file systems (for 
example, MUP, DFS, and SMB), which can cancel open operations to network paths.

 ■ Cancelling asynchronous I/Os A thread can cancel its own outstanding asynchronous I/Os 
by calling CancelIo. It can cancel all asynchronous I/Os issued to a specific file handle, regard-
less of which thread initiated them, in the same process with CancelIoEx. CancelIoEx also 
works on operations associated with I/O completion ports through the aforementioned thread-
agnostic support in Windows. This is because the I/O system keeps track of a completion port’s 
outstanding I/Os by linking them with the completion port. 

Figure 6-22 and Figure 6-23 show synchronous and asynchronous I/O cancellation. (To a driver, all 
cancel processing looks the same.)

FIGURE 6-22 Synchronous I/O cancellation.

FIGURE 6-23 Asynchronous I/O cancellation.
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I/O cancellation for thread termination
The other scenario in which I/Os must be cancelled is when a thread exits, either directly or as a result of 
its process terminating (which causes the threads of the process to terminate). Because every thread has a 
list of IRPs associated with it, the I/O manager can walk this list, look for cancellable IRPs, and cancel them. 
Unlike CancelIoEx, which does not wait for an IRP to be cancelled before returning, the process manager 
will not allow thread termination to proceed until all I/Os have been cancelled. As a result, if a driver fails 
to cancel an IRP, the process and thread object will remain allocated until the system shuts down.

Note Only IRPs for which a driver sets a cancel routine are cancellable. The process man-
ager waits until all I/Os associated with a thread are either cancelled or completed before 
deleting the thread.

EXPERIMENT: Debugging an unkillable process
In this experiment, we’ll use Notmyfault from Sysinternals to force an unkillable process by caus-
ing the Myfault.sys driver, which Notmyfault.exe uses, to indefinitely hold an IRP without having 
registered a cancel routine for it. (Notmyfault is covered in detail in the “Crash dump analysis” 
section of Chapter 15, “Crash dump analysis,” in Part 2.) Follow these steps:

1. Run Notmyfault.exe.

2. The Not My Fault dialog box appears. Click the Hang tab and choose Hang with IRP, as 
shown in the following screenshot. Then click the Hang button.

3. You shouldn’t see anything happen, and you should be able to click the Cancel button to 
quit the application. However, you should still see the Notmyfault process in Task Manager or 
Process Explorer. Attempts to terminate the process will fail because Windows will wait 
forever for the IRP to complete given that the Myfault driver doesn’t register a cancel routine.
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4. To debug an issue such as this, you can use WinDbg to look at what the thread is cur-
rently doing. Open a local kernel debugger session and start by listing the information 
about the Notmyfault.exe process with the !process command (notmyfault64 is the 
64-bit version):

lkd> !process 0 7 notmyfault64.exe 
PROCESS ffff8c0b88c823c0 
    SessionId: 1  Cid: 2b04    Peb: 4e5c9f4000  ParentCid: 0d40 
    DirBase: 3edfa000  ObjectTable: ffffdf08dd140900  HandleCount: <Data Not 
Accessible> 
    Image: notmyfault64.exe 
    VadRoot ffff8c0b863ed190 Vads 81 Clone 0 Private 493. Modified 8. Locked 
0…. 
        THREAD ffff8c0b85377300  Cid 2b04.2714  Teb: 0000004e5c808000 
Win32Thread: 0000000000000000 WAIT: (UserRequest) UserMode Non-Alertable 
            fffff80a4c944018  SynchronizationEvent 
        IRP List: 
            ffff8c0b84f1d130: (0006,0118) Flags: 00060000  Mdl: 00000000 
        Not impersonating 
        DeviceMap                 ffffdf08cf4d7d20 
        Owning Process            ffff8c0b88c823c0       Image:         
notmyfault64.exe 
... 
        Child-SP          RetAddr           : Args to Child                                                           
: Call Site 
        ffffb881'3ecf74a0 fffff802'cfc38a1c : 00000000'00000100 
00000000'00000000 00000000'00000000 00000000'00000000 : 
nt!KiSwapContext+0x76 
        ffffb881'3ecf75e0 fffff802'cfc384bf : 00000000'00000000 
00000000'00000000 00000000'00000000 00000000'00000000 : 
nt!KiSwapThread+0x17c 
        ffffb881'3ecf7690 fffff802'cfc3a287 : 00000000'00000000 
00000000'00000000 00000000'00000000 00000000'00000000 : 
nt!KiCommitThreadWait+0x14f 
        ffffb881'3ecf7730 fffff80a'4c941fce : fffff80a'4c944018 
fffff802'00000006 00000000'00000000 00000000'00000000 : 
nt!KeWaitForSingleObject+0x377 
        ffffb881'3ecf77e0 fffff802'd0067430 : ffff8c0b'88d2b550 
00000000'00000001 00000000'00000001 00000000'00000000 : myfault+0x1fce 
        ffffb881'3ecf7820 fffff802'd0066314 : ffff8c0b'00000000 
ffff8c0b'88d2b504 00000000'00000000 ffffb881'3ecf7b80 : nt!IopSynchronousSer
viceTail+0x1a0 
        ffffb881'3ecf78e0 fffff802'd0065c96 : 00000000'00000000 
00000000'00000000 00000000'00000000 00000000'00000000 : 
nt!IopXxxControlFile+0x674 
        ffffb881'3ecf7a20 fffff802'cfd57f93 : ffff8c0b'85377300 
fffff802'cfcb9640 00000000'00000000 fffff802'd005b32f : 
nt!NtDeviceIoControlFile+0x56 
        ffffb881'3ecf7a90 00007ffd'c1564f34 : 00000000'00000000 
00000000'00000000 00000000'00000000 00000000'00000000 : 
nt!KiSystemServiceCopyEnd+0x13 (TrapFrame @ ffffb881'3ecf7b00)
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5. From the stack trace, you can see that the thread that initiated the I/O is now waiting 
for cancellation or completion. The next step is to use the same debugger extension 
command used in the previous experiments, !irp, and attempt to analyze the problem. 
Copy the IRP pointer, and examine it with !irp:

lkd> !irp ffff8c0b84f1d130 
Irp is active with 1 stacks 1 is current (= 0xffff8c0b84f1d200) 
 No Mdl: No System Buffer: Thread ffff8c0b85377300:  Irp stack trace. 
     cmd  flg cl Device   File     Completion-Context 
>[IRP_MJ_DEVICE_CONTROL(e), N/A(0)] 
            5  0 ffff8c0b886b5590 ffff8c0b88d2b550 00000000-00000000 
            \Driver\MYFAULT 
                     Args: 00000000 00000000 83360020 00000000

6. From this output, it is obvious who the culprit driver is: \Driver\MYFAULT, or Myfault.sys. 
The name of the driver highlights the fact that the only way this situation can occur is 
through a driver problem—not a buggy application. Unfortunately, although you now 
know which driver caused the problem, there isn’t much you can do about it apart from 
rebooting the system. This is necessary because Windows can never safely assume it is 
OK to ignore the fact that cancellation hasn’t yet occurred. The IRP could return at any 
time and cause corruption of system memory. 

Tip If you encounter this situation in practice, you should check for a newer 
version of the driver, which might include a fix for the bug.

I/O completion ports
Writing a high-performance server application requires implementing an efficient threading model. 
Having either too few or too many server threads to process client requests can lead to performance 
problems. For example, if a server creates a single thread to handle all requests, clients can become 
starved because the server will be tied up processing one request at a time. A single thread could 
simultaneously process multiple requests, switching from one to another as I/O operations are started. 
However, this architecture introduces significant complexity and can’t take advantage of systems with 
more than one logical processor. At the other extreme, a server could create a big pool of threads so 
that virtually every client request is processed by a dedicated thread. This scenario usually leads to 
thread-thrashing, in which lots of threads wake up, perform some CPU processing, block while wait-
ing for I/O, and then, after request processing is completed, block again waiting for a new request. If 
nothing else, having too many threads results in excessive context switching, caused by the scheduler 
having to divide processor time among multiple active threads; such a scheme will not scale.

The goal of a server is to incur as few context switches as possible by having its threads avoid un-
necessary blocking, while at the same time maximizing parallelism by using multiple threads. The ideal 
is for there to be a thread actively servicing a client request on every processor and for those threads 
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not to block when they complete a request if additional requests are waiting. For this optimal process 
to work correctly, however, the application must have a way to activate another thread when a thread 
processing a client request blocks I/O (such as when it reads from a file as part of the processing).

The IoCompletion object
Applications use the IoCompletion executive object, which is exported to the Windows API as a com-
pletion port, as the focal point for the completion of I/O associated with multiple file handles. Once a 
file is associated with a completion port, any asynchronous I/O operations that complete on the file re-
sult in a completion packet being queued to the completion port. A thread can wait for any outstand-
ing I/Os to complete on multiple files simply by waiting for a completion packet to be queued to the 
completion port. The Windows API provides similar functionality with the WaitForMultipleObjects 
API function, but completion ports have one important advantage: concurrency. Concurrency refers to 
the number of threads that an application has actively servicing client requests, which is controlled with 
the aid of the system.

When an application creates a completion port, it specifies a concurrency value. This value indicates 
the maximum number of threads associated with the port that should be running at any given time. As 
stated earlier, the ideal is to have one thread active at any given time for every processor in the system. 
Windows uses the concurrency value associated with a port to control how many threads an applica-
tion has active. If the number of active threads associated with a port equals the concurrency value, 
a thread that is waiting on the completion port won’t be allowed to run. Instead, an active thread will 
finish processing its current request, after which it will check whether another packet is waiting at the 
port. If one is, the thread simply grabs the packet and goes off to process it. When this happens, there 
is no context switch, and the CPUs are utilized nearly to their full capacity.

Using completion ports
Figure 6-24 shows a high-level illustration of completion-port operation. A completion port is created 
with a call to the CreateIoCompletionPort Windows API function. Threads that block on a completion 
port become associated with the port and are awakened in last in, first out (LIFO) order so that the thread 
that blocked most recently is the one that is given the next packet. Threads that block for long periods of 
time can have their stacks swapped out to disk, so if there are more threads associated with a port than 
there is work to process, the in-memory footprints of threads blocked the longest are minimized.

A server application will usually receive client requests via network endpoints that are identified by 
file handles. Examples include Windows Sockets 2 (Winsock2) sockets or named pipes. As the server 
creates its communications endpoints, it associates them with a completion port and its threads wait 
for incoming requests by calling GetQueuedCompletionStatus(Ex) on the port. When a thread is 
given a packet from the completion port, it will go off and start processing the request, becoming an 
active thread. A thread will block many times during its processing, such as when it needs to read or 
write data to a file on disk or when it synchronizes with other threads. Windows detects this activity 
and recognizes that the completion port has one less active thread. Therefore, when a thread becomes 
inactive because it blocks, a thread waiting on the completion port will be awakened if there is a packet 
in the queue.
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FIGURE 6-24 I/O completion-port operation.

Microsoft’s guidelines are to set the concurrency value roughly equal to the number of processors 
in a system. Keep in mind that it’s possible for the number of active threads for a completion port to 
exceed the concurrency limit. Consider a case in which the limit is specified as 1:

1. A client request comes in and a thread is dispatched to process the request, becoming active. 

2. A second request arrives, but a second thread waiting on the port isn’t allowed to proceed 
because the concurrency limit has been reached. 

3. The first thread blocks, waiting for a file I/O, so it becomes inactive. 

4. The second thread is released. 

5. While the second thread is still active, the first thread’s file I/O is completed, making it active 
again. At that point—and until one of the threads blocks—the concurrency value is 2, which 
is higher than the limit of 1. Most of the time, the count of active threads will remain at or just 
above the concurrency limit.

The completion port API also makes it possible for a server application to queue privately defined 
completion packets to a completion port by using the PostQueuedCompletionStatus function. A 
server typically uses this function to inform its threads of external events, such as the need to shut 
down gracefully.

Applications can use thread-agnostic I/O, described earlier, with I/O completion ports to avoid 
associating threads with their own I/Os and associating them with a completion port object instead. 
In addition to the other scalability benefits of I/O completion ports, their use can minimize context 
switches. Standard I/O completions must be executed by the thread that initiated the I/O, but when 
an I/O associated with an I/O completion port completes, the I/O manager uses any waiting thread to 
perform the completion operation.
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I/O completion port operation
Windows applications create completion ports by calling the CreateIoCompletionPort Windows API 
and specifying a NULL completion port handle. This results in the execution of the NtCreateIoComple-
tion system service. The executive’s IoCompletion object contains a kernel synchronization object 
called a kernel queue. Thus, the system service creates a completion port object and initializes a queue 
object in the port’s allocated memory. (A pointer to the port also points to the queue object because 
the queue is the first member of the completion port.) A kernel queue object has a concurrency value 
that is specified when a thread initializes it, and in this case the value that is used is the one that was 
passed to CreateIoCompletionPort. KeInitializeQueue is the function that NtCreateIoCompletion 
calls to initialize a port’s queue object.

When an application calls CreateIoCompletionPort to associate a file handle with a port, the  
NtSetInformationFile system service is executed with the file handle as the primary parameter.  
The information class that is set is FileCompletionInformation, and the completion port’s handle 
and the CompletionKey parameter from CreateIoCompletionPort are the data values. NtSetInfor-
mationFile dereferences the file handle to obtain the file object and allocates a completion context 
data structure.

Finally, NtSetInformationFile sets the CompletionContext field in the file object to point at the 
context structure. When an asynchronous I/O operation completes on a file object, the I/O manager 
checks whether the CompletionContext field in the file object is non-NULL. If it is, the I/O manager 
allocates a completion packet and queues it to the completion port by calling KeInsertQueue with the 
port as the queue on which to insert the packet (this works because the completion port object and 
queue object have the same address).

When a server thread invokes GetQueuedCompletionStatus, the NtRemoveIoCompletion sys-
tem service is executed. After validating parameters and translating the completion port handle to 
a pointer to the port, NtRemoveIoCompletion calls IoRemoveIoCompletion, which eventually calls 
KeRemoveQueueEx. For high-performance scenarios, it’s possible that multiple I/Os may have been 
completed, and although the thread will not block, it will still call into the kernel each time to get one 
item. The GetQueuedCompletionStatus or GetQueuedCompletionStatusEx API allows applications to 
retrieve more than one I/O completion status at the same time, reducing the number of user-to- kernel 
roundtrips and maintaining peak efficiency. Internally, this is implemented through the NtRemoveIo-
CompletionEx function. This calls IoRemoveIoCompletion with a count of queued items, which is 
passed on to KeRemoveQueueEx.

As you can see, KeRemoveQueueEx and KeInsertQueue are the engine behind completion ports. 
They are the functions that determine whether a thread waiting for an I/O completion packet should 
be activated. Internally, a queue object maintains a count of the current number of active threads and 
the maximum number of active threads. If the current number equals or exceeds the maximum when a 
thread calls KeRemoveQueueEx, the thread will be put (in LIFO order) onto a list of threads waiting for a 
turn to process a completion packet. The list of threads hangs off the queue object. A thread’s control 
block data structure (KTHREAD) has a pointer in it that references the queue object of a queue that it’s 
associated with; if the pointer is NULL, the thread isn’t associated with a queue.
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Windows keeps track of threads that become inactive because they block on something other than 
the completion port by relying on the queue pointer in a thread’s control block. The scheduler routines 
that possibly result in a thread blocking (such as KeWaitForSingleObject, KeDelayExecutionThread, 
and so on) check the thread’s queue pointer. If the pointer isn’t NULL, the functions call KiActivate-
WaiterQueue, a queue-related function that decrements the count of active threads associated with 
the queue. If the resulting number is less than the maximum and at least one completion packet is in 
the queue, the thread at the front of the queue’s thread list is awakened and given the oldest packet. 
Conversely, whenever a thread that is associated with a queue wakes up after blocking, the scheduler 
executes the KiUnwaitThread function, which increments the queue’s active count.

The PostQueuedCompletionStatus Windows API function results in the execution of the NtSet-
IoCompletion system service. This function simply inserts the specified packet onto the completion 
port’s queue by using KeInsertQueue.

Figure 6-25 shows an example of a completion port object in operation. Even though two threads 
are ready to process completion packets, the concurrency value of 1 allows only one thread associated 
with the completion port to be active, and so the two threads are blocked on the completion port.

FIGURE 6-25 I/O completion port object in operation.

You can fine-tune the exact notification model of the I/O completion port through the SetFile-
CompletionNotificationModes API, which allows application developers to take advantage of addition-
al, specific improvements that usually require code changes but can offer even more throughput. Three 
notification-mode optimizations are supported, which are listed in Table 6-4. Note that these modes 
are per file handle and cannot be changed after being set.

TABLE 6-4 I/O completion port notification modes

Notification Mode Meaning

Skip completion port on success (FILE_SKIP_
COMPLETION_PORT_ON_SUCCESS=1)

If the following three conditions are true, the I/O manager does not 
queue a completion entry to the port when it would ordinarily do 
so. First, a completion port must be associated with the file handle. 
Second, the file must be opened for asynchronous I/O. Third, the 
request must return success immediately without returning ERROR_
PENDING.

Continues...
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TABLE 6-4 I/O completion port notification modes  (continued)

Notification Mode Meaning

Skip set event on handle (FILE_SKIP_SET_
EVENT_ON_HANDLE=2)

The I/O manager does not set the event for the file object if 
a request returns with a success code or the error returned is 
ERROR_PENDING and the function that is called is not a synchronous 
function. If an explicit event is provided for the request, it is still 
signaled.

Skip set user event on fast I/O (FILE_SKIP_SET_
USER_EVENT_ON_FAST_IO=4)

The I/O manager does not set the explicit event provided for the 
request if a request takes the fast I/O path and returns with a success 
code or the error returned is ERROR_PENDING and the function that 
is called is not a synchronous function.

I/O prioritization
Without I/O priority, background activities like search indexing, virus scanning, and disk defragmenting 
can severely impact the responsiveness of foreground operations. For example, a user who launches an 
application or opens a document while another process is performing disk I/O will experience delays as 
the foreground task waits for disk access. The same interference also affects the streaming playback of 
multimedia content like music from a disk.

Windows includes two types of I/O prioritization to help foreground I/O operations get preference: 
priority on individual I/O operations and I/O bandwidth reservations.

I/O priorities
The Windows I/O manager internally includes support for five I/O priorities, as shown in Table 6-5, but 
only three of the priorities are used. (Future versions of Windows may support High and Low.)

TABLE 6-5 I/O priorities

I/O Priority Usage

Critical Memory manager

High Not used

Normal Normal application I/O

Low Not used

Very Low Scheduled tasks, SuperFetch, defragmenting, content indexing, background activities

I/O has a default priority of Normal, and the memory manager uses Critical when it wants to write 
dirty memory data out to disk under low-memory situations to make room in RAM for other data and 
code. The Windows Task Scheduler sets the I/O priority for tasks that have the default task priority 
to Very Low. The priority specified by applications that perform background processing is Very Low. 
All the Windows background operations, including Windows Defender scanning and desktop search 
indexing, use Very Low I/O priority.
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Prioritization strategies
Internally, the five I/O priorities are divided into two I/O prioritization modes, called strategies. These 
are the hierarchy prioritization and the idle prioritization strategies. Hierarchy prioritization deals with 
all the I/O priorities except Very Low. It implements the following strategy:

 ■ All critical-priority I/O must be processed before any high-priority I/O.

 ■ All high-priority I/O must be processed before any normal-priority I/O.

 ■ All normal-priority I/O must be processed before any low-priority I/O.

 ■ All low-priority I/O is processed after any higher-priority I/O.

As each application generates I/Os, IRPs are put on different I/O queues based on their priority, and 
the hierarchy strategy decides the ordering of the operations.

The idle prioritization strategy, on the other hand, uses a separate queue for non-idle priority I/O. 
Because the system processes all hierarchy prioritized I/O before idle I/O, it’s possible for the I/Os in this 
queue to be starved, as long as there’s even a single non-idle I/O on the system in the hierarchy priority 
strategy queue.

To avoid this situation, as well as to control back-off (the sending rate of I/O transfers), the idle strat-
egy uses a timer to monitor the queue and guarantee that at least one I/O is processed per unit of time 
(typically, half a second). Data written using non-idle I/O priority also causes the cache manager to 
write modifications to disk immediately instead of doing it later and to bypass its read-ahead logic for 
read operations that would otherwise preemptively read from the file being accessed. The prioritization 
strategy also waits for 50 milliseconds after the completion of the last non-idle I/O in order to issue the 
next idle I/O. Otherwise, idle I/Os would occur in the middle of non-idle streams, causing costly seeks.

Combining these strategies into a virtual global I/O queue for demonstration purposes, a snapshot 
of this queue might look similar to Figure 6-26. Note that within each queue, the ordering is first-in, 
first-out (FIFO). The order in the figure is shown only as an example.

FIGURE 6-26 Sample entries in a global I/O queue.

User-mode applications can set I/O priority on three different objects. The functions SetPriority-
Class (with the PROCESS_MODE_BACKGROUND_BEGIN value) and SetThreadPriority (with the THREAD_
MODE_BACKGROUND_BEGIN value), set the priority for all the I/Os that are generated by either the entire 
process or specific threads (the priority is stored in the IRP of each request). These functions work only 
on the current process or thread and lower the I/O priority to Very Low. In addition, these also lower 
the scheduling priority to 4 and the memory priority to 1. The function SetFileInformationByHandle 
can set the priority for a specific file object (the priority is stored in the file object). Drivers can also set 
I/O priority directly on an IRP by using the IoSetIoPriorityHint API.
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Note The I/O priority field in the IRP and/or file object is a hint. There is no guarantee that 
the I/O priority will be respected or even supported by the different drivers that are part of 
the storage stack.

The two prioritization strategies are implemented by two different types of drivers. The hierarchy 
strategy is implemented by the storage port drivers, which are responsible for all I/Os on a specific 
port, such as ATA, SCSI, or USB. Only the ATA port driver (Ataport.sys) and USB port driver (Usbstor.sys) 
implement this strategy, while the SCSI and storage port drivers (Scsiport.sys and Storport.sys) do not.

Note All port drivers check specifically for Critical priority I/Os and move them ahead of 
their queues, even if they do not support the full hierarchy mechanism. This mechanism is in 
place to support critical memory manager paging I/Os to ensure system reliability.

This means that consumer mass storage devices such as IDE or SATA hard drives and USB flash disks 
will take advantage of I/O prioritization, while devices based on SCSI, Fibre Channel, and iSCSI will not.

On the other hand, it is the system storage class device driver (Classpnp.sys) that enforces the idle 
strategy, so it automatically applies to I/Os directed at all storage devices, including SCSI drives. This 
separation ensures that idle I/Os will be subject to back-off algorithms to ensure a reliable system 
during operation under high idle I/O usage and so that applications that use them can make forward 
progress. Placing support for this strategy in the Microsoft-provided class driver avoids performance 
problems that would have been caused by lack of support for it in legacy third-party port drivers.

Figure 6-27 displays a simplified view of the storage stack that shows where each strategy is imple-
mented. See Chapter 12 in Part 2 for more information on the storage stack.

FIGURE 6-27 Implementation of I/O prioritization across the storage stack.
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I/O priority inversion avoidance
To avoid I/O priority inversion, in which a high I/O priority thread is starved by a low I/O priority thread, 
the executive resource (ERESOURCE) locking functionality uses several strategies. The ERESOURCE was 
picked for the implementation of I/O priority inheritance specifically because of its heavy use in file 
system and storage drivers, where most I/O priority inversion issues can appear. (See Chapter 8 in Part 
2 for more on executive resources.)

If an ERESOURCE is being acquired by a thread with low I/O priority, and there are currently waiters 
on the ERESOURCE with normal or higher priority, the current thread is temporarily boosted to normal 
I/O priority by using the PsBoostThreadIo API, which increments the IoBoostCount in the ETHREAD 
structure. It also notifies Autoboost if the thread I/O priority was boosted or the boost was removed. 
(Refer to Chapter 4 for more on Autoboost.) 

It then calls the IoBoostThreadIoPriority API, which enumerates all the IRPs queued to the target 
thread (recall that each thread has a list of pending IRPs) and checks which ones have a lower priority 
than the target priority (normal in this case), thus identifying pending idle I/O priority IRPs. In turn,  
the device object responsible for each of those IRPs is identified, and the I/O manager checks whether 
a priority callback has been registered, which driver developers can do through the IoRegisterPriority- 
Callback API and by setting the DO_PRIORITY_CALLBACK_ENABLED flag on their device object.  
Depending on whether the IRP was a paging I/O, this mechanism is called threaded boost or paging 
boost. Finally, if no matching IRPs were found, but the thread has at least some pending IRPs, all are 
boosted regardless of device object or priority, which is called blanket boosting.

I/O priority boosts and bumps
Windows uses a few other subtle modifications to normal I/O paths to avoid starvation, inversion, or 
otherwise unwanted scenarios when I/O priority is being used. Typically, these modifications are done 
by boosting I/O priority when needed. The following scenarios exhibit this behavior:

 ■ When a driver is being called with an IRP targeted to a particular file object, Windows makes 
sure that if the request comes from kernel mode, the IRP uses normal priority even if the file 
object has a lower I/O priority hint. This is called a kernel bump.

 ■ When reads or writes to the paging file are occurring (through IoPageRead and IoPageWrite), 
Windows checks whether the request comes from kernel mode and is not being performed on 
behalf of Superfetch (which always uses idle I/O). In this case, the IRP uses normal priority even if 
the current thread has a lower I/O priority. This is called a paging bump.

The following experiment will show you an example of Very Low I/O priority and how you can use 
Process Monitor to look at I/O priorities on different requests.

EXPERIMENT: Very low versus normal I/O throughput
You can use the IO Priority sample application (included in this book’s utilities) to look at the 
throughput difference between two threads with different I/O priorities. Follow these steps:
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1. Launch IoPriority.exe.

2. In the dialog box, under Thread 1, check the Low Priority check box.

3. Click the Start I/O button. You should notice a significant difference in speed between 
the two threads, as shown in the following screenshot:

Note If both threads run at low priority and the system is relatively idle, their 
throughput will be roughly equal to the throughput of a single normal I/O prior-
ity in the example. This is because low-priority I/Os are not artificially throttled or 
otherwise hindered if there isn’t any competition from higher-priority I/O.

4. Open the process in Process Explorer and look at the low I/O priority thread to see the 
priorities:

5. You can also use Process Monitor to trace IO Priority’s I/Os and look at their I/O priority 
hint. To do so, launch Process Monitor, configure a filter for IoPriority.exe, and repeat the 
experiment. In this application, each thread reads from a file named _File_ concatenated 
with the thread ID. 
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6. Scroll down until you see a write to File_1. You should see output similar to the following:

7. Notice that I/Os directed at _File_7920 in the screenshot have a priority of very low. 
Looking at the Time of Day and Relative Time columns, you’ll also notice that the I/Os 
are spaced half a second from each other, which is another sign of the idle strategy in 
action.

EXPERIMENT: Performance analysis of I/O priority boosting/bumping
The kernel exposes several internal variables that can be queried through the undocumented 
SystemLowPriorityIoInformation system class available in NtQuerySystemInformation. 
However, even without writing or relying on such an application, you can use the local kernel 
debugger to view these numbers on your system. The following variables are available:

 ■ IoLowPriorityReadOperationCount and IoLowPriorityWriteOperationCount

 ■ IoKernelIssuedIoBoostedCount

 ■ IoPagingReadLowPriorityCount and IoPagingWriteLowPriorityCount

 ■ IoPagingReadLowPriorityBumpedCount and IoPagingWriteHighPriorityBumpedCount

 ■ IoBoostedThreadedIrpCount and IoBoostedPagingIrpCount

 ■ IoBlanketBoostCount

You can use the dd memory-dumping command in the kernel debugger to see the values of 
these variables (all are 32-bit values).

Bandwidth reservation (scheduled file I/O)
Windows I/O bandwidth-reservation support is useful for applications that desire consistent I/O 
throughput. For example, using the SetFileBandwidthReservation call, a media player application 
can ask the I/O system to guarantee it the ability to read data from a device at a specified rate. If the 
device can deliver data at the requested rate and existing reservations allow it, the I/O system gives the 
application guidance as to how fast it should issue I/Os and how large the I/Os should be.
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The I/O system won’t service other I/Os unless it can satisfy the requirements of applications that 
have made reservations on the target storage device. Figure 6-28 shows a conceptual timeline of I/Os 
issued on the same file. The shaded regions are the only ones that will be available to other applications.  
If I/O bandwidth is already taken, new I/Os will have to wait until the next cycle.

FIGURE 6-28 Effect of I/O requests during bandwidth reservation.

Like the hierarchy prioritization strategy, bandwidth reservation is implemented at the port driver 
level, which means it is available only for IDE, SATA, or USB-based mass-storage devices.

Container notifications
Container notifications are specific classes of events that drivers can register for through an asynchro-
nous callback mechanism by using the IoRegisterContainerNotification API and selecting the 
notification class that interests them. Thus far, one such class is implemented in Windows: IoSession-
StateNotification. This class allows drivers to have their registered callback invoked whenever a 
change in the state of a given session is registered. The following changes are supported:

 ■ A session is created or terminated.

 ■ A user connects to or disconnects from a session.

 ■ A user logs on to or logs off from a session.

By specifying a device object that belongs to a specific session, the driver callback will be active only 
for that session. In contrast, by specifying a global device object (or no device object at all), the driver will 
receive notifications for all events on a system. This feature is particularly useful for devices that participate 
in the Plug and Play device redirection functionality that is provided through Terminal Services, which allows 
a remote device to be visible on the connecting host’s Plug and Play manager bus as well (such as audio or 
printer device redirection). Once the user disconnects from a session with audio playback, for example, the 
device driver needs a notification in order to stop redirecting the source audio stream.

Driver Verifier

Driver Verifier is a mechanism that can be used to help find and isolate common bugs in device drivers 
or other kernel-mode system code. Microsoft uses Driver Verifier to check its own device drivers as well 
as all device drivers that vendors submit for WHQL testing. Doing so ensures that the drivers submit-
ted are compatible with Windows and free from common driver errors. (Although not described in this 
book, there is also a corresponding Application Verifier tool that has resulted in quality improvements 
for user-mode code in Windows.)
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Note Although Driver Verifier serves primarily as a tool to help device driver developers 
discover bugs in their code, it is also a powerful tool for system administrators experiencing 
crashes. Chapter 15 in Part 2 describes its role in crash analysis troubleshooting.

Driver Verifier consists of support in several system components: the memory manager, I/O man-
ager, and HAL all have driver verification options that can be enabled. These options are configured 
using the Driver Verifier Manager (%SystemRoot%\System32\Verifier.exe). When you run Driver Verifier 
with no command-line arguments, it presents a wizard-style interface, as shown in Figure 6-29. (You 
can also enable and disable Driver Verifier, as well as display current settings, by using its command-
line interface. From a command prompt, type verifier /? to see the switches.)

FIGURE 6-29 Driver Verifier Manager.

Driver Verifier Manager distinguishes between two sets of settings: standard and additional. This 
is somewhat arbitrary, but the standard settings represent the more common options that should be 
probably selected for every driver being tested, while the additional settings represent those settings 
that are less common or specific to some types of drivers. Selecting Create Custom Settings from the 
main wizard’s page shows all options with a column indicating which is standard and which is addi-
tional, as shown in Figure 6-30.

Regardless of which options are selected, Driver Verifier always monitors drivers selected for veri-
fication, looking for a number of illegal and boundary operations, including calling kernel-memory 
pool functions at invalid IRQL, double-freeing memory, releasing spinlocks inappropriately, not freeing 
timers, referencing a freed object, delaying shutdown for longer than 20 minutes, and requesting a 
zero-size memory allocation.
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FIGURE 6-30 Driver Verifier settings.

Driver Verifier settings are stored in the registry under the HKLM\SYSTEM\CurrentControlSet\ 
Control\Session Manager\Memory Management key. The VerifyDriverLevel value contains a 
bitmask that represents the verification options that are enabled. The VerifyDrivers value contains 
the names of the drivers to monitor. (These values won’t exist in the registry until you select drivers 
to verify in the Driver Verifier Manager.) If you choose to verify all drivers (which you should never do, 
since this will cause considerable system slowdown), VerifyDrivers is set to an asterisk (*) character. 
Depending on the settings you have made, you might need to reboot the system for the selected 
verification to occur.

Early in the boot process, the memory manager reads the Driver Verifier registry values to deter-
mine which drivers to verify and which Driver Verifier options you enabled. (Note that if you boot in 
safe mode, any Driver Verifier settings are ignored.) Subsequently, if you’ve selected at least one driver 
for verification, the kernel checks the name of every device driver it loads into memory against the list 
of drivers you’ve selected for verification. For every device driver that appears in both places, the kernel 
invokes the VfLoadDriver function, which calls other internal Vf* functions to replace the driver’s 
references to a number of kernel functions with references to Driver Verifier–equivalent versions of 
those functions. For example, ExAllocatePool is replaced with a call to VerifierAllocatePool. The 
windowing system driver (Win32k.sys) also makes similar changes to use Driver Verifier–equivalent 
functions.

I/O-related verification options
The various I/O-related verification options are as follows:

 ■ I/O Verification When this option is selected, the I/O manager allocates IRPs for verified  
drivers from a special pool and their usage is tracked. In addition, the Driver Verifier crashes  
the system when an IRP is completed that contains an invalid status or when an invalid device 
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object is passed to the I/O manager. This option also monitors all IRPs to ensure that drivers 
mark them correctly when completing them asynchronously, that they manage device-stack 
locations correctly, and that they delete device objects only once. In addition, the Verifier ran-
domly stresses drivers by sending them fake power management and WMI IRPs, changing the 
order in which devices are enumerated, and adjusting the status of PnP and power IRPs when 
they complete to test for drivers that return incorrect status from their dispatch routines. Finally, 
the Verifier also detects incorrect re-initialization of remove locks while they are still being held 
due to pending device removal.

 ■ DMA Checking DMA is a hardware-supported mechanism that allows devices to transfer 
data to or from physical memory without involving the CPU. The I/O manager provides several 
functions that drivers use to initiate and control DMA operations, and this option enables 
checks for the correct use of the functions and buffers that the I/O manager supplies for DMA 
operations.

 ■ Force Pending I/O Requests For many devices, asynchronous I/Os complete immediately, 
so drivers may not be coded to properly handle the occasional asynchronous I/O. When this 
option is enabled, the I/O manager randomly returns STATUS_PENDING in response to a driver’s 
calls to IoCallDriver, which simulates the asynchronous completion of an I/O.

 ■ IRP Logging This option monitors a driver’s use of IRPs and makes a record of IRP usage, 
which is stored as WMI information. You can then use the Dc2wmiparser.exe utility in the  
WDK to convert these WMI records to a text file. Note that only 20 IRPs for each device will be 
recorded—each subsequent IRP will overwrite the least recently added entry. After a reboot, 
this information is discarded, so Dc2wmiparser.exe should be run if the contents of the trace are 
to be analyzed later.

Memory-related verification options
The following are memory-related verification options supported by Driver Verifier. (Some are also 
related to I/O operations.)

Special Pool
Selecting the Special Pool option causes the pool allocation routines to bracket pool allocations with 
an invalid page so that references before or after the allocation will result in a kernel-mode access 
violation, thus crashing the system with the finger pointed at the buggy driver. Special pool also causes 
some additional validation checks to be performed when a driver allocates or frees memory. With 
special pool enabled, the pool allocation routines allocate a region of kernel memory for Driver Verifier 
to use. Driver Verifier redirects memory allocation requests that drivers under verification make to 
the special pool area rather than to the standard kernel-mode memory pools. When a device driver 
allocates memory from special pool, Driver Verifier rounds up the allocation to an even-page bound-
ary. Because Driver Verifier brackets the allocated page with invalid pages, if a device driver attempts to 
read or write past the end of the buffer, the driver will access an invalid page, and the memory manager 
will raise a kernel-mode access violation.
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Figure 6-31 shows an example of the special pool buffer that Driver Verifier allocates to a device 
driver when Driver Verifier checks for overrun errors.

FIGURE 6-31 Layout of special pool allocations.

By default, Driver Verifier performs overrun detection. It does this by placing the buffer that the 
device driver uses at the end of the allocated page and filling the beginning of the page with a random 
pattern. Although the Driver Verifier Manager doesn’t let you specify underrun detection, you can set 
this type of detection manually by adding the DWORD registry value PoolTagOverruns to the HKLM\
SYSTEM\CurrentControlSet\Control\Session Manager\Memory Management key and setting it to 0 (or 
by running the Gflags.exe utility and selecting the Verify Start option in the Kernel Special Pool Tag 
section instead of the default option, Verify End). When Windows enforces underrun detection, Driver 
Verifier allocates the driver’s buffer at the beginning of the page rather than at the end.

The overrun-detection configuration includes some measure of underrun detection as well. When 
the driver frees its buffer to return the memory to Driver Verifier, Driver Verifier ensures that the pat-
tern preceding the buffer hasn’t changed. If the pattern is modified, the device driver has underrun the 
buffer and written to memory outside the buffer.

Special pool allocations also check to ensure that the processor IRQL at the time of an allocation and 
deallocation is legal. This check catches an error that some device drivers make: allocating pageable 
memory from an IRQL at DPC/dispatch level or above.

You can also configure special pool manually by adding the DWORD registry value PoolTag in the 
HKLM\SYSTEM\CurrentControlSet\Control\Session Manager\Memory Management key, which repre-
sents the allocation tags the system uses for special pool. Thus, even if Driver Verifier isn’t configured 
to verify a particular device driver, if the tag the driver associates with the memory it allocates matches 
what is specified in the PoolTag registry value, the pool allocation routines will allocate the memory 
from special pool. If you set the value of PoolTag to 0x2a or to the wildcard (*), all memory that drivers 
allocate will be from special pool, provided there’s enough virtual and physical memory (drivers will 
revert to allocating from regular pool if there aren’t enough free pages).

Pool tracking
If pool tracking is enabled, the memory manager checks at driver unload time whether the driver freed 
all the memory allocations it made. If it didn’t, it crashes the system, indicating the buggy driver. Driver 
Verifier also shows general pool statistics on the Driver Verifier Manager’s Pool Tracking tab (accessible 
from the main wizard UI by selecting Display Information About the Currently Verified Drivers 
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and selecting Next twice). You can also use the !verifier kernel debugger command. This command 
shows more information than Driver Verifier and is useful to driver writers.

Pool tracking and special pool cover not only explicit allocation calls, such as ExAllocatePoolWith-
Tag, but also calls to other kernel APIs that implicitly allocate memory from pools: IoAllocateMdl,  
IoAllocateIrp, and other IRP allocation calls; various Rtl string APIs; and IoSetCompletionRoutineEx.

Another driver verified function enabled by the Pool Tracking option pertains to pool quota charges. 
The call to ExAllocatePoolWithQuotaTag charges the current process’s pool quota for the number of 
bytes allocated. If such a call is made from a DPC routine, the process that is charged is unpredictable 
because DPC routines may execute in the context of any process. The Pool Tracking option checks for 
calls to this routine from the DPC routine context.

Driver Verifier can also perform locked memory page tracking, which additionally checks for pages 
that have been left locked after an I/O operation completes and generates a DRIVER_LEFT_LOCKED_
PAGES_IN_PROCESS crash code instead of PROCESS_HAS_LOCKED_PAGES—the former indicates the 
driver responsible for the error as well as the function responsible for the locking of the pages.

Force IRQL Checking
One of the most common device driver bugs occurs when a driver accesses pageable data or code 
when the processor on which the device driver is executing is at an elevated IRQL. The memory man-
ager can’t service a page fault when the IRQL is DPC/dispatch level or above. The system often doesn’t 
detect instances of a device driver accessing pageable data when the processor is executing at a high 
IRQL level because the pageable data being accessed happens to be physically resident at the time. 
At other times, however, the data might be paged out, which results in a system crash with the stop 
code IRQL_NOT_LESS_OR_EQUAL (that is, the IRQL wasn’t less than or equal to the level required for the 
operation attempted—in this case, accessing pageable memory).

Although testing device drivers for this kind of bug is usually difficult, Driver Verifier makes it easy. 
If you select the Force IRQL Checking option, Driver Verifier forces all kernel-mode pageable code and 
data out of the system working set whenever a device driver under verification raises the IRQL. The in-
ternal function that does this is MiTrimAllSystemPagableMemory. With this setting enabled, whenever 
a device driver under verification accesses pageable memory when the IRQL is elevated, the system 
instantly detects the violation, and the resulting system crash identifies the faulty driver.

Another common driver crash that results from incorrect IRQL usage occurs when synchronization 
objects are part of data structures that are paged and then waited on. Synchronization objects should 
never be paged because the dispatcher needs to access them at an elevated IRQL, which would cause a 
crash. Driver Verifier checks whether any of the following structures are present in pageable memory: 
KTIMER, KMUTEX, KSPIN_LOCK, KEVENT, KSEMAPHORE, ERESOURCE, and FAST_MUTEX.

Low Resources Simulation
Enabling Low Resources Simulation causes Driver Verifier to randomly fail memory allocations that 
verified device drivers perform. In the past, developers wrote many device drivers under the assump-
tion that kernel memory would always be available, and that if memory ran out, the device driver 
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didn’t have to worry about it because the system would crash anyway. However, because low-memory 
conditions can occur temporarily, and today’s mobile devices are not as powerful as larger machines, 
it’s important that device drivers properly handle allocation failures that indicate kernel memory is 
exhausted.

The driver calls that will be injected with random failures include the functions ExAllocatePool*, 
MmProbeAndLockPages, MmMapLockedPagesSpecifyCache, MmMapIoSpace, MmAllocateContiguous-
Memory, MmAllocatePagesForMdl, IoAllocateIrp, IoAllocateMdl, IoAllocateWorkItem, IoAllo-
cateErrorLogEntry, IOSetCompletionRoutineEx, and various Rtl string APIs that allocate from the 
pool. Driver Verifier also fails some allocations made by kernel GDI functions (see the WDK documenta-
tion for a complete list). Additionally, you can specify the following:

 ■ The probability that allocation will fail This is 6 percent by default.

 ■ Which applications should be subject to the simulation All are by default.

 ■ Which pool tags should be affected All are by default.

 ■ What delay should be used before fault injection starts The default is 7 minutes after the 
system boots, which is enough time to get past the critical initialization period in which a low-
memory condition might prevent a device driver from loading. 

You can change these customizations with command line options to verifier.exe.

After the delay period, Driver Verifier starts randomly failing allocation calls for device drivers it is veri-
fying. If a driver doesn’t correctly handle allocation failures, this will likely show up as a system crash.

Systematic Low Resources Simulation
Similar to the Low Resources Simulation option, this option fails certain calls to the kernel and Ndis.Sys 
(for network drivers), but does so in a systematic way, by examining the call stack at the point of failure 
injection. If the driver handles the failure correctly, that call stack will not be failure injected again. This 
allows the driver writer to see issues in a systematic way, fix a reported issue, and then move on to the 
next. Examining call stacks is a relatively expensive operation, therefore verifying more than a single 
driver at a time with this setting is not recommended.

Miscellaneous checks
Some of the checks that Driver Verifier calls miscellaneous allow it to detect the freeing of certain system 
structures in the pool that are still active. For example, Driver Verifier will check for:

 ■ Active work items in freed memory A driver calls ExFreePool to free a pool block in which 
one or more work items queued with IoQueueWorkItem are present.

 ■ Active resources in freed memory A driver calls ExFreePool before calling ExDelete-
Resource to destroy an ERESOURCE object.

 ■ Active look-aside lists in freed memory A driver calls ExFreePool before calling ExDelete- 
NPagedLookasideList or ExDeletePagedLookasideList to delete the look-aside list.
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Finally, when verification is enabled, Driver Verifier performs certain automatic checks that cannot 
be individually enabled or disabled. These include the following:

 ■ Calling MmProbeAndLockPages or MmProbeAndLockProcessPages on an MDL having incorrect 
flags. For example, it is incorrect to call MmProbeAndLockPages for an MDL that was set up by 
calling MmBuildMdlForNonPagedPool.

 ■ Calling MmMapLockedPages on an MDL having incorrect flags. For example, it is incorrect to call 
MmMapLockedPages for an MDL that is already mapped to a system address. Another example 
of incorrect driver behavior is calling MmMapLockedPages for an MDL that was not locked.

 ■ Calling MmUnlockPages or MmUnmapLockedPages on a partial MDL (created by using IoBuild-
PartialMdl).

 ■ Calling MmUnmapLockedPages on an MDL that is not mapped to a system address.

 ■ Allocating synchronization objects such as events or mutexes from NonPagedPoolSession memory.

Driver Verifier is a valuable addition to the arsenal of verification and debugging tools available to 
device driver writers. Many device drivers that first ran with Driver Verifier had bugs that Driver Verifier 
was able to expose. Thus, Driver Verifier has resulted in an overall improvement in the quality of all 
kernel-mode code running in Windows.

The Plug and Play manager

The PnP manager is the primary component involved in supporting the ability of Windows to recog-
nize and adapt to changing hardware configurations. A user doesn’t need to understand the intricacies 
of hardware or manual configuration to install and remove devices. For example, it’s the PnP manager 
that enables a running Windows laptop that is placed on a docking station to automatically detect ad-
ditional devices located in the docking station and make them available to the user.

Plug and Play support requires cooperation at the hardware, device driver, and operating system 
levels. Industry standards for the enumeration and identification of devices attached to buses are the 
foundation of Windows Plug and Play support. For example, the USB standard defines the way that de-
vices on a USB bus identify themselves. With this foundation in place, Windows Plug and Play support 
provides the following capabilities:

 ■ The PnP manager automatically recognizes installed devices, a process that includes enumerat-
ing devices attached to the system during a boot and detecting the addition and removal of 
devices as the system executes.

 ■ Hardware resource allocation is a role the PnP manager fills by gathering the hardware resource 
requirements (interrupts, I/O memory, I/O registers, or bus-specific resources) of the devices at-
tached to a system and, in a process called resource arbitration, optimally assigning resources so 
that each device meets the requirements necessary for its operation. Because hardware devices 
can be added to the system after boot-time resource assignment, the PnP manager must also 
be able to reassign resources to accommodate the needs of dynamically added devices.
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 ■ Loading appropriate drivers is another responsibility of the PnP manager. The PnP manager de-
termines, based on the identification of a device, whether a driver capable of managing the device 
is installed on the system, and if one is, it instructs the I/O manager to load it. If a suitable driver 
isn’t installed, the kernel-mode PnP manager communicates with the user-mode PnP manager to 
install the device, possibly requesting the user’s assistance in locating a suitable driver.

 ■ The PnP manager also implements application and driver mechanisms for the detection of 
hardware configuration changes. Applications or drivers sometimes require a specific hardware 
device to function, so Windows includes a means for them to request notification of the presence, 
addition, or removal of devices.

 ■ It provides a place for storing device state, and it participates in system setup, upgrade, migra-
tion, and offline image management.

 ■ It supports network connected devices, such as network projectors and printers, by allowing 
specialized bus drivers to detect the network as a bus and create device nodes for the devices 
running on it.

Level of Plug and Play support
Windows aims to provide full support for Plug and Play, but the level of support possible depends on 
the attached devices and installed drivers. If a single device or driver doesn’t support Plug and Play, the 
extent of Plug and Play support for the system can be compromised. In addition, a driver that doesn’t 
support Plug and Play might prevent other devices from being usable by the system. Table 6-6 shows 
the outcome of various combinations of devices and drivers that can and can’t support Plug and Play.

TABLE 6-6 Device and driver plug-and-play capability

Type of Device Plug-and-Play Driver Non–Plug and Play Driver

Plug and play Full plug and play No plug and play

Non–plug and play Possible partial plug and 
play

No plug and play

A device that isn’t Plug and Play–compatible is one that doesn’t support automatic detection, such 
as a legacy ISA sound card. Because the operating system doesn’t know where the hardware physically 
lies, certain operations—such as laptop undocking, sleep, and hibernation—are disallowed. However, 
if a Plug and Play driver is manually installed for the device, the driver can at least implement PnP man-
ager–directed resource assignment for the device.

Drivers that aren’t Plug and Play–compatible include legacy drivers, such as those that ran on 
Windows NT 4. Although these drivers might continue to function on later versions of Windows, the 
PnP manager can’t reconfigure the resources assigned to such devices in the event that resource real-
location is necessary to accommodate the needs of a dynamically added device. For example, a device 
might be able to use I/O memory ranges A and B, and during the boot, the PnP manager assigns it 
range A. If a device that can use only A is attached to the system later, the PnP manager can’t direct the 
first device’s driver to reconfigure itself to use range B. This prevents the second device from obtaining 
required resources, which results in the device being unavailable for use by the system. Legacy drivers 



 CHAPTER 6 I/O system 561

also impair a machine’s ability to sleep or hibernate. (See the section “The power manager” later in this 
chapter for more details.)

Device enumeration
Device enumeration occurs when the system boots, resumes from hibernation, or is explicitly instruct-
ed to do so (for example, by clicking Scan for Hardware Changes in the Device Manager UI). The PnP 
manager builds a device tree (described momentarily) and compares it to its known stored tree from a 
previous enumeration, if any. For a boot or resume from hibernation, the stored device tree is empty. 
Newly discovered devices and removed devices require special treatment, such as loading appropriate 
drivers (for a newly discovered device) and notifying drivers of a removed device.

The PnP manager begins device enumeration with a virtual bus driver called Root, which represents 
the entire computer system and acts as the bus driver for non–Plug and Play drivers and the HAL. 
The HAL acts as a bus driver that enumerates devices directly attached to the motherboard as well as 
system components such as batteries. Instead of actually enumerating, however, the HAL relies on the 
hardware description the Setup process recorded in the registry to detect the primary bus (in most 
cases, a PCI bus) and devices such as batteries and fans.

The primary bus driver enumerates the devices on its bus, possibly finding other buses, for which the 
PnP manager initializes drivers. Those drivers in turn can detect other devices, including other subsid-
iary buses. This recursive process of enumeration, driver loading (if the driver isn’t already loaded), and 
further enumeration proceeds until all the devices on the system have been detected and configured.

As the bus drivers report detected devices to the PnP manager, the PnP manager creates an internal 
tree called a device tree that represents the relationships between devices. Nodes in the tree are called 
device nodes, or devnodes. A devnode contains information about the device objects that represent the 
device as well as other Plug and Play–related information stored in the devnode by the PnP manager. 
Figure 6-32 shows an example of a simplified device tree. A PCI bus serves as the system’s primary bus, 
which USB, ISA, and SCSI buses are connected to.

FIGURE 6-32 An example of a device tree.
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The Device Manager utility, which is accessible from the Computer Management snap-in in the 
Programs/Administrative Tools folder of the Start menu (and also from the Device Manager link of the 
System utility in Control Panel), shows a simple list of devices present on a system in its default configu-
ration. You can also select the Devices by Connection option from the Device Manager’s View menu to 
see the devices as they relate to the device tree. Figure 6-33 shows an example of the Device Manager’s 
Devices by connection view.

FIGURE 6-33 Device Manager, with the device tree shown.

EXPERIMENT: Dumping the device tree
A more detailed way to view the device tree than using Device Manager is to use the !devnode 
kernel debugger command. Specifying 0 1 as command options dumps the internal device tree 
devnode structures, indenting entries to show their hierarchical relationships, as shown here:

lkd> !devnode 0 1 
Dumping IopRootDeviceNode (= 0x85161a98) 
DevNode 0x85161a98 for PDO 0x84d10390 
  InstancePath is "HTREE\ROOT\0" 
  State = DeviceNodeStarted (0x308) 
  Previous State = DeviceNodeEnumerateCompletion (0x30d) 
  DevNode 0x8515bea8 for PDO 0x8515b030 
  DevNode 0x8515c698 for PDO 0x8515c820 
    InstancePath is "Root\ACPI_HAL\0000" 
    State = DeviceNodeStarted (0x308) 
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    Previous State = DeviceNodeEnumerateCompletion (0x30d) 
    DevNode 0x84d1c5b0 for PDO 0x84d1c738 
      InstancePath is "ACPI_HAL\PNP0C08\0" 
      ServiceName is "ACPI" 
      State = DeviceNodeStarted (0x308) 
      Previous State = DeviceNodeEnumerateCompletion (0x30d) 
      DevNode 0x85ebf1b0 for PDO 0x85ec0210 
        InstancePath is "ACPI\GenuineIntel_-_x86_Family_6_Model_15\_0" 
        ServiceName is "intelppm" 
        State = DeviceNodeStarted (0x308) 
        Previous State = DeviceNodeEnumerateCompletion (0x30d) 
      DevNode 0x85ed6970 for PDO 0x8515e618 
        InstancePath is "ACPI\GenuineIntel_-_x86_Family_6_Model_15\_1" 
        ServiceName is "intelppm" 
        State = DeviceNodeStarted (0x308) 
        Previous State = DeviceNodeEnumerateCompletion (0x30d) 
      DevNode 0x85ed75c8 for PDO 0x85ed79e8 
        InstancePath is "ACPI\ThermalZone\THM_" 
        State = DeviceNodeStarted (0x308) 
        Previous State = DeviceNodeEnumerateCompletion (0x30d) 
      DevNode 0x85ed6cd8 for PDO 0x85ed6858 
        InstancePath is "ACPI\pnp0c14\0" 
        ServiceName is "WmiAcpi" 
        State = DeviceNodeStarted (0x308) 
        Previous State = DeviceNodeEnumerateCompletion (0x30d) 
      DevNode 0x85ed7008 for PDO 0x85ed6730 
        InstancePath is "ACPI\ACPI0003\2&daba3ff&2" 
        ServiceName is "CmBatt" 
        State = DeviceNodeStarted (0x308) 
        Previous State = DeviceNodeEnumerateCompletion (0x30d) 
      DevNode 0x85ed7e60 for PDO 0x84d2e030 
        InstancePath is "ACPI\PNP0C0A\1" 
        ServiceName is "CmBatt" 
...

Information shown for each devnode includes the InstancePath, which is the name of the 
device’s enumeration registry key stored under HKLM\SYSTEM\CurrentControlSet\Enum, and 
the ServiceName, which corresponds to the device’s driver registry key under HKLM\SYSTEM\
CurrentControlSet\Services. To see the resources assigned to each devnode, such as interrupts, 
ports, and memory, specify 0 3 as the command options for the !devnode command.

Device stacks
As devnodes are created by the PnP manager, driver objects and device objects are created to manage 
and logically represent the linkage between the devices that make up the devnode. This linkage is 
called a device stack (briefly discussed in the “IRP flow” section earlier in this chapter). You can think of 
the device stack as an ordered list of device object/driver pairs. Each device stack is built from the bot-
tom to the top. Figure 6-34 shows an example of a devnode (a reprint of Figure 6-6), with seven device 
objects (all managing the same physical device). Each devnode contains at least two devices (PDO and 
FDO), but can contain more device objects. A device stack consists of the following:
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FIGURE 6-34 Devnode (device stack).

 ■ A physical device object (PDO) that the PnP manager instructs a bus driver to create when the 
bus driver reports the presence of a device on its bus during enumeration. The PDO represents 
the physical interface to the device and is always at the bottom of the device stack.

 ■ One or more optional filter device objects (FiDOs) that layer between the PDO and the func-
tional device object (FDO; described in the next bullet), called lower filters (the term “lower” is 
always considered in relation to the FDO). These may be used for intercepting IRPs coming out 
of the FDO and towards the bus driver (which may be of interest to bus filters).

 ■ One (and only one) functional device object (FDO) that is created by the driver, which is called 
a function driver, that the PnP manager loads to manage a detected device. An FDO represents 
the logical interface to a device, having the most “intimate” knowledge of the functionality 
provided by the device. A function driver can also act as a bus driver if devices are attached to 
the device represented by the FDO. The function driver often creates an interface (essentially a 
name) to the FDO’s corresponding PDO so that applications and other drivers can open the de-
vice and interact with it. Sometimes function drivers are divided into a separate class/port driver 
and miniport driver that work together to manage I/O for the FDO.

 ■ One or more optional FiDOs that layer above the FDO, called upper filters. These get first crack 
at an IRP header for the FDO.

Note The various device objects have different names in Figure 6-34 to make them easier 
to describe. However, they are all instances of DEVICE_OBJECT structures.

Device stacks are built from the bottom up and rely on the I/O manager’s layering functionality, so 
IRPs flow from the top of a device stack toward the bottom. However, any level in the device stack can 
choose to complete an IRP, as described in the “IRP flow” section earlier in this chapter.
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Device-stack driver loading
How does the PnP manager find the correct drivers as part of building the device stack? The registry 
has this information scattered in three important keys (and their subkeys), shown in Table 6-7. (Note 
that CCS is short for CurrentControlSet.)

TABLE 6-7 Important registry keys for plug-and-play driver loading

Registry Key Short Name Description

HKLM\System\CCS\Enum Hardware key Settings for known hardware devices

HKLM\System\CCS\Control\Class Class key Settings for device types

HKLM\System\CCS\Services Software key Settings for drivers

When a bus driver performs device enumeration and discovers a new device, it first creates a PDO to 
represent the existence of the physical device that has been detected. Next, it informs the PnP manager 
by calling IoInvalidateDeviceRelations (documented in the WDK) with the BusRelations enumer-
ation value and the PDO, indicating to the PnP manager that a change on its bus has been detected. In 
response, the PnP manager asks the bus driver (through an IRP) for the device identifier.

The identifiers are bus-specific; for example, a USB device identifier consists of a vendor ID (VID) 
for the hardware vendor that made the device and a product ID (PID) that the vendor assigned to the 
device. For a PCI device, a similar vendor ID is required, along with a device ID, to uniquely identify the 
device within a vendor (plus some optional components; see the WDK for more information on device 
ID formats). Together, these IDs form what Plug and Play calls a device ID. The PnP manager also que-
ries the bus driver for an instance ID to help it distinguish different instances of the same hardware. The 
instance ID can describe either a bus-relative location (for example, the USB port) or a globally unique 
descriptor (for example, a serial number).

The device ID and instance ID are combined to form a device instance ID (DIID), which the PnP man-
ager uses to locate the device’s key under the Hardware key shown in Table 6-7. The subkeys under that 
key have the form <Enumerator>\<Device ID>\<Instance ID>, where the enumerator is a bus driver, 
the device ID is a unique identifier for a type of device, and the instance ID uniquely identifies different 
instances of the same hardware. 

Figure 6-35 presents an example of an enumeration subkey of an Intel display card. The device’s key 
contains descriptive data and includes values named Service and ClassGUID (which are obtained from a 
driver’s INF file upon installation) that help the PnP manager locate the device’s drivers as follows:

 ■ The Service value is looked up in the Software key, and there the path to the driver (SYS file) is 
stored in the ImagePath value. Figure 6-36 shows the Software subkey named igfx (from Figure 
6-35) where the Intel display driver can be located. The PnP manager will load that driver (if it’s 
not already loaded), call its add-device routine, and there the driver will create the FDO.

 ■ If a value named LowerFilters is present, it contains a multiple string list of drivers to load as 
lower filters, which can be located in the Software subkey. The PnP manager loads these drivers 
before loading the driver associated with the Service value above.
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FIGURE 6-35 Example of a Hardware subkey.

FIGURE 6-36 Example of a Software subkey.

 ■ If a value named UpperFilters is present, it indicates a list of driver names (under the Software 
key, similar to LowerFilters) which the PnP manager will load in much the same way after it 
loads the driver pointed to by the Service value.

 ■ The ClassGUID value represents the general type of device (display, keyboard, disk, etc.), and 
points to a subkey under the Class key (from Table 6-7). The key represents settings applicable to 
all drivers for that type of device. In particular, if the values LowerFilters and/or UpperFilters 
are present, they are treated just like the same values in the Hardware key of the particular 
device. This allows, for example, the loading of an upper filter for keyboard devices, regardless 
of the particular keyboard or the vendor. Figure 6-37 shows the class key for keyboard devices. 
Notice the friendly name (Keyboard), although the GUID is what matters (the decision on the 
particular class is provided as part of the installation INF file). An UpperFilters value exists, 
listing the system provided keyboard class driver that always loads as part of any keyboard 
devnode. (You can also see the IconPath value that is used as the icon for the keyboard type  
in the Device Manager’s UI.)
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FIGURE 6-37 The keyboard class key.

To summarize, the order of driver loading for a devnode is as follows:

1. The bus driver is loaded, creating the PDO.

2. Any lower filters listed in the Hardware instance key are loaded, in the order listed (multi string), 
creating their filter device objects (FiDOs in Figure 6-34).

3. Any lower filters listed in the corresponding Class key are loaded in the order listed, creating 
their FiDOs.

4. The driver listed in the Service value is loaded, creating the FDO.

5. Any upper filters listed in the Hardware instance key are loaded, in the order listed, creating 
their FiDOs.

6. Any upper filters listed in the corresponding Class key are loaded in the order listed creating 
their FiDOs.

To deal with multifunction devices (such as all-in-one printers or cell phones with integrated camera 
and music player functionalities), Windows also supports a container ID property that can be associ-
ated with a devnode. The container ID is a GUID that is unique to a single instance of a physical device 
and shared between all the function devnodes that belong to it, as shown in Figure 6-38.

FIGURE 6-38 All-in-one printer with a unique ID as seen by the PnP manager.
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The container ID is a property that, similar to the instance ID, is reported back by the bus driver of 
the corresponding hardware. Then, when the device is being enumerated, all devnodes associated with 
the same PDO share the container ID. Because Windows already supports many buses out of the box—
such as PnP-X, Bluetooth, and USB—most device drivers can simply return the bus-specific ID, from 
which Windows will generate the corresponding container ID. For other kinds of devices or buses, the 
driver can generate its own unique ID through software.

Finally, when device drivers do not supply a container ID, Windows can make educated guesses by 
querying the topology for the bus, when that’s available, through mechanisms such as ACPI. By under-
standing whether a certain device is a child of another, and whether it is removable, hot-pluggable, 
or user-reachable (as opposed to an internal motherboard component), Windows is able to assign 
container IDs to device nodes that reflect multifunction devices correctly.

The final end-user benefit of grouping devices by container IDs is visible in the Devices and Printers 
UI. This feature is able to display the scanner, printer, and faxing components of an all-in-one printer as 
a single graphical element instead of three distinct devices. For example, in Figure 6-39, the HP 6830 
printer/fax/scanner is identified as a single device.

FIGURE 6-39 The Devices and Printers Control Panel applet.

EXPERIMENT: Viewing detailed devnode information in Device Manager
The Device Manager applet shows detailed information about a device node on its Details tab. 
The tab allows you to view an assortment of fields, including the devnode’s device instance ID, 
hardware ID, service name, filters, and power capabilities.

The following screen shows the selection combo box of the Details tab expanded to reveal 
some of the types of information you can access:
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Driver support for Plug and Play
To support Plug and Play, a driver must implement a Plug and Play dispatch routine (IRP_MJ_PNP), a 
power-management dispatch routine (IRP_MJ_POWER, described in the section “The power manager” 
later in this chapter), and an add-device routine. Bus drivers must support Plug and Play requests that 
are different than the ones that function or filter drivers support, however. For example, when the PnP 
manager guides device enumeration during the system boot, it asks bus drivers for a description of the 
devices that they find on their respective buses through PnP IRPs.

Function and filter drivers prepare to manage their devices in their add-device routines, but they 
don’t actually communicate with the device hardware. Instead, they wait for the PnP manager to send 
a start-device command (IRP_MN_START_DEVICE minor PnP IRP code) for the device to their Plug and 
Play dispatch routine. Before sending the start-device command, the PnP manager performs resource 
arbitration to decide what resources to assign the device. The start-device command includes the 
resource assignment that the PnP manager determines during resource arbitration. When a driver 
receives a start-device command, it can configure its device to use the specified resources. If an appli-
cation tries to open a device that hasn’t finished starting, it receives an error indicating that the device 
does not exist.

After a device has started, the PnP manager can send the driver additional Plug and Play com-
mands, including ones related to the device’s removal from the system or to resource reassignment. 
For example, when the user invokes the remove/eject device utility, shown in Figure 6-40 (accessible 
by clicking the USB connector icon in the taskbar notification area), to tell Windows to eject a USB flash 
drive, the PnP manager sends a query-remove notification to any applications that have registered 
for Plug and Play notifications for the device. Applications typically register for notifications on their 
handles, which they close during a query-remove notification. If no applications veto the query-remove 
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request, the PnP manager sends a query-remove command to the driver that owns the device being 
ejected (IRP_MN_QUERY_REMOVE_DEVICE). At that point, the driver has a chance to deny the removal or 
to ensure that any pending I/O operations involving the device have completed, and to begin reject-
ing further I/O requests aimed at the device. If the driver agrees to the remove request and no open 
handles to the device remain, the PnP manager next sends a remove command to the driver (IRP_MN_
REMOVE_DEVICE) to request that the driver stop accessing the device and release any resources the 
driver has allocated on behalf of the device.

FIGURE 6-40 The remove/eject device utility.

When the PnP manager needs to reassign a device’s resources, it first asks the driver whether it 
can temporarily suspend further activity on the device by sending the driver a query-stop command 
(IRP_MN_QUERY_STOP_DEVICE). The driver either agrees to the request (if doing so won’t cause data 
loss or corruption) or denies the request. As with a query-remove command, if the driver agrees to the 
request, the driver completes pending I/O operations and won’t initiate further I/O requests for the 
device that can’t be aborted and subsequently restarted. The driver typically queues new I/O requests 
so that the resource reshuffling is transparent to applications currently accessing the device. The PnP 
manager then sends the driver a stop command (IRP_MN_STOP_DEVICE). At that point, the PnP man-
ager can direct the driver to assign different resources to the device and once again send the driver a 
start-device command for the device.

The various Plug and Play commands essentially guide a device through an operational state ma-
chine, forming a well-defined state-transition table, which is shown in Figure 6-41. (The state diagram 
reflects the state machine implemented by function drivers. Bus drivers implement a more complex 
state machine.) Each transition in Figure 6-41 is marked by its minor IRP constant name without the 
IRP_MN_ prefix. One state that we haven’t discussed is the one that results from the PnP manager’s 
command (IRP_MN_SURPRISE_REMOVAL). This command results when either a user removes a device 
without warning, as when the user ejects a PCMCIA card without using the remove/eject utility, or the 
device fails. The command tells the driver to immediately cease all interaction with the device because 
the device is no longer attached to the system and to cancel any pending I/O requests.
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FIGURE 6-41 Device plug-and-play state transitions.

Plug-and-play driver installation
If the PnP manager encounters a device for which no driver is installed, it relies on the user-mode PnP 
manager to guide the installation process. If the device is detected during the system boot, a devnode 
is defined for the device, but the loading process is postponed until the user-mode PnP manager starts. 
(The user-mode PnP manager service is implemented in Umpnpmgr.dll hosted in a standard Svchost.
exe instance.)

The components involved in a driver’s installation are shown in Figure 6-42. Dark-shaded objects 
in the figure correspond to components generally supplied by the system, whereas lighter-shaded 
objects are those included in a driver’s installation files. First, a bus driver informs the PnP manager of 
a device it enumerates using a Device ID (1). The PnP manager checks the registry for the presence of 
a corresponding function driver, and when it doesn’t find one, it informs the user-mode PnP manager 
(2) of the new device by its Device ID. The user-mode PnP manager first tries to perform an automatic 
install without user intervention. If the installation process involves the posting of dialog boxes that 
require user interaction and the currently logged-on user has administrator privileges, the user-mode 
PnP manager launches the Rundll32.exe application (the same application that hosts classic .cpl Control 
Panel utilities) to execute the Hardware Installation Wizard (3) (%SystemRoot%\System32\Newdev.
dll). If the currently logged-on user doesn’t have administrator privileges (or if no user is logged on) 
and the installation of the device requires user interaction, the user-mode PnP manager defers the 
installation until a privileged user logs on. The Hardware Installation Wizard uses Setupapi.dll and 
CfgMgr32.dll (configuration manager) API functions to locate INF files that correspond to drivers that 
are compatible with the detected device. This process might involve having the user insert installation 
media containing a vendor’s INF files, or the wizard might locate a suitable INF file in the driver store 
(%SystemRoot%\System32\DriverStore) that contains drivers that ship with Windows or others that are 
downloaded through Windows Update. Installation is performed in two steps. In the first, the third-
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party driver developer imports the driver package into the driver store, and in the second, the system 
performs the actual installation, which is always done through the %SystemRoot%\System32\Drvinst.
exe process.

FIGURE 6-42 Driver installation components.

To find drivers for the new device, the installation process gets a list of hardware IDs (discussed 
earlier) and compatible IDs from the bus driver. Compatible IDs are more generic—for example a USB 
mouse from a specific vendor might have a special button that does something unique, but a compat-
ible ID for a generic mouse can utilize a more generic driver that ships with Windows if the specific 
driver is not available and at least provide the basic, common functionality of a mouse.

These IDs describe all the various ways the hardware might be identified in a driver installation file 
(INF). The lists are ordered so that the most specific description of the hardware is listed first. If matches 
are found in multiple INFs, the following points apply:

 ■ More-precise matches are preferred over less-precise matches.

 ■ Digitally signed INFs are preferred over unsigned ones.

 ■ Newer signed INFs are preferred over older signed ones.

Note If a match is found based on a compatible ID, the Hardware Installation wizard can 
prompt for media in case a more up-to-date driver came with the hardware.

The INF file locates the function driver’s files and contains instructions that fill in the driver’s enu-
meration and class keys in the registry, copy required files, and the INF file might direct the Hardware 
Installation Wizard to (4) launch class or device co-installer DLLs that perform class-specific or device-
specific installation steps, such as displaying configuration dialog boxes that let the user specify settings 
for a device. Finally, when the drivers that make up a devnode load, the device/driver stack is built (5).



 CHAPTER 6 I/O system 573

EXPERIMENT: Looking at a driver’s INF file
When a driver or other software that has an INF file is installed, the system copies its INF file to 
the %SystemRoot%\Inf directory. One file that will always be there is Keyboard.inf because it’s 
the INF file for the keyboard class driver. View its contents by opening it in Notepad and you 
should see something like this (anything after a semicolon is a comment):

; 
; KEYBOARD.INF  -- This file contains descriptions of Keyboard class devices 
; 
; 
; Copyright (c) Microsoft Corporation.  All rights reserved. 
 
[Version] 
Signature   ="$Windows NT$" 
Class       =Keyboard 
ClassGUID   ={4D36E96B-E325-11CE-BFC1-08002BE10318} 
Provider    =%MSFT% 
DriverVer=06/21/2006,10.0.10586.0 
 
[SourceDisksNames] 
3426=windows cd 
 
[SourceDisksFiles] 
i8042prt.sys    = 3426 
kbdclass.sys    = 3426 
kbdhid.sys      = 3426 
...

An INF has the classic INI format, with sections in square brackets and underneath are key/
value pairs separated by an equal sign. An INF is not “executed” from start to end sequentially; 
instead, it’s built more like a tree, where certain values point to sections with the value name 
where execution continues. (Consult the WDK for the details.)

If you search the file for .sys, you’ll come across sections that direct the user-mode PnP man-
ager to install the i8042prt.sys and kbdclass.sys drivers:

... 
[i8042prt_CopyFiles] 
i8042prt.sys,,,0x100 
 
[KbdClass.CopyFiles] 
kbdclass.sys,,,0x100 
...

Before installing a driver, the user-mode PnP manager checks the system’s driver-signing policy. 
If the settings specify that the system should block or warn of the installation of unsigned drivers, the 
user-mode PnP manager checks the driver’s INF file for an entry that locates a catalog (a file that ends 
with the .cat extension) containing the driver’s digital signature.
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Microsoft’s WHQL tests the drivers included with Windows and those submitted by hardware ven-
dors. When a driver passes the WHQL tests, it is “signed” by Microsoft. This means that WHQL obtains 
a hash, or unique value representing the driver’s files, including its image file, and then cryptographi-
cally signs it with Microsoft’s private driver-signing key. The signed hash is stored in a catalog file and 
included on the Windows installation media or returned to the vendor that submitted the driver for 
inclusion with its driver.

EXPERIMENT: Viewing catalog files
When you install a component such as a driver that includes a catalog file, Windows copies the 
catalog file to a directory under %SystemRoot%\System32\Catroot. Navigate to that directory in 
Explorer, and you’ll find a subdirectory that contains .cat files. For example, Nt5.cat and Nt5ph.
cat store the signatures and page hashes for Windows system files.

If you open one of the catalog files, a dialog box appears with two pages. The page labeled 
“General” shows information about the signature on the catalog file, and the Security Catalog 
page has the hashes of the components that are signed with the catalog file. This screenshot of a 
catalog file for an Intel audio driver shows the hash for the audio driver SYS file. Other hashes in 
the catalog are associated with the various support DLLs that ship with the driver.

As it installs a driver, the user-mode PnP manager extracts the driver’s signature from its catalog file, 
decrypts the signature using the public half of Microsoft’s driver-signing private/public key pair, and 
compares the resulting hash with a hash of the driver file it’s about to install. If the hashes match, the 
driver is verified as having passed WHQL testing. If a driver fails the signature verification, the user-
mode PnP manager acts according to the settings of the system driver-signing policy, either failing the 
installation attempt, warning the user that the driver is unsigned, or silently installing the driver.
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Note Drivers installed using setup programs that manually configure the registry and copy 
driver files to a system and driver files that are dynamically loaded by applications aren’t 
checked for signatures by the PnP manager’s signing policy. Instead, they are checked by  
the kernel-mode code-signing policy described in Chapter 8 in Part 2. Only drivers installed  
using INF files are validated against the PnP manager’s driver-signing policy.

Note The user-mode PnP manager also checks whether the driver it’s about to install is on 
the protected driver list maintained by Windows Update and, if so, blocks the installation with 
a warning to the user. Drivers that are known to have incompatibilities or bugs are added to 
the list and blocked from installation.

General driver loading and installation

The preceding section showed how drivers for hardware devices are discovered and loaded by the PnP 
manager. These drivers mostly load “on demand,” meaning such a driver is not loaded unless needed—
a device that the driver is responsible for enters the system; conversely, if all devices managed by a 
driver are removed, the driver will be unloaded.

More generally, the Software key in the registry holds settings for drivers (as well as Windows Ser-
vices). Although services are managed within the same registry key, they are user-mode programs and 
have no connection to kernel drivers (although the Service Control Manager can be used to load both 
services and device drivers). This section focuses on drivers; for a complete treatment of services, see 
Chapter 9 in Part 2.

Driver loading
Each subkey under the Software key (HKLM\System\CurrentControlSet\Services) holds a set of values 
that control some static aspects of a driver (or service). One such value, ImagePath, was encountered 
already when we discussed the loading process of PnP drivers. Figure 6-36 shows an example of a 
driver key and Table 6-8 summarizes the most important values in a driver’s Software key (see Chapter 
9 in Part 2 for a complete list).

The Start value indicates the phase in which a driver (or service) is loaded. There are two main dif-
ferences between device drivers and services in this regard:

 ■ Only device drivers can specify Start values of boot-start (0) or system-start (1). This is because 
at these phases, no user mode exists yet, so services cannot be loaded.

 ■ Device drivers can use the Group and Tag values (not shown in Table 6-8) to control the order 
of loading within a phase of the boot, but unlike services, they can’t specify DependOnGroup or 
DependOnService values (see Chapter 9 in Part 2 for more details).
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TABLE 6-8 Important values in a driver’s registry key

Value Name Description

ImagePath This is the path to the driver’s image file (SYS).

Type This indicates whether this key represents a service or a driver. A value of 1 means a driver and a 
value of 2 means a file system (or filter) driver. Values of 16 (0x10) and 32 (0x20) mean a service. 
See Chapter 9 in Part 2 for more information.

Start This indicates when the driver should load. The options are as follows:
0 (SERVICE_BOOT_START) The driver is loaded by the boot loader.
1 (SERVICE_SYSTEM_START) The driver is loaded after the executive is initialized.
2 (SERVICE_AUTO_START) The driver is loaded by the service control manager.
3 (SERVICE_DEMAND_START) The driver is loaded on demand.
4 (SERVICE_DISABLED) The driver is not loaded.

Chapter 11, “Startup and shutdown, in Part 2 describes the phases of the boot process and explains 
that a driver Start value of 0 means that the operating system loader loads the driver. A Start value 
of 1 means that the I/O manager loads the driver after the executive subsystems have finished initial-
izing. The I/O manager calls driver initialization routines in the order that the drivers load within a boot 
phase. Like Windows services, drivers use the Group value in their registry key to specify which group 
they belong to; the registry value HKLM\SYSTEM\CurrentControlSet\Control\ServiceGroupOrder\List 
determines the order that groups are loaded within a boot phase.

A driver can further refine its load order by including a Tag value to control its order within a group. 
The I/O manager sorts the drivers within each group according to the Tag values defined in the drivers’ 
registry keys. Drivers without a tag go to the end of the list in their group. You might assume that the 
I/O manager initializes drivers with lower-number tags before it initializes drivers with higher-number 
tags, but such isn’t necessarily the case. The registry key HKLM\SYSTEM\CurrentControlSet\Control\
GroupOrderList defines tag precedence within a group; with this key, Microsoft and device-driver 
developers can take liberties with redefining the integer number system.

Note The use of Group and Tag is reminiscent from the early Windows NT days. These tags 
are rarely used in practice. Most drivers should not have dependencies on other drivers (only 
on kernel libraries linked to the driver, such as NDIS.sys).

Here are the guidelines by which drivers set their Start value:

 ■ Non–Plug and Play drivers set their Start value to reflect the boot phase they want to load in.

 ■ Drivers, including both Plug and Play and non–Plug and Play drivers, that must be loaded by 
the boot loader during the system boot specify a Start value of boot-start (0). Examples in-
clude system bus drivers and the boot file-system driver.

 ■ A driver that isn’t required for booting the system and that detects a device that a system bus 
driver can’t enumerate specifies a Start value of system-start (1). An example is the serial port 
driver, which informs the PnP manager of the presence of standard PC serial ports that were 
detected by Setup and recorded in the registry.



 CHAPTER 6 I/O system 577

 ■ A non–Plug and Play driver or file-system driver that doesn’t have to be present when the 
system boots specifies a Start value of auto-start (2). An example is the Multiple Universal 
Naming Convention (UNC) Provider (MUP) driver, which provides support for UNC-based path 
names to remote resources (for example, \\RemoteComputerName\SomeShare).

 ■ Plug and Play drivers that aren’t required to boot the system specify a Start value of demand-
start (3). Examples include network adapter drivers.

The only purpose that the Start values for Plug and Play drivers and drivers for enumerable devices 
have is to ensure that the operating system loader loads the driver—if the driver is required for the 
system to boot successfully. Beyond that, the PnP manager’s device enumeration process determines 
the load order for Plug and Play drivers.

Driver installation
As we’ve seen, Plug and Play drivers require an INF file for installation. The INF includes the hardware 
device IDs this driver can handle and the instructions for copying files and setting registry values. Other 
type of drivers (such as file system drivers, file system filters and network filters) require an INF as well, 
which includes a unique set of values for the particular type of driver.

Software-only drivers (such as the one Process Explorer uses) can use an INF for installation, but 
don’t have to. These can be installed by a call to the CreateService API (or use a tool such as sc.exe 
that wraps it), as Process Explorer does after extracting its driver from a resource within the execut-
able (if running with elevated permissions). As the API name suggests, it’s used to install services as 
well as drivers. The arguments to CreateService indicate whether it’s installing a driver or a service, 
the Start value and other parameters (see the Windows SDK documentation for the details). Once in-
stalled, a call to StartService loads the driver (or service), calling DriverEntry (for a driver) as usual.

A software-only driver typically creates a device object with a name its clients know. For example, 
Process Explorer creates a device named PROCEXP152 that is then used by Process Explorer in a Create- 
File call, followed by calls such as DeviceIoControl to send requests to the driver (turned into IRPs 
by the I/O manager). Figure 6-43 shows the Process Explorer object symbolic link (using the WinObj 
Sysinternals tool) in the \GLOBAL?? directory (recall that the names in this directory are accessible to 
user mode clients) that’s created by Process Explorer the first time it’s running with elevated privileges. 
Notice that it points to the real device object under the \Device directory and it has the same name 
(which is not a requirement).

FIGURE 6-43 Process Explorer’s symbolic link and device name.
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The Windows Driver Foundation

The Windows Driver Foundation (WDF) is a framework for developing drivers that simplifies common 
tasks such as handing Plug and Play and Power IRPs correctly. WDF includes the Kernel-Mode Driver 
Framework (KMDF) and the User-Mode Driver Framework (UMDF). WDF is now open source and can 
be found at https://github.com/Microsoft/Windows-Driver-Frameworks. Table 6-9 shows the Windows 
version support (for Windows 7 and later) for KMDF. Table 6-10 shows the same for UMDF.

TABLE 6-9 KMDF versions

KMDF Version Release Method Included in Windows Drivers Using It Run On

1.9 Windows 7 WDK Windows 7 Windows XP and later

1.11 Windows 8 WDK Windows 8 Windows Vista and later

1.13 Windows 8.1 WDK Windows 8.1 Windows 8.1 and later

1.15 Windows 10 WDK Windows 10 Windows 10, Windows Server 
2016

1.17 Windows 10 version 1511 WDK Windows 10 version 1511 Windows 10 version 1511 and 
later, Windows Server 2016

1.19 Windows 10 version 1607 WDK Windows 10 version 1607 Windows 10 version 1607 and 
later, Windows Server 2016

TABLE 6-10 UMDF versions

UMDF Version Release Method Included in Windows Drivers Using It Run On

1.9 Windows 7 WDK Windows 7 Windows XP and later

1.11 Windows 8 WDK Windows 8 Windows Vista and later

2.0 Windows 8.1 WDK Windows 8.1 Windows 8.1 and later

2.15 Windows 10 WDK Windows 10 Windows 10 and later, Windows 
Server 2016

2.17 Windows 10 version 1511 WDK Windows 10 version 1511 Windows 10 version 1511 and 
later, Windows Server 2016

2.19 Windows 10 version 1607 WDK Windows 10 version 1607 Windows 10 version 1607, 
Windows Server 2016

Windows 10 introduced the concept of Universal Drivers, briefly described in Chapter 2, “System ar-
chitecture.” These drivers use a common set of DDIs implemented in multiple editions of Windows 10—
from IoT Core, to Mobile, to desktops. Universal drivers can be built with KMDF, UMDF 2.x, or WDM. 
Building such drivers is relatively easy with the aid of Visual Studio, where the Target Platform setting is 
set to Universal. Any DDI that is outside the boundaries of Universal will be flagged by the compiler.

UMDF versions 1.x used a COM based model for programming drivers, which is a very different 
programming model than KMDF, which is using object-based C. UMDF 2 has been aligned with KMDF 
and provides an almost identical API, reducing overall cost associated with WDF driver development; in 
fact, UMDF 2.x drivers can be converted to KMDF if the need arises with little work. UMDF 1.x will not 
be discussed in this book; consult the WDK for more information.

https://www.github.com/Microsoft/Windows-Driver-Frameworks
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The following sections discuss KMDF and UMDF, which essentially behave in a consistent manner, no 
matter the exact OS they’re running on.

Kernel-Mode Driver Framework
We’ve already discussed some details about the Windows Driver Foundation (WDF) in Chapter 2. In 
this section, we’ll take a deeper look at the components and functionality provided by the kernel-
mode part of the framework, KMDF. Note that this section will only briefly touch on some of the core 
architecture of KMDF. For a much more complete overview on the subject, please refer to the Windows 
Driver Kit documentation. 

Note Most of the details presented in this section are the same for UMDF 2.x, with the ex-
ceptions discussed in the next section.

Structure and operation of a KMDF driver
First, let’s look at which kinds of drivers or devices are supported by KMDF. In general, any WDM-con-
formant driver should be supported by KMDF, as long as it performs standard I/O processing and IRP 
manipulation. KMDF is not suitable for drivers that don’t use the Windows kernel API directly but in-
stead perform library calls into existing port and class drivers. These types of drivers cannot use KMDF 
because they only provide callbacks for the actual WDM drivers that do the I/O processing. Addition-
ally, if a driver provides its own dispatch functions instead of relying on a port or class driver, IEEE 1394, 
ISA, PCI, PCMCIA, and SD Client (for Secure Digital storage devices) drivers can also use KMDF.

Although KMDF provides an abstraction on top of WDM, the basic driver structure shown earlier 
also generally applies to KMDF drivers. At their core, KMDF drivers must have the following functions:

 ■ An initialization routine Like any other driver, a KMDF driver has a DriverEntry function 
that initializes the driver. KMDF drivers initiate the framework at this point and perform any 
configuration and initialization steps that are part of the driver or part of describing the driver 
to the framework. For non–Plug and Play drivers, this is where the first device object should be 
created.

 ■ An add-device routine KMDF driver operation is based on events and callbacks (described 
shortly), and the EvtDriverDeviceAdd callback is the single most important one for PnP de-
vices because it receives notifications when the PnP manager in the kernel enumerates one of 
the driver’s devices.

 ■ One or more EvtIo* routines Similar to a WDM driver’s dispatch routines, these callback 
routines handle specific types of I/O requests from a particular device queue. A driver typically 
creates one or more queues in which KMDF places I/O requests for the driver’s devices. These 
queues can be configured by request type and dispatching type.
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The simplest KMDF driver might need to have only an initialization and add-device routine because 
the framework will provide the default, generic functionality that’s required for most types of I/O pro-
cessing, including power and Plug and Play events. In the KMDF model, events refer to run-time states 
to which a driver can respond or during which a driver can participate. These events are not related to 
the synchronization primitives (synchronization is discussed in Chapter 8 in Part 2), but are internal to 
the framework.

For events that are critical to a driver’s operation, or that need specialized processing, the driver reg-
isters a given callback routine to handle this event. In other cases, a driver can allow KMDF to perform 
a default, generic action instead. For example, during an eject event (EvtDeviceEject), a driver can 
choose to support ejection and supply a callback or to fall back to the default KMDF code that will tell 
the user that the device does not support ejection. Not all events have a default behavior, however, and 
callbacks must be provided by the driver. One notable example is the EvtDriverDeviceAdd event just 
described that is at the core of any Plug and Play driver.

EXPERIMENT: Displaying KMDF and UMDF 2 drivers
The Wdfkd.dll extension that ships with the Debugging Tools for Windows package provides 
many commands that can be used to debug and analyze KMDF drivers and devices (instead of 
using the built-in WDM-style debugging extension, which may not offer the same kind of WDF-
specific information). You can display installed KMDF drivers with the !wdfkd.wdfldr debug-
ger command. In the following example, the output from a Windows 10 32-bit Hyper-V virtual 
machine is shown, displaying the built-in drivers that are installed.

lkd> !wdfkd.wdfldr 
--------------------------------------------------------------- 
 KMDF Drivers 
--------------------------------------------------------------- 
 LoadedModuleList      0x870991ec 
---------------------------------- 
LIBRARY_MODULE  0x8626aad8 
  Version       v1.19 
  Service       \Registry\Machine\System\CurrentControlSet\Services\Wdf01000 
  ImageName     Wdf01000.sys 
  ImageAddress  0x87000000 
  ImageSize     0x8f000 
  Associated Clients: 25 
 
  ImageName                      Ver   WdfGlobals FxGlobals  ImageAddress ImageSize 
  umpass.sys                     v1.15 0xa1ae53f8 0xa1ae52f8 0x9e5f0000   0x00008000 
  peauth.sys                     v1.7  0x95e798d8 0x95e797d8 0x9e400000   0x000ba000 
  mslldp.sys                     v1.15 0x9aed1b50 0x9aed1a50 0x8e300000   0x00014000 
  vmgid.sys                      v1.15 0x97d0fd08 0x97d0fc08 0x8e260000   0x00008000 
  monitor.sys                    v1.15 0x97cf7e18 0x97cf7d18 0x8e250000   0x0000c000 
  tsusbhub.sys                   v1.15 0x97cb3108 0x97cb3008 0x8e4b0000   0x0001b000 
  NdisVirtualBus.sys             v1.15 0x8d0fc2b0 0x8d0fc1b0 0x87a90000   0x00009000 
  vmgencounter.sys               v1.15 0x8d0fefd0 0x8d0feed0 0x87a80000   0x00008000 
  intelppm.sys                   v1.15 0x8d0f4cf0 0x8d0f4bf0 0x87a50000   0x00021000 
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  vms3cap.sys                    v1.15 0x8d0f5218 0x8d0f5118 0x87a40000   0x00008000 
  netvsc.sys                     v1.15 0x8d11ded0 0x8d11ddd0 0x87a20000   0x00019000 
  hyperkbd.sys                   v1.15 0x8d114488 0x8d114388 0x87a00000   0x00008000 
  dmvsc.sys                      v1.15 0x8d0ddb28 0x8d0dda28 0x879a0000   0x0000c000 
  umbus.sys                      v1.15 0x8b86ffd0 0x8b86fed0 0x874f0000   0x00011000 
  CompositeBus.sys               v1.15 0x8b869910 0x8b869810 0x87df0000   0x0000d000 
  cdrom.sys                      v1.15 0x8b863320 0x8b863220 0x87f40000   0x00024000 
  vmstorfl.sys                   v1.15 0x8b2b9108 0x8b2b9008 0x87c70000   0x0000c000 
  EhStorClass.sys                v1.15 0x8a9dacf8 0x8a9dabf8 0x878d0000   0x00015000 
  vmbus.sys                      v1.15 0x8a9887c0 0x8a9886c0 0x82870000   0x00018000 
  vdrvroot.sys                   v1.15 0x8a970728 0x8a970628 0x82800000   0x0000f000 
  msisadrv.sys                   v1.15 0x8a964998 0x8a964898 0x873c0000   0x00008000 
  WindowsTrustedRTProxy.sys      v1.15 0x8a1f4c10 0x8a1f4b10 0x87240000   0x00008000 
  WindowsTrustedRT.sys           v1.15 0x8a1f1fd0 0x8a1f1ed0 0x87220000   0x00017000 
  intelpep.sys                   v1.15 0x8a1ef690 0x8a1ef590 0x87210000   0x0000d000 
  acpiex.sys                     v1.15 0x86287fd0 0x86287ed0 0x870a0000   0x00019000 
---------------------------------- 
Total: 1 library loaded

If UMDF 2.x drivers were loaded, they would have been shown as well. This is one of the ben-
efits of the UMDF 2.x library (see the UMDF section later in this chapter for more on this subject).

Notice that the KMDF library is implemented in Wdf01000.sys, which is the current version 
1.x of KMDF. Future versions of KMDF may have a major version of 2 and will be implemented in 
another kernel module, Wdf02000.sys. This future module can live side by side with the version 
1.x module, each loaded with the drivers that compiled against it. This ensures isolation and inde-
pendence between drivers built against different KMDF major version libraries.

KMDF object model
The KMDF object model is object-based, with properties, methods and events, implemented in C, much 
like the model for the kernel, but it does not make use of the object manager. Instead, KMDF manages 
its own objects internally, exposing them as handles to drivers and keeping the actual data structures 
opaque. For each object type, the framework provides routines to perform operations on the object 
(called methods), such as WdfDeviceCreate, which creates a device. Additionally, objects can have specific 
data fields or members that can be accessed by Get/Set (used for modifications that should never fail)  
or Assign/Retrieve APIs (used for modifications that can fail), which are called properties. For example, 
the WdfInterruptGetInfo function returns information on a given interrupt object (WDFINTERRUPT).

Also unlike the implementation of kernel objects, which all refer to distinct and isolated object 
types, KMDF objects are all part of a hierarchy—most object types are bound to a parent. The root 
object is the WDFDRIVER structure, which describes the actual driver. The structure and meaning is 
analogous to the DRIVER_OBJECT structure provided by the I/O manager, and all other KMDF struc-
tures are children of it. The next most important object is WDFDEVICE, which refers to a given instance 
of a detected device on the system, which must have been created with WdfDeviceCreate. Again, this 
is analogous to the DEVICE_OBJECT structure that’s used in the WDM model and by the I/O manager. 
Table 6-11 lists the object types supported by KMDF.
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TABLE 6-11 KMDF object types

Object Type Description

Child list WDFCHILDLIST This is a list of child WDFDEVICE objects associated with the de-
vice. It is used only by bus drivers.

Collection WDFCOLLECTION This is a list of objects of a similar type, such as a group of 
WDFDEVICE objects being filtered.

Deferred Procedure Call WDFDPC This is an instance of a DPC object.

Device WDFDEVICE This is an instance of a device.

DMA common buffer WDFCOMMONBUFFER This is a region of memory that a device and driver can access for 
DMA.

DMA enabler WDFDMAENABLER This enables DMA on a given channel for a driver.

DMA transaction WDFDMATRANSACTION This is an instance of a DMA transaction.

Driver WDFDRIVER This is an object for the driver. It represents the driver, its param-
eters, and its callbacks, among other items.

File WDFFILEOBJECT This is an instance of a file object that can be used as a channel for 
communication between an application and the driver.

Generic object WDFOBJECT This allows driver-defined custom data to be wrapped inside the 
framework’s object data model as an object.

Interrupt WDFINTERRUPT This is an instance of an interrupt that the driver must handle.

I/O queue WDFQUEUE This represents a given I/O queue.

I/O request WDFREQUEST This represents a given request on a WDFQUEUE.

I/O target WDFIOTARGET This represents the device stack being targeted by a given 
WDFREQUEST.

Look-aside list WDFLOOKASIDE This describes an executive look-aside list. (See Chapter 5.)

Memory WDFMEMORY This describes a region of paged or nonpaged pool.

Registry key WDFKEY This describes a registry key.

Resource list WDFCMRESLIST This identifies the hardware resources assigned to a WDFDEVICE.

Resource range list WDFIORESLIST This identifies a given possible hardware resource range for a 
WDFDEVICE.

Resource requirements list WDFIORESREQLIST This contains an array of WDFIORESLIST objects describing all 
possible resource ranges for a WDFDEVICE.

Spinlock WDFSPINLOCK This describes a spinlock.

String WDFSTRING This describes a Unicode string structure.

Timer WDFTIMER This describes an executive timer. (See Chapter 8 in Part 2 for 
more information.)

USB device WDFUSBDEVICE This identifies the one instance of a USB device.

USB interface WDFUSBINTERFACE This identifies one interface on the given WDFUSBDEVICE.

USB pipe WDFUSBPIPE This identifies a pipe to an endpoint on a given 
WDFUSBINTERFACE.

Wait lock WDFWAITLOCK This represents a kernel dispatcher event object.
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Object Type Description

WMI instance WDFWMIINSTANCE This represents a WMI data block for a given WDFWMIPROVIDER.

WMI provider WDFWMIPROVIDER This describes the WMI schema for all the WDFWMIINSTANCE  
objects supported by the driver.

Work item WDFWORKITEM This describes an executive work item.

For each of these objects, other KMDF objects can be attached as children. Some objects have only 
one or two valid parents, while others can be attached to any parent. For example, a WDFINTERRUPT ob-
ject must be associated with a given WDFDEVICE, but a WDFSPINLOCK or WDFSTRING object can have any 
object as a parent. This allows for fine-grained control over their validity and usage and the reduction 
of global state variables. Figure 6-44 shows the entire KMDF object hierarchy.

FIGURE 6-44 KMDF object hierarchy.

The associations mentioned earlier and shown in Figure 6-44 are not necessarily immediate. The 
parent must simply be on the hierarchy chain, meaning one of the ancestor nodes must be of this type. 
This relationship is useful to implement because object hierarchies affect not only an object’s locality 
but also its lifetime. Each time a child object is created, a reference count is added to it by its link to its 
parent. Therefore, when a parent object is destroyed, all the child objects are also destroyed, which 
is why associating objects such as WDFSTRING or WDFMEMORY with a given object instead of the default 
WDFDRIVER object can automatically free up memory and state information when the parent object is 
destroyed.
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Closely related to the concept of hierarchy is KMDF’s notion of object context. Because KMDF objects 
are opaque (as discussed) and are associated with a parent object for locality, it becomes important to 
allow drivers to attach their own data to an object in order to track certain specific information outside 
the framework’s capabilities or support. Object contexts allow all KMDF objects to contain such infor-
mation. They also allow multiple object context areas, which permit multiple layers of code inside the 
same driver to interact with the same object in different ways. In WDM, the device extension custom 
data structure allows such information to be associated with a given device, but with KMDF even a 
spinlock or string can contain context areas. This extensibility enables each library or layer of code re-
sponsible for processing an I/O request to interact independently of other code, based on the context 
area that it works with.

Finally, KMDF objects are also associated with a set of attributes, shown in Table 6-12. These at-
tributes are usually configured to their defaults, but the values can be overridden by the driver when 
creating the object by specifying a WDF_OBJECT_ATTRIBUTES structure (similar to the object manager’s 
OBJECT_ATTRIBUTES structure that’s used when creating a kernel object).

TABLE 6-12 KMDF object attributes

Attribute Description

ContextSizeOverride This is the size of the object context area.

ContextTypeInfo This is the type of the object context area.

EvtCleanupCallback This is the callback to notify the driver of the object’s cleanup before deletion. 
(References may still exist.)

EvtDestroyCallback This is the callback to notify the driver of the object’s imminent deletion. (The refer-
ence count will be 0.)

ExecutionLevel This describes the maximum IRQL at which the callbacks may be invoked by KMDF.

ParentObject This identifies the parent of the object.

SynchronizationScope Specifies whether callbacks should be synchronized with the parent, a queue, a device, 
or nothing.

KMDF I/O model
The KMDF I/O model follows the WDM mechanisms discussed earlier in this chapter. In fact, you can 
even think of the framework itself as a WDM driver, since it uses kernel APIs and WDM behavior to 
abstract KMDF and make it functional. Under KMDF, the framework driver sets its own WDM-style IRP 
dispatch routines and takes control of all IRPs sent to the driver. After being handled by one of three 
KMDF I/O handlers (described shortly), it then packages these requests in the appropriate KMDF ob-
jects, inserts them in the appropriate queues (if required), and performs driver callback if the driver is 
interested in those events. Figure 6-45 describes the flow of I/O in the framework.
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FIGURE 6-45 KMDF I/O flow and IRP processing.

Based on the IRP processing discussed previously for WDM drivers, KMDF performs one of the fol-
lowing three actions:

 ■ It sends the IRP to the I/O handler, which processes standard device operations.

 ■ It sends the IRP to the PnP and power handler that processes these kinds of events and notifies 
other drivers if the state has changed.

 ■ It sends the IRP to the WMI handler, which handles tracing and logging.

These components then notify the driver of any events it registered for, potentially forward the 
request to another handler for further processing, and then complete the request based on an internal 
handler action or as the result of a driver call. If KMDF has finished processing the IRP but the request 
itself has still not been fully processed, KMDF will take one of the following actions:

 ■ For bus drivers and function drivers, it completes the IRP with STATUS_INVALID_DEVICE_REQUEST.

 ■ For filter drivers, it forwards the request to the next lower driver.

I/O processing by KMDF is based on the mechanism of queues (WDFQUEUE, not the KQUEUE object 
discussed earlier in this chapter). KMDF queues are highly scalable containers of I/O requests (pack-
aged as WDFREQUEST objects) and provide a rich feature set beyond merely sorting the pending I/Os 
for a given device. For example, queues track currently active requests and support I/O cancellation, 
I/O concurrency (the ability to perform and complete more than one I/O request at a time), and I/O 
synchronization (as noted in the list of object attributes in Table 6-12). A typical KMDF driver creates at 
least one queue (if not more) and associates one or more events with each queue, as well as some of 
the following options:
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 ■ The callbacks registered with the events associated with this queue.

 ■ The power management state for the queue. KMDF supports both power-managed and non–
power managed queues. For the former, the I/O handler wakes up the device when required 
(and when possible), arms the idle timer when the device has no I/Os queued up, and calls the 
driver’s I/O cancellation routines when the system is switching away from a working state.

 ■ The dispatch method for the queue. KMDF can deliver I/Os from a queue in sequential, parallel, 
or manual mode. Sequential I/Os are delivered one at a time (KMDF waits for the driver to com-
plete the previous request), while parallel I/Os are delivered to the driver as soon as possible. In 
manual mode, the driver must manually retrieve I/Os from the queue.

 ■ Whether the queue can accept zero-length buffers, such as incoming requests that don’t actu-
ally contain any data.

Note The dispatch method only affects the number of requests that can be active inside 
a driver’s queue at one time. It does not determine whether the event callbacks themselves 
will be called concurrently or serially. That behavior is determined through the synchroniza-
tion scope object attribute described earlier. Therefore, it is possible for a parallel queue to 
have concurrency disabled but still have multiple incoming requests.

Based on the mechanism of queues, the KMDF I/O handler can perform various tasks upon receiv-
ing a create, close, cleanup, write, read, or device control (IOCTL) request:

 ■ For create requests, the driver can request to be immediately notified through the EvtDevice-
FileCreate callback event, or it can create a non-manual queue to receive create requests. 
It must then register an EvtIoDefault callback to receive the notifications. Finally, if none of 
these methods are used, KMDF will simply complete the request with a success code, meaning 
that by default, applications will be able to open handles to KMDF drivers that don’t supply their 
own code.

 ■ For cleanup and close requests, the driver will be immediately notified through EvtFileClean-
up and EvtFileClose callbacks, if registered. Otherwise, the framework will simply complete 
with a success code.

 ■ For write, read, and IOCTL requests, the flow shown in Figure 6-46 applies.
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FIGURE 6-46 Handling read, write, and IOCTL I/O requests by KMDF.

User-Mode Driver Framework
Windows includes a growing number of drivers that run in user mode, using the User-Mode Driver 
Framework (UMDF), which is part of the WDF. UMDF version 2 is aligned with KMDF in terms of object 
model, programming model and I/O model. The frameworks are not identical, however, because of 
some of the inherent differences between user mode and kernel mode. For example, some KMDF 
objects listed in Table 6-12 don’t exist in UMDF, including WDFCHILDLIST, DMA-related objects,  
WDFLOOKASIDELIST (look-aside lists can be allocated only in kernel mode), WDFIORESLIST, WDFIORES-
REQLIST, WDFDPC, and WMI objects. Still, most KMDF objects and concepts apply equally to UMDF 2.x.

UMDF provides several advantages over KMDF:

 ■ UMDF drivers execute in user mode, so any unhandled exception crashes the UMDF host  
process, but not the entire system.

 ■ The UMDF host process runs with the Local Service account, which has very limited privileges 
on the local machine and only anonymous access in network connections. This reduces the 
security attack surface.

 ■ Running in user mode means the IRQL is always 0 (PASSIVE_LEVEL). Thus, the driver can always 
take page faults and use kernel dispatcher objects for synchronization (events, mutexes, and so on).

 ■ Debugging UMDF drivers is easier than debugging KMDF drivers because the debugging setup 
does not require two separate machines (virtual or physical).
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The main drawback to UMDF is increased latency because of the kernel/user transitions and com-
munication required (as described shortly). Also, some types of drivers, such as drivers for high-speed 
PCI devices, are simply not meant to execute in user mode and thus cannot be written with UMDF.

UMDF is designed specifically to support protocol device classes, which refers to devices that all use 
the same standardized, generic protocol and offer specialized functionality on top of it. These protocols 
currently include IEEE 1394 (FireWire), USB, Bluetooth, human interface devices (HIDs) and TCP/IP. Any 
device running on top of these buses (or connected to a network) is a potential candidate for UMDF. 
Examples include portable music players, input devices, cell phones, cameras and webcams, and so 
on. Two other users of UMDF are SideShow-compatible devices (auxiliary displays) and the Windows 
Portable Device (WPD) Framework, which supports USB-removable storage (USB bulk transfer devices). 
Finally, as with KMDF, it’s possible to implement software-only drivers, such as for a virtual device, in 
UMDF.

Unlike KMDF drivers, which run as driver objects representing a SYS image file, UMDF drivers run 
in a driver host process (running the image %SystemRoot%\System32\WUDFHost.exe), similar to a 
service-hosting process. The host process contains the driver itself, the User-Mode Driver Framework 
(implemented as a DLL), and a run-time environment (responsible for I/O dispatching, driver loading, 
device-stack management, communication with the kernel, and a thread pool).

As in the kernel, each UMDF driver runs as part of a stack. This can contain multiple drivers that are 
responsible for managing a device. Naturally, because user-mode code can’t access the kernel address 
space, UMDF also includes components that allow this access to occur through a specialized interface 
to the kernel. This is implemented by a kernel-mode side of UMDF that uses ALPC—essentially an ef-
ficient inter-process communication mechanism to talk to the run-time environment in the user-mode 
driver host processes. (See Chapter 8 in Part 2 for more information on ALPC.) Figure 6-47 shows the 
architecture of the UMDF driver model.

FIGURE 6-47 UMDF architecture.
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Figure 6-47 shows two different device stacks that manage two different hardware devices, each 
with a UMDF driver running inside its own driver host process. From the diagram, you can see that the 
following components comprise the architecture:

 ■ Applications These are the clients of the drivers. They are standard Windows applications that 
use the same APIs to perform I/Os as they would with a KMDF-managed or WDM-managed 
device. Applications don’t know (nor care) that they’re talking to a UMDF-based device, and the 
calls are still sent to the kernel’s I/O manager.

 ■ Windows kernel (I/O manager) Based on the application I/O APIs, the I/O manager builds 
the IRPs for the operations, just like for any other standard device.

 ■ Reflector The reflector is what makes UMDF “tick.” It is a standard WDM filter driver  
(%SystemRoot%\System32\Drivers\WUDFRd.Sys) that sits at the top of the device stack of each 
device that is being managed by a UMDF driver. The reflector is responsible for managing the 
communication between the kernel and the user-mode driver host process. IRPs related to 
power management, Plug and Play, and standard I/O are redirected to the host process through 
ALPC. This enables the UMDF driver to respond to the I/Os and perform work, as well as be 
involved in the Plug and Play model, by providing enumeration, installation, and management 
of its devices. Finally, the reflector is responsible for keeping an eye on the driver host processes 
by making sure they remain responsive to requests within an adequate time to prevent drivers 
and applications from hanging.

 ■ Driver manager The driver manager is responsible for starting and quitting the driver host 
processes, based on which UMDF-managed devices are present, and also for managing infor-
mation on them. It is also responsible for responding to messages coming from the reflector 
and applying them to the appropriate host process (such as reacting to device installation). The 
driver manager runs as a standard Windows service implemented in %SystemRoot%\System32\
WUDFsvc.dll (hosted in a standard Svchost.exe), and is configured for automatic startup as soon 
as the first UMDF driver for a device is installed. Only one instance of the driver manager runs 
for all driver host processes (as is always the case with services), and it must always be running 
to allow UMDF drivers to work.

 ■ Host process The host process provides the address space and run-time environment for 
the actual driver (WUDFHost.exe). Although it runs in the local service account, it is not actu-
ally a Windows service and is not managed by the SCM—only by the driver manager. The host 
process is also responsible for providing the user-mode device stack for the actual hardware, 
which is visible to all applications on the system. Currently, each device instance has its own 
device stack, which runs in a separate host process. In the future, multiple instances may share 
the same host process. Host processes are child processes of the driver manager.

 ■ Kernel-mode drivers If specific kernel support for a device that is managed by a UMDF 
driver is needed, it is also possible to write a companion kernel-mode driver that fills that role. 
In this way, it is possible for a device to be managed both by a UMDF and a KMDF (or WDM) 
driver.
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You can easily see UMDF in action on your system by inserting a USB flash drive with some content 
on it. Run Process Explorer, and you should see a WUDFHost.exe process that corresponds to a driver 
host process. Switch to DLL view and scroll down until you see DLLs like the ones shown in Figure 6-48.

FIGURE 6-48 DLL in UMDF host process.

You can identify three main components, which match the architectural overview described earlier:

 ■ WUDFHost.exe This is the UMDF host executable.

 ■ WUDFx02000.dll This is the UMDF 2.x framework DLL.

 ■ WUDFPlatform.dll This is the run-time environment.

The power manager

Just as Windows Plug and Play features require support from a system’s hardware, its power-manage-
ment capabilities require hardware that complies with the Advanced Configuration and Power Inter-
face (ACPI) specification, which is now part of the Unified Extensible Firmware Interface (UEFI). (The 
ACPI spec is available at http://www.uefi.org/specifications.)

The ACPI standard defines various power levels for a system and for devices. The six system power 
states are described in Table 6-13. They are referred to as S0 (fully on or working) through S5 (fully off). 
Each state has the following characteristics:

 ■ Power consumption This is the amount of power the system consumes.

 ■ Software resumption This is the software state from which the system resumes when moving 
to a “more on” state.

 ■ Hardware latency This is the length of time it takes to return the system to the fully on state.

http://www.uefi.org/specifications
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TABLE 6-13 System power-state definitions

State Power Consumption Software Resumption Hardware Latency

S0 (fully on) Maximum Not applicable None

S1 (sleeping) Less than S0, more than S2 System resumes where it left off (returns 
to S0)

Less than 2 seconds

S2 (sleeping) Less than S1, more than S3 System resumes where it left off (returns 
to S0)

2 or more seconds

S3 (sleeping) Less than S2; processor is off System resumes where it left off (returns 
to S0)

Same as S2

S4 (hibernating) Trickle current to power button 
and wake circuitry

System restarts from saved hibernation 
file and resumes where it left off before 
hibernation (returns to S0)

Long and undefined

S5 (fully off) Trickle current to power button System boot Long and undefined

As noted in Table 6-13, states S1 through S4 are sleeping states, in which the system appears to 
be off because of reduced power consumption. However, in these sleeping states, the system retains 
enough information—either in memory or on disk—to move to S0. For states S1 through S3, enough 
power is required to preserve the contents of the computer’s memory so that when the transition is 
made to S0 (when the user or a device wakes up the computer), the power manager continues execut-
ing where it left off before the suspend.

When the system moves to S4, the power manager saves the compressed contents of memory to 
a hibernation file named Hiberfil.sys, which is large enough to hold the uncompressed contents of 
memory, in the root directory of the system volume (hidden file). (Compression is used to minimize disk 
I/O and to improve hibernation and resume-from-hibernation performance.) After it finishes saving 
memory, the power manager shuts off the computer. When a user subsequently turns on the computer, 
a normal boot process occurs, except that the boot manager checks for and detects a valid memory 
image stored in the hibernation file. If the hibernation file contains the saved system state, the boot 
manager launches %SystemRoot%\System32\Winresume.exe, which reads the contents of the file into 
memory, and then resumes execution at the point in memory that is recorded in the hibernation file.

On systems with hybrid sleep enabled, a user request to put the computer to sleep will actually be 
a combination of both the S3 state and the S4 state. While the computer is put to sleep, an emergency 
hibernation file will also be written to disk. Unlike typical hibernation files, which contain almost all 
active memory, the emergency hibernation file includes only data that could not be paged in at a later 
time, making the suspend operation faster than a typical hibernation (because less data is written to disk). 
Drivers will then be notified that an S4 transition is occurring, allowing them to configure themselves 
and save state just as if an actual hibernation request had been initiated. After this point, the system 
is put in the normal sleep state just like during a standard sleep transition. However, if the power goes 
out, the system is now essentially in an S4 state—the user can power on the machine, and Windows will 
resume from the emergency hibernation file.

Note You can disable hibernation completely and gain some disk space by running power-
cfg /h off from an elevated command prompt.
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The computer never directly transitions between states S1 and S4 (because that requires code ex-
ecution, but the CPU is off in these states); instead, it must move to state S0 first. As illustrated in Figure 
6-49, when the system is moving from any of states S1 through S5 to state S0, it’s said to be waking, and 
when it’s transitioning from state S0 to any of states S1 through S5, it’s said to be sleeping.

FIGURE 6-49 System power-state transitions.

Experiment: System power states
To view the supported power states, open an elevated command window and type in the com-
mand powercfg /a. You’ll see output similar to the following:

C:\WINDOWS\system32>powercfg /a 
The following sleep states are available on this system: 
    Standby (S3) 
    Hibernate 
    Fast Startup 
 
The following sleep states are not available on this system: 
    Standby (S1) 
        The system firmware does not support this standby state. 
 
    Standby (S2) 
        The system firmware does not support this standby state. 
 
    Standby (S0 Low Power Idle) 
        The system firmware does not support this standby state. 
 
    Hybrid Sleep 
        The hypervisor does not support this standby state.

Notice that the standby state is S3 and hibernation is available. Let’s turn off hibernation and 
re-execute the command:

C:\WINDOWS\system32>powercfg /h off 
 
C:\WINDOWS\system32>powercfg /a 
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The following sleep states are available on this system: 
    Standby (S3) 
 
The following sleep states are not available on this system: 
    Standby (S1) 
        The system firmware does not support this standby state. 
 
    Standby (S2) 
        The system firmware does not support this standby state. 
 
    Hibernate 
        Hibernation has not been enabled. 
 
    Standby (S0 Low Power Idle) 
        The system firmware does not support this standby state. 
 
    Hybrid Sleep 
        Hibernation is not available. 
        The hypervisor does not support this standby state. 
 
    Fast Startup 
        Hibernation is not available.

For devices, ACPI defines four power states, from D0 through D3. State D0 is fully on, while state 
D3 is fully off. The ACPI standard leaves it to individual drivers and devices to define the meanings of 
states D1 and D2, except that state D1 must consume an amount of power less than or equal to that 
consumed in state D0, and when the device is in state D2, it must consume power less than or equal to 
that consumed in D1. 

Windows 8 (and later) splits the D3 state into two sub-states, D3-hot and D3-cold. In D3-hot state, 
the device is mostly turned off, but is not disconnected from its main power source, and its parent 
bus controller can detect the presence of the device on the bus. In D3-cold, the main power source is 
removed from the device, and the bus controller cannot detect the device. This state provides another 
opportunity for saving power. Figure 6-50 shows the device states and the possible state transitions.

Figure 6-50 shows the device states and the possible state transitions.

FIGURE 6-50 Device power-state transitions.
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Before Windows 8, devices could only reach D3-hot state while the system is fully on (S0). The transi-
tion to D3-cold was implicit when the system went into a sleep state. Starting with Windows 8, a de-
vice’s power state can be set to D3-cold while the system is fully on. The driver that controls the device 
cannot put the device into D3-cold state directly; instead, it can put the device into D3-hot state, and 
then, depending on other devices on the same bus entering D3-hot states, the bus driver and firmware 
may decide to move all the devices to D3-cold. The decision whether to move the devices to D3-cold 
states depends on two factors: first, the actual ability of the bus driver and firmware, and second on the 
driver that must enable the transition to D3-cold either by specifying that in the installation INF file or 
by calling the SetD3DColdSupport function dynamically.

Microsoft, in conjunction with the major hardware OEMs, has defined a series of power manage-
ment reference specifications that specify the device power states that are required for all devices in 
a particular class (for the major device classes: display, network, SCSI, and so on). For some devices, 
there’s no intermediate power state between fully on and fully off, which results in these states being 
undefined.

Connected Standby and Modern Standby
You may have noticed in the experiment above another system state called Standby (S0 Low Power 
Idle). Although not an official ACPI state, it is a variant of S0 known as Connected Standby on Windows 
8.x and later enhanced in Windows 10 (desktop and mobile editions) and called Modern Standby. The 
“normal” standby state (S3 above) is sometimes referred to as Legacy Standby.

The main problem with Legacy Standby is that the system is not working, and therefore, for example, 
the user receives an email, the system can’t pick that up without waking to S0, which may or may not 
happen, depending on configuration and device capabilities. Even if the system wakes up to get that 
email, it won’t go immediately to sleep again. Modern Standby solves both issues.

Systems that support Modern Standby normally go into this state when the system is instructed to 
go to Standby. The system is technically still at S0, meaning the CPU is active and code can execute. 
However, desktop processes (non-UWP apps) are suspended, as well as UWP apps (most are not in 
the foreground and suspended anyway), but background tasks created by UWP apps are allowed to 
execute. For example, an email client would have a background task that periodically polls for new 
messages.

Being in Modern Standby also means that the system is able to wake to full S0 very quickly, some-
times referred to as Instant On. Note that not all systems support Modern Standby, as it depends on the 
chipset and other platform components (as can be seen in the last experiment, the system on which the 
experiment ran does not support Modern Standby and thus supports Legacy Standby).

For more information on Modern Standby, consult the Windows Hardware documentation at 
https://msdn.microsoft.com/en-us/library/windows/hardware/mt282515(v=vs.85).aspx.

https://www.msdn.microsoft.com/en-us/library/windows/hardware/mt282515(v=vs.85).aspx
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Power manager operation
Windows power-management policy is split between the power manager and the individual device 
drivers. The power manager is the owner of the system power policy. This ownership means the power 
manager decides which system power state is appropriate at any given point, and when a sleep, hiber-
nation, or shutdown is required, the power manager instructs the power-capable devices in the system 
to perform appropriate system power-state transitions. 

The power manager decides when a system power-state transition is necessary by considering 
several factors:

 ■ System activity level

 ■ System battery level

 ■ Shutdown, hibernate, or sleep requests from applications

 ■ User actions, such as pressing the power button

 ■ Control Panel power settings

When the PnP manager performs device enumeration, part of the information it receives about a 
device is its power-management capabilities. A driver reports whether its devices support device states 
D1 and D2 and, optionally, the latencies, or times required, to move from states D1 through D3 to D0. 
To help the power manager determine when to make system power-state transitions, bus drivers also 
return a table that implements a mapping between each of the system power states (S0 through S5) 
and the device power states that a device supports.

The table lists the lowest possible device power state for each system state and directly reflects the 
state of various power planes when the machine sleeps or hibernates. For example, a bus that supports 
all four device power states might return the mapping table shown in Table 6-14. Most device driv-
ers turn their devices completely off (D3) when leaving S0 to minimize power consumption when the 
machine isn’t in use. Some devices, however, such as network adapter cards, support the ability to wake 
up the system from a sleeping state. This ability, along with the lowest device power state in which the 
capability is present, is also reported during device enumeration.

TABLE 6-14 An example of system-to-device power mappings

System Power State Device Power State

S0 (fully on) D0 (fully on)

S1 (sleeping) D1

S2 (sleeping) D2

S3 (sleeping) D2

S4 (hibernating) D3 (fully off)

S5 (fully off) D3 (fully off)



596 CHAPTER 6 I/O system

Driver power operation
When the power manager decides to make a transition between system power states, it sends power 
commands to a driver’s power dispatch routine (IRP_MJ_POWER). More than one driver can be responsi-
ble for managing a device, but only one of the drivers is designated as the device power-policy owner. 
This is typically the driver that manages the FDO. This driver determines, based on the system state, 
a device’s power state. For example, if the system transitions between state S0 and S3, a driver might 
decide to move a device’s power state from D0 to D1.

Instead of directly informing the other drivers that share the management of the device of its deci-
sion, the device power-policy owner asks the power manager, via the PoRequestPowerIrp function, to 
tell the other drivers by issuing a device power command to their power dispatch routines. This behav-
ior enables the power manager to control the number of power commands that are active on a system 
at any given time. For example, some devices in the system might require a significant amount of cur-
rent to power up. The power manager ensures that such devices aren’t powered up simultaneously.

EXPERIMENT: Viewing a driver’s power mappings
You can use Device Manager to see a driver’s system power state–to–driver power state mappings. 
To do so, open the Properties dialog box for a device, click the Details tab, click the Property 
drop-down list, and choose Power Data. The Properties dialog box also displays the current 
power state of the device, the device-specific power capabilities that it provides, and the power 
states from which it can wake the system:

Many power commands have corresponding query commands. For example, when the system is 
moving to a sleep state, the power manager will first ask the devices on the system whether the transi-
tion is acceptable. A device that is busy performing time-critical operations or interacting with device 
hardware might reject the command, which results in the system maintaining its current system power-
state setting.
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EXPERIMENT: Viewing the system power capabilities and policy
You can view a computer’s system power capabilities by using the !pocaps kernel debugger 
command. Here’s the output of the command when run on an x64 Windows 10 laptop:

lkd> !pocaps 
PopCapabilities @ 0xfffff8035a98ce60 
  Misc Supported Features:  PwrButton SlpButton Lid S3 S4 S5 HiberFile FullWake 
VideoDim 
  Processor Features:       Thermal 
  Disk Features: 
  Battery Features:         BatteriesPresent 
    Battery 0 - Capacity:        0  Granularity:        0 
    Battery 1 - Capacity:        0  Granularity:        0 
    Battery 2 - Capacity:        0  Granularity:        0 
  Wake Caps 
    Ac OnLine Wake:         Sx 
    Soft Lid Wake:          Sx 
    RTC Wake:               S4 
    Min Device Wake:        Sx 
    Default Wake:           Sx

The Misc Supported Features line reports that, in addition to S0 (fully on), the system 
supports system power states of S3, S4 and S5 (it doesn’t implement S1 or S2) and has a valid 
hibernation file to which it can save system memory when it hibernates (state S4).

The Power Options page, which you open by selecting Power Options in the Control Panel, 
lets you configure various aspects of the system’s power policy. The exact properties you can 
configure depend on the system’s power capabilities.
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Notice that OEMs can add power schemes. These schemes can be listed by typing the power-
cfg /list command as shown here:

C:\WINDOWS\system32>powercfg /list 
 
Existing Power Schemes (* Active) 
----------------------------------- 
Power Scheme GUID: 381b4222-f694-41f0-9685-ff5bb260df2e  (Balanced) 
Power Scheme GUID: 8759706d-706b-4c22-b2ec-f91e1ef6ed38  (HP Optimized 
(recommended)) * 
Power Scheme GUID: 8c5e7fda-e8bf-4a96-9a85-a6e23a8c635c  (High performance) 
Power Scheme GUID: a1841308-3541-4fab-bc81-f71556f20b4a  (Power saver)

By changing any of the preconfigured plan settings, you can set the idle detection timeouts 
that control when the system turns off the monitor, spins down hard disks, goes to standby 
mode (moves to system power state S3 in the previous experiment), and hibernates (moves the 
system to power state S4). In addition, selecting the Change Plan Settings link lets you specify 
the power-related behavior of the system when you press the power or sleep buttons or close a 
laptop’s lid.

The Change Advanced Power Settings link directly affects values in the system’s power policy, 
which you can display with the !popolicy debugger command. Here’s the output of the com-
mand on the same system:

lkd> !popolicy 
SYSTEM_POWER_POLICY (R.1) @ 0xfffff8035a98cc64 
  PowerButton:         Sleep  Flags: 00000000   Event: 00000000 
  SleepButton:         Sleep  Flags: 00000000   Event: 00000000 
  LidClose:             None  Flags: 00000000   Event: 00000000 
  Idle:                Sleep  Flags: 00000000   Event: 00000000 
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  OverThrottled:        None  Flags: 00000000   Event: 00000000 
  IdleTimeout:             0  IdleSensitivity:        90% 
  MinSleep:               S3  MaxSleep:               S3 
  LidOpenWake:            S0  FastSleep:              S3 
  WinLogonFlags:           1  S4Timeout:               0 
  VideoTimeout:          600  VideoDim:                0 
  SpinTimeout:           4b0  OptForPower:             0 
  FanTolerance:            0% ForcedThrottle:          0% 
  MinThrottle:             0% DyanmicThrottle:      None (0)

The first lines of the display correspond to the button behaviors specified in the Power Op-
tions Advanced Settings window. On this system, both the power and the sleep buttons put the 
computer in a sleep state. Closing the lid, however, does nothing. The timeout values shown near 
the end of the output are expressed in seconds and displayed in hexadecimal notation. The val-
ues reported here directly correspond to the settings configured in the Power Options window. 
For example, the video timeout is 600, meaning the monitor turns off after 600 seconds (because 
of a bug in the debugging tools used here, it’s displayed in decimal), or 10 minutes. Similarly, the 
hard disk spin-down timeout is 0x4b0, which corresponds to 1200 seconds, or 20 minutes.

Driver and application control of device power
In addition to responding to power manager commands related to system power-state transitions, a 
driver can unilaterally control the device power state of its devices. In some cases, a driver might want 
to reduce the power consumption of a device it controls if the device is left inactive for a period of time. 
Examples include monitors that support a dimmed mode and disks that support spin-down. A driver 
can either detect an idle device itself or use facilities provided by the power manager. If the device uses 
the power manager, it registers the device with the power manager by calling the PoRegisterDevice-
ForIdleDetection function.

This function informs the power manager of the timeout values to use to detect whether a device 
is idle and, if so, the device power state that the power manager should apply. The driver specifies two 
timeouts: one to use when the user has configured the computer to conserve energy and the other 
to use when the user has configured the computer for optimum performance. After calling PoRegis-
terDeviceForIdleDetection, the driver must inform the power manager, by calling the PoSetDe-
viceBusy or PoSetDeviceBusyEx functions, whenever the device is active, and then register for idle 
detection again to disable and re-enable it as needed. The PoStartDeviceBusy and PoEndDeviceBusy 
APIs are available as well, which simplify the programming logic required to achieve the behavior just 
described.

Although a device has control over its own power state, it does not have the ability to manipulate 
the system power state or to prevent system power transitions from occurring. For example, if a badly 
designed driver doesn’t support any low-power states, it can choose to remain on or turn itself com-
pletely off without hindering the system’s overall ability to enter a low-power state—this is because the 
power manager only notifies the driver of a transition and doesn’t ask for consent. Drivers do receive a 
power query IRP (IRP_MN_QUERY_POWER) when the system is about to transition to a lower power state. 
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The driver may veto the request, but the power manager does not have to comply; it may delay transi-
tion if possible (e.g., the device is running on a battery that is not critically low); transition to hibernation, 
however, can never fail.

Although drivers and the kernel are chiefly responsible for power management, applications are also 
allowed to provide their input. User-mode processes can register for a variety of power notifications, 
such as when the battery is low or critically low, when the machine has switched from DC (battery) to 
AC (adapter/charger) power, or when the system is initiating a power transition. Applications can never 
veto these operations, and they can have up to two seconds to clean up any state necessary before a 
sleep transition.

Power management framework
Starting with Windows 8, the kernel provides a framework for managing power states of individual 
components (sometimes called functions) within a device. For example, suppose an audio device 
has playback and recording components, but if the playback component is active and the recording 
component is not, it would be beneficial to put the recording component into a lower power state. The 
power management framework (PoFx) provides an API that drivers can use to indicate their compo-
nents’ power states and requirements. All components must support the fully-on state, identified as F0. 
Higher-number F-states indicate lower power states that a component may be in, where each higher 
F-state represents a lower power consumption and higher transition time to F0. Note that F-state 
management has meaning only when the device is in power state D0, because it’s not working at all in 
higher D-states.

The power policy owner of the device (typically the FDO) must register with PoFx by calling the 
PoFxRegisterDevice function. The driver passes along the following information in the call:

 ■ The number of components within the device.

 ■ A set of callbacks the driver can implement to be notified by PoFx when various events occur, 
such as switching to active or idle state, switching the device to D0 state and sending power 
control codes (see the WDK for more information).

 ■ For each component, the number of F-states it supports.

 ■ For each component, the deepest F-state from which the component can wake.

 ■ For each component, for each F-state, the time required to return from this state to F0, the min-
imum amount of time the component can be in this F-state to make the transition worthwhile, 
and the nominal power the component consumes in this F-state. Or, it can be set to indicate 
that the power consumption is negligible and is not worth considering when PoFx decides to 
wake several components simultaneously.

PoFx uses this information—combined with information from other devices and system-wide power 
state information, such as the current power profile—to make intelligent decisions for which power  
F-state a particular component should be in. The challenge is to reconcile two conflicting objectives: 
first, ensuring that an idle component consumes as little power as possible, and second, making sure a 
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component can transition to the F0 state quickly enough so that the component is perceived as always 
on and always connected.

The driver must notify PoFx when a component needs to be active (F0 state) by calling PoFxActivate-
Component. Sometime after this call, the corresponding callback is invoked by PoFx, indicating to the 
driver that the component is now at F0. Conversely, when the driver determines the component is not 
currently needed, it calls PoFxIdleComponent to tell PoFx, which responds by transitioning the compo-
nent to a lower-power F-state and notifies the driver once it does.

Performance state management
The mechanisms just described allow a component in an idle condition (non-F0 states) to consume less 
power than in F0. But some components can consume less power even in state F0, related to the actual 
work a device is doing. For example, a graphic card may be able to use less power when showing a mostly 
static display, whereas it would need higher power when rendering 3D content in 60 frames per second.

In Windows 8.x, such drivers would have to implement a propriety performance state selection al-
gorithm and notify an OS service called platform extension plug-in (PEP). PEP is specific to a particular 
line of processors or system on a chip (SoC). This makes the driver code tightly coupled to the PEP.

Windows 10 extends the PoFx API for performance state management, prompting the driver code to 
use standard APIs and not worry about the particular PEP on the platform. For each component, PoFx 
provides the following types of performance states:

 ■ A discrete number of states in the frequency (Hz), bandwidth (bits per second), or an opaque 
number meaningful to the driver.

 ■ A continuous distribution of states between a minimum and maximum (frequency, bandwidth, 
or custom).

An example of this is for a graphic card to define a discrete set of frequencies in which it can oper-
ate, thus indirectly affecting its power consumption. Similar performance sets could be defined for its 
bandwidth usage, if appropriate.

To register with PoFx for performance state management, a driver must first register the device with 
PoFx (PoFxRegisterDevice) as described in the previous section. Then, the driver calls PoFxRegister-
ComponentPerfStates, passing performance details (discrete or range-based, frequency, bandwidth, 
or custom) and a callback when state changes actually occur.

When a driver decides that a component should change performance state, it calls PoFxIssue-
PerfStateChange or PoFxIssuePerfStateChangeMultiple. These calls request the PEP to place the 
component in the specified state (based on the provided index or value, depending on whether the set 
is for a discrete state or range-based). The driver may also specify that the call should be synchronous, 
asynchronous or “don’t care,” in which case the PEP decides. Either way, PoFx will eventually call into 
the driver-registered callback with the performance state, which may be the requested one, but it can 
also be denied by the PEP. If accepted, the driver should make the appropriate calls to its hardware to 
make the actual change. If the PEP denies the request, the driver may try again with a new call to one of 
the aforementioned functions. Only a single call can be made before the driver’s callback is invoked.
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Power availability requests
Applications and drivers cannot veto sleep transitions that are already initiated. However, certain 
scenarios demand a mechanism for disabling the ability to initiate sleep transitions when a user is 
interacting with the system in certain ways. For example, if the user is currently watching a movie and 
the machine would normally go idle (based on a lack of mouse or keyboard input after 15 minutes), the 
media player application should have the capability to temporarily disable idle transitions as long as 
the movie is playing. You can probably imagine other power-saving measures that the system would 
normally undertake, such as turning off or even just dimming the screen, that would also limit your en-
joyment of visual media. In legacy versions of Windows, SetThreadExecutionState was a user-mode 
API capable of controlling system and display idle transitions by informing the power manager that a 
user was still present on the machine. However, this API did not provide any sort of diagnostic capabili-
ties, nor did it allow sufficient granularity for defining the availability request. Also, drivers could not 
issue their own requests, and even user applications had to correctly manage their threading model, 
because these requests were at the thread level, not at the process or system level.

Windows now supports power request objects, which are implemented by the kernel and are bona-
fide object manager–defined objects. You can use the WinObj utility from Sysinternals (more details on 
this tool are in Chapter 8 in Part 2) and see the PowerRequest object type in the \ObjectTypes directory, 
or use the !object kernel debugger command on the \ObjectTypes\PowerRequest object type, to 
validate this. 

Power availability requests are generated by user-mode applications through the PowerCreate-
Request API and then enabled or disabled with the PowerSetRequest and PowerClearRequest APIs, 
respectively. In the kernel, drivers use PoCreatePowerRequest, PoSetPowerRequest, and PoClear-
PowerRequest. Because no handles are used, PoDeletePowerRequest is needed to remove the refer-
ence on the object (while user mode can simply use CloseHandle).

There are four kinds of requests that can be used through the Power Request API:

 ■ System request This type request asks that the system not automatically go to sleep due to 
the idle timer (although the user can still close the lid to enter sleep, for example).

 ■ Display request This type of request does the same as a system request, but for the display. 

 ■ Away-mode request This is a modification to the normal sleep (S3 state) behavior of Windows, 
which is used to keep the computer in full powered-on mode but with the display and sound 
card turned off, making it appear to the user as though the machine is really sleeping. This be-
havior is normally used only by specialized set-top boxes or media center devices when media 
delivery must continue even though the user has pressed a physical sleep button, for example.

 ■ Execution required request This type of request (available starting with Windows 8 and Server 
2012) requests a UWP app process continue execution even if normally the Process Lifecycle Man-
ager (PLM) would have terminated it (for whatever reason); the extended length of time depends 
on factors such as the power policy settings. This request type is only supported for systems that 
support Modern Standby, otherwise this request is interpreted as a system request.
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EXPERIMENT: Viewing power availability requests
Unfortunately, the power request kernel object that’s created with a call such as PowerCreate-
Request is unavailable in the public symbols. However, the Powercfg utility provides a way to 
list power requests without any need for a kernel debugger. Here’s the output of the utility while 
playing a video and a stream audio from the web on a Windows 10 laptop:

C:\WINDOWS\system32>powercfg /requests 
DISPLAY: 
[PROCESS] \Device\HarddiskVolume4\Program Files\WindowsApps\Microsoft.
ZuneVideo_10.16092.10311.0_x64__8wekyb3d8bbwe\Video.UI.exe 
Windows Runtime Package: Microsoft.ZuneVideo_8wekyb3d8bbwe 
 
SYSTEM: 
[DRIVER] Conexant ISST Audio (INTELAUDIO\FUNC_01&VEN_14F1&DEV_50F4&SUBSYS_103C80D3&R
EV_1001\4&1a010da&0&0001) 
An audio stream is currently in use. 
[PROCESS] \Device\HarddiskVolume4\Program Files\WindowsApps\Microsoft.
ZuneVideo_10.16092.10311.0_x64__8wekyb3d8bbwe\Video.UI.exe 
Windows Runtime Package: Microsoft.ZuneVideo_8wekyb3d8bbwe 
 
AWAYMODE: 
None. 
 
EXECUTION: 
None. 
 
PERFBOOST: 
None. 
 
ACTIVELOCKSCREEN: 
None.

The output shows six request types (as opposed to the four described previously). The last 
two—perfboost and active lockscreen—are declared as part of an internal power request type in 
a kernel header, but are otherwise currently unused.

Conclusion

The I/O system defines the model of I/O processing on Windows and performs functions that are com-
mon to or required by more than one driver. Its chief responsibilities are to create IRPs representing 
I/O requests and to shepherd the packets through various drivers, returning results to the caller when 
an I/O is complete. The I/O manager locates various drivers and devices by using I/O system objects, 
including driver and device objects. Internally, the Windows I/O system operates asynchronously to 
achieve high performance and provides both synchronous and asynchronous I/O capabilities to user-
mode applications.
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Device drivers include not only traditional hardware device drivers but also file-system, network, 
and layered filter drivers. All drivers have a common structure and communicate with each other and 
the I/O manager by using common mechanisms. The I/O system interfaces allow drivers to be written 
in a high-level language to lessen development time and to enhance their portability. Because drivers 
present a common structure to the operating system, they can be layered one on top of another to 
achieve modularity and reduce duplication between drivers. By using the Universal DDI baseline, driv-
ers can target multiple devices and form factors with no code changes.

Finally, the role of the PnP manager is to work with device drivers to dynamically detect hardware 
devices and to build an internal device tree that guides hardware device enumeration and driver instal-
lation. The power manager works with device drivers to move devices into low-power states when 
applicable to conserve energy and prolong battery life.

The next chapter touches on one of the most important aspects of today’s computer systems: security.
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Security

Preventing unauthorized access to sensitive data is essential in any environment in which multiple  
users have access to the same physical or network resources. An operating system, as well as indi-

vidual users, must be able to protect files, memory, and configuration settings from unwanted viewing 
and modification. Operating system security includes obvious mechanisms such as accounts, passwords, 
and file protection. It also includes less obvious mechanisms, such as protecting the operating system 
from corruption, preventing less privileged users from performing actions (rebooting the computer, 
for example), and not allowing user programs to adversely affect the programs of other users or the 
operating system.

In this chapter, we explain how every aspect of the design and implementation of Microsoft 
Windows was influenced in some way by the stringent requirements of providing robust security.

Security ratings

Having software, including operating systems, rated against well-defined standards helps the gov-
ernment, corporations, and home users protect proprietary and personal data stored in computer 
systems. The current security rating standard used by the United States and many other countries is 
the Common Criteria (CC). To understand the security capabilities designed into Windows, however, 
it’s useful to know the history of the security ratings system that influenced the design of Windows: 
the Trusted Computer System Evaluation Criteria (TCSEC).

Trusted Computer System Evaluation Criteria
The National Computer Security Center (NCSC) was established in 1981 as part of the U.S. Department 
of Defense’s (DoD) National Security Agency (NSA). One goal of the NCSC was to create a range of 
security ratings, listed in Table 7-1, to indicate the degree of protection commercial operating systems, 
network components, and trusted applications offer. These security ratings, which can be found at 
http://csrc.nist.gov/publications/history/dod85.pdf, were defined in 1983 and are commonly referred 
to as the Orange Book.

http://www.csrc.nist.gov/publications/history/dod85.pdf
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TABLE 7-1 TCSEC rating levels

Rating Description

A1 Verified design

B3 Security domains

B2 Structured protection

B1 Labeled security protection

C2 Controlled access protection 

C1 Discretionary access protection (obsolete)

D Minimal protection

The TCSEC standard consists of levels-of-trust ratings, where higher levels build on lower levels 
by adding more rigorous protection and validation requirements. No operating system meets the A1 
(verified design) rating. Although a few operating systems have earned one of the B-level ratings, C2 is 
considered sufficient and the highest rating practical for a general-purpose operating system.

The following were the key requirements for a C2 security rating, and they are still considered the 
core requirements for any secure operating system:

 ■ A secure logon facility This requires that users be able to be uniquely identified and that they 
must be granted access to the computer only after they have been authenticated in some way.

 ■ Discretionary access control This allows the owner of a resource (such as a file) to determine 
who can access the resource and what they can do with it. The owner grants rights that permit 
various kinds of access to a user or to a group of users.

 ■ Security auditing This affords the ability to detect and record security-related events or any 
attempts to create, access, or delete system resources. Logon identifiers record the identities of 
all users, making it easy to trace anyone who performs an unauthorized action.

 ■ Object reuse protection This prevents users from seeing data that another user has deleted 
or from accessing memory that another user previously used and then released. For example, 
in some operating systems, it’s possible to create a new file of a certain length and then exam-
ine the contents of the file to see data that happens to have occupied the location on the disk 
where the file is allocated. This data might be sensitive information that was stored in another 
user’s file but had been deleted. Object reuse protection prevents this potential security hole by 
initializing all objects, including files and memory, before they are allocated to a user.

Windows also meets two requirements of B-level security:

 ■ Trusted path functionality This prevents Trojan horse programs from being able to in-
tercept users’ names and passwords as they try to log on. The trusted path functionality in 
Windows comes in the form of its Ctrl+Alt+Delete logon-attention sequence, which cannot be 
intercepted by nonprivileged applications. This sequence of keystrokes, which is also known 
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as the secure attention sequence (SAS), always displays a system-controlled Windows security 
screen (if a user is already logged on) or the logon screen so that would-be Trojan horses can 
easily be recognized. (The SAS can also be sent programmatically via the SendSAS API if Group 
Policy and other restrictions allow it.) A Trojan horse presenting a fake logon dialog box will be 
bypassed when the SAS is entered.

 ■ Trusted facility management This requires support for separate account roles for ad-
ministrative functions. For example, separate accounts are provided for administration 
(Administrators), user accounts charged with backing up the computer, and standard users.

Windows meets all these requirements through its security subsystem and related components.

The Common Criteria
In January 1996, the United States, United Kingdom, Germany, France, Canada, and the Netherlands 
released the jointly developed Common Criteria for Information Technology Security Evaluation (CCITSE) 
specification. CCITSE, usually referred to as the Common Criteria (CC), is the recognized multinational 
standard for product security evaluation. The CC home page is at http://www.niap-ccevs.org/cc-scheme.

The CC is more flexible than the TCSEC trust ratings and has a structure closer to the ITSEC standard 
than to the TCSEC standard. The CC includes the concept of a Protection Profile (PP), used to collect 
security requirements into easily specified and compared sets, and the concept of a Security Target 
(ST), which contains a set of security requirements that can be made by reference to a PP. The CC also 
defines a range of seven Evaluation Assurance Levels (EALs), which indicate a level of confidence in the 
certification. In this way, the CC (like the ITSEC standard before it) removes the link between functional-
ity and assurance level that was present in TCSEC and earlier certification schemes. 

Windows 2000, Windows XP, Windows Server 2003, and Windows Vista Enterprise all achieved 
Common Criteria certification under the Controlled Access Protection Profile (CAPP). This is roughly 
equivalent to a TCSEC C2 rating. All received a rating of EAL 4+, the “plus” denoting “flaw remediation.” 
EAL 4 is the highest level recognized across national boundaries. 

In March 2011, Windows 7 and Windows Server 2008 R2 were evaluated as meeting the 
requirements of the US Government Protection Profile for General-Purpose Operating Systems 
in a Networked Environment, version 1.0 (GPOSPP) (http://www.commoncriteriaportal.org/files/
ppfiles/pp_gpospp_v1.0.pdf ). The certification includes the Hyper-V hypervisor. Again, Windows 
achieved Evaluation Assurance Level 4 with flaw remediation (EAL 4+). The validation report can be 
found at http://www.commoncriteriaportal.org/files/epfiles/st_vid10390-vr.pdf, and the description 
of the security target, giving details of the requirements satisfied, can be found at http://www.
commoncriteriaportal.org/files/epfiles/st_vid10390-st.pdf. Similar certifications were achieved by 
Windows 10 and Windows Server 2012 R2 in June 2016. The report can be found at  
http://www.commoncriteriaportal.org/files/epfiles/cr_windows10.pdf.

http://www.niap-ccevs.org/cc-scheme
http://www.commoncriteriaportal.org/files/ppfiles/pp_gpospp_v1.0.pdf
http://www.commoncriteriaportal.org/files/ppfiles/pp_gpospp_v1.0.pdf
http://www.commoncriteriaportal.org/files/epfiles/st_vid10390-vr.pdf
http://www.commoncriteriaportal.org/files/epfiles/st_vid10390-st.pdf
http://www.commoncriteriaportal.org/files/epfiles/st_vid10390-st.pdf
http://www.commoncriteriaportal.org/files/epfiles/cr_windows10.pdf
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Security system components

These are the core components and databases that implement Windows security. (All files mentioned 
are in the %SystemRoot%\System32 directory unless otherwise specified.)

 ■ Security reference monitor (SRM) This component in the Windows executive (Ntoskrnl.exe) 
is responsible for defining the access token data structure to represent a security context, per-
forming security access checks on objects, manipulating privileges (user rights), and generating 
any resulting security audit messages.

 ■ Local Security Authority Subsystem Service (Lsass) This user-mode process runs the 
image Lsass.exe that is responsible for the local system security policy (such as which users are 
allowed to log on to the machine, password policies, privileges granted to users and groups, 
and the system security auditing settings), user authentication, and sending security audit mes-
sages to the event log. The Local Security Authority service (Lsasrv.dll), a library that Lsass loads, 
implements most of this functionality.

 ■ LSAIso.exe This is used by Lsass (if so configured on supported Windows 10 and Server 2016 
systems), also known as Credential Guard (see the upcoming “Credential Guard” section for more 
on Credential Guard), to store users’ token hashes instead of keeping them in Lsass’s memory. 
Because Lsaiso.exe is a Trustlet (Isolated User Mode process) running in VTL 1, no normal pro-
cess—not even the normal kernel—can access the address space of this process. Lsass itself stores 
an encrypted blob of the password hash needed when it communicates with Lsaiso (via ALPC).

 ■ Lsass policy database This database contains the local system security policy settings. It is 
stored in the registry in an ACL-protected area under HKLM\SECURITY. It includes such infor-
mation as what domains are entrusted to authenticate logon attempts, who has permission to 
access the system and how (interactive, network, and service logons), who is assigned which 
privileges, and what kind of security auditing is to be performed. The Lsass policy database also 
stores “secrets” that include logon information used for cached domain logons and Windows 
service user-account logons. (See Chapter 9, “Management mechanisms,” in Windows Internals 
Part 2 for more information on Windows services.)

 ■ Security Accounts Manager (SAM) This service is responsible for managing the database 
that contains the user names and groups defined on the local machine. The SAM service, which 
is implemented in Samsrv.dll, is loaded into the Lsass process.

 ■ SAM database This database contains the defined local users and groups along with their 
passwords and other attributes. On domain controllers, the SAM does not store the domain-
defined users, but stores the system’s administrator recovery account definition and password. 
This database is stored in the registry under HKLM\SAM.
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 ■ Active Directory This is a directory service that contains a database that stores informa-
tion about objects in a domain. A domain is a collection of computers and their associated 
security groups that are managed as a single entity. Active Directory stores information about 
the objects in the domain, including users, groups, and computers. Password information and 
privileges for domain users and groups are stored in Active Directory, which is replicated across 
the computers that are designated as domain controllers of the domain. The Active Directory 
server, implemented as Ntdsa.dll, runs in the Lsass process. For more information on Active 
Directory, see Chapter 10, “Networking,” in Part 2.

 ■ Authentication packages These include dynamic link libraries (DLLs) that run in the context 
of both Lsass process and client processes and implement Windows authentication policy. An au-
thentication DLL is responsible for authenticating a user by checking whether a given user name 
and password match (or whatever mechanism was used to provide credentials), and if so, return-
ing to Lsass information detailing the user’s security identity, which Lsass uses to generate a token.

 ■ Interactive logon manager (Winlogon) This is a user-mode process running Winlogon.
exe that is responsible for responding to the SAS and for managing interactive logon sessions. 
Winlogon creates a user’s first process when the user logs on, for example.

 ■ Logon user interface (LogonUI) This is a user-mode process running the image LogonUI.
exe that presents users with the user interface they can use to authenticate themselves on the 
system. LogonUI uses credential providers to query user credentials through various methods.

 ■ Credential providers (CPs) These are in-process COM objects that run in the LogonUI pro-
cess (started on demand by Winlogon when the SAS is performed) and used to obtain a user’s 
name and password, smartcard PIN, biometric data (such as a fingerprint), or other identifica-
tion mechanism. The standard CPs are authui.dll, SmartcardCredentialProvider.dll, BioCredProv.
Dll, and FaceCredentialProvider.dll, a face-detection provider added in Windows 10.

 ■ Network logon service (Netlogon) This is a Windows service (Netlogon.dll, hosted in a 
standard SvcHost) that sets up the secure channel to a domain controller, over which security 
requests—such as an interactive logon (if the domain controller is running Windows NT 4) or 
LAN Manager and NT LAN Manager (v1 and v2) authentication validation—are sent. Netlogon 
is also used for Active Directory logons.

 ■ Kernel Security Device Driver (KSecDD) This is a kernel-mode library (%SystemRoot%\
System32\Drivers\Ksecdd.sys) of functions that implement the advanced local procedure call 
(ALPC) interfaces that other kernel mode security components, including the Encrypting File 
System (EFS), use to communicate with Lsass in user mode.

 ■ AppLocker This mechanism allows administrators to specify which executable files, DLLs, and 
scripts can be used by specified users and groups. AppLocker consists of a driver (%SystemRoot%\
System32\Drivers\AppId.sys) and a service (AppIdSvc.dll) running in a standard SvcHost process.

Figure 7-1 shows the relationships among some of these components and the databases they manage.
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FIGURE 7-1 Windows security components.

EXPERIMENT: Looking inside HKLM\SAM and HKLM\Security
The security descriptors associated with the SAM and Security keys in the registry prevent ac-
cess by any account other than the local system account. One way to gain access to these keys 
for exploration is to reset their security, but that can weaken the system’s security. Another way 
is to execute Regedit.exe while running as the local system account. This can be done using the 
PsExec tool from Sysinternals with the –s option, as shown here: 

C:\>psexec –s –i –d c:\windows\regedit.exe

The -i switch instructs PsExec to run the target executable under the interactive window 
station. Without it, the process would run in a non-interactive window station, on an invisible 
desktop. The -d switch just indicates PsExec should not wait until the target process exits.
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The SRM, which runs in kernel mode, and Lsass, which runs in user mode, communicate using the 
ALPC facility described in Chapter 8, “System mechanisms,” in Part 2. During system initialization, the 
SRM creates a port, named SeRmCommandPort, to which Lsass connects. When the Lsass process starts, 
it creates an ALPC port named SeLsaCommandPort. The SRM connects to this port, resulting in the cre-
ation of private communication ports. The SRM creates a shared memory section for messages longer 
than 256 bytes, passing a handle in the connect call. Once the SRM and Lsass connect to each other 
during system initialization, they no longer listen on their respective connect ports. Therefore, a later 
user process has no way to connect successfully to either of these ports for malicious purposes. The 
connect request will never complete.

Virtualization-based security

It is common to refer to the kernel as trusted, due to its inherently higher level of privilege and isolation 
from user-mode applications. Yet, countless third-party drivers are written each month—Microsoft has 
stated that a million unique driver hashes are seen through telemetry, monthly! Each of these can con-
tain any number of vulnerabilities, not to mention purposefully malicious kernel-mode code. In such a 
reality, the idea that the kernel is a small, protected component, and that user-mode applications are 
“safe” from attack, is clearly an unrealized ideal. This state of affairs leads to an inability to fully trust 
the kernel, and leaves key user-mode applications, which may contain highly private user data, open to 
compromise from other malicious user-mode applications (which exploit buggy kernel-mode compo-
nents) or malicious kernel-mode programs.

As discussed in Chapter 2, “System architecture,” Windows 10 and Server 2016 include a virtualization-
based security (VBS) architecture that enables an additional orthogonal level of trust: the virtual trust 
level (VTL). In this section, you will see how Credential Guard and Device Guard leverage VTLs to protect 
user data and provide an additional hardware-trust-based layer of security for digital code-signing pur-
poses. At the end of this chapter, you will also see how Kernel Patch Protection (KPP) is provided through 
the PatchGuard component and enhanced by the VBS-powered HyperGuard technology.

As a reminder, normal user-mode and kernel code runs in VTL 0 and is unaware of the existence of 
VTL 1. This means anything placed at VTL 1 is hidden and inaccessible to VTL 0 code. If malware is able 
to penetrate the normal kernel, it still cannot gain access to anything stored in VTL 1, including even 
user-mode code running in VTL 1 (which is called Isolated User Mode). Figure 7-2 shows the main VBS 
components we’ll be looking at in this section:

 ■ Hypervisor-Based Code Integrity (HVCI) and Kernel-Mode Code Integrity (KMCI), which power 
Device Guard

 ■ LSA (Lsass.exe) and isolated LSA (LsaIso.exe), which power Credential Guard

Additionally, recall that the implementation of Trustlets, which run in IUM, was shown in Chapter 3, 
“Process and jobs.”
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FIGURE 7-2 VBS components.

Of course, like any trusted component, VTL 1 also makes certain assumptions that the components it 
depends on can also be trusted. As such, VTL 1 requires Secure Boot (and thus, firmware) to function cor-
rectly, the hypervisor to not have been compromised, and hardware elements such as the IOMMU and Intel 
Management Engine to be free of VTL 0–accessible vulnerabilities. For more information on the hardware 
chain of trust and boot-related security technologies, see Chapter 11, “Startup and shutdown," in Part 2.

Credential Guard
To understand the security boundary and protection that Credential Guard provides, it is important to 
understand the various components that provide access to a user’s resources and data or login capa-
bilities on a networked environment:

 ■ Password This is the primary credential used by interactive users to identify themselves on 
the machine. This credential is used for authentication and to derive the other components of 
the credential model. It is the most highly sought after piece of a user’s identity.

 ■ NT one-way function (NT OWF) This is a hash used by legacy components to identify the 
user (after a successful password logon) using the NT LAN Manager (NTLM) protocol. While 
modern networked systems no longer use NTLM to authenticate the user, many local compo-
nents still do, as do some types of legacy network components (such as NTLM-based authen-
ticating proxies). Because NTOWF is an MD4 hash, its algorithmic complexity in the face of 
today’s hardware, and its lack of anti-repeatability protection, means that intercepting the hash 
leads to instant compromise and even possible recovery of the password.

 ■ Ticket-granting ticket (TGT) This is the equivalent of the NTOWF when a much more 
modern remote authentication mechanism is used: Kerberos. This is the default on Windows 
Active Directory–based domains and is enforced on Server 2016. The TGT and a corresponding 
key are provided to the local machine after a successful logon ( just like the NTOWF on NTLM), 
and intercepting both components will result in instant compromise of the user’s credentials, 
although reuse and password recovery will not be possible.

Without Credential Guard enabled, some or all of these components of a user’s authentication cre-
dentials are present in the memory of Lsass.
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Note To enable Credential Guard on Windows 10 Enterprise and Server 2016 editions, 
open the Group Policy editor (gpedit.msc), choose Computer Configuration, select 
Administrative Templates, choose System, choose Device Guard, and select Turn on 
Virtualization Based Security. In the top-left part of the dialog box that appears, select 
Enabled. Finally, select one of the Enabled options in the Credential Guard Configuration 
combo box.

Protecting the password
The password, encrypted with a local symmetric key, is stored to provide single sign-on (SSO) capabili-
ties over protocols such as digest authentication (WDigest, used for HTTP-based authentication since 
Windows XP) or Terminal Services/RDP. As these protocols use plaintext authentication, the password 
must be kept in memory, which is then accessible through code injection, debugger, or other exploit 
techniques, and decrypted. Credential Guard cannot change the nature of these inherently unsafe pro-
tocols. Therefore, the only possible solution, which Credential Guard employs, is to disable SSO func-
tionality for such protocols. This causes a loss of compatibility and forces the user to re-authenticate.

Obviously, a preferable solution is to remove the usage of a password completely, which Windows 
Hello, described in the “Windows Hello” section later in this chapter, allows. Authenticating with 
biometric credentials such as a user’s face or fingerprint removes the need to ever type a password, se-
curing the interactive credential against hardware key loggers, kernel sniffing/hooking tools, and user 
mode–based spoofing applications. If the user never has a password to type, there is no password to 
steal. Another similar secure credential is the combination of a smart card and associated PIN. While a 
PIN may be stolen as its typed in, the smart card is a physical element whose key cannot be intercepted 
without a complex hardware-based attack. This is a type of two-factor authentication (TFA), of which 
many other implementations exist.

Protecting the NTOWF/TGT key
Even with protected interactive credentials, a successful login results in a domain controller’s key distribution 
center (KDC) returning the TGT and its key, as well as the NTOWF for legacy applications. Later, the user sim-
ply uses the NTOWF for accessing legacy resources and uses the TGT and its key to generate a service ticket. 
This can then be used to access remote resources (such as files on a share), as shown in Figure 7-3.

FIGURE 7-3 Accessing remote resources.
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Thus, with either the NTOWF or the TGT and its key (stored in Lsass) in the attacker’s hands, ac-
cess to resources is possible even without the smart card, PIN, or user’s face or fingerprint. Protecting 
Lsass from access by an attacker is thus one option that can be used, and which is possible using the 
Protected Process Light (PPL) architecture described in Chapter 3.

Lsass can be configured to run protected by setting the DWORD value RunAsPPL in the HKLM\
System\CurrentControlSet\Consol\Lsa registry key to 1. (This is not a default option, as legitimate third-
party authentication providers [DLLs] load and execute in the context of Lsass, which would not be 
possible if Lsass would run protected.) Unfortunately, while this protection does guard the NTOWF and 
TGT key from user-mode attackers, it does not protect against kernel attackers or user-mode attackers 
that leverage vulnerabilities in any of the millions of drivers that are produced monthly. Credential 
Guard solves this problem by using another process, Lsaiso.exe, which runs as a Trustlet in VTL 1. This 
process therefore stores the user’s s secrets in its memory, not in Lsass.

Secure communication 
As shown in Chapter 2, VTL 1 has a minimal attack surface, as it does not have the full regular “NT” 
kernel, nor does it have any drivers or access to I/O of hardware of any kind. As such, isolated LSA, 
which is a VTL 1 Trustlet, cannot directly communicate with the KDC. This is still the responsibility of 
the Lsass process, which serves as a proxy and protocol implementer, communicating with the KDC to 
authenticate the user and to receive the TGT and the key and NTOWF, as well as communicating with 
the file server by using service ticket. This seemingly results in a problem: the TGT and its key/NTOWF 
transiently pass through Lsass during authentication, and the TGT and its key are somehow available to 
Lsass for the generation of service tickets. This leads to two questions: How does Lsass send and receive 
the secrets from isolated ISA, and how can we prevent an attacker from doing the same?

To answer the first question, recall that Chapter 3, “Processes and jobs,” described which services are 
available to Trustlets. One was the Advanced Local Procedure Call (ALPC), which the Secure Kernel sup-
ports by proxying the NtAlpc* calls to the Normal Kernel. Then, the Isolated User Mode environment 
implements support for the RPC runtime library (Rpcrt4.dll) over the ALPC protocol, which allows a VTL 
0 and VTL 1 application to communicate using local RPC just like any other application and service. In 
Figure 7-4, which shows Process Explorer, you can see the LsaIso.exe process, which has a handle to the 
LSA_ISO_RPC_SERVER ALPC port. This is used to communicate with the Lsass.exe process. (See Chapter 
8 in Part 2 for more information on ALPC.)

To answer the second question, some understanding of cryptographic protocols and challenge/
response models is required. If you’re already familiar with some of the basic concepts of SSL/TLS tech-
nology and its use in Internet communications to prevent man-in-the-middle (MitM) attacks, you can 
think of the KDC and isolated LSA protocol in a similar way. Although Lsass sits in the middle as a proxy 
would, it only sees encrypted traffic between the KDC and isolated LSA, without the ability to under-
stand its contents. Because isolated LSA establishes a local “session key,” which only lives in VTL 1, and 
then uses a secure protocol to send this session key encrypted with yet another key, which only the KDC 
has, the KDC can then respond with the TGT and its key after encrypting it with the isolated LSA session 
key. Therefore, Lsass sees an encrypted message to the KDC (which it can’t decrypt) and an encrypted 
message from the KDC (which it can’t decrypt).
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FIGURE 7-4 LsaIso.exe and its ALPC port.

This model can even be used to protect legacy NTLM authentication, which is based on a challenge/
response model. For example, when a user logs in with a plaintext credential, LSA sends it to isolated 
LSA, which then encrypts it with its session key and returns the encrypted credential to Lsass. Later, 
when an NTLM challenge/response is required, Lsass sends the NTLM challenge and the previously 
encrypted credentials to isolated LSA. At this point, only isolated LSA has the encryption key, so it 
decrypts the credentials and generates an NTLM response based on the challenge. 

Note, however, that four possible attacks exist in this model:

 ■ If the machine is already physically compromised, the plaintext password can be intercepted 
either as it is inputted or as it is sent to isolated LSA (if Lsass is already compromised). Using 
Windows Hello can mitigate against this.

 ■ As mentioned, NTLM does not have anti-replay properties. Therefore, if the NTLM response is 
captured, it can be replayed for the same challenge. Alternatively, if the attacker can compro-
mise Lsass after logon, it can capture the encrypted credential and force isolated LSA to gener-
ate new NTLM responses for arbitrary NTLM challenges. This attack, however, only works until 
reboot, because isolated LSA generates a new session key at that point.

 ■ In the case of Kerberos logon, the NTOWF (which is not encrypted) can be intercepted and then 
reused, just like in a standard pass-the-hash attack. Again, however, this requires an already 
compromised machine (or physical network interception).

 ■ The user, with physical access, may be able to disable Credential Guard. In this situation, the 
legacy authentication model is used (a so-called “downgrade attack”), and older attack models 
can now be employed.
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UEFI lock
Because disabling Credential Guard (which is ultimately nothing more than a registry setting) is 
trivial for an attacker, Secure Boot and UEFI can be leveraged to prevent a non-physically present 
administrator (such as malware with admin rights) from disabling Credential Guard. This is done by 
enabling Credential Guard with UEFI Lock. In this mode, an EFI runtime variable is written to firmware 
memory and a reboot is required. At the reboot, the Windows boot loader, which still operates in EFI 
Boot Services mode, will write an EFI boot variable (which has the property of not being readable or 
writeable once EFI Boot Services mode is exited) to record the fact that Credential Guard is enabled. 
Additionally, a Boot Configuration Database (BCD) option will be recorded.

When the kernel boots, it will automatically rewrite the required Credential Guard registry key in the 
presence of the BCD option and/or UEFI runtime variable. If the BCD option is deleted by an attacker, 
BitLocker (if enabled) and TPM-based remote attestation (if enabled) will detect the change and require 
physical input of the admin’s recovery key before booting, which will then restore the BCD option based 
on the UEFI runtime variable. If the UEFI runtime variable is deleted, the Windows boot loader will restore it 
based on the UEFI boot variable. As such, without special code to delete the UEFI boot variable—which can 
only be done in EFI Boot Services mode—there is no way to disable Credential Guard in UEFI lock mode.

The only such code that exists is in a special Microsoft binary called SecComp.efi. This must be 
downloaded by the administrator, who must then either boot the computer from an alternate EFI-
based device and manually execute it (which will require the BitLocker recovery key as well as physical 
access) or modify the BCD (which will require the BitLocker recovery key). At the reboot, SecComp.efi 
will require user confirmation while in UEFI mode (which can only be done by a physical user).

Authentication policies and armored Kerberos
Using a security model of “secure, unless already compromised before logon or by a physical adminis-
trator” is definitely an improvement over the traditional non-Credential Guard–based security model. 
However, some enterprises and organizations may want an even stronger security guarantee: that 
even a compromised machine cannot be used to fake or replay a user’s credentials, and that if a user’s 
credentials have been compromised, they cannot be used outside of specific systems. By leveraging a 
Server 2016 feature called Authentication Policies, and armored Kerberos, Credential Guard can oper-
ate in this heightened security mode.

In this mode, the VTL 1 Secure Kernel will collect, using the TPM (a file on disk can also be used, but 
makes the security moot), a special machine ID key. This key is then used to generate a machine TGT 
key during the initial domain join operation as the machine is provisioned (obviously, it is important to 
ensure the machine is in a trusted state during provisioning), and this TGT key is sent to the KDC. Once 
configured, when the user logs in with his or her credential, it is combined with the machine’s creden-
tial (which only isolated LSA has access to), which forms a proof-of-origin key. The KDC will then reply 
with the NTOWF and user TGT and its key after encrypting it with the proof-of-origin key. In this mode, 
two security guarantees are provided:

 ■ The user is authenticating from a known machine If the user, or an attacker, has the 
original credentials, and attempts to use them on a different machine, its TPM-based machine 
credential will be different.
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 ■ The NTLM response/user ticket is coming from isolated LSA and has not been manually 
generated from Lsass This guarantees that Credential Guard is enabled on the machine, 
even if the physical user can disable it in some way.

Unfortunately, once again, if the machine is compromised in such a way that the proof-of-origin-
encrypted KDC response that contains the user TGT and its key is intercepted, it can be stored and used 
to request session key–encrypted service tickets from isolated LSA. This can then be sent to a file server 
(for example) to access it until a reboot is issued to wipe the session key. As such, on a system with 
Credential Guard, it is recommended to reboot each time a user logs off. Otherwise, an attacker may 
be able to issue valid tickets even after the user is no longer present.

Future improvements
As discussed in Chapter 2 and Chapter 3, the Secure Kernel in VTL 1 is currently undergoing improve-
ments to add support for specialized classes of PCI and USB hardware, which can exclusively be com-
municated with only through the hypervisor and VTL 1 code using the Secure Device Framework (SDF). 
Combined with BioIso.exe and FsIso.exe, which are new Trustlets to securely obtain biometric data and 
video frames (from a webcam), a VTL 0 kernel mode–based component cannot intercept the con-
tents of a Windows Hello authentication attempt (which we’ve classified as safe compared to a user’s 
plaintext password, but still technically capturable through custom driver-based interception). Once 
released, Windows Hello credentials will be guaranteed at the hardware level to not ever be available 
to VTL 0. In this mode, Lsass will not need to be involved in a Windows Hello authentication. Isolated 
LSA will obtain the credentials directly from the isolated biometrics or isolated frame service.

Note The Secure Driver Framework (SDF) is the WDF-equivalent for VTL 1 drivers. This 
framework is not currently public, but is shared with Microsoft partners only for creating 
VTL 1 drivers.

Device Guard
While Credential Guard is concerned with safeguarding the user’s credentials, Device Guard has a 
completely different goal: protecting the user’s machine itself from different kinds of software- and 
hardware-based attacks. Device Guard leverages the Windows Code Integrity services, such as Kernel-
Mode Code Signing (KMCS) and User-Mode Code Integrity (UMCI), and strengthens them through 
HyperVisor Code Integrity (HVCI). (See Chapter 8 in Part 2 for more information on Code Integrity.)

Additionally, Device Guard is fully configurable, thanks to Custom Code Integrity (CCI) and signing 
policies that are protected by Secure Boot and defined by the enterprise administrator. These policies, 
which are explained in Chapter 8, allow the enforcement of inclusion/exclusion lists that are based on 
cryptographically sound information (such as certificate signers or SHA-2 hashes) instead of file paths 
or file names as with AppLocker’s policies. (See the section “AppLocker” later in this chapter for more 
on AppLocker.)



618 CHAPTER 7 Security

Therefore, while we won’t describe here the different ways in which Code Integrity policies can be 
defined and customized, we will show how Device Guard enforces whatever these policies may be set 
to, through the following guarantees:

 ■ If kernel-mode code signing is enforced, only signed code can load, regardless of the 
kernel itself being compromised This is because the kernel-loading process will notify the 
Secure Kernel in VTL 1 whenever it loads a driver, and only successfully load it once HVCI has 
validated its signature.

 ■ If kernel-mode code signing is enforced, signed code cannot be modified once loaded, 
even by the kernel itself This is because the executable code pages will be marked as read-
only through the hypervisor’s Second Level Address Translation (SLAT) mechanism, which is 
further explained in Chapter 8 in Part 2.

 ■ If kernel-mode code signing is enforced, dynamically allocated code is prohibited (a 
tautology of the first two bullets) This is because the kernel does not have the ability to 
allocate executable entries in the SLAT page table entries, even though the kernel’s page tables 
themselves may mark such code as executable.

 ■ If kernel-mode code signing is enforced, UEFI runtime code cannot be modified, even by 
other UEFI runtime code or by the kernel itself Additionally, Secure Boot should already 
have validated that this code was signed at the time it was loaded. (Device Guard relies on this 
assumption.) Furthermore, UEFI runtime data cannot be made executable. This is done by read-
ing all the UEFI runtime code and data, enforcing the correct permissions, and duplicating them 
in the SLAT page table entries, which are protected in VTL 1.

 ■ If kernel-mode code signing is enforced, only kernel-mode (ring 0) signed code can 
execute This may once again sound like a tautology of the first three bullets, but consider 
signed ring 3 code. Such code is valid from UMCI’s perspective and has been authorized as 
executable code in the SLAT page table entries. The Secure Kernel relies on the Mode-Based 
Execution Control (MBEC) feature, if present in hardware, which enhances the SLAT with a user/
kernel executable bit, or the hypervisor’s software emulation of this feature, called Restricted 
User Mode (RUM).

 ■ If user-mode code signing is enforced, only signed user-mode images can be loaded  
This means all executable processes must be signed (.exe) files as well as the libraries they load (.dll).

 ■ If user-mode code signing is enforced, the kernel does not allow user-mode applications 
to make existing executable code pages writable Obviously, it is impossible for user-mode 
code to allocate executable memory or to modify existing memory without asking the kernel 
permission. As such, the kernel can apply its usual enforcement rules. But even in the case of a 
compromised kernel, the SLAT ensures that no user-mode pages will be executable without the 
Secure Kernel’s knowledge and approval, and that such executable pages can never be writeable.

 ■ If user-mode code signing is enforced, and hard code guarantees are requested by the 
signing policy, dynamically allocated code is prohibited This is an important distinction 
from the kernel scenarios. By default, signed user-mode code is allowed to allocate additional 
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executable memory to support JIT scenarios unless a special enhanced key usage (EKU) is 
present in the application’s certificate, which serves as a dynamic code generation entitlement. 
At present, NGEN.EXE (.NET Native Image Generation) has this EKU, which allows IL-only .NET 
executables to function even in this mode.

 ■ If user-mode PowerShell constrained language mode is enforced, all PowerShell scripts 
that use dynamic types, reflection, or other language features that allow the execution 
or arbitrary code and/or marshalling to Windows/.NET API functions must also be signed 
This prevents possibly malicious PowerShell scripts from escaping constrained mode.

SLAT page table entries are protected in VTL 1 and contain the “ground truth” for what permissions 
a given page of memory can have. By withholding the executable bit as needed, and/or withholding 
the writable bit from existing executable pages (a security model known as W^X, pronounced double-
you xor ex), Device Guard moves all code-signing enforcement into VTL 1 (in a library called SKCI.DLL, 
or Secure Kernel Code Integrity).

Additionally, even if not configured explicitly on the machine, Device Guard operates in a third 
mode if Credential Guard is enabled by enforcing that all Trustlets have a specific Microsoft signature 
with a certificate that includes the Isolated User Mode EKU. Otherwise, an attacker with ring 0 privi-
leges could attack the regular KMCS mechanism and load a malicious Trustlet to attack the isolated LSA 
component. Furthermore, all user-mode code-signing enforcements are active for the Trustlet, which 
executes in hard code guarantees mode.

Finally, as a performance optimization, it is important to understand that the HVCI mechanism will 
not reauthenticate every single page when the system resumes from hibernation (S4 sleep state). In 
some cases, the certificate data may not even be available. Even if this were the case, the SLAT data 
must be reconstructed, which means that the SLAT page table entries are stored in the hibernation 
file itself. As such, the hypervisor needs to trust the hibernation file has not been modified in any 
way. This is done by encrypting the hibernation file with a local machine key that is stored in the TPM. 
Unfortunately, without a TPM present, this key must be stored in a UEFI runtime variable, which allows 
a local attacker to decrypt the hibernation file, modify it, and re-encrypt it.

Protecting objects

Object protection and access logging are the essence of discretionary access control and auditing. 
The objects that can be protected on Windows include files, devices, mailslots, pipes (named and 
anonymous), jobs, processes, threads, events, keyed events, event pairs, mutexes, semaphores, shared 
memory sections, I/O completion ports, LPC ports, waitable timers, access tokens, volumes, window 
stations, desktops, network shares, services, registry keys, printers, Active Directory objects, and so 
on—theoretically, anything managed by the executive object manager. In practice, objects that are not 
exposed to user mode (such as driver objects) are usually not protected. Kernel-mode code is trusted 
and usually uses interfaces to the object manager that do not perform access checking. Because system 
resources that are exported to user mode (and hence require security validation) are implemented as 
objects in kernel mode, the Windows object manager plays a key role in enforcing object security. 
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You can view object protection with the WinObj Sysinternals tool (for named objects), shown 
in Figure 7-5. Figure 7-6 shows the Security property page of a section object in the user’s session. 
Although files are the resources most commonly associated with object protection, Windows uses the 
same security model and mechanism for executive objects as it does for files in the file system. As far as 
access controls are concerned, executive objects differ from files only in the access methods supported 
by each type of object.

FIGURE 7-5 WinObj with a section object selected.

FIGURE 7-6 An executive object and its security descriptor, viewed by WinObj.
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What is shown in Figure 7-6 is actually the object’s discretionary access control list (DACL). We will 
describe DACLs in detail in the section “Security descriptors and access control.”

You can use Process Explorer to view the security properties of objects by double-clicking a handle 
in the lower pane view (when configured to show handles). This has the added benefit of displaying 
objects that are unnamed. The Property page shown is the same in both tools, as the page itself is 
provided by Windows.

To control who can manipulate an object, the security system must first be sure of each user’s 
identity. This need to guarantee the user’s identity is the reason that Windows requires authenticated 
logon before accessing any system resources. When a process requests a handle to an object, the 
object manager and the security system use the caller’s security identification and the object’s security 
descriptor to determine whether the caller should be assigned a handle that grants the process access 
to the object it desires.

As discussed later in this chapter, a thread can assume a different security context than that of its 
process. This mechanism is called impersonation. When a thread is impersonating, security validation 
mechanisms use the thread’s security context instead of that of the thread’s process. When a thread 
isn’t impersonating, security validation falls back on using the security context of the thread’s owning 
process. It’s important to keep in mind that all the threads in a process share the same handle table, so 
when a thread opens an object—even if it’s impersonating—all the threads of the process have access 
to the object.

Sometimes, validating the identity of a user isn’t enough for the system to grant access to a resource 
that should be accessible by the account. Logically, one can think of a clear distinction between a ser-
vice running under the Alice account and an unknown application that Alice downloaded while brows-
ing the Internet. Windows achieves this kind of intra-user isolation with the Windows integrity mecha-
nism, which implements integrity levels. The Windows integrity mechanism is used by User Account 
Control (UAC) elevations, User Interface Privilege Isolation (UIPI) and AppContainers, all described later 
in this chapter.

Access checks
The Windows security model requires that a thread specify up front, at the time that it opens an object, 
what types of actions it wants to perform on the object. The object manager calls the SRM to perform 
access checks based on a thread’s desired access. If the access is granted, a handle is assigned to the 
thread’s process with which the thread (or other threads in the process) can perform further operations 
on the object. 

One event that causes the object manager to perform security access validation is when a thread 
opens an existing object using a name. When an object is opened by name, the object manager per-
forms a lookup of the specified object in the object manager namespace. If the object isn’t located in a 
secondary namespace, such as the configuration manager’s registry namespace or a file system driver’s 
file system namespace, the object manager calls the internal function ObpCreateHandle once it locates 
the object. As its name implies, ObpCreateHandle creates an entry in the process handle table that be-
comes associated with the object. ObpCreateHandle first calls ObpGrantAccess to see if the thread has 
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permission to access the object. If so, ObpCreateHandle calls the executive function ExCreateHandle 
to create the entry in the process handle table. ObpGrantAccess calls ObCheckObjectAccess to initiate 
the security access check.

ObpGrantAccess passes to ObCheckObjectAccess the security credentials of the thread opening 
the object, the types of access to the object that the thread is requesting (read, write, delete, and so 
forth, including object-specific operations), and a pointer to the object. ObCheckObjectAccess first 
locks the object’s security descriptor and the security context of the thread. The object security lock 
prevents another thread in the system from changing the object’s security while the access check is in 
progress. The lock on the thread’s security context prevents another thread (from that process or a dif-
ferent process) from altering the security identity of the thread while security validation is in progress. 
ObCheckObjectAccess then calls the object’s security method to obtain the security settings of the 
object. (See Chapter 8 in Part 2 for a description of object methods.) The call to the security method 
might invoke a function in a different executive component. However, many executive objects rely on 
the system’s default security management support.

When an executive component defining an object doesn’t want to override the SRM’s default 
security policy, it marks the object type as having default security. Whenever the SRM calls an object’s 
security method, it first checks to see whether the object has default security. An object with default se-
curity stores its security information in its header, and its security method is SeDefaultObjectMethod. 
An object that doesn’t rely on default security must manage its own security information and supply 
a specific security method. Objects that rely on default security include mutexes, events, and sema-
phores. A file object is an example of an object that overrides default security. The I/O manager, which 
defines the file object type, has the file system driver on which a file resides manage (or choose not 
to implement) the security for its files. Thus, when the system queries the security on a file object that 
represents a file on an NTFS volume, the I/O manager file object security method retrieves the file’s 
security using the NTFS file system driver. Note, however, that ObCheckObjectAccess isn’t executed 
when files are opened because they reside in secondary namespaces. The system invokes a file object’s 
security method only when a thread explicitly queries or sets the security on a file (with the Windows 
SetFileSecurity or GetFileSecurity functions, for example).

After obtaining an object’s security information, ObCheckObjectAccess invokes the SRM function 
SeAccessCheck. SeAccessCheck is one of the functions at the heart of the Windows security model. 
Among the input parameters SeAccessCheck accepts are the object’s security information, the security 
identity of the thread as captured by ObCheckObjectAccess, and the access that the thread is request-
ing. SeAccessCheck returns true or false, depending on whether the thread is granted the access it 
requested to the object.

Here is an example: Suppose a thread wants to know when a specific process exits (or terminates in 
some way). It needs to get a handle to the target process by calling the OpenProcess API, passing in 
two important arguments: the unique process ID (let’s assume it’s known or has been obtained in some 
way) and an access mask indicating the operations that the thread wants to perform using the returned 
handle. Lazy developers may just pass PROCESS_ALL_ACCESS for the access mask, specifying they want 
all possible access rights for the process. One of the following two results would occur:
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 ■ If the calling thread can be granted all the permissions, it would get back a valid handle and 
then could call WaitForSingleObject to wait for the process to exit. However, another thread 
in the process, perhaps with fewer privileges, can use the same handle to do other operations 
with the process, such as terminate it prematurely with TerminateProcess, because the handle 
allows all possible operations on the process.

 ■ The call can fail if the calling thread does not have sufficient privileges to be granted all possible 
access and the result is an invalid handle, meaning no access to the process. This is unfortunate, 
because the thread just needed to ask for the SYNCHRONIZE access mask. That has a much bet-
ter chance of succeeding than asking for PROCESS_ALL_ACCESS.

The simple conclusion here is that a thread should request the exact access it requires—no more, 
no less.

Another event that causes the object manager to execute access validation is when a process refer-
ences an object using an existing handle. Such references often occur indirectly, as when a process calls 
on a Windows API to manipulate an object and passes an object handle. For example, a thread opening a 
file can request read permission to the file. If the thread has permission to access the object in this way, as 
dictated by its security context and the security settings of the file, the object manager creates a handle—
representing the file—in the handle table of the thread’s process. The types of accesses the threads in the 
process are granted through the handle are stored with the handle by the object manager.

Subsequently, the thread could attempt to write to the file using the WriteFile Windows function, 
passing the file’s handle as a parameter. The system service NtWriteFile, which WriteFile calls via 
Ntdll.dll, uses the object manager function ObReferenceObjectByHandle (documented in the WDK) 
to obtain a pointer to the file object from the handle. ObReferenceObjectByHandle accepts the access 
that the caller wants from the object as a parameter. After finding the handle entry in the process han-
dle table, ObReferenceObjectByHandle compares the access being requested with the access granted 
at the time the file was opened. In this example, ObReferenceObjectByHandle will indicate that the 
write operation should fail because the caller didn’t obtain write access when the file was opened.

The Windows security functions also enable Windows applications to define their own private 
objects and to call on the services of the SRM (through the AuthZ user-mode APIs, described later) to 
enforce the Windows security model on those objects. Many kernel-mode functions that the object 
manager and other executive components use to protect their own objects are exported as Windows 
user-mode APIs. The user-mode equivalent of SeAccessCheck is the AuthZ API AccessCheck. 
Windows applications can therefore leverage the flexibility of the security model and transparently 
integrate with the authentication and administrative interfaces that are present in Windows.

The essence of the SRM’s security model is an equation that takes three inputs: the security iden-
tity of a thread, the access that the thread wants to an object, and the security settings of the object. 
The output is either yes or no and indicates whether the security model grants the thread the access 
it desires. The following sections describe the inputs in more detail and then document the model’s 
access-validation algorithm.
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EXPERIMENT: Viewing handle access masks
Process Explorer can show the access mask associated with open handles. Follow these steps:

1. Open Process Explorer. 

2. Open the View menu, choose Lower Pane View, and select Handles to configure the 
lower pane to show handles. 

3. Right-click the column headers of the lower pane and choose Select Columns to open 
the dialog box shown here:

4. Select the Access Mask and Decoded Access Mask check boxes (the latter is available 
in version 16.10 and later) and click OK. 

5. Select Explorer.exe from the process list and look at the lower pane handles. Each 
handle has an access mask, indicating the access granted using this handle. To help 
with interpreting the bits of the access mask, the decoded access mask column shows  
a textual representation of the access masks for many types of objects:

Notice there are generic access rights (for example, READ_CONTROL and SYNCHRONIZE) and 
specific ones (for example, KEY_READ and MODIFY_STATE). Most of the specific ones are short-
ened versions of the actual defines in the windows headers (for example, MODIFY_STATE instead 
of EVENT_MODIFY_STATE, TERMINATE instead of PROCESS_TERMINATE).
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Security identifiers
Instead of using names (which might or might not be unique) to identify entities that perform actions 
in a system, Windows uses security identifiers (SIDs). Users have SIDs, as do local and domain groups, 
local computers, domains, domain members, and services. A SID is a variable-length numeric value that 
consists of a SID structure revision number, a 48-bit identifier authority value, and a variable number 
of 32-bit subauthority or relative identifier (RID) values. The authority value identifies the agent that 
issued the SID, and this agent is typically a Windows local system or a domain. Subauthority values 
identify trustees relative to the issuing authority, and RIDs are simply a way for Windows to create 
unique SIDs based on a common base SID. Because SIDs are long and Windows takes care to generate 
truly random values within each SID, it is virtually impossible for Windows to issue the same SID twice 
on machines or domains anywhere in the world.

When displayed textually, each SID carries an S prefix, and its various components are separated 
with hyphens like so:

S-1-5-21-1463437245-1224812800-863842198-1128

In this SID, the revision number is 1, the identifier authority value is 5 (the Windows security author-
ity), and four subauthority values plus one RID (1128) make up the remainder of the SID. This SID is a 
domain SID, but a local computer on the domain would have a SID with the same revision number, 
identifier authority value, and number of subauthority values.

When you install Windows, the Windows Setup program issues the computer a machine SID. 
Windows assigns SIDs to local accounts on the computer. Each local-account SID is based on the source 
computer’s SID and has a RID at the end. RIDs for user accounts and groups start at 1000 and increase 
in increments of 1 for each new user or group. Similarly, Domain Controller Promote (Dcpromo.exe), 
the utility used to create a new Windows domain, reuses the computer SID of the computer being pro-
moted to domain controller as the domain SID and re-creates a new SID for the computer if it is ever 
demoted. Windows issues to new domain accounts SIDs that are based on the domain SID and have 
an appended RID (again starting at 1000 and increasing in increments of 1 for each new user or group). 
A RID of 1028 indicates that the SID is the twenty-ninth SID the domain issued.

Windows issues SIDs that consist of a computer or domain SID with a predefined RID to many pre-
defined accounts and groups. For example, the RID for the Administrator account is 500, and the RID 
for the guest account is 501. A computer’s local Administrator account, for example, has the computer 
SID as its base with the RID of 500 appended to it:

S-1-5-21-13124455-12541255-61235125-500

Windows also defines a number of built-in local and domain SIDs to represent well-known groups. 
For example, a SID that identifies any and all accounts (except anonymous users) is the Everyone SID: 
S-1-1-0. Another example of a group that a SID can represent is the Network group, which is the group 
that represents users who have logged on to a machine from the network. The Network group SID is 
S-1-5-2. Table 7-2, reproduced here from the Windows SDK documentation, shows some basic well-
known SIDs, their numeric values, and their use. Unlike users’ SIDs, these SIDs are predefined con-
stants, and have the same values on every Windows system and domain in the world. Thus, a file that 
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is accessible by members of the Everyone group on the system where it was created is also accessible 
to Everyone on any other system or domain to which the hard drive where it resides happens to be 
moved. Users on those systems must, of course, authenticate to an account on those systems before 
becoming members of the Everyone group. 

TABLE 7-2 A few well-known SIDs

SID Name Use

S-1-0-0 Nobody Used when the SID is unknown

S-1-1-0 Everyone A group that includes all users except anonymous users

S-1-2-0 Local Users who log on to terminals locally (physically) connected to the system

S-1-3-0 Creator Owner ID A security identifier to be replaced by the security identifier of the user 
who created a new object (used in inheritable ACEs)

S-1-3-1 Creator Group ID Identifies a security identifier to be replaced by the Primary group SID of 
the user who created a new object (used in inheritable ACEs)

S-1-5-18 Local System account Used by services

S-1-5-19 Local Service account Used by services

S-1-5-20 Network Service account Used by services

Note See Microsoft Knowledge Base article 243330 for a list of defined SIDs at  
http://support.microsoft.com/kb/243330.

Finally, Winlogon creates a unique logon SID for each interactive logon session. A typical use of a 
logon SID is in an access control entry (ACE) that allows access for the duration of a client’s logon ses-
sion. For example, a Windows service can use the LogonUser function to start a new logon session. The 
LogonUser function returns an access token from which the service can extract the logon SID. The ser-
vice can then use the SID in an ACE (described in the section “Security descriptors and access control” 
later in this chapter) that allows the client’s logon session to access the interactive window station and 
desktop. The SID for a logon session is S-1-5-5-X-Y, where the X and Y are randomly generated.

EXPERIMENT: Using PsGetSid and Process Explorer to view SIDs
You can easily see the SID representation for any account you’re using by running the PsGetSid 
utility from Sysinternals. PsGetSid’s options allow you to translate machine and user account 
names to their corresponding SIDs and vice versa.

If you run PsGetSid with no options, it prints the SID assigned to the local computer. Because 
the Administrator account always has a RID of 500, you can determine the name assigned to the 
account (in cases where a system administrator has renamed the account for security reasons) 
simply by passing the machine SID appended with -500 as PsGetSid’s command-line argument.

http://www.support.microsoft.com/kb/243330
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To obtain the SID of a domain account, enter the user name with the domain as a prefix:

c:\>psgetsid redmond\johndoe

You can determine the SID of a domain by specifying the domain’s name as the argument to 
PsGetSid:

c:\>psgetsid Redmond

Finally, by examining the RID of your own account, you know at least a number of security 
accounts (equal to the number resulting from subtracting 999 from your RID) have been created 
in your domain or on your local machine (depending on whether you are using a domain or local 
machine account). You can determine what accounts have been assigned RIDs by passing a SID 
with the RID you want to query to PsGetSid. If PsGetSid reports that no mapping between the 
SID and an account name was possible and the RID is lower than that of your account, you know 
that the account assigned the RID has been deleted.

For example, to find out the name of the account assigned the 28th RID, pass the domain SID 
appended with -1027 to PsGetSid:

c:\>psgetsid S-1-5-21-1787744166-3910675280-2727264193-1027  
Account for S-1-5-21-1787744166-3910675280-2727264193-1027:  
User: redmond\johndoe

Process Explorer can also show you information on account and group SIDs on your system 
through its Security tab. This tab shows you information such as who owns this process and which 
groups the account is a member of. To view this information, simply double-click any process (for 
example, Explorer.exe) in the Process list and then click the Security tab. You should see some-
thing similar to the following:

The information displayed in the User field contains the friendly name of the account owning 
this process, while the SID field contains the actual SID value. The Group list includes information 
on all the groups that this account is a member of (groups are described later in this chapter).
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Integrity levels
As mentioned, integrity levels can override discretionary access to differentiate a process and objects 
running as and owned by the same user, offering the ability to isolate code and data within a user 
account. The mechanism of Mandatory Integrity Control (MIC) allows the SRM to have more detailed 
information about the nature of the caller by associating it with an integrity level. It also provides infor-
mation on the trust required to access the object by defining an integrity level for it.

The integrity level of a token can be obtained with the GetTokenInformation API with the Token-
IntegrityLevel enumeration value. These integrity levels are specified by a SID. Although integrity 
levels can be arbitrary values, the system uses six primary levels to separate privilege levels, as described 
in Table 7-3.

TABLE 7-3 Integrity level SIDs

SID Name (Level) Use

S-1-16-0x0 Untrusted (0) Used by processes started by the Anonymous group. It blocks most write access.

S-1-16-0x1000 Low (1) Used by AppContainer processes (UWP) and Protected Mode Internet Explorer. It 
blocks write access to most objects (such as files and registry keys) on the system.

S-1-16-0x2000 Medium (2) Used by normal applications being launched while UAC is enabled.

S-1-16-0x3000 High (3) Used by administrative applications launched through elevation when UAC is 
enabled, or normal applications if UAC is disabled and the user is an administrator.

S-1-16-0x4000 System (4) Used by services and other system-level processes (such as Wininit, Winlogon, Smss, 
and so on).

S-1-16-0x5000 Protected (5) Currently unused by default. Can be set by kernel-mode caller only.

Another, seemingly additional, integrity level is called AppContainer, used by UWP apps. Although 
seemingly another level, it’s in fact equal to Low. UWP process tokens have another attribute that 
indicates they are running inside an AppContainer (described in the “AppContainers” section). 
This information is available with the GetTokenInformation API with the TokenIsAppContainer 
enumeration value.

EXPERIMENT: Looking at the integrity level of processes
You can use Process Explorer to quickly display the integrity level for the processes on your system. 
The following steps demonstrate this functionality.

1. Launch Microsoft Edge browser and Calc.exe (Windows 10).

2. Open an elevated command prompt window.

3. Open Notepad normally (without elevating it).

4. Open an elevated Process Explorer, right-click any column header in the Process list, 
and then click Select Columns. 
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5. Select the Process Image tab and select the Integrity Level check box. The dialog box 
should look similar to the one shown here:

6. Process Explorer shows you the integrity level of the processes on your system. You 
should see the Notepad process at medium, the Edge (MicrosoftEdge.exe) process at 
AppContainer, and the elevated command prompt at High. Also note that the services 
and system processes are running at an even higher integrity level, System.
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Every process has an integrity level that is represented in its token and propagated according to the 
following rules:

 ■ A process normally inherits the integrity level of its parent (which means an elevated command 
prompt will spawn other elevated processes).

 ■ If the file object for the executable image to which the child process belongs has an integrity 
level and the parent process’s integrity level is medium or higher, the child process will inherit 
the lower of the two.

 ■ A parent process can create a child process with an explicit integrity level lower than its own. 
To do this, it uses DuplicateTokenEx to duplicate its own access token, it uses SetToken-
Information to change the integrity level in the new token to the desired level, and then it calls 
CreateProcessAsUser with that new token.

Table 7-3 lists the integrity level associated with processes, but what about objects? Objects 
also have an integrity level stored as part of their security descriptor, in a structure that is called the 
mandatory label.

To support migrating from previous versions of Windows (whose registry keys and files would 
not include integrity-level information), and to make it simpler for application developers, all objects 
have an implicit integrity level to avoid having to manually specify one. This implicit integrity level is 
medium, meaning that the mandatory policy (described shortly) on the object will be performed on 
tokens accessing this object with an integrity level lower than medium.

When a process creates an object without specifying an integrity level, the system checks the 
integrity level in the token. For tokens with a level of medium or higher, the implicit integrity level of 
the object remains medium. However, when a token contains an integrity level lower than medium, the 
object is created with an explicit integrity level that matches the level in the token.

Objects that are created by high- or system-integrity-level processes have a medium integrity level 
themselves so that users can disable and enable UAC. If object integrity levels always inherited their 
creator’s integrity level, the applications of an administrator who disables UAC and subsequently re-
enables it could fail because the administrator would not be able to modify any registry settings or files 
created when running at the high integrity level. Objects can also have an explicit integrity level that is 
set by the system or by the creator of the object. For example, processes, threads, tokens, and jobs are 
given an explicit integrity level by the kernel when it creates them. The reason for assigning an integrity 
level to these objects is to prevent a process for the same user, but one running at a lower integrity 
level, from accessing these objects and modifying their content or behavior (for example, DLL injection 
or code modification).

Apart from an integrity level, objects also have a mandatory policy, which defines the actual level 
of protection that’s applied based on the integrity-level check. Three types are possible, shown in 
Table 7-4. The integrity level and the mandatory policy are stored together in the same ACE.
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TABLE 7-4 Object mandatory policies

Policy Present on, by Default Description

No-Write-Up Implicit on all objects Used to restrict write access coming from a lower integrity level pro-
cess to the object.

No-Read-Up Only on process objects Used to restrict read access coming from a lower integrity level process 
to the object. Specific use on process objects protects against informa-
tion leakage by blocking address space reads from an external process.

No-Execute-Up Only on binaries imple-
menting COM classes

Used to restrict execute access coming from a lower integrity level 
process to the object. Specific use on COM classes is to restrict launch-
activation permissions on a COM class.

EXPERIMENT: Looking at the integrity level of objects
You can use the AccessChk tool from Sysinternals to display the integrity level of objects on the 
system, such as files, processes, and registry keys. Here’s an experiment showing the purpose of 
the LocalLow directory in Windows:

1. Browse to C:\Users\<UserName>\ in a command prompt window, where <username> is 
your user name.

2. Try running AccessChk on the AppData folder, as follows: 

C:\Users\UserName> accesschk –v appdata

3. Note the differences between the Local and LocalLow subfolders in your output, similar 
to that shown here:

C:\Users\UserName\AppData\Local 
  Medium Mandatory Level (Default) [No-Write-Up] 
  [...] 
C:\Users\UserName\AppData\LocalLow 
  Low Mandatory Level [No-Write-Up] 
  [...] 
C:\Users\UserName\AppData\Roaming 
  Medium Mandatory Level (Default) [No-Write-Up] 
  [...]

4. Notice that the LocalLow directory has an integrity level set to Low, while the Local and 
Roaming directories have integrity levels of Medium (default). The default means the 
system is using an implicit integrity level.

5. Pass the –e flag to AccessChk so it displays only explicit integrity levels. If you run 
the tool on the AppData folder again, you’ll notice only the LocalLow information 
is displayed.

The –o (object), –k (registry key), and –p (process) flags allow you to specify something other 
than a file or directory.
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Tokens
The SRM uses an object called a token (or access token) to identify the security context of a process or 
thread. A security context consists of information that describes the account, groups, and privileges as-
sociated with the process or thread. Tokens also include information such as the session ID, the integrity 
level, and the UAC virtualization state. (We’ll describe both privileges and UAC’s virtualization mecha-
nism later in this chapter.)

During the logon process (described later in this chapter), Lsass creates an initial token to represent 
the user logging on. It then determines whether the user logging on is a member of a powerful group 
or possesses a powerful privilege. The groups checked for in this step are as follows:

 ■ Built-In Administrators

 ■ Certificate Administrators

 ■ Domain Administrators

 ■ Enterprise Administrators

 ■ Policy Administrators

 ■ Schema Administrators

 ■ Domain Controllers

 ■ Enterprise Read-Only Domain Controllers

 ■ Read-Only Domain Controllers

 ■ Account Operators

 ■ Backup Operators

 ■ Cryptographic Operators

 ■ Network Configuration Operators

 ■ Print Operators

 ■ System Operators

 ■ RAS Servers

 ■ Power Users

 ■ Pre-Windows 2000 Compatible Access

Many of the groups listed are used only on domain-joined systems and don’t give users local ad-
ministrative rights directly. Instead, they allow users to modify domain-wide settings.

The privileges checked for are as follows:

 ■ SeBackupPrivilege

 ■ SeCreateTokenPrivilege

 ■ SeDebugPrivilege

 ■ SeImpersonatePrivilege
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 ■ SeLabelPrivilege

 ■ SeLoadDriverPrivilege

 ■ SeRestorePrivilege

 ■ SeTakeOwnershipPrivilege

 ■ SeTcbPrivilege 

These privileges are described in detail in the section “Privileges,” later in this chapter.

If one or more of these groups or privileges are present, Lsass creates a restricted token for the user 
(also called a filtered admin token) and creates a logon session for both. The standard user token is at-
tached to the initial process or processes that Winlogon starts (by default, Userinit.exe).

Note If UAC has been disabled, administrators run with a token that includes their admin-
istrator group memberships and privileges.

Because child processes inherit a copy of the token of their creators by default, all processes in 
the user’s session run under the same token. You can also generate a token by using the Windows 
LogonUser function. You can then use this token to create a process that runs within the security 
context of the user logged on through the LogonUser function by passing the token to the Windows 
CreateProcessAsUser function. The CreateProcessWithLogonW function combines these into a 
single call, which is how the Runas command launches processes under alternative tokens.

Tokens vary in size because different user accounts have different sets of privileges and associated 
group accounts. However, all tokens contain the same types of information. The most important con-
tents of a token are represented in Figure 7-7.

FIGURE 7-7 Access tokens.
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The security mechanisms in Windows use two components to determine what objects can be ac-
cessed and what secure operations can be performed. One component comprises the token’s user 
account SID and group SID fields. The SRM uses SIDs to determine whether a process or thread can 
obtain requested access to a securable object, such as an NTFS file.

The group SIDs in a token indicate which groups a user’s account is a member of. For example, a 
server application can disable specific groups to restrict a token’s credentials when the server applica-
tion is performing actions requested by a client. Disabling a group produces nearly the same effect 
as if the group wasn’t present in the token. (It results in a deny-only group, described in the section 
“Restricted tokens.” Disabled SIDs are used as part of security access checks, described in the section 
“Determining access” later in the chapter.) Group SIDs can also include a special SID that contains the 
integrity level of the process or thread. The SRM uses another field in the token, which describes the 
mandatory integrity policy, to perform the mandatory integrity check described later in the chapter.

The second component in a token that determines what the token’s thread or process can do is 
the privilege array. A token’s privilege array is a list of rights associated with the token. An example of 
a privilege is the right of the process or thread associated with the token to shut down the computer. 
Privileges are described in more detail later in this chapter.

A token’s default primary group field and default discretionary access control list (DACL) field are 
security attributes that Windows applies to objects that a process or thread creates when it uses the 
token. By including security information in tokens, Windows makes it convenient for a process or 
thread to create objects with standard security attributes because the process or thread doesn’t need 
to request discrete security information for every object it creates.

Each token’s type distinguishes a primary token (a token that identifies the security context of a pro-
cess) from an impersonation token (a type of token that threads use to temporarily adopt a different 
security context, usually of another user). Impersonation tokens carry an impersonation level that signi-
fies what type of impersonation is active in the token. (Impersonation is described later in this chapter.)

A token also includes the mandatory policy for the process or thread, which defines how MIC will 
behave when processing this token. There are two policies:

 ■ TOKEN_MANDATORY_NO_WRITE_UP Enabled by default, this sets the No-Write-Up policy on this 
token, specifying that the process or thread will not be able to access objects with a higher 
integrity level for write access.

 ■ TOKEN_MANDATORY_NEW_PROCESS_MIN Also enabled by default, this specifies that the SRM 
should look at the integrity level of the executable image when launching a child process and 
compute the minimum integrity level of the parent process and the file object’s integrity level 
as the child’s integrity level.

Token flags include parameters that determine the behavior of certain UAC and UIPI mechanisms, 
such as virtualization and user interface access. Those mechanisms will be described later in this chapter.

Each token can also contain attributes that are assigned by the Application Identification service 
(part of AppLocker) when AppLocker rules have been defined. AppLocker and its use of attributes in 
the access token are described later in this chapter. 
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A token for a UWP process includes information on the AppContainer hosting the process. First, it 
stores a package SID, identifying the UWP package the process originated from. The significance of this 
SID will be described in the “AppContainers” section later in this chapter. Second, UWP processes need 
to request capabilities for operations that require the user’s consent. Examples of capabilities include 
network access, using the phone capabilities of the device (if any), accessing the camera on the device, 
and more. Each such capability is represented with a SID, stored as part of the token. (Capabilities will 
be discussed further in the “AppContainers” section.)

The remaining fields in a token serve informational purposes. The token source field contains a short 
textual description of the entity that created the token. Programs that want to know where a token 
originated use the token source to distinguish among sources such as the Windows Session Manager, 
a network file server, or the remote procedure call (RPC) server. The token identifier is a locally unique 
identifier (LUID) that the SRM assigns to the token when it creates the token. The Windows executive 
maintains the executive LUID, a monotonically increasing counter it uses to assign a unique numeric 
identifier to each token. A LUID is guaranteed to be unique only until the system is shut down.

The token authentication ID is another kind of LUID. A token’s creator assigns the token’s authenti-
cation ID when calling the LsaLogonUser function. If the creator doesn’t specify a LUID, Lsass obtains 
the LUID from the executive LUID. Lsass copies the authentication ID for all tokens descended from an 
initial logon token. A program can obtain a token’s authentication ID to see whether the token belongs 
to the same logon session as other tokens the program has examined.

The executive LUID refreshes the modified ID every time a token’s characteristics are modified. An  
application can test the modified ID to discover changes in a security context since the context’s last use.

Tokens contain an expiration time field that can be used by applications performing their own se-
curity to reject a token after a specified amount of time. However, Windows itself does not enforce the 
expiration time of tokens. 

Note To guarantee system security, the fields in a token are immutable (because they are 
located in kernel memory). Except for fields that can be modified through a specific system 
call designed to modify certain token attributes (assuming the caller has the appropriate 
access rights to the token object), data such as privileges and SIDs in a token can never be 
modified from user mode.

EXPERIMENT: Viewing access tokens
The kernel debugger dt _TOKEN command displays the format of an internal token object. 
Although this structure differs from the user-mode token structure returned by Windows API 
security functions, the fields are similar. For further information on tokens, see the description in 
the Windows SDK documentation.
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Here’s a token structure on Windows 10:

lkd> dt nt!_token 
   +0x000 TokenSource      : _TOKEN_SOURCE 
   +0x010 TokenId          : _LUID 
   +0x018 AuthenticationId : _LUID 
   +0x020 ParentTokenId    : _LUID 
   +0x028 ExpirationTime   : _LARGE_INTEGER 
   +0x030 TokenLock        : Ptr64 _ERESOURCE 
   +0x038 ModifiedId       : _LUID 
   +0x040 Privileges       : _SEP_TOKEN_PRIVILEGES 
   +0x058 AuditPolicy      : _SEP_AUDIT_POLICY 
   +0x078 SessionId        : Uint4B 
   +0x07c UserAndGroupCount : Uint4B 
   +0x080 RestrictedSidCount : Uint4B 
   +0x084 VariableLength   : Uint4B 
   +0x088 DynamicCharged   : Uint4B 
   +0x08c DynamicAvailable : Uint4B 
   +0x090 DefaultOwnerIndex : Uint4B 
   +0x098 UserAndGroups    : Ptr64 _SID_AND_ATTRIBUTES 
   +0x0a0 RestrictedSids   : Ptr64 _SID_AND_ATTRIBUTES 
   +0x0a8 PrimaryGroup     : Ptr64 Void 
   +0x0b0 DynamicPart      : Ptr64 Uint4B 
   +0x0b8 DefaultDacl      : Ptr64 _ACL 
   +0x0c0 TokenType        : _TOKEN_TYPE 
   +0x0c4 ImpersonationLevel : _SECURITY_IMPERSONATION_LEVEL 
   +0x0c8 TokenFlags       : Uint4B 
   +0x0cc TokenInUse       : UChar 
   +0x0d0 IntegrityLevelIndex : Uint4B 
   +0x0d4 MandatoryPolicy  : Uint4B 
   +0x0d8 LogonSession     : Ptr64 _SEP_LOGON_SESSION_REFERENCES 
   +0x0e0 OriginatingLogonSession : _LUID 
   +0x0e8 SidHash          : _SID_AND_ATTRIBUTES_HASH 
   +0x1f8 RestrictedSidHash : _SID_AND_ATTRIBUTES_HASH 
   +0x308 pSecurityAttributes : Ptr64 _AUTHZBASEP_SECURITY_ATTRIBUTES_INFORMATION 
   +0x310 Package          : Ptr64 Void 
   +0x318 Capabilities     : Ptr64 _SID_AND_ATTRIBUTES 
   +0x320 CapabilityCount  : Uint4B 
   +0x328 CapabilitiesHash : _SID_AND_ATTRIBUTES_HASH 
   +0x438 LowboxNumberEntry : Ptr64 _SEP_LOWBOX_NUMBER_ENTRY 
   +0x440 LowboxHandlesEntry : Ptr64 _SEP_LOWBOX_HANDLES_ENTRY 
   +0x448 pClaimAttributes : Ptr64 _AUTHZBASEP_CLAIM_ATTRIBUTES_COLLECTION 
   +0x450 TrustLevelSid    : Ptr64 Void 
   +0x458 TrustLinkedToken : Ptr64 _TOKEN 
   +0x460 IntegrityLevelSidValue : Ptr64 Void 
   +0x468 TokenSidValues   : Ptr64 _SEP_SID_VALUES_BLOCK 
   +0x470 IndexEntry       : Ptr64 _SEP_LUID_TO_INDEX_MAP_ENTRY 
   +0x478 DiagnosticInfo   : Ptr64 _SEP_TOKEN_DIAG_TRACK_ENTRY 
   +0x480 SessionObject    : Ptr64 Void 
   +0x488 VariablePart     : Uint8B
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You can examine the token for a process with the !token command. You’ll find the address of 
the token in the output of the !process command. Here’s an example for an explorer.exe process:

lkd> !process 0 1 explorer.exe 
PROCESS ffffe18304dfd780 
    SessionId: 1  Cid: 23e4    Peb: 00c2a000  ParentCid: 2264 
    DirBase: 2aa0f6000  ObjectTable: ffffcd82c72fcd80  HandleCount: <Data Not 
Accessible> 
    Image: explorer.exe 
    VadRoot ffffe18303655840 Vads 705 Clone 0 Private 12264. Modified 376410. Locked 18. 
    DeviceMap ffffcd82c39bc0d0 
    Token                             ffffcd82c72fc060 
    ... 
 
PROCESS ffffe1830670a080 
    SessionId: 1  Cid: 27b8    Peb: 00950000  ParentCid: 035c 
    DirBase: 2cba97000  ObjectTable: ffffcd82c7ccc500  HandleCount: <Data Not 
Accessible> 
    Image: explorer.exe 
    VadRoot ffffe183064e9f60 Vads 1991 Clone 0 Private 19576. Modified 87095. Locked 0. 
    DeviceMap ffffcd82c39bc0d0 
    Token                             ffffcd82c7cd9060 
    ... 
 
lkd> !token ffffcd82c72fc060 
_TOKEN 0xffffcd82c72fc060 
TS Session ID: 0x1 
User: S-1-5-21-3537846094-3055369412-2967912182-1001 
User Groups:  
 00 S-1-16-8192 
    Attributes - GroupIntegrity GroupIntegrityEnabled  
 01 S-1-1-0 
    Attributes - Mandatory Default Enabled  
 02 S-1-5-114 
    Attributes - DenyOnly  
 03 S-1-5-21-3537846094-3055369412-2967912182-1004 
    Attributes - Mandatory Default Enabled  
 04 S-1-5-32-544 
    Attributes - DenyOnly  
 05 S-1-5-32-578 
    Attributes - Mandatory Default Enabled  
 06 S-1-5-32-559 
    Attributes - Mandatory Default Enabled  
 07 S-1-5-32-545 
    Attributes - Mandatory Default Enabled  
 08 S-1-5-4 
    Attributes - Mandatory Default Enabled  
 09 S-1-2-1 
    Attributes - Mandatory Default Enabled  
 10 S-1-5-11 
    Attributes - Mandatory Default Enabled  
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 11 S-1-5-15 
    Attributes - Mandatory Default Enabled  
 12 S-1-11-96-3623454863-58364-18864-2661722203-1597581903-1225312835-2511459453-
1556397606-2735945305-1404291241 
    Attributes - Mandatory Default Enabled  
 13 S-1-5-113 
    Attributes - Mandatory Default Enabled  
 14 S-1-5-5-0-1745560 
    Attributes - Mandatory Default Enabled LogonId  
 15 S-1-2-0 
    Attributes - Mandatory Default Enabled  
 16 S-1-5-64-36 
    Attributes - Mandatory Default Enabled  
Primary Group: S-1-5-21-3537846094-3055369412-2967912182-1001 
Privs:  
 19 0x000000013 SeShutdownPrivilege               Attributes -  
 23 0x000000017 SeChangeNotifyPrivilege           Attributes - Enabled Default  
 25 0x000000019 SeUndockPrivilege                 Attributes -  
 33 0x000000021 SeIncreaseWorkingSetPrivilege     Attributes -  
 34 0x000000022 SeTimeZonePrivilege               Attributes -  
Authentication ID:         (0,1aa448) 
Impersonation Level:       Anonymous 
TokenType:                 Primary 
Source: User32             TokenFlags: 0x2a00 ( Token in use ) 
Token ID: 1be803           ParentToken ID: 1aa44b 
Modified ID:               (0, 43d9289) 
RestrictedSidCount: 0      RestrictedSids: 0x0000000000000000 
OriginatingLogonSession: 3e7 
PackageSid: (null) 
CapabilityCount: 0      Capabilities: 0x0000000000000000 
LowboxNumberEntry: 0x0000000000000000 
Security Attributes: 
Unable to get the offset of nt!_AUTHZBASEP_SECURITY_ATTRIBUTE.ListLink 
Process Token TrustLevelSid: (null)

Notice that there is no package SID for Explorer, since it’s not running inside an AppContainer.

Run calc.exe under Windows 10, which spawns calculator.exe (now a UWP app), and examine 
its token:

lkd> !process 0 1 calculator.exe 
PROCESS ffffe18309e874c0 
    SessionId: 1  Cid: 3c18    Peb: cd0182c000  ParentCid: 035c 
    DirBase: 7a15e4000  ObjectTable: ffffcd82ec9a37c0  HandleCount: <Data Not 
Accessible> 
    Image: Calculator.exe 
    VadRoot ffffe1831cf197c0 Vads 181 Clone 0 Private 3800. Modified 3746. Locked 503. 
    DeviceMap ffffcd82c39bc0d0 
    Token                             ffffcd82e26168f0 
... 
 
lkd> !token ffffcd82e26168f0 
_TOKEN 0xffffcd82e26168f0 
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TS Session ID: 0x1 
User: S-1-5-21-3537846094-3055369412-2967912182-1001 
User Groups:  
 00 S-1-16-4096 
    Attributes - GroupIntegrity GroupIntegrityEnabled  
 01 S-1-1-0 
    Attributes - Mandatory Default Enabled  
 02 S-1-5-114 
    Attributes - DenyOnly  
 03 S-1-5-21-3537846094-3055369412-2967912182-1004 
    Attributes - Mandatory Default Enabled  
 04 S-1-5-32-544 
    Attributes - DenyOnly  
 05 S-1-5-32-578 
    Attributes - Mandatory Default Enabled  
 06 S-1-5-32-559 
    Attributes - Mandatory Default Enabled  
 07 S-1-5-32-545 
    Attributes - Mandatory Default Enabled  
 08 S-1-5-4 
    Attributes - Mandatory Default Enabled  
 09 S-1-2-1 
    Attributes - Mandatory Default Enabled  
 10 S-1-5-11 
    Attributes - Mandatory Default Enabled  
 11 S-1-5-15 
    Attributes - Mandatory Default Enabled  
 12 S-1-11-96-3623454863-58364-18864-2661722203-1597581903-1225312835-2511459453-
1556397606-2735945305-1404291241 
    Attributes - Mandatory Default Enabled  
 13 S-1-5-113 
    Attributes - Mandatory Default Enabled  
 14 S-1-5-5-0-1745560 
    Attributes - Mandatory Default Enabled LogonId  
 15 S-1-2-0 
    Attributes - Mandatory Default Enabled  
 16 S-1-5-64-36 
    Attributes - Mandatory Default Enabled  
Primary Group: S-1-5-21-3537846094-3055369412-2967912182-1001 
Privs:  
 19 0x000000013 SeShutdownPrivilege               Attributes -  
 23 0x000000017 SeChangeNotifyPrivilege           Attributes - Enabled Default  
 25 0x000000019 SeUndockPrivilege                 Attributes -  
 33 0x000000021 SeIncreaseWorkingSetPrivilege     Attributes -  
 34 0x000000022 SeTimeZonePrivilege               Attributes -  
Authentication ID:         (0,1aa448) 
Impersonation Level:       Anonymous 
TokenType:                 Primary 
Source: User32             TokenFlags: 0x4a00 ( Token in use ) 
Token ID: 4ddb8c0          ParentToken ID: 1aa44b 
Modified ID:               (0, 4ddb8b2) 
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RestrictedSidCount: 0      RestrictedSids: 0x0000000000000000 
OriginatingLogonSession: 3e7 
PackageSid: S-1-15-2-466767348-3739614953-2700836392-1801644223-4227750657-
1087833535-2488631167 
CapabilityCount: 1      Capabilities: 0xffffcd82e1bfccd0 
Capabilities: 
 00 S-1-15-3-466767348-3739614953-2700836392-1801644223-4227750657-1087833535-
2488631167 
    Attributes - Enabled  
LowboxNumberEntry: 0xffffcd82fa2c1670 
LowboxNumber: 5      
Security Attributes: 
Unable to get the offset of nt!_AUTHZBASEP_SECURITY_ATTRIBUTE.ListLink 
Process Token TrustLevelSid: (null)

You can see there is one capability required by Calculator (which is in fact equal to its 
AppContainer SID RID, as described in the section “AppContainers” later in this chapter). Looking 
at the token of the Cortana process (searchui.exe) shows the following capabilities:

lkd> !process 0 1 searchui.exe 
PROCESS ffffe1831307d080 
    SessionId: 1  Cid: 29d8    Peb: fb407ec000  ParentCid: 035c 
DeepFreeze 
    DirBase: 38b635000  ObjectTable: ffffcd830059e580  HandleCount: <Data Not 
Accessible> 
    Image: SearchUI.exe 
    VadRoot ffffe1831fe89130 Vads 420 Clone 0 Private 11029. Modified 2031. Locked 0. 
    DeviceMap ffffcd82c39bc0d0 
    Token                             ffffcd82d97d18f0 
    ... 
 
lkd> !token ffffcd82d97d18f0 
_TOKEN 0xffffcd82d97d18f0 
TS Session ID: 0x1 
User: S-1-5-21-3537846094-3055369412-2967912182-1001 
User Groups:  
 ... 
Primary Group: S-1-5-21-3537846094-3055369412-2967912182-1001 
Privs:  
 19 0x000000013 SeShutdownPrivilege               Attributes -  
 23 0x000000017 SeChangeNotifyPrivilege           Attributes - Enabled Default  
 25 0x000000019 SeUndockPrivilege                 Attributes -  
 33 0x000000021 SeIncreaseWorkingSetPrivilege     Attributes -  
 34 0x000000022 SeTimeZonePrivilege               Attributes -  
Authentication ID:         (0,1aa448) 
Impersonation Level:       Anonymous 
TokenType:                 Primary 
Source: User32             TokenFlags: 0x4a00 ( Token in use ) 
Token ID: 4483430          ParentToken ID: 1aa44b 
Modified ID:               (0, 4481b11) 
RestrictedSidCount: 0      RestrictedSids: 0x0000000000000000 
OriginatingLogonSession: 3e7 
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PackageSid: S-1-15-2-1861897761-1695161497-2927542615-642690995-327840285-
2659745135-2630312742 
CapabilityCount: 32     Capabilities: 0xffffcd82f78149b0 
Capabilities: 
 00 S-1-15-3-1024-1216833578-114521899-3977640588-1343180512-2505059295-473916851-
3379430393-3088591068 
    Attributes - Enabled  
 01 S-1-15-3-1024-3299255270-1847605585-2201808924-710406709-3613095291-873286183-
3101090833-2655911836 
    Attributes - Enabled  
 02 S-1-15-3-1024-34359262-2669769421-2130994847-3068338639-3284271446-2009814230-
2411358368-814686995 
    Attributes - Enabled  
 03 S-1-15-3-1 
    Attributes - Enabled  
... 
 29 S-1-15-3-3633849274-1266774400-1199443125-2736873758 
    Attributes - Enabled  
 30 S-1-15-3-2569730672-1095266119-53537203-1209375796 
    Attributes - Enabled  
 31 S-1-15-3-2452736844-1257488215-2818397580-3305426111 
    Attributes - Enabled  
LowboxNumberEntry: 0xffffcd82c7539110 
LowboxNumber: 2      
Security Attributes: 
Unable to get the offset of nt!_AUTHZBASEP_SECURITY_ATTRIBUTE.ListLink 
Process Token TrustLevelSid: (null)

There are 32 capabilities required by Cortana. This simply indicates the process is richer in 
features that need to be accepted by end users and validated by the system.

You can indirectly view token contents with Process Explorer’s Security tab in the process 
Properties dialog box. The dialog box shows the groups and privileges included in the token of 
the process you examine.

EXPERIMENT: Launching a program at low integrity level
When you elevate a program, either by using the Run as Administrator option or because the 
program is requesting it, the program is explicitly launched at high integrity level. However, it is 
also possible to launch a program at low integrity level by using PsExec from Sysinternals:

1. Launch Notepad at low integrity level by using the following command:

c:\psexec –l notepad.exe

2. Try opening a file (such as one of the XML files) in the %SystemRoot%\System32 direc-
tory. Notice that you can browse the directory and open any file contained within it.

3. In Notepad, open the File menu and choose New.
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4. Enter some text in the window and try saving it in the %SystemRoot%\System32 direc-
tory. Notepad displays a dialog box indicating a lack of permissions and suggests saving 
the file in the Documents folder.

5. Accept Notepad’s suggestion. You will get the same message box again, and repeatedly 
for each attempt.

6. Now try saving the file in the LocalLow directory of your user profile, shown in an 
experiment earlier in the chapter.

In the previous experiment, saving a file in the LocalLow directory worked because Notepad 
was running with low integrity level, and only the LocalLow directory also had low integrity 
level. All the other directories where you tried to save the file had an implicit medium integrity 
level. (You can verify this with AccessChk.) However, reading from the %SystemRoot%\System32 
directory, as well as opening files within it, did work, even though the directory and its file also 
have an implicit medium integrity level.

Impersonation
Impersonation is a powerful feature Windows uses frequently in its security model. Windows also uses 
impersonation in its client/server programming model. For example, a server application can provide 
access to resources such as files, printers, and databases. Clients wanting to access a resource send a re-
quest to the server. When the server receives the request, it must ensure that the client has permission 
to perform the desired operations on the resource. For example, if a user on a remote machine tries 
to delete a file on an NTFS share, the server exporting the share must determine whether the user is 
allowed to delete the file. The obvious way to determine whether a user has permission is for the server 
to query the user’s account and group SIDs and scan the security attributes on the file. This approach is 
tedious to program, prone to errors, and wouldn’t permit new security features to be supported trans-
parently. Thus, Windows provides impersonation services to simplify the server’s job.

Impersonation lets a server notify the SRM that the server is temporarily adopting the security pro-
file of a client making a resource request. The server can then access resources on behalf of the client, 
and the SRM carries out the access validation, but it does so based on the impersonated client security 
context. Usually, a server has access to more resources than a client does and loses some of its secu-
rity credentials during impersonation. However, the reverse can be true: The server can gain security 
credentials during impersonation.

A server impersonates a client only within the thread that makes the impersonation request. 
Thread-control data structures contain an optional entry for an impersonation token. However, a 
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thread’s primary token, which represents the thread’s real security credentials, is always accessible in 
the process’s control structure.

Windows makes impersonation available through several mechanisms. For example, if a server com-
municates with a client through a named pipe, the server can use the ImpersonateNamedPipeClient 
Windows API function to tell the SRM that it wants to impersonate the user on the other end of the 
pipe. If the server is communicating with the client through Dynamic Data Exchange (DDE) or RPC, it 
can make similar impersonation requests using DdeImpersonateClient and RpcImpersonateClient. 
A thread can create an impersonation token that’s simply a copy of its process token with the 
ImpersonateSelf function. The thread can then alter its impersonation token, perhaps to disable 
SIDs or privileges. A Security Support Provider Interface (SSPI) package can impersonate its clients 
with ImpersonateSecurityContext. SSPIs implement a network authentication protocol such as LAN 
Manager version 2 or Kerberos. Other interfaces such as COM expose impersonation through APIs of 
their own, such as CoImpersonateClient.

After the server thread finishes its task, it reverts to its primary security context. These forms of imper-
sonation are convenient for carrying out specific actions at the request of a client and for ensuring that 
object accesses are audited correctly. (For example, the audit that is generated gives the identity of the 
impersonated client rather than that of the server process.) The disadvantage to these forms of imperson-
ation is that they can’t execute an entire program in the context of a client. In addition, an impersonation 
token can’t access files or printers on network shares unless it is a delegation-level impersonation (de-
scribed shortly) and has sufficient credentials to authenticate to the remote machine, or the file or printer 
share supports null sessions. (A null session is one that results from an anonymous logon.)

If an entire application must execute in a client’s security context or must access network resources 
without using impersonation, the client must be logged on to the system. The LogonUser Windows 
API function enables this action. LogonUser takes an account name, a password, a domain or com-
puter name, a logon type (such as interactive, batch, or service), and a logon provider as input, and it 
returns a primary token. A server thread can adopt the token as an impersonation token, or the server 
can start a program that has the client’s credentials as its primary token. From a security standpoint, 
a process created using the token returned from an interactive logon via LogonUser, such as with 
the CreateProcessAsUser API, looks like a program a user starts by logging on to the machine 
interactively. The disadvantage to this approach is that a server must obtain the user’s account name 
and password. If the server transmits this information across the network, the server must encrypt it 
securely so that a malicious user snooping network traffic can’t capture it.

To prevent the misuse of impersonation, Windows doesn’t let servers perform impersonation 
without a client’s consent. A client process can limit the level of impersonation that a server process can 
perform by specifying a security quality of service (SQOS) when connecting to the server. For instance, 
when opening a named pipe, a process can specify SECURITY_ANONYMOUS, SECURITY_IDENTIFICATION, 
SECURITY_IMPERSONATION, or SECURITY_DELEGATION as flags for the Windows CreateFile function. 
These same options apply to other impersonation-related functions listed earlier. Each level lets a server 
perform different types of operations with respect to the client’s security context:

 ■ SecurityAnonymous This is the most restrictive level of impersonation. The server can’t imper-
sonate or identify the client.
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 ■ SecurityIdentification This lets the server obtain the identity (the SIDs) of the client and 
the client’s privileges, but the server can’t impersonate the client.

 ■ SecurityImpersonation This lets the server identify and impersonate the client on the 
local system.

 ■ SecurityDelegation This is the most permissive level of impersonation. It lets the server 
impersonate the client on local and remote systems.

Other interfaces such as RPC use different constants with similar meanings (for example, RPC_C_ 
IMP_LEVEL_IMPERSONATE).

If the client doesn’t set an impersonation level, Windows chooses the SecurityImpersonation 
level by default. The CreateFile function also accepts SECURITY_EFFECTIVE_ONLY and SECURITY_
CONTEXT_TRACKING as modifiers for the impersonation setting:

 ■ SECURITY_EFFECTIVE_ONLY This prevents a server from enabling or disabling a client’s privi-
leges or groups while the server is impersonating.

 ■ SECURITY_CONTEXT_TRACKING This specifies that any changes a client makes to its security con-
text are reflected in a server that is impersonating it. If this option isn’t specified, the server adopts 
the context of the client at the time of the impersonation and doesn’t receive any changes. This 
option is honored only when the client and server processes are on the same system.

To prevent spoofing scenarios in which a low-integrity process could create a user interface that 
captured user credentials and then used LogonUser to obtain that user’s token, a special integrity pol-
icy applies to impersonation scenarios: a thread cannot impersonate a token of higher integrity than 
its own. For example, a low-integrity application cannot spoof a dialog box that queries administrative 
credentials and then attempt to launch a process at a higher privilege level. The integrity-mechanism 
policy for impersonation access tokens is that the integrity level of the access token that is returned by 
LsaLogonUser must be no higher than the integrity level of the calling process.

Restricted tokens
A restricted token is created from a primary or impersonation token using the CreateRestrictedToken 
function. The restricted token is a copy of the token it’s derived from, with the following possible 
modifications:

 ■ Privileges can be removed from the token’s privilege array.

 ■ SIDs in the token can be marked as deny-only. These SIDs remove access to any resources for 
which the SID’s access is denied by using a matching access-denied ACE that would other-
wise be overridden by an ACE granting access to a group containing the SID earlier in the 
security descriptor.

 ■ SIDs in the token can be marked as restricted. These SIDs are subject to a second pass of the 
access-check algorithm, which will parse only the restricted SIDs in the token. The results of 
both the first pass and the second pass must grant access to the resource or no access is granted 
to the object.
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Restricted tokens are useful when an application wants to impersonate a client at a reduced security 
level, primarily for safety reasons when running untrusted code. For example, the restricted token can 
have the shutdown-system privilege removed from it to prevent code executed in the restricted token’s 
security context from rebooting the system.

Filtered admin token
As you saw earlier, restricted tokens are also used by UAC to create the filtered admin token that all 
user applications will inherit. A filtered admin token has the following characteristics:

 ■ The integrity level is set to medium.

 ■ The administrator and administrator-like SIDs mentioned previously are marked as deny-only 
to prevent a security hole if the group were to be removed altogether. For example, if a file 
had an access control list (ACL) that denied the Administrators group all access but granted 
some access to another group the user belongs to, the user would be granted access if the 
Administrators group was absent from the token, which would give the standard user version 
of the user’s identity more access than the user’s administrator identity.

 ■ All privileges are stripped except Change Notify, Shutdown, Undock, Increase Working Set, 
and Time Zone.

EXPERIMENT: Looking at filtered admin tokens
You can make Explorer launch a process with either the standard user token or the administrator 
token by following these steps on a machine with UAC enabled:

1. Log on to an account that’s a member of the Administrators group.

2. Open the Start menu, type command, right-click the Command Prompt option that 
appears, and choose Run as Administrator to run an elevated command prompt.

3. Run a new instance of cmd.exe, but this time do it normally (that is, not elevated).

4. Run Process Explorer elevated, open the Properties dialog boxes for the two command 
prompt processes, and click the Security tabs. Note that the standard user token con-
tains a deny-only SID and a medium mandatory label, and that it has only a couple of 
privileges. The properties on the right in the following screenshot are from a command 
prompt running with an administrator token, and the properties on the left are from 
one running with the filtered administrator token:
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Virtual service accounts
Windows provides a specialized type of account known as a virtual service account (or simply virtual 
account) to improve the security isolation and access control of Windows services with minimal ad-
ministrative effort. (See Chapter 9 in Part 2 for more information on Windows services.) Without this 
mechanism, Windows services must run under one of the accounts defined by Windows for its built-in 
services (such as Local Service or Network Service) or under a regular domain account. The accounts 
such as Local Service are shared by many existing services and so offer limited granularity for privilege 
and access control; furthermore, they cannot be managed across the domain. Domain accounts require 
periodic password changes for security, and the availability of services during a password-change cycle 
might be affected. Furthermore, for best isolation, each service should run under its own account, but 
with ordinary accounts this multiplies the management effort. 

With virtual service accounts, each service runs under its own account with its own security ID. The 
name of the account is always NT SERVICE\ followed by the internal name of the service. Virtual service 
accounts can appear in access control lists and can be associated with privileges via Group Policy like 
any other account name. They cannot, however, be created or deleted through the usual account- 
management tools, nor assigned to groups.

Windows automatically sets and periodically changes the password of the virtual service account. 
Similar to the Local System and Other Service Accounts, there is a password, but the password is un-
known to the system administrators.
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EXPERIMENT: Using virtual service accounts
You can create a service that runs under a virtual service account by using the Service Control  
(Sc.exe) tool. Follow these steps:

1. In an Administrator command prompt, type the create command in the Sc.exe command- 
line tool to create a service and a virtual account in which it will run. This example uses 
the srvany service from the Windows 2003 resource kit, which you can download here: 
https://www.microsoft.com/en-us/download/details.aspx?id=17657.

C:\Windows\system32>sc create srvany obj= "NT SERVICE\srvany" binPath=  
"c:\temp\srvany.exe" 
[SC] CreateService SUCCESS

2. The previous command created the service (in the registry and in the service controller 
manager’s internal list) and created the virtual service account. Now run the Services 
MMC snap-in (services.msc), select the new service, and open its Properties dialog box.

3. Click the Log On tab.

https://www.microsoft.com/en-us/download/details.aspx?id=17657
https://www.microsoft.com/en-us/download/details.aspx?id=17657
https://www.microsoft.com/en-us/download/details.aspx?id=17657
https://www.microsoft.com/en-us/download/details.aspx?id=17657


648 CHAPTER 7 Security

4. You can use the service’s Properties dialog box to create a virtual service account for an 
existing service. To do so, change the account name to NT SERVICE\servicename in 
the This Account field and clear both password fields. Note, however, that existing ser-
vices might not run correctly under a virtual service account because the account might 
not have access to files or other resources needed by the service.

5. If you run Process Explorer and view the Security tab in the Properties dialog box for 
a service that uses a virtual account, you can observe the virtual account name and its 
security ID (SID). To try this, in the Properties dialog box of the srvany service, enter the 
command-line arguments notepad.exe. (srvany can be used to turn normal executa-
bles into services, so it must accept some executable on the command line.) Then click 
the Start button to start the service.

6. The virtual service account can appear in an access control entry for any object (such as 
a file) the service needs to access. If you click the Security tab in a file’s Properties dia-
log box and create an ACL that references the virtual service account, you will find that 
the account name you typed (for example, NT SERVICE\srvany) is changed to simply the 
service name (srvany) by the Check Names function, and it appears in the access control 
list in this shortened form.
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7. The virtual service account can be granted permissions (or user rights) via Group Policy. 
In this example, the virtual account for the srvany service has been granted the right to 
create a pagefile (using the Local Security Policy editor, secpol.msc).
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8. You won’t see the virtual service account in user-administration tools like lusrmgr.msc 
because it is not stored in the SAM registry hive. However, if you examine the registry 
within the context of the built-in System account (as described previously), you will see 
evidence of the account in the HKLM\Security\Policy\Secrets key: 

C:\>psexec –s –i –d regedit.exe

Security descriptors and access control
Tokens, which identify a user’s credentials, are only part of the object security equation. Another part of 
the equation is the security information associated with an object, which specifies who can perform what 
actions on the object. The data structure for this information is called a security descriptor. A security 
descriptor consists of the following attributes:

 ■ Revision number This is the version of the SRM security model used to create the descriptor.

 ■ Flags These are optional modifiers that define the behavior or characteristics of the descriptor. 
These flags are listed in Table 7-5 (most are documented in the Windows SDK).

 ■ Owner SID This is the owner’s SID.

 ■ Group SID This is the SID of the primary group for the object (used only by the POSIX subsys-
tem, now unused since POSIX is no longer supported).

 ■ Discretionary access control list (DACL) This specifies who has what access to the object.

 ■ System access control list (SACL) This specifies which operations by which users should be 
logged in the security audit log and the explicit integrity level of an object.
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TABLE 7-5 Security descriptor flags

Flag Meaning

SE_OWNER_DEFAULTED This indicates a security descriptor with a default owner security identifier 
(SID). Use this bit to find all the objects that have default owner permis-
sions set.

SE_GROUP_DEFAULTED This indicates a security descriptor with a default group SID. Use this bit 
to find all the objects that have default group permissions set.

SE_DACL_PRESENT This indicates a security descriptor that has a DACL. If this flag is not set, 
or if this flag is set and the DACL is NULL, the security descriptor allows 
full access to everyone.

SE_DACL_DEFAULTED This indicates a security descriptor with a default DACL. For example, if 
an object creator does not specify a DACL, the object receives the default 
DACL from the access token of the creator. This flag can affect how the sys-
tem treats the DACL with respect to access control entry (ACE) inheritance. 
The system ignores this flag if the SE_DACL_PRESENT flag is not set.

SE_SACL_PRESENT This indicates a security descriptor that has a system access control 
list (SACL).

SE_SACL_DEFAULTED This indicates a security descriptor with a default SACL. For example, if 
an object creator does not specify a SACL, the object receives the default 
SACL from the access token of the creator. This flag can affect how the 
system treats the SACL with respect to ACE inheritance. The system ignores 
this flag if the SE_SACL_PRESENT flag is not set.

SE_DACL_UNTRUSTED This indicates that the ACL pointed to by the DACL of the security descrip-
tor was provided by an untrusted source. If this flag is set and a com-
pound ACE is encountered, the system will substitute known valid SIDs 
for the server SIDs in the ACEs.

SE_SERVER_SECURITY This requests that the provider for the object protected by the security 
descriptor be a server ACL based on the input ACL, regardless of its 
source (explicit or defaulting). This is done by replacing all the GRANT 
ACEs with compound ACEs granting the current server access. This flag is 
meaningful only if the subject is impersonating.

SE_DACL_AUTO_INHERIT_REQ This requests that the provider for the object protected by the security 
descriptor automatically propagate the DACL to existing child objects. If 
the provider supports automatic inheritance, the DACL is propagated to 
any existing child objects, and the SE_DACL_AUTO_INHERITED bit in the 
security descriptor of the parent and child objects is set.

SE_SACL_AUTO_INHERIT_REQ This requests that the provider for the object protected by the security 
descriptor automatically propagate the SACL to existing child objects. If 
the provider supports automatic inheritance, the SACL is propagated to 
any existing child objects, and the SE_SACL_AUTO_INHERITED bit in the 
security descriptors of the parent object and child objects is set.

SE_DACL_AUTO_INHERITED This indicates a security descriptor in which the DACL is set up to support 
automatic propagation of inheritable ACEs to existing child objects. The 
system sets this bit when it performs the automatic inheritance algorithm 
for the object and its existing child objects. 

SE_SACL_AUTO_INHERITED This indicates a security descriptor in which the SACL is set up to support 
automatic propagation of inheritable ACEs to existing child objects. The 
system sets this bit when it performs the automatic inheritance algorithm 
for the object and its existing child objects. 

SE_DACL_PROTECTED This prevents the DACL of a security descriptor from being modified by 
inheritable ACEs.

SE_SACL_PROTECTED This prevents the SACL of a security descriptor from being modified by 
inheritable ACEs.
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TABLE 7-5 Security descriptor flags  (continued)

Flag Meaning

SE_RM_CONTROL_VALID This indicates that the resource control manager bits in the security 
descriptor are valid. The resource control manager bits are 8 bits in the 
security descriptor structure that contains information specific to the 
resource manager accessing the structure.

SE_SELF_RELATIVE This indicates a security descriptor in self-relative format, with all the 
security information in a contiguous block of memory. If this flag is not 
set, the security descriptor is in absolute format.

Security descriptors (SDs) can be retrieved programmatically by using various functions, such as 
GetSecurityInfo, GetKernelObjectSecurity, GetFileSecurity, GetNamedSecurityInfo, and 
other more esoteric functions. After retrieval, the SD can be manipulated and then the relevant Set 
function called to make the change. Furthermore, a security descriptor can be constructed using 
a string in a language called Security Descriptor Definition Language (SDDL), which is capable of 
representing a security descriptor using a compact string. This string can be converted to a true SD 
by calling ConvertStringSecurityDescriptorToSecurityDescriptor. As you might expect, the 
converse function exists as well (ConvertSecurityDescriptorToStringSecurityDescriptor). See 
the Windows SDK for a detailed description of the SDDL.

An access control list (ACL) is made up of a header and zero or more access control entry (ACE) 
structures. There are two types of ACLs: DACLs and SACLs. In a DACL, each ACE contains a SID and 
an access mask (and a set of flags, explained shortly), which typically specifies the access rights (read, 
write, delete, and so forth) that are granted or denied to the holder of the SID. There are nine types of 
ACEs that can appear in a DACL: access allowed, access denied, allowed object, denied object, allowed 
callback, denied callback, allowed object callback, denied-object callback, and conditional claims. As 
you would expect, the access-allowed ACE grants access to a user, and the access-denied ACE denies 
the access rights specified in the access mask. The callback ACEs are used by applications that make use 
of the AuthZ API (described later) to register a callback that AuthZ will call when it performs an access 
check involving this ACE.

The difference between allowed object and access allowed, and between denied object and ac-
cess denied, is that the object types are used only within Active Directory. ACEs of these types have a 
globally unique identifier (GUID) field that indicates that the ACE applies only to particular objects or 
subobjects (those that have GUID identifiers). (A GUID is a 128-bit identifier guaranteed to be univer-
sally unique.) In addition, another optional GUID indicates what type of child object will inherit the 
ACE when a child is created within an Active Directory container that has the ACE applied to it. The 
conditional claims ACE is stored in a *-callback type ACE structure and is described in the section on 
the AuthZ APIs. 

The accumulation of access rights granted by individual ACEs forms the set of access rights granted 
by an ACL. If no DACL is present (a null DACL) in a security descriptor, everyone has full access to the 
object. If the DACL is empty (that is, it has zero ACEs), no user has access to the object.
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The ACEs used in DACLs also have a set of flags that control and specify characteristics of the ACE re-
lated to inheritance. Some object namespaces have containers and objects. A container can hold other 
container objects and leaf objects, which are its child objects. Examples of containers are directories in 
the file system namespace and keys in the registry namespace. Certain flags in an ACE control how the 
ACE propagates to child objects of the container associated with the ACE. Table 7-6, reproduced in part 
from the Windows SDK, lists the inheritance rules for ACE flags.

TABLE 7-6 Inheritance rules for ACE flags

Flag Inheritance Rule

CONTAINER_INHERIT_ACE Child objects that are containers, such as directories, inherit the ACE as an 
effective ACE. The inherited ACE is inheritable unless the NO_PROPAGATE_
INHERIT_ACE bit flag is also set.

INHERIT_ONLY_ACE This flag indicates an inherit-only ACE that doesn’t control access to the object 
it’s attached to. If this flag is not set, the ACE controls access to the object to 
which it is attached.

INHERITED_ACE This flag indicates that the ACE was inherited. The system sets this bit when it 
propagates an inheritable ACE to a child object.

NO_PROPAGATE_INHERIT_ACE If the ACE is inherited by a child object, the system clears the OBJECT_INHERIT_
ACE and CONTAINER_INHERIT_ACE flags in the inherited ACE. This action pre-
vents the ACE from being inherited by subsequent generations of objects.

OBJECT_INHERIT_ACE Non-container child objects inherit the ACE as an effective ACE. For child ob-
jects that are containers, the ACE is inherited as an inherit-only ACE unless the 
NO_PROPAGATE_INHERIT_ACE bit flag is also set.

A SACL contains two types of ACEs: system audit ACEs and system audit-object ACEs. These ACEs 
specify which operations performed on the object by specific users or groups should be audited. Audit 
information is stored in the system audit log. Both successful and unsuccessful attempts can be au-
dited. Like their DACL object-specific ACE cousins, system audit-object ACEs specify a GUID indicating 
the types of objects or sub-objects that the ACE applies to and an optional GUID that controls propa-
gation of the ACE to particular child object types. If a SACL is null, no auditing takes place on the object. 
(Security auditing is described later in this chapter.) The inheritance flags that apply to DACL ACEs also 
apply to system audit and system audit-object ACEs.

Figure 7-8 is a simplified picture of a file object and its DACL. As shown, the first ACE allows USER1 
to read the file. The second ACE denies members of the group TEAM1 write access to the file. The third 
ACE grants all other users (Everyone) execute access.

FIGURE 7-8 Discretionary access control list (DACL).
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EXPERIMENT: Viewing a security descriptor
Most executive subsystems rely on the object manager’s default security functionality to manage 
security descriptors for their objects. The object manager’s default security functions use the 
security descriptor pointer to store security descriptors for such objects. For example, the process 
manager uses default security, so the object manager stores process and thread security descrip-
tors in the object headers of process and thread objects, respectively. The security descriptor 
pointer of events, mutexes, and semaphores also store their security descriptors. You can use live 
kernel debugging to view the security descriptors of these objects once you locate their object 
header, as outlined in the following steps. (Note that both Process Explorer and AccessChk can 
also show security descriptors for processes.)

1. Start local kernel debugging.

2. Type !process 0 0 explorer.exe to obtain process information about Explorer:

lkd> !process 0 0 explorer.exe 
PROCESS ffffe18304dfd780 
    SessionId: 1  Cid: 23e4    Peb: 00c2a000  ParentCid: 2264 
    DirBase: 2aa0f6000  ObjectTable: ffffcd82c72fcd80  HandleCount: 
<Data Not Accessible> 
    Image: explorer.exe 
 
PROCESS ffffe1830670a080 
    SessionId: 1  Cid: 27b8    Peb: 00950000  ParentCid: 035c 
    DirBase: 2cba97000  ObjectTable: ffffcd82c7ccc500  HandleCount: 
<Data Not Accessible> 
    Image: explorer.exe

3. If more than one instance of explorer is listed, choose one. (It doesn’t matter which.) 
Type !object with the address of the EPROCESS in the output of the previous command 
as the argument to show the object data structure:

lkd> !object ffffe18304dfd780 
Object: ffffe18304dfd780  Type: (ffffe182f7496690) Process 
    ObjectHeader: ffffe18304dfd750 (new version) 
    HandleCount: 15  PointerCount: 504639 

4. Type dt _OBJECT_HEADER and the address of the object header field from the previ-
ous command’s output to show the object header data structure, including the security 
descriptor pointer value:

lkd> dt nt!_object_header ffffe18304dfd750 
   +0x000 PointerCount     : 0n504448 
   +0x008 HandleCount      : 0n15 
   +0x008 NextToFree       : 0x00000000'0000000f Void 
   +0x010 Lock             : _EX_PUSH_LOCK 
   +0x018 TypeIndex        : 0xe5 '' 
   +0x019 TraceFlags       : 0 '' 
   +0x019 DbgRefTrace      : 0y0 
   +0x019 DbgTracePermanent : 0y0 
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   +0x01a InfoMask         : 0x88 '' 
   +0x01b Flags            : 0 '' 
   +0x01b NewObject        : 0y0 
   +0x01b KernelObject     : 0y0 
   +0x01b KernelOnlyAccess : 0y0 
   +0x01b ExclusiveObject  : 0y0 
   +0x01b PermanentObject  : 0y0 
   +0x01b DefaultSecurityQuota : 0y0 
   +0x01b SingleHandleEntry : 0y0 
   +0x01b DeletedInline    : 0y0 
   +0x01c Reserved         : 0x30003100 
   +0x020 ObjectCreateInfo : 0xffffe183'09e84ac0 _OBJECT_CREATE_INFORMATION 
   +0x020 QuotaBlockCharged : 0xffffe183'09e84ac0 Void 
   +0x028 SecurityDescriptor : 0xffffcd82'cd0e97ed Void 
   +0x030 Body             : _QUAD 

5. Finally, use the debugger’s !sd command to dump the security descriptor. The security 
descriptor pointer in the object header uses some of the low-order bits as flags, and these 
must be zeroed before following the pointer. On 32-bit systems there are three flag bits, 
so use & –8 with the security descriptor address displayed in the object header structure, 
as follows. On 64-bit systems there are four flag bits, so you use & –10 instead. 

lkd> !sd 0xffffcd82'cd0e97ed & -10 
->Revision: 0x1 
->Sbz1    : 0x0 
->Control : 0x8814 
            SE_DACL_PRESENT 
            SE_SACL_PRESENT 
            SE_SACL_AUTO_INHERITED 
            SE_SELF_RELATIVE 
->Owner   : S-1-5-21-3537846094-3055369412-2967912182-1001 
->Group   : S-1-5-21-3537846094-3055369412-2967912182-1001 
->Dacl    :  
->Dacl    : ->AclRevision: 0x2 
->Dacl    : ->Sbz1       : 0x0 
->Dacl    : ->AclSize    : 0x5c 
->Dacl    : ->AceCount   : 0x3 
->Dacl    : ->Sbz2       : 0x0 
->Dacl    : ->Ace[0]: ->AceType: ACCESS_ALLOWED_ACE_TYPE 
->Dacl    : ->Ace[0]: ->AceFlags: 0x0 
->Dacl    : ->Ace[0]: ->AceSize: 0x24 
->Dacl    : ->Ace[0]: ->Mask : 0x001fffff 
->Dacl    : ->Ace[0]: ->SID: S-1-5-21-3537846094-3055369412-2967912182-1001 
 
->Dacl    : ->Ace[1]: ->AceType: ACCESS_ALLOWED_ACE_TYPE 
->Dacl    : ->Ace[1]: ->AceFlags: 0x0 
->Dacl    : ->Ace[1]: ->AceSize: 0x14 
->Dacl    : ->Ace[1]: ->Mask : 0x001fffff 
->Dacl    : ->Ace[1]: ->SID: S-1-5-18 
 
->Dacl    : ->Ace[2]: ->AceType: ACCESS_ALLOWED_ACE_TYPE 
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->Dacl    : ->Ace[2]: ->AceFlags: 0x0 
->Dacl    : ->Ace[2]: ->AceSize: 0x1c 
->Dacl    : ->Ace[2]: ->Mask : 0x00121411 
->Dacl    : ->Ace[2]: ->SID: S-1-5-5-0-1745560 
 
->Sacl    :  
->Sacl    : ->AclRevision: 0x2 
->Sacl    : ->Sbz1       : 0x0 
->Sacl    : ->AclSize    : 0x1c 
->Sacl    : ->AceCount   : 0x1 
->Sacl    : ->Sbz2       : 0x0 
->Sacl    : ->Ace[0]: ->AceType: SYSTEM_MANDATORY_LABEL_ACE_TYPE 
->Sacl    : ->Ace[0]: ->AceFlags: 0x0 
->Sacl    : ->Ace[0]: ->AceSize: 0x14 
->Sacl    : ->Ace[0]: ->Mask : 0x00000003 
->Sacl    : ->Ace[0]: ->SID: S-1-16-8192 

The security descriptor contains three access-allowed ACEs: one for the current user (S-1-5-21-
3537846094-3055369412-2967912182-1001), one for the System account (S-1-5-18), and the last 
for the Logon SID (S-1-5-5-0-1745560). The system access control list has one entry (S-1-16-8192) 
labeling the process as medium integrity level.

ACL assignment
To determine which DACL to assign to a new object, the security system uses the first applicable rule of 
the following four assignment rules:

1. If a caller explicitly provides a security descriptor when creating the object, the security system 
applies it to the object. If the object has a name and resides in a container object (for example, a 
named event object in the \BaseNamedObjects object manager namespace directory), the system 
merges any inheritable ACEs (ACEs that might propagate from the object’s container) into the DACL 
unless the security descriptor has the SE_DACL_PROTECTED flag set, which prevents inheritance.

2. If a caller doesn’t supply a security descriptor and the object has a name, the security system looks 
at the security descriptor in the container in which the new object name is stored. Some of the 
object directory’s ACEs might be marked as inheritable, meaning they should be applied to new 
objects created in the object directory. If any of these inheritable ACEs are present, the security 
system forms them into an ACL, which it attaches to the new object. (Separate flags indicate ACEs 
that should be inherited only by container objects rather than by objects that aren’t containers.)

3. If no security descriptor is specified and the object doesn’t inherit any ACEs, the security system 
retrieves the default DACL from the caller’s access token and applies it to the new object. 
Several subsystems on Windows have hard-coded DACLs that they assign on object creation 
(for example, services, LSA, and SAM objects).

4. If there is no specified descriptor, no inherited ACEs, and no default DACL, the system creates 
the object with no DACL, which allows everyone (all users and groups) full access to the object. 
This rule is the same as the third rule, in which a token contains a null default DACL.
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The rules the system uses when assigning a SACL to a new object are similar to those used for DACL 
assignment, with some exceptions:

 ■ Inherited system audit ACEs don’t propagate to objects with security descriptors marked with 
the SE_SACL_PROTECTED flag (similar to the SE_DACL_PROTECTED flag, which protects DACLs). 

 ■ If there are no specified security audit ACEs and there is no inherited SACL, no SACL is applied 
to the object. This behavior is different from that used to apply default DACLs because tokens 
don’t have a default SACL.

When a new security descriptor containing inheritable ACEs is applied to a container, the system au-
tomatically propagates the inheritable ACEs to the security descriptors of child objects. (Note that a se-
curity descriptor’s DACL doesn’t accept inherited DACL ACEs if its SE_DACL_PROTECTED flag is enabled, 
and its SACL doesn’t inherit SACL ACEs if the descriptor has the SE_SACL_PROTECTED flag set.) The order 
in which inheritable ACEs are merged with an existing child object’s security descriptor is such that any 
ACEs that were explicitly applied to the ACL are kept ahead of ACEs that the object inherits. The system 
uses the following rules for propagating inheritable ACEs:

 ■ If a child object with no DACL inherits an ACE, the result is a child object with a DACL containing 
only the inherited ACE.

 ■ If a child object with an empty DACL inherits an ACE, the result is a child object with a DACL 
containing only the inherited ACE.

 ■ For objects in Active Directory only, if an inheritable ACE is removed from a parent object, auto-
matic inheritance removes any copies of the ACE inherited by child objects.

 ■ For objects in Active Directory only, if automatic inheritance results in the removal of all ACEs 
from a child object’s DACL, the child object has an empty DACL rather than no DACL.

As you’ll soon discover, the order of ACEs in an ACL is an important aspect of the Windows security 
model.

Note Inheritance is generally not directly supported by the object stores, such as file systems, 
the registry, or Active Directory. Windows APIs that support inheritance, including SetEntriesInAcl, 
do so by invoking appropriate functions within the security inheritance support DLL 
(%SystemRoot%\System32\Ntmarta.dll) that know how to traverse those object stores.

Trust ACEs
The advent of protected processes and Protected Processes Light (PPL, discussed in Chapter 3) created 
a need for such a process to make objects as accessible by protected processes only. This is important 
to protect certain resources such as the KnownDlls registry key from tampering, even by admin-level 
code. Such ACEs are specified with well-known SIDs that provide the protection level and signer that is 
required to obtain access. Table 7-7 shows the SIDs and their level and meaning.
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TABLE 7-7 Trust SIDs

SID Protection Level Protection Signer

1-19-512-0 Protected Light None

1-19-512-4096 Protected Light Windows

1-19-512-8192 Protected Light WinTcb

1-19-1024-0 Protected None

1-19-1024-4096 Protected Windows

1-19-1024-8192 Protected WinTcb

A trust SID is part of a token object that exists for tokens attached to protected or PPL processes. 
The higher the SID number, the more powerful the token is. (remember that Protected is higher than 
Protected Light).

EXPERIMENT: Viewing trust SIDs
In this experiment, you’ll look at trust SIDs in tokens of protected processes.

Start local kernel debugging.

List Csrss.exe processes with basic information:

lkd> !process 0 1 csrss.exe 
PROCESS ffff8188e50b5780 
    SessionId: 0  Cid: 0358    Peb: b3a9f5e000  ParentCid: 02ec 
    DirBase: 1273a3000  ObjectTable: ffffbe0d829e2040  HandleCount: 
<Data Not Accessible> 
    Image: csrss.exe 
    VadRoot ffff8188e6ccc8e0 Vads 159 Clone 0 Private 324. Modified 4470. 
Locked 0. 
    DeviceMap ffffbe0d70c15620 
    Token                             ffffbe0d829e7060 
    ... 
PROCESS ffff8188e7a92080 
    SessionId: 1  Cid: 03d4    Peb: d5b0de4000  ParentCid: 03bc 
    DirBase: 162d93000  ObjectTable: ffffbe0d8362d7c0  HandleCount: 
<Data Not Accessible>Modified 462372. Locked 0. 
    DeviceMap ffffbe0d70c15620 
    Token                             ffffbe0d8362d060 
    ...

Select one of the tokens and show its details:

lkd> !token ffffbe0d829e7060 
_TOKEN 0xffffbe0d829e7060 
TS Session ID: 0 
User: S-1-5-18 
... 
Process Token TrustLevelSid: S-1-19-512-8192

That’s a PPL with a WinTcb signer.
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Determining access
Two methods are used for determining access to an object:

 ■ The mandatory integrity check, which determines whether the integrity level of the caller is 
high enough to access the resource, based on the resource’s own integrity level and its manda-
tory policy.

 ■ The discretionary access check, which determines the access that a specific user account has to 
an object.

When a process tries to open an object, the integrity check takes place before the standard 
Windows DACL check in the kernel’s SeAccessCheck function because it is faster to execute and can 
quickly eliminate the need to perform the full discretionary access check. Given the default integrity 
policies in its access token (TOKEN_MANDATORY_NO_WRITE_UP and TOKEN_MANDATORY_NEW_PROCESS_
MIN, described previously), a process can open an object for write access if its integrity level is equal to 
or higher than the object’s integrity level and the DACL also grants the process the accesses it desires. 
For example, a low-integrity-level process cannot open a medium-integrity-level process for write ac-
cess, even if the DACL grants the process write access.

With the default integrity policies, processes can open any object—with the exception of process, 
thread, and token objects—for read access as long as the object’s DACL grants them read access. That 
means a process running at low integrity level can open any files accessible to the user account in which 
it’s running. Protected Mode Internet Explorer uses integrity levels to help prevent malware that infects it 
from modifying user account settings, but it does not stop malware from reading the user’s documents.

Recall that process, thread, and token objects are exceptions because their integrity policy also in-
cludes No-Read-Up. That means a process integrity level must be equal to or higher than the integrity 
level of the process or thread it wants to open, and the DACL must grant it the access it wants for an 
attempt to open it to succeed. Assuming the DACLs allow the desired access, Table 7-8 shows the types 
of access that processes running at various integrity levels have to other processes and objects.

TABLE 7-8 Accessing objects and processes based on integrity level

Accessing Process Access to Objects Access to Other Processes

High integrity level Read/write to all objects with integrity level 
of High or lower
Read access to objects with integrity level 
of System

Read/write access to all processes with High 
or lower integrity level
No read/write access to processes with 
System integrity level

Medium integrity level Read/write to all objects with integrity level 
of Medium or Low
Read access to objects with integrity level of 
High or System

Read/write access to all processes with 
Medium or Low integrity level
No read/write access to processes with High 
or System integrity level

Low integrity level Read/write to all objects with integrity level 
of Low
Read access to objects with integrity level of 
Medium or higher

Read/write access to all processes with Low 
integrity level
No read/write access to processes with 
Medium or higher integrity level
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Note The read access to a process described in this section means full read access, such as 
reading the contents of the process address space. No-Read-Up does not prevent opening a 
higher-integrity-level process from a lower one for a more limited access, such as PROCESS_
QUERY_LIMITED_INFORMATION, which provides only basic information about the process.

User Interface Privilege Isolation
The Windows messaging subsystem also honors integrity levels to implement User Interface 
Privilege Isolation (UIPI). The subsystem does this by preventing a process from sending window 
messages to the windows owned by a process having a higher integrity level, with the following 
informational messages being exceptions:

 ■ WM_NULL

 ■ WM_MOVE

 ■ WM_SIZE

 ■ WM_GETTEXT

 ■ WM_GETTEXTLENGTH

 ■ WM_GETHOTKEY

 ■ WM_GETICON

 ■ WM_RENDERFORMAT

 ■ WM_DRAWCLIPBOARD

 ■ WM_CHANGECBCHAIN

 ■ WM_THEMECHANGED

This use of integrity levels prevents standard user processes from driving input into the windows 
of elevated processes or from performing a shatter attack (such as sending the process mal-
formed messages that trigger internal buffer overflows, which can lead to the execution of code 
at the elevated process’s privilege level). UIPI also blocks window hooks (SetWindowsHookEx API) 
from affecting the windows of higher-integrity-level processes so that a standard user process 
can’t log the keystrokes the user types into an administrative application, for example. Journal 
hooks are also blocked in the same way to prevent lower-integrity-level processes from monitor-
ing the behavior of higher-integrity-level processes.

Processes (running with medium or higher integrity level only) can choose to allow additional 
messages to pass the guard by calling the ChangeWindowMessageFilterEx API. This function 
is typically used to add messages required by custom controls to communicate outside native 
common controls in Windows. An older API, ChangeWindowMessageFilter, performs a similar 
function, but it is per-process rather than per-window. With ChangeWindowMessageFilter, it is 
possible for two custom controls inside the same process to be using the same internal window 
messages, which could lead to one control’s potentially malicious window message to be allowed 
through, simply because it happens to be a query-only message for the other custom control.

Because accessibility applications such as the On-Screen Keyboard (Osk.exe) are subject to 
UIPI’s restrictions (which would require the accessibility application to be executed for each kind 
of visible integrity-level process on the desktop), these processes can enable UI access. This flag 
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can be present in the manifest file of the image and will run the process at a slightly higher integ-
rity level than medium (between 0x2000 and 0x3000) if launched from a standard user account, 
or at high integrity level if launched from an Administrator account. Note that in the second case, 
an elevation request won’t actually be displayed. For a process to set this flag, its image must also 
be signed and in one of several secure locations, including %SystemRoot% and %ProgramFiles%.

After the integrity check is complete, and assuming the mandatory policy allows access to the 
object based on the caller’s integrity, one of two algorithms is used for the discretionary check to an 
object, which will determine the outcome of the access check:

 ■ Determine the maximum access allowed to the object, a form of which is exported to user 
mode using the AuthZ API (described in the section “The AuthZ API” later in this chapter) or 
the older GetEffectiveRightsFromAcl function. This is also used when a program specifies 
a desired access of MAXIMUM_ALLOWED, which is what the legacy APIs that don’t have a desired 
access parameter use.

 ■ Determine whether a specific desired access is allowed, which can be done with the Windows 
AccessCheck function or the AccessCheckByType function.

The first algorithm examines the entries in the DACL as follows:

1. If the object has no DACL (a null DACL), the object has no protection and the security sys-
tem grants all access, unless the access is from an AppContainer process (discussed in the 
“AppContainers” section later in this chapter), which means access is denied.

2. If the caller has the take-ownership privilege, the security system grants write-owner access 
before examining the DACL. (Take-ownership privilege and write-owner access are explained 
in a moment.)

3. If the caller is the owner of the object, the system looks for an OWNER_RIGHTS SID and uses that SID 
as the SID for the next steps. Otherwise, read-control and write-DACL access rights are granted.

4. For each access-denied ACE that contains a SID that matches one in the caller’s access token, 
the ACE’s access mask is removed from the granted-access mask.

5. For each access-allowed ACE that contains a SID that matches one in the caller’s access token, 
the ACE’s access mask is added to the granted-access mask being computed, unless that access 
has already been denied.

When all the entries in the DACL have been examined, the computed granted-access mask is re-
turned to the caller as the maximum allowed access to the object. This mask represents the total set of 
access types that the caller will be able to successfully request when opening the object.

The preceding description applies only to the kernel-mode form of the algorithm. The Windows 
version implemented by GetEffectiveRightsFromAcl differs in that it doesn’t perform step 2, and it 
considers a single user or group SID rather than an access token.
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Owner Rights
Because owners of an object can normally override the security of an object by always being 
granted read-control and write-DACL rights, a specialized method of controlling this behavior is 
exposed by Windows: the Owner Rights SID.

The Owner Rights SID exists for two main reasons: 

 ■ To improve service hardening in the operating system Whenever a service creates an 
object at run time, the Owner SID associated with that object is the account the service is 
running in (such as local system or local service) and not the actual service SID. This means 
that any other service in the same account would have access to the object by being an 
owner. The Owner Rights SID prevents that unwanted behavior.

 ■ To allow more flexibility for specific usage scenarios For example, suppose an admin-
istrator wants to allow users to create files and folders but not to modify the ACLs on those 
objects. (Users could inadvertently or maliciously grant access to those files or folders to 
unwanted accounts.) By using an inheritable Owner Rights SID, the users can be prevented 
from editing or even viewing the ACL on the objects they create. A second usage scenario 
relates to group changes. Suppose an employee has been part of some confidential or 
sensitive group, has created several files while a member of that group, and has now been 
removed from the group for business reasons. Because that employee is still a user, he 
could continue accessing the sensitive files.

The second algorithm is used to determine whether a specific access request can be granted based 
on the caller’s access token. Each open function in the Windows API that deals with securable objects 
has a parameter that specifies the desired access mask, which is the last component of the security 
equation. To determine whether the caller has access, the following steps are performed:

1. If the object has no DACL (a null DACL), the object has no protection and the security system 
grants the desired access.

2. If the caller has the take-ownership privilege, the security system grants write-owner access  
if requested and then examines the DACL. However, if write-owner access was the only access 
requested by a caller with take-ownership privilege, the security system grants that access and 
never examines the DACL.

3. If the caller is the owner of the object, the system looks for an OWNER_RIGHTS SID and uses 
that SID as the SID for the next steps. Otherwise, read-control and write-DACL access rights are 
granted. If these rights were the only access rights that the caller requested, access is granted 
without examining the DACL

4. Each ACE in the DACL is examined from first to last. An ACE is processed if one of the following 
conditions is satisfied:

• The ACE is an access-deny ACE, and the SID in the ACE matches an enabled SID (SIDs can be 
enabled or disabled) or a deny-only SID in the caller’s access token.
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• The ACE is an access-allowed ACE, and the SID in the ACE matches an enabled SID in the 
caller’s token that isn’t of type deny-only.

• It is the second pass through the descriptor for restricted-SID checks, and the SID in the ACE 
matches a restricted SID in the caller’s access token.

• The ACE isn’t marked as inherit-only.

5. If it is an access-allowed ACE, the rights in the access mask in the ACE that were requested are 
granted. If all the requested access rights have been granted, the access check succeeds. If it is 
an access-denied ACE and any of the requested access rights are in the denied-access rights, 
access is denied to the object.

6. If the end of the DACL is reached and some of the requested access rights still haven’t been 
granted, access is denied.

7. If all accesses are granted but the caller’s access token has at least one restricted SID, the system 
rescans the DACL’s ACEs looking for ACEs with access-mask matches for the accesses the user 
is requesting and a match of the ACE’s SID with any of the caller’s restricted SIDs. Only if both 
scans of the DACL grant the requested access rights is the user granted access to the object.

The behavior of both access-validation algorithms depends on the relative ordering of allow and 
deny ACEs. Consider an object with only two ACEs: one that specifies that a certain user is allowed full 
access to an object and one that denies the user access. If the allow ACE precedes the deny ACE, the 
user can obtain full access to the object, but if the order is reversed, the user cannot gain any access to 
the object.

Several Windows functions, such as SetSecurityInfo and SetNamedSecurityInfo, apply ACEs 
in the preferred order of explicit deny ACEs preceding explicit allow ACEs. For example, the security 
editor dialog boxes with which you edit permissions on NTFS files and registry keys use these func-
tions. SetSecurityInfo and SetNamedSecurityInfo also apply ACE inheritance rules to the security 
descriptor on which they are applied.

Figure 7-9 shows an example of access validation demonstrating the importance of ACE ordering. In 
the example, access is denied to a user wanting to open a file even though an ACE in the object’s DACL 
grants the access. This is because the ACE denying the user access (by virtue of the user’s membership 
in the Writers group) precedes the ACE granting access.

FIGURE 7-9 Access-validation example.
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As stated, because it wouldn’t be efficient for the security system to process the DACL every time a 
process uses a handle, the SRM makes this access check only when a handle is opened, not each time 
the handle is used. Thus, once a process successfully opens a handle, the security system can’t revoke 
the access rights that have been granted, even if the object’s DACL changes. Also keep in mind that 
because kernel-mode code uses pointers rather than handles to access objects, the access check isn’t 
performed when the operating system uses objects. In other words, the Windows executive trusts itself 
(and all loaded drivers) in a security sense.

The fact that an object’s owner is always granted write-DACL access to an object means that users 
can never be prevented from accessing the objects they own. If, for some reason, an object had an 
empty DACL (no access), the owner would still be able to open the object with write-DACL access and 
then apply a new DACL with the desired access permissions.

A warning regarding the GUI security editors
When you use the GUI permissions editors to modify security settings on a file, a registry, or an 
Active Directory object, or on another securable object, the main security dialog box shows you a 
potentially misleading view of the security that’s applied to the object. If you allow Full Control to 
the Everyone group and deny the Administrator group Full Control, the list might lead you to be-
lieve that the Everyone group access-allowed ACE precedes the Administrator deny ACE because 
that’s the order in which they appear. However, as we’ve said, the editors place deny ACEs before 
allow ACEs when they apply the ACL to the object.

The Permissions tab of the Advanced Security Settings dialog box shows the order of ACEs 
in the DACL. However, even this dialog box can be confusing because a complex DACL can have 
deny ACEs for various accesses followed by allow ACEs for other access types.
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The only definitive way to know what access a particular user or group will have to an object 
(other than having that user or a member of the group try to access the object) is to use the 
Effective Access tab of the dialog box that is displayed when you click the Advanced button in 
the Properties dialog box. Enter the name of the user or group you want to check and the dialog 
box shows you what permissions they are allowed for the object.
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Dynamic Access Control
The discretionary access control mechanism discussed in previous sections has existed since the first 
Windows NT version and is useful in many scenarios. There are scenarios, however, where this scheme 
is not flexible enough. For example, consider a requirement that users accessing a shared file should be 
allowed to do so if they are using a computer in the workplace, but should not be allowed if accessing 
the file from their computer at home. There is no way to specify such a condition using an ACE.

Windows 8 and Server 2012 introduced Dynamic Access Control (DAC), a flexible mechanism that can 
be used to define rules based on custom attributes defined in Active Directory. DAC does not replace the 
existing mechanism, but adds to it. This means that for an operation to be allowed, both DAC and the 
classic DACL must grant the permission. Figure 7-10 shows the main aspects of Dynamic Access Control.

FIGURE 7-10 Dynamic Access Control components.

A claim is any piece of information about a user, device (computer in a domain), or resource (generic 
attribute) that has been published by a domain controller. Examples of valid claims are a user’s title and 
department classification of a file. Any combination of claims can be used in expressions for building 
rules. These rules collectively become the central access policy.

DAC configuration is done in Active Directory and pushed through policy. The Kerberos tickets 
protocol has been enhanced to support authenticated transport of user and device claims (known as 
Kerberos armoring).

The AuthZ API

The AuthZ Windows API provides authorization functions and implements the same security model 
as the security reference monitor (SRM), but it implements the model totally in user mode in the 
%SystemRoot%\System32\Authz.dll library. This gives applications that want to protect their own private 
objects, such as database tables, the ability to leverage the Windows security model without incurring the 
cost of user mode–to–kernel mode transitions that they would make if they relied on the SRM.

The AuthZ API uses standard security descriptor data structures, SIDs, and privileges. Instead of 
using tokens to represent clients, AuthZ uses AUTHZ_CLIENT_CONTEXT. AuthZ includes user-mode 
equivalents of all access-check and Windows security functions—for example, AuthzAccessCheck is 
the AuthZ version of the AccessCheck Windows API that uses the SeAccessCheck SRM function.
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Another advantage available to applications that use AuthZ is that they can direct AuthZ to cache 
the results of security checks to improve subsequent checks that use the same client context and secu-
rity descriptor. AuthZ is fully documented in the Windows SDK.

This type of access checking, using a SID and security group membership in a static, controlled 
environment, is known as Identity-Based Access Control (IBAC), and it requires that the security system 
know the identity of every possible accessor when the DACL is placed in an object’s security descriptor. 

Windows includes support for Claims Based Access Control (CBAC), where access is granted not based 
upon the accessor’s identity or group membership, but upon arbitrary attributes assigned to the acces-
sor and stored in the accessor’s access token. Attributes are supplied by an attribute provider, such as 
AppLocker. The CBAC mechanism provides many benefits, including the ability to create a DACL for a 
user whose identity is not yet known or dynamically calculated user attributes. The CBAC ACE (also known 
as a conditional ACE) is stored in a *-callback ACE structure, which is essentially private to AuthZ and 
is ignored by the system SeAccessCheck API. The kernel-mode routine SeSrpAccessCheck does not 
understand conditional ACEs, so only applications calling the AuthZ APIs can make use of CBAC. The only 
system component that makes use of CBAC is AppLocker, for setting attributes such as path or publisher. 
Third-party applications can make use of CBAC by taking advantage of the CBAC AuthZ APIs.

Using CBAC security checks allows powerful management policies, such as the following:

 ■ Run only applications approved by the corporate IT department.

 ■ Allow only approved applications to access your Microsoft Outlook contacts or calendar.

 ■ Allow only people in a particular building on a specific floor to access printers on that floor.

 ■ Allow access to an intranet website only to full-time employees (as opposed to contractors).

Attributes can be referenced in what is known as a conditional ACE, where the presence, absence, or 
value of one or more attributes is checked. An attribute name can contain any alphanumeric Unicode 
characters, as well as the following characters: colon (:), forward slash (/), and underscore (_). The value 
of an attribute can be one of the following: 64-bit integer, Unicode string, byte string, or array.

Conditional ACEs
The format of SDDL strings has been expanded to support ACEs with conditional expressions. The  
new format of an SDDL string is this: AceType;AceFlags;Rights;ObjectGuid;InheritObjectGuid; 
AccountSid;(ConditionalExpression).

The AceType for a conditional ACE is either XA (for SDDL_CALLBACK_ACCESS_ALLOWED) or XD (for 
SDDL_CALLBACK_ACCESS_DENIED). Note that ACEs with conditional expressions are used for claims-
type authorization (specifically, the AuthZ APIs and AppLocker) and are not recognized by the object 
manager or file systems.

A conditional expression can include any of the elements shown in Table 7-9.
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TABLE 7-9 Acceptable Elements for a Conditional Expression

Expression Element Description

AttributeName Tests whether the specified attribute has a non-zero value.

exists AttributeName Tests whether the specified attribute exists in the client context.

AttributeName Operator Value Returns the result of the specified operation. The following operators are 
defined for use in conditional expressions to test the values of attributes. All 
these are binary operators (as opposed to unary) and are used in the form 
AttributeName Operator Value. The operators are Contains any_of , 
==, !=, <, <=, >, >=.

ConditionalExpression || 
ConditionalExpression

Tests whether either of the specified conditional expressions is true.

ConditionalExpression && 
ConditionalExpression

Tests whether both of the specified conditional expressions are true.

!(ConditionalExpression) The inverse of a conditional expression.

Member_of {SidArray} Tests whether the SID_AND_ATTRIBUTES array of the client context con-
tains all the security identifiers (SIDs) in the comma-separated list specified 
by SidArray.

A conditional ACE can contain any number of conditions. It is ignored if the resultant evaluation of 
the condition is false or applied if the result is true. A conditional ACE can be added to an object using 
the AddConditionalAce API and checked using the AuthzAccessCheck API.

A conditional ACE could specify that access to certain data records within a program should be 
granted only to a user who meets the following criteria (for example):

 ■ Holds the Role attribute, with a value of Architect, Program Manager, or Development Lead, 
and the Division attribute with a value of Windows

 ■ Whose ManagementChain attribute contains the value John Smith

 ■ Whose CommissionType attribute is Officer and whose PayGrade attribute is greater than 6 
(that is, the rank of General Officer in the US military)

Windows does not include tools to view or edit conditional ACEs.

Account rights and privileges

Many operations performed by processes as they execute cannot be authorized through object access 
protection because they do not involve interaction with a particular object. For example, the ability to 
bypass security checks when opening files for backup is an attribute of an account, not of a particular 
object. Windows uses both privileges and account rights to allow a system administrator to control 
what accounts can perform security-related operations.

A privilege is the right of an account to perform a particular system-related operation, such as shut-
ting down the computer or changing the system time. An account right grants or denies the account to 
which it’s assigned the ability to perform a particular type of logon, such as a local logon or interactive 
logon, to a computer.
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A system administrator assigns privileges to groups and accounts using tools such as the Active 
Directory Users and Groups MMC snap-in for domain accounts or the Local Security Policy editor 
(%SystemRoot%\System32\secpol.msc). Figure 7-11 shows the User Rights Assignment configuration 
in the Local Security Policy editor, which displays the complete list of privileges and account rights 
available on Windows. Note that the tool makes no distinction between privileges and account rights. 
However, you can differentiate between them: Any user right that does not contain the words log on is 
an account privilege.

FIGURE 7-11 Local Security Policy editor user rights assignment.

Account rights
Account rights are not enforced by the SRM, nor are they stored in tokens. The function responsible for 
logon is LsaLogonUser. Winlogon, for example, calls the LogonUser API when a user logs on interac-
tively to a computer, and LogonUser calls LsaLogonUser. LogonUser takes a parameter that indicates 
the type of logon being performed, which includes interactive, network, batch, service, and Terminal 
Server client.
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In response to logon requests, the Local Security Authority (LSA) retrieves account rights assigned 
to a user from the LSA policy database at the time that a user attempts to log on to the system. The LSA 
checks the logon type against the account rights assigned to the user account logging on and denies 
the logon if the account does not have the right that permits the logon type or it has the right that 
denies the logon type. Table 7-10 lists the user rights defined by Windows.

TABLE 7-10 Account rights

User Right Role

Deny logon locally, allow logon locally Used for interactive logons that originate on the local 
machine

Deny logon over the network, allow logon over the network Used for logons that originate from a remote machine

Deny logon through Terminal Services, allow logon 
through Terminal Services

Used for logons through a Terminal Server client

Deny logon as a service, allow logon as a service Used by the service control manager when starting a service 
in a particular user account

Deny logon as a batch job, allow logon as a batch job Used when performing a logon of type batch

Windows applications can add and remove user rights from an account by using the LsaAdd-
AccountRights and LsaRemoveAccountRights functions, and they can determine what rights are 
assigned to an account with LsaEnumerateAccountRights.

Privileges
The number of privileges defined by the operating system has grown over time. Unlike user rights, 
which are enforced in one place by the LSA, different privileges are defined by different components 
and enforced by those components. For example, the debug privilege, which allows a process to by-
pass security checks when opening a handle to another process with the OpenProcess Windows API, 
is checked for by the process manager.

Table 7-11 is a full list of privileges and describes how and when system components check for 
them. Each privilege has a macro defined in the SDK headers, in the form SE_privilege_NAME, where 
privilege is a privilege constant—for example, SE_DEBUG_NAME for the debug privilege. These macros 
are defined as strings that start with Se and end with Privilege, as in SeDebugPrivilege. This may 
seem to indicate that privileges are identified by strings, but in fact they are identified by LUIDs, which 
naturally are unique for the current boot. Every access to a privilege needs to lookup the correct LUID 
by calling the LookupPrivilegeValue function. Note, however, that Ntdll and kernel code can identify 
privileges with integer constants directly without going through a LUID.

TABLE 7-11 Privileges

Privilege User Right Privilege Usage

SeAssignPrimaryTokenPrivilege Replace a process-
level token

Checked for by various components, such as 
NtSetInformationJobObject, that set a process’s 
token.

SeAuditPrivilege Generate security 
audits

Required to generate events for the Security event 
log with the ReportEvent API.
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TABLE 7-11 Privileges  (continued)

Privilege User Right Privilege Usage

SeBackupPrivilege Back up files and 
directories

Causes NTFS to grant the following access to any file 
or directory, regardless of the security descriptor 
that’s present: READ_CONTROL, ACCESS_SYSTEM_
SECURITY, FILE_GENERIC_READ, and FILE_
TRAVERSE. Note that when opening a file for backup, 
the caller must specify the FILE_FLAG_BACKUP_
SEMANTICS flag. Also allows corresponding access to 
registry keys when using RegSaveKey.

SeChangeNotifyPrivilege Bypass traverse 
checking

Used by NTFS to avoid checking permissions on 
intermediate directories of a multilevel directory 
lookup. Also used by file systems when applications 
register for notification of changes to the file system 
structure.

SeCreateGlobalPrivilege Create global 
objects

Required for a process to create section and sym-
bolic link objects in the directories of the object 
manager namespace that are assigned to a different 
session than the caller.

SeCreatePagefilePrivilege Create a pagefile Checked for by NtCreatePagingFile, which is the 
function used to create a new paging file.

SeCreatePermanentPrivilege Create permanent 
shared objects

Checked for by the object manager when creating a 
permanent object (one that doesn’t get deallocated 
when there are no more references to it).

SeCreateSymbolicLinkPrivilege Create symbolic 
links

Checked for by NTFS when creating symbolic links 
on the file system with the CreateSymbolicLink 
API.

SeCreateTokenPrivilege Create a token 
object

NtCreateToken, the function that creates a token 
object, checks for this privilege.

SeDebugPrivilege Debug programs If the caller has this privilege enabled, the process 
manager allows access to any process or thread  
using NtOpenProcess or NtOpenThread, regardless 
of the process’s or thread’s security descriptor (except 
for protected processes).

SeEnableDelegationPrivilege Enable computer 
and user accounts 
to be trusted for 
delegation

Used by Active Directory services to delegate  
authenticated credentials.

SeImpersonatePrivilege Impersonate a  
client after  
authentication

The process manager checks for this when a thread 
wants to use a token for impersonation and the 
token represents a different user than that of the 
thread’s process token.

SeIncreaseBasePriorityPrivilege Increase schedul-
ing priority

Checked for by the process manager and is required 
to raise the priority of a process.

SeIncreaseQuotaPrivilege Adjust memory 
quotas for a  
process

Enforced when changing a process’s working set 
thresholds, a process’s paged and nonpaged pool 
quotas, and a process’s CPU rate quota.

SeIncreaseWorkingSetPrivilege Increase a process 
working set

Required to call SetProcessWorkingSetSize to 
increase the minimum working set. This indirectly  
allows the process to lock up to the minimum work-
ing set of memory using VirtualLock.
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TABLE 7-11 Privileges  (continued)

Privilege User Right Privilege Usage

SeLoadDriverPrivilege Load and unload 
device drivers

Checked for by the NtLoadDriver and 
NtUnloadDriver driver functions.

SeLockMemoryPrivilege Lock pages in 
memory

Checked for by NtLockVirtualMemory, the kernel 
implementation of VirtualLock.

SeMachineAccountPrivilege Add workstations 
to the domain

Checked for by the Security Account Manager on a 
domain controller when creating a machine account 
in a domain.

SeManageVolumePrivilege Perform volume 
maintenance tasks

Enforced by file system drivers during a volume open 
operation, which is required to perform disk-check-
ing and defragmenting activities.

SeProfileSingleProcessPrivilege Profile single 
process

Checked by Superfetch and the prefetcher when 
requesting information for an individual process 
through the NtQuerySystemInformation API.

SeRelabelPrivilege Modify an object 
label

Checked for by the SRM when raising the integrity 
level of an object owned by another user, or when 
attempting to raise the integrity level of an object 
higher than that of the caller’s token.

SeRemoteShutdownPrivilege Force shutdown 
from a remote 
system

Winlogon checks that remote callers of the 
InitiateSystemShutdown function have this privi-
lege.

SeRestorePrivilege Restore files and 
directories

This privilege causes NTFS to grant the following ac-
cess to any file or directory, regardless of the security 
descriptor that’s present: WRITE_DAC, WRITE_OWNER, 
ACCESS_SYSTEM_SECURITY, FILE_GENERIC_WRITE, 
FILE_ADD_FILE, FILE_ADD_SUBDIRECTORY, and 
DELETE. Note that when opening a file for restore, 
the caller must specify the FILE_FLAG_BACKUP_
SEMANTICS flag. Allows corresponding access to 
registry keys when using RegSaveKey.

SeSecurityPrivilege Manage auditing 
and security log

Required to access the SACL of a security descriptor 
and to read and clear the security event log.

SeShutdownPrivilege Shut down the 
system

Checked for by NtShutdownSystem and 
NtRaiseHardError, which presents a system error 
dialog box on the interactive console.

SeSyncAgentPrivilege Synchronize direc-
tory service data

Required to use the LDAP directory synchronization 
services. It allows the holder to read all objects and 
properties in the directory, regardless of the protec-
tion on the objects and properties.

SeSystemEnvironmentPrivilege Modify firmware 
environment vari-
ables

Required by NtSetSystemEnvironmentValue and 
NtQuerySystemEnvironmentValue to modify and 
read firmware environment variables using the hard-
ware abstraction layer (HAL).

SeSystemProfilePrivilege Profile system per-
formance

Checked for by NtCreateProfile, the function 
used to perform profiling of the system. This is used 
by the Kernprof tool, for example.

SeSystemtimePrivilege Change the sys-
tem time

Required to change the time or date.
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TABLE 7-11 Privileges  (continued)

Privilege User Right Privilege Usage

SeTakeOwnershipPrivilege Take ownership 
of files and other 
objects

Required to take ownership of an object without  
being granted discretionary access. 

SeTcbPrivilege Act as part of the 
operating system

Checked for by the SRM when the session ID is 
set in a token, by the Plug and Play manager for 
Plug and Play event creation and management, by 
BroadcastSystemMessageEx when called with 
BSM_ALLDESKTOPS, by LsaRegisterLogonProcess, 
and when specifying an application as a VDM with 
NtSetInformationProcess.

SeTimeZonePrivilege Change the time 
zone

Required to change the time zone.

SeTrustedCredManAccessPrivilege Access Credential 
Manager as a 
trusted caller

Checked by the Credential Manager to verify that it 
should trust the caller with credential information 
that can be queried in plaintext. It is granted only to 
Winlogon by default.

SeUndockPrivilege Remove computer 
from a docking 
station

Checked for by the user-mode Plug and Play man-
ager when either a computer undock is initiated or a 
device eject request is made.

SeUnsolicitedInputPrivilege Receive unsolic-
ited data from a 
terminal device

This privilege isn’t currently used by Windows.

When a component wants to check a token to see whether a privilege is present, it uses the Privilege- 
Check or LsaEnumerateAccountRights APIs if running in user mode and SeSinglePrivilegeCheck 
or SePrivilegeCheck if running in kernel mode. The privilege-related APIs are not account-right 
aware, but the account-right APIs are privilege-aware.

Unlike account rights, privileges can be enabled and disabled. For a privilege check to succeed, 
the privilege must be in the specified token and it must be enabled. The idea behind this scheme is 
that privileges should be enabled only when their use is required so that a process cannot inadver-
tently perform a privileged security operation. Enabling or disabling privileges can be done with the 
AdjustTokenPrivileges function.

EXPERIMENT: Seeing a privilege get enabled
By following these steps, you can see that the Date and Time Control Panel applet enables the 
SeTimeZonePrivilege privilege in response to you using its interface to change the time zone 
of the computer (Windows 10):

1. Run Process Explorer elevated.

2. Right-click the clock in the system tray in the taskbar and choose Adjust Date/Time. 
Alternatively, open the Settings app and search for time to open the Date and Time 
settings page.
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3. Right-click the SystemSettings.exe process in Process Explorer and choose Properties. 
Then click the Security tab in the Properties dialog box. You should see that the 
SeTimeZonePrivilege privilege is disabled. 

4. Change the time zone, close the Properties dialog box, and then open it again. On the 
Security tab, you should now see that the SeTimeZonePrivilege privilege is enabled:
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EXPERIMENT: The Bypass Traverse Checking privilege
If you are a systems administrator, you must be aware of the Bypass Traverse Checking privilege 
(internally called SeNotifyPrivilege) and its implications. This experiment demonstrates that 
not understanding its behavior can lead to improperly applied security.

1. Create a folder and, within that folder, a new text file with some sample text.

2. Navigate in Explorer to the new file, open its Properties dialog box, and click the 
Security tab.

3. Click the Advanced button.

4. Deselect the Inheritance check box. 

5. Select Copy when you are prompted as to whether you want to remove or copy 
inherited permissions.

6. Modify the security of the new folder so that your account does not have any access 
to the folder. To do so, select your account and check all the Deny boxes in the permis-
sions list.

7. Run Notepad. Then open the File menu, choose Open, and browse to the new direc-
tory in the dialog box that appears. You should be denied access to the directory.

8. In the File Name field of the Open dialog box, type the full path of the new file. The file 
should open.

If your account does not have the Bypass Traverse Checking privilege, NTFS performs an ac-
cess check on each directory of the path to a file when you try to open a file, which results in you 
being denied access to the file in this example.

Super privileges
Several privileges are so powerful that a user to which they are assigned is effectively a “super user” 
who has full control over a computer. These privileges can be used in an infinite number of ways to 
gain unauthorized access to otherwise off-limit resources and to perform unauthorized operations. 
However, we’ll focus on using the privilege to execute code that grants the user privileges not assigned 
to the user, with the knowledge that this capability can be leveraged to perform any operation on the 
local machine that the user desires.

This section lists the privileges and discusses some of the ways they can be exploited. Other privi-
leges, such as Lock Pages in Physical Memory (SeLockMemoryPrivilege), can be exploited for denial-
of-service attacks on a system, but these are not discussed. Note that on systems with UAC enabled, 
these privileges will be granted only to applications running at high integrity level or higher, even if the 
account possesses them:
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 ■ Debug programs (SeDebugPrivilege) A user with this privilege can open any process on the 
system (except for a protected process) without regard to the security descriptor present on the 
process. For example, the user could implement a program that opens the Lsass process, copy 
executable code into its address space, and then inject a thread with the CreateRemoteThread 
Windows API to execute the injected code in a more-privileged security context. The code 
could grant the user additional privileges and group memberships.

 ■ Take ownership (SeTakeOwnershipPrivilege) This privilege allows a holder to take owner-
ship of any securable object (even protected processes and threads) by writing his own SID into 
the owner field of the object’s security descriptor. Recall that an owner is always granted per-
mission to read and modify the DACL of the security descriptor, so a process with this privilege 
could modify the DACL to grant itself full access to the object and then close and reopen the 
object with full access. This would allow the owner to see sensitive data and to even replace sys-
tem files that execute as part of normal system operation, such as Lsass, with his own programs 
that grant a user elevated privileges.

 ■ Restore files and directories (SeRestorePrivilege) A user assigned this privilege can re-
place any file on the system with her own. She could exploit this power by replacing system files 
as described in the preceding paragraph.

 ■ Load and unload device drivers (SeLoadDriverPrivilege) A malicious user could use this 
privilege to load a device driver into the system. Device drivers are considered trusted parts 
of the operating system that can execute within it with System account credentials, so a driver 
could launch privileged programs that assign the user other rights.

 ■ Create a token object (SeCreateTokenPrivilege) This privilege can be used in the obvious 
way to generate tokens that represent arbitrary user accounts with arbitrary group membership 
and privilege assignment.

 ■ Act as part of operating system (SeTcbPrivilege) LsaRegisterLogonProcess, the function 
a process calls to establish a trusted connection to Lsass, checks for this privilege. A malicious user 
with this privilege can establish a trusted-Lsass connection and then execute LsaLogonUser, a 
function used to create new logon sessions. LsaLogonUser requires a valid user name and pass-
word and accepts an optional list of SIDs that it adds to the initial token created for a new logon 
session. The user could therefore use her own user name and password to create a new logon 
session that includes the SIDs of more privileged groups or users in the resulting token.

Note The use of an elevated privilege does not extend past the machine boundary to the 
network because any interaction with another computer requires authentication with a do-
main controller and validation of domain passwords. Domain passwords are not stored on a 
computer either in plaintext or encrypted form, so they are not accessible to malicious code.
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Access tokens of processes and threads

Figure 7-12 brings together the concepts covered so far in this chapter by illustrating the basic process 
and thread security structures. In the figure, notice that the process object and the thread objects have 
ACLs, as do the access token objects themselves. Also in this figure, thread 2 and thread 3 each have an 
impersonation token, whereas thread 1 uses the default process access token.

FIGURE 7-12 Process and thread security structures.

Security auditing

The object manager can generate audit events as a result of an access check, and Windows func-
tions available to user applications can generate them directly. Kernel-mode code is always allowed 
to generate an audit event. Two privileges, SeSecurityPrivilege and SeAuditPrivilege, relate to 
auditing. A process must have the SeSecurityPrivilege privilege to manage the security event log 
and to view or set an object’s SACL. Processes that call audit system services, however, must have the 
SeAuditPrivilege privilege to successfully generate an audit record.

The audit policy of the local system controls the decision to audit a particular type of security event. 
The audit policy, also called the Local Security Policy, is one part of the security policy Lsass maintains 
on the local system. It is configured with the Local Security Policy editor as shown in Figure 7-13. The 
audit policy configuration (both the basic settings under Local Policies and the Advanced Audit Policy 
Configuration) is stored in the registry as a bitmapped value in the HKEY_LOCAL_MACHINE\SECURITY\
Policy\PolAdtEv key.
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FIGURE 7-13 Local Security Policy editor audit policy configuration.

Lsass sends messages to the SRM to inform it of the auditing policy at system-initialization time and 
when the policy changes. Lsass is responsible for receiving audit records generated based on the audit 
events from the SRM, editing the records, and sending them to the event logger. Lsass (instead of the 
SRM) sends these records because it adds pertinent details, such as the information needed to more 
completely identify the process that is being audited.

The SRM sends audit records via its ALPC connection to Lsass. The event logger then writes the 
audit record to the security event log. In addition to audit records the SRM passes, both Lsass and the 
SAM generate audit records that Lsass sends directly to the event logger, and the AuthZ APIs allow for 
applications to generate application-defined audits. Figure 7-14 depicts this overall flow.

FIGURE 7-14 Flow of security audit records.
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Audit records are put on a queue to be sent to the LSA as they are received. They are not submitted 
in batches. The audit records are moved from the SRM to the security subsystem in one of two ways. If 
the audit record is small (less than the maximum ALPC message size), it is sent as an ALPC message. The 
audit records are copied from the address space of the SRM to the address space of the Lsass process. 
If the audit record is large, the SRM uses shared memory to make the message available to Lsass and 
simply passes a pointer in an ALPC message.

Object access auditing
An important use of the auditing mechanism in many environments is to maintain a log of accesses 
to secured objects—in particular, files. To do this, the Audit object access policy must be enabled, and 
there must be audit ACEs in system access control lists that enable auditing for the objects in question.

When an accessor attempts to open a handle to an object, the SRM first determines whether the 
attempt is allowed or denied. If object access auditing is enabled, the SRM then scans the system ACL 
of the object. There are two types of audit ACEs: access allowed and access denied. An audit ACE must 
match any of the security IDs held by the accessor, it must match any of the access methods requested, 
and its type (access allowed or access denied) must match the result of the access check to generate an 
object access audit record.

Object access audit records include not just the fact of access allowed or denied, but also the reason 
for the success or failure. This “reason for access” reporting generally takes the form of an access con-
trol entry, specified in Security Descriptor Definition Language (SDDL), in the audit record. This allows 
for a diagnosis of scenarios in which an object to which you believe access should be denied is being 
permitted, or vice versa, by identifying the specific access control entry that caused the attempted  
access to succeed or fail. 

As was shown in Figure 7-13, object access auditing is disabled by default (as are all other 
auditing policies).

EXPERIMENT: Object access auditing
You can observe object access auditing by following these steps:

1. In Explorer, navigate to a file to which you would normally have access (such as a 
text file), open its Properties dialog box, click the Security tab, and then select the 
Advanced settings.

2. Click the Auditing tab and click through the administrative privileges warning. The 
resulting dialog box allows you to add auditing of access control entries to the file’s 
system access control list.
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3. Click the Add button and choose Select a Principal. 

4. In the resulting Select User or Group dialog box, enter your own user name or a group 
to which you belong, such as Everyone. Click Check Names and then click OK. This 
presents a dialog box for creating an Audit access control entry for this user or group 
for this file. 

5. Click OK three times to close the file Properties dialog box. 

6. In Explorer, double-click the file to open it with its associated program (for example, 
Notepad for a text file).

7. Click the Start menu, type event, and choose Event Viewer.
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8. Navigate to the Security log. Note that there is no entry for access to the file. This is 
because the audit policy for object access is not yet configured.

9. In the Local Security Policy editor, navigate to Local Policies and choose Audit Policy. 

10. Double-click Audit Object Access and click Success to enable auditing of successful 
access to files.

11. In Event Viewer, click Action (from the menu) and Refresh. Note that the changes to 
audit policy resulted in audit records.

12. In Explorer, double-click the file to open it again.

13. In Event Viewer, click Action and Refresh. Note that several file access audit records are 
now present.

14. Find one of the file access audit records for event ID 4656. This shows up as “a handle 
to an object was requested.” (You can use the Find option to search for the file name 
you opened.) 

15. Scroll down in the text box to find the Access Reasons section. The following example 
shows that two access methods, READ_CONTROL, SYNCHRONIZE, and ReadAttributes, 
ReadEA (extended attributes), and ReadData were requested. READ_CONTROL was granted 
because the accessor was the owner of the file. The others were granted because of the 
indicated access control entry.
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Global audit policy
In addition to object-access ACEs on individual objects, a global audit policy can be defined for the 
system that enables object-access auditing for all file-system objects, all registry keys, or for both. A 
security auditor can therefore be certain that the desired auditing will be performed, without having 
to set or examine SACLs on all the individual objects of interest.

An administrator can set or query the global audit policy via the AuditPol command with the  
/resourceSACL option. This can also be done programmatically by calling the AuditSetGlobalSacl 
and AuditQueryGlobalSacl APIs. As with changes to objects’ SACLs, changing these global SACLs 
requires SeSecurityPrivilege.

EXPERIMENT: Setting global audit policy
You can use the AuditPol command to enable global audit policy.

1. If you didn’t already do so in the previous experiment, open the Local Security Policy 
editor, navigate to the Audit Policy settings (refer to Figure 7-13), double-click Audit 
Object Access, and enable auditing for both success and failure. On most systems, 
SACLs specifying object access auditing are uncommon, so few if any object-access 
audit records will be produced at this point.

2. In an elevated command prompt window, enter the following command. This will pro-
duce a summary of the commands for setting and querying global audit policy.

C:\> auditpol /resourceSACL 

3. In the same elevated command prompt window, enter the following commands. On a 
typical system, each of these commands will report that no global SACL exists for the 
respective resource type. (Note that the File and Key keywords are case-sensitive.)

C:\> auditpol /resourceSACL /type:File /view 
C:\> auditpol /resourceSACL /type:Key /view

4. In the same elevated command prompt window, enter the following command. This will 
set a global audit policy such that all attempts to open files for write access (FW) by the 
indicated user will result in audit records, whether the open attempts succeed or fail. 
The user name can be a specific user name on the system, a group such as Everyone, a 
domain-qualified user name such as domainname\username, or a SID.

C:\> auditpol /resourceSACL /set /type:File /user:yourusername /success  
/failure /access:FW

5. While running under the user name indicated, use Explorer or other tools to open a file. 
Then look at the security log in the system event log to find the audit records. 

6. At the end of the experiment, use the auditpol command to remove the global SACL 
you created in step 4, as follows:

C:\> auditpol /resourceSACL /remove /type:File /user:yourusername
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The global audit policy is stored in the registry as a pair of system access control lists in HKLM\
SECURITY\Policy\GlobalSaclNameFile and HKLM\SECURITY\Policy\GlobalSaclNameKey. You can 
examine these keys by running Regedit.exe under the System account, as described in the “Security 
system components” section earlier in this chapter. These keys will not exist until the corresponding 
global SACLs have been set at least once.

The global audit policy cannot be overridden by SACLs on objects, but object-specific SACLs can al-
low for additional auditing. For example, global audit policy could require auditing of read access by all 
users to all files, but SACLs on individual files could add auditing of write access to those files by specific 
users or by more specific user groups.

Global audit policy can also be configured via the Local Security Policy editor in the Advanced Audit 
Policy settings, described in the next section.

Advanced Audit Policy settings
In addition to the Audit Policy settings described previously, the Local Security Policy editor offers a 
much more fine-grained set of audit controls under the Advanced Audit Policy Configuration heading, 
shown in Figure 7-15.

FIGURE 7-15 The Local Security Policy editor's Advanced Audit Policy Configuration settings.
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Each of the nine audit policy settings under Local Policies (refer to Figure 7-13) maps to a group of 
settings here that provide more detailed control. For example, while the Audit Object Access settings 
under Local Policies allow access to all objects to be audited, the settings here allow auditing of access 
to various types of objects to be controlled individually. Enabling one of the audit policy settings under 
Local Policies implicitly enables all the corresponding advanced audit policy events, but if finer control 
over the contents of the audit log is desired, the advanced settings can be set individually. The stan-
dard settings then become a product of the advanced settings. However, this is not visible in the Local 
Security Policy editor. Attempts to specify audit settings by using both the basic and the advanced 
options can cause unexpected results.

You can use the Global Object Access Auditing option under Advanced Audit Policy Configuration 
to configure the global SACLs described in the previous section, using a graphical interface identical to 
that seen in Explorer or the Registry editor for security descriptors in the file system or the registry.

AppContainers

Windows 8 introduced a new security sandbox called an AppContainer. Although it was created 
primarily to host UWP processes, AppContainers can actually be used for “normal” processes as well 
(although there is no built-in tool to do that). This section will mostly cover the attributes of packaged 
AppContainers, which is the term that refers to AppContainers associated with UWP processes and 
their resulting .Appx format. A complete treatment of UWP apps is beyond the scope of this chapter. 
You can find more information in Chapter 3 of this book, and in Chapters 8 and 9 in Part 2. Here we’ll 
concentrate on the security aspects of AppContainers and their typical usage as hosts of UWP apps.

Note The term Universal Windows Platform (UWP) app is the latest used to describe pro-
cesses that host the Windows Runtime. Older names include immersive app, modern app, 
metro app, and sometimes simply Windows app. The Universal part indicates the ability of 
such apps to be deployed and run on various Windows 10 editions and form factors, from 
IoT core, to mobile, to desktop, to Xbox, to HoloLens. However, they are essentially the 
same as the ones first introduced in Windows 8. Therefore, the concept of AppContainers 
discussed in this section is relevant to Windows 8 and later versions of Windows. Note that 
Universal Application Platform (UAP) is sometimes used instead of UWP; it’s the same thing.

Note The original codename for AppContainer was LowBox. You may see this term come 
up in many of the API names and data structures throughout this section. They refer to the 
same concept.



 CHAPTER 7 Security 685

Overview of UWP apps
The mobile device revolution established new ways of obtaining and running software. Mobile devices 
normally get their applications from a central store, with automatic installation and updates, all with little 
user intervention. Once a user selects an app from the store, she can see the permissions the app requires 
to function correctly. These permissions are called capabilities and are declared as part of the package 
when it’s submitted to the store. This way, the user can decide whether these capabilities are acceptable. 

Figure 7-16 shows an example of a capabilities list for a UWP game (Minecraft, Windows 10 beta edi-
tion). The game requires internet access as a client and as a server and access to the local home or work 
network. Once the user downloads the game, she implicitly agrees the game may exercise these capa-
bilities. Conversely, the user can be confident that the game uses only those capabilities. That is, there is 
no way the game could use other unapproved capabilities, such as accessing the camera on the device.

FIGURE 7-16 Part of an app’s page in the store, showing capabilities, among other things.

To get a sense of the differences between UWP apps and desktop (classic) apps at a high level, consult 
Table 7-12. From a developer’s perspective, the Windows platform can be seen as shown in Figure 7-17.
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TABLE 7-12 High-level comparison of UWP and desktop apps

UWP App Desktop (Classic) App

Device Support Runs on all Windows device families Runs on PCs only

APIs Can access WinRT, subset of COM, and subset of 
Win32 APIs

Can access COM, Win32, and subset of 
WinRT APIs

Identity Strong app identity (static and dynamic) Raw EXEs and processes

Information Declarative APPX manifest Opaque binaries

Installation Self-contained APPX package Loose files or MSI

App Data Isolated per-user/per-app storage (local and 
roaming)

Shared user profile

Lifecycle Participates in app resource management and PLM Process-level lifecycle

Instancing Single instance only Any number of instances

FIGURE 7-17 The Windows platform landscape.

A few items in Figure 7-17 are worth elaborating on:

 ■ UWP apps can produce normal executables, just like desktop apps. Wwahost.exe (%SystemRoot%\ 
System32\wwahost.exe) is used to host HTML/JavaScript-based UWP apps, as those produce a 
DLL, not an executable.

 ■ The UWP is implemented by the Windows Runtime APIs, which are based on an enhanced version 
of COM. Language projections are provided for C++ (through proprietary language extensions 
known as C++/CX), .NET languages, and JavaScript. These projections make it relatively easy to 
access WinRT types, methods, properties, and events from developers’ familiar environments.

 ■ Several bridging technologies are available, which can transform other types of applications 
into UWP. See the MSDN documentation for more information on utilizing these technologies. 

 ■ The Windows Runtime is layered on top of the Windows subsystem DLLs, just like the .NET 
Framework. It has no kernel components and is not part of a different subsystem because it still 
leverages the same Win32 APIs that the system offers. However, some policies are implemented 
in the kernel, as well as the general support for AppContainers.
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 ■ The Windows Runtime APIs are implemented in DLLs residing in the %SystemRoot%\System32 
directory, with names in the form Windows.Xxx.Yyy…Dll, where the file name usually indicates 
the Windows Runtime API namespace implemented. For example, Windows.Globalization.Dll 
implements the classes residing in the Windows.Globalization namespace. (See the MSDN 
documentation for the complete WinRT API reference.)

The AppContainer
We’ve seen the steps required to create processes back in Chapter 3; we’ve also seen some of the extra 
steps required to create UWP processes. The initiation of creation is performed by the DCOMLaunch 
service, because UWP packages support a set of protocols, one of which is the Launch protocol. The 
resulting process gets to run inside an AppContainer. Here are several characteristics of packaged pro-
cesses running inside an AppContainer:

 ■ The process token integrity level is set to Low, which automatically restricts access to many 
objects and limits access to certain APIs or functionality for the process, as discussed earlier 
in this chapter.

 ■ UWP processes are always created inside a job (one job per UWP app). This job manages the 
UWP process and any background processes that execute on its behalf (through nested jobs). 
The jobs allow the Process State Manager (PSM) to suspend or resume the app or background 
processing in a single stroke.

 ■ The token for UWP processes has an AppContainer SID, which represents a distinct identity 
based on the SHA-2 hash of the UWP package name. As you’ll see, this SID is used by the system 
and other applications to explicitly allow access to files and other kernel objects. This SID is part 
of the APPLICATION PACKAGE AUTHORITY instead of the NT AUTHORITY you’ve mostly seen so 
far in this chapter. Thus, it begins with S-1-15-2 in its string format, corresponding to SECURITY_
APP_PACKAGE_BASE_RID (15) and SECURITY_APP_PACKAGE_BASE_RID (2). Because a SHA-2 
hash is 32 bytes, there are a total of eight RIDs (recall that a RID is the size of a 4-byte ULONG) in 
the remainder of the SID.

 ■ The token may contain a set of capabilities, each represented with a SID. These capabilities are 
declared in the application manifest and shown on the app’s page in the store. Stored in the ca-
pability section of the manifest, they are converted to SID format using rules we’ll see shortly, and 
belong to the same SID authority as in the previous bullet, but using the well-known SECURITY_
CAPABILITY_BASE_RID (3) instead. Various components in the Windows Runtime, user-mode 
device-access classes, and kernel can look for capabilities to allow or deny certain operations.

 ■ The token may only contain the following privileges: SeChangeNotifyPrivilege, SeIncrease- 
WorkingSetPrivilege, SeShutdownPrivilege, SeTimeZonePrivilege, and SeUndockPrivilege. 
These are the default set of privileges associated with standard user accounts. Additionally, the 
AppContainerPrivilegesEnabledExt function part of the ms-win-ntos-ksecurity API Set 
contract extension can be present on certain devices to further restrict which privileges are 
enabled by default.
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 ■ The token will contain up to four security attributes (see the section on attribute-based access 
control earlier in this chapter) that identify this token as being associated with a UWP packaged 
application. These attributes are added by the DcomLaunch service as indicated earlier, which is 
responsible for the activation of UWP applications. They are as follows:

• WIN://PKG This identifies this token as belonging to a UWP packaged application. It con-
tains an integer value with the application’s origin as well as some flags. See Table 7-13 and 
Table 7-14 for these values.

• WIN://SYSAPPID This contains the application identifiers (called package monikers or string 
names) as an array of Unicode string values.

• WIN://PKGHOSTID This identifies the UWP package host ID for packages that have an ex-
plicit host through an integer value.

• WIN://BGKD This is only used for background hosts (such as the generic background task 
host BackgroundTaskHost.exe) that can store packaged UWP services running as COM pro-
viders. The attribute’s name stands for background and contains an integer value that stores 
its explicit host ID.

The TOKEN_LOWBOX (0x4000) flag will be set in the token’s Flags member, which can be queried 
with various Windows and kernel APIs (such as GetTokenInformation). This allows components to 
identity and operate differently under the presence of an AppContainer token.

Note A second type of AppContainer exists: a child AppContainer. This is used when a UWP 
AppContainer (or parent AppContainer) wishes to create its own nested AppContainer to further 
lock down the security of the application. Instead of eight RIDs, a child AppContainer has four 
additional RIDs (the first eight match the parents’) to uniquely identify it.

TABLE 7-13 Package origins

Origin Meaning

Unknown (0) The package origin is unknown.

Unsigned (1) The package is unsigned.

Inbox (2) The package is associated with a built-in (inbox) Windows application.

Store (3) The package is associated with a UWP application downloaded from the store. This 
origin is validated by checking if the DACL of the file associated with the main UWP 
application’s executable contains a trust ACE.

Developer Unsigned (4) The package is associated with an unsigned developer key.

Developer Signed (5) The package is associated with a signed developer key.

Line-of-Business (6) The package is associated with a side-loaded line-of-business (LOB) application.
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TABLE 7-14 Package flags

Flag Meaning

PSM_ACTIVATION_TOKEN_PACKAGED_APPLICATION (0x1) This indicates that the AppContainer UWP ap-
plication is stored in AppX packaged format. 
This is the default.

PSM_ACTIVATION_TOKEN_SHARED_ENTITY (0x2) This indicates that this token is being used for 
multiple executables all part of the same AppX 
packaged UWP application.

PSM_ACTIVATION_TOKEN_FULL_TRUST (0x4) This indicates that this AppContainer token 
is being used to host a Project Centennial 
(Windows Bridge for Desktop) converted 
Win32 application.

PSM_ACTIVATION_TOKEN_NATIVE_SERVICE (0x8) This indicates that this AppContainer token 
is being used to host a packaged service cre-
ated by the Service Control Manager (SCM)’s 
Resource Manager. See Chapter 9 in Part 2 for 
more information on services.

PSM_ACTIVATION_TOKEN_DEVELOPMENT_APP (0x10) This indicates that this is an internal develop-
ment application. Not used on retail systems.

BREAKAWAY_INHIBITED (0x20) The package cannot create a process that is 
not itself packaged as well. This is set by using 
the PROC_THREAD_ATTRIBUTE_DESKTOP_
APP_POLICY process-creation attribute. 
(See Chapter 3 for more information.)

EXPERIMENT: Viewing UWP process information
There are several ways to look at UWP processes, some more obvious than others. Process 
Explorer can highlight processes that use the Windows Runtime in color (cyan by default). To see 
this in action, open Process Explorer, open the Options menu, and choose Configure Colors. 
Then make sure the Immersive Processes check box is selected.
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Immersive process is the original term used to describe WinRT (now UWP) apps in Windows 8. 
(They were mostly full screen, and therefore “immersive.”) This distinction is available by calling 
the IsImmersiveProcess API.

Run Calc.exe and switch to Process Explorer. You should see several processes highlighted 
in cyan, including Calculator.exe. Now minimize the Calculator app and notice that the cyan 
highlight has turned gray. This is because Calculator has been suspended. Restore Calculator’s 
window, and it’s back to cyan.

You should have similar experiences with other apps—for example, Cortana (SearchUI.exe). 
Click or tap the Cortana icon on the taskbar and then close it. You should see the gray to cyan 
and back to gray transition. Or, click or tap the Start button. ShellExperienceHost.exe highlights 
in a similar fashion.

The presence of some cyan-highlighted processes might surprise you, such as Explorer.exe, 
TaskMgr.Exe, and RuntimeBroker.exe. These are not really apps, but use Windows Runtime APIs, 
and so are classified as immersive. (The role of RuntimeBroker will be discussed shortly.)

Finally, make sure the Integrity column is visible in Process Explorer and sort by that column. 
You’ll find processes such as Calculator.exe and SearchUI.exe with AppContainer integrity level. 
Notice that Explorer and TaskMgr are not there, clearly showing they are not UWP processes, and 
so live under different rules.

EXPERIMENT: Viewing an AppContainer token
You can look at the properties of an AppContainer hosted process with several tools. In Process 
Explorer, the Security tab shows the capabilities associated with the token. Here’s the Security tab 
for Calculator.exe:
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Notice two interesting pieces of information: the AppContainer SID, shown in the Flags 
column as AppContainer, and a single capability, right underneath the AppContainer SID. Except 
for the base RID (SECURITY_APP_PACKAGE_BASE_RID versus SECURITY_CAPABILITY_BASE_RID), 
the remaining eight RIDs are identical, and both refer to the package name in SHA-2 format as 
discussed. This shows you that there will always be one implicit capability, the capability of being 
the package itself, which really means Calculator requires no capabilities at all. The upcoming 
capabilities section covers a much more complex example.

EXPERIMENT: Viewing AppContainer token attributes
You can obtain similar information on the command line by using the AccessChk Sysinternals tool 
while also adding a full list of all of the token’s attributes. For example, running AccessChk with the -p 
-f switches followed by the process ID for SearchUI.exe, which hosts Cortana, shows the following:

C:\ >accesschk -p -f 3728 
 
Accesschk v6.10 - Reports effective permissions for securable objects 
Copyright (C) 2006-2016 Mark Russinovich 
Sysinternals - www.sysinternals.com 
 
[7416] SearchUI.exe 

http://www.sysinternals.com
http://www.sysinternals.com
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  RW DESKTOP-DD6KTPM\aione 
  RW NT AUTHORITY\SYSTEM 
  RW Package
\S-1-15-2-1861897761-1695161497-2927542615-642690995-327840285-2659745135-2630312742 
  Token security: 
  RW DESKTOP-DD6KTPM\aione 
  RW NT AUTHORITY\SYSTEM 
  RW DESKTOP-DD6KTPM\aione-S-1-5-5-0-459087 
  RW Package
\S-1-15-2-1861897761-1695161497-2927542615-642690995-327840285-2659745135-2630312742 
  R  BUILTIN\Administrators 
  Token contents: 
    User: 
      DESKTOP-DD6KTPM\aione 
    AppContainer: 
      Package
\S-1-15-2-1861897761-1695161497-2927542615-642690995-327840285-2659745135-2630312742 
    Groups: 
      Mandatory Label\Low Mandatory Level              INTEGRITY 
      Everyone                                         MANDATORY 
      NT AUTHORITY\Local account and member of Administrators group DENY 
      … 
       Security Attributes: 
      WIN://PKGHOSTID 
          TOKEN_SECURITY_ATTRIBUTE_TYPE_UINT64 
          [0] 1794402976530433 
      WIN://SYSAPPID 
          TOKEN_SECURITY_ATTRIBUTE_TYPE_STRING 
          [0] Microsoft.Windows.Cortana_1.8.3.14986_neutral_neutral_cw5n1h2txyewy 
          [1] CortanaUI 
          [2] Microsoft.Windows.Cortana_cw5n1h2txyewy 
      WIN://PKG 
          TOKEN_SECURITY_ATTRIBUTE_TYPE_UINT64 
          [0] 131073 
      TSA://ProcUnique 
          [TOKEN_SECURITY_ATTRIBUTE_NON_INHERITABLE] 
          [TOKEN_SECURITY_ATTRIBUTE_COMPARE_IGNORE] 
          TOKEN_SECURITY_ATTRIBUTE_TYPE_UINT64 
          [0] 204 
          [1] 24566825 

First is the package host ID, converted to hex: 0x6600000000001. Because all package host IDs 
begin with 0x66, this means Cortana is using the first available host identifier: 1. Next are the system 
application IDs, which contain three strings: the strong package moniker, the friendly application name, 
and the simplified package name. Finally, you have the package claim, which is 0x20001 in hex. Based 
on the Table 7-13 and Table 7-14 fields you saw, this indicates an origin of Inbox (2) and flags set to  
PSM_ACTIVATION_TOKEN_PACKAGED_APPLICATION, confirming that Cortana is part of an AppX package.
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AppContainer security environment
One of the biggest side-effects caused by the presence of an AppContainer SID and related flags is that 
the access check algorithm you saw in the “Access checks” section earlier in this chapter is modified to 
essentially ignore all regular user and group SIDs that the token may contain, essentially treating them 
as deny-only SIDs. This means that even though Calculator may be launched by a user John Doe be-
longing to the Users and Everyone groups, it will fail any access checks that grant access to John Doe’s 
SID, the Users group SID, or the Everyone group SID. In fact, the only SIDs that are checked during the 
discretionary access check algorithm will be that of the AppContainer SID, followed by the capability 
access check algorithm, which will look at any capability SIDs part of the token.

Taking things even further than merely treating the discretionary SIDs as deny-only, AppContainer 
tokens effect one further critical security change to the access check algorithm: a NULL DACL, typically 
treated as an allow-anyone situation due to the lack of any information (recall that this is different from 
an empty DACL, which is a deny-everyone situation due to explicit allow rules), is ignored and treated 
as a deny situation. To make matters simple, the only types of securable objects that an AppContainer 
can access are those that explicitly have an allow ACE for its AppContainer SID or for one of its capabili-
ties. Even unsecured (NULL DACL) objects are out of the game.

This situation causes compatibility problems. Without access to even the most basic file system, 
registry, and object manager resources, how can an application even function? Windows takes this 
into account by preparing a custom execution environment, or “jail” if you will, specifically for each 
AppContainer. These jails are as follows:

Note So far we’ve implied that each UWP packaged application corresponds to one 
AppContainer token. However, this doesn’t necessarily imply that only a single executable 
file can be associated with an AppContainer. UWP packages can contain multiple executable 
files, which all belong to the same AppContainer. This allows them to share the same SID 
and capabilities and exchange data between each other, such as a micro-service back-end 
executable and a foreground front-end executable.

 ■ The AppContainer SID’s string representation is used to create a subdirectory in the object 
manager’s namespace under \Sessions\x\AppContainerNamedObjects. This becomes the pri-
vate directory of named kernel objects. This specific subdirectory object is then ACLed with the 
AppContainer SID associated with the AppContainer that has an allow-all access mask. This is in 
contrast to desktop apps, which all use the \Sessions\x\BaseNamedObjects subdirectory (within 
the same session x). We’ll discuss the implications of that shortly, as well as the requirement for 
the token to now store handles.

 ■ The token will contain a LowBox number, which is a unique identifier into an array of LowBox 
Number Entry structures that the kernel stores in the g_SessionLowboxArray global variable. 
Each of these maps to a SEP_LOWBOX_NUMBER_ENTRY structure that, most importantly, contains 
an atom table unique to this AppContainer, because the Windows Subsystem Kernel Mode 
Driver (Win32k.sys) does not allow AppContainers access to the global atom table.
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 ■ The file system contains a directory in %LOCALAPPDATA% called Packages. Inside it are the 
package monikers (the string version of the AppContainer SID—that is, the package name) of 
all the installed UWP applications. Each of these application directories contains application-
specific directories, such as TempState, RoamingState, Settings, LocalCache, and others, which 
are all ACLed with the specific AppContainer SID corresponding to the application, set to an 
allow-all access mask.

 ■ Within the Settings directory is a Settings.dat file, which is a registry hive file that is loaded as 
an application hive. (You will learn more about application hives in Chapter 9 in Part 2.) The hive 
acts as the local registry for the application, where WinRT APIs store the various persistent state 
of the application. Once again, the ACL on the registry keys explicitly grants allow-all access to 
the associated AppContainer SID.

These four jails allow AppContainers to securely, and locally, store their file system, registry, and 
atom table without requiring access to sensitive user and system areas on the system. That being said, 
what about the ability to access, at least in read-only mode, critical system files (such as Ntdll.dll and 
Kernel32.dll) or registry keys (such as the ones these libraries will need), or even named objects (such 
as the \RPC Control\DNSResolver ALPC port used for DNS lookups)? It would not make sense, on each 
UWP application or uninstallation, to re-ACL entire directories, registry keys, and object namespaces to 
add or remove various SIDs.

To solve this problem, the security subsystem understands a specific group SID called ALL APPLICATION 
PACKAGES, which automatically binds itself to any AppContainer token. Many critical system locations, 
such as %SystemRoot%\System32 and HKLM\Software\Microsoft\Windows\CurrentVersion, will have 
this SID as part of their DACL, typically with a read or read-and-execute access mask. Certain objects  
in the object manager namespace will have this as well, such as the DNSResolver ALPC port in the  
\RPC Control object manager directory. Other examples include certain COM objects, which grant the 
execute right. Although not officially documented, third-party developers, as they create non-UWP 
applications, can also allow interactions with UWP applications by also applying this SID to their own 
resources.

Unfortunately, because UWP applications can technically load almost any Win32 DLL as part of their 
WinRT needs (because WinRT is built on top of Win32, as you saw), and because it’s hard to predict 
what an individual UWP application might need, many system resources have the ALL APPLICATION 
PACKAGES SID associated with their DACL as a precaution. This now means there is no way for a UWP 
developer, for example, to prevent DNS lookups from their application. This greater-than-needed 
access is also helpful for exploit writers, which could leverage it to escape from the AppContainer 
sandbox. Newer versions of Windows 10, starting with version 1607 (Anniversary Update), contain an 
additional element of security to combat this risk: Restricted AppContainers.

By using the PROC_THREAD_ATTRIBUTE_ALL_APPLICATION_PACKAGES_POLICY process attribute 
and setting it to PROCESS_CREATION_ALL_APPLICATION_PACKAGES_OPT_OUT during process creation 
(see Chapter 3 for more information on process attributes), the token will not be associated with any 
ACEs that specify the ALL APPLICATION PACKAGES SID, cutting off access to many system resources 
that would otherwise be accessible. Such tokens can be identified by the presence of a fourth token 
attribute named WIN://NOALLAPPPKG with an integer value set to 1.
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Of course, this takes us back to the same problem: How would such an application even be able 
to load Ntdll.dll, which is key to any process initialization? Windows 10 version 1607 introduces a new 
group, called ALL RESTRICTED APPLICATION PACKAGES, which takes care of this problem. For example, 
the System32 directory now also contains this SID, also set to allow read and execute permissions, 
because loading DLLs in this directory is key even to the most sandboxed process. However, the 
DNSResolver ALPC port does not, so such an AppContainer would lose access to DNS. 

EXPERIMENT: Viewing AppContainer security attributes
In this experiment, we’ll look at the security attributes of some of the directories mentioned in 
the previous section.

1. Make sure Calculator is running.

2. Open WinObj elevated from Sysinternals and navigate to the object directory corre-
sponding to Calculator’s AppContainer SID. (You saw it in a previous experiment.)
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3. Right-click the directory, select Properties, and click the Security tab. You should see 
something like the following screenshot. Calculator’s AppContainer SID has permission 
to list, add object, and add subdirectory (among others scrolled out of view), which 
simply means Calculator can create kernel objects under this directory.

4. Open Calculator’s local folder by navigating to %LOCALAPPDATA%\Packages\
Microsoft.WindowsCalculator_8wekyb3d8bbwe. Then right-click the Settings sub-
directory, select Properties, and click the Security tab. You should see Calculator’s 
AppContainer SID having full permissions for the folder:

5. In Explorer, open the %SystemRoot% directory (for example, C:\Windows), right-click 
the System32 directory, select Properties, and click the Security tab. You should  
see the read and execute permissions for all application packages and all restricted  
application packages (if using Windows 10 version 1607 or later):
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As an alternative, you can use the AccessChk Sysinternals command-line tool to view the 
same information.

EXPERIMENT: Viewing the AppContainer atom table
An atom table is a hash table of integers to strings that’s used by the windowing system for vari-
ous identification purposes, such as Window Class registration (RegisterClassEx) and custom 
Windows messages. The AppContainer private atom table can be viewed with the kernel debugger:

1. Run Calculator, open WinDbg, and start local kernel debugging.

2. Find the Calculator process:

lkd> !process 0 1 calculator.exe 
PROCESS ffff828cc9ed1080 
    SessionId: 1  Cid: 4bd8    Peb: d040bbc000  ParentCid: 03a4 
DeepFreeze 
    DirBase: 5fccaa000  ObjectTable: ffff950ad9fa2800  HandleCount: 
<Data Not Accessible> 
    Image: Calculator.exe 
    VadRoot ffff828cd2c9b6a0 Vads 168 Clone 0 Private 2938. Modified 3332. 
Locked 0. 
    DeviceMap ffff950aad2cd2f0 
    Token                             ffff950adb313060 
   ...

3. Use the token value with the following expressions:

lkd> r? @$t1 = @$t0->NumberOfBuckets 
lkd> r? @$t0 = (nt!_RTL_ATOM_TABLE*)((nt!_token*)0xffff950adb313060)-
>LowboxNumberEntry->AtomTable 
lkd> .for (r @$t3 = 0; @$t3 < @$t1; r @$t3 = @$t3 + 1) {  ?? (wchar_t*)@$t0-
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>Buckets[@$t3]->Name } 
wchar_t * 0xffff950a'ac39b78a 
 "Protocols" 
wchar_t * 0xffff950a'ac17b7aa 
 "Topics" 
wchar_t * 0xffff950a'b2fd282a 
 "TaskbarDPI_Deskband" 
wchar_t * 0xffff950a'b3e2b47a 
 "Static" 
wchar_t * 0xffff950a'b3c9458a 
 "SysTreeView32" 
wchar_t * 0xffff950a'ac34143a 
 "UxSubclassInfo" 
wchar_t * 0xffff950a'ac5520fa 
 "StdShowItem" 
wchar_t * 0xffff950a'abc6762a 
 "SysSetRedraw" 
wchar_t * 0xffff950a'b4a5340a 
 "UIA_WindowVisibilityOverridden" 
wchar_t * 0xffff950a'ab2c536a 
 "True" 
... 
wchar_t * 0xffff950a'b492c3ea 
 "tooltips_class" 
wchar_t * 0xffff950a'ac23f46a 
 "Save" 
wchar_t * 0xffff950a'ac29568a 
 "MSDraw" 
wchar_t * 0xffff950a'ac54f32a 
 "StdNewDocument" 
wchar_t * 0xffff950a'b546127a 
 "{FB2E3E59-B442-4B5B-9128-2319BF8DE3B0}" 
wchar_t * 0xffff950a'ac2e6f4a 
 "Status" 
wchar_t * 0xffff950a'ad9426da 
 "ThemePropScrollBarCtl" 
wchar_t * 0xffff950a'b3edf5ba 
 "Edit" 
wchar_t * 0xffff950a'ab02e32a 
 "System" 
wchar_t * 0xffff950a'b3e6c53a 
 "MDIClient" 
wchar_t * 0xffff950a'ac17a6ca 
 "StdDocumentName" 
wchar_t * 0xffff950a'ac6cbeea 
 "StdExit" 
wchar_t * 0xffff950a'b033c70a 
 "{C56C5799-4BB3-7FAE-7FAD-4DB2F6A53EFF}" 
wchar_t * 0xffff950a'ab0360fa 
 "MicrosoftTabletPenServiceProperty" 
wchar_t * 0xffff950a'ac2f8fea 
 "OLEsystem"
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AppContainer capabilities
As you’ve just seen, UWP applications have very restricted access rights. So how, for example, is the 
Microsoft Edge application able to parse the local file system and open PDF files in the user’s Documents 
folder? Similarly, how can the Music application play MP3 files from the Music directory? Whether done 
directly through kernel access checks or by brokers (which you’ll see in the next section), the key lies in 
capability SIDs. Let’s see where these come from, how they are created, and when they are used.

First, UWP developers begin by creating an application manifest that specifies many details of their 
application, such as the package name, logo, resources, supported devices, and more. One of the key 
elements for capability management is the list of capabilities in the manifest. For example, let’s take 
a look at Cortana’s application manifest, located in %SystemRoot%\SystemApps\Microsoft.Windows.
Cortana_cw5n1h2txywey\AppxManifest.xml:

   <Capabilities> 
            <wincap:Capability Name="packageContents"/> 
            <!-- Needed for resolving MRT strings --> 
            <wincap:Capability Name="cortanaSettings"/> 
            <wincap:Capability Name="cloudStore"/> 
            <wincap:Capability Name="visualElementsSystem"/> 
            <wincap:Capability Name="perceptionSystem"/> 
            <Capability Name="internetClient"/> 
            <Capability Name="internetClientServer"/> 
            <Capability Name="privateNetworkClientServer"/> 
            <uap:Capability Name="enterpriseAuthentication"/> 
            <uap:Capability Name="musicLibrary"/> 
            <uap:Capability Name="phoneCall"/> 
            <uap:Capability Name="picturesLibrary"/> 
            <uap:Capability Name="sharedUserCertificates"/> 
            <rescap:Capability Name="locationHistory"/> 
            <rescap:Capability Name="userDataSystem"/> 
            <rescap:Capability Name="contactsSystem"/> 
            <rescap:Capability Name="phoneCallHistorySystem"/> 
            <rescap:Capability Name="appointmentsSystem"/> 
            <rescap:Capability Name="chatSystem"/> 
            <rescap:Capability Name="smsSend"/> 
            <rescap:Capability Name="emailSystem"/> 
            <rescap:Capability Name="packageQuery"/> 
            <rescap:Capability Name="slapiQueryLicenseValue"/> 
            <rescap:Capability Name="secondaryAuthenticationFactor"/> 
            <DeviceCapability Name="microphone"/> 
            <DeviceCapability Name="location"/> 
            <DeviceCapability Name="wiFiControl"/> 
   </Capabilities>

You’ll see many types of entries in this list. For example, the Capability entries contain the well-
known SIDs associated with the original capability set that was implemented in Windows 8. These 
begin with SECURITY_CAPABILITY_―for example, SECURITY_CAPABILITY_INTERNET_CLIENT, 
which is part of the capability RID under the APPLICATION PACKAGE AUTHORITY. This gives us a SID 
of S-1-15-3-1 in string format.
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Other entries are prefixed with uap, rescap, and wincap. One of these (rescap) refers to restricted 
capabilities. These are capabilities that require special onboarding from Microsoft and custom approv-
als before being allowed on the store. In Cortana’s case, these include capabilities such as accessing 
SMS text messages, emails, contacts, location, and user data. Windows capabilities, on the other hand, 
refer to capabilities that are reserved for Windows and system applications. No store application can 
use these. Finally, UAP capabilities refer to standard capabilities that anyone can request on the store. 
(Recall that UAP is the older name for UWP.)

Unlike the first set of capabilities, which map to hard-coded RIDs, these capabilities are imple-
mented in a different fashion. This ensures a list of well-known RIDs doesn’t have to be constantly 
maintained. Instead, with this mode, capabilities can be fully custom and updated on the fly. To do this, 
they simply take the capability string, convert it to full upper-case format, and take a SHA-2 hash of 
the resulting string, much like AppContainer package SIDs are the SHA-2 hash of the package moniker. 
Again, since SHA-2 hashes are 32 bytes, this results in 8 RIDs for each capability, following the well-
known SECURITY_CAPABILITY_BASE_RID (3).

Finally, you’ll notice a few DeviceCapability entries. These refer to device classes that the UWP appli-
cation will need to access, and can be identified either through well-known strings such as the ones you 
see above or directly by a GUID that identifies the device class. Rather than using one of the two methods 
of SID creation already described, this one uses yet a third! For these types of capabilities, the GUID is 
converted into a binary format and then mapped out into four RIDs (because a GUID is 16 bytes). On the 
other hand, if a well-known name was specified instead, it must first be converted to a GUID. This is done 
by looking at the HKLM\Software\Microsoft\Windows\CurrentVersion\DeviceAccess\CapabilityMappings 
registry key, which contains a list of registry keys associated with device capabilities and a list of GUIDs 
that map to these capabilities. The GUIDs are then converted to a SID as you’ve just seen.

Note For an up-to-date list of supported capabilities, see https://msdn.microsoft.com/en-
us/windows/uwp/packaging/app-capability-declarations.

As part of encoding all of these capabilities into the token, two additional rules are applied:

 ■ As you may have seen in the earlier experiment, each AppContainer token contains its own 
package SID encoded as a capability. This can be used by the capability system to specifically 
lock down access to a particular app through a common security check instead of obtaining and 
validating the package SID separately. 

 ■ Each capability is re-encoded as a group SID through the use of the SECURITY_CAPABILITY_APP_
RID (1024) RID as an additional sub-authority preceding the regular eight-capability hash RIDs.

After the capabilities are encoded into the token, various components of the system will read them 
to determine whether an operation being performed by an AppContainer should be permitted. You’ll 
note most of the APIs are undocumented, as communication and interoperability with UWP applica-
tions is not officially supported and best left to broker services, inbox drivers, or kernel components. 
For example, the kernel and drivers can use the RtlCapabilityCheck API to authenticate access to 
certain hardware interfaces or APIs.

https://www.msdn.microsoft.com/en-us/windows/uwp/packaging/app-capability-declarations
https://www.msdn.microsoft.com/en-us/windows/uwp/packaging/app-capability-declarations
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As an example, the Power Manager checks for the ID_CAP_SCREENOFF capability before allow-
ing a request to shut off the screen from an AppContainer. The Bluetooth port driver checks for the 
bluetoothDiagnostics capability, while the application identity driver checks for Enterprise Data 
Protection (EDP) support through the enterpriseDataPolicy capability. In user mode, the documented 
CheckTokenCapability API can be used, although it must know the capability SID instead of providing 
the name (the undocumented RtlDeriveCapabilitySidFromName can generate this, however). 
Another option is the undocumented CapabilityCheck API, which does accept a string.

Finally, many RPC services leverage the RpcClientCapabilityCheck API, which is a helper function 
that takes care of retrieving the token and requires only the capability string. This function is very com-
monly used by many of the WinRT-enlightened services and brokers, which utilize RPC to communicate 
with UWP client applications.

EXPERIMENT: Viewing AppContainer capabilities
To clearly demonstrate all these various capability combinations and their population in the 
token, let’s look at the capabilities for a complex app such as Cortana. You’ve already seen its 
manifest, so you can use that output to compare with the UI. First, looking at the Security tab for 
SearchUI.exe shows the following (sorted by the Flags column):

Clearly, Cortana has obtained many capabilities—all the ones in its manifest. Some are those 
that were originally in Windows 8 and are known to functions like IsWellKnownSid, for which 
Process Explorer shows a friendly name. Other capabilities are just shown using their SID, as they 
represent either hashes or GUIDs, as discussed.
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To get the details of the package from which the UWP process was created, you can use the 
UWPList tool provided with the downloadable resources for this book. It can show all immersive 
processes on the system or a single process based on its ID:

C:\WindowsInternals>UwpList.exe 3728 
List UWP Processes - version 1.1 (C)2016 by Pavel Yosifovich 
 
Building capabilities map... done. 
 
Process ID:   3728 
------------------ 
Image name: C:\Windows\SystemApps\Microsoft.Windows.Cortana_cw5n1h2txyewy\SearchUI.exe 
Package name: Microsoft.Windows.Cortana 
Publisher: CN=Microsoft Windows, O=Microsoft Corporation, L=Redmond, S=Washington, C=US 
Published ID: cw5n1h2txyewy 
Architecture: Neutral 
Version: 1.7.0.14393 
AppContainer SID: S-1-15-2-1861897761-1695161497-2927542615-642690995-327840285-
2659745135-2630312742 
Lowbox Number: 3 
Capabilities: 32 
cortanaSettings (S-1-15-3-1024-1216833578-114521899-3977640588-1343180512-
2505059295-473916851-3379430393-3088591068) (ENABLED) 
visualElementsSystem (S-1-15-3-1024-3299255270-1847605585-2201808924-710406709-
3613095291-873286183-3101090833-2655911836) (ENABLED) 
perceptionSystem (S-1-15-3-1024-34359262-2669769421-2130994847-3068338639-
3284271446-2009814230-2411358368-814686995) (ENABLED) 
internetClient (S-1-15-3-1) (ENABLED) 
internetClientServer (S-1-15-3-2) (ENABLED) 
privateNetworkClientServer (S-1-15-3-3) (ENABLED) 
enterpriseAuthentication (S-1-15-3-8) (ENABLED) 
musicLibrary (S-1-15-3-6) (ENABLED) 
phoneCall (S-1-15-3-1024-383293015-3350740429-1839969850-1819881064-1569454686-
4198502490-78857879-1413643331) (ENABLED) 
picturesLibrary (S-1-15-3-4) (ENABLED) 
sharedUserCertificates (S-1-15-3-9) (ENABLED) 
locationHistory (S-1-15-3-1024-3029335854-3332959268-2610968494-1944663922-
1108717379-267808753-1292335239-2860040626) (ENABLED) 
userDataSystem (S-1-15-3-1024-3324773698-3647103388-1207114580-2173246572-
4287945184-2279574858-157813651-603457015) (ENABLED) 
contactsSystem (S-1-15-3-1024-2897291008-3029319760-3330334796-465641623-3782203132-
742823505-3649274736-3650177846) (ENABLED) 
phoneCallHistorySystem (S-1-15-3-1024-2442212369-1516598453-2330995131-3469896071-
605735848-2536580394-3691267241-2105387825) (ENABLED) 
appointmentsSystem (S-1-15-3-1024-2643354558-482754284-283940418-2629559125-
2595130947-547758827-818480453-1102480765) (ENABLED) 
chatSystem (S-1-15-3-1024-2210865643-3515987149-1329579022-3761842879-3142652231-
371911945-4180581417-4284864962) (ENABLED) 
smsSend (S-1-15-3-1024-128185722-850430189-1529384825-139260854-329499951-
1660931883-3499805589-3019957964) (ENABLED) 
emailSystem (S-1-15-3-1024-2357373614-1717914693-1151184220-2820539834-3900626439-
4045196508-2174624583-3459390060) (ENABLED) 
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packageQuery (S-1-15-3-1024-1962849891-688487262-3571417821-3628679630-802580238-
1922556387-206211640-3335523193) (ENABLED) 
slapiQueryLicenseValue (S-1-15-3-1024-3578703928-3742718786-7859573-1930844942-
2949799617-2910175080-1780299064-4145191454) (ENABLED) 
S-1-15-3-1861897761-1695161497-2927542615-642690995-327840285-2659745135-2630312742 
(ENABLED) 
S-1-15-3-787448254-1207972858-3558633622-1059886964 (ENABLED) 
S-1-15-3-3215430884-1339816292-89257616-1145831019 (ENABLED) 
S-1-15-3-3071617654-1314403908-1117750160-3581451107 (ENABLED) 
S-1-15-3-593192589-1214558892-284007604-3553228420 (ENABLED) 
S-1-15-3-3870101518-1154309966-1696731070-4111764952 (ENABLED) 
S-1-15-3-2105443330-1210154068-4021178019-2481794518 (ENABLED) 
S-1-15-3-2345035983-1170044712-735049875-2883010875 (ENABLED) 
S-1-15-3-3633849274-1266774400-1199443125-2736873758 (ENABLED) 
S-1-15-3-2569730672-1095266119-53537203-1209375796 (ENABLED) 
S-1-15-3-2452736844-1257488215-2818397580-3305426111 (ENABLED)

The output shows the package full name, executable directory, AppContainer SID, publisher 
information, version, and list of capabilities. Also shown is the LowBox number, which is just a 
local index of the app.

Lastly, you can inspect these properties in the kernel debugger with the !token command.

Some UWP apps are called trusted, and although they use the Windows Runtime platform like 
other UWP apps, they do not run inside an AppContainer, and have an integrity level higher than 
Low. The canonical example is the System Settings app (%SystemRoot%\ImmersiveControlPanel\
SystemSettings.exe); this seems reasonable, as the Settings app must be able to make changes to the 
system that would be impossible to do from an AppContainer-hosted process. If you look at its token, 
you will see the same three attributes—PKG, SYSAPPID, and PKGHOSTID—which confirm that it’s still a 
packaged application, even without the AppContainer token present.

AppContainer and object namespace
Desktop applications can easily share kernel objects by name. For example, suppose process A cre-
ates an event object by calling CreateEvent(Ex) with the name MyEvent. It gets back a handle it can 
later use to manipulate the event. Process B running in the same session can call CreateEvent(Ex) or 
OpenEvent with the same name, MyEvent, and (assuming it has appropriate permissions, which is usu-
ally the case if running under the same session) get back another handle to the same underlying event 
object. Now if process A calls SetEvent on the event object while process B was blocked in a call to 
WaitForSingleObject on its event handle, process B’s waiting thread would be released because it’s 
the same event object. This sharing works because named objects are created in the object manager 
directory \Sessions\x\BaseNamedObjects, as shown in Figure 7-18 with the WinObj Sysinternals tool.

Furthermore, desktop apps can share objects between sessions by using a name prefixed with 
Global\. This creates the object in the session 0 object directory located in \BaseNamedObjects (refer 
to Figure 7-18).
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FIGURE 7-18 Object manager directory for named objects.

AppContainer-based processes have their root object namespace under \Sessions\x\AppContainer
NamedObjects\<AppContainerSID>. Since every AppContainer has a different AppContainer SID, there 
is no way two UWP apps can share kernel objects. The ability to create a named kernel object in the 
session 0 object namespace is not allowed for AppContainer processes. Figure 7-19 shows the object 
manager’s directory for the Windows UWP Calculator app.

UWP apps that want to share data can do so using well-defined contracts, managed by the 
Windows Runtime. (See the MSDN documentation for more information.)

Sharing kernel objects between desktop apps and UWP apps is possible, and often done by broker 
services. For example, when requesting access to a file in the Documents folder (and getting the right 
capability validated) from the file picker broker, the UWP app will receive a file handle that it can use for 
reads and writes directly, without the cost of marshalling requests back and forth. This is achieved by 
having the broker duplicate the file handle it obtained directly in the handle table of the UWP applica-
tion. (More information on handle duplication appears in Chapter 8 in Part 2.) To simplify things even 
further, the ALPC subsystem (also described in Chapter 8) allows the automatic transfer of handles in 
this way through ALPC handle attributes. and the Remote Procedure Call (RPC) services that use ALPC 
as their underlying protocol can use this functionality as part of their interfaces. Marshallable handles 
in the IDL file will automatically be transferred in this way through the ALPC subsystem.
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FIGURE 7-19 Object manager directory for Calculator.

Outside of official broker RPC services, a desktop app can create a named (or even unnamed) object 
normally, and then use the DuplicateHandle function to inject a handle to the same object into the UWP 
process manually. This works because desktop apps typically run with medium integrity level and there’s 
nothing preventing them from duplicating handles into UWP processes—only the other way around.

Note Communication between a desktop app and a UWP is not usually required because 
a store app cannot have a desktop app companion, and cannot rely on such an app to exist 
on the device. The capability to inject handles into a UWP app may be needed in specialized 
cases such as using the desktop bridge (Centennial) to convert a desktop app to a UWP app 
and communicate with another desktop app that is known to exist.

AppContainer handles
In a typical Win32 application, the presence of the session-local and global BaseNamedObjects directory 
is guaranteed by the Windows subsystem, as it creates this on boot and session creation. Unfortunately, 
the AppContainerBaseNamedObjects directory is actually created by the launch application itself. In the 
case of UWP activation, this is the trusted DComLaunch service, but recall that not all AppContainers are 
necessarily tied to UWP. They can also be manually created through the right process-creation attributes. 
(See Chapter 3 for more information on which ones to use.) In this case, it’s possible for an untrusted ap-
plication to have created the object directory (and required symbolic links within it), which would result 
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in the ability for this application to close the handles from underneath the AppContainer application. 
Even without malicious intent, the original launching application might exit, cleaning up its handles and 
destroying the AppContainer-specific object directory. To avoid this situation, AppContainer tokens have 
the ability to store an array of handles that are guaranteed to exist throughout the lifetime of any applica-
tion using the token. These handles are initially passed in when the AppContainer token is being created 
(through NtCreateLowBoxToken) and are duplicated as kernel handles. 

Similar to the per-AppContainer atom table, a special SEP_CACHED_HANDLES_ENTRY structure is 
used, this time based on a hash table that’s stored in the logon session structure for this user. (See the 
“Logon” section later in this chapter for more information on logon sessions.) This structure contains an 
array of kernel handles that have been duplicated during the creation of the AppContainer token. They 
will be closed either when this token is destroyed (because the application is exiting) or when the user 
logs off (which will result in tearing down the logon session).

EXPERIMENT: Viewing token stored handles
To view token stored handles, follow these steps:

1. Run Calculator and launch local kernel debugging.

2. Search for the calculator process:

lkd> !process 0 1 calculator.exe 
PROCESS ffff828cc9ed1080 
    SessionId: 1  Cid: 4bd8    Peb: d040bbc000  ParentCid: 03a4 
DeepFreeze 
    DirBase: 5fccaa000  ObjectTable: ffff950ad9fa2800  HandleCount: 
<Data Not Accessible> 
    Image: Calculator.exe 
    VadRoot ffff828cd2c9b6a0 Vads 168 Clone 0 Private 2938. Modified 3332. 
Locked 0. 
    DeviceMap ffff950aad2cd2f0 
    Token                             ffff950adb313060 
    ElapsedTime                       1 Day 08:01:47.018 
    UserTime                          00:00:00.015 
    KernelTime                        00:00:00.031 
    QuotaPoolUsage[PagedPool]         465880 
    QuotaPoolUsage[NonPagedPool]      23288 
    Working Set Sizes (now,min,max)  (7434, 50, 345) (29736KB, 200KB, 1380KB) 
    PeakWorkingSetSize                11097 
    VirtualSize                       303 Mb 
    PeakVirtualSize                   314 Mb 
    PageFaultCount                    21281 
    MemoryPriority                    BACKGROUND 
    BasePriority                      8 
    CommitCharge                      4925 
    Job                               ffff828cd4914060
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3. Dump the token using the dt command. (Remember to mask the lower 3 or 4 bits if 
they are not zero.)

lkd> dt nt!_token ffff950adb313060 
   +0x000 TokenSource      : _TOKEN_SOURCE 
   +0x010 TokenId          : _LUID 
   +0x018 AuthenticationId : _LUID 
   +0x020 ParentTokenId    : _LUID 
   ... 
   +0x0c8 TokenFlags       : 0x4a00 
   +0x0cc TokenInUse       : 0x1 '' 
   +0x0d0 IntegrityLevelIndex : 1 
   +0x0d4 MandatoryPolicy  : 1 
   +0x0d8 LogonSession     : 0xffff950a'b4bb35c0 _SEP_LOGON_SESSION_REFERENCES 
   +0x0e0 OriginatingLogonSession : _LUID 
   +0x0e8 SidHash          : _SID_AND_ATTRIBUTES_HASH 
   +0x1f8 RestrictedSidHash : _SID_AND_ATTRIBUTES_HASH 
   +0x308 pSecurityAttributes : 0xffff950a'e4ff57f0 _AUTHZBASEP_SECURITY_
ATTRIBUTES_INFORMATION 
   +0x310 Package          : 0xffff950a'e00ed6d0 Void 
   +0x318 Capabilities     : 0xffff950a'e8e8fbc0 _SID_AND_ATTRIBUTES 
   +0x320 CapabilityCount  : 1 
   +0x328 CapabilitiesHash : _SID_AND_ATTRIBUTES_HASH 
   +0x438 LowboxNumberEntry : 0xffff950a'b3fd55d0 _SEP_LOWBOX_NUMBER_ENTRY 
   +0x440 LowboxHandlesEntry : 0xffff950a'e6ff91d0 _SEP_LOWBOX_HANDLES_ENTRY 
   +0x448 pClaimAttributes : (null)  
   ...

4. Dump the LowboxHandlesEntry member:

lkd> dt nt!_sep_lowbox_handles_entry 0xffff950a'e6ff91d0 
   +0x000 HashEntry        : _RTL_DYNAMIC_HASH_TABLE_ENTRY 
   +0x018 ReferenceCount   : 0n10 
   +0x020 PackageSid       : 0xffff950a'e6ff9208 Void 
   +0x028 HandleCount      : 6 
   +0x030 Handles          : 0xffff950a'e91d8490  -> 0xffffffff'800023cc Void

5. There are six handles. Let’s dump their values:

lkd> dq 0xffff950ae91d8490 L6 
ffff950a'e91d8490  ffffffff'800023cc ffffffff'80001e80 
ffff950a'e91d84a0  ffffffff'80004214 ffffffff'8000425c 
ffff950a'e91d84b0  ffffffff'800028c8 ffffffff'80001834

6. You can see that these handles are kernel handles—that is, handle values starting with 
0xffffffff (64 bit). Now you can use the !handle command to look at individual 
handles. Here are two examples from the six handles above:

lkd> !handle ffffffff'80001e80 
 
PROCESS ffff828cd71b3600 
    SessionId: 1  Cid: 27c4    Peb: 3fdfb2f000  ParentCid: 2324 
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    DirBase: 80bb85000  ObjectTable: ffff950addabf7c0  HandleCount: 
<Data Not Accessible> 
    Image: windbg.exe 
 
Kernel handle Error reading handle count. 
 
80001e80: Object: ffff950ada206ea0  GrantedAccess: 0000000f (Protected) 
(Inherit) (Audit) Entry: ffff950ab5406a00 
Object: ffff950ada206ea0  Type: (ffff828cb66b33b0) Directory 
    ObjectHeader: ffff950ada206e70 (new version) 
        HandleCount: 1  PointerCount: 32770 
        Directory Object: ffff950ad9a62950  Name: RPC Control 
 
        Hash Address          Type                      Name 
        ---- -------          ----                      ---- 
         23  ffff828cb6ce6950 ALPC Port                 
OLE376512B99BCCA5DE4208534E7732 
lkd> !handle ffffffff'800028c8 
 
PROCESS ffff828cd71b3600 
    SessionId: 1  Cid: 27c4    Peb: 3fdfb2f000  ParentCid: 2324 
    DirBase: 80bb85000  ObjectTable: ffff950addabf7c0  HandleCount: <Data 
Not Accessible> 
    Image: windbg.exe 
 
Kernel handle Error reading handle count. 
 
800028c8: Object: ffff950ae7a8fa70  GrantedAccess: 000f0001 (Audit) Entry: 
ffff950acc426320 
Object: ffff950ae7a8fa70  Type: (ffff828cb66296f0) SymbolicLink 
    ObjectHeader: ffff950ae7a8fa40 (new version) 
        HandleCount: 1  PointerCount: 32769 
        Directory Object: ffff950ad9a62950  Name: Session 
        Flags: 00000000 ( Local ) 
        Target String is '\Sessions\1\AppContainerNamedObjects 
\S-1-15-2-466767348-3739614953-2700836392-1801644223-4227750657 
-1087833535-2488631167'

Finally, because the ability to restrict named objects to a particular object directory namespace 
is a valuable security tool for sandboxing named object access, the upcoming (at the time of this 
writing) Windows 10 Creators Update includes an additional token capability called BNO isolation 
(where BNO refers to BaseNamedObjects). Using the same SEP_CACHE_HANDLES_ENTRY structure, 
a new field, BnoIsolationHandlesEntry, is added to the TOKEN structure, with the type set to 
SepCachedHandlesEntryBnoIsolation instead of SepCachedHandlesEntryLowbox. To use this fea-
ture, a special process attribute must be used (see Chapter 3 for more information), which contains an 
isolation prefix and a list of handles. At this point, the same LowBox mechanism is used, but instead of 
an AppContainer SID object directory, a directory with the prefix indicated in the attribute is used.
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Brokers
Because AppContainer processes have almost no permissions except for those implicitly granted with 
capabilities, some common operations cannot be performed directly by the AppContainer and require 
help. (There are no capabilities for these, as these are too low level to be visible to users in the store, 
and difficult to manage.) Some examples include selecting files using the common File Open dialog 
box or printing with a Print dialog box. For these and other similar operations, Windows provides 
helper processes, called brokers, managed by the system broker process, RuntimeBroker.exe.

An AppContainer process that requires any of these services communicates with the Runtime Broker 
through a secure ALPC channel and Runtime Broker initiates the creation of the requested broker process. 
Examples are %SystemRoot%\PrintDialog\PrintDialog.exe and %SystemRoot%\System32\PickerHost.exe.

EXPERIMENT: Brokers
The following steps show how broker processes are launched and terminated:

1. Click the Start button, type Photos, and select the Photos option to run the built-in 
Windows 10 Photos application.

2. Open Process Explorer, switch the process list to a tree view, and locate the Microsoft.
Photos.exe process. Place both windows side by side.

3. In the Photos app, select a picture file, and click Print in the top ellipsis menu or right-
click the picture and choose Print from the menu that appears. The Print dialog box 
should open, and Process Explorer should show the newly created broker (PrintDialog.
exe). Notice they are all children of the same Svchost process. (All UWP processes are 
launched by the DCOMLaunch service hosted inside that process.)

4. Close the Print dialog box. The PrintDialog.exe process should exit.
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Logon

Interactive logon (as opposed to network logon) occurs through the interaction of the following:

 ■ The logon process (Winlogon.exe)

 ■ The logon user interface process (LogonUI.exe) and its credential providers

 ■ Lsass.exe

 ■ One or more authentication packages

 ■ SAM or Active Directory

Authentication packages are DLLs that perform authentication checks. Kerberos is the Windows 
authentication package for interactive logon to a domain. MSV1_0 is the Windows authentication 
package for interactive logon to a local computer, for domain logons to trusted pre–Windows 2000 
domains, and for times when no domain controller is accessible.

Winlogon is a trusted process responsible for managing security-related user interactions. It 
coordinates logon, starts the user’s first process at logon, and handles logoff. It also manages various 
other operations relevant to security, including launching LogonUI for entering passwords at logon, 
changing passwords, and locking and unlocking the workstation. The Winlogon process must ensure 
that operations relevant to security aren’t visible to any other active processes. For example, Winlogon 
guarantees that an untrusted process can’t get control of the desktop during one of these operations 
and thus gain access to the password.

Winlogon relies on the credential providers installed on the system to obtain a user’s account name 
or password. Credential providers are COM objects located inside DLLs. The default providers are authui.
dll, SmartcardCredentialProvider.dll, and FaceCredentialProvider.dll, which support password, smartcard 
PIN, and face-recognition authentication, respectively. Allowing other credential providers to be installed 
enables Windows to use different user-identification mechanisms. For example, a third party might sup-
ply a credential provider that uses a thumbprint-recognition device to identify users and extract their 
passwords from an encrypted database. Credential providers are listed in HKLM\SOFTWARE\Microsoft\
Windows\CurrentVersion\Authentication\Credential Providers, where each subkey identifies a credential 
provider class by its COM CLSID. (The CLSID itself must be registered at HKCR\CLSID like any other COM 
class.) You can use the CPlist.exe tool provided with the downloadable resources for this book to list the 
credential providers with their CLSID, friendly name, and implementation DLL.

To protect Winlogon’s address space from bugs in credential providers that might cause the 
Winlogon process to crash (which, in turn, will result in a system crash, because Winlogon is considered 
a critical system process), a separate process, LogonUI.exe, is used to actually load the credential pro-
viders and display the Windows logon interface to users. This process is started on demand whenever 
Winlogon needs to present a user interface to the user, and it exits after the action has finished. It also 
allows Winlogon to simply restart a new LogonUI process should it crash for any reason.

Winlogon is the only process that intercepts logon requests from the keyboard. These are sent 
through an RPC message from Win32k.sys. Winlogon immediately launches the LogonUI application to 
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display the user interface for logon. After obtaining a user name and password from credential provid-
ers, Winlogon calls Lsass to authenticate the user attempting to log on. If the user is authenticated, the 
logon process activates a logon shell on behalf of that user. The interaction between the components 
involved in logon is illustrated in Figure 7-20.

FIGURE 7-20 Components involved in logon.

In addition to supporting alternative credential providers, LogonUI can load additional network 
provider DLLs that need to perform secondary authentication. This capability allows multiple network 
providers to gather identification and authentication information all at one time during normal logon. 
A user logging on to a Windows system might simultaneously be authenticated on a Linux server. That 
user would then be able to access resources of the UNIX server from the Windows machine without 
requiring additional authentication. Such a capability is known as one form of single sign-on.

Winlogon initialization
During system initialization, before any user applications are active, Winlogon performs the following 
steps to ensure that it controls the workstation once the system is ready for user interaction:

1. It creates and opens an interactive window station (for example, \Sessions\1\Windows\
WindowStations\WinSta0 in the object manager namespace) to represent the keyboard, 
mouse, and monitor. Winlogon creates a security descriptor for the station that has one and 
only one ACE containing only the system SID. This unique security descriptor ensures that no 
other process can access the workstation unless explicitly allowed by Winlogon.

2. It creates and opens two desktops: an application desktop (\Sessions\1\Windows\WinSta0\
Default, also known as the interactive desktop) and a Winlogon desktop (\Sessions\1\Windows\
WinSta0\Winlogon, also known as the Secure Desktop). The security on the Winlogon desk-
top is created so that only Winlogon can access that desktop. The other desktop allows both 
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Winlogon and users to access it. This arrangement means that any time the Winlogon desktop 
is active, no other process has access to any active code or data associated with the desktop. 
Windows uses this feature to protect the secure operations that involve passwords and locking 
and unlocking the desktop.

3. Before anyone logs on to a computer, the visible desktop is Winlogon’s. After a user logs on, 
pressing the SAS sequence (by default, Ctrl+Alt+Del) switches the desktop from Default to 
Winlogon and launches LogonUI. (This explains why all the windows on your interactive desktop 
seem to disappear when you press Ctrl+Alt+Del, and then return when you dismiss the Windows 
Security dialog box.) Thus, the SAS always brings up a Secure Desktop controlled by Winlogon.

4. It establishes an ALPC connection with Lsass. This connection will be used for exchang-
ing information during logon, logoff, and password operations, and is made by calling 
LsaRegisterLogonProcess.

5. It registers the Winlogon RPC message server, which listens for SAS, logoff, and workstation 
lock notifications from Win32k. This measure prevents Trojan horse programs from gaining 
control of the screen when the SAS is entered.

Note The Wininit process performs steps similar to steps 1 and 2 to allow legacy 
interactive services running on session 0 to display windows, but it does not per-
form any other steps because session 0 is not available for user logon.

How SAS is implemented
The SAS is secure because no application can intercept the Ctrl+Alt+Del keystroke combination 
or prevent Winlogon from receiving it. Win32k.sys reserves the Ctrl+Alt+Del key combination so 
that whenever the Windows input system (implemented in the raw input thread in Win32k) sees 
the combination, it sends an RPC message to Winlogon’s message server, which listens for such 
notifications. The keystrokes that map to a registered hot key are not sent to any process other 
than the one that registered it, and only the thread that registered a hot key can unregister it, so 
a Trojan horse application cannot deregister Winlogon’s ownership of the SAS.

A Windows function, SetWindowsHookEx, enables an application to install a hook procedure 
that’s invoked every time a keystroke is pressed, even before hot keys are processed, and allows 
the hook to squash keystrokes. However, the Windows hot key processing code contains a special 
case for Ctrl+Alt+Del that disables hooks so that the keystroke sequence can’t be intercepted. In 
addition, if the interactive desktop is locked, only hot keys owned by Winlogon are processed.

Once the Winlogon desktop is created during initialization, it becomes the active desktop. 
When the Winlogon desktop is active, it is always locked. Winlogon unlocks its desktop only to 
switch to the application desktop or the screen-saver desktop. (Only the Winlogon process can 
lock or unlock a desktop.)
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User logon steps
Logon begins when a user presses the SAS (Ctrl+Alt+Del). After the SAS is pressed, Winlogon starts 
LogonUI, which calls the credential providers to obtain a user name and password. Winlogon also creates 
a unique local logon SID for this user, which it assigns to this instance of the desktop (keyboard, screen, 
and mouse). Winlogon passes this SID to Lsass as part of the LsaLogonUser call. If the user is successfully 
logged on, this SID will be included in the logon process token—a step that protects access to the desk-
top. For example, another logon to the same account but on a different system will be unable to write to 
the first machine’s desktop because this second logon won’t be in the first logon’s desktop token.

When the user name and password have been entered, Winlogon retrieves a handle to a package 
by calling the Lsass function LsaLookupAuthenticationPackage. Authentication packages are listed 
in the registry under HKLM\SYSTEM\CurrentControlSet\Control\Lsa. Winlogon passes logon informa-
tion to the authentication package via LsaLogonUser. Once a package authenticates a user, Winlogon 
continues the logon process for that user. If none of the authentication packages indicates a successful 
logon, the logon process is aborted.

Windows uses two standard authentication packages for interactive username/password-based logons: 

 ■ MSV1_0 The default authentication package on a stand-alone Windows system is MSV1_0 
(Msv1_0.dll), an authentication package that implements LAN Manager 2 protocol. Lsass also 
uses MSV1_0 on domain-member computers to authenticate to pre–Windows 2000 domains 
and computers that can’t locate a domain controller for authentication. (Computers that are 
disconnected from the network fall into this latter category.) 

 ■ Kerberos The Kerberos authentication package, Kerberos.dll, is used on computers that  
are members of Windows domains. The Windows Kerberos package, with the cooperation  
of Kerberos services running on a domain controller, supports the Kerberos protocol. This  
protocol is based on Internet RFC 1510. (Visit the Internet Engineering Task Force [IETF] website 
at http://www.ietf.org for detailed information on the Kerberos standard.)

MSV1_0
The MSV1_0 authentication package takes the user name and a hashed version of the password and 
sends a request to the local SAM to retrieve the account information, which includes the hashed 
password, the groups to which the user belongs, and any account restrictions. MSV1_0 first checks the 
account restrictions, such as hours or type of accesses allowed. If the user can’t log on because of the 
restrictions in the SAM database, the logon call fails and MSV1_0 returns a failure status to the LSA.

MSV1_0 then compares the hashed password and user name to that obtained from the SAM. In the 
case of a cached domain logon, MSV1_0 accesses the cached information by using Lsass functions that 
store and retrieve “secrets” from the LSA database (the SECURITY hive of the registry). If the information 
matches, MSV1_0 generates a LUID for the logon session and creates the logon session by calling Lsass, 
associating this unique identifier with the session and passing the information needed to ultimately 
create an access token for the user. (Recall that an access token includes the user’s SID, group SIDs, and 
assigned privileges.)

http://www.ietf.org
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Note MSV1_0 does not cache a user’s entire password hash in the registry because that 
would enable someone with physical access to the system to easily compromise a user’s  
domain account and gain access to encrypted files and to network resources the user is 
authorized to access. Instead, it caches half of the hash. The cached half-hash is sufficient to 
verify that a user’s password is correct, but it isn’t sufficient to gain access to EFS keys and  
to authenticate as the user on a domain because these actions require the full hash.

If MSV1_0 needs to authenticate using a remote system, as when a user logs on to a trusted pre–
Windows 2000 domain, MSV1_0 uses the Netlogon service to communicate with an instance of Netlogon 
on the remote system. Netlogon on the remote system interacts with the MSV1_0 authentication 
package on that system, passing back authentication results to the system on which the logon is being 
performed.

Kerberos
The basic control flow for Kerberos authentication is the same as the flow for MSV1_0. However, in most 
cases, domain logons are performed from member workstations or servers rather than on a domain con-
troller, so the authentication package must communicate across the network as part of the authentication 
process. The package does so by communicating via the Kerberos TCP/IP port (port 88) with the Kerberos 
service on a domain controller. The Kerberos Key Distribution Center service (Kdcsvc.dll), which imple-
ments the Kerberos authentication protocol, runs in the Lsass process on domain controllers.

After validating hashed user-name and password information with Active Directory’s user account 
objects (using the Active Directory server Ntdsa.dll), Kdcsvc returns domain credentials to Lsass, which 
returns the result of the authentication and the user’s domain logon credentials (if the logon was suc-
cessful) across the network to the system where the logon is taking place.

Note This description of Kerberos authentication is highly simplified, but it highlights the 
roles of the various components involved. Although the Kerberos authentication protocol 
plays a key role in distributed domain security in Windows, its details are outside the scope 
of this book.

After a logon has been authenticated, Lsass looks in the local policy database for the user’s allowed 
access, including interactive, network, batch, or service process. If the requested logon doesn’t match 
the allowed access, the logon attempt will be terminated. Lsass deletes the newly created logon session 
by cleaning up any of its data structures and then returns failure to Winlogon, which in turn displays an 
appropriate message to the user. If the requested access is allowed, Lsass adds the appropriate addi-
tional security IDs (such as Everyone, Interactive, and the like). It then checks its policy database for any 
granted privileges for all the SIDs for this user and adds these privileges to the user’s access token.

When Lsass has accumulated all the necessary information, it calls the executive to create the access to-
ken. The executive creates a primary access token for an interactive or service logon and an impersonation 
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token for a network logon. After the access token is successfully created, Lsass duplicates the token, creating 
a handle that can be passed to Winlogon, and closes its own handle. If necessary, the logon operation is 
audited. At this point, Lsass returns success to Winlogon along with a handle to the access token, the LUID 
for the logon session, and the profile information, if any, that the authentication package returned.

EXPERIMENT: Listing active logon sessions
As long as at least one token exists with a given logon session LUID, Windows considers the 
logon session to be active. You can use the LogonSessions tool from Sysinternals, which uses 
the LsaEnumerateLogonSessions function (documented in the Windows SDK) to list the active 
logon sessions:

C:\WINDOWS\system32>logonsessions 
 
LogonSessions v1.4 - Lists logon session information 
Copyright (C) 2004-2016 Mark Russinovich 
Sysinternals - www.sysinternals.com 
 
 
[0] Logon session 00000000:000003e7: 
    User name:    WORKGROUP\ZODIAC$ 
    Auth package: NTLM 
    Logon type:   (none) 
    Session:      0 
    Sid:          S-1-5-18 
    Logon time:   09-Dec-16 15:22:31 
    Logon server: 
    DNS Domain: 
    UPN: 
 
[1] Logon session 00000000:0000cdce: 
    User name: 
    Auth package: NTLM 
    Logon type:   (none) 
    Session:      0 
    Sid:          (none) 
    Logon time:   09-Dec-16 15:22:31 
    Logon server: 
    DNS Domain: 
    UPN: 
 
[2] Logon session 00000000:000003e4: 
    User name:    WORKGROUP\ZODIAC$ 
    Auth package: Negotiate 
    Logon type:   Service 
    Session:      0 
    Sid:          S-1-5-20 
    Logon time:   09-Dec-16 15:22:31 
    Logon server: 
    DNS Domain: 
    UPN: 
 

http://www.sysinternals.com
http://www.sysinternals.com
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[3] Logon session 00000000:00016239: 
    User name:    Window Manager\DWM-1 
    Auth package: Negotiate 
    Logon type:   Interactive 
    Session:      1 
    Sid:          S-1-5-90-0-1 
    Logon time:   09-Dec-16 15:22:32 
    Logon server: 
    DNS Domain: 
    UPN: 
 
[4] Logon session 00000000:00016265: 
    User name:    Window Manager\DWM-1 
    Auth package: Negotiate 
    Logon type:   Interactive 
    Session:      1 
    Sid:          S-1-5-90-0-1 
    Logon time:   09-Dec-16 15:22:32 
    Logon server: 
    DNS Domain: 
    UPN: 
 
[5] Logon session 00000000:000003e5: 
    User name:    NT AUTHORITY\LOCAL SERVICE 
    Auth package: Negotiate 
    Logon type:   Service 
    Session:      0 
    Sid:          S-1-5-19 
    Logon time:   09-Dec-16 15:22:32 
    Logon server: 
    DNS Domain: 
    UPN: 
 
... 
[8] Logon session 00000000:0005c203: 
    User name:    NT VIRTUAL MACHINE\AC9081B6-1E96-4BC8-8B3B-C609D4F85F7D 
    Auth package: Negotiate 
    Logon type:   Service 
    Session:      0 
    Sid:          S-1-5-83-1-2895151542-1271406230-163986315-2103441620 
    Logon time:   09-Dec-16 15:22:35 
    Logon server: 
    DNS Domain: 
    UPN: 
 
[9] Logon session 00000000:0005d524: 
    User name:    NT VIRTUAL MACHINE\B37F4A3A-21EF-422D-8B37-AB6B0A016ED8 
    Auth package: Negotiate 
    Logon type:   Service 
    Session:      0 
    Sid:          S-1-5-83-1-3011463738-1110254063-1806382987-3631087882 
    Logon time:   09-Dec-16 15:22:35 
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    Logon server: 
    DNS Domain: 
    UPN: 
 
... 
[12] Logon session 00000000:0429ab2c: 
    User name:    IIS APPPOOL\DefaultAppPool 
    Auth package: Negotiate 
    Logon type:   Service 
    Session:      0 
    Sid:          S-1-5-82-3006700770-424185619-1745488364-794895919-4004696415 
    Logon time:   09-Dec-16 22:33:03 
    Logon server: 
    DNS Domain: 
    UPN: 

Information reported for a session includes the SID and name of the user associated with the ses-
sion, as well as the session’s authentication package and logon time. Note that the Negotiate authen-
tication package, seen in logon sessions 2 and 9 in the preceding output, will attempt to authenticate 
via Kerberos or NTLM, depending on which is most appropriate for the authentication request.

The LUID for a session is displayed on the Logon Session line of each session block. Using 
the Handle.exe utility (also from Sysinternals), you can find the tokens that represent a particular 
logon session. For example, to find the tokens for logon session 8 in the output just shown, you 
could enter this command:

C:\WINDOWS\system32>handle -a 5c203 
 
Nthandle v4.1 - Handle viewer 
Copyright (C) 1997-2016 Mark Russinovich 
Sysinternals - www.sysinternals.com 
 
System             pid: 4      type: Directory     1274: \Sessions\0\
DosDevices\00000000-0005c203 
lsass.exe          pid: 496    type: Token          D7C: NT VIRTUAL MACHINE\
AC9081B6-1E96-4BC8-8B3B-C609D4F85F7D:5c203 
lsass.exe          pid: 496    type: Token         2350: NT VIRTUAL MACHINE\
AC9081B6-1E96-4BC8-8B3B-C609D4F85F7D:5c203 
lsass.exe          pid: 496    type: Token         2390: NT VIRTUAL MACHINE\
AC9081B6-1E96-4BC8-8B3B-C609D4F85F7D:5c203 
svchost.exe        pid: 900    type: Token          804: NT VIRTUAL MACHINE\
AC9081B6-1E96-4BC8-8B3B-C609D4F85F7D:5c203 
svchost.exe        pid: 1468   type: Token         10EC: NT VIRTUAL MACHINE\
AC9081B6-1E96-4BC8-8B3B-C609D4F85F7D:5c203 
vmms.exe           pid: 4380   type: Token          A34: NT VIRTUAL MACHINE\
AC9081B6-1E96-4BC8-8B3B-C609D4F85F7D:5c203 
vmcompute.exe      pid: 6592   type: Token          200: NT VIRTUAL MACHINE\
AC9081B6-1E96-4BC8-8B3B-C609D4F85F7D:5c203 
vmwp.exe           pid: 7136   type: WindowStation  168: \Windows\WindowStations\
Service-0x0-5c203$ 
vmwp.exe           pid: 7136   type: WindowStation  170: \Windows\WindowStations\
Service-0x0-5c203$ 

http://www.sysinternals.com
http://www.sysinternals.com
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Winlogon then looks in the registry at the value HKLM\SOFTWARE\Microsoft\Windows NT\Current 
Version\Winlogon\Userinit and creates a process to run whatever the value of that string is. (This value 
can be several EXEs separated by commas.) The default value is Userinit.exe, which loads the user 
profile and then creates a process to run whatever the value of HKCU\SOFTWARE\Microsoft\Windows 
NT\Current Version\Winlogon\Shell is, if that value exists. That value does not exist by default, however. 
If it doesn’t exist, Userinit.exe does the same for HKLM\SOFTWARE\Microsoft\Windows NT\Current 
Version\Winlogon\Shell, which defaults to Explorer.exe. Userinit then exits (which is why Explorer.exe 
shows up as having no parent when examined in Process Explorer). For more information on the steps 
followed during the user logon process, see Chapter 11 in Part 2.

Assured authentication
A fundamental problem with password-based authentication is that passwords can be revealed or sto-
len and used by malicious third parties. Windows includes a mechanism that tracks the authentication 
strength of how a user authenticated with the system, which allows objects to be protected from access 
if a user did not authenticate securely. (Smartcard authentication is considered to be a stronger form of 
authentication than password authentication.)

On systems that are joined to a domain, the domain administrator can specify a mapping between 
an object identifier (OID) (a unique numeric string representing a specific object type) on a certificate 
used for authenticating a user (such as on a smartcard or hardware security token) and a SID that is 
placed into the user’s access token when the user successfully authenticates with the system. An ACE 
in a DACL on an object can specify such a SID be part of a user’s token in order for the user to gain 
access to the object. Technically, this is known as a group claim. In other words, the user is claiming 
membership in a particular group, which is allowed certain access rights on specific objects, with the 
claim based upon the authentication mechanism. This feature is not enabled by default, and it must be 
configured by the domain administrator in a domain with certificate-based authentication.

Assured authentication builds on existing Windows security features in a way that provides a great 
deal of flexibility to IT administrators and anyone concerned with enterprise IT security. The enterprise 
decides which OIDs to embed in the certificates it uses for authenticating users and the mapping of 
particular OIDs to Active Directory universal groups (SIDs). A user’s group membership can be used 
to identify whether a certificate was used during the logon operation. Different certificates can have 
different issuance policies and, thus, different levels of security, which can be used to protect highly 
sensitive objects (such as files or anything else that might have a security descriptor).

Authentication protocols (APs) retrieve OIDs from certificates during certificate-based authentication. 
These OIDs must be mapped to SIDs, which are in turn processed during group membership expansion, 
and placed in the access token. The mapping of OID to universal group is specified in Active Directory.

As an example, an organization might have several certificate-issuance policies named Contractor, 
Full Time Employee, and Senior Management, which map to the universal groups Contractor-Users, 
FTE-Users, and SM-Users, respectively. A user named Abby has a smartcard with a certificate issued 
using the Senior Management issuance policy. When she logs in using her smartcard, she receives an 
additional group membership (which is represented by a SID in her access token) indicating that she 
is a member of the SM-Users group. Permissions can be set on objects (using an ACL) such that only 
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members of the FTE-Users or SM-Users group (identified by their SIDs within an ACE) are granted  
access. If Abby logs in using her smartcard, she can access those objects, but if she logs in with just her 
user name and password (without the smartcard), she cannot access those objects because she will not 
have either the FTE-Users or SM-Users group in her access token. A user named Toby who logs in with a 
smartcard that has a certificate issued using the Contractor issuance policy would not be able to access 
an object that has an ACE requiring FTE-Users or SM-Users group membership. 

Windows Biometric Framework
Windows provides a standardized mechanism for supporting certain types of biometric devices, such as 
fingerprint scanners, used to enable user identification via a fingerprint swipe: the Windows Biometric 
Framework (WBF). Like many other such frameworks, the WBF was developed to isolate the various func-
tions involved in supporting such devices, so as to minimize the code required to implement a new device. 

The primary components of the WBF are shown in Figure 7-21. Except as noted in the following list, 
all of these components are supplied by Windows:

 ■ The Windows Biometric Service (%SystemRoot%\System32\Wbiosrvc.dll This provides 
the process-execution environment in which one or more biometric service providers can execute.

 ■ The Windows Biometric Driver Interface (WBDI) This is a set of interface definitions (IRP 
major function codes, DeviceIoControl codes, and so forth) to which any driver for a biomet-
ric scanner device must conform if it is to be compatible with the Windows Biometric Service. 
WBDI drivers can be developed using any of the standard driver frameworks (UMDF, KMDF and 
WDM). However, UMDF is recommended to reduce code size and increase reliability. WBDI is 
described in the Windows Driver Kit documentation.

 ■ The Windows Biometric API This allows existing Windows components such as Winlogon 
and LogonUI to access the biometric service. Third-party applications have access to the 
Windows Biometric API and can use the biometric scanner for functions other than logging 
in to Windows. An example of a function in this API is WinBioEnumServiceProviders. The 
Biometric API is exposed by %SystemRoot%\System32\Winbio.dll.

 ■ The fingerprint biometric service provider This wraps the functions of biometric-type-
specific adapters to present a common interface, independent of the type of biometric, to the 
Windows Biometric Service. In the future, additional types of biometrics, such as retinal scans 
or voiceprint analyzers, might be supported by additional biometric service providers. The bio-
metric service provider in turn uses three adapters, which are user-mode DLLs:

• The sensor adapter This exposes the data-capture functionality of the scanner. The sensor 
adapter usually uses Windows I/O calls to access the scanner hardware. Windows provides 
a sensor adapter that can be used with simple sensors, those for which a WBDI driver exists. 
For more complex sensors, the sensor adapter is written by the sensor vendor.

• The engine adapter This exposes processing and comparison functionality specific to the 
scanner’s raw data format and other features. The actual processing and comparison might 
be performed within the engine adapter DLL, or the DLL might communicate with some 
other module. The engine adapter is always provided by the sensor vendor.
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• The storage adapter This exposes a set of secure storage functions. These are used to 
store and retrieve templates against which scanned biometric data is matched by the engine 
adapter. Windows provides a storage adapter using Windows cryptography services and 
standard disk file storage. A sensor vendor might provide a different storage adapter.

 ■ The functional device driver for the actual biometric scanner device This exposes the 
WBDI at its upper edge. It usually uses the services of a lower-level bus driver, such as the USB 
bus driver, to access the scanner device. This driver is always provided by the sensor vendor. 

FIGURE 7-21 Windows Biometric Framework components and architecture.

A typical sequence of operations to support logging in via a fingerprint scan might be as follows: 

1. After initialization, the sensor adapter receives from the service provider a request for cap-
ture data. The sensor adapter in turn sends a DeviceIoControl request with the IOCTL_
BIOMETRIC_CAPTURE_DATA control code to the WBDI driver for the fingerprint scanner device.

2. The WBDI driver puts the scanner into capture mode and queues the IOCTL_BIOMETRIC_
CAPTURE_DATA request until a fingerprint scan occurs.

3. A prospective user swipes a finger across the scanner. The WBDI driver receives notification of 
this, obtains the raw scan data from the sensor, and returns this data to the sensor driver in a 
buffer associated with the IOCTL_BIOMETRIC_CAPTURE_DATA request.

4. The sensor adapter provides the data to the fingerprint biometric service provider, which in 
turn passes the data to the engine adapter. 

5. The engine adapter processes the raw data into a form compatible with its template storage.

6. The fingerprint biometric service provider uses the storage adapter to obtain templates and 
corresponding security IDs from secure storage. It invokes the engine adapter to compare each 
template to the processed scan data. The engine adapter returns a status indicating whether it’s 
a match or not a match.
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7. If a match is found, the Windows Biometric Service notifies Winlogon, via a credential provider 
DLL, of a successful login and passes it the security ID of the identified user. This notification is 
sent via an ALPC message, providing a path that cannot be spoofed.

Windows Hello
Windows Hello, introduced in Windows 10, provides new ways to authenticate users based on biomet-
ric information. With this technology, users can log in effortlessly just by showing themselves to the 
device’s camera or swiping their finger. 

At the time of this writing, Windows Hello supports three types of biometric identification:

 ■ Fingerprint

 ■ Face

 ■ Iris

The security aspect of biometrics needs to be considered first. What is the likelihood of someone 
being identified as you? What is the likelihood of you not being identified as you? These questions are 
parameterized by two factors:

 ■ False accept rate (uniqueness) This is the probability of another user having the same bio-
metric data as you. Microsoft’s algorithms make sure the likelihood is 1 in 100,000.

 ■ False reject rate (reliability) This is the probability of you not being correctly recognized as 
you (for example, in abnormal lighting conditions for face or iris recognition). Microsoft’s imple-
mentation makes sure there is less than 1 percent chance of this happening. If it does happen, 
the user can try again or use a PIN code instead.

Using a PIN code may seem less secure than using a full-blown password (the PIN can be as simple 
as a four-digit number). However, a PIN is more secure than a password for two main reasons:

 ■ The PIN code is local to the device and is never transmitted across the network. This means that 
even if someone gets a hold of the PIN, they cannot use it to log in as the user from any other 
device. Passwords, on the other hand, travel to the domain controller. If someone gets hold of 
the password, they can log in from another machine into the domain.

 ■ The PIN code is stored in the Trusted Platform Module (TPM)—a piece of hardware that also 
plays a part in Secure Boot (discussed in detail in Chapter 11 in Part 2)—so is difficult to access. 
In any case, it requires physical access to the device, raising the bar considerably for a potential 
security compromise.

Windows Hello is built upon the Windows Biometric Framework (WBF) (described in the previous 
section). Current laptop devices support fingerprint and face biometrics, while iris is only supported 
on the Microsoft Lumia 950 and 950 XL phones. (This will likely change and expand in future devices.) 
Note that face recognition requires an infrared (IR) camera as well as a normal (RGB) one, and is sup-
ported on devices such as the Microsoft Surface Pro 4 and the Surface Book.
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User Account Control and virtualization

User Account Control (UAC) is meant to enable users to run with standard user rights as opposed to ad-
ministrative rights. Without administrative rights, users cannot accidentally (or deliberately) modify sys-
tem settings, malware can’t normally alter system security settings or disable antivirus software, and users 
can’t compromise the sensitive information of other users on shared computers. Running with standard 
user rights can thus mitigate the impact of malware and protect sensitive data on shared computers.

UAC had to address a couple of problems to make it practical for a user to run with a standard user ac-
count. First, because the Windows usage model has been one of assumed administrative rights, software 
developers assumed their programs would run with those rights and could therefore access and modify 
any file, registry key, or operating system setting. Second, users sometimes need administrative rights to 
perform such operations as installing software, changing the system time, and opening ports in the firewall. 

The UAC solution to these problems is to run most applications with standard user rights, even 
though the user is logged in to an account with administrative rights. At the same time, UAC makes it 
possible for standard users to access administrative rights when they need them—whether for legacy 
applications that require them or for changing certain system settings. As described, UAC accomplishes 
this by creating a filtered admin token as well as the normal admin token when a user logs in to an 
administrative account. All processes created under the user’s session will normally have the filtered ad-
min token in effect so that applications that can run with standard user rights will do so. However, the 
administrative user can run a program or perform other functions that require full Administrator rights 
through UAC elevation. 

Windows also allows certain tasks that were previously reserved for administrators to be performed 
by standard users, enhancing the usability of the standard user environment. For example, Group 
Policy settings exist that can enable standard users to install printers and other device drivers approved 
by IT administrators and to install ActiveX controls from administrator-approved sites. 

Finally, when software developers test in the UAC environment, they are encouraged to develop 
applications that can run without administrative rights. Fundamentally, non-administrative programs 
should not need to run with administrator privileges; programs that often require administrator privi-
leges are typically legacy programs using old APIs or techniques, and they should be updated.

Together, these changes obviate the need for users to run with administrative rights all the time.

File system and registry virtualization
Although some software legitimately requires administrative rights, many programs needlessly store 
user data in system-global locations. When an application executes, it can be running in different user 
accounts, and it should therefore store user-specific data in the per-user %AppData% directory and 
save per-user settings in the user’s registry profile under HKEY_CURRENT_USER\Software. Standard 
user accounts don’t have write access to the %ProgramFiles% directory or HKEY_LOCAL_MACHINE\
Software, but because most Windows systems are single-user and most users have been administrators 
until UAC was implemented, applications that incorrectly saved user data and settings to these loca-
tions worked anyway.
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Windows enables these legacy applications to run in standard user accounts through the help of file 
system and registry namespace virtualization. When an application modifies a system-global location in 
the file system or registry and that operation fails because access is denied, Windows redirects the opera-
tion to a per-user area. When the application reads from a system-global location, Windows first checks 
for data in the per-user area and, if none is found, permits the read attempt from the global location.

Windows will always enable this type of virtualization unless:

 ■ The application is 64-bit Because virtualization is purely an application-compatibility tech-
nology meant to help legacy applications, it is enabled only for 32-bit applications. The world of 
64-bit applications is relatively new and developers should follow the development guidelines 
for creating standard user-compatible applications.

 ■ The application is already running with administrative rights In this case, there is no 
need for any virtualization.

 ■ The operation came from a kernel-mode caller

 ■ The operation is being performed while the caller is impersonating For example, any 
operations not originating from a process classified as legacy according to this definition,  
including network file-sharing accesses, are not virtualized.

 ■ The executable image for the process has a UAC-compatible manifest Specifying a  
requestedExecutionLevel setting, described in the next section.

 ■ The administrator does not have write access to the file or registry key This exception 
exists to enforce backward compatibility because the legacy application would have failed 
before UAC was implemented even if the application was run with administrative rights.

 ■ Services are never virtualized

You can see the virtualization status (the process virtualization status is stored as a flag in its token) 
of a process by adding the UAC Virtualization column to Task Manager’s Details page, as shown in 
Figure 7-22. Most Windows components—including the Desktop Window Manager (Dwm.exe), the 
Client Server Run-Time Subsystem (Csrss.exe), and Explorer—have virtualization disabled because they 
have a UAC-compatible manifest or are running with administrative rights and so do not allow virtual-
ization. However, 32-bit Internet Explorer (iexplore.exe) has virtualization enabled because it can host 
multiple ActiveX controls and scripts and must assume that they were not written to operate correctly 
with standard user rights. Note that, if required, virtualization can be completely disabled for a system 
using a Local Security Policy setting.

In addition to file system and registry virtualization, some applications require additional help to run 
correctly with standard user rights. For example, an application that tests the account in which it’s run-
ning for membership in the Administrators group might otherwise work, but it won’t run if it’s not in 
that group. Windows defines a number of application-compatibility shims to enable such applications 
to work anyway. The shims most commonly applied to legacy applications for operation with standard 
user rights are shown in Table 7-15. 
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FIGURE 7-22 Using Task Manager to view virtualization status.

TABLE 7-15 UAC virtualization shims

Flag Meaning 

ElevateCreateProcess This changes CreateProcess to handle ERROR_ELEVATION_REQUIRED errors by 
calling the application information service to prompt for elevation.

ForceAdminAccess This spoofs queries of Administrator group membership.

VirtualizeDeleteFile This spoofs successful deletion of global files and directories.

LocalMappedObject This forces global section objects into the user’s namespace.

VirtualizeHKCRLite This redirects global registration of COM objects to a per-user location.

VirtualizeRegisterTypeLib This converts per-machine typelib registrations to per-user registrations.
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File virtualization
The file system locations that are virtualized for legacy processes are %ProgramFiles%, %ProgramData%, 
and %SystemRoot%, excluding some specific subdirectories. However, any file with an executable 
extension—including .exe, .bat, .scr, .vbs, and others—is excluded from virtualization. This means that 
programs that update themselves from a standard user account fail instead of creating private versions 
of their executables that aren’t visible to an administrator running a global updater.

Note To add extensions to the exception list, enter them in the HKLM\System\Current-
ControlSet\Services\Luafv\Parameters\ExcludedExtensionsAdd registry key and reboot.  
Use a multistring type to delimit multiple extensions, and do not include a leading dot in the 
extension name.

Modifications to virtualized directories by legacy processes are redirected to the user’s virtual root 
directory, %LocalAppData%\VirtualStore. The Local component of the path highlights the fact that 
virtualized files don’t roam with the rest of the profile when the account has a roaming profile.

The UAC File Virtualization filter driver (%SystemRoot%\System32\Drivers\Luafv.sys) implements file 
system virtualization. Because this is a file system filter driver, it sees all local file system operations, but 
it implements functionality only for operations from legacy processes. As shown in Figure 7-23, the filter 
driver changes the target file path for a legacy process that creates a file in a system-global location but 
does not for a non-virtualized process with standard user rights. Default permissions on the \Windows 
directory deny access to the application written with UAC support, but the legacy process acts as though 
the operation succeeds when it really created the file in a location fully accessible by the user.

FIGURE 7-23 UAC File Virtualization filter driver operation.
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EXPERIMENT: File virtualization behavior
In this experiment, you will enable and disable virtualization on the command prompt and see 
several behaviors to demonstrate UAC file virtualization:

1. Open a non-elevated command prompt (you must have UAC enabled for this to work) 
and enable virtualization for it. You can change the virtualization status of a pro-
cess by right-clicking the process in the Task Manager Details tab and selecting UAC 
Virtualization from the shortcut menu that appears.

2. Navigate to the C:\Windows directory and use the following command to write a file:

echo hello-1 > test.txt

3. List the contents of the directory. You’ll see that the file appears.

dir test.txt

4. Disable virtualization by right-clicking the process in the Task Manager Details tab and 
deselecting UAC Virtualization. Then list the directory as in step 3. Notice that the file 
is gone. However, a directory listing of the VirtualStore directory will reveal the file:

dir %LOCALAPPDATA%\VirtualStore\Windows\test.txt

5. Enable virtualization again for this process.

6. To look at a more complex scenario, create a new command prompt window, but 
elevated this time. Then repeat steps 2 and 3 using the string hello-2.

7. Examine the text inside these files by using the following command in both command 
prompts. The screenshots that follow show the expected output.

type test.txt
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8. From your elevated command prompt, delete the test.txt file:

del test.txt

9. Repeat step 3 of the experiment in both windows. Notice that the elevated command 
prompt cannot find the file anymore, while the standard user command prompt shows 
the old contents of the file again. This demonstrates the failover mechanism described 
earlier: Read operations look in the per-user virtual store location first, but if the file 
doesn’t exist, read access to the system location will be granted.

Registry virtualization
Registry virtualization is implemented slightly differently from file system virtualization. Virtualized 
registry keys include most of the HKEY_LOCAL_MACHINE\Software branch, but there are numerous 
exceptions, such as the following:

 ■ HKLM\Software\Microsoft\Windows

 ■ HKLM\Software\Microsoft\Windows NT

 ■ HKLM\Software\Classes

Only keys that are commonly modified by legacy applications, but that don’t introduce compat-
ibility or interoperability problems, are virtualized. Windows redirects modifications of virtualized 
keys by a legacy application to a user’s registry virtual root at HKEY_CURRENT_USER\Software\Classes\
VirtualStore. The key is located in the user’s Classes hive, %LocalAppData%\Microsoft\Windows\
UsrClass.dat, which, like any other virtualized file data, does not roam with a roaming user profile. 
Instead of maintaining a fixed list of virtualized locations as Windows does for the file system, the virtu-
alization status of a key is stored as a combination of flags, shown in Table 7-16.

You can use the Reg.exe utility included in Windows, with the flags option, to display the current 
virtualization state for a key or to set it. In Figure 7-24, note that the HKLM\Software key is fully virtual-
ized, but the Windows subkey (and all its children) have only silent failure enabled.
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TABLE 7-16 Registry virtualization flags

Flag Meaning 

REG_KEY_DONT_VIRTUALIZE This specifies whether virtualization is enabled for this key. If the flag is set, virtu-
alization is disabled.

REG_KEY_DONT_SILENT_FAIL If the REG_KEY_DONT_VIRTUALIZE flag is set (virtualization is disabled), this key 
specifies that a legacy application that would be denied access performing an 
operation on the key is instead granted MAXIMUM_ALLOWED rights to the key (any 
access the account is granted) instead of the rights the application requested. If 
this flag is set, it implicitly disables virtualization as well.

REG_KEY_RECURSE_FLAG This determines whether the virtualization flags will propagate to the child keys 
(subkeys) of this key.

FIGURE 7-24 UAC registry virtualization flags on the Software and Windows keys.

Unlike file virtualization, which uses a filter driver, registry virtualization is implemented in the con-
figuration manager. (See Chapter 9 in Part 2 for more information on the registry and the configuration 
manager.) As with file system virtualization, a legacy process creating a subkey of a virtualized key is 
redirected to the user’s registry virtual root, but a UAC-compatible process is denied access by default 
permissions. This is shown in Figure 7-25.

FIGURE 7-25 UAC registry virtualization operation.
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Elevation
Even if users run only programs that are compatible with standard user rights, some operations still 
require administrative rights. For example, the vast majority of software installations require adminis-
trative rights to create directories and registry keys in system-global locations or to install services or 
device drivers. Modifying system-global Windows and application settings also requires administrative 
rights, as does the parental controls feature. It would be possible to perform most of these operations 
by switching to a dedicated administrator account, but the inconvenience of doing so would likely 
result in most users remaining in the administrator account to perform their daily tasks, most of which 
do not require administrative rights. 

It’s important to be aware that UAC elevations are conveniences and not security boundaries. A 
security boundary requires that security policy dictate what can pass through the boundary. User 
accounts are an example of a security boundary in Windows because one user can’t access the data 
belonging to another user without having that user’s permission.

Because elevations aren’t security boundaries, there’s no guarantee that malware running on a 
system with standard user rights can’t compromise an elevated process to gain administrative rights. 
For example, elevation dialog boxes only identify the executable that will be elevated; they say nothing 
about what it will do when it executes.

Running with administrative rights
Windows includes enhanced “run as” functionality so that standard users can conveniently launch 
processes with administrative rights. This functionality requires giving applications a way to identify 
operations for which the system can obtain administrative rights on behalf of the application, as neces-
sary (we’ll say more on this topic shortly).

To enable users acting as system administrators to run with standard user rights but not have to 
enter user names and passwords every time they want to access administrative rights, Windows makes 
use of a mechanism called Admin Approval Mode (AAM). This feature creates two identities for the 
user at logon: one with standard user rights and another with administrative rights. Since every user 
on a Windows system is either a standard user or acting for the most part as a standard user in AAM, 
developers must assume that all Windows users are standard users, which will result in more programs 
working with standard user rights without virtualization or shims.

Granting administrative rights to a process is called elevation. When elevation is performed by 
a standard user account (or by a user who is part of an administrative group but not the actual 
Administrators group), it’s referred to as an over-the-shoulder (OTS) elevation because it requires the 
entry of credentials for an account that’s a member of the Administrators group, something that’s  
usually completed by a privileged user typing over the shoulder of a standard user. An elevation  
performed by an AAM user is called a consent elevation because the user simply has to approve the  
assignment of his administrative rights.

Stand-alone systems, which are typically home computers, and domain-joined systems treat AAM 
access by remote users differently because domain-connected computers can use domain administra-
tive groups in their resource permissions. When a user accesses a stand-alone computer’s file share, 
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Windows requests the remote user’s standard user identity. But on domain-joined systems, Windows 
honors all the user’s domain group memberships by requesting the user’s administrative identity. 
Executing an image that requests administrative rights causes the application information service (AIS, 
contained in %SystemRoot%\System32\Appinfo.dll), which runs inside a standard service host process 
(SvcHost.exe), to launch %SystemRoot%\System32\Consent.exe. Consent captures a bitmap of the 
screen, applies a fade effect to it, switches to a desktop that’s accessible only to the local system ac-
count (the Secure Desktop), paints the bitmap as the background, and displays an elevation dialog box 
that contains information about the executable. Displaying this dialog box on a separate desktop pre-
vents any application present in the user’s account from modifying the appearance of the dialog box.

If an image is a Windows component digitally signed (by Microsoft or another entity), the dialog 
box displays a light blue stripe across the top, as shown at the left of Figure 7-26 (the distinction be-
tween Microsoft signed images and other signers has been removed in Windows 10). If the image is 
unsigned, the stripe becomes yellow, and the prompt stresses the unknown origin of the image (see the 
right of Figure 7-26). The elevation dialog box shows the image’s icon, description, and publisher for 
digitally signed images, but it shows only the file name and “Publisher: Unknown” for unsigned images. 
This difference makes it harder for malware to mimic the appearance of legitimate software. The Show 
More Details link at the bottom of the dialog box expands it to show the command line that will be 
passed to the executable if it launches.

FIGURE 7-26 AAC UAC elevation dialog boxes based on image signature.

The OTS consent dialog box, shown in Figure 7-27, is similar, but prompts for administrator creden-
tials. It will list any accounts with administrator rights.

FIGURE 7-27 OTS consent dialog box.
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If a user declines an elevation, Windows returns an access-denied error to the process that initiated 
the launch. When a user agrees to an elevation by either entering administrator credentials or click-
ing Yes, AIS calls CreateProcessAsUser to launch the process with the appropriate administrative 
identity. Although AIS is technically the parent of the elevated process, AIS uses new support in the 
CreateProcessAsUser API that sets the process’s parent process ID to that of the process that origi-
nally launched it. That’s why elevated processes don’t appear as children of the AIS service-hosting 
process in tools such as Process Explorer that show process trees. Figure 7-28 shows the operations 
involved in launching an elevated process from a standard user account.

FIGURE 7-28 Launching an administrative application as a standard user.

Requesting administrative rights
There are a number of ways the system and applications identify a need for administrative rights. One 
that shows up in the Explorer user interface is the Run as Administrator context menu command and 
shortcut option. These items also include a blue and gold shield icon that should be placed next to any 
button or menu item that will result in an elevation of rights when it is selected. Choosing the Run as 
Administrator command causes Explorer to call the ShellExecute API with the runas verb.

The vast majority of installation programs require administrative rights, so the image loader, which 
initiates the launch of an executable, includes installer-detection code to identify likely legacy installers. 
Some of the heuristics it uses are as simple as detecting internal version information or whether the 
image has the words setup, install, or update in its file name. More sophisticated means of detection 
involve scanning for byte sequences in the executable that are common to third-party installation 
wrapper utilities. The image loader also calls the application-compatibility library to see if the target 
executable requires administrator rights. The library looks in the application-compatibility database 
to see whether the executable has the RequireAdministrator or RunAsInvoker compatibility flag 
associated with it.

The most common way for an executable to request administrative rights is for it to include a 
requestedExecutionLevel tag in its application manifest file. The element’s level attribute can have 
one of the three values shown in Table 7-17.
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TABLE 7-17 Requested elevation levels

Elevation Level Meaning Usage

As invoker No need for administrative rights; never ask 
for elevation.

Typical user applications that don’t need 
administrative privileges—for example, 
Notepad.

Highest available Request approval for highest rights available. 
If the user is logged on as a standard user, the 
process will be launched as invoker; other-
wise, an AAM elevation prompt will appear, 
and the process will run with full administra-
tive rights.

Applications that can function without full 
administrative rights but expect users to want 
full access if it’s easily accessible. For example, 
the Registry Editor, Microsoft Management 
Console, and the Event Viewer use this level.

Require administrator Always request administrative rights. An OTS 
elevation dialog box prompt will be shown 
for standard users; otherwise, AAM.

Applications that require administrative 
rights to work, such as the Firewall Settings 
Editor, which affects system-wide security.

The presence of the trustInfo element in a manifest (which you can see in the manifest 
dump of eventvwr.exe) denotes an executable that was written with support for UAC and the 
requestedExecutionLevel element nests within it. The uiAccess attribute is where accessibility 
applications can use the UIPI bypass functionality mentioned earlier.

C:\>sigcheck -m c:\Windows\System32\eventvwr.exe 
... 
<trustInfo xmlns="urn:schemas-microsoft-com:asm.v3"> 
    <security> 
        <requestedPrivileges> 
            <requestedExecutionLevel 
                level="highestAvailable" 
                uiAccess="false" 
            /> 
        </requestedPrivileges> 
    </security> 
</trustInfo> 
<asmv3:application> 
   <asmv3:windowsSettings xmlns="http://schemas.microsoft.com/SMI/2005/WindowsSettings"> 
        <autoElevate>true</autoElevate> 
   </asmv3:windowsSettings> 
</asmv3:application> 
...

Auto-elevation
In the default configuration (see the next section for information on changing this), most Windows 
executables and control panel applets do not result in elevation prompts for administrative users, even 
if they need administrative rights to run. This is because of a mechanism called auto-elevation. Auto-
elevation is intended to preclude administrative users from seeing elevation prompts for most of their 
work; the programs will automatically run under the user’s full administrative token.

Auto-elevation has several requirements. One is that the executable in question must be con-
sidered as a Windows executable. This means it must be signed by the Windows publisher (not just 
by Microsoft; oddly, they are not the same—Windows-signed is considered more privileged than 
Microsoft-signed). It must also be in one of several directories considered secure: %SystemRoot%\

http://www.schemas.microsoft.com/SMI/2005/WindowsSettings"
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System32 and most of its subdirectories, %Systemroot%\Ehome, and a small number of directories 
under %ProgramFiles% (for example, those containing Windows Defender and Windows Journal).

There are additional requirements, depending on the type of executable. EXE files other than Mmc.
exe auto-elevate if they are requested via an autoElevate element in their manifest. The manifest 
shown earlier of eventvwr.exe in the previous section illustrates this.

Mmc.exe is treated as a special case because whether it should auto-elevate or not depends on 
which system management snap-ins it is to load. Mmc.exe is normally invoked with a command line 
specifying an MSC file, which in turn specifies which snap-ins are to be loaded. When Mmc.exe is run 
from a protected administrator account (one running with the limited administrator token), it asks 
Windows for administrative rights. Windows validates that Mmc.exe is a Windows executable and then 
checks the MSC. The MSC must also pass the tests for a Windows executable, and furthermore must be 
on an internal list of auto-elevate MSCs. This list includes nearly all MSC files in Windows.

Finally, COM (out-of-process server) classes can request administrative rights within their registry 
key. To do so requires a subkey named Elevation with a DWORD value named Enabled, having a 
value of 1. Both the COM class and its instantiating executable must meet the Windows executable 
requirements, although the executable need not have requested auto-elevation. 

Controlling UAC behavior
UAC can be modified via the dialog box shown in Figure 7-29. This dialog box is available under Change 
User Account Control Settings. Figure 7-29 shows the control in its default position.

 
FIGURE 7-29 User Account Control Settings dialog box.

The four possible settings have the effects described in Table 7-18.

The third position is not recommended because the UAC elevation prompt appears not on the Secure 
Desktop but on the normal user’s desktop. This could allow a malicious program running in the same 
session to change the appearance of the prompt. It is intended for use only in systems where the video 
subsystem takes a long time to dim the desktop or is otherwise unsuitable for the usual UAC display.
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TABLE 7-18 UAC options

Slider Position When administrative user not running with administrative rights… Remarks

…attempts to change Windows 
settings (for example, use cer-
tain Control Panel applets)

…attempts to install software or 
run a program whose manifest 
calls for elevation, or uses Run 
as Administrator

Highest position 
(Always Notify)

A UAC elevation prompt appears on 
the Secure Desktop.

A UAC elevation prompt appears 
on the Secure Desktop.

This was the Windows 
Vista behavior.

Second position UAC elevation occurs automatically 
with no prompt or notification.

A UAC elevation prompt appears 
on the Secure Desktop.

Windows default 
setting.

Third position UAC elevation occurs automatically 
with no prompt or notification.

A UAC elevation prompt appears 
on the user’s normal desktop.

Not recommended.

Lowest position 
(Never Notify)

UAC is turned off for administrative 
users.

UAC is turned off for administrative 
users.

Not recommended.

The lowest position is strongly discouraged because it turns UAC off completely as far as administra-
tive accounts are concerned. All processes run by a user with an administrative account will be run with 
the user’s full administrative rights in effect; there is no filtered admin token. Registry and file system 
virtualization are disabled as well for these accounts, and the Protected mode of Internet Explorer is 
disabled. However, virtualization is still in effect for non-administrative accounts, and non-administrative 
accounts will still see an OTS elevation prompt when they attempt to change Windows settings, run a 
program that requires elevation, or use the Run as Administrator context menu option in Explorer. 

The UAC setting is stored in four values in the registry under HKLM\SOFTWARE\Microsoft\
Windows\CurrentVersion\Policies\System, as shown in Table 7-19. ConsentPromptBehaviorAdmin 
controls the UAC elevation prompt for administrators running with a filtered admin token, and 
ConsentPromptBehaviorUser controls the UAC prompt for users other than administrators. 

TABLE 7-19 UAC registry values

Slider Position ConsentPrompt 
BehaviorAdmin

ConsentPrompt 
BehaviorUser

EnableLUA PromptOnSecureDesktop

Highest position 
(Always Notify)

2 (display AAC UAC 
elevation prompt)

3 (display OTS UAC 
elevation prompt)

1 (enabled) 1 (enabled)

Second position 5 (display AAC UAC 
elevation prompt, 
except for changes 
to Windows settings)

3 1 1

Third position 5 3 1 0 (disabled; UAC prompt 
appears on user’s normal 
desktop)

Lowest position 
(Never Notify)

0 3 0 (disabled; logins 
to administrative 
accounts do not 
create a restricted 
admin access token)

0
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Exploit mitigations

Throughout this chapter, we’ve seen a number of technologies that help protect the user, guarantee 
the code-signing properties of executable code, and lock down access to resources through sand-
boxing. At the end of the day, however, all secure systems have failure points, all code has bugs, and 
attackers leverage increasingly complex attacks to exploit them. A security model in which all code is 
assumed to be bug-free, or in which a software developer assumes all bugs will eventually be found 
and fixed, is destined to fail. Additionally, many security features that provide code-execution “guaran-
tees” do so at a cost of performance or compatibility, which may be unacceptable in such scenarios.

A much more successful approach is to identify the most common techniques used by attackers, as 
well as employ an internal “red team” (that is, an internal team attacking its own software) to discover 
new techniques before attackers do and to implement mitigations against such techniques. (These 
mitigations can be as simple as moving some data around or as complex as employing Control Flow 
Integrity [CFI] techniques.) Because vulnerabilities can number in the thousands in a complex code base 
such as Windows, but exploit techniques are limited, the idea is to make large classes of bugs very dif-
ficult (or in some cases, impossible) to exploit, without worrying about finding all the bugs.

Process-mitigation policies
While individual applications can implement various exploit mitigations on their own (such as Microsoft 
Edge, which leverages a mitigation called MemGC to avoid many classes of memory-corruption attacks), 
this section will cover mitigations that are provided by the operating system to all applications or to the 
system itself to reduce exploitable bug classes. Table 7-20 describes all mitigations in the latest version 
of Windows 10 Creators Update, the type of bug class they mitigate against, and mechanisms to activate 
them.

TABLE 7-20 Process mitigation options

Mitigation Name Use Case Enabling Mechanism

ASLR Bottom Up Randomization This makes calls to VirtualAlloc 
subject to ASLR with 8-bit entropy, 
including stack-base randomization.

This is set with the PROCESS_
CREATION_MITIGATION_POLICY_
BOTTOM_UP_ASLR_ALWAYS_ON 
process-creation attribute flag.

ASLR Force Relocate Images This forces ASLR even on binaries 
that do not have the /DYNAMICBASE 
linker flag.

This is set with 
SetProcessMitigationPolicy 
or the PROCESS_CREATION_
MITIGATION_POLICY_FORCE_
RELOCATE_IMAGES_ALWAYS_ON 
process-creation flag.

High Entropy ASLR (HEASLR) This significantly increases entropy 
of ASLR on 64-bit images, increasing 
bottom-up randomization to up to 1 
TB of variance (that is, bottom-up allo-
cations may start anywhere between 
64 KB and 1 TB into the address space, 
giving 24 bits of entropy).

Must be set through  
/HIGHENTROPYVA at link time or the 
PROCESS_CREATION_MITIGATION_
POLICY_HIGH_ENTROPY_ASLR_
ALWAYS_ON process-creation attribute 
flag.
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TABLE 7-20 Process mitigation options  (continued)

Mitigation Name Use Case Enabling Mechanism

ASLR Disallow Stripped Images This blocks the load of any library 
without relocations (linked with the /
FIXED flag) when combined with ASLR 
Force Relocate Images.

This is set with 
SetProcessMitigationPolicy 
or with the PROCESS_CREATION_
MITIGATION_POLICY_FORCE_
RELOCATE_IMAGES_ALWAYS_ON_REQ_
RELOCS process-creation flag.

DEP: Permanent This prevents the process from dis-
abling DEP on itself. Only relevant on 
x86. Only relevant on 32-bit applica-
tions (and/or under WoW64)

This is set with the 
SetProcessMitigationPolicy, 
process-creation attribute or with 
SetProcessDEPPolicy.

DEP: Disable ATL Thunk Emulation This prevents legacy ATL library code 
from executing ATL thunks in the 
heap, even if a known compatibility 
issue. Only relevant on 32-bit applica-
tions (and/or under WoW64)

This is set with the 
SetProcessMitigationPolicy, 
process-creation attribute or with 
SetProcessDEPPolicy.

SEH Overwrite Protection (SEHOP) This prevents structure exception 
handlers from being overwritten with 
incorrect ones, even if the image was 
not linked with Safe SEH (/SAFESEH). 
Only relevant on 32-bit applications 
(and/or under WoW64).

This can be set with 
SetProcessDEPPolicy or with the 
PROCESS_CREATION_MITIGATION_
POLICY_SEHOP_ENABLE process-
creation flag.

Raise Exception on Invalid Handle This helps catch handle reuse (use-
after-handle-close) attacks in which a 
process uses a handle that is no longer 
the handle it expected (for example: 
SetEvent on a mutex) by crashing the 
process instead of returning a failure 
that the process might ignore.

This is set with 
SetProcessMitigationPolicy 
or the PROCESS_CREATION_
MITIGATION_POLICY_STRICT_
HANDLE_CHECKS_ALWAYS_ON 
process-creation attribute flag.

Raise Exception on Invalid 
Handle Close

This helps catch handle reuse (double-
handle-close) attacks in which a pro-
cess is attempting to close a handle 
that has already been closed, sug-
gesting that a different handle may 
potentially be used in other scenarios, 
in which an exploit would be success-
ful, ultimately limiting its universal 
effectiveness.

Undocumented, and can only be set 
through an undocumented API.

Disallow Win32k System Calls This disables all access to the Win32 
kernel-mode subsystem driver, which 
implements the Window Manager 
(GUI) and Graphics Device Interface 
(GDI) and DirectX. No system calls to 
this component will be possible.

This is set with 
SetProcessMitigationPolicy 
or the PROCESS_CREATION_
MITIGATION_POLICY_WIN32K_
SYSTEM_CALL_DISABLE_ALWAYS_ON 
process-creation attribute flag.

Filter Win32k System Calls This filters access to the Win32k 
kernel-mode subsystem driver only 
to certain APIs allowing simple GUI 
and Direct X access, mitigating many 
of the possible attacks, without com-
pletely disabling availability of the 
GUI/GDI services.

This is set through an internal process-
creation attribute flag, which can 
define one out of three possible sets 
of Win32k filters that are enabled. 
However, because the filter sets are 
hard-coded, this mitigation is re-
served for Microsoft internal usage.
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TABLE 7-20 Process mitigation options  (continued)

Mitigation Name Use Case Enabling Mechanism

Disable Extension Points This prevents a process from loading 
an input method editor (IME),a Windows 
hook DLL (SetWindowsHookEx), an app-
initialization DLL (AppInitDlls value 
in the registry), or a Winsock layered 
service provider (LSP).

This is set with 
SetProcessMitigationPolicy 
or the PROCESS_CREATION_
MITIGATION_POLICY_EXTENSION_
POINT_DISABLE_ALWAYS_ON 
process-creation attribute flag.

Arbitrary Code Guard (CFG) This prevents a process from allocating 
executable code or from changing the 
permission of existing executable code 
to make it writeable. It can be config-
ured to allow a particular thread inside 
the process to request this capability or 
to allow a remote process from disabling 
this mitigation, which are not supported 
from a security point of view.

This is set with 
SetProcessMitigationPolicy 
or the PROCESS_CREATION_
MITIGATION_POLICY_PROHIBIT_
DYNAMIC_CODE_ALWAYS_ON and 
PROCESS_CREATION_MITIGATION_
POLICY_PROHIBIT_DYNAMIC_
CODE_ALWAYS_ON_ALLOW_OPT_OUT 
process-creation attribute flags.

Control Flow Guard (CFG) This helps prevent memory corruption 
vulnerabilities from being used to hijack 
control flow by validating the target 
of any indirect CALL or JMP instruction 
against a list of valid expected target 
functions. Part of Control Flow Integrity 
(CFI) mechanisms described in the next 
section.

The image must be compiled 
with the /guard:cf option, and 
linked with the /guard:cf option. 
It can be set with the PROCESS_
CREATION_MITIGATION_POLICY_
CONTROL_FLOW_GUARD_ALWAYS_ON 
process-creation attribute flag in case 
the image does not support it, but 
CFG enforcement is still desirable for 
other images loading in the process.

CFG Export Suppression This strengthens CFG by suppressing 
indirect calls to the exported API table  
of the image.

The image must be compiled with 
/guard: exportsuppress, and 
can also be configured through 
SetProcessMitigationPolicy 
or with the PROCESS_CREATION_
MITIGATION_POLICY_CONTROL_
FLOW_GUARD_EXPORT_SUPPRESSION 
process-creation attribute flag.

CFG Strict Mode This prevents the loading of any image 
library within the current process that 
was not linked with the /guard:cf  
option.

This is set through 
SetProcessMitigationPolicy 
or with the PROCESS_CREATION_
MITIGATION_POLICY2_STRICT_
CONTROL_FLOW_GUARD_ALWAYS_ON 
process-creation attribute flag.

Disable Non System Fonts This prevents the loading of any font 
files that have not been registered by 
Winlogon at user logon time, after  
being installed in the C:\windows\fonts 
directory.

This is set through 
SetProcessMitigationPolicy 
or the PROCESS_CREATION_
MITIGATION_POLICY_
FONT_DISABLE_ALWAYS_ON 
process-creation attribute flag.

Microsoft-Signed Binaries Only This prevents the loading of any image 
library within the current process that 
has not been signed by a Microsoft 
CA—issued certificate.

This is set through the 
PROCESS_CREATION_
MITIGATION_POLICY_BLOCK_NON_
MICROSOFT_BINARIES_ALWAYS_ON 
process-attribute flag at startup time.
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TABLE 7-20 Process mitigation options  (continued)

Mitigation Name Use Case Enabling Mechanism

Store-Signed Binaries Only This prevents the loading of any image 
library within the current process that 
has not been signed by the Microsoft 
Store CA.

This is set through the 
PROCESS_CREATION_
MITIGATION_POLICY_BLOCK_NON_
MICROSOFT_BINARIES_ALLOW_STORE 
process attribute flag at startup time.

No Remote Images This prevents the loading of any im-
age library within the current process 
that is present on a non-local (UNC or 
WebDAV) path.

This is set through 
SetProcessMitigationPolicy 
or the PROCESS_CREATION_
MITIGATION_POLICY_IMAGE_
LOAD_NO_REMOTE_ALWAYS_ON 
process-creation attribute flag.

No Low IL Images This prevents the loading of any image 
library within the current process that 
has a mandatory label below medium 
(0x2000).

This is set through 
SetProcessMitigationPolicy 
or the PROCESS_CREATION_
MITIGATION_POLICY_IMAGE_
LOAD_NO_LOW_LABEL_ALWAYS_ON 
process-creation flag. It can also be 
set through a resource claim ACE 
called IMAGELOAD on the file of the 
process being loaded.

Prefer System32 Images This modifies the loader’s search path 
to always look for the given image 
library being loaded (through a rela-
tive name) in the %SystemRoot%\
System32 directory, regardless of the 
current search path.

This is set through 
SetProcessMitigationPolicy 
or the PROCESS_CREATION_
MITIGATION_POLICY_IMAGE_LOAD_
PREFER_SYSTEM32_ALWAYS_ON 
process-creation attribute flag.

Return Flow Guard (RFG) This helps prevent additional classes 
of memory-corruption vulnerabilities 
that affect control flow by validating, 
before the execution of a RET instruc-
tion, that the function was not called 
through a return-oriented program-
ming (ROP) exploit by not having 
begun its execution correctly or by 
executing on an invalid stack. This is 
part of the Control Flow Integrity (CFI) 
mechanisms.

Currently still being implemented in 
a robust and performant way, this 
mitigation is not yet available, but is 
included here for completeness.

Restrict Set Thread Context This restricts the modification of the 
current thread’s context.

Currently disabled pending the 
availability of RFG, which makes the 
mitigation more robust, this mitiga-
tion may appear in a future version 
of Windows. It is included here for 
completeness.

Loader Continuity This prohibits the process from dy-
namically loading any DLLs that do 
not have the same integrity level as 
the process, in cases where a signature 
policy mitigation above could not be 
enabled at startup time due to com-
patibility concerns. This specifically 
targets cases of DLL planting attacks.

This is set through 
SetProcessMitigationPolicy 
or the PROCESS_CREATION_
MITIGATION_POLICY2_LOADER_
INTEGRITY_CONTINUITY_ALWAYS_ON 
process-creation attribute flag.
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TABLE 7-20 Process mitigation options  (continued)

Mitigation Name Use Case Enabling Mechanism

Heap Terminate On Corruption This disables the Fault Tolerant Heap 
(FTH) and the raising of a continuable 
exception in the case of heap cor-
ruption by terminating the process 
instead. This prevents the use of 
heap corruption as a way to force an 
attacker-controlled exception handler 
from executing, or in cases where the 
program ignores the heap exception, 
or cases where the exploit only some-
times causes heap corruption (limiting 
its universal effectiveness or reliability).

This is set through 
HeapSetInformation or by using the 
PROCESS_CREATION_MITIGATION_
POLICY_HEAP_TERMINATE_ALWAYS_
ON process-creation attribute flag.

Disable Child Process Creation This prohibits the creation of child 
processes by marking the token with a 
special restriction, which should stop 
any other component from creating a 
process while impersonating the to-
ken of this process (for example, WMI 
process creation, or a kernel compo-
nent creating the process).

This is set through the PROCESS_
CREATION_CHILD_PROCESS_
RESTRICTED process-creation 
attribute flag. It can be overridden 
to allow packaged (UWP) applica-
tions with the PROCESS_CREATION_
DESKTOP_APPX_OVERRIDE flag.

All Application Packages Policy This makes an application running 
under an AppContainer unable to 
access resources that have an ALL 
APPLICATION PACKAGES SID pres-
ent, as was explained earlier in the 
“AppContainers” section. The presence 
of an ALL RESTRICTED APPLICATION 
PACKAGES SID will be required in-
stead. Sometimes referred to as Less 
Privileged App Container (LPAC).

This is set through the PROC_THREAD_
ATTRIBUTE_ALL_APPLICATION_
PACKAGES_POLICY process-creation 
attribute.

Note that it is also possible to some of these mitigations on a per-application or per-system basis 
without the cooperation of the application developer. To do so, open the Local Group Policy Editor. 
Then expand Computer Configuration, then Administrative Templates, then System, and finally 
Mitigation Options (see Figure 7-30). In the Process Mitigation Options dialog box, enter the ap-
propriate bit-number value that corresponds to the mitigations being enabled, using 1 to enable a miti-
gation, 0 to disable it, or ? to leave it to its default or process-requested value (again, see Figure 7-30). 
The bit numbers are taken from the PROCESS_MITIGATION_POLICY enumeration found in the Winnt.h 
header file. This will result in the appropriate registry value being written in the Image File Execution 
Options (IFEO) key for the entered image name. Unfortunately the current version of Windows 10 
Creators Update and earlier will strip out many of the newer mitigations. You can avoid this by manu-
ally setting the REG_DWORD MitigationOptions registry value.
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FIGURE 7-30 Customizing process-mitigation options.

Control Flow Integrity
Data Execution Prevention (DEP) and Arbitrary Code Guard (ACG) make it hard for exploits to place 
executable code on the heap or stack, to allocate new executable code, or to change existing executable 
code. As a result, memory/data-only attacks have become more interesting. Such attacks allow the 
modification of portions of memory to redirect control flow, such as modifying return addresses on the 
stack or indirect function pointers stored in memory. Techniques such as return-oriented-programming 
(ROP) and jump-oriented-programming (JOP) are often used to violate the regular code flow of the 
program and redirect it to known locations of interesting code snippets (“gadgets”).

Because such snippets are often present in the middle or end of various functions, when control 
flow is redirected in this way, it must be redirected into the middle or end of a legitimate function. By 
employing Control Flow Integrity (CFI) technologies—which can, for example, validate that the target 
of an indirect JMP or CALL instruction is the beginning of a real function, or that a RET instruction is 
pointing to an expected location, or that a RET instruction is issued after the function was entered 
through its beginning—the operating system and compiler can detect and prevent most classes of 
such exploits. 
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Control Flow Guard
Control Flow Guard (CFG) is an exploit-mitigation mechanism first introduced in Windows 8.1 Update 
3 that exists in enhanced version in Windows 10 and Server 2016, with further improvements released 
on various updates (up to and including the latest Creators Update). Originally implemented only for 
user-mode code, CFG now also exists as Kernel CFG (KCFG) on the Creators Update. CFG addresses the 
indirect CALL/JMP part of CFI by verifying that the target of an indirect call is at the start of a known 
function (more on that momentarily). If the target is not at the start of a known function, the process is 
simply terminated. Figure 7-31 shows the conceptual operation of CFG.

FIGURE 7-31 Conceptual view of Control Flow Guard.

CFG requires the cooperation of a supported compiler that will add the call to the validation code 
before indirect changes in control flow. The Visual C++ compiler has an option, /guard:cf, that must 
be set for images (or even on a C/C++ source file level) to be built with CFG support (this option is 
also available in Visual Studio’s GUI in the C/C++/Code Generation/Control Flow Guard setting in the 
project’s properties). This setting should also be set in the linker settings, as both components of Visual 
Studio are required to collaborate to support CFG.

Once those settings are present, images (EXEs and DLLs) that are compiled with CFG-enabled 
indicate this in their PE header. In addition, they contain a list of functions that are the valid indirect 
control flow targets in a .gfids PE section (by default merged by the linker with the .rdata section). This 
list is built by the linker and contains the relative virtual address (RVA) of all functions in the image. This 
includes those that might not be called by an indirect call by the code present in the image because 
there’s no way of knowing if outside code does not somehow legitimately know the address of a func-
tion and is attempting to call it. This can be especially true of exported functions, which can be called 
after obtaining their pointer through GetProcAddress.

That being said, programmers can use a technique called CFG suppression, which is supported 
through the DECLSPEC_GUARD_SUPRESS annotation, and which marks the function in the table of valid 
functions with a special flag indicating that the programmer never expects such a function to be the 
target of any indirect call or jump.
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Now that a table of valid function targets exists, all that a simple validation function would need 
to do is to compare the target of the CALL or JMP instruction with one of the functions in the table. 
Algorithmically, this would result in an O(n) algorithm, where the number of functions needed to check 
would be equivalent, in the worst case, to the number of functions in the table. Clearly, linearly scan-
ning an entire array during every single indirect change in control flow would bring a program to its 
knees, so operating system support is needed to perform CFG checks efficiently. We’ll see in the next 
section how Windows can achieve this.

EXPERIMENT: Control Flow Guard information
The DumpBin Visual Studio tool can show some basic CFG information. The following dumps 
header and loader configuration information for Smss:

c:\> dumpbin /headers /loadconfig c:\windows\system32\smss.exe 
Microsoft (R) COFF/PE Dumper Version 14.00.24215.1 
Copyright (C) Microsoft Corporation.  All rights reserved. 
Dump of file c:\windows\system32\smss.exe 
PE signature found 
File Type: EXECUTABLE IMAGE 
FILE HEADER VALUES 
            8664 machine (x64) 
               6 number of sections 
        57899A7D time date stamp Sat Jul 16 05:22:53 2016 
               0 file pointer to symbol table 
               0 number of symbols 
              F0 size of optional header 
              22 characteristics 
                   Executable 
                   Application can handle large (>2GB) addresses 
 
OPTIONAL HEADER VALUES 
             20B magic # (PE32+) 
           14.00 linker version 
           12800 size of code 
            EC00 size of initialized data 
               0 size of uninitialized data 
            1080 entry point (0000000140001080) NtProcessStartupW 
            1000 base of code 
       140000000 image base (0000000140000000 to 0000000140024FFF) 
            1000 section alignment 
             200 file alignment 
           10.00 operating system version 
           10.00 image version 
           10.00 subsystem version 
               0 Win32 version 
           25000 size of image 
             400 size of headers 
           270FD checksum 
               1 subsystem (Native) 
            4160 DLL characteristics 
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                   High Entropy Virtual Addresses 
                   Dynamic base 
                   NX compatible 
                   Control Flow Guard 
... 
Section contains the following load config: 
 
            000000D0 size 
                   0 time date stamp 
                0.00 Version 
                   0 GlobalFlags Clear 
                   0 GlobalFlags Set 
                   0 Critical Section Default Timeout 
                   0 Decommit Free Block Threshold 
                   0 Decommit Total Free Threshold 
    0000000000000000 Lock Prefix Table 
                   0 Maximum Allocation Size 
                   0 Virtual Memory Threshold 
                   0 Process Heap Flags 
                   0 Process Affinity Mask 
                   0 CSD Version 
                0800 Dependent Load Flag 
    0000000000000000 Edit List 
    0000000140020660 Security Cookie 
    00000001400151C0 Guard CF address of check-function pointer 
    00000001400151C8 Guard CF address of dispatch-function pointer 
    00000001400151D0 Guard CF function table 
                  2A Guard CF function count 
            00010500 Guard Flags 
                       CF Instrumented 
                       FID table present 
                       Long jump target table present 
                0000 Code Integrity Flags 
                0000 Code Integrity Catalog 
            00000000 Code Integrity Catalog Offset 
            00000000 Code Integrity Reserved 
    0000000000000000 Guard CF address taken IAT entry table 
                   0 Guard CF address taken IAT entry count 
    0000000000000000 Guard CF long jump target table 
                   0 Guard CF long jump target count 
    0000000000000000 Dynamic value relocation table 
 
    Guard CF Function Table 
 
          Address 
          -------- 
          0000000140001010  _TlgEnableCallback 
          0000000140001070  SmpSessionComplete 
          0000000140001080  NtProcessStartupW 
          0000000140001B30  SmscpLoadSubSystemsForMuSession 
          0000000140001D10  SmscpExecuteInitialCommand 
          0000000140002FB0  SmpExecPgm 
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          0000000140003620  SmpStartCsr 
          00000001400039F0  SmpApiCallback 
          0000000140004E90  SmpStopCsr 
...

The CFG-related information is marked in bold in the preceding output. We will discuss that 
shortly. For now, open Process Explorer, right-click the process column header, choose Select 
Columns. Then, in the Process Image tab, select the Control Flow Guard check box. Also select 
Virtual Size in the Process Memory tab. You should see something like this:

You should see most Microsoft-provided processes were built with CFG (including Smss, Csrss, 
Audiodg, Notepad, and many others). The virtual size for CFG-built processes is surprisingly 
high. Recall that the virtual size indicates the total address space used in the process, whether 
that memory is committed or reserved. In contrast, the Private Bytes column shows the private 
committed memory and is not even remotely close to the virtual size (although the virtual size 
includes non-private memory as well). For 64-bit processes, the virtual size is at least 2 TB, which 
we will shortly be able to rationalize.

The CFG bitmap
As you saw earlier, forcing the program to iterate through a list of function calls every few instructions 
would not be practical. Therefore, instead of an algorithm that requires linear time O(n), performance 
requirements dictate that an O(1) algorithm be used instead—one where a constant lookup time is 
used, regardless of how many functions are present in the table. This constant lookup time should be 
as small as possible. A clear winner of such a requirement would be an array that is indexable by the tar-
get function’s address, which is an indication if this address is valid or not (such as a simple BOOL). With 
a 128 TB of possible addresses, though, such an array would itself have to be 128 TB * sizeof(BOOL), 
which is an unacceptable storage size—bigger than the address space itself. Can we do better?
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First, we can leverage the fact that compilers ought to generate x64 function code on 16-byte 
boundaries. This reduces the size to the required array to only 8 TB * sizeof(BOOL). But using an 
entire BOOL (which is 4 bytes in the worst case or 1 byte in the best) is extremely wasteful. We only need 
one state, valid or invalid, which only needs to use 1 bit. This makes the calculation 8 TB / 8, or simply 
1 TB. Unfortunately, however, there’s a snag. There’s no guarantee that the compiler will generate all 
functions on a 16-byte binary. Hand-crafted assembly code and certain optimizations might violate 
this rule. As such, we’ll have to figure out a solution. One possible option is to simply use another bit 
to indicate if the function begins somewhere on the next 15 bytes instead of on the 16-byte boundary 
itself. Thus, we have the following possibilities:

 ■ {0, 0} No valid function begins inside this 16-byte boundary.

 ■ {1, 0} A valid function begins exactly on this aligned 16-byte address.

 ■ {1, 1} A valid function begins somewhere inside of this 16-byte address.

Thanks to this setup, if the attacker attempts to call inside a function that was marked as 16-byte 
aligned by the linker, the 2-bit state will be {1, 0}, while the required bits (that is, bits 3 and 4) in the 
address will be {1, 1} as the address won’t be 16-byte aligned. Therefore, an attacker will only be able to 
call an arbitrary instruction in the first 16 bytes of the function if the linker did not generate the func-
tion aligned in the first place (bits would then be {1, 1}, as shown above). Even then, this instruction must 
somehow be useful to the attacker without crashing the function (typically some sort of stack pivot or 
gadget that ends in a ret instruction).

With this understanding in mind, we can apply the following formulas to compute the size of the 
CFG bitmap:

 ■ 32-bit application on x86 or x64 2 GB / 16 * 2 = 32 MB

 ■ 32-bit application with /LARGEADDRESSAWARE, booted in 3 GB mode on x86 3 GB / 16 * 
2 = 48 MB

 ■ 64-bit application 128 TB / 16 * 2 = 2 TB

 ■ 32-bit application with /LARGEADDRESSAWARE, on x64 4 GB / 16 * 2 = 64 MB, plus the size 
of the 64-bit bitmap, which is needed to protect 64-bit Ntdll.dll and WoW64 components, so 
2 TB + 64MB

Allocating and filling out 2 TB of bits on every single process execution is still a tough performance 
overhead to swallow. Even though we have fixed the execution cost of the indirect call itself, process 
startup cannot be allowed to take so long, and 2 TB of committed memory would exhaust the commit 
limit instantly. Therefore, two memory-saving and performance-helping tricks are used. 

First, the memory manager will only reserve the bitmap, basing itself on the assumption that the 
CFG validation function will treat an exception during CFG bitmap access as an indication that the bit 
state is {0,0}. As such, as long as the region contains 4 KB of bit states that are all {0, 0}, it can be left as 
reserved, and only pages with at least one bit set {1, X} need to be committed.

Next, as described in the ASLR section of Chapter 5, “Memory management,” the system performs the 
randomization/relocation of libraries typically only once at boot, as a performance-saving measure to avoid 
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repeated relocations. As such, after a library that supports ASLR has been loaded once at a given address, 
it will always be loaded at that same address. This also therefore means that once the relevant bitmap states 
have been calculated for the functions in that library, they will be identical in all other processes that also 
load the same binary. As such, the memory manager treats the CFG bitmap as a region of pagefile-backed 
shareable memory, and the physical pages that correspond to the shared bits only exist in RAM once. 

This reduces the cost of the committed pages in RAM and means that only the bits corresponding 
to private memory need to be calculated. In regular applications, private memory is not executable ex-
cept in the copy-on-write case where someone has patched a library (but this will not happen at image 
load), so the cost of loading an application, if it shares the same libraries as other previously launched 
applications, is almost nil. The next experiment demonstrates this.

EXPERIMENT: Control Flow Guard bitmap
Open the VMMap tool and select a Notepad process. You should see a large reserved block in 
the Sharable section like so:

You can sort the lower pane by size and quickly locate the large chunk used for the 
CFGBitmap, as shown. Additionally, if you attach to the process and use the !address command 
on the process, you will see WinDBG identifying the CFG bitmap for you:

+     7df5'ff530000 7df6'0118a000 0'01c5a000   MEM_MAPPED MEM_RESERVE              
Other  [CFG Bitmap] 
      7df6'0118a000 7df6'011fb000 0'00071000   MEM_MAPPED MEM_COMMIT PAGE_NOACCESS 
Other  [CFG Bitmap] 
      7df6'011fb000 7ff5'df530000 1ff'de335000 MEM_MAPPED MEM_RESERVE              
Other  [CFG Bitmap] 
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      7ff5'df530000 7ff5'df532000 0'00002000   MEM_MAPPED MEM_COMMIT PAGE_READONLY 
Other  [CFG Bitmap]

Note how large regions are marked as MEM_RESERVE, in between regions that are MEM_COMMIT, 
representing that at least one valid bit state {1, X} is set. Also, all (or almost all) the regions will be 
MEM_MAPPED, since they belong to the shared bitmap.

CFG bitmap construction
Upon system initialization, the MiInitializeCfg function is called to initialize support for CFG. The 
function creates one or two section objects (MmCreateSection) as reserved memory with size appro-
priate for the platform, as shown earlier. For 32-bit platforms, one bitmap is enough. For x64 platforms, 
two bitmaps are required—one for 64-bit processes and the other for Wow64 processes (32-bit appli-
cations). The section objects’ pointers are stored in a substructure within the MiState global variable. 

After a process is created, the appropriate section is securely mapped into the process’s address 
space. Securely here means that the section cannot be unmapped by code running within the process 
or have its protection changed. (Otherwise, malicious code could just unmap the memory, reallocate, 
and fill everything with 1 bits, effectively disabling CFG, or simply modify any bits by marking the 
region read/write.)

The user mode CFG bitmap(s) are populated in the following scenarios:

 ■ During image mapping, images that have been dynamically relocated due to ASLR (see Chapter 
5, for more on ASLR) will have their indirect call target metadata extracted. If an image does 
not have indirect call target metadata, meaning it was not compiled with CFG, it is assumed 
that every address within the image can be called indirectly. As explained, because dynamically 
relocated images are expected to load at the same address in every process, their metadata is 
used to populate the shared section that is used for the CFG bitmap.

 ■ During image mapping, special care is needed for non-dynamically relocated images and imag-
es not being mapped at their preferred base. For these image mappings, the relevant pages of 
the CFG bitmap are made private and are populated using the CFG metadata from the image. 
For images whose CFG bits are present in the shared CFG bitmap, a check is made to ensure that 
all the relevant CFG bitmap pages are still shared. If this is not the case, the bits of the private 
CFG bitmap pages are populated using the CFG metadata from the image.

 ■ When virtual memory is allocated or re-protected as executable, the relevant pages of the CFG bit-
map are made private and initialized to all 1s by default. This is needed for cases such as just-in-time 
(JIT) compilation, where code is generated on the fly and then executed (for example, .NET or Java).

Strengthening CFG protection
Although CFG does an adequate job to prevent types of exploits that leverage indirect calls or jumps, it 
could be bypassed through the following ways:
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 ■ If the process can be tricked or an existing JIT engine abused to allocate executable memory, all the 
corresponding bits will be set to {1, 1}, meaning that all memory is considered a valid call target.

 ■ For 32-bit applications, if the expected call target is __stdcall (standard calling convention), 
but an attacker is able to change the indirect call target to __cdecl (C calling convention), the 
stack will become corrupt, as the C call function will not perform cleanup of the caller’s argu-
ments, unlike a standard call function. Because CFG cannot differentiate between the different 
calling conventions, this results in a corrupt stack, potentially with an attacker-controlled return 
address, bypassing the CFG mitigation.

 ■ Similarly, compiler-generated setjmp/longjmp targets behave differently from true indirect 
calls. CFG cannot differentiate between the two.

 ■ Certain indirect calls are harder to protect, such as the Import Address Table (IAT) or Delay-
Load Address Table, which is typically in a read-only section of the executable.

 ■ Exported functions may not be desirable indirect function calls.

Windows 10 introduces advancements to CFG that address all these issues. The first is to introduce 
a new flag to the VirtualAlloc function called PAGE_TARGETS_INVALID and one to VirtualProtect 
called PAGE_TARGETS_NO_UPDATE. With these flags set, JIT engines that allocate executable memory 
will not see all their allocations’ bits set to the {1, 1} state. Instead, they must manually call the SetProcess- 
ValidCallTargets function (which calls the native NtSetInformationVirtualMemory function), which 
will allow them to specify the actual function start addresses of their JITed code. Additionally, this func-
tion is marked as a suppressed call with DECLSPEC_GUARD_SUPPRESS, making sure that attackers cannot 
use an indirect CALL or JMP to redirect into it, even at its function start. (Because it’s an inherently 
dangerous function, calling it with a controlled stack or registers could result in the bypassing of CFG.)

Next, improved CFG changes the default flow you saw in the beginning of this section with a more  
refined flow. In this flow, the loader does not implement a simple “verify target, return” function, but 
rather a “verify target, call target, check stack, return” function, which is used in a subset of places on  
32-bit applications (and/or running under WoW64). This improved execution flow is shown in Figure 7-32.

Next, improved CFG adds additional tables inside of the executable, such as the Address Taken IAT 
table and the Long Jump Address table. When longjmp and IAT CFG protection are enabled in the 
compiler, these tables are used to store destination addresses for these specific types of indirect calls, 
and the relevant functions are not placed in the regular function table, therefore not figuring in the 
bitmap. This means that if code is attempting to indirect jump/call to one of these functions, it will be 
treated as an illegal transition. Instead, the C Runtime and linker will validate the targets of, say, the 
longjmp function, by manually checking this table. Although it’s more inefficient than a bitmap, there 
should be little to no functions in these tables, making the cost bearable.

Finally, improved CFG implements a feature called export suppression, which must be supported by 
the compiler and enabled by process-mitigation policy. (See the section “Process-mitigation policies” 
for more on process level mitigations.) With this feature enabled, a new bit state is implemented (recall 
that bulleted list had {0, 1} as an undefined state). This state indicates that the function is valid but 
export-suppressed, and it will be treated differently by the loader.
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FIGURE 7-32 Improved CFG.

You can determine which features are present in a given binary by looking at the guard flags in 
the Image Load Configuration Directory, which the DumpBin application used earlier can decode. For 
reference, they are listed in Table 7-21. 

TABLE 7-21 Control Flow Guard flags

Flag Symbol Value Description

IMAGE_GUARD_CF_INSTRUMENTED 0x100 This indicates CFG support is present 
for this module.

IMAGE_GUARD_CFW_INSTRUMENTED 0x200 This module performs CFG and write 
integrity checks.

IMAGE_GUARD_CF_FUNCTION_TABLE_PRESENT 0x400 This module contains CFG-aware 
function lists.

IMAGE_GUARD_SEURITY_COOKIE_UNUSED 0x800 This module does not make use of 
the security cookie emitted with the 
compiler /GS flag.

IMAGE_GUARD_PROTECT_DELAYLOAD_IAT 0x1000 This module supports read-
only delay-load Import Address 
Tables (IATs).

IMAGE_GUARD_DELAYLOAD_IAT_IN_ITS_OWN_SECTION 0x2000 Delay-load IAT is its own section, so 
it can be re-protected if desired.

IMAGE_GUARD_CF_EXPORT_SUPPRESSION_INFO_PRESENT 0x4000 This module contains suppressed 
export information.

IMAGE_GUARD_CF_ENABLE_EXPORT_SUPPRESSION 0x8000 This module enables suppression of 
exports.

IMAGE_GUARD_CF_LONGJUMP_TABLE_PRESENT 0x10000 This module contains longjmp 
target information.
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Loader interaction with CFG
Although it is the memory manager that builds the CFG bitmap, the user-mode loader (see Chapter 3 
for more information) serves two purposes. The first is to dynamically enable CFG support only if the 
feature is enabled (for example, the caller may have requested no CFG for the child process, or the 
process itself might not have CFG support). This is done by the LdrpCfgProcessLoadConfig loader 
function, which is called to initialize CFG for each loaded module. If the module DllCharacteristics 
flags in the optional header of the PE does not have the CFG flag set (IMAGE_DLLCHARACTERISTICS_
GUARD_CF), the GuardFlags member of IMAGE_LOAD_CONFIG_DIRECTORY structure does not have the 
IMAGE_GUARD_CF_INSTRUMENTED flag set, or the kernel has forcibly turned off CFG for this module, 
then there is nothing to do.

Second, if the module is indeed using CFG, LdrpCfgProcessLoadConfig gets the indirect check-
ing function pointer retrieved from the image (the GuardCFCheckFunctionPointer member of 
IMAGE_LOAD_CONFIG_DIRECTORY structure) and sets it to either LdrpValidateUserCallTarget or 
LdrpValidateUserCallTargetES in Ntdll, depending on whether export suppression is enabled. 
Additionally, the function first makes sure the indirect pointer has not been somehow modified to 
point outside the module itself.

Furthermore, if improved CFG was used to compile this binary, a second indirect routine is avail-
able, called the dispatch CFG routine. It is used to implement the enhanced execution flow described 
earlier. If the image includes such a function pointer (in the GuardCFDispatchFunctionPointer 
member of the abovementioned structure), it is initialized to LdrpDispatchUserCallTarget, or 
LdrpDispatchUserCallTargetES if export suppression is enabled.

Note In some cases, the kernel itself can emulate or perform indirect jumps or calls on 
behalf of user mode. In situations where this is a possibility, the kernel implements its own 
MmValidateUserCallTarget routine, which performs the same work as LdrpValidate-
UserCallTarget.

The code generated by the compiler when CFG is enabled issues an indirect call that lands in the 
LdrpValidateCallTarget(ES) or LdrpDispatchUserCallTarget(ES) functions in Ntdll. This func-
tion uses the target branch address and checks the bit state value for the function:

 ■ If the bit state is {0, 0}, the dispatch is potentially invalid.

 ■ If the bit state is {1, 0}, and the address is 16-byte aligned, the dispatch is valid. Otherwise, it is 
potentially invalid.

 ■ If the bit state is {1, 1}, and the address is not 16-byte aligned, the dispatch is valid. Otherwise, 
it is potentially invalid.

 ■ If the bit state is {0, 1}, the dispatch is potentially invalid.

If the dispatch is potentially invalid, the RtlpHandleInvalidUserCallTarget function will execute 
to determine the appropriate action. First, it checks if suppressed calls are allowed in the process, which 
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is an unusual application-compatibility option that might be set if Application Verifier is enabled, or 
through the registry. If so, it will check if the address is suppressed, which is why it was not inserted 
into the bitmap (recall that a special flag in the guard function table entry indicates this). If this is the 
case, the call is allowed through. If the function is not valid at all (meaning it’s not in the table), then the 
dispatch is aborted and the process terminated.

Second, a check is made to see if export suppression is enabled. If it is, the target address is checked 
against the list of export-suppressed addresses, which is once again indicated with another flag that is 
added in the guard function table entry. If this is the case, the loader validates that the target address is 
a forwarder reference to the export table of another DLL, which is the only allowed case of an indirect 
call toward an image with suppressed exports. This is done by a complex check that makes sure the 
target address is in a different image, that its image load directory has enabled export suppression, 
and that this address is in the import directory of that image. If these checks match, the kernel is called 
through the NtSetInformationVirtualMemory call described earlier, to change the bit state to {1, 0}.  
If any of these checks fail, or export suppression is not enabled, then the process is terminated.

For 32-bit applications, an additional check is performed if DEP is enabled for the process. (See Chapter 5 
for more on DEP.) Otherwise, because there are no execution guarantees to begin with, the incorrect call is 
allowed, as it may be an older application calling into the heap or stack for legitimate reasons. 

Finally, because large sets of {0, 0} bit states are not committed to save space, if checking the CFG 
bitmap lands on a reserved page, an access violation exception occurs. On x86, where exception han-
dling setup is expensive, instead of being handled as part of the verification code, it is left to propagate 
normally. (See Chapter 8 in Part 2 for more on exception dispatching.) The user-mode dispatcher han-
dler, KiUserExceptionDispatcher, has specific checks for recognizing CFG bitmap access violation 
exceptions within the validation function and will automatically resume execution if the exception 
code was STATUS_IN_PAGE_ERROR. This simplifies the code in LdrpValidateUserCallTarget(ES) and 
LdrpDispatchUserCallTarget(ES), which don’t have to include exception handling code. On x64, 
where exception handlers are simply registered in tables, the LdrpICallHandler handler runs instead, 
with the same logic as above.

Kernel CFG
Although drivers compiled with Visual Studio and /guard:cf also ended up with the same binary 
properties as user-mode images, the first versions of Windows 10 did not do anything with this data. 
Unlike the user-mode CFG bitmap, which is protected by a higher, more trusted entity (the kernel), 
there is nothing that can truly “protect” the kernel CFG bitmap if one were to be created. A malicious 
exploit could simply edit the PTE that corresponded to the page containing the desired bits to modify, 
mark it as read/write, and proceed with the indirect call or jump. Therefore, the overhead of setting up 
such a trivially bypassable mitigation was simply not worth it.

With a greater number of users enabling VBS features, once again, the higher security boundary 
that VTL 1 provides can be leveraged. The SLAT page table entries come to the rescue by providing a 
second boundary against PTE page protection changes. While the bitmap is readable to VTL 0 because 
the SLAT entries are marked as read only, if a kernel attacker attempts to change the PTEs to mark them 
read/write, they cannot do the same to the SLAT entries. As such, this will be detected as an invalid 
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KCFG bitmap access which HyperGuard can act on (for telemetry reasons alone—since the bits can’t be 
changed anyway).

KCFG is implemented almost identically to regular CFG, except that export suppression is not en-
abled, nor is longjmp support, nor is the ability to dynamically request additional bits for JIT purposes. 
Kernel drivers should not be doing any of these things. Instead, the bits are set in the bitmap based on 
the “address taken IAT table” entries, if any are set; by the usual function entries in the guard table each 
time a driver image is loaded; and for the HAL and kernel during boot by MiInitializeKernelCfg. If 
the hypervisor is not enabled, and SLAT support is not present, then none of this will be initialized, and 
Kernel CFG will be kept disabled.

Just like in the user-mode case, a dynamic pointer in the load configuration data directory is 
updated, which in the enabled case will point to __guard_check_icall for the check function and 
__guard_dispatch_icall for the dispatch function in enhanced CFG mode. Additionally, a variable 
named guard_icall_bitmap will hold the virtual address of the bitmap.

One last detail on Kernel CFG is that unfortunately, dynamic Driver Verifier settings will not be con-
figurable (for more information on Driver Verifier, see Chapter 6, “I/O system”), as this would require 
adding dynamic kernel hooks and redirecting execution to functions that may not be in the bitmap. In 
this case, STATUS_VRF_CFG_ENABLED (0xC000049F) will be returned, and a reboot is required (at which 
time the bitmap can be built with the Verifier Driver hooks in place).

Security assertions
Earlier, we described how Control Flow Guard will terminate the process. We also explained how certain 
other mitigations or security features will raise an exception to kill the process. It is important to be ac-
curate with what exactly happens during these security violations because both these descriptions hide 
important details about the mechanism.

In fact, when a security-related breach occurs, such as when CFG detects an incorrect indirect call or 
jump, terminating the process through the standard TerminateProcess mechanism would not be an 
adequate path. There would be no crash generated, and no telemetry sent to Microsoft. These are both 
important tools for the administrator to understand that a potential exploit has executed or that an 
application compatibility issue exists, as well as for Microsoft to track zero-day exploitation in the wild. 
On the flip side, while raising an exception would achieve the desired result, exceptions are callbacks, 
which can be:

 ■ Potentially hooked by attackers if /SAFESEH and SEHOP mitigations are not enabled, causing the 
security check to be the one that gives control to an attacker in the first place—or an attacker 
can simply “swallow” the exception.

 ■ Potentially hooked by legitimate parts of the software through an unhandled exception filter or 
vectored exception handler, both of which might accidentally swallow the exception.

 ■ Same as above, but intercepted by a third-party product that has injected its own library into 
the process. Common to many security tools, this can also lead in the exception not being cor-
rectly delivered to Windows Error Reporting (WER).
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 ■ A process might have an application recovery callback registered with WER. This might then 
display a less clear UI to the user, and might restart the process in its current exploited state, 
leading anywhere from a recursive crash/start loop to the exception being swallowed whole.

 ■ Likely in a C++-based product, caught by an outer exception handler as if “thrown” by the 
program itself, which, once again, might swallow the exception or continue execution in an 
unsafe manner.

Solving these issues requires a mechanism that can raise an exception that cannot be intercepted by 
any of the process’s components outside of the WER service, which must itself be guaranteed to receive 
the exception. This is where security assertions come into play.

Compiler and OS support
When Microsoft libraries, programs, or kernel components encounter unusual security situations, 
or when mitigations recognize dangerous violations of security state, they now use a special com-
piler intrinsic supported by Visual Studio, called __fastfail, which takes one parameter as input. 
Alternatively, they can call a runtime library (Rtl) function in Ntdll called RtlFailFast2, which itself 
contains a __fastfail intrinsic. In some cases, the WDK or SDK contain inline functions that call this 
intrinsic, such as when using the LIST_ENTRY functions InsertTailList and RemoveEntryList. In 
other situations, it is the Universal CRT (uCRT) itself that has this intrinsic in its functions. In yet others, 
APIs will do certain checks when called by applications and may use this intrinsic as well.

Regardless of the situation, when the compiler sees this intrinsic, it generates assembly code that 
takes the input parameter, moves it into the RCX (x64) or ECX (x86) register, and then issues a software 
interrupt with the number 0x29. (For more information on interrupts, see Chapter 8 in Part 2.)

In Windows 8 and later, this software interrupt is registered in the Interrupt Dispatch Table (IDT) with 
the handler KiRaiseSecurityCheckFailure, which you can verify on your own by using the !idt 29 
command in the debugger. This will result (for compatibility reasons) in KiFastFailDispatch being 
called with the STATUS_STACK_BUFFER_OVERRUN status code (0xC0000409). This will then do regular 
exception dispatching through KiDispatchException, but treat this as a second-chance exception, 
which means that the debugger and process won’t be notified. 

This condition will be specifically recognized and an error message will be sent to the WER error 
ALPC port as usual. WER will claim the exception as non-continuable, which will then cause the kernel 
to terminate the process with the usual ZwTerminateProcess system call. This, therefore, guarantees 
that once the interrupt is used, no return to user mode will ever be performed within this process again, 
that WER will be notified, and that the process will be terminated (additionally, the error code will be 
the exception code). When the exception record is generated, the first exception argument will be the 
input parameter to __fastfail.

Kernel-mode code can also raise exceptions, but in this case KiBugCheckDispatch will be called in-
stead, which will result in a special kernel mode crash (bugcheck) with code 0x139 (KERNEL_SECURITY_
CHECK_FAILURE), where the first argument will be the input parameter to __fastfail.
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Fast fail/security assertion codes
Because the __fastfail intrinsic contains an input argument that is bubbled up to the exception 
record or crash screen, it allows the failing check to identify what part of the system or process is not 
working correctly or has encountered a security violation. Table 7-22 shows the various failure condi-
tions and their meaning or significance.

TABLE 7-22 __fastfail failure codes

Code Meaning

Legacy OS Violation (0x0) An older buffer security check present in a legacy binary has failed, and has 
been converted to a security assertion instead.

V-Table Guard Failure (0x1) The Virtual Table Guard Mitigation in Internet Explorer 10 and higher has en-
countered a corrupted virtual function table pointer.

Stack Cookie Check Failure (0x2) The stack cookie generated with the /GS compiler option (also called a stack 
canary) has been corrupted.

Corrupt List Entry (0x3) One of the macros for manipulating LIST_ENTRY structures has detected an 
inconsistent linked list, where the grandparent or grandchild entry does not 
point to the parent or child entry of the item being manipulated.

Incorrect Stack (0x4) A user-mode or kernel-mode API that is often potentially called from ROP-
based exploits while operating on an attacker-controlled stack has been called, 
and the stack is therefore not the expected one.

Invalid Argument (0x5) A user-mode CRT API (typically) or other sensitive function has been called with 
an invalid argument, suggesting potential ROP-based use or an otherwise cor-
rupted stack.

Stack Cookie Init Failure (0x6) The initialization of the stack cookie has failed, suggesting image patching 
or corruption.

Fatal App Exit (0x7) The application has used the FatalAppExit user-mode API, which has been 
converted into a security assertion to grant it the advantages this has.

Range Check Failure (0x8) Additional validation checks in certain fixed array buffers to check if the array 
element index is within expected bounds.

Unsafe Registry Access (0x9) A kernel-mode driver is attempting to access registry data from a user-control-
lable hive (such as an application hive or user profile hive) and is not using the 
RTL_QUERY_REGISTRY_TYPECHECK flag to protect itself.

CFG Indirect Call Failure (0xA) Control Flow Guard has detected an indirect CALL or JMP instruction to a tar-
get address that is not a valid dispatch per the CFG bitmap.

CFG Write Check Failure (0xB) Control Flow Guard with write protection has detected an invalid write to pro-
tected data. This feature (/guard:cfw) is not supported outside of testing at 
Microsoft.

Invalid Fiber Switch (0xC) The SwitchToFiber API was used on an invalid fiber or from a thread which 
has not been converted to a fiber.

Invalid Set of Context (0xD) An invalid context record structure was detected while attempting to restore it 
(due to an exception or SetThreadContext API), in which the stack pointer is 
not valid. Checked only when CFG is active on the process.

Invalid Reference Count (0xE) A reference countered object (such as the OBJECT_HEADER in kernel-mode or 
a Win32k.sys GDI object) has underflowed its reference count below 0 or over-
flowed beyond its maximum capacity back to 0.

Invalid Jump Buffer (0x12) A longjmp attempt is being made with a jump buffer that contains an invalid 
stack address or invalid instruction pointer. Checked only when CFG is active on 
the process.
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TABLE 7-22 __fastfail failure codes  (continued)

Code Meaning

MRDATA Modified (0x13) The mutable read-only data heap/section of the loader has been modified. 
Checked only when CFG is active on the process.

Certification Failure (0x14) One or more Cryptographic Services APIs has encountered an issue parsing a 
certificate or an invalid ASN.1 stream.

Invalid Exception Chain (0x15) An image linked with /SAFESEH, or with the SEHOP mitigation, has encountered 
an invalid exception handler dispatch.

Crypto Library (0x16) CNG.SYS, KSECDD.SYS, or their equivalent APIs in user mode have encountered 
some critical failure.

Invalid Call in DLL Callout (0x17) An attempt to call dangerous functions while in the user-mode loader’s notifi-
cation callback has occurred.

Invalid Image Base (0x18) An invalid value for __ImageBase (IMAGE_DOS_HEADER structure) was detected 
by the user-mode image loader.

Delay Load Protection Failure (0x19) The delay-loaded IAT has been found to be corrupted while delay-loading an 
imported function. Checked only when CFG is active on the process, and delay-
load IAT protection is enabled.

Unsafe Extension Call (0x1A) Checked when certain kernel-mode extension APIs are called, and the caller 
state is incorrect.

Deprecated Service Called (0x1B) Checked when certain no-longer supported, and undocumented system calls, 
are called.

Invalid Buffer Access (0x1C) Checked by the runtime library functions in Ntdll and the kernel when a generic 
buffer structure is corrupt in some way.

Invalid Balanced Tree (0x1D) Checked by the runtime library functions in Ntdll and the kernel when an 
RTL_RB_TREE or RTL_AVL_TABLE structure has invalid nodes (where siblings 
and/or parent nodes do not match up with the grandparent’s, similar to the 
LIST_ENTRY checks).

Invalid Next Thread (0x1E) Checked by the kernel scheduler when the next thread to schedule in the 
KPRCB is invalid in some way.

CFG Call Suppressed (0x1F) Checked when CFG is allowing a suppressed call due to compatibility concerns. 
In this situation, WER will mark the error as handled, and the kernel will not 
terminate the process, but telemetry will still be sent to Microsoft.

APCs Disabled (0x20) Checked by the kernel when returning to user-mode and kernel APCs are still 
disabled.

Invalid Idle State (0x21) Checked by the kernel power manager when the CPU is attempting to enter an 
invalid C-state.

MRDATA Protection Failure (0x22) Checked by the user-mode loader when the Mutable Read-Only Heap Section 
has already been unprotected outside of the expected code path.

Unexpected Heap Exception (0x23) Checked by the heap manager whenever the heap is corrupted in ways that 
indicate potential exploitation attempts.

Invalid Lock State (0x24) Checked by the kernel when certain locks are not in their expected state, such 
as if an acquired lock is already in a released state.

Invalid Longjmp (0x25) Checked by longjmp when called, and CFG is active on the process with 
Longjmp Protection enabled, but the Longjmp Table is corrupt or missing in 
some way.

Invalid Longjmp Target (0x26) Same conditions as above, but the Longjmp Table indicates that this is not a 
valid Longjmp target function.
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TABLE 7-22 __fastfail failure codes  (continued)

Code Meaning

Invalid Dispatch Context (0x27) Checked by the exception handler in kernel-mode when an exception is at-
tempted to be dispatched with an incorrect CONTEXT record.

Invalid Thread (0x28) Checked by the scheduler in kernel-mode when the KTHREAD structure is cor-
rupt during certain scheduling operations.

Invalid System Call Number (0x29) Similar to Deprecated Service Called, but WER will mark the exception as han-
dled, resulting in the process continuing and therefore only used for telemetry.

Invalid File Operation (0x2A) Used by the I/O Manager and certain file systems, as another telemetry-type 
failure as above.

LPAC Access Denied (0x2B) Used by the SRM’s access check function when a lower-privilege AppContainer 
attempts to access an object that does not have the ALL RESTRICTED 
APPLICATION PACKAGES SID and tracing of such failures is enabled. Once 
more, results only in telemetry data, not a process crash.

RFG Stack Failure (0x2C) Used by Return Flow Guard (RFG), although this feature is currently disabled.

Loader Continuity Failure (0x2D) Used by the process-mitigation policy of the same name, shown earlier, to in-
dicate that an unexpected image with a different signature or no signature has 
been loaded.

CFG Export Suppression Failure (0x2D) Used by CFG when enabled with export suppression to indicate that a sup-
pressed export has been the target of an indirect branch.

Invalid Control Stack (0x2E) Used by RFG, although this feature is currently disabled.

Set Context Denied (0x2F) Used by the process-mitigation policy of the same name, shown earlier, al-
though this feature is currently disabled.

Application Identification

Historically, security decisions in Windows have been based on a user’s identity (in the form of the 
user’s SID and group membership), but a growing number of security components (AppLocker, firewall, 
antivirus, anti-malware, Rights Management Services, and others) need to make security decisions 
based on what code is to be run. In the past, each of these security components used their own pro-
prietary method for identifying applications, which led to inconsistent and overly complicated policy 
authoring. The purpose of Application Identification (AppID) is to bring consistency to how the security 
components recognize applications by providing a single set of APIs and data structures.

Note This is not the same as the AppID used by DCOM/COM+ applications, where a GUID 
represents a process that is shared by multiple CLSIDs, nor is it related to UWP application ID.

Just as a user is identified when she logs in, an application is identified just before it is started by 
generating the main program’s AppID. An AppID can be generated from any of the following attributes 
of the application: 

 ■ Fields Fields within a code-signing certificate embedded within the file allow for different 
combinations of publisher name, product name, file name, and version. APPID://FQBN is a 
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fully qualified binary name, and it is a string in the following form: {Publisher\Product\
Filename,Version}. Publisher is the Subject field of the x.509 certificate used to sign the 
code, using the following fields:

• O Organization

• L Locality

• S State or province

• C Country

 ■ File hash there are several methods that can be used for hashing. The default is APPID://
SHA256HASH. However, for backward compatibility with SRP and most x.509 certificates, SHA-1 
(APPID://SHA1HASH) is still supported. APPID://SHA256HASH specifies the SHA-256 hash of the file.

 ■ The partial or complete path to the file APPID://Path specifies a path with optional wild-
card characters (*).

Note An AppID does not serve as a means for certifying the quality or security of an 
application. An AppID is simply a way of identifying an application so that administrators 
can reference the application in security policy decisions.

The AppID is stored in the process access token, allowing any security component to make autho-
rization decisions based on a single consistent identification. AppLocker uses conditional ACEs (de-
scribed earlier) for specifying whether a particular program is allowed to be run by the user.

When an AppID is created for a signed file, the certificate from the file is cached and verified to a 
trusted root certificate. The certificate path is reverified daily to ensure the certificate path remains 
valid. Certificate caching and verification are recorded in the system event log at Application and 
Services Logs\Microsoft\Windows\AppID\Operational.

AppLocker

Windows 8.1 and Windows 10 (Enterprise editions) and Windows Server 2012/R2/2016 support a feature 
known as AppLocker, which allows an administrator to lock down a system to prevent unauthorized 
programs from being run. Windows XP introduced Software Restriction Policies (SRP), which was the 
first step toward this capability, but SRP was difficult to manage, and it couldn’t be applied to specific 
users or groups. (All users were affected by SRP rules.) AppLocker is a replacement for SRP, and yet co-
exists alongside SRP, with AppLocker’s rules being stored separately from SRP’s rules. If both AppLocker 
and SRP rules are in the same Group Policy object (GPO), only the AppLocker rules will be applied. 

Another feature that makes AppLocker superior to SRP is AppLocker’s auditing mode, which allows 
an administrator to create an AppLocker policy and examine the results (stored in the system event 
log) to determine whether the policy will perform as expected—without actually performing the 
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restrictions. AppLocker auditing mode can be used to monitor which applications are being used by 
one or more users on a system.

AppLocker allows an administrator to restrict the following types of files from being run:

 ■ Executable images (EXE and COM)

 ■ Dynamic-link libraries (DLL and OCX)

 ■ Microsoft Software Installer (MSI and MSP) for both install and uninstall

 ■ Scripts

 ■ Windows PowerShell (PS1)

 ■ Batch (BAT and CMD)

 ■ VisualBasic Script (VBS)

 ■ Java Script (JS)

AppLocker provides a simple GUI rule-based mechanism, which is very similar to network firewall 
rules, for determining which applications or scripts are allowed to be run by specific users and groups, 
using conditional ACEs and AppID attributes. There are two types of rules in AppLocker:

 ■ Allow the specified files to run, denying everything else.

 ■ Deny the specified files from being run, allowing everything else. Deny rules take precedence 
over allow rules.

Each rule can also have a list of exceptions to exclude files from the rule. Using an exception, you 
could create a rule to, for example, allow everything in the C:\Windows or C:\Program Files directories 
to be run except RegEdit.exe.

AppLocker rules can be associated with a specific user or group. This allows an administrator to sup-
port compliance requirements by validating and enforcing which users can run specific applications. 
For example, you can create a rule to allow users in the Finance security group to run the finance line-
of-business applications. This blocks everyone who is not in the Finance security group from running 
finance applications (including administrators) but still provides access for those who have a business 
need to run the applications. Another useful rule would be to prevent users in the Receptionists group 
from installing or running unapproved software.

AppLocker rules depend upon conditional ACEs and attributes defined by AppID. Rules can be 
created using the following criteria:

 ■ Fields within a code-signing certificate embedded within the file, allowing for different 
combinations of publisher name, product name, file name, and version For example, 
a rule could be created to allow all versions greater than 9.0 of Contoso Reader to run or allow 
anyone in the Graphics group to run the installer or application from Contoso for GraphicsShop 
as long as the version is 14.*. For example, the following SDDL string denies execute access to 
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any signed programs published by Contoso for the RestrictedUser user account (identified by 
the user’s SID):

D:(XD;;FX;;;S-1-5-21-3392373855-1129761602-2459801163-1028;((Exists APPID://FQBN)  
&& ((APPID://FQBN) >= ({"O=CONTOSO, INCORPORATED, L=REDMOND,  
S=CWASHINGTON, C=US\*\*",0}))))

 ■ Directory path, allowing only files within a particular directory tree to run This can also be 
used to identify specific files. For example, the following SDDL string denies execute access to the 
programs in the directory C:\Tools for the RestrictedUser user account (identified by the user’s SID):

D:(XD;;FX;;;S-1-5-21-3392373855-1129761602-2459801163-1028;(APPID://PATH  
Contains "%OSDRIVE%\TOOLS\*"))

 ■ File hash Using a hash will also detect if a file has been modified and prevent it from running. 
This can also be a weakness if files are changed frequently because the hash rule will need to  
be updated frequently. File hashes are often used for scripts because few scripts are signed.  
For example, this SDDL string denies execute access to programs with the specified hash values 
for the RestrictedUser user account (identified by the user’s SID):

D:(XD;;FX;;;S-1-5-21-3392373855-1129761602-2459801163-1028;(APPID://SHA256HASH  
Any_of {#7a334d2b99d48448eedd308dfca63b8a3b7b44044496ee2f8e236f5997f1b647,  
#2a782f76cb94ece307dc52c338f02edbbfdca83906674e35c682724a8a92a76b}))

AppLocker rules can be defined on the local machine using the Security Policy MMC snap-in (secpol.
msc, see Figure 7-33) or a Windows PowerShell script, or they can be pushed to machines within a  
domain using Group Policy. AppLocker rules are stored in multiple locations within the registry:

 ■ HKLM\Software\Policies\Microsoft\Windows\SrpV2 This key is also mirrored to  
HKLM\SOFTWARE\Wow6432Node\Policies\Microsoft\Windows\SrpV2. The rules are stored 
in XML format.

 ■ HKLM\SYSTEM\CurrentControlSet\Control\Srp\Gp\Exe The rules are stored as SDDL 
and a binary ACE.

 ■ HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Group Policy 
Objects\{GUID}Machine\Software\Policies\Microsoft\Windows\SrpV2 AppLocker policy 
pushed down from a domain as part of a GPO are stored here in XML format.

Certificates for files that have been run are cached in the registry under the key HKLM\SYSTEM\
CurrentControlSet\Control\AppID\CertStore. AppLocker also builds a certificate chain (stored in 
HKLM\SYSTEM\CurrentControlSet\Control\AppID\CertChainStore) from the certificate found in a file 
back to a trusted root certificate. 

There are also AppLocker-specific PowerShell commands (cmdlets) to enable deployment and test-
ing via scripting. After using the Import-Module AppLocker to get AppLocker cmdlets into PowerShell, 
several cmdlets are available. These include Get-AppLockerFileInformation, Get-AppLockerPolicy, 
New-AppLockerPolicy, Set-AppLockerPolicy, and Test-AppLockerPolicy.
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FIGURE 7-33 AppLocker configuration page in Local Security Policy.

The AppID and SRP services coexist in the same binary (AppIdSvc.dll), which runs within an SvcHost 
process. The service requests a registry change notification to monitor any changes under that key, 
which is written by either a GPO or the AppLocker UI in the Local Security Policy MMC snap-in. When 
a change is detected, the AppID service triggers a user-mode task (AppIdPolicyConverter.exe), which 
reads the new rules (described with XML) and translates them into binary format ACEs and SDDL 
strings, which are understandable by both the user-mode and kernel-mode AppID and AppLocker 
components. The task stores the translated rules under HKLM\SYSTEM\CurrentControlSet\Control\Srp\
Gp. This key is writable only by System and Administrators, and it is marked read-only for authenticated 
users. Both user-mode and kernel-mode AppID components read the translated rules from the registry 
directly. The service also monitors the local machine trusted root certificate store, and it invokes a user-
mode task (AppIdCertStoreCheck.exe) to reverify the certificates at least once per day and whenever 
there is a change to the certificate store. The AppID kernel-mode driver (%SystemRoot%\System32\
drivers\AppId.sys) is notified about rule changes by the AppID service through an APPID_POLICY_
CHANGED DeviceIoControl request.

An administrator can track which applications are being allowed or denied by looking at the 
system event log using Event Viewer (once AppLocker has been configured and the service started). 
See Figure 7-34.
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FIGURE 7-34 Event Viewer showing AppLocker allowing and denying access to various applications. Event ID 8004 
is denied; 8002 is allowed.

The implementations of AppID, AppLocker, and SRP are somewhat blurred and violate strict layer-
ing, with various logical components coexisting within the same executables, and the naming is not as 
consistent as one would like.

The AppID service runs as LocalService so that it has access to the Trusted Root Certificate Store 
on the system. This also enables it to perform certificate verification. The AppID service is responsible 
for the following:

 ■ Verification of publisher certificates

 ■ Adding new certificates to the cache

 ■ Detecting AppLocker rule updates and notifying the AppID driver

The AppID driver performs the majority of the AppLocker functionality and relies on communica-
tion (via DeviceIoControl requests) from the AppID service, so its device object is protected by an 
ACL, granting access only to the NT SERVICE\AppIDSvc, LOCAL SERVICE and BUILTIN\Administrators 
groups. Thus, the driver cannot be spoofed by malware.

When the AppID driver is first loaded, it requests a process-creation callback by calling 
PsSetCreateProcessNotifyRoutineEx. When the notification routine is called, it is passed a PPS_
CREATE_NOTIFY_INFO structure (describing the process being created). It then gathers the AppID attri-
butes that identify the executable image and writes them to the process’s access token. Then it calls the 
undocumented routine SeSrpAccessCheck, which examines the process token and the conditional ACE 
AppLocker rules, and determines whether the process should be allowed to run. If the process should 
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not be allowed to run, the driver writes STATUS_ACCESS_DISABLED_BY_POLICY_OTHER to the Status 
field of the PPS_CREATE_NOTIFY_INFO structure, which causes the process creation to be canceled (and 
sets the process’s final completion status).

To perform DLL restriction, the image loader sends a DeviceIoControl request to the AppID driver 
whenever it loads a DLL into a process. The driver then checks the DLL’s identity against the AppLocker 
conditional ACEs, just like it would for an executable.

Note Performing these checks for every DLL load is time-consuming and might be notice-
able to end users. For this reason, DLL rules are normally disabled, and they must be specifi-
cally enabled via the Advanced tab in the AppLocker properties page in the Local Security 
Policy snap-in.

The scripting engines and the MSI installer have been modified to call the user-mode SRP APIs 
whenever they open a file, to check whether a file is allowed to be opened. The user-mode SRP APIs  
call the AuthZ APIs to perform the conditional ACE access check.

Software Restriction Policies

Windows contains a user-mode mechanism called Software Restriction Policies (SRP) that enables 
administrators to control what images and scripts execute on their systems. The Software Restriction 
Policies node of the Local Security Policy editor, shown in Figure 7-35, serves as the management inter-
face for a machine’s code execution policies, although per-user policies are also possible using domain 
group policies.

FIGURE 7-35 Software Restriction Policy configuration.
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Several global policy settings appear beneath the Software Restriction Policies node:

 ■ Enforcement This policy configures whether restriction policies apply to libraries, such as 
DLLs, and whether policies apply to users only or to administrators as well.

 ■ Designated File Types This policy records the extensions for files that are considered 
executable code.

 ■ Trusted Publishers This policy controls who can select which certificate publishers 
are trusted.

When configuring a policy for a particular script or image, an administrator can direct the 
system to recognize it using its path, its hash, its Internet zone (as defined by Internet Explorer), 
or its cryptographic certificate, and can specify whether it is associated with the Disallowed or 
Unrestricted security policy.

Enforcement of SRPs takes place within various components where files are treated as containing 
executable code. Some of these components are listed here:

 ■ The user-mode Windows CreateProcess function in Kernel32.dll enforces it for 
executable images.

 ■ The DLL loading code in Ntdll enforces it for DLLs.

 ■ The Windows command prompt (Cmd.exe) enforces it for batch file execution.

 ■ Windows Scripting Host components that start scripts—Cscript.exe (for command-line scripts), 
Wscript.exe (for UI scripts), and Scrobj.dll (for script objects)—enforce it for script execution.

 ■ The PowerShell host (PowerShell.exe) enforces it for PowerShell script execution.

Each of these components determines whether the restriction policies are enabled by reading 
the TransparentEnabled registry value in the HKLM\Software\Policies\Microsoft \Windows\Safer\
CodeIdentifiers key, which if set to 1 indicates that policies are in effect. Then it determines whether the 
code it’s about to execute matches one of the rules specified in a subkey of the CodeIdentifiers key and, 
if so, whether the execution should be allowed. If there is no match, the default policy, as specified in 
the DefaultLevel value of the CodeIdentifiers key, determines whether the execution is allowed.

Software Restriction Policies are a powerful tool for preventing the unauthorized access of code and 
scripts, but only if properly applied. Unless the default policy is set to disallow execution, a user can 
make minor changes to an image that’s been marked as disallowed so that he can bypass the rule and 
execute it. For example, a user can change an innocuous byte of a process image so that a hash rule 
fails to recognize it, or copy a file to a different location to avoid a path-based rule.
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EXPERIMENT: Watching Software Restriction Policy enforcement
You can indirectly see SRPs being enforced by watching accesses to the registry when you  
attempt to execute an image that you’ve disallowed.

1. Run secpol.msc to open the Local Security Policy editor and navigate to the Software 
Restriction Policies node.

2. Choose Create New Policies from the context menu if no policies are defined.

3. Create a path-based disallow restriction policy (under the Additional Rules node) for 
%SystemRoot%\System32\Notepad.exe.

4. Run Process Monitor and set an include a Path filter for Safer.

5. Open a command prompt and run Notepad from the prompt.

Your attempt to run Notepad should result in a message telling you that you cannot execute 
the specified program, and Process Monitor should show the command prompt (cmd.exe) query-
ing the local machine restriction policies.

Kernel Patch Protection

Some device drivers modify the behavior of Windows in unsupported ways. For example, they patch 
the system call table to intercept system calls or patch the kernel image in memory to add functional-
ity to specific internal functions. Such modifications are inherently dangerous and can reduce system 
stability and security. Additionally, it is also possible for such modifications to be made with malicious 
intent, either by rogue drivers or through exploits due to vulnerabilities in Windows drivers.

Without the presence of a more privileged entity than the kernel itself, detecting and protecting 
against kernel-based exploits or drivers from within the kernel itself is a tricky game. Because both the 
detection/protection mechanism and the unwanted behavior operate in ring 0, it is not possible to de-
fine a security boundary in the true sense of the word, as the unwanted behavior could itself be used to 
disable, patch, or fool the detection/prevention mechanism. That being said, even in such conditions, a 
mechanism to react to such unwanted operations can still be useful in the following ways:

 ■ By crashing the machine with a clearly identifiable kernel-mode crash dump, both users and ad-
ministrators can easily see that an unwanted behavior has been operating inside of their kernel 
and they can take action. Additionally, it means that legitimate software vendors will not want 
to take the risk of crashing their customers’ systems and will find supported ways of extending 
kernel functionality (such as by using the filter manager for file system filters or other callback-
based mechanisms).
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 ■ Obfuscation (which is not a security boundary) can make it costly—either in time or in complex-
ity—for the unwanted behavior to disable the detection mechanism. This added cost means 
that the unwanted behavior is more clearly identified as potentially malicious, and that its com-
plexity results in additional costs to a potential attacker. By shifting the obfuscation techniques, 
it means that legitimate vendors will be better off taking the time to move away from their 
legacy extension mechanisms and implement supported techniques instead, without the risk of 
looking like malware.

 ■ Randomization and non-documentation of which specific checks the detection/prevention 
mechanism makes to monitor kernel integrity, and non-determinism of when such checks are 
executed, cripple the ability of attackers to ensure their exploits are reliable. It forces them to 
account for every possible non-deterministic variable and state transition that the mechanism 
has through static analysis, which obfuscation makes nearly impossible within the timeframe 
required before another obfuscation shift or feature change is implemented in the mechanism.

 ■ Because kernel mode crash dumps are automatically submitted to Microsoft, it allows the 
company to receive telemetry of in-the-wild unwanted code, and to either identify software 
vendors whose code is unsupported and is crashing systems, or to track the progress of mali-
cious drivers in the wild, or even zero-day kernel-mode exploitations, and fix bugs that may not 
have been reported, but are actively exploited.

PatchGuard
Shortly after the release of 64-bit Windows for x64 and before a rich third-party ecosystem had 
developed, Microsoft saw an opportunity to preserve the stability of 64-bit Windows, and to add te-
lemetry and exploit-crippling patch detection to the system, through a technology called Kernel Patch 
Protection (KPP), also referred to as PatchGuard. When Windows Mobile was released, which operates 
on a 32-bit ARM processor core, the feature was ported to such systems, too, and it will be present in 
64-bit ARM (AArch64) systems as well. Due to the existence of too many legacy 32-bit drivers that still 
use unsupported and dangerous hooking techniques, however, this mechanism is not enabled on such 
systems, even on Windows 10 operating systems. Fortunately, usage of 32-bit systems is almost coming 
to an end, and server versions of Windows no longer support this architecture at all.

Although both Guard and Protection imply that this mechanism will protect the system, it is important 
to realize that the only guard/protection offered is the crashing of the machine, which prevents further 
execution of the unwanted code. The mechanism does not prevent the attack in the first place, nor miti-
gate against it, nor undo it. Think of KPP as an Internet-connected video security system, or CCTV, with a 
loud alarm (the crash) inside the vault (the kernel), not as an impenetrable lock on the vault.

KPP has a variety of checks that it makes on protected systems, and documenting them all would 
both be impractical (due to the difficulty of static analysis) and valuable to potential attackers (reducing 
their research time). However, Microsoft does document certain checks, which we generalize in Table 
7-23. When, where, and how KPP makes these checks, and which specific functions or data structures 
are affected, is outside of the scope of this analysis.
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TABLE 7-23 Generalized description of elements protected by KPP

Component Legitimate Usage Potential Unwanted Usage

Executable code in the kernel, its  
dependencies, and core drivers, as 
well as the Import Address Table (IAT) 
of these components

Standard Windows components key to 
operation of kernel-mode usage.

Patching code in these components 
can modify their behavior and in-
troduce unwanted back doors to the 
system, hide data or unwanted com-
munications from the system, as well 
as reduce the stability of the system, 
or even add additional vulnerabilities 
through buggy third-party code.

Global Descriptor Table (GDT) CPU hardware protection for the im-
plementation of ring privilege levels 
(ring 0 versus ring 3).

Modification of expected permissions 
and mappings between code and 
ring levels, allowing ring 3 code ring 
0 access.

Interrupt Descriptor Table (IDT) or 
Interrupt Vector Table

Table read by the CPU to deliver inter-
rupt vectors to the correct handling 
routine.

Hooking of keystrokes, network pack-
ets, paging mechanism, system calls, 
hypervisor communication, and more, 
which can be used for back-dooring, 
hiding malicious data or communica-
tions, or accidentally adding vulner-
abilities through buggy third-party 
code. 

System Service Descriptor Table 
(SSDT)

Table containing the array of pointers 
for each system call handler.

Hooking of all user-mode communi-
cations with the kernel. Same issues 
as above.

Critical CPU registers such as Control 
Registers, Vector Base Address 
Register, and Model Specific Registers

Used for system calls, virtualization, 
enabling CPU security features such as 
SMEP, and more.

Same as above, plus disabling of key 
CPU security features or hypervisor 
protection.

Various function pointers in the kernel Used as indirect calls to various inter-
nal functionality.

Can be used to hook certain internal 
kernel operations, leading to back 
doors and/or instability.

Various global variables in the kernel Used to configure various parts of 
the kernel, including certain security 
features.

Malicious code would disable these 
security features, such as through an 
exploit from user mode allowing arbi-
trary memory overwrites.

Process and module list Used to show the user, in tools such 
as Task Manager, Process Explorer, 
and the Windows Debugger, which 
processes are active, and which drivers 
are loaded.

Malicious code can hide the existence 
of certain processes or drivers on the 
machine, making them invisible to the 
user and most applications such as 
security software.

Kernel stacks Store function arguments, the call 
stack (where a function should return), 
and variables.

Operating on a non-standard kernel 
stack is often the sign of a return-
oriented programming (ROP) exploit 
operating on a pivoted stack as part of 
the attack.

Window Manager, graphical system 
calls, callbacks, and more

Provides the GUI, GDI, and DirectX 
services.

Same hooking abilities as described 
earlier, but specifically targeting the 
graphics and window-management 
stack. Same issues as other types of 
hooks.

Object types Definitions for the various objects 
(such as processes and files) that the 
system supports through the object 
manager.

Can be used as another hooking tech-
nique, which does not target indirect 
function pointers in binaries’ data 
sections, nor patching code directly. 
Same issues.
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TABLE 7-23 Generalized description of elements protected by KPP  (continued)

Component Legitimate Usage Potential Unwanted Usage

Local APIC Used to receive hardware interrupts 
on the processor, receive timer inter-
rupts, and inter-processor interrupts 
(IPI).

Can be used to hook timer execu-
tion, IPIs, or interrupts, or as a way for 
persistent code to covertly maintain 
liveness on the machine, executing on 
a periodic basis.

Filter and third-party notification 
callbacks

Used by legitimate third-party secu-
rity software (and Windows Defender) 
to receive notifications about system 
actions, and in some cases even block/
defend against certain actions. Exists 
as the supported way to achieve much 
of what KPP prevents. 

Could be used by malicious code to 
hook all the filterable operations, as 
well as maintain liveness on a ma-
chine, executing on a periodic basis.

Specialized configuration and flags Various data structures, flags, and ele-
ments of legitimate components that 
provide security and/or mitigation 
guarantees to them.

Could be used by malicious code to 
bypass certain mitigations or violate 
certain guarantees or expectations 
that user-mode processes might have, 
such as unprotecting a protected 
process.

KPP engine itself Code related to bug-checking the 
system during a KPP violation, execut-
ing the callbacks associated with KPP, 
and more. 

By modifying certain parts of the sys-
tem used by KPP, unwanted compo-
nents could attempt to silence, ignore, 
or otherwise cripple KPP.

As mentioned, when KPP detects unwanted code on the system, it crashes the system with an easily 
identifiable code. This corresponds to bugcheck code 0x109, which stands for CRITICAL_STRUCTURE_
CORRUPTION, and the Windows Debugger can be used to analyze this crash dump. (See Chapter 15, 
“Crash dump analysis,” in Part 2 for more information.) The dump information will contain some infor-
mation about the corrupted or scrumptiously modified part of the kernel, but any additional data must 
be analyzed by Microsoft’s Online Crash Analysis (OCA) and/or Windows Error Reporting (WER) teams 
and is not exposed to users.

For third-party developers who use techniques that KPP deters, the following supported techniques 
can be used:

 ■ File system (mini) filters Use these to hook all file operations, including loading image 
files and DLLs, that can be intercepted to purge malicious code on-the-fly or block reading of 
known bad executables or DLLs. (See Chapter 13, “File systems,” in Part 2 for more information 
on these.)

 ■ Registry filter notifications Use these to hook all registry operations. (See Chapter 9 in Part 
2 for more information on these notifications.) Security software can block modification of criti-
cal parts of the registry, as well as heuristically determine malicious software by registry access 
patterns or known bad registry keys.

 ■ Process notifications Security software can monitor the execution and termination of 
all processes and threads on the system, as well as DLLs being loaded or unloaded. With the 
enhanced notifications added for antivirus and other security vendors, they also can block 
process launch. (See Chapter 3 for more information on these notifications.)
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 ■ Object manager filtering  Security software can remove certain access rights being granted 
to processes and/or threads to defend their own utilities against certain operations. (These are 
discussed in Chapter 8 in Part 2.)

 ■ NDIS Lightweight Filters (LWF) and Windows Filtering Platform (WFP) filters Security 
software can intercept all socket operations (accept, listen, connect, close, and so on) and even 
the packets themselves. With LWF, security vendors have access to the raw Ethernet frame data 
that is going from the network card (NIC) to the wire.

 ■ Event Tracing for Windows (ETW)  Through ETW, many types of operations that have 
interesting security properties can be consumed by a user-mode component, which can then 
react to data in near real-time. In certain cases, special secure ETW notifications are available to 
anti-malware-protected processes under NDA with Microsoft and participation in various secu-
rity programs, which give access to a greater set of tracing data. (ETW is discussed in Chapter 8 
in Part 2.)

HyperGuard
On systems that run with virtualization-based security (described earlier in this chapter in the section 
“Virtualization-based security”), it is no longer true that attackers with kernel-mode privileges are es-
sentially running at the same security boundary as a detection/prevention mechanism. In fact, such at-
tackers would operate at VTL 0, while a mechanism could be implemented in VTL 1. In the Anniversary 
Update of Windows 10 (version 1607), such a mechanism does indeed exist, which is appropriately 
named HyperGuard. HyperGuard has a few interesting properties that set it apart from PatchGuard:

 ■ It does not need to rely on obfuscation. The symbol files and function names that implement 
HyperGuard are available for anyone to see, and the code is not obfuscated. Complete static 
analysis is possible. This is because HyperGuard is a true security boundary.

 ■ It does not need to operate non-deterministically because this would provide no advantage 
due to the preceding property. In fact, by operating deterministically, HyperGuard can crash 
the system at the precise time unwanted behavior is detected. This means crash data will con-
tain clear and actionable data for the administrator (and Microsoft’s analysis teams), such as the 
kernel stack, which will show the code that performed the undesirable behavior.

 ■ Due to the preceding property, it can detect a wider variety of attacks, because the malicious 
code does not have the chance to restore a value back to its correct value during a precise time 
window, which is an unfortunate side-effect of PatchGuard’s non-determinism.

HyperGuard is also used to extend PatchGuard’s capabilities in certain ways, and to strengthen its 
ability to run undetected by attackers trying to disable it. When HyperGuard detects an inconsistency, 
it too will crash the system, albeit with a different code: 0x18C (HYPERGUARD_VIOLATION). As before, it 
might be valuable to understand, at a generic level, what kind of things HyperGuard will detect, which 
you can see in Table 7-24.
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TABLE 7-24 Generalized description of elements protected by HyperGuard

Component Legitimate Usage Potential Unwanted Usage

Executable code in the kernel, its 
dependencies, and core drivers, 
as well as the Import Address 
Table (IAT) of these components

Refer to Table 7-23. Refer to Table 7-23.

Global Descriptor Table (GDT) Refer to Table 7-23. Refer to Table 7-23.

Interrupt Descriptor Table (IDT) or 
Interrupt Vector Table

Refer to Table 7-23. Refer to Table 7-23.

Critical CPU registers such as 
Control Registers, GDTR, IDTR, 
Vector Base Address Register, and 
Model Specific Registers

Refer to Table 7-23. Refer to Table 7-23.

Executable code, callbacks, and 
data regions in the Secure Kernel 
and its dependencies, including 
HyperGuard itself

Standard Windows components 
key to operation of VTL 1 and 
secure kernel-mode usage.

Patching code in these components implies the 
attacker has access to some sort of vulnerability 
in VTL 1, either through hardware or the hyper-
visor. Could be used to subvert Device Guard, 
HyperGuard, and Credential Guard.

Structures and features used by 
Trustlets

Sharing data between one 
Trustlet to another, or Trustlets 
and the kernel, or Trustlets and 
VTL 0.

Implies that some vulnerability might exist in 
one or more Trustlets, which could be used to 
hamper features such as Credential Guard or 
Shielded Fabric/vTPM.

Hypervisor structures and regions Used by the hypervisor to  
communicate with VTL 1.

Implies a potential vulnerability in a VTL 1 com-
ponent or the hypervisor itself, which may be 
accessible from ring 0 in VTL 0.

Kernel CFG bitmap Used to identify valid kernel 
functions that are the subject of 
indirect function calls or jumps, as 
described earlier.

Implies that an attacker has been able to per-
form a modification to the VTL 1-protected 
KCFG bitmap through some sort of hardware or 
hypervisor exploit.

Page verification Used to implement HVCI-related 
work for Device Guard.

Implies that an attacker has somehow attacked 
SKCI, which could result in Device Guard com-
promise or non-authorized IUM Trustlets.

NULL page None. Implies that an attacker has somehow coerced 
the kernel and/or secure kernel to allocate vir-
tual page 0, which can be used to exploit NULL-
page vulnerabilities in either VTL 0 or VTL 1.

On systems with VBS enabled, there is another security-related feature that is worth describing, 
which is implemented in the hypervisor itself: Non-Privileged Instruction Execution Prevention (NPIEP). 
This mitigation targets specific x64 instructions that can be used to leak the kernel-mode addresses of 
the GDT, IDT, and LDT, which are SGDT, SIDT, and SLDT. With NPIEP, these instructions are still allowed 
to execute (due to compatibility concerns), but will return a per-processor unique number that is not 
actually the kernel address of these structures. This serves as a mitigation against Kernel ASLR (KASLR) 
information leaks from local attackers.

Finally, note that there is no way to disable PatchGuard or HyperGuard once they are enabled. 
However, because device-driver developers might need to make changes to a running system as part 
of debugging, PatchGuard is not enabled when the system boots in debugging mode with an active 
remote kernel-debugging connection. Similarly, HyperGuard is disabled if the hypervisor boots in 
debugging mode with a remote debugger attached.
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Conclusion

Windows provides an extensive array of security functions that meet the key requirements of both 
government agencies and commercial installations. In this chapter, we’ve taken a brief tour of the 
internal components that are the basis of these security features. In Chapter 8 of Part 2, we’ll look at 
various mechanisms that are spread out throughout the Windows system.
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