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Summary 

A multiprogramming system is described in 
which all activities are divided over a number of 
sequential processes. These sequential processes 
are placed at various hierarchical levels, in each 
of which one or more independent abstractions have 
been implemented. The hierarchical structure proved 
to be vital for the verification of the logical 

soundness of the design and the correctness of its 
implementation. 

Introduction 

Papers "reporting on timely research and 

development efforts" being explicitly asked for, I 
shall try to present a progress report on the multi- 

programming effort at the Department of Mathematics 
at the Technological University, Eindhoven, the 
Netherlands. 

Having very limited resources (viz. a group of 
six people of, on the average, half time availabili- 

ty) and wishing to contribute to the art of system 

design -including all the stages of conception, 
construction and verification- we are faced with the 
problem of how to get the necessary experience. To 
solve this problem we have adopted the following 

three guiding principles: 
I) Select a project as advanced as you can 

conceive, as ambitious as you can justify, in the 

hope that routine work can be kept to a minimum; 
hold out against all pressure to incorporate such 
system expansions that would only result into a 
purely quantitative increase of the total amount of 
work to be done. 

2) Select a machine with sound basic character- 

istics (e.g. an interrupt system to fall in love 
with is certainly an inspiring feature); from then 
onwards try to keep the specific properties of the 
configuration for which you are preparing the system 
out of your considerations as long as possible. 

3) Be aware of the fact that experience does by 
no means automatically lead to wisdom and under- 
standing; in other words, make a conscious effort to 
learn as much as possible from your precious 
experiences. 

Accordingly, I shall try to go beyond just 
reporting what we have done and how, and I shall 
try to formulate as well what we have learned. 

I should like to end the introduction with two 
short remarks on working conditions, remarks I make 
for the sake of completeness. I shall not stress 
these points any further. 

The one remark is that production speed is 

severely degraded if one works with half time people 
who have other obligations as well. This is at least 
a factor four, probably it is worse. The people 

themselves lose time and energy in switching over, 
the group as a whole loses decision speed as dis- 
cussions~ when needed, have often to be postponed 

until all people concerned are available. 

The other remark is that the members of the 
group (mostly mathematicians) have previously 
enjoyed as good students a university training of 

5 to 8 years and are of Master's or Ph.D. level. 
I mention this explicitly because at least in my 
country the intellectual level needed for system 

design is in general grossly underestimated. I am 
more than ever convinced that this type of work is 
just difficult and that every effort to do it with 
other than the best people is doomed to either 

failure or moderate success at enormous expenses. 

The Tool and the Goal 

The system has been designed for a Dutch 
machine, the EL X8 (N.V.Electrologica, Rijswijk 
(ZH)). Characteristics of our configuration are: 
I) core memory cycle time 2.5 mms., 27 bits; at 
present 32K. 

2) drum of 512K words, 1024 words per track, rev. 
time 40 ms. 

3) an indirect addressing mechanism very well 
suited for stack implementation 

4) a sound system for commanding peripherals and 
controlling of interrupts 

5) a potentially great number of low capacity 
channels; ten of them are used (3 paper tape readers 

at 1000 char/sac; 3 paper tape punches at 150 char/ 
sec; 2 teleprinters; a plotter; a line printer) 
6) absence of a number of not unusual awkward 
features. 

The primary goal of the system is to process 
smoothly a continuous flow of user programs as a 
service to the University. A multiprogramming 

system has been chosen with the following objectives 
in mind: 

I) a reduction of turn around time for programs of 
short  duration 

2) economic use of peripheral devices 
3)automatic control of backing store to be combined 
with economic use of the central processor 

4) the economic feasibility to use the machine for 
those applications for which only the flexibility of 
a general purpose computer is  needed but (as a ru le )  
not the capaci ty  nor the processing power. 



The system is not intended as a multi-access 

system. There is no common data base via which 

independent users can communicate with each other: 

they only share the configuration and a procedure 

library (that includes a translator for ALGOL 60 

extended with complex numbers). The system does not 

cater for user programs written in machine language. 

Compared with larger efforts one can state that 

quantitatively speaking the goals have been set as 

modest as the equipment and our other resources. 

Qualitatively speaking, I am afraid, we got more and 

more immodest as the work progressed. 

A Progress Report 

We have made some minor mistakes of the usual 

type (such as paying too much attention to speeding 

up what was not the real bottle neck) and two major 

ones .  

Our f i r s t  m a j o r  m i s t a k e  has been t h a t  f o r  t o o  
long a time we confined our attention to "a perfect 

installation": by the time we considered how to make 

the best of it when, say, one of the peripherals 

broke down, we were faced with nasty problems. 

Taking care of the "pathology" took more energy than 

we had expected and part of our troubles were a 

direct consequence of our earlier ingenuity, i.e. 

the complexity of the situation into which the system 

could have manoeuvred itself. Had we paid attention 

to the pathology at an earlier stage of the design, 

our management rules would certainly have been less 

refined. 

The second major mistake has been that we 

conceived and programmed the major part of the system 

without giving more than scanty thought to the pro- 

blem of debugging it. For the fact that this mistake 

had no serious consequences -on the contrary~ one 

might argue as an afterthought- I must decline all 

credit. I feel more like having passed through the 

eye of the needle... 

As captain of the crew I had had extensive 

experience (dating back to 1958) in making basic 

software dealing with real time interrupts and I 

knew by bitter experience that as a result of the 

irreproducibility of the interrupt moments, a program 

error could present itself misleadingly like an 

occasional machine malfunctioning. As a result I was 

terribly afraid. Having fears regarding the possibil- 

ity of debugging we decided to be as careful as 

possible and -prevention is better than cure~- to 

try to prevent nasty bugs from entering the construc- 

tion. 

This decision, inspired by fear, is at the 

bottom of what I regard as the group's main contri- 

bution to the art of system design. We have found 

that it is possible to design a refined multiprogram- 

ming system in such a way that its logical soundness 

can be proved a priori and that its implementation 

admits exhaustive testing. The only errors that 

showed up during testing were trivial coding errors 

(occurring with a density of one error per 500 

instructions), each of them located within 10 

minutes (classical) inspection at the machine and 

each of them correspondingly easy to remedy. At the 

moment of writing the testing is not yet completed, 

but the resulting system will be guaranteed to be 

flawless. When the system has been delivered we shall 

not live in the perpetual fear that a system derail- 

ment may still occur in an unlikely situation such as 

might result from an unhappy "coincidence" of two or 

more critical occurrences, for we shall have proved 

the correctness of the system with a rigour and 

explicitness that is unusual for the great majority 

of mathematical proofs. 

A Survey of the System Structure 

Storage Allocation. 

In the classical yon Neumann machine information 

is identified by the address of the memory location 

containing the information. When we started to think 

about the automatic control of secondary storage 

we were familiar with a system (viz. GIER ALGOL) 

in which all information was identified by its 

drum address (as in the classical yon Neumann 

machine) and in which the function of the core 

memory was nothing more than to make the information 

"page wise" accessible. 

We have followed another approach and as it 

turned out, to great advantage. In our terminology 

we made a strict distinction between memory units 

(we called them "pages" and had "core pages" and 

"drum pages") and corresponding information units 

(for lack of a better word we called them "segments") 

a segment just fitting in a page. For segments we 

created a completely independent identification 

mechanism in which the number of possible segment 

identifiers is much larger than the total number of 

pages in primary and secondary store. The segment 

identifier gives fast access to a so-called "segment 

variable" in core whose value denotes whether the 

segment is still empty or not and if not empty, in 

which page (or pages) it can be found. 

As a consequence of this approach: if a segment 

of information, residing in a core page, has to be 

dumped onto the drum in order to make the core page 

available for other use, there is no need to return 

the segment to the same drum page as it originally 

came from. In fact, this freedom is exploited: among 

the free drum pages the one with minimum latency 

time is selected. 

A next consequence is the total absence of a 

drum allocation problem: there is not the slightest 

reason why, say, a program should occupy consecutive 

drum pages. In a multiprogramming environment this 

is very convenient. 

Processor Allocation. 

We have given full recognition to the fact that 

in a single sequential process (such as performed by 

a sequential automaton) only the time succession of 
the various states has a logical meaning, but not 
the actual speed with which the sequential process 

is performed. Therefore we have arranged the whole 



system as a society of sequential processes, pro- 

gressing with undefined speed ratios. To each user 

program, accepted by the system, corresponds a 

sequential process, to each input peripheral 

corresponds a sequential process (buffering input 

streams in synchronism with the execution of the 

input commands), to each output peripheral corres- 

ponds a sequential process (unbuffering output 

streams in synchronism with the execution of the 

output commands); furthermore we have the "segment 

controller" associated with the drum and the 

"message interpreter" associated with the console 

keyboard. 

This enabled us to design the whole system in 

terms of these abstract "sequential processes". 

Their harmonious co-operation is regulated by means 

of explicit mutual synchronization statements. On 

the one hand, this explicit mutual synchronization 

is necessary, as we do not make any assumption about 

speed ratios, on the other hand this mutual synchro- 

nization is possible because "delaying the progress 

of a process temporarily" can never be harmful to 

the interior logic of the process delayed. The 

fundamental consequence of this approach -viz. the 

explicit mutual synchronization- is that the 

harmonious co-operation of a set of such sequential 

processes can be established by discrete reasoning; 

as a further consequence the whole harmonious 

society of co-operating sequential processes is 

independent of the actual number of processors 

available to carry out these processes, provided 

the processors available can switch from process 

to process. 

System Hierarchy. 

The total system admits a strict hierarchical 

structure. 

At level 0 we find the responsibility for 

processor allocation to one of the processes whose 

dynamic progress is logically permissible (i.e. in 

view of the explicit mutual synchronization). At 

this level the interrupt of the real time clock is 

processed, introduced to prevent any process to 

monopolize processing power. At this level a priority 

rule is incorporated to achieve quick response of the 

system where this is needed. Our first abstraction 

has been achieved, above level 0 the number of 

processors actually shared is no longer relevant. At 

the higher levels we find the activity of the 

different sequential processes, the actual processor 

having lost its identity, having disappeared from 

the picture. 

At level I we have the so-called "segment 

controller", a sequential process synchronized with 

respect to the drum interrupt and the sequential 

processes on higher levels. At level I we find the 
responsibility to cater for the bookkeeping resulting 

from the automatic backing store. At this level our 

next abstraction has been achieved: at all higher 

levels identification of information takes place in 

terms of segments, the actual storage pages having 

lost their identity, having disappeared from the 

picture. 

At level 2 we find the "message interpreter", 

taking care of the allocation of the console keyboard 

via which conversations between te operator and any 

of the higher level processes can be carried out. The 

message interpreter works in close synchronism with 

the operator: when the operator presses a key, a 

character is sent to the machine together with an 

interrupt signal to announce this next keyboard 

character, while the actual printing is then done 

on account of an output command generated by the 

machine under control of the message interpreter. 

(As far as the hardware is concerned the console 

teleprinter is regarded as two independent periphe- 

rals: an input keyboard and an output printer.) If 

one of the processes opens a conversation it identi- 

fies itself for the benefit of the operator in the 

opening sentence of this conversation. If, however, 

the operator opens a conversation he must identify 

the process he is addressing, in the opening sentence 

of the conversation, i.e. this opening sentence must 

be interpreted before it is known to which of the 

processes the conversation is addressed~ There lies 

the logical reason to introduce a separate sequential 

process for the console teleprinter, a reason that 

is reflected in its name "message interpreter". Above 

level 2 it is as if each process had its private 

conversational console. The fact that they share the 

same physical console is translated into a resource 

restriction of the form "only one conversation at a 

time", a restriction that is satisfied via mutual 

synchronization. At this level the next abstraction 

has been implemented: at the higher levels the actual 

console teleprinter has lost its identity. (If the 

message interpreter had not been on a higher level 

than the segment controller, then the only way to 

implement it would have been to make a permanent 

reservation in core for it; as the conversational 

vocabulary might get large (as soon as our operators 

wish to be addressed in fancy messages) this would 

result in too heavy a permanent demand upon core 

storage. Therefore the vocabulary in which the 

messages are expressed is stored on segments, i.e. 

as information units that can reside on the drum as 

well. For this reason the message interpreter is of 

a level one higher than the segment controller.) 

At level 3 we find the sequential processes 

associated with buffering of input streams and 

unbuffering of output streams. At this level the next 

abstraction is effected, viz. the abstraction of the 

actual peripherals used, that are allocated at this 

level to the "logical communication units" in terms 

of which is worked in the still higher levels. The 

sequential processes associated with the peripherals 

are of a level above the message interpreter, because 

they must be able to converse with the operator (e.g. 

in the case of detected malfunctioning). The limited 
number of peripherals again acts as a resource 

restriction for the processes at higher levels, to be 

satisfied by mutual synchronization between them. 

At level 4 we find the independent user programs, 

at level 5 the operator (not implemented by us). 



The system structure has been described at 

length in order to make the next section intelligible, 

Design Experience 

The conception stage took a long time. During 

that period of time the concepts have been born in 

terms of which we sketched the system in the previous 

section. Furthermore we learnt the art of reasoning 

by which we could deduce from our requirements the 

way in which the processes should influence each 

other as regards mutual synchronization so that 

these requirements would be met. (The requirements 

being that no information can be used before it has 

been produced, that no peripheral can be set to two 

tasks simultaneously, etc.) Finally we learnt the 

art of reasoning by which we could prove that the 

society composed of processes thus mutually synchro- 

nized by each other, would indeed in its time 

behaviour satisfy all requirements. 

The construction stage has been rather traditi- 

onal, perhaps even old-fashioned: plain machine 

code. Reprogramming on account of a change of 

specifications has been rare, a circumstance that 

must have contributed greatly to the feasibility of 

the "steam method". The fact that the first two 

stages took more time than planned was somewhat 

compensated by a delay in the delivery of the machine. 

In the verification stage we had, during short 

shots, the machine completely at our disposal, shots 

during which we worked with a virgin machine without 

any software aids for debugging. Starting at level 0 

the system has been tested, each time adding (a 

portion of) the next level only after the previous 

level had been thoroughly tested. Each test shot 

itself contained on top of the (partial) system to 

be tested a number of testing processes with a double 

function. Firstly they had to force the system into 

all different relevant states, secondly they had to 

verify that the system continued to react according 

to specification. 

I shall not deny that the construction of these 

testing programmes has been a major intellectual 

effort: to convince oneself that one has not over- 

looked "e relevant state" and to convince oneself 

that the testing programmes generate them all is no 

simple matter. The encourageing thing is that (as 

far as we are aware~) it could be done. 

This fact was one of the happy consequences of 

the hierarchical structure. 

Testing level 0 (the real time clock and pro- 

cessor allocation) implied a number of testing 

sequential processes on top of it, inspecting to- 

gether that under all circumstances processor time 

was divided among them according to the rules. This 

being established, sequential processes as such had 

been implemented. 

Testing the segment controller at level I 
meant that all "relevant states" could be formulated 

in terms of sequential processes making (in various 
combinations) demands on core pages, situations that 

could be provoked by explicit synchronizing among 

the testing programs. At that stage the existence 

of the real time clock -although interrupting all 

the time- was so immaterial that one of the testers 

indeed forgot its existence~ 

By that time we had implemented the correct 

reaction upon the (mutually unsynchronized) inter- 

rupts from the real time clock and the drum. If we 

had not introduced the separate levels 0 and I and 

if we had not created a terminology (viz. that of 

the rather abstract sequential processes) in which 

the existence of the clock interrupt could be dis- 

carded, but had tried instead to make in a non- 

hierarchical construction the central processor 

directly react upon any weird time succession of 

these two interrupts, the number of "relevant states" 

would have exploded to such a height that exhaustive 

testing would have been an illusion. (Apart from that 

it is doubtful wether we would have had the means to 

generate them all, drum and clock speed being outside 

our control.) 

For the sake of completeness I must mention 

a further happy consequence. As stated before, above 

level I core and drum pages have lost their identity 

and buffering of input and output streams (at level 

3) therefore occurs in terms of segments. While 

testing at level 2 or 3 the drum channel hardware 

broke down for quite some time, but testing could 

proceed by restricting the number of segments so 

that they all could be held in core. If building 

up the line printer output streams had been implemen- 

ted as "dumping onto the drum" and the actual print- 

ing as "printing from the drum" this advantage would 

have been denied to us. 

Conclusion 

As far as program verification is concerned I 

present nothing essentially new. In testing a 

general purpose object (be it a piece of hardware, 

a program, a machine or a system) one cannot subject 

it to all possible cases: for a computer this would 

imply that one feeds it with ell possible programs! 

Therefore one must test it with a set of relevant 

test cases. What is relevant or not, cannot be 

decided as long as one regards the mechanism as a 

black box, in other words it has to follow from the 

internal structure of the mechanism to be tested. It 

seems the designer's responsibility to construct his 

mechanism in such a way -i.e. so effectively struc- 

tured- that at each stage of the testing procedure 

the number of relevant test cases is so small that 

he can try them all and that what is being tested is 

so perspicuous that it is clear that he has not 

overlooked a situation. I have presented a survey of 

our system because I think it a nice example of the 

form that such a structure might take. 

In my experience, I am sorry to say, industrial 

software makers tend to react to it with mixed 

feelings. On the one hand they are inclined to judge 
that we have done a kind of model job, on the other 
hand they express doubts whether the techniques used 

are applicable outside the sheltered atmosphere of a 



University Department and express the opinion that 

we could only do it this way thanks to the modest 
scope of the whole project. It is not my intention 
to underestimate the organizing ability needed for 
a much bigger job with ten or more times as many 

people, but I should like to venture the opinion 
that the larger the project, the more essential the 
structuring~ A hierarchy of five logical levels 

might then very well turn out to be of modest depth, 
in particular when one designs the system more 
consciously than we have done with the aim that the 
software can be smoothly adapted to (perhaps drastic) 
configuration expansions. 
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Appendix 

The S~nchronizinq Primitives. 

Explicit mutual synchronization of parallel 

sequential processes is implemented via so-called 
"semaphores". They are special purpose integer 
variables allocated in the universe in which the 
processes are embedded, they are initialized (with 
the value 0 or I) before the parallel processes 

themselves are started. After this initialization 
the parallel processes will access the semaphores 
only via two very specific operations, the so-called 

synchronizing primitives. For historical reasons 
they are called the P-operation and the V-operation. 

A process, "Q" say, that performs the operation 
"P(sem)" decreases the value of the semaphore called 
"sem" by I. If the resulting value of the semaphore 
concerned is non-negative, process Q can continue 
with the execution of its next statement; if, 

however, the resulting value is negative, process 

Q is stopped and booked on a waiting list associated 
with the semaphore concerned. Until further notice 
(i.e. a V-operation on this very same semaphore) 
dynamic progress of process Q is not logically 
permissible and no processor will be allocated to 
it (see above "System Hierarchy", at level 0). 

A process, "R" say, that performs the operation 

"V(sem)" increases the value of the semaphore called 
"sem" by I. If the resulting value of the semaphore 
concerned is positive, the V-operation in question 
has no further effect; if, however, the resulting 
value of the semaphore concerned is non-positive, 
one of the processes booked on its waiting list is 
removed from this waiting list, i.e. its dynamic 
progress is again logically permissible and in due 
time a processor will be allocated to it (again, see 
above "System Hierarchy", at level 0). 

Corollary I: If a semaphore value is non- 

positive its absolute value equals the number of 
processes booked on its waiting list. 

Corollary 2: The P-operation represents the 
potential delay, the complementary V-operation 
represents the removal of a barrier. 

Note I: P- and V-operations are "indivisible 
actions", i.e. if they occur "simultaneously" in 
parallel processes, they are non-interfering in the 
sense that they can be regarded as being performed 
the one after the other. 

Note 2: If the semaphore value resulting 

from a V-operation is negative, its waiting list 

did originally contain more than one process. It is 
undefined -i.e. logically immaterial- which of the 

waiting processes is then removed from the waiting 

list. 

Note 3: A consequence of the mechanisms 
described above is that a process whose dynamic 
progress is permissible can only loose this status 

by actually progressing, i.e. by performance of a 
P-operation on a semaphore with a value that is 
initially non-positive. 

During system conception it transpired that we 
used the semaphores in two completely different 
ways. The difference is so marked that, looking 
back, one wonders whether it was really fair to 
present the two ways as a usage of the very same 

primitives. On the one hand we have the semaphores 
used for mutual exclusion, on the other hand the 
private semaphores. 

The Mutual Exclusion. 

In the following program we indicate two 
parallel, cyclic processes (between the brackets 
"parbeRin" and '~arend") that come into action 
after the surrounding universe has been introduced 
and initialized. 

begin semaphore mutex; mutex := I; 
parbegin 

beqin LI :  P(mutex); crit ical section I; V(mutsx); 
remainder of cycle I; ~oto LI 

end; 

beqin L2: P(mutex); critical section 2; V(mutex); 
remainder of cycle 2; qoto L2 

end 
parend 

end 

As a result of the P- and V-operations on 



"mutex" the actions, marked as "critical sections" 

exclude each other mutually in time; the scheme 

given allows straightforward extension to more than 

two parallel processes, the maximum value of mutex 

= I, the minimum value = - (n - I) if we have n 

parallel processes. 

Critical sections are used always and only for 

the purpose of unambiguous inspection and modificat- 

ion of the state variables (allocated in the 

surrounding universe) that describe the current 

state of the system (as far as needed for the 

regulation of the harmonious co-operation between 

the various processes). 

The Private Semaphores. 

Each sequential process has associated with it 

a number of private semaphores and no other process 

will ever perform a P-operation on them. The universe 

initializes them with the value = O, their maximum 

value = I, their minimum value = - I. 

Whenever a process reaches a stage where the 

permission for dynamic progress depends on current 

values of state variables, it follows the pattern: 

P(mutex); 
"inspection and modification of state variables 

including a conditional V(private semaphore)"; 

V(mutex); 
P(private semaphore) 

If the inspection learns that the process in 

question should continue, it performs the operation 

"V(private semaphore)" -the semaphore value then 

changes from 0 to I-, otherwise this V-operation 

is skipped, leaving to the other processes the 

obligation to perform this V-operation at a suitable 

moment. The absence or presence of this obligation 

is reflected in the final values of the state 

variables upon leaving the critical section. 

Whenever a process reaches a stage where as a 

result of its progress possibly one (or more) 

blocked processes should now get permission to 

continue, it follows the pattern 

P(mutex); 
"modification and inspection of state variables 

including zero or more V-operations on private 

semaphores of other processes"; 

V(mutex) 

By the introduction of suitable state variables 

and appropriate programming of the critical sections 

any strategy assigning peripherals, buffer areas etc. 

can be implemented. 

The amount of coding and reasoning can be 

greatly reduced by the observation that in the two 

complementary critical sections sketched above, the 

same inspection can be performed by the introduction 

of the notion of "an unstable situation", such as 

a free reader and a process needing a reader. 

Whenever an unstable situation emerges it is 
removed (including ome or more V-operations on 

private semaphores) in the very same critical 

section in which it has been created. 

Provinq the Harmonious Co-operation. 

The sequential processes in the system can all 

be regarded as cyclic processes in which a certain 

neutral point can be marked, the so-called "homing 

position", in which all processes are when the 

system is at rest. 

When a cyclic process leaves its homing position 

"it accepts a task", when the task has been performed 

end not earlier, the process returns to its homing 

position. Each cyclic process has a specific task 

processing power (e.g. the execution of a user 

program or unbuffering a portion of printer output, 

etc.) 

The harmonious co-operation is mainly proved 

in roughly three stages. 

I) It is proved that although a process 

performing a task may generate in doing so a finite 

number of tasks for other processes, a single 

initial task cannot give rise to an infinite number 

of task generations. The proof is simple as 

processes can only generate tasks for processes 

at lower levels of the hierarchy so that circularity 

is excluded. (If a process needing a segment from 

the drum has generated a task for the segment 

controller, special precautions have been taken to 

ensure that the segment asked for remains in core 

at least until the requesting process has effectively 

accessed the segment concerned. Without this pre- 

caution finite tasks could be forced to generate an 

infinite number of tasks for the segment controller 

and the system could get stuck in an unproductive 
page flutter.) 

2) It is proved that it is impossible 

that all processes have returned to their homing 

position while somewhere in the system is still 

pending a generated but unaccepted task. (This is 

proved via instability of the situation just 

described.) 

3) It is proved that after the acceptance 

of an initial task all processes eventually will be 

(again) in their homing position. Each process 

blocked in the course of task execution relies on the 

other processes for removal of the barrier. Essenti- 

ally, the proof in question is a demonstratmon of the 

absence of "circular waits": process P waiting for 

process Q waiting for process R waiting for process 

P. (Our usual term for the circular wait is "the 

Deadly Embrace".) In a more general society than 

our system this proof turned out to be e proof by 

induction (on the level of hierarchy, starting at 

the lowest level) as A.N.Habermann has shown in his 

doctoral thesis. 


