
THE STRUCTURE OF THE "THE"-MULTIPROGRAMMING SYSTEM

Edsger W.Dijkstra
Technological University

EINDHOVEN
The Netherlands

EWDI 96

Summary

A multiprogramming system is described in
which all activities are divided over a number of
sequential processes. These sequential processes
are placed at various hierarchical levels, in each
of which one or more independent abstractions have
been implemented. The hierarchical structure proved
to be vital for the verification of the logical

soundness of the design and the correctness of its
implementation.

Introduction

Papers "reporting on timely research and

development efforts" being explicitly asked for, I
shall try to present a progress report on the multi-

programming effort at the Department of Mathematics
at the Technological University, Eindhoven, the
Netherlands.

Having very limited resources (viz. a group of
six people of, on the average, half time availabili-

ty) and wishing to contribute to the art of system

design -including all the stages of conception,
construction and verification- we are faced with the
problem of how to get the necessary experience. To
solve this problem we have adopted the following

three guiding principles:
I) Select a project as advanced as you can

conceive, as ambitious as you can justify, in the

hope that routine work can be kept to a minimum;
hold out against all pressure to incorporate such
system expansions that would only result into a
purely quantitative increase of the total amount of
work to be done.

2) Select a machine with sound basic character-

istics (e.g. an interrupt system to fall in love
with is certainly an inspiring feature); from then
onwards try to keep the specific properties of the
configuration for which you are preparing the system
out of your considerations as long as possible.

3) Be aware of the fact that experience does by
no means automatically lead to wisdom and under-
standing; in other words, make a conscious effort to
learn as much as possible from your precious
experiences.

Accordingly, I shall try to go beyond just
reporting what we have done and how, and I shall
try to formulate as well what we have learned.

I should like to end the introduction with two
short remarks on working conditions, remarks I make
for the sake of completeness. I shall not stress
these points any further.

The one remark is that production speed is

severely degraded if one works with half time people
who have other obligations as well. This is at least
a factor four, probably it is worse. The people

themselves lose time and energy in switching over,
the group as a whole loses decision speed as dis-
cussions~ when needed, have often to be postponed

until all people concerned are available.

The other remark is that the members of the
group (mostly mathematicians) have previously
enjoyed as good students a university training of

5 to 8 years and are of Master's or Ph.D. level.
I mention this explicitly because at least in my
country the intellectual level needed for system

design is in general grossly underestimated. I am
more than ever convinced that this type of work is
just difficult and that every effort to do it with
other than the best people is doomed to either

failure or moderate success at enormous expenses.

The Tool and the Goal

The system has been designed for a Dutch
machine, the EL X8 (N.V.Electrologica, Rijswijk
(ZH)). Characteristics of our configuration are:
I) core memory cycle time 2.5 mms., 27 bits; at
present 32K.

2) drum of 512K words, 1024 words per track, rev.
time 40 ms.

3) an indirect addressing mechanism very well
suited for stack implementation

4) a sound system for commanding peripherals and
controlling of interrupts

5) a potentially great number of low capacity
channels; ten of them are used (3 paper tape readers

at 1000 char/sac; 3 paper tape punches at 150 char/
sec; 2 teleprinters; a plotter; a line printer)
6) absence of a number of not unusual awkward
features.

The primary goal of the system is to process
smoothly a continuous flow of user programs as a
service to the University. A multiprogramming

system has been chosen with the following objectives
in mind:

I) a reduction of turn around time for programs of
short duration

2) economic use of peripheral devices
3)automatic control of backing store to be combined
with economic use of the central processor

4) the economic feasibility to use the machine for
those applications for which only the flexibility of
a general purpose computer is needed but (as a ru le)
not the capaci ty nor the processing power.

The system is not intended as a multi-access

system. There is no common data base via which

independent users can communicate with each other:

they only share the configuration and a procedure

library (that includes a translator for ALGOL 60

extended with complex numbers). The system does not

cater for user programs written in machine language.

Compared with larger efforts one can state that

quantitatively speaking the goals have been set as

modest as the equipment and our other resources.

Qualitatively speaking, I am afraid, we got more and

more immodest as the work progressed.

A Progress Report

We have made some minor mistakes of the usual

type (such as paying too much attention to speeding

up what was not the real bottle neck) and two major

ones .

Our f i r s t m a j o r m i s t a k e has been t h a t f o r t o o
long a time we confined our attention to "a perfect

installation": by the time we considered how to make

the best of it when, say, one of the peripherals

broke down, we were faced with nasty problems.

Taking care of the "pathology" took more energy than

we had expected and part of our troubles were a

direct consequence of our earlier ingenuity, i.e.

the complexity of the situation into which the system

could have manoeuvred itself. Had we paid attention

to the pathology at an earlier stage of the design,

our management rules would certainly have been less

refined.

The second major mistake has been that we

conceived and programmed the major part of the system

without giving more than scanty thought to the pro-

blem of debugging it. For the fact that this mistake

had no serious consequences -on the contrary~ one

might argue as an afterthought- I must decline all

credit. I feel more like having passed through the

eye of the needle...

As captain of the crew I had had extensive

experience (dating back to 1958) in making basic

software dealing with real time interrupts and I

knew by bitter experience that as a result of the

irreproducibility of the interrupt moments, a program

error could present itself misleadingly like an

occasional machine malfunctioning. As a result I was

terribly afraid. Having fears regarding the possibil-

ity of debugging we decided to be as careful as

possible and -prevention is better than cure~- to

try to prevent nasty bugs from entering the construc-

tion.

This decision, inspired by fear, is at the

bottom of what I regard as the group's main contri-

bution to the art of system design. We have found

that it is possible to design a refined multiprogram-

ming system in such a way that its logical soundness

can be proved a priori and that its implementation

admits exhaustive testing. The only errors that

showed up during testing were trivial coding errors

(occurring with a density of one error per 500

instructions), each of them located within 10

minutes (classical) inspection at the machine and

each of them correspondingly easy to remedy. At the

moment of writing the testing is not yet completed,

but the resulting system will be guaranteed to be

flawless. When the system has been delivered we shall

not live in the perpetual fear that a system derail-

ment may still occur in an unlikely situation such as

might result from an unhappy "coincidence" of two or

more critical occurrences, for we shall have proved

the correctness of the system with a rigour and

explicitness that is unusual for the great majority

of mathematical proofs.

A Survey of the System Structure

Storage Allocation.

In the classical yon Neumann machine information

is identified by the address of the memory location

containing the information. When we started to think

about the automatic control of secondary storage

we were familiar with a system (viz. GIER ALGOL)

in which all information was identified by its

drum address (as in the classical yon Neumann

machine) and in which the function of the core

memory was nothing more than to make the information

"page wise" accessible.

We have followed another approach and as it

turned out, to great advantage. In our terminology

we made a strict distinction between memory units

(we called them "pages" and had "core pages" and

"drum pages") and corresponding information units

(for lack of a better word we called them "segments")

a segment just fitting in a page. For segments we

created a completely independent identification

mechanism in which the number of possible segment

identifiers is much larger than the total number of

pages in primary and secondary store. The segment

identifier gives fast access to a so-called "segment

variable" in core whose value denotes whether the

segment is still empty or not and if not empty, in

which page (or pages) it can be found.

As a consequence of this approach: if a segment

of information, residing in a core page, has to be

dumped onto the drum in order to make the core page

available for other use, there is no need to return

the segment to the same drum page as it originally

came from. In fact, this freedom is exploited: among

the free drum pages the one with minimum latency

time is selected.

A next consequence is the total absence of a

drum allocation problem: there is not the slightest

reason why, say, a program should occupy consecutive

drum pages. In a multiprogramming environment this

is very convenient.

Processor Allocation.

We have given full recognition to the fact that

in a single sequential process (such as performed by

a sequential automaton) only the time succession of
the various states has a logical meaning, but not
the actual speed with which the sequential process

is performed. Therefore we have arranged the whole

system as a society of sequential processes, pro-

gressing with undefined speed ratios. To each user

program, accepted by the system, corresponds a

sequential process, to each input peripheral

corresponds a sequential process (buffering input

streams in synchronism with the execution of the

input commands), to each output peripheral corres-

ponds a sequential process (unbuffering output

streams in synchronism with the execution of the

output commands); furthermore we have the "segment

controller" associated with the drum and the

"message interpreter" associated with the console

keyboard.

This enabled us to design the whole system in

terms of these abstract "sequential processes".

Their harmonious co-operation is regulated by means

of explicit mutual synchronization statements. On

the one hand, this explicit mutual synchronization

is necessary, as we do not make any assumption about

speed ratios, on the other hand this mutual synchro-

nization is possible because "delaying the progress

of a process temporarily" can never be harmful to

the interior logic of the process delayed. The

fundamental consequence of this approach -viz. the

explicit mutual synchronization- is that the

harmonious co-operation of a set of such sequential

processes can be established by discrete reasoning;

as a further consequence the whole harmonious

society of co-operating sequential processes is

independent of the actual number of processors

available to carry out these processes, provided

the processors available can switch from process

to process.

System Hierarchy.

The total system admits a strict hierarchical

structure.

At level 0 we find the responsibility for

processor allocation to one of the processes whose

dynamic progress is logically permissible (i.e. in

view of the explicit mutual synchronization). At

this level the interrupt of the real time clock is

processed, introduced to prevent any process to

monopolize processing power. At this level a priority

rule is incorporated to achieve quick response of the

system where this is needed. Our first abstraction

has been achieved, above level 0 the number of

processors actually shared is no longer relevant. At

the higher levels we find the activity of the

different sequential processes, the actual processor

having lost its identity, having disappeared from

the picture.

At level I we have the so-called "segment

controller", a sequential process synchronized with

respect to the drum interrupt and the sequential

processes on higher levels. At level I we find the
responsibility to cater for the bookkeeping resulting

from the automatic backing store. At this level our

next abstraction has been achieved: at all higher

levels identification of information takes place in

terms of segments, the actual storage pages having

lost their identity, having disappeared from the

picture.

At level 2 we find the "message interpreter",

taking care of the allocation of the console keyboard

via which conversations between te operator and any

of the higher level processes can be carried out. The

message interpreter works in close synchronism with

the operator: when the operator presses a key, a

character is sent to the machine together with an

interrupt signal to announce this next keyboard

character, while the actual printing is then done

on account of an output command generated by the

machine under control of the message interpreter.

(As far as the hardware is concerned the console

teleprinter is regarded as two independent periphe-

rals: an input keyboard and an output printer.) If

one of the processes opens a conversation it identi-

fies itself for the benefit of the operator in the

opening sentence of this conversation. If, however,

the operator opens a conversation he must identify

the process he is addressing, in the opening sentence

of the conversation, i.e. this opening sentence must

be interpreted before it is known to which of the

processes the conversation is addressed~ There lies

the logical reason to introduce a separate sequential

process for the console teleprinter, a reason that

is reflected in its name "message interpreter". Above

level 2 it is as if each process had its private

conversational console. The fact that they share the

same physical console is translated into a resource

restriction of the form "only one conversation at a

time", a restriction that is satisfied via mutual

synchronization. At this level the next abstraction

has been implemented: at the higher levels the actual

console teleprinter has lost its identity. (If the

message interpreter had not been on a higher level

than the segment controller, then the only way to

implement it would have been to make a permanent

reservation in core for it; as the conversational

vocabulary might get large (as soon as our operators

wish to be addressed in fancy messages) this would

result in too heavy a permanent demand upon core

storage. Therefore the vocabulary in which the

messages are expressed is stored on segments, i.e.

as information units that can reside on the drum as

well. For this reason the message interpreter is of

a level one higher than the segment controller.)

At level 3 we find the sequential processes

associated with buffering of input streams and

unbuffering of output streams. At this level the next

abstraction is effected, viz. the abstraction of the

actual peripherals used, that are allocated at this

level to the "logical communication units" in terms

of which is worked in the still higher levels. The

sequential processes associated with the peripherals

are of a level above the message interpreter, because

they must be able to converse with the operator (e.g.

in the case of detected malfunctioning). The limited
number of peripherals again acts as a resource

restriction for the processes at higher levels, to be

satisfied by mutual synchronization between them.

At level 4 we find the independent user programs,

at level 5 the operator (not implemented by us).

The system structure has been described at

length in order to make the next section intelligible,

Design Experience

The conception stage took a long time. During

that period of time the concepts have been born in

terms of which we sketched the system in the previous

section. Furthermore we learnt the art of reasoning

by which we could deduce from our requirements the

way in which the processes should influence each

other as regards mutual synchronization so that

these requirements would be met. (The requirements

being that no information can be used before it has

been produced, that no peripheral can be set to two

tasks simultaneously, etc.) Finally we learnt the

art of reasoning by which we could prove that the

society composed of processes thus mutually synchro-

nized by each other, would indeed in its time

behaviour satisfy all requirements.

The construction stage has been rather traditi-

onal, perhaps even old-fashioned: plain machine

code. Reprogramming on account of a change of

specifications has been rare, a circumstance that

must have contributed greatly to the feasibility of

the "steam method". The fact that the first two

stages took more time than planned was somewhat

compensated by a delay in the delivery of the machine.

In the verification stage we had, during short

shots, the machine completely at our disposal, shots

during which we worked with a virgin machine without

any software aids for debugging. Starting at level 0

the system has been tested, each time adding (a

portion of) the next level only after the previous

level had been thoroughly tested. Each test shot

itself contained on top of the (partial) system to

be tested a number of testing processes with a double

function. Firstly they had to force the system into

all different relevant states, secondly they had to

verify that the system continued to react according

to specification.

I shall not deny that the construction of these

testing programmes has been a major intellectual

effort: to convince oneself that one has not over-

looked "e relevant state" and to convince oneself

that the testing programmes generate them all is no

simple matter. The encourageing thing is that (as

far as we are aware~) it could be done.

This fact was one of the happy consequences of

the hierarchical structure.

Testing level 0 (the real time clock and pro-

cessor allocation) implied a number of testing

sequential processes on top of it, inspecting to-

gether that under all circumstances processor time

was divided among them according to the rules. This

being established, sequential processes as such had

been implemented.

Testing the segment controller at level I
meant that all "relevant states" could be formulated

in terms of sequential processes making (in various
combinations) demands on core pages, situations that

could be provoked by explicit synchronizing among

the testing programs. At that stage the existence

of the real time clock -although interrupting all

the time- was so immaterial that one of the testers

indeed forgot its existence~

By that time we had implemented the correct

reaction upon the (mutually unsynchronized) inter-

rupts from the real time clock and the drum. If we

had not introduced the separate levels 0 and I and

if we had not created a terminology (viz. that of

the rather abstract sequential processes) in which

the existence of the clock interrupt could be dis-

carded, but had tried instead to make in a non-

hierarchical construction the central processor

directly react upon any weird time succession of

these two interrupts, the number of "relevant states"

would have exploded to such a height that exhaustive

testing would have been an illusion. (Apart from that

it is doubtful wether we would have had the means to

generate them all, drum and clock speed being outside

our control.)

For the sake of completeness I must mention

a further happy consequence. As stated before, above

level I core and drum pages have lost their identity

and buffering of input and output streams (at level

3) therefore occurs in terms of segments. While

testing at level 2 or 3 the drum channel hardware

broke down for quite some time, but testing could

proceed by restricting the number of segments so

that they all could be held in core. If building

up the line printer output streams had been implemen-

ted as "dumping onto the drum" and the actual print-

ing as "printing from the drum" this advantage would

have been denied to us.

Conclusion

As far as program verification is concerned I

present nothing essentially new. In testing a

general purpose object (be it a piece of hardware,

a program, a machine or a system) one cannot subject

it to all possible cases: for a computer this would

imply that one feeds it with ell possible programs!

Therefore one must test it with a set of relevant

test cases. What is relevant or not, cannot be

decided as long as one regards the mechanism as a

black box, in other words it has to follow from the

internal structure of the mechanism to be tested. It

seems the designer's responsibility to construct his

mechanism in such a way -i.e. so effectively struc-

tured- that at each stage of the testing procedure

the number of relevant test cases is so small that

he can try them all and that what is being tested is

so perspicuous that it is clear that he has not

overlooked a situation. I have presented a survey of

our system because I think it a nice example of the

form that such a structure might take.

In my experience, I am sorry to say, industrial

software makers tend to react to it with mixed

feelings. On the one hand they are inclined to judge
that we have done a kind of model job, on the other
hand they express doubts whether the techniques used

are applicable outside the sheltered atmosphere of a

University Department and express the opinion that

we could only do it this way thanks to the modest
scope of the whole project. It is not my intention
to underestimate the organizing ability needed for
a much bigger job with ten or more times as many

people, but I should like to venture the opinion
that the larger the project, the more essential the
structuring~ A hierarchy of five logical levels

might then very well turn out to be of modest depth,
in particular when one designs the system more
consciously than we have done with the aim that the
software can be smoothly adapted to (perhaps drastic)
configuration expansions.

Acknowledqements

I should not like to publish this progress

report without expressing my great indebtedness to
my five collaborators C.Bron, A.N.Habermann, F.J.A.
Hendriks, C.Ligtmans and P.A.Voorhoeve. They have

contributed to ell the stages of the design, together
we learnt the art of reasoning needed. Construction
and verification is entirely their effort: if my

dreams have become true, this is due to their faith,
their talents and their persistent loyalty to the
whole project.

Finally I should like to thank the members of
the program committee who asked for more information
on the synchronizing primitives and some justifica-

tion of my claim to be able to prove logical sound-

ness a priori. In answer to this request the appendix

has been added, of which I hope that it gives the
desired information and justification.

Appendix

The S~nchronizinq Primitives.

Explicit mutual synchronization of parallel

sequential processes is implemented via so-called
"semaphores". They are special purpose integer
variables allocated in the universe in which the
processes are embedded, they are initialized (with
the value 0 or I) before the parallel processes

themselves are started. After this initialization
the parallel processes will access the semaphores
only via two very specific operations, the so-called

synchronizing primitives. For historical reasons
they are called the P-operation and the V-operation.

A process, "Q" say, that performs the operation
"P(sem)" decreases the value of the semaphore called
"sem" by I. If the resulting value of the semaphore
concerned is non-negative, process Q can continue
with the execution of its next statement; if,

however, the resulting value is negative, process

Q is stopped and booked on a waiting list associated
with the semaphore concerned. Until further notice
(i.e. a V-operation on this very same semaphore)
dynamic progress of process Q is not logically
permissible and no processor will be allocated to
it (see above "System Hierarchy", at level 0).

A process, "R" say, that performs the operation

"V(sem)" increases the value of the semaphore called
"sem" by I. If the resulting value of the semaphore
concerned is positive, the V-operation in question
has no further effect; if, however, the resulting
value of the semaphore concerned is non-positive,
one of the processes booked on its waiting list is
removed from this waiting list, i.e. its dynamic
progress is again logically permissible and in due
time a processor will be allocated to it (again, see
above "System Hierarchy", at level 0).

Corollary I: If a semaphore value is non-

positive its absolute value equals the number of
processes booked on its waiting list.

Corollary 2: The P-operation represents the
potential delay, the complementary V-operation
represents the removal of a barrier.

Note I: P- and V-operations are "indivisible
actions", i.e. if they occur "simultaneously" in
parallel processes, they are non-interfering in the
sense that they can be regarded as being performed
the one after the other.

Note 2: If the semaphore value resulting

from a V-operation is negative, its waiting list

did originally contain more than one process. It is
undefined -i.e. logically immaterial- which of the

waiting processes is then removed from the waiting

list.

Note 3: A consequence of the mechanisms
described above is that a process whose dynamic
progress is permissible can only loose this status

by actually progressing, i.e. by performance of a
P-operation on a semaphore with a value that is
initially non-positive.

During system conception it transpired that we
used the semaphores in two completely different
ways. The difference is so marked that, looking
back, one wonders whether it was really fair to
present the two ways as a usage of the very same

primitives. On the one hand we have the semaphores
used for mutual exclusion, on the other hand the
private semaphores.

The Mutual Exclusion.

In the following program we indicate two
parallel, cyclic processes (between the brackets
"parbeRin" and '~arend") that come into action
after the surrounding universe has been introduced
and initialized.

begin semaphore mutex; mutex := I;
parbegin

beqin LI : P(mutex); crit ical section I; V(mutsx);
remainder of cycle I; ~oto LI

end;

beqin L2: P(mutex); critical section 2; V(mutex);
remainder of cycle 2; qoto L2

end
parend

end

As a result of the P- and V-operations on

"mutex" the actions, marked as "critical sections"

exclude each other mutually in time; the scheme

given allows straightforward extension to more than

two parallel processes, the maximum value of mutex

= I, the minimum value = - (n - I) if we have n

parallel processes.

Critical sections are used always and only for

the purpose of unambiguous inspection and modificat-

ion of the state variables (allocated in the

surrounding universe) that describe the current

state of the system (as far as needed for the

regulation of the harmonious co-operation between

the various processes).

The Private Semaphores.

Each sequential process has associated with it

a number of private semaphores and no other process

will ever perform a P-operation on them. The universe

initializes them with the value = O, their maximum

value = I, their minimum value = - I.

Whenever a process reaches a stage where the

permission for dynamic progress depends on current

values of state variables, it follows the pattern:

P(mutex);
"inspection and modification of state variables

including a conditional V(private semaphore)";

V(mutex);
P(private semaphore)

If the inspection learns that the process in

question should continue, it performs the operation

"V(private semaphore)" -the semaphore value then

changes from 0 to I-, otherwise this V-operation

is skipped, leaving to the other processes the

obligation to perform this V-operation at a suitable

moment. The absence or presence of this obligation

is reflected in the final values of the state

variables upon leaving the critical section.

Whenever a process reaches a stage where as a

result of its progress possibly one (or more)

blocked processes should now get permission to

continue, it follows the pattern

P(mutex);
"modification and inspection of state variables

including zero or more V-operations on private

semaphores of other processes";

V(mutex)

By the introduction of suitable state variables

and appropriate programming of the critical sections

any strategy assigning peripherals, buffer areas etc.

can be implemented.

The amount of coding and reasoning can be

greatly reduced by the observation that in the two

complementary critical sections sketched above, the

same inspection can be performed by the introduction

of the notion of "an unstable situation", such as

a free reader and a process needing a reader.

Whenever an unstable situation emerges it is
removed (including ome or more V-operations on

private semaphores) in the very same critical

section in which it has been created.

Provinq the Harmonious Co-operation.

The sequential processes in the system can all

be regarded as cyclic processes in which a certain

neutral point can be marked, the so-called "homing

position", in which all processes are when the

system is at rest.

When a cyclic process leaves its homing position

"it accepts a task", when the task has been performed

end not earlier, the process returns to its homing

position. Each cyclic process has a specific task

processing power (e.g. the execution of a user

program or unbuffering a portion of printer output,

etc.)

The harmonious co-operation is mainly proved

in roughly three stages.

I) It is proved that although a process

performing a task may generate in doing so a finite

number of tasks for other processes, a single

initial task cannot give rise to an infinite number

of task generations. The proof is simple as

processes can only generate tasks for processes

at lower levels of the hierarchy so that circularity

is excluded. (If a process needing a segment from

the drum has generated a task for the segment

controller, special precautions have been taken to

ensure that the segment asked for remains in core

at least until the requesting process has effectively

accessed the segment concerned. Without this pre-

caution finite tasks could be forced to generate an

infinite number of tasks for the segment controller

and the system could get stuck in an unproductive
page flutter.)

2) It is proved that it is impossible

that all processes have returned to their homing

position while somewhere in the system is still

pending a generated but unaccepted task. (This is

proved via instability of the situation just

described.)

3) It is proved that after the acceptance

of an initial task all processes eventually will be

(again) in their homing position. Each process

blocked in the course of task execution relies on the

other processes for removal of the barrier. Essenti-

ally, the proof in question is a demonstratmon of the

absence of "circular waits": process P waiting for

process Q waiting for process R waiting for process

P. (Our usual term for the circular wait is "the

Deadly Embrace".) In a more general society than

our system this proof turned out to be e proof by

induction (on the level of hierarchy, starting at

the lowest level) as A.N.Habermann has shown in his

doctoral thesis.

