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To Suzanne, Barbara, Marvin, and the memory of Sweetie π and Bram
- AST

To Barbara and Gordon
- ASW

The MINIX 3 Mascot

Other operating systems have an animal mascot, so we felt MINIX 3 ought to
have one too. We chose the raccoon because raccoons are small, cute, clever,
agile, eat bugs, and are user-friendly—at least if you keep your garbage can well
locked.
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PREFACE

Most books on operating systems are strong on theory and weak on practice.
This one aims to provide a better balance between the two. It covers all the fun-
damental principles in great detail, including processes, interprocess communica-
tion, semaphores, monitors, message passing, scheduling algorithms, input/output,
deadlocks, device drivers, memory management, paging algorithms, file system
design, security, and protection mechanisms. But it also discusses one particular
system—MINIX 3—a UNIX-compatible operating system in detail, and even pro-
vides a source code listing for study. This arrangement allows the reader not only
to learn the principles, but also to see how they are applied in a real operating sys-
tem.

When the first edition of this book appeared in 1987, it caused something of a
small revolution in the way operating systems courses were taught. Until then,
most courses just covered theory. With the appearance of MINIX, many schools
began to have laboratory courses in which students examined a real operating sys-
tem to see how it worked inside. We consider this trend highly desirable and hope
it continues.

It its first 10 years, MINIX underwent many changes. The original code was
designed for a 256K 8088-based IBM PC with two diskette drives and no hard
disk. It was also based on UNIX Version 7 As time went on, MINIX evolved in
many ways: it supported 32-bit protected mode machines with large memories
and hard disks. It also changed from being based on Version 7, to being based on
the international POSIX standard (IEEE 1003.1 and ISO 9945-1). Finally, many

xv
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new features were added, perhaps too many in our view, but too few in the view
of some other people, which led to the creation of Linux. In addition, MINIX was
ported to many other platforms, including the Macintosh, Amiga, Atari, and
SPARC. A second edition of the book, covering this system, was published in
1997 and was widely used at universities.

The popularity of MINIX has continued, as can be observed by examining the
number of hits for MINIX found by Google.

This third edition of the book has many changes throughout. Nearly all of the
material on principles has been revised, and considerable new material has been
added. However, the main change is the discussion of the new version of the sys-
tem, called MINIX 3. and the inclusion of the new code in this book. Although
loosely based on MINIX 2, MINIX 3 is fundamentally different in many key ways.

The design of MINIX 3 was inspired by the observation that operating systems
are becoming bloated, slow, and unreliable. They crash far more often than other
electronic devices such as televisions, cell phones, and DVD players and have so
many features and options that practically nobody can understand them fully or
manage them well. And of course, computer viruses, worms, spyware, spam, and
other forms of malware have become epidemic.

To a large extent, many of these problems are caused by a fundamental design
flaw in current operating systems: their lack of modularity. The entire operatng
system is typically millions of lines of C/C++ code compiled into a single massive
executable program run in kernel mode. A bug in any one of those millions of
lines of code can cause the system to malfunction. Getting all this code correct is
impossible, especially when about 70% consists of device drivers, written by third
parties, and outside the purview of the people maintaining the operating system.

With MINIX 3, we demonstrate that this monolithic design is not the only pos-
sibility. The MINIX 3 kernel is only about 4000 lines of executable code, not the
millions found in Windows, Linux, Mac OS X, or FreeBSD. The rest of the system,
including all the device drivers (except the clock driver), is a collection of small,
modular, user-mode processes, each of which is tightly restricted in what it can do
and with which other processes it may communicate.

While MINIX 3 is a work in progress, we believe that this model of building
an operating system as a collection of highly-encapsulated user-mode processes
holds promise for building more reliable systems in the future. MINIX 3 is espe-
cially focused on smaller PCs (such as those commonly found in Third-World
countries and on embedded systems, which are always resource constrained). In
any event, this design makes it much easier for students to learn how an operating
system works than attempting to study a huge monolithic system.

The CD-ROM that is included in this book is a live CD. You can put it in your
CD-ROM drive, reboot the computer, and MINIX 3 will give a login prompt
within a few seconds. You can log in as root and give the system a try without
first having to install it on your hard disk. Of course, it can also be installed on
the hard disk. Detailed installation instructions are given in Appendix A.
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As suggested above, MINIX 3 is rapidly evolving, with new versions being
issued frequently. To download the current CD-ROM image file for burning,
please go to the official Website: www.minix3.org. This site also contains a large
amount of new software, documentation, and news about MINIX 3 development.
For discussions about MINIX 3, or to ask questions, there is a USENET news-
group: comp.os.minix. People without newsreaders can follow discussions on the
Web at http://groups.google.com/group/comp.os.minix.

As an alternative to installing MINIX 3 on your hard disk, it is possible to run
it on any one of several PC simulators now available. Some of these are listed on
the main page of the Website.

Instructors who are using the book as the text for a university course can get
the problem solutions from their local Prentice Hall representative. The book has
its own Website. It can be found by going to www.prenhall.com/tanenbaum and
selecting this title.

We have been extremely fortunate in having the help of many people during
the course of this project. First and foremost, Ben Gras and Jorrit Herder have
done most of the programming of the new version. They did a great job under
tight time constraints, including responding to e-mail well after midnight on many
occasions. They also read the manuscript and made many useful comments. Our
deepest appreciation to both of them.

Kees Bot also helped greatly with previous versions, giving us a good base to
work with. Kees wrote large chunks of code for versions up to 2.0.4, repaired
bugs, and answered numerous questions. Philip Homburg wrote most of the net-
working code as well as helping out in numerous other useful ways, especially
providing detailed feedback on the manuscript.

People too numerous to list contributed code to the very early versions, help-
ing to get MINIX off the ground in the first place. There were so many of them
and their contributions have been so varied that we cannot even begin to list them
all here, so the best we can do is a generic thank you to all of them.

Several people read parts of the manuscript and made suggestions. We would
like to give our special thanks to Gojko Babic, Michael Crowley, Joseph M.
Kizza, Sam Kohn Alexander Manov, and Du Zhang for their help.

Finally, we would like to thank our families. Suzanne has been through this
16 times now. Barbara has been through it 15 times now. Marvin has been
through it 14 times now. It’s kind of getting to be routine, but the love and sup-
port is still much appreciated. (AST)

Al’s Barbara has been through this twice now. Her support, patience, and
good humor were essential. Gordon has been a patient listener. It is still a delight
to have a son who understands and cares about the things that fascinate me.
Finally, step-grandson Zain’s first birthday coincides with the release of MINIX 3.
Some day he will appreciate this. (ASW)

Andrew S. Tanenbaum
Albert S. Woodhull

www.minix3.org
http://groups.google.com/group/comp.os.minix
www.prenhall.com/tanenbaum
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1
INTRODUCTION

Without its software, a computer is basically a useless lump of metal. With
its software, a computer can store, process, and retrieve information; play music
and videos; send e-mail, search the Internet; and engage in many other valuable
activities to earn its keep. Computer software can be divided roughly into two
kinds: system programs, which manage the operation of the computer itself, and
application programs, which perform the actual work the user wants. The most
fundamental system program is the operating system, whose job is to control all
the computer’s resources and provide a base upon which the application programs
can be written. Operating systems are the topic of this book. In particular, an
operating system called MINIX 3 is used as a model, to illustrate design principles
and the realities of implementing a design.

A modern computer system consists of one or more processors, some main
memory, disks, printers, a keyboard, a display, network interfaces, and other
input/output devices. All in all, a complex system. Writing programs that keep
track of all these components and use them correctly, let alone optimally, is an
extremely difficult job. If every programmer had to be concerned with how disk
drives work, and with all the dozens of things that could go wrong when reading a
disk block, it is unlikely that many programs could be written at all.

Many years ago it became abundantly clear that some way had to be found to
shield programmers from the complexity of the hardware. The way that has
evolved gradually is to put a layer of software on top of the bare hardware, to
manage all parts of the system, and present the user with an interface or virtual

1



2 INTRODUCTION CHAP. 1

machine that is easier to understand and program. This layer of software is the
operating system.

The placement of the operating system is shown in Fig. 1-1. At the bottom is
the hardware, which, in many cases, is itself composed of two or more levels (or
layers). The lowest level contains physical devices, consisting of integrated cir-
cuit chips, wires, power supplies, cathode ray tubes, and similar physical devices.
How these are constructed and how they work is the province of the electrical
engineer.

Banking
system

Airline
reservation

Operating system

Web
browser

Compilers Editors

Application programs

Hardware

System
programs

Command
interpreter

Machine language

 Microarchitecture

Physical devices

Figure 1-1. A computer system consists of hardware, system programs, and ap-
plication programs.

Next comes the microarchitecture level, in which the physical devices are
grouped together to form functional units. Typically this level contains some reg-
isters internal to the CPU (Central Processing Unit) and a data path containing an
arithmetic logic unit. In each clock cycle, one or two operands are fetched from
the registers and combined in the arithmetic logic unit (for example, by addition
or Boolean AND). The result is stored in one or more registers. On some ma-
chines, the operation of the data path is controlled by software, called the mi-
croprogram. On other machines, it is controlled directly by hardware circuits.

The purpose of the data path is to execute some set of instructions. Some of
these can be carried out in one data path cycle; others may require multiple data
path cycles. These instructions may use registers or other hardware facilities.
Together, the hardware and instructions visible to an assembly language program-
mer form the ISA (Instruction Set Architecture) This level is often called
machine language.

The machine language typically has between 50 and 300 instructions, mostly
for moving data around the machine, doing arithmetic, and comparing values. In
this level, the input/output devices are controlled by loading values into special
device registers. For example, a disk can be commanded to read by loading the
values of the disk address, main memory address, byte count, and direction (read
or write) into its registers. In practice, many more parameters are needed, and the
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status returned by the drive after an operation may be complex. Furthermore, for
many I/O (Input/Output) devices, timing plays an important role in the program-
ming.

A major function of the operating system is to hide all this complexity and
give the programmer a more convenient set of instructions to work with. For
example, read block from file is conceptually much simpler than having to worry
about the details of moving disk heads, waiting for them to settle down, and so on.

On top of the operating system is the rest of the system software. Here we
find the command interpreter (shell), window systems, compilers, editors, and
similar application-independent programs. It is important to realize that these
programs are definitely not part of the operating system, even though they are typ-
ically supplied preinstalled by the computer manufacturer, or in a package with
the operating system if it is installed after purchase. This is a crucial, but subtle,
point. The operating system is (usually) that portion of the software that runs in
kernel mode or supervisor mode. It is protected from user tampering by the
hardware (ignoring for the moment some older or low-end microprocessors that
do not have hardware protection at all). Compilers and editors run in user mode.
If a user does not like a particular compiler, he† is free to write his own if he so
chooses; he is not free to write his own clock interrupt handler, which is part of
the operating system and is normally protected by hardware against attempts by
users to modify it.

This distinction, however, is sometimes blurred in embedded systems (which
may not have kernel mode) or interpreted systems (such as Java-based systems
that use interpretation, not hardware, to separate the components). Still, for tradi-
tional computers, the operating system is what runs in kernel mode.

That said, in many systems there are programs that run in user mode but
which help the operating system or perform privileged functions. For example,
there is often a program that allows users to change their passwords. This pro-
gram is not part of the operating system and does not run in kernel mode, but it
clearly carries out a sensitive function and has to be protected in a special way.

In some systems, including MINIX 3, this idea is carried to an extreme form,
and pieces of what is traditionally considered to be the operating system (such as
the file system) run in user space. In such systems, it is difficult to draw a clear
boundary. Everything running in kernel mode is clearly part of the operating sys-
tem, but some programs running outside it are arguably also part of it, or at least
closely associated with it. For example, in MINIX 3, the file system is simply a
big C program running in user-mode.

Finally, above the system programs come the application programs. These
programs are purchased (or written by) the users to solve their particular prob-
lems, such as word processing, spreadsheets, engineering calculations, or storing
information in a database.
������������������������������������������������

† ‘‘He’’ should be read as ‘‘he or she’’ throughout the book.
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1.1 WHAT IS AN OPERATING SYSTEM?

Most computer users have had some experience with an operating system, but
it is difficult to pin down precisely what an operating system is. Part of the prob-
lem is that operating systems perform two basically unrelated functions, extending
the machine and managing resources, and depending on who is doing the talking,
you hear mostly about one function or the other. Let us now look at both.

1.1.1 The Operating System as an Extended Machine

As mentioned earlier, the architecture (instruction set, memory organization,
I/O, and bus structure) of most computers at the machine language level is primi-
tive and awkward to program, especially for input/output. To make this point
more concrete, let us briefly look at how floppy disk I/O is done using the NEC
PD765 compatible controller chips used on many Intel-based personal computers.
(Throughout this book we will use the terms ‘‘floppy disk’’ and ‘‘diskette’’ inter-
changeably.) The PD765 has 16 commands, each specified by loading between 1
and 9 bytes into a device register. These commands are for reading and writing
data, moving the disk arm, and formatting tracks, as well as initializing, sensing,
resetting, and recalibrating the controller and the drives.

The most basic commands are read and write, each of which requires 13
parameters, packed into 9 bytes. These parameters specify such items as the
address of the disk block to be read, the number of sectors per track, the recording
mode used on the physical medium, the intersector gap spacing, and what to do
with a deleted-data-address-mark. If you do not understand this mumbo jumbo,
do not worry; that is precisely the point—it is rather esoteric. When the operation
is completed, the controller chip returns 23 status and error fields packed into 7
bytes. As if this were not enough, the floppy disk programmer must also be con-
stantly aware of whether the motor is on or off. If the motor is off, it must be
turned on (with a long startup delay) before data can be read or written. The
motor cannot be left on too long, however, or the floppy disk will wear out. The
programmer is thus forced to deal with the trade-off between long startup delays
versus wearing out floppy disks (and losing the data on them).

Without going into the real details, it should be clear that the average pro-
grammer probably does not want to get too intimately involved with the program-
ming of floppy disks (or hard disks, which are just as complex and quite dif-
ferent). Instead, what the programmer wants is a simple, high-level abstraction to
deal with. In the case of disks, a typical abstraction would be that the disk con-
tains a collection of named files. Each file can be opened for reading or writing,
then read or written, and finally closed. Details such as whether or not recording
should use modified frequency modulation and what the current state of the motor
is should not appear in the abstraction presented to the user.
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The program that hides the truth about the hardware from the programmer and
presents a nice, simple view of named files that can be read and written is, of
course, the operating system. Just as the operating system shields the programmer
from the disk hardware and presents a simple file-oriented interface, it also con-
ceals a lot of unpleasant business concerning interrupts, timers, memory manage-
ment, and other low-level features. In each case, the abstraction offered by the
operating system is simpler and easier to use than that offered by the underlying
hardware.

In this view, the function of the operating system is to present the user with
the equivalent of an extended machine or virtual machine that is easier to pro-
gram than the underlying hardware. How the operating system achieves this goal
is a long story, which we will study in detail throughout this book. To summarize
it in a nutshell, the operating system provides a variety of services that programs
can obtain using special instructions called system calls. We will examine some
of the more common system calls later in this chapter.

1.1.2 The Operating System as a Resource Manager

The concept of the operating system as primarily providing its users with a
convenient interface is a top-down view. An alternative, bottom-up, view holds
that the operating system is there to manage all the pieces of a complex system.
Modern computers consist of processors, memories, timers, disks, mice, network
interfaces, printers, and a wide variety of other devices. In the alternative view,
the job of the operating system is to provide for an orderly and controlled alloca-
tion of the processors, memories, and I/O devices among the various programs
competing for them.

Imagine what would happen if three programs running on some computer all
tried to print their output simultaneously on the same printer. The first few lines
of printout might be from program 1, the next few from program 2, then some
from program 3, and so forth. The result would be chaos. The operating system
can bring order to the potential chaos by buffering all the output destined for the
printer on the disk. When one program is finished, the operating system can then
copy its output from the disk file where it has been stored to the printer, while at
the same time the other program can continue generating more output, oblivious
to the fact that the output is not really going to the printer (yet).

When a computer (or network) has multiple users, the need for managing and
protecting the memory, I/O devices, and other resources is even greater, since the
users might otherwise interfere with one another. In addition, users often need to
share not only hardware, but information (files, databases, etc.) as well. In short,
this view of the operating system holds that its primary task is to keep track of
who is using which resource, to grant resource requests, to account for usage, and
to mediate conflicting requests from different programs and users.
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Resource management includes multiplexing (sharing) resources in two ways:
in time and in space. When a resource is time multiplexed, different programs or
users take turns using it. First one of them gets to use the resource, then another,
and so on. For example, with only one CPU and multiple programs that want to
run on it, the operating system first allocates the CPU to one program, then after it
has run long enough, another one gets to use the CPU, then another, and then
eventually the first one again. Determining how the resource is time multi-
plexed—who goes next and for how long—is the task of the operating system.
Another example of time multiplexing is sharing the printer. When multiple print
jobs are queued up for printing on a single printer, a decision has to be made
about which one is to be printed next.

The other kind of multiplexing is space multiplexing. Instead of the custo-
mers taking turns, each one gets part of the resource. For example, main memory
is normally divided up among several running programs, so each one can be
resident at the same time (for example, in order to take turns using the CPU).
Assuming there is enough memory to hold multiple programs, it is more efficient
to hold several programs in memory at once rather than give one of them all of it,
especially if it only needs a small fraction of the total. Of course, this raises
issues of fairness, protection, and so on, and it is up to the operating system to
solve them. Another resource that is space multiplexed is the (hard) disk. In
many systems a single disk can hold files from many users at the same time.
Allocating disk space and keeping track of who is using which disk blocks is a
typical operating system resource management task.

1.2 HISTORY OF OPERATING SYSTEMS

Operating systems have been evolving through the years. In the following
sections we will briefly look at a few of the highlights. Since operating systems
have historically been closely tied to the architecture of the computers on which
they run, we will look at successive generations of computers to see what their
operating systems were like. This mapping of operating system generations to
computer generations is crude, but it does provide some structure where there
would otherwise be none.

The first true digital computer was designed by the English mathematician
Charles Babbage (1792–1871). Although Babbage spent most of his life and for-
tune trying to build his ‘‘analytical engine,’’ he never got it working properly
because it was purely mechanical, and the technology of his day could not pro-
duce the required wheels, gears, and cogs to the high precision that he needed.
Needless to say, the analytical engine did not have an operating system.

As an interesting historical aside, Babbage realized that he would need soft-
ware for his analytical engine, so he hired a young woman named Ada Lovelace,
who was the daughter of the famed British poet Lord Byron, as the world’s first
programmer. The programming language Ada® was named after her.
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1.2.1 The First Generation (1945–55) Vacuum Tubes and Plugboards

After Babbage’s unsuccessful efforts, little progress was made in constructing
digital computers until World War II. Around the mid-1940s, Howard Aiken at
Harvard University, John von Neumann at the Institute for Advanced Study in
Princeton, J. Presper Eckert and John Mauchley at the University of Pennsylvania,
and Konrad Zuse in Germany, among others, all succeeded in building calculating
engines. The first ones used mechanical relays but were very slow, with cycle
times measured in seconds. Relays were later replaced by vacuum tubes. These
machines were enormous, filling up entire rooms with tens of thousands of
vacuum tubes, but they were still millions of times slower than even the cheapest
personal computers available today.

In these early days, a single group of people designed, built, programmed,
operated, and maintained each machine. All programming was done in absolute
machine language, often by wiring up plugboards to control the machine’s basic
functions. Programming languages were unknown (even assembly language was
unknown). Operating systems were unheard of. The usual mode of operation was
for the programmer to sign up for a block of time on the signup sheet on the wall,
then come down to the machine room, insert his or her plugboard into the com-
puter, and spend the next few hours hoping that none of the 20,000 or so vacuum
tubes would burn out during the run. Virtually all the problems were straightfor-
ward numerical calculations, such as grinding out tables of sines, cosines, and log-
arithms.

By the early 1950s, the routine had improved somewhat with the introduction
of punched cards. It was now possible to write programs on cards and read them
in instead of using plugboards; otherwise, the procedure was the same.

1.2.2 The Second Generation (1955–65) Transistors and Batch Systems

The introduction of the transistor in the mid-1950s changed the picture radi-
cally. Computers became reliable enough that they could be manufactured and
sold to paying customers with the expectation that they would continue to func-
tion long enough to get some useful work done. For the first time, there was a
clear separation between designers, builders, operators, programmers, and mainte-
nance personnel.

These machines, now called mainframes, were locked away in specially air-
conditioned computer rooms, with staffs of specially-trained professional opera-
tors to run them. Only big corporations or major government agencies or univer-
sities could afford their multimillion dollar price tags. To run a job (i.e., a pro-
gram or set of programs), a programmer would first write the program on paper
(in FORTRAN or possibly even in assembly language), then punch it on cards.
He would then bring the card deck down to the input room and hand it to one of
the operators and go drink coffee until the output was ready.
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When the computer finished whatever job it was currently running, an opera-
tor would go over to the printer and tear off the output and carry it over to the out-
put room, so that the programmer could collect it later. Then he would take one
of the card decks that had been brought from the input room and read it in. If the
FORTRAN compiler was needed, the operator would have to get it from a file
cabinet and read it in. Much computer time was wasted while operators were
walking around the machine room.

Given the high cost of the equipment, it is not surprising that people quickly
looked for ways to reduce the wasted time. The solution generally adopted was
the batch system. The idea behind it was to collect a tray full of jobs in the input
room and then read them onto a magnetic tape using a small (relatively) inexpen-
sive computer, such as the IBM 1401, which was very good at reading cards,
copying tapes, and printing output, but not at all good at numerical calculations.
Other, much more expensive machines, such as the IBM 7094, were used for the
real computing. This situation is shown in Fig. 1-2.

1401 7094 1401

(a) (b) (c) (d) (e) (f)

Card
reader

Tape
drive Input

tape
Output
tape

System
tape

Printer

Figure 1-2. An early batch system. (a) Programmers bring cards to 1401. (b)
1401 reads batch of jobs onto tape. (c) Operator carries input tape to 7094. (d)
7094 does computing. (e) Operator carries output tape to 1401. (f) 1401 prints
output.

After about an hour of collecting a batch of jobs, the tape was rewound and
brought into the machine room, where it was mounted on a tape drive. The opera-
tor then loaded a special program (the ancestor of today’s operating system),
which read the first job from tape and ran it. The output was written onto a sec-
ond tape, instead of being printed. After each job finished, the operating system
automatically read the next job from the tape and began running it. When the
whole batch was done, the operator removed the input and output tapes, replaced
the input tape with the next batch, and brought the output tape to a 1401 for print-
ing off line (i.e., not connected to the main computer).

The structure of a typical input job is shown in Fig. 1-3. It started out with a
$JOB card, specifying the maximum run time in minutes, the account number to
be charged, and the programmer’s name. Then came a $FORTRAN card, telling
the operating system to load the FORTRAN compiler from the system tape. It
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was followed by the program to be compiled, and then a $LOAD card, directing
the operating system to load the object program just compiled. (Compiled pro-
grams were often written on scratch tapes and had to be loaded explicitly.) Next
came the $RUN card, telling the operating system to run the program with the
data following it. Finally, the $END card marked the end of the job. These prim-
itive control cards were the forerunners of modern job control languages and com-
mand interpreters.

$JOB, 10,6610802, MARVIN TANENBAUM

$FORTRAN

$LOAD

$RUN

$END

Fortran program

Data for program

Figure 1-3. Structure of a typical FMS job.

Large second-generation computers were used mostly for scientific and en-
gineering calculations, such as solving the partial differential equations that often
occur in physics and engineering. They were largely programmed in FORTRAN
and assembly language. Typical operating systems were FMS (the Fortran Moni-
tor System) and IBSYS, IBM’s operating system for the 7094.

1.2.3 The Third Generation (1965–1980) ICs and Multiprogramming

By the early 1960s, most computer manufacturers had two distinct, and totally
incompatible, product lines. On the one hand there were the word-oriented,
large-scale scientific computers, such as the 7094, which were used for numerical
calculations in science and engineering. On the other hand, there were the
character-oriented, commercial computers, such as the 1401, which were widely
used for tape sorting and printing by banks and insurance companies.

Developing, maintaining, and marketing two completely different product
lines was an expensive proposition for the computer manufacturers. In addition,
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many new computer customers initially needed a small machine but later outgrew
it and wanted a bigger machine that had the same architectures as their current
one so it could run all their old programs, but faster.

IBM attempted to solve both of these problems at a single stroke by introduc-
ing the System/360. The 360 was a series of software-compatible machines rang-
ing from 1401-sized to much more powerful than the 7094. The machines dif-
fered only in price and performance (maximum memory, processor speed, number
of I/O devices permitted, and so forth). Since all the machines had the same
architecture and instruction set, programs written for one machine could run on all
the others, at least in theory. Furthermore, the 360 was designed to handle both
scientific (i.e., numerical) and commercial computing. Thus a single family of
machines could satisfy the needs of all customers. In subsequent years, IBM has
come out with compatible successors to the 360 line, using more modern technol-
ogy, known as the 370, 4300, 3080, 3090, and Z series.

The 360 was the first major computer line to use (small-scale) Integrated Cir-
cuits (ICs), thus providing a major price/performance advantage over the second-
generation machines, which were built up from individual transistors. It was an
immediate success, and the idea of a family of compatible computers was soon
adopted by all the other major manufacturers. The descendants of these machines
are still in use at computer centers today. Nowadays they are often used for man-
aging huge databases (e.g., for airline reservation systems) or as servers for World
Wide Web sites that must process thousands of requests per second.

The greatest strength of the ‘‘one family’’ idea was simultaneously its greatest
weakness. The intention was that all software, including the operating system,
OS/360, had to work on all models. It had to run on small systems, which often
just replaced 1401s for copying cards to tape, and on very large systems, which
often replaced 7094s for doing weather forecasting and other heavy computing. It
had to be good on systems with few peripherals and on systems with many peri-
pherals. It had to work in commercial environments and in scientific environ-
ments. Above all, it had to be efficient for all of these different uses.

There was no way that IBM (or anybody else) could write a piece of software
to meet all those conflicting requirements. The result was an enormous and
extraordinarily complex operating system, probably two to three orders of magni-
tude larger than FMS. It consisted of millions of lines of assembly language writ-
ten by thousands of programmers, and contained thousands upon thousands of
bugs, which necessitated a continuous stream of new releases in an attempt to
correct them. Each new release fixed some bugs and introduced new ones, so the
number of bugs probably remained constant in time.

One of the designers of OS/360, Fred Brooks, subsequently wrote a witty and
incisive book describing his experiences with OS/360 (Brooks, 1995). While it
would be impossible to summarize the book here, suffice it to say that the cover
shows a herd of prehistoric beasts stuck in a tar pit. The cover of Silberschatz et
al. (2004) makes a similar point about operating systems being dinosaurs.
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Despite its enormous size and problems, OS/360 and the similar third-
generation operating systems produced by other computer manufacturers actually
satisfied most of their customers reasonably well. They also popularized several
key techniques absent in second-generation operating systems. Probably the most
important of these was multiprogramming. On the 7094, when the current job
paused to wait for a tape or other I/O operation to complete, the CPU simply sat
idle until the I/O finished. With heavily CPU-bound scientific calculations, I/O is
infrequent, so this wasted time is not significant. With commercial data process-
ing, the I/O wait time can often be 80 or 90 percent of the total time, so something
had to be done to avoid having the (expensive) CPU be idle so much.

The solution that evolved was to partition memory into several pieces, with a
different job in each partition, as shown in Fig. 1-4. While one job was waiting
for I/O to complete, another job could be using the CPU. If enough jobs could be
held in main memory at once, the CPU could be kept busy nearly 100 percent of
the time. Having multiple jobs safely in memory at once requires special hard-
ware to protect each job against snooping and mischief by the other ones, but the
360 and other third-generation systems were equipped with this hardware.

Job 3

Job 2

Job 1

Operating
system

Memory
partitions

Figure 1-4. A multiprogramming system with three jobs in memory.

Another major feature present in third-generation operating systems was the
ability to read jobs from cards onto the disk as soon as they were brought to the
computer room. Then, whenever a running job finished, the operating system
could load a new job from the disk into the now-empty partition and run it. This
technique is called spooling (from Simultaneous Peripheral Operation On Line)
and was also used for output. With spooling, the 1401s were no longer needed,
and much carrying of tapes disappeared.

Although third-generation operating systems were well suited for big scien-
tific calculations and massive commercial data processing runs, they were still
basically batch systems. Many programmers pined for the first-generation days
when they had the machine all to themselves for a few hours, so they could debug
their programs quickly. With third-generation systems, the time between submit-
ting a job and getting back the output was often hours, so a single misplaced
comma could cause a compilation to fail, and the programmer to waste half a day.

This desire for quick response time paved the way for timesharing, a variant
of multiprogramming, in which each user has an online terminal. In a timesharing
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system, if 20 users are logged in and 17 of them are thinking or talking or drinking
coffee, the CPU can be allocated in turn to the three jobs that want service. Since
people debugging programs usually issue short commands (e.g., compile a five-
page procedure†) rather than long ones (e.g., sort a million-record file), the com-
puter can provide fast, interactive service to a number of users and perhaps also
work on big batch jobs in the background when the CPU is otherwise idle. The
first serious timesharing system, CTSS (Compatible Time Sharing System), was
developed at M.I.T. on a specially modified 7094 (Corbató et al., 1962). How-
ever, timesharing did not really become popular until the necessary protection
hardware became widespread during the third generation.

After the success of the CTSS system, MIT, Bell Labs, and General Electric
(then a major computer manufacturer) decided to embark on the development of a
‘‘computer utility,’’ a machine that would support hundreds of simultaneous
timesharing users. Their model was the electricity distribution system—when you
need electric power, you just stick a plug in the wall, and within reason, as much
power as you need will be there. The designers of this system, known as MUL-
TICS (MULTiplexed Information and Computing Service), envisioned one huge
machine providing computing power for everyone in the Boston area. The idea
that machines far more powerful than their GE-645 mainframe would be sold for
under a thousand dollars by the millions only 30 years later was pure science fic-
tion, like the idea of supersonic trans-Atlantic undersea trains would be now.

MULTICS was a mixed success. It was designed to support hundreds of users
on a machine only slightly more powerful than an Intel 80386-based PC, although
it had much more I/O capacity. This is not quite as crazy as it sounds, since peo-
ple knew how to write small, efficient programs in those days, a skill that has sub-
sequently been lost. There were many reasons that MULTICS did not take over
the world, not the least of which is that it was written in PL/I, and the PL/I com-
piler was years late and barely worked at all when it finally arrived. In addition,
MULTICS was enormously ambitious for its time, much like Charles Babbage’s
analytical engine in the nineteenth century.

MULTICS introduced many seminal ideas into the computer literature, but
turning it into a serious product and a commercial success was a lot harder than
anyone had expected. Bell Labs dropped out of the project, and General Electric
quit the computer business altogether. However, M.I.T. persisted and eventually
got MULTICS working. It was ultimately sold as a commercial product by the
company that bought GE’s computer business (Honeywell) and installed by about
80 major companies and universities worldwide. While their numbers were small,
MULTICS users were fiercely loyal. General Motors, Ford, and the U.S. National
Security Agency, for example, only shut down their MULTICS systems in the late
1990s. The last MULTICS running, at the Canadian Department of National
Defence, shut down in October 2000. Despite its lack of commercial success,
������������������������������������������������

† We will use the terms ‘‘procedure,’’ ‘‘subroutine,’’ and ‘‘function’’ interchangeably in this book.
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MULTICS had a huge influence on subsequent operating systems. A great deal of
information about it exists (Corbató et al., 1972; Corbató and Vyssotsky, 1965;
Daley and Dennis, 1968; Organick, 1972; and Saltzer, 1974). It also has a still-
active Web site, www.multicians.org, with a great deal of information about the
system, its designers, and its users.

The phrase ‘‘computer utility’’ is no longer heard, but the idea has gained new
life in recent years. In its simplest form, PCs or workstations (high-end PCs) in a
business or a classroom may be connected via a LAN (Local Area Network) to a
file server on which all programs and data are stored. An administrator then has
to install and protect only one set of programs and data, and can easily reinstall
local software on a malfunctioning PC or workstation without worrying about
retrieving or preserving local data. In more heterogeneous environments, a class
of software called middleware has evolved to bridge the gap between local users
and the files, programs, and databases they use on remote servers. Middleware
makes networked computers look local to individual users’ PCs or workstations
and presents a consistent user interface even though there may be a wide variety
of different servers, PCs, and workstations in use. The World Wide Web is an
example. A web browser presents documents to a user in a uniform way, and a
document as seen on a user’s browser can consist of text from one server and
graphics from another server, presented in a format determined by a style sheet on
yet another server. Businesses and universities commonly use a web interface to
access databases and run programs on a computer in another building or even
another city. Middleware appears to be the operating system of a distributed sys-
tem, but it is not really an operating system at all, and is beyond the scope of this
book. For more on distributed systems see Tanenbaum and Van Steen (2002).

Another major development during the third generation was the phenomenal
growth of minicomputers, starting with the Digital Equipment Company (DEC)
PDP-1 in 1961. The PDP-1 had only 4K of 18-bit words, but at $120,000 per ma-
chine (less than 5 percent of the price of a 7094), it sold like hotcakes. For certain
kinds of nonnumerical work, it was almost as fast as the 7094 and gave birth to a
whole new industry. It was quickly followed by a series of other PDPs (unlike
IBM’s family, all incompatible) culminating in the PDP-11.

One of the computer scientists at Bell Labs who had worked on the MULTICS
project, Ken Thompson, subsequently found a small PDP-7 minicomputer that no
one was using and set out to write a stripped-down, one-user version of MULTICS.
This work later developed into the UNIX operating system, which became popular
in the academic world, with government agencies, and with many companies.

The history of UNIX has been told elsewhere (e.g., Salus, 1994). Because the
source code was widely available, various organizations developed their own
(incompatible) versions, which led to chaos. Two major versions developed, Sys-
tem V, from AT&T, and BSD, (Berkeley Software Distribution) from the Univer-
sity of California at Berkeley. These had minor variants as well, now including
FreeBSD, OpenBSD, and NetBSD. To make it possible to write programs that

www.multicians.org
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could run on any UNIX system, IEEE developed a standard for UNIX, called
POSIX, that most versions of UNIX now support. POSIX defines a minimal sys-
tem call interface that conformant UNIX systems must support. In fact, some
other operating systems now also support the POSIX interface. The information
needed to write POSIX-compliant software is available in books (IEEE, 1990;
Lewine, 1991), and online as the Open Group’s ‘‘Single UNIX Specification’’ at
www.unix.org. Later in this chapter, when we refer to UNIX, we mean all of these
systems as well, unless stated otherwise. While they differ internally, all of them
support the POSIX standard, so to the programmer they are quite similar.

1.2.4 The Fourth Generation (1980–Present) Personal Computers

With the development of LSI (Large Scale Integration) circuits, chips contain-
ing thousands of transistors on a square centimeter of silicon, the age of the
microprocessor-based personal computer dawned. In terms of architecture, per-
sonal computers (initially called microcomputers) were not all that different
from minicomputers of the PDP-11 class, but in terms of price they certainly were
different. The minicomputer made it possible for a department in a company or
university to have its own computer. The microcomputer made it possible for an
individual to have his or her own computer.

There were several families of microcomputers. Intel came out with the 8080,
the first general-purpose 8-bit microprocessor, in 1974. A number of companies
produced complete systems using the 8080 (or the compatible Zilog Z80) and the
CP/M (Control Program for Microcomputers) operating system from a company
called Digital Research was widely used with these. Many application programs
were written to run on CP/M, and it dominated the personal computing world for
about 5 years.

Motorola also produced an 8-bit microprocessor, the 6800. A group of
Motorola engineers left to form MOS Technology and manufacture the 6502 CPU
after Motorola rejected their suggested improvements to the 6800. The 6502 was
the CPU of several early systems. One of these, the Apple II, became a major
competitor for CP/M systems in the home and educational markets. But CP/M was
so popular that many owners of Apple II computers purchased Z-80 coprocessor
add-on cards to run CP/M, since the 6502 CPU was not compatible with CP/M.
The CP/M cards were sold by a little company called Microsoft, which also had a
market niche supplying BASIC interpreters used by a number of microcomputers
running CP/M.

The next generation of microprocessors were 16-bit systems. Intel came out
with the 8086, and in the early 1980s, IBM designed the IBM PC around Intel’s
8088 (an 8086 on the inside, with an 8 bit external data path). Microsoft offered
IBM a package which included Microsoft’s BASIC and an operating system, DOS
(Disk Operating System) originally developed by another company—Microsoft
bought the product and hired the original author to improve it. The revised system

www.unix.org
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was renamed MS-DOS (MicroSoft Disk Operating System) and quickly came to
dominate the IBM PC market.

CP/M, MS-DOS, and the Apple DOS were all command-line systems: users
typed commands at the keyboard. Years earlier, Doug Engelbart at Stanford
Research Institute had invented the GUI (Graphical User Interface), pro-
nounced ‘‘gooey,’’ complete with windows, icons, menus, and mouse. Apple’s
Steve Jobs saw the possibility of a truly user-friendly personal computer (for
users who knew nothing about computers and did not want to learn), and the
Apple Macintosh was announced in early 1984. It used Motorola’s 16-bit 68000
CPU, and had 64 KB of ROM (Read Only Memory), to support the GUI. The
Macintosh has evolved over the years. Subsequent Motorola CPUs were true 32-
bit systems, and later still Apple moved to IBM PowerPC CPUs, with RISC 32-bit
(and later, 64-bit) architecture. In 2001 Apple made a major operating system
change, releasing Mac OS X, with a new version of the Macintosh GUI on top of
Berkeley UNIX. And in 2005 Apple announced that it would be switching to Intel
processors.

To compete with the Macintosh, Microsoft invented Windows. Originally
Windows was just a graphical environment on top of 16-bit MS-DOS (i.e., it was
more like a shell than a true operating system). However, current versions of
Windows are descendants of Windows NT, a full 32-bit system, rewritten from
scratch.

The other major contender in the personal computer world is UNIX (and its
various derivatives). UNIX is strongest on workstations and other high-end com-
puters, such as network servers. It is especially popular on machines powered by
high-performance RISC chips. On Pentium-based computers, Linux is becoming
a popular alternative to Windows for students and increasingly many corporate
users. (Throughout this book we will use the term ‘‘Pentium’’ to mean the entire
Pentium family, including the low-end Celeron, the high end Xeon, and compati-
ble AMD microprocessors).

Although many UNIX users, especially experienced programmers, prefer a
command-based interface to a GUI, nearly all UNIX systems support a windowing
system called the X Window system developed at M.I.T. This system handles the
basic window management, allowing users to create, delete, move, and resize
windows using a mouse. Often a complete GUI, such as Motif, is available to run
on top of the X Window system giving UNIX a look and feel something like the
Macintosh or Microsoft Windows for those UNIX users who want such a thing.

An interesting development that began taking place during the mid-1980s is
the growth of networks of personal computers running network operating sys-
tems and distributed operating systems (Tanenbaum and Van Steen, 2002). In
a network operating system, the users are aware of the existence of multiple com-
puters and can log in to remote machines and copy files from one machine to
another. Each machine runs its own local operating system and has its own local
user (or users). Basically, the machines are independent of one another.
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Network operating systems are not fundamentally different from single-
processor operating systems. They obviously need a network interface controller
and some low-level software to drive it, as well as programs to achieve remote
login and remote file access, but these additions do not change the essential struc-
ture of the operating system.

A distributed operating system, in contrast, is one that appears to its users as a
traditional uniprocessor system, even though it is actually composed of multiple
processors. The users should not be aware of where their programs are being run
or where their files are located; that should all be handled automatically and effi-
ciently by the operating system.

True distributed operating systems require more than just adding a little code
to a uniprocessor operating system, because distributed and centralized systems
differ in critical ways. Distributed systems, for example, often allow applications
to run on several processors at the same time, thus requiring more complex pro-
cessor scheduling algorithms in order to optimize the amount of parallelism.

Communication delays within the network often mean that these (and other)
algorithms must run with incomplete, outdated, or even incorrect information.
This situation is radically different from a single-processor system in which the
operating system has complete information about the system state.

1.2.5 History of MINIX 3

When UNIX was young (Version 6), the source code was widely available,
under AT&T license, and frequently studied. John Lions, of the University of
New South Wales in Australia, even wrote a little booklet describing its operation,
line by line (Lions, 1996). This booklet was used (with permission of AT&T) as a
text in many university operating system courses.

When AT&T released Version 7, it dimly began to realize that UNIX was a
valuable commercial product, so it issued Version 7 with a license that prohibited
the source code from being studied in courses, in order to avoid endangering its
status as a trade secret. Many universities complied by simply dropping the study
of UNIX and teaching only theory.

Unfortunately, teaching only theory leaves the student with a lopsided view of
what an operating system is really like. The theoretical topics that are usually
covered in great detail in courses and books on operating systems, such as
scheduling algorithms, are in practice not really that important. Subjects that
really are important, such as I/O and file systems, are generally neglected because
there is little theory about them.

To remedy this situation, one of the authors of this book (Tanenbaum) decided
to write a new operating system from scratch that would be compatible with UNIX
from the user’s point of view, but completely different on the inside. By not using
even one line of AT&T code, this system avoided the licensing restrictions, so it
could be used for class or individual study. In this manner, readers could dissect a
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real operating system to see what is inside, just as biology students dissect frogs.
It was called MINIX and was released in 1987 with its complete source code for
anyone to study or modify. The name MINIX stands for mini-UNIX because it is
small enough that even a nonguru can understand how it works.

In addition to the advantage of eliminating the legal problems, MINIX had
another advantage over UNIX. It was written a decade after UNIX and was struc-
tured in a more modular way. For instance, from the very first release of MINIX
the file system and the memory manager were not part of the operating system at
all but ran as user programs. In the current release (MINIX 3) this modularization
has been extended to the I/O device drivers, which (with the exception of the
clock driver) all run as user programs. Another difference is that UNIX was
designed to be efficient; MINIX was designed to be readable (inasmuch as one can
speak of any program hundreds of pages long as being readable). The MINIX
code, for example, has thousands of comments in it.

MINIX was originally designed for compatibility with Version 7 (V7) UNIX.
Version 7 was used as the model because of its simplicity and elegance. It is
sometimes said that Version 7 was an improvement not only over all its predeces-
sors, but also over all its successors. With the advent of POSIX, MINIX began
evolving toward the new standard, while maintaining backward compatibility with
existing programs. This kind of evolution is common in the computer industry, as
no vendor wants to introduce a new system that none of its existing customers can
use without great upheaval. The version of MINIX described in this book, MINIX
3, is based on the POSIX standard.

Like UNIX, MINIX was written in the C programming language and was in-
tended to be easy to port to various computers. The initial implementation was
for the IBM PC. MINIX was subsequently ported to several other platforms. In
keeping with the ‘‘Small is Beautiful’’ philosophy, MINIX originally did not even
require a hard disk to run (in the mid-1980s hard disks were still an expensive
novelty). As MINIX grew in functionality and size, it eventually got to the point
that a hard disk was needed for PCs, but in keeping with the MINIX philosophy, a
200-MB partition is sufficient (for embedded applications, no hard disk is
required though). In contrast, even small Linux systems require 500-MB of disk
space, and several GB will be needed to install common applications.

To the average user sitting at an IBM PC, running MINIX is similar to running
UNIX. All of the basic programs, such as cat, grep, ls, make, and the shell are
present and perform the same functions as their UNIX counterparts. Like the
operating system itself, all these utility programs have been rewritten completely
from scratch by the author, his students, and some other dedicated people, with no
AT&T or other proprietary code. Many other freely-distributable programs now
exist, and in many cases these have been successfully ported (recompiled) on
MINIX.

MINIX continued to develop for a decade and MINIX 2 was released in 1997,
together with the second edition of this book, which described the new release.
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The changes between versions 1 and 2 were substantial (e.g., from 16-bit real
mode on an 8088 using floppy disks to 32-bit protected mode on a 386 using a
hard disk) but evolutionary.

Development continued slowly but systematically until 2004, when Tanen-
baum became convinced that software was getting too bloated and unreliable and
decided to pick up the slightly-dormant MINIX thread again. Together with his
students and programmers at the Vrije Universiteit in Amsterdam, he produced
MINIX 3, a major redesign of the system, greatly restructuring the kernel, reducing
its size, and emphasizing modularity and reliability. The new version was in-
tended both for PCs and embedded systems, where compactness, modularity, and
reliability are crucial. While some people in the group called for a completely
new name, it was eventually decided to call it MINIX 3 since the name MINIX was
already well known. By way of analogy, when Apple abandoned it own operating
system, Mac OS 9 and replaced it with a variant of Berkeley UNIX, the name
chosen was Mac OS X rather than APPLIX or something like that. Similar funda-
mental changes have happened in the Windows family while retaining the Win-
dows name.

The MINIX 3 kernel is well under 4000 lines of executable code, compared to
millions of executable lines of code for Windows, Linux, FreeBSD, and other
operating systems. Small kernel size is important because kernel bugs are far
more devastating than bugs in user-mode programs and more code means more
bugs. One careful study has shown that the number of detected bugs per 1000
executable lines of code varies from 6 to 16 (Basili and Perricone, 1984). The
actual number of bugs is probably much higher since the researchers could only
count reported bugs, not unreported bugs. Yet another study (Ostrand et al., 2004)
showed that even after more than a dozen releases, on the average 6% of all files
contained bugs that were later reported and after a certain point the bug level
tends to stabilize rather than go asymptotically to zero. This result is supported by
the fact that when a very simple, automated, model-checker was let loose on
stable versions of Linux and OpenBSD, it found hundreds of kernel bugs,
overwhelmingly in device drivers (Chou et al., 2001; and Engler et al., 2001).
This is the reason the device drivers were moved out of the kernel in MINIX 3;
they can do less damage in user mode.

Throughout this book MINIX 3 will be used as an example. Most of the com-
ments about the MINIX 3 system calls, however (as opposed to comments about
the actual code), also apply to other UNIX systems. This remark should be kept in
mind when reading the text.

A few words about Linux and its relationship to MINIX may possibly be of in-
terest to some readers. Shortly after MINIX was released, a USENET newsgroup,
comp.os.minix, was formed to discuss it. Within weeks, it had 40,000 subscribers,
most of whom wanted to add vast numbers of new features to MINIX to make it
bigger and better (well, at least bigger). Every day, several hundred of them
offered suggestions, ideas, and frequently snippets of source code. The author of
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MINIX was able to successfully resist this onslaught for several years, in order to
keep MINIX clean enough for students to understand and small enough that it
could run on computers that students could afford. For people who thought little
of MS-DOS, the existence of MINIX (with source code) as an alternative was even
a reason to finally go out and buy a PC.

One of these people was a Finnish student named Linus Torvalds. Torvalds
installed MINIX on his new PC and studied the source code carefully. Torvalds
wanted to read USENET newsgroups (such as comp.os.minix) on his own PC
rather than at his university, but some features he needed were lacking in MINIX,
so he wrote a program to do that, but soon discovered he needed a different termi-
nal driver, so he wrote that too. Then he wanted to download and save postings,
so he wrote a disk driver, and then a file system. By Aug. 1991 he had produced a
primitive kernel. On Aug. 25, 1991, he announced it on comp.os.minix. This
announcement attracted other people to help him, and on March 13, 1994 Linux
1.0 was released. Thus was Linux born.

Linux has become one of the notable successes of the open source movement
(which MINIX helped start). Linux is challenging UNIX (and Windows) in many
environments, partly because commodity PCs which support Linux are now avail-
able with performance that rivals the proprietary RISC systems required by some
UNIX implementations. Other open source software, notably the Apache web
server and the MySQL database, work well with Linux in the commercial world.
Linux, Apache, MySQL, and the open source Perl and PHP programming lan-
guages are often used together on web servers and are sometimes referred to by
the acronym LAMP. For more on the history of Linux and open source software
see DiBona et al. (1999), Moody (2001), and Naughton (2000).

1.3 OPERATING SYSTEM CONCEPTS

The interface between the operating system and the user programs is defined
by the set of ‘‘extended instructions’’ that the operating system provides. These
extended instructions have been traditionally known as system calls, although
they can be implemented in several ways. To really understand what operating
systems do, we must examine this interface closely. The calls available in the
interface vary from operating system to operating system (although the underlying
concepts tend to be similar).

We are thus forced to make a choice between (1) vague generalities (‘‘operat-
ing systems have system calls for reading files’’) and (2) some specific system
(‘‘MINIX 3 has a read system call with three parameters: one to specify the file,
one to tell where the data are to be put, and one to tell how many bytes to read’’).

We have chosen the latter approach. It’s more work that way, but it gives
more insight into what operating systems really do. In Sec. 1.4 we will look
closely at the basic system calls present in UNIX (including the various versions
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of BSD), Linux, and MINIX 3. For simplicity’s sake, we will refer only to MINIX
3, but the corresponding UNIX and Linux system calls are based on POSIX in most
cases. Before we look at the actual system calls, however, it is worth taking a
bird’s-eye view of MINIX 3, to get a general feel for what an operating system is
all about. This overview applies equally well to UNIX and Linux, as mentioned
above.

The MINIX 3 system calls fall roughly in two broad categories: those dealing
with processes and those dealing with the file system. We will now examine each
of these in turn.

1.3.1 Processes

A key concept in MINIX 3, and in all operating systems, is the process. A
process is basically a program in execution. Associated with each process is its
address space, a list of memory locations from some minimum (usually 0) to
some maximum, which the process can read and write. The address space con-
tains the executable program, the program’s data, and its stack. Also associated
with each process is some set of registers, including the program counter, stack
pointer, and other hardware registers, and all the other information needed to run
the program.

We will come back to the process concept in much more detail in Chap. 2, but
for the time being, the easiest way to get a good intuitive feel for a process is to
think about multiprogramming systems. Periodically, the operating system
decides to stop running one process and start running another, for example, be-
cause the first one has had more than its share of CPU time in the past second.

When a process is suspended temporarily like this, it must later be restarted in
exactly the same state it had when it was stopped. This means that all information
about the process must be explicitly saved somewhere during the suspension. For
example, the process may have several files open for reading at once. Associated
with each of these files is a pointer giving the current position (i.e., the number of
the byte or record to be read next). When a process is temporarily suspended, all
these pointers must be saved so that a read call executed after the process is re-
started will read the proper data. In many operating systems, all the information
about each process, other than the contents of its own address space, is stored in
an operating system table called the process table, which is an array (or linked
list) of structures, one for each process currently in existence.

Thus, a (suspended) process consists of its address space, usually called the
core image (in honor of the magnetic core memories used in days of yore), and its
process table entry, which contains its registers, among other things.

The key process management system calls are those dealing with the creation
and termination of processes. Consider a typical example. A process called the
command interpreter or shell reads commands from a terminal. The user has
just typed a command requesting that a program be compiled. The shell must
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now create a new process that will run the compiler. When that process has fin-
ished the compilation, it executes a system call to terminate itself.

On Windows and other operating systems that have a GUI, (double) clicking
on a desktop icon launches a program in much the same way as typing its name at
the command prompt. Although we will not discuss GUIs much, they are really
simple command interpreters.

If a process can create one or more other processes (usually referred to as
child processes) and these processes in turn can create child processes, we
quickly arrive at the process tree structure of Fig. 1-5. Related processes that are
cooperating to get some job done often need to communicate with one another
and synchronize their activities. This communication is called interprocess com-
munication, and will be addressed in detail in Chap. 2.

A

B

D E F

C

Figure 1-5. A process tree. Process A created two child processes, B and C.
Process B created three child processes, D, E, and F.

Other process system calls are available to request more memory (or release
unused memory), wait for a child process to terminate, and overlay its program
with a different one.

Occasionally, there is a need to convey information to a running process that
is not sitting around waiting for it. For example, a process that is communicating
with another process on a different computer does so by sending messages to the
remote process over a network. To guard against the possibility that a message or
its reply is lost, the sender may request that its own operating system notify it af-
ter a specified number of seconds, so that it can retransmit the message if no
acknowledgement has been received yet. After setting this timer, the program
may continue doing other work.

When the specified number of seconds has elapsed, the operating system sends
an alarm signal to the process. The signal causes the process to temporarily
suspend whatever it was doing, save its registers on the stack, and start running a
special signal handling procedure, for example, to retransmit a presumably lost
message. When the signal handler is done, the running process is restarted in the
state it was in just before the signal. Signals are the software analog of hardware
interrupts. They are generated by a variety of causes in addition to timers ex-
piring. Many traps detected by hardware, such as executing an illegal instruction
or using an invalid address, are also converted into signals to the guilty process.
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Each person authorized to use a MINIX 3 system is assigned a UID (User
IDentification) by the system administrator. Every process started has the UID of
the person who started it. A child process has the same UID as its parent. Users
can be members of groups, each of which has a GID (Group IDentification).

One UID, called the superuser (in UNIX), has special power and may violate
many of the protection rules. In large installations, only the system administrator
knows the password needed to become superuser, but many of the ordinary users
(especially students) devote considerable effort to trying to find flaws in the sys-
tem that allow them to become superuser without the password.

We will study processes, interprocess communication, and related issues in
Chap. 2.

1.3.2 Files

The other broad category of system calls relates to the file system. As noted
before, a major function of the operating system is to hide the peculiarities of the
disks and other I/O devices and present the programmer with a nice, clean abstract
model of device-independent files. System calls are obviously needed to create
files, remove files, read files, and write files. Before a file can be read, it must be
opened, and after it has been read it should be closed, so calls are provided to do
these things.

To provide a place to keep files, MINIX 3 has the concept of a directory as a
way of grouping files together. A student, for example, might have one directory
for each course he is taking (for the programs needed for that course), another
directory for his electronic mail, and still another directory for his World Wide
Web home page. System calls are then needed to create and remove directories.
Calls are also provided to put an existing file into a directory, and to remove a file
from a directory. Directory entries may be either files or other directories. This
model also gives rise to a hierarchy—the file system—as shown in Fig. 1-6.

The process and file hierarchies both are organized as trees, but the similarity
stops there. Process hierarchies usually are not very deep (more than three levels
is unusual), whereas file hierarchies are commonly four, five, or even more levels
deep. Process hierarchies are typically short-lived, generally a few minutes at
most, whereas the directory hierarchy may exist for years. Ownership and protec-
tion also differ for processes and files. Typically, only a parent process may con-
trol or even access a child process, but mechanisms nearly always exist to allow
files and directories to be read by a wider group than just the owner.

Every file within the directory hierarchy can be specified by giving its path
name from the top of the directory hierarchy, the root directory. Such absolute
path names consist of the list of directories that must be traversed from the root
directory to get to the file, with slashes separating the components. In Fig. 1-6,
the path for file CS101 is /Faculty/Prof.Brown/Courses/CS101. The leading slash
indicates that the path is absolute, that is, starting at the root directory. As an
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Root directory

Students Faculty

Leo Prof.Brown

Files

Courses

CS101 CS105

Papers Grants

SOSP COST-11

Committees

Prof.Green Prof.WhiteMattyRobbert

Figure 1-6. A file system for a university department.

aside, in Windows, the backslash (\) character is used as the separator instead of
the slash (/) character, so the file path given above would be written as
\Faculty\Prof.Brown\Courses\CS101. Throughout this book we will use the UNIX
convention for paths.

At every instant, each process has a current working directory, in which path
names not beginning with a slash are looked for. As an example, in Fig. 1-6, if
/Faculty/Prof.Brown were the working directory, then use of the path name
Courses/CS101 would yield the same file as the absolute path name given above.
Processes can change their working directory by issuing a system call specifying
the new working directory.

Files and directories in MINIX 3 are protected by assigning each one an 11-bit
binary protection code. The protection code consists of three 3-bit fields: one for
the owner, one for other members of the owner’s group (users are divided into
groups by the system administrator), one for everyone else, and 2 bits we will dis-
cuss later. Each field has a bit for read access, a bit for write access, and a bit for
execute access. These 3 bits are known as the rwx bits. For example, the protec-
tion code rwxr-x--x means that the owner can read, write, or execute the file, other
group members can read or execute (but not write) the file, and everyone else can
execute (but not read or write) the file. For a directory (as opposed to a file), x
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indicates search permission. A dash means that the corresponding permission is
absent (the bit is zero).

Before a file can be read or written, it must be opened, at which time the per-
missions are checked. If access is permitted, the system returns a small integer
called a file descriptor to use in subsequent operations. If the access is prohi-
bited, an error code (−1) is returned.

Another important concept in MINIX 3 is the mounted file system. Nearly all
personal computers have one or more CD-ROM drives into which CD-ROMs can
be inserted and removed. To provide a clean way to deal with removable media
(CD-ROMs, DVDs, floppies, Zip drives, etc.), MINIX 3 allows the file system on
a CD-ROM to be attached to the main tree. Consider the situation of Fig. 1-7(a).
Before the mount call, the root file system, on the hard disk, and a second file
system, on a CD-ROM, are separate and unrelated.

Floppy

a b

c d c d

a bx y

x y

(a) (b)

Root Root

Figure 1-7. (a) Before mounting, the files on drive 0 are not accessible. (b)
After mounting, they are part of the file hierarchy.

However, the file system on the CD-ROM cannot be used, because there is no
way to specify path names on it. MINIX 3 does not allow path names to be pre-
fixed by a drive name or number; that is precisely the kind of device dependence
that operating systems ought to eliminate. Instead, the mount system call allows
the file system on the CD-ROM to be attached to the root file system wherever the
program wants it to be. In Fig. 1-7(b) the file system on drive 0 has been mounted
on directory b, thus allowing access to files /b/x and /b/y. If directory b had origi-
nally contained any files they would not be accessible while the CD-ROM was
mounted, since /b would refer to the root directory of drive 0. (Not being able to
access these files is not as serious as it at first seems: file systems are nearly
always mounted on empty directories.) If a system contains multiple hard disks,
they can all be mounted into a single tree as well.

Another important concept in MINIX 3 is the special file. Special files are
provided in order to make I/O devices look like files. That way, they can be read
and written using the same system calls as are used for reading and writing files.
Two kinds of special files exist: block special files and character special files.
Block special files are normally used to model devices that consist of a collection
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of randomly addressable blocks, such as disks. By opening a block special file
and reading, say, block 4, a program can directly access the fourth block on the
device, without regard to the structure of the file system contained on it. Simi-
larly, character special files are used to model printers, modems, and other
devices that accept or output a character stream. By convention, the special files
are kept in the /dev directory. For example, /dev/lp might be the line printer.

The last feature we will discuss in this overview is one that relates to both
processes and files: pipes. A pipe is a sort of pseudofile that can be used to con-
nect two processes, as shown in Fig. 1-8. If processes A and B wish to talk using
a pipe, they must set it up in advance. When process A wants to send data to
process B, it writes on the pipe as though it were an output file. Process B can
read the data by reading from the pipe as though it were an input file. Thus, com-
munication between processes in MINIX 3 looks very much like ordinary file
reads and writes. Stronger yet, the only way a process can discover that the out-
put file it is writing on is not really a file, but a pipe, is by making a special sys-
tem call.

Process
Pipe

Process

A B

Figure 1-8. Two processes connected by a pipe.

1.3.3 The Shell

The operating system is the code that carries out the system calls. Editors,
compilers, assemblers, linkers, and command interpreters definitely are not part of
the operating system, even though they are important and useful. At the risk of
confusing things somewhat, in this section we will look briefly at the MINIX 3
command interpreter, called the shell. Although it is not part of the operating sys-
tem, it makes heavy use of many operating system features and thus serves as a
good example of how the system calls can be used. It is also the primary interface
between a user sitting at his terminal and the operating system, unless the user is
using a graphical user interface. Many shells exist, including csh, ksh, zsh, and
bash. All of them support the functionality described below, which derives from
the original shell (sh).

When any user logs in, a shell is started up. The shell has the terminal as
standard input and standard output. It starts out by typing the prompt, a character
such as a dollar sign, which tells the user that the shell is waiting to accept a com-
mand. If the user now types

date
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for example, the shell creates a child process and runs the date program as the
child. While the child process is running, the shell waits for it to terminate.
When the child finishes, the shell types the prompt again and tries to read the next
input line.

The user can specify that standard output be redirected to a file, for example,

date >file

Similarly, standard input can be redirected, as in

sort <file1 >file2

which invokes the sort program with input taken from file1 and output sent to
file2.

The output of one program can be used as the input for another program by
connecting them with a pipe. Thus

cat file1 file2 file3 | sort >/dev/lp

invokes the cat program to concatenate three files and send the output to sort to
arrange all the lines in alphabetical order. The output of sort is redirected to the
file /dev/lp, typically the printer.

If a user puts an ampersand after a command, the shell does not wait for it to
complete. Instead it just gives a prompt immediately. Consequently,

cat file1 file2 file3 | sort >/dev/lp &

starts up the sort as a background job, allowing the user to continue working nor-
mally while the sort is going on. The shell has a number of other interesting fea-
tures, which we do not have space to discuss here. Most books for UNIX
beginners are useful for MINIX 3 users who want to learn more about using the
system. Examples are Ray and Ray (2003) and Herborth (2005).

1.4 SYSTEM CALLS

Armed with our general knowledge of how MINIX 3 deals with processes and
files, we can now begin to look at the interface between the operating system and
its application programs, that is, the set of system calls. Although this discussion
specifically refers to POSIX (International Standard 9945-1), hence also to MINIX
3, UNIX, and Linux, most other modern operating systems have system calls that
perform the same functions, even if the details differ. Since the actual mechanics
of issuing a system call are highly machine dependent, and often must be ex-
pressed in assembly code, a procedure library is provided to make it possible to
make system calls from C programs.

It is useful to keep the following in mind: any single-CPU computer can exe-
cute only one instruction at a time. If a process is running a user program in user
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mode and needs a system service, such as reading data from a file, it has to exe-
cute a trap or system call instruction to transfer control to the operating system.
The operating system then figures out what the calling process wants by inspect-
ing the parameters. Then it carries out the system call and returns control to the
instruction following the system call. In a sense, making a system call is like
making a special kind of procedure call, only system calls enter the kernel or other
privileged operating system components and procedure calls do not.

To make the system call mechanism clearer, let us take a quick look at read.
It has three parameters: the first one specifying the file, the second one specifying
the buffer, and the third one specifying the number of bytes to read. A call to
read from a C program might look like this:

count = read(fd, buffer, nbytes);

The system call (and the library procedure) return the number of bytes actually
read in count. This value is normally the same as nbytes, but may be smaller, if,
for example, end-of-file is encountered while reading.

If the system call cannot be carried out, either due to an invalid parameter or a
disk error, count is set to −1, and the error number is put in a global variable,
errno. Programs should always check the results of a system call to see if an error
occurred.

MINIX 3 has a total of 53 main system calls. These are listed in Fig. 1-9,
grouped for convenience in six categories. A few other calls exist, but they have
very specialized uses so we will omit them here. In the following sections we will
briefly examine each of the calls of Fig. 1-9 to see what it does. To a large extent,
the services offered by these calls determine most of what the operating system
has to do, since the resource management on personal computers is minimal (at
least compared to big machines with many users).

This is a good place to point out that the mapping of POSIX procedure calls
onto system calls is not necessarily one-to-one. The POSIX standard specifies a
number of procedures that a conformant system must supply, but it does not
specify whether they are system calls, library calls, or something else. In some
cases, the POSIX procedures are supported as library routines in MINIX 3. In oth-
ers, several required procedures are only minor variations of one another, and one
system call handles all of them.

1.4.1 System Calls for Process Management

The first group of calls in Fig. 1-9 deals with process management. Fork is a
good place to start the discussion. Fork is the only way to create a new process in
MINIX 3. It creates an exact duplicate of the original process, including all the
file descriptors, registers—everything. After the fork, the original process and the
copy (the parent and child) go their separate ways. All the variables have identi-
cal values at the time of the fork, but since the parent’s data are copied to create
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���������������������������������������������������������������������������������������������������
Process management pid = fork() Create a child process identical to the parent

pid = waitpid(pid, &statloc, opts) Wait for a child to terminate
s = wait(&status) Old version of waitpid
s = execve(name, argv, envp) Replace a process core image
exit(status) Terminate process execution and return status
size = brk(addr) Set the size of the data segment
pid = getpid() Return the caller’s process id
pid = getpgrp() Return the id of the caller’s process group
pid = setsid() Create a new session and return its proc. group id
l = ptrace(req, pid, addr, data) Used for debugging���������������������������������������������������������������������������������������������������

Signals s = sigaction(sig, &act, &oldact) Define action to take on signals
s = sigreturn(&context) Return from a signal
s = sigprocmask(how, &set, &old) Examine or change the signal mask
s = sigpending(set) Get the set of blocked signals
s = sigsuspend(sigmask) Replace the signal mask and suspend the process
s = kill(pid, sig) Send a signal to a process
residual = alarm(seconds) Set the alarm clock
s = pause() Suspend the caller until the next signal���������������������������������������������������������������������������������������������������

File Management fd = creat(name, mode) Obsolete way to create a new file
fd = mknod(name, mode, addr) Create a regular, special, or directory i-node
fd = open(file, how, ...) Open a file for reading, writing or both
s = close(fd) Close an open file
n = read(fd, buffer, nbytes) Read data from a file into a buffer
n = write(fd, buffer, nbytes) Write data from a buffer into a file
pos = lseek(fd, offset, whence) Move the file pointer
s = stat(name, &buf) Get a file’s status information
s = fstat(fd, &buf) Get a file’s status information
fd = dup(fd) Allocate a new file descriptor for an open file
s = pipe(&fd[0]) Create a pipe
s = ioctl(fd, request, argp) Perform special operations on a file
s = access(name, amode) Check a file’s accessibility
s = rename(old, new) Give a file a new name
s = fcntl(fd, cmd, ...) File locking and other operations���������������������������������������������������������������������������������������������������

Dir. & File System Mgt. s = mkdir(name, mode) Create a new directory
s = rmdir(name) Remove an empty directory
s = link(name1, name2) Create a new entry, name2, pointing to name1
s = unlink(name) Remove a directory entry
s = mount(special, name, flag) Mount a file system
s = umount(special) Unmount a file system
s = sync() Flush all cached blocks to the disk
s = chdir(dirname) Change the working directory
s = chroot(dirname) Change the root directory���������������������������������������������������������������������������������������������������

Protection s = chmod(name, mode) Change a file’s protection bits
uid = getuid() Get the caller’s uid
gid = getgid() Get the caller’s gid
s = setuid(uid) Set the caller’s uid
s = setgid(gid) Set the caller’s gid
s = chown(name, owner, group) Change a file’s owner and group
oldmask = umask(complmode) Change the mode mask���������������������������������������������������������������������������������������������������

Time Management seconds = time(&seconds) Get the elapsed time since Jan. 1, 1970
s = stime(tp) Set the elapsed time since Jan. 1, 1970
s = utime(file, timep) Set a file’s "last access" time
s = times(buffer) Get the user and system times used so far����������������������������������������������������������������������������������������������������
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Figure 1-9. The main MINIX system calls. fd is a file descriptor; n is a byte count.
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the child, subsequent changes in one of them do not affect the other one. (The
program text, which is unchangeable, is shared between parent and child.) The
fork call returns a value, which is zero in the child and equal to the child’s process
identifier or PID in the parent. Using the returned PID, the two processes can see
which one is the parent process and which one is the child process.

In most cases, after a fork, the child will need to execute different code from
the parent. Consider the shell. It reads a command from the terminal, forks off a
child process, waits for the child to execute the command, and then reads the next
command when the child terminates. To wait for the child to finish, the parent
executes a waitpid system call, which just waits until the child terminates (any
child if more than one exists). Waitpid can wait for a specific child, or for any old
child by setting the first parameter to −1. When waitpid completes, the address
pointed to by the second parameter, statloc, will be set to the child’s exit status
(normal or abnormal termination and exit value). Various options are also provi-
ded, specified by the third parameter. The waitpid call replaces the previous wait
call, which is now obsolete but is provided for reasons of backward compatibility.

Now consider how fork is used by the shell. When a command is typed, the
shell forks off a new process. This child process must execute the user command.
It does this by using the execve system call, which causes its entire core image to
be replaced by the file named in its first parameter. (Actually, the system call
itself is exec, but several different library procedures call it with different parame-
ters and slightly different names. We will treat these as system calls here.) A
highly simplified shell illustrating the use of fork, waitpid, and execve is shown in
Fig. 1-10.

#define TRUE 1

while (TRUE) { /* repeat forever */
type�prompt( ); /* display prompt on the screen */
read�command(command, parameters); /* read input from terminal */

if (fork( ) != 0) { /* fork off child process */
/* Parent code. */
waitpid(−1, &status, 0); /* wait for child to exit */

} else {
/* Child code. */
execve(command, parameters, 0); /* execute command */

}
}

Figure 1-10. A stripped-down shell. Throughout this book, TRUE is assumed
to be defined as 1.

In the most general case, execve has three parameters: the name of the file to
be executed, a pointer to the argument array, and a pointer to the environment
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array. These will be described shortly. Various library routines, including execl,
execv, execle, and execve, are provided to allow the parameters to be omitted or
specified in various ways. Throughout this book we will use the name exec to
represent the system call invoked by all of these.

Let us consider the case of a command such as

cp file1 file2

used to copy file1 to file2. After the shell has forked, the child process locates and
executes the file cp and passes to it the names of the source and target files.

The main program of cp (and main program of most other C programs) con-
tains the declaration

main(argc, argv, envp)

where argc is a count of the number of items on the command line, including the
program name. For the example above, argc is 3.

The second parameter, argv, is a pointer to an array. Element i of that array is
a pointer to the i-th string on the command line. In our example, argv[0] would
point to the string ‘‘cp’’, argv[1] would point to the string ‘‘file1’’, and argv[2]
would point to the string ‘‘file2’’.

The third parameter of main, envp, is a pointer to the environment, an array of
strings containing assignments of the form name=value used to pass information
such as the terminal type and home directory name to a program. In Fig. 1-10, no
environment is passed to the child, so the third parameter of execve is a zero.

If exec seems complicated, do not despair; it is (semantically) the most com-
plex of all the POSIX system calls. All the other ones are much simpler. As an
example of a simple one, consider exit, which processes should use when they are
finished executing. It has one parameter, the exit status (0 to 255), which is
returned to the parent via statloc in the waitpid system call. The low-order byte of
status contains the termination status, with 0 being normal termination and the
other values being various error conditions. The high-order byte contains the
child’s exit status (0 to 255). For example, if a parent process executes the state-
ment

n = waitpid(−1, &statloc, options);

it will be suspended until some child process terminates. If the child exits with,
say, 4 as the parameter to exit, the parent will be awakened with n set to the
child’s PID and statloc set to 0x0400 (the C convention of prefixing hexadecimal
constants with 0x will be used throughout this book).

Processes in MINIX 3 have their memory divided up into three segments: the
text segment (i.e., the program code), the data segment (i.e., the variables), and
the stack segment. The data segment grows upward and the stack grows down-
ward, as shown in Fig. 1-11. Between them is a gap of unused address space.
The stack grows into the gap automatically, as needed, but expansion of the data
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segment is done explicitly by using a system call, brk, which specifies the new
address where the data segment is to end. This address may be more than the
current value (data segment is growing) or less than the current value (data seg-
ment is shrinking). The parameter must, of course, be less than the stack pointer
or the data and stack segments would overlap, which is forbidden.

��
�

Address (hex)
FFFF

0000

Stack

Data

Text

Gap

Figure 1-11. Processes have three segments: text, data, and stack. In this exam-
ple, all three are in one address space, but separate instruction and data space is
also supported.

As a convenience for programmers, a library routine sbrk is provided that also
changes the size of the data segment, only its parameter is the number of bytes to
add to the data segment (negative parameters make the data segment smaller). It
works by keeping track of the current size of the data segment, which is the value
returned by brk, computing the new size, and making a call asking for that number
of bytes. The brk and sbrk calls, however, are not defined by the POSIX standard.
Programmers are encouraged to use the malloc library procedure for dynamically
allocating storage, and the underlying implementation of malloc was not thought
to be a suitable subject for standardization since few programmers use it directly.

The next process system call is also the simplest, getpid. It just returns the
caller’s PID. Remember that in fork, only the parent was given the child’s PID. If
the child wants to find out its own PID, it must use getpid. The getpgrp call
returns the PID of the caller’s process group. setsid creates a new session and
sets the process group’s PID to the caller’s. Sessions are related to an optional
feature of POSIX, job control, which is not supported by MINIX 3 and which will
not concern us further.

The last process management system call, ptrace, is used by debugging pro-
grams to control the program being debugged. It allows the debugger to read and
write the controlled process’ memory and manage it in other ways.

1.4.2 System Calls for Signaling

Although most forms of interprocess communication are planned, situations
exist in which unexpected communication is needed. For example, if a user ac-
cidently tells a text editor to list the entire contents of a very long file, and then



32 INTRODUCTION CHAP. 1

realizes the error, some way is needed to interrupt the editor. In MINIX 3, the user
can hit the CTRL-C key on the keyboard, which sends a signal to the editor. The
editor catches the signal and stops the print-out. Signals can also be used to report
certain traps detected by the hardware, such as illegal instruction or floating point
overflow. Timeouts are also implemented as signals.

When a signal is sent to a process that has not announced its willingness to
accept that signal, the process is simply killed without further ado. To avoid this
fate, a process can use the sigaction system call to announce that it is prepared to
accept some signal type, and to provide the address of the signal handling pro-
cedure and a place to store the address of the current one. After a sigaction call, if
a signal of the relevant type is generated (e.g., by pressing CTRL-C), the state of
the process is pushed onto its own stack, and then the signal handler is called. It
may run for as long as it wants to and perform any system calls it wants to. In
practice, though, signal handlers are usually fairly short. When the signal han-
dling procedure is done, it calls sigreturn to continue where it left off before the
signal. The sigaction call replaces the older signal call, which is now provided as
a library procedure, however, for backward compatibility.

Signals can be blocked in MINIX 3. A blocked signal is held pending until it
is unblocked. It is not delivered, but also not lost. The sigprocmask call allows a
process to define the set of blocked signals by presenting the kernel with a bitmap.
It is also possible for a process to ask for the set of signals currently pending but
not allowed to be delivered due to their being blocked. The sigpending call
returns this set as a bitmap. Finally, the sigsuspend call allows a process to atom-
ically set the bitmap of blocked signals and suspend itself.

Instead of providing a function to catch a signal, the program may also specify
the constant SIG�IGN to have all subsequent signals of the specified type
ignored, or SIG�DFL to restore the default action of the signal when it occurs.
The default action is either to kill the process or ignore the signal, depending upon
the signal. As an example of how SIG�IGN is used, consider what happens when
the shell forks off a background process as a result of

command &

It would be undesirable for a SIGINT signal (generated by pressing CTRL-C) to
affect the background process, so after the fork but before the exec, the shell does

sigaction(SIGINT, SIG�IGN, NULL);

and

sigaction(SIGQUIT, SIG�IGN, NULL);

to disable the SIGINT and SIGQUIT signals. (SIGQUIT is generated by CTRL-\;
it is the same as SIGINT generated by CTRL-C except that if it is not caught or
ignored it makes a core dump of the process killed.) For foreground processes (no
ampersand), these signals are not ignored.
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Hitting CTRL-C is not the only way to send a signal. The kill system call
allows a process to signal another process (provided they have the same UID—
unrelated processes cannot signal each other). Getting back to the example of
background processes used above, suppose a background process is started up, but
later it is decided that the process should be terminated. SIGINT and SIGQUIT
have been disabled, so something else is needed. The solution is to use the kill
program, which uses the kill system call to send a signal to any process. By send-
ing signal 9 (SIGKILL), to a background process, that process can be killed. SIG-
KILL cannot be caught or ignored.

For many real-time applications, a process needs to be interrupted after a spe-
cific time interval to do something, such as to retransmit a potentially lost packet
over an unreliable communication line. To handle this situation, the alarm system
call has been provided. The parameter specifies an interval, in seconds, after
which a SIGALRM signal is sent to the process. A process may only have one
alarm outstanding at any instant. If an alarm call is made with a parameter of 10
seconds, and then 3 seconds later another alarm call is made with a parameter of
20 seconds, only one signal will be generated, 20 seconds after the second call.
The first signal is canceled by the second call to alarm. If the parameter to alarm
is zero, any pending alarm signal is canceled. If an alarm signal is not caught, the
default action is taken and the signaled process is killed.

It sometimes occurs that a process has nothing to do until a signal arrives. For
example, consider a computer-aided-instruction program that is testing reading
speed and comprehension. It displays some text on the screen and then calls
alarm to signal it after 30 seconds. While the student is reading the text, the pro-
gram has nothing to do. It could sit in a tight loop doing nothing, but that would
waste CPU time that another process or user might need. A better idea is to use
pause, which tells MINIX 3 to suspend the process until the next signal.

1.4.3 System Calls for File Management

Many system calls relate to the file system. In this section we will look at
calls that operate on individual files; in the next one we will examine those that
involve directories or the file system as a whole. To create a new file, the creat
call is used (why the call is creat and not create has been lost in the mists of
time). Its parameters provide the name of the file and the protection mode. Thus

fd = creat(′′abc′′, 0751);

creates a file called abc with mode 0751 octal (in C, a leading zero means that a
constant is in octal). The low-order 9 bits of 0751 specify the rwx bits for the
owner (7 means read-write-execute permission), his group (5 means read-
execute), and others (1 means execute only).

Creat not only creates a new file but also opens it for writing, regardless of
the file’s mode. The file descriptor returned, fd, can be used to write the file. If a
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creat is done on an existing file, that file is truncated to length 0, provided, of
course, that the permissions are all right. The creat call is obsolete, as open can
now create new files, but it has been included for backward compatibility.

Special files are created using mknod rather than creat. A typical call is

fd = mknod(′′/dev/ttyc2′′, 020744, 0x0402);

which creates a file named /dev/ttyc2 (the usual name for console 2) and gives it
mode 020744 octal (a character special file with protection bits rwxr--r--). The
third parameter contains the major device (4) in the high-order byte and the minor
device (2) in the low-order byte. The major device could have been anything, but
a file named /dev/ttyc2 ought to be minor device 2. Calls to mknod fail unless the
caller is the superuser.

To read or write an existing file, the file must first be opened using open.
This call specifies the file name to be opened, either as an absolute path name or
relative to the working directory, and a code of O�RDONLY, O�WRONLY, or
O�RDWR, meaning open for reading, writing, or both. The file descriptor
returned can then be used for reading or writing. Afterward, the file can be closed
by close, which makes the file descriptor available for reuse on a subsequent creat
or open.

The most heavily used calls are undoubtedly read and write. We saw read
earlier; write has the same parameters.

Although most programs read and write files sequentially, for some applica-
tions programs need to be able to access any part of a file at random. Associated
with each file is a pointer that indicates the current position in the file. When
reading (writing) sequentially, it normally points to the next byte to be read (writ-
ten). The lseek call changes the value of the position pointer, so that subsequent
calls to read or write can begin anywhere in the file, or even beyond the end.

lseek has three parameters: the first is the file descriptor for the file, the
second is a file position, and the third tells whether the file position is relative to
the beginning of the file, the current position, or the end of the file. The value
returned by lseek is the absolute position in the file after changing the pointer.

For each file, MINIX 3 keeps track of the file mode (regular file, special file,
directory, and so on), size, time of last modification, and other information. Pro-
grams can ask to see this information via the stat and fstat system calls. These
differ only in that the former specifies the file by name, whereas the latter takes a
file descriptor, making it useful for open files, especially standard input and stan-
dard output, whose names may not be known. Both calls provide as the second
parameter a pointer to a structure where the information is to be put. The struc-
ture is shown in Fig. 1-12.

When manipulating file descriptors, the dup call is occasionally helpful. Con-
sider, for example, a program that needs to close standard output (file descriptor
1), substitute another file as standard output, call a function that writes some out-
put onto standard output, and then restore the original situation. Just closing file
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struct stat {
short st�dev; /* device where i-node belongs */
unsigned short st� ino; /* i-node number */
unsigned short st�mode; /* mode word */
short st�nlink; /* number of links */
short st�uid; /* user id */
short st�gid; /* group id */
short st�rdev; /* major/minor device for special files */
long st�size; /* file size */
long st�atime; /* time of last access */
long st�mtime; /* time of last modification */
long st�ctime; /* time of last change to i-node */

};

Figure 1-12. The structure used to return information for the stat and fstat sys-
tem calls. In the actual code, symbolic names are used for some of the types.

descriptor 1 and then opening a new file will make the new file standard output
(assuming standard input, file descriptor 0, is in use), but it will be impossible to
restore the original situation later.

The solution is first to execute the statement

fd = dup(1);

which uses the dup system call to allocate a new file descriptor, fd, and arrange
for it to correspond to the same file as standard output. Then standard output can
be closed and a new file opened and used. When it is time to restore the original
situation, file descriptor 1 can be closed, and then

n = dup(fd);

executed to assign the lowest file descriptor, namely, 1, to the same file as fd.
Finally, fd can be closed and we are back where we started.

The dup call has a variant that allows an arbitrary unassigned file descriptor to
be made to refer to a given open file. It is called by

dup2(fd, fd2);

where fd refers to an open file and fd2 is the unassigned file descriptor that is to be
made to refer to the same file as fd. Thus if fd refers to standard input (file
descriptor 0) and fd2 is 4, after the call, file descriptors 0 and 4 will both refer to
standard input.

Interprocess communication in MINIX 3 uses pipes, as described earlier.
When a user types

cat file1 file2 | sort

the shell creates a pipe and arranges for standard output of the first process to
write to the pipe, so standard input of the second process can read from it. The
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pipe system call creates a pipe and returns two file descriptors, one for writing and
one for reading. The call is

pipe(&fd[0]);

where fd is an array of two integers and fd[0] is the file descriptor for reading and
fd[1] is the one for writing. Typically, a fork comes next, and the parent closes
the file descriptor for reading and the child closes the file descriptor for writing
(or vice versa), so when they are done, one process can read the pipe and the other
can write on it.

Figure 1-13 depicts a skeleton procedure that creates two processes, with the
output of the first one piped into the second one. (A more realistic example would
do error checking and handle arguments.) First a pipe is created, and then the pro-
cedure forks, with the parent eventually becoming the first process in the pipeline
and the child process becoming the second one. Since the files to be executed,
process1 and process2, do not know that they are part of a pipeline, it is essential
that the file descriptors be manipulated so that the first process’ standard output be
the pipe and the second one’s standard input be the pipe. The parent first closes
off the file descriptor for reading from the pipe. Then it closes standard output
and does a DUP call that allows file descriptor 1 to write on the pipe. It is impor-
tant to realize that dup always returns the lowest available file descriptor, in this
case, 1. Then the program closes the other pipe file descriptor.

After the exec call, the process started will have file descriptors 0 and 2 be
unchanged, and file descriptor 1 for writing on the pipe. The child code is analo-
gous. The parameter to execl is repeated because the first one is the file to be exe-
cuted and the second one is the first parameter, which most programs expect to be
the file name.

The next system call, ioctl, is potentially applicable to all special files. It is,
for instance, used by block device drivers like the SCSI driver to control tape and
CD-ROM devices. Its main use, however, is with special character files, primarily
terminals. POSIX defines a number of functions which the library translates into
ioctl calls. The tcgetattr and tcsetattr library functions use ioctl to change the
characters used for correcting typing errors on the terminal, changing the termi-
nal mode, and so forth.

Traditionally, there are three terminal modes, cooked, raw, and cbreak.
Cooked mode is the normal terminal mode, in which the erase and kill characters
work normally, CTRL-S and CTRL-Q can be used for stopping and starting termi-
nal output, CTRL-D means end of file, CTRL-C generates an interrupt signal, and
CTRL-\ generates a quit signal to force a core dump.

In raw mode, all of these functions are disabled; consequently, every charac-
ter is passed directly to the program with no special processing. Furthermore, in
raw mode, a read from the terminal will give the program any characters that have
been typed, even a partial line, rather than waiting for a complete line to be typed,
as in cooked mode. Screen editors often use this mode.
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#define STD�INPUT 0 /* file descriptor for standard input */
#define STD�OUTPUT 1 /* file descriptor for standard output */
pipeline(process1, process2)
char *process1, *process2; /* pointers to program names */
{

int fd[2];

pipe(&fd[0]); /* create a pipe */
if (fork() != 0) {

/* The parent process executes these statements. */
close(fd[0]); /* process 1 does not need to read from pipe */
close(STD�OUTPUT); /* prepare for new standard output */
dup(fd[1]); /* set standard output to fd[1] */
close(fd[1]); /* this file descriptor not needed any more */
execl(process1, process1, 0);

} else {
/* The child process executes these statements. */
close(fd[1]); /* process 2 does not need to write to pipe */
close(STD�INPUT); /* prepare for new standard input */
dup(fd[0]); /* set standard input to fd[0] */
close(fd[0]); /* this file descriptor not needed any more */
execl(process2, process2, 0);

}
}

Figure 1-13. A skeleton for setting up a two-process pipeline.

Cbreak mode is in between. The erase and kill characters for editing are dis-
abled, as is CTRL-D, but CTRL-S, CTRL-Q, CTRL-C, and CTRL-\ are enabled.
Like raw mode, partial lines can be returned to programs (if intraline editing is
turned off there is no need to wait until a whole line has been received—the user
cannot change his mind and delete it, as he can in cooked mode).

POSIX does not use the terms cooked, raw, and cbreak. In POSIX terminology
canonical mode corresponds to cooked mode. In this mode there are eleven spe-
cial characters defined, and input is by lines. In noncanonical mode a minimum
number of characters to accept and a time, specified in units of 1/10th of a second,
determine how a read will be satisfied. Under POSIX there is a great deal of flexi-
bility, and various flags can be set to make noncanonical mode behave like either
cbreak or raw mode. The older terms are more descriptive, and we will continue
to use them informally.

Ioctl has three parameters, for example a call to tcsetattr to set terminal
parameters will result in

ioctl(fd, TCSETS, &termios);

The first parameter specifies a file, the second one specifies an operation, and the
third one is the address of the POSIX structure that contains flags and the array of
control characters. Other operation codes instruct the system to postpone the
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changes until all output has been sent, cause unread input to be discarded, and re-
turn the current values.

The access system call is used to determine whether a certain file access is
permitted by the protection system. It is needed because some programs can run
using a different user’s UID. This SETUID mechanism will be described later.

The rename system call is used to give a file a new name. The parameters
specify the old and new names.

Finally, the fcntl call is used to control files, somewhat analogous to ioctl (i.e.,
both of them are horrible hacks). It has several options, the most important of
which is for advisory file locking. Using fcntl, it is possible for a process to lock
and unlock parts of files and test part of a file to see if it is locked. The call does
not enforce any lock semantics. Programs must do this themselves.

1.4.4 System Calls for Directory Management

In this section we will look at some system calls that relate more to directories
or the file system as a whole, rather than just to one specific file as in the previous
section. The first two calls, mkdir and rmdir, create and remove empty directories,
respectively. The next call is link. Its purpose is to allow the same file to appear
under two or more names, often in different directories. A typical use is to allow
several members of the same programming team to share a common file, with
each of them having the file appear in his own directory, possibly under different
names. Sharing a file is not the same as giving every team member a private
copy, because having a shared file means that changes that any member of the
team makes are instantly visible to the other members—there is only one file.
When copies are made of a file, subsequent changes made to one copy do not
affect the other ones.

To see how link works, consider the situation of Fig. 1-14(a). Here are two
users, ast and jim, each having their own directories with some files. If ast now
executes a program containing the system call

link(′′/usr/jim/memo′′, ′′/usr/ast/note′′);

the file memo in jim’s directory is now entered into ast’s directory under the name
note. Thereafter, /usr/jim/memo and /usr/ast/note refer to the same file.

Understanding how link works will probably make it clearer what it does.
Every file in UNIX has a unique number, its i-number, that identifies it. This i-
number is an index into a table of i-nodes, one per file, telling who owns the file,
where its disk blocks are, and so on. A directory is simply a file containing a set
of (i-number, ASCII name) pairs. In the first versions of UNIX, each directory
entry was 16 bytes—2 bytes for the i-number and 14 bytes for the name. A more
complicated structure is needed to support long file names, but conceptually a
directory is still a set of (i-number, ASCII name) pairs. In Fig. 1-14, mail has i-
number 16, and so on. What link does is simply create a new directory entry with
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Figure 1-14. (a) Two directories before linking /usr/jim/memo to ast’s directory.
(b) The same directories after linking.

a (possibly new) name, using the i-number of an existing file. In Fig. 1-14(b), two
entries have the same i-number (70) and thus refer to the same file. If either one
is later removed, using the unlink system call, the other one remains. If both are
removed, UNIX sees that no entries to the file exist (a field in the i-node keeps
track of the number of directory entries pointing to the file), so the file is removed
from the disk.

As we have mentioned earlier, the mount system call allows two file systems
to be merged into one. A common situation is to have the root file system con-
taining the binary (executable) versions of the common commands and other
heavily used files, on a hard disk. The user can then insert a CD-ROM with files
to be read into the CD-ROM drive.

By executing the mount system call, the CD-ROM file system can be attached
to the root file system, as shown in Fig. 1-15. A typical statement in C to perform
the mount is

mount(′′/dev/cdrom0′′, ′′/mnt′′, 0);

where the first parameter is the name of a block special file for CD-ROM drive 0,
the second parameter is the place in the tree where it is to be mounted, and the
third one tells whether the file system is to be mounted read-write or read-only.

(a) (b)

bin dev lib mnt usr bin dev usrlib

Figure 1-15. (a) File system before the mount. (b) File system after the mount.

After the mount call, a file on CD-ROM drive 0 can be accessed by just using
its path from the root directory or the working directory, without regard to which
drive it is on. In fact, second, third, and fourth drives can also be mounted
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anywhere in the tree. The mount call makes it possible to integrate removable
media into a single integrated file hierarchy, without having to worry about which
device a file is on. Although this example involves CD-ROMs, hard disks or por-
tions of hard disks (often called partitions or minor devices) can also be
mounted this way. When a file system is no longer needed, it can be unmounted
with the umount system call.

MINIX 3 maintains a block cache cache of recently used blocks in main
memory to avoid having to read them from the disk if they are used again quickly.
If a block in the cache is modified (by a write on a file) and the system crashes
before the modified block is written out to disk, the file system will be damaged.
To limit the potential damage, it is important to flush the cache periodically, so
that the amount of data lost by a crash will be small. The system call sync tells
MINIX 3 to write out all the cache blocks that have been modified since being read
in. When MINIX 3 is started up, a program called update is started as a back-
ground process to do a sync every 30 seconds, to keep flushing the cache.

Two other calls that relate to directories are chdir and chroot. The former
changes the working directory and the latter changes the root directory. After the
call

chdir(′′/usr/ast/test′′);

an open on the file xyz will open /usr/ast/test/xyz. chroot works in an analogous
way. Once a process has told the system to change its root directory, all absolute
path names (path names beginning with a ‘‘/’’) will start at the new root. Why
would you want to do that? For security—server programs for protocols such as
FTP (File Transfer Protocol) and HTTP (HyperText Transfer Protocol) do this so
remote users of these services can access only the portions of a file system below
the new root. Only superusers may execute chroot, and even superusers do not do
it very often.

1.4.5 System Calls for Protection

In MINIX 3 every file has an 11-bit mode used for protection. Nine of these
bits are the read-write-execute bits for the owner, group, and others. The chmod
system call makes it possible to change the mode of a file. For example, to make
a file read-only by everyone except the owner, one could execute

chmod(′′file′′, 0644);

The other two protection bits, 02000 and 04000, are the SETGID (set-group-
id) and SETUID (set-user-id) bits, respectively. When any user executes a pro-
gram with the SETUID bit on, for the duration of that process the user’s effective
UID is changed to that of the file’s owner. This feature is heavily used to allow
users to execute programs that perform superuser only functions, such as creating
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directories. Creating a directory uses mknod, which is for the superuser only. By
arranging for the mkdir program to be owned by the superuser and have mode
04755, ordinary users can be given the power to execute mknod but in a highly
restricted way.

When a process executes a file that has the SETUID or SETGID bit on in its
mode, it acquires an effective UID or GID different from its real UID or GID. It
is sometimes important for a process to find out what its real and effective UID or
GID is. The system calls getuid and getgid have been provided to supply this
information. Each call returns both the real and effective UID or GID, so four
library routines are needed to extract the proper information: getuid, getgid,
geteuid, and getegid. The first two get the real UID/GID, and the last two the
effective ones.

Ordinary users cannot change their UID, except by executing programs with
the SETUID bit on, but the superuser has another possibility: the setuid system
call, which sets both the effective and real UIDs. setgid sets both GIDs. The
superuser can also change the owner of a file with the chown system call. In
short, the superuser has plenty of opportunity for violating all the protection rules,
which explains why so many students devote so much of their time to trying to
become superuser.

The last two system calls in this category can be executed by ordinary user
processes. The first one, umask, sets an internal bit mask within the system,
which is used to mask off mode bits when a file is created. After the call

umask(022);

the mode supplied by creat and mknod will have the 022 bits masked off before
being used. Thus the call

creat(′′file′′, 0777);

will set the mode to 0755 rather than 0777. Since the bit mask is inherited by
child processes, if the shell does a umask just after login, none of the user’s
processes in that session will accidently create files that other people can write on.

When a program owned by the root has the SETUID bit on, it can access any
file, because its effective UID is the superuser. Frequently it is useful for the pro-
gram to know if the person who called the program has permission to access a
given file. If the program just tries the access, it will always succeed, and thus
learn nothing.

What is needed is a way to see if the access is permitted for the real UID.
The access system call provides a way to find out. The mode parameter is 4 to
check for read access, 2 for write access, and 1 for execute access. Combinations
of these values are also allowed. For example, with mode equal to 6, the call
returns 0 if both read and write access are allowed for the real ID; otherwise −1 is
returned. With mode equal to 0, a check is made to see if the file exists and the
directories leading up to it can be searched.
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Although the protection mechanisms of all UNIX-like operating systems are
generally similar, there are some differences and inconsistencies that lead to secu-
rity vulnerabilities. See Chen et al. (2002) for a discussion.

1.4.6 System Calls for Time Management

MINIX 3 has four system calls that involve the time-of-day clock. Time just
returns the current time in seconds, with 0 corresponding to Jan. 1, 1970 at mid-
night (just as the day was starting, not ending). Of course, the system clock must
be set at some point in order to allow it to be read later, so stime has been pro-
vided to let the clock be set (by the superuser). The third time call is utime, which
allows the owner of a file (or the superuser) to change the time stored in a file’s
i-node. Application of this system call is fairly limited, but a few programs need
it, for example, touch, which sets the file’s time to the current time.

Finally, we have times, which returns the accounting information to a process,
so it can see how much CPU time it has used directly, and how much CPU time
the system itself has expended on its behalf (handling its system calls). The total
user and system times used by all of its children combined are also returned.

1.5 OPERATING SYSTEM STRUCTURE

Now that we have seen what operating systems look like on the outside (i.e,
the programmer’s interface), it is time to take a look inside. In the following sec-
tions, we will examine five different structures that have been tried, in order to get
some idea of the spectrum of possibilities. These are by no means exhaustive, but
they give an idea of some designs that have been tried in practice. The five de-
signs are monolithic systems, layered systems, virtual machines, exokernels, and
client-server systems.

1.5.1 Monolithic Systems

By far the most common organization, this approach might well be subtitled
‘‘The Big Mess.’’ The structure is that there is no structure. The operating system
is written as a collection of procedures, each of which can call any of the other
ones whenever it needs to. When this technique is used, each procedure in the
system has a well-defined interface in terms of parameters and results, and each
one is free to call any other one, if the latter provides some useful computation
that the former needs.

To construct the actual object program of the operating system when this
approach is used, one first compiles all the individual procedures, or files contain-
ing the procedures, and then binds them all together into a single object file using
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the system linker. In terms of information hiding, there is essentially none—every
procedure is visible to every other procedure (as opposed to a structure containing
modules or packages, in which much of the information is hidden away inside
modules, and only the officially designated entry points can be called from out-
side the module).

Even in monolithic systems, however, it is possible to have at least a little
structure. The services (system calls) provided by the operating system are
requested by putting the parameters in well-defined places, such as in registers or
on the stack, and then executing a special trap instruction known as a kernel call
or supervisor call.

This instruction switches the machine from user mode to kernel mode and
transfers control to the operating system. (Most CPUs have two modes: kernel
mode, for the operating system, in which all instructions are allowed; and user
mode, for user programs, in which I/O and certain other instructions are not
allowed.)

Return to caller

4
10

6

0

9

7 8

3
2
1

11

Dispatch
Sys call
handler

Address
0xFFFFFFFF

User space

Kernel space
 (Operating system)
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Figure 1-16. The 11 steps in making the system call read(fd, buffer, nbytes).

This is a good time to look at how system calls are performed. Recall that the
read call is used like this:

count = read(fd, buffer, nbytes);
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In preparation for calling the read library procedure, which actually makes the
read system call, the calling program first pushes the parameters onto the stack, as
shown in steps 1–3 in Fig. 1-16. C and C++ compilers push the parameters onto
the stack in reverse order for historical reasons (having to do with making the first
parameter to printf, the format string, appear on top of the stack). The first and
third parameters are called by value, but the second parameter is passed by refer-
ence, meaning that the address of the buffer (indicated by &) is passed, not the
contents of the buffer. Then comes the actual call to the library procedure (step
4). This instruction is the normal procedure call instruction used to call all pro-
cedures.

The library procedure, possibly written in assembly language, typically puts
the system call number in a place where the operating system expects it, such as a
register (step 5). Then it executes a TRAP instruction to switch from user mode to
kernel mode and start execution at a fixed address within the kernel (step 6). The
kernel code that starts examines the system call number and then dispatches to the
correct system call handler, usually via a table of pointers to system call handlers
indexed on system call number (step 7). At that point the system call handler runs
(step 8). Once the system call handler has completed its work, control may be
returned to the user-space library procedure at the instruction following the TRAP
instruction (step 9). This procedure then returns to the user program in the usual
way procedure calls return (step 10).

To finish the job, the user program has to clean up the stack, as it does after
any procedure call (step 11). Assuming the stack grows downward, as it often
does, the compiled code increments the stack pointer exactly enough to remove
the parameters pushed before the call to read. The program is now free to do
whatever it wants to do next.

In step 9 above, we said ‘‘may be returned to the user-space library pro-
cedure’’ for good reason. The system call may block the caller, preventing it from
continuing. For example, if it is trying to read from the keyboard and nothing has
been typed yet, the caller has to be blocked. In this case, the operating system
will look around to see if some other process can be run next. Later, when the
desired input is available, this process will get the attention of the system and
steps 9–11 will occur.

This organization suggests a basic structure for the operating system:

1. A main program that invokes the requested service procedure.

2. A set of service procedures that carry out the system calls.

3. A set of utility procedures that help the service procedures.

In this model, for each system call there is one service procedure that takes care
of it. The utility procedures do things that are needed by several service pro-
cedures, such as fetching data from user programs. This division of the proce-
dures into three layers is shown in Fig. 1-17.
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Figure 1-17. A simple structuring model for a monolithic system.

1.5.2 Layered Systems

A generalization of the approach of Fig. 1-17 is to organize the operating sys-
tem as a hierarchy of layers, each one constructed upon the one below it. The first
system constructed in this way was the THE system built at the Technische
Hogeschool Eindhoven in the Netherlands by E. W. Dijkstra (1968) and his stu-
dents. The THE system was a simple batch system for a Dutch computer, the
Electrologica X8, which had 32K of 27-bit words (bits were expensive back then).

The system had 6 layers, as shown in Fig. 1-18. Layer 0 dealt with allocation
of the processor, switching between processes when interrupts occurred or timers
expired. Above layer 0, the system consisted of sequential processes, each of
which could be programmed without having to worry about the fact that multiple
processes were running on a single processor. In other words, layer 0 provided
the basic multiprogramming of the CPU.
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Figure 1-18. Structure of the THE operating system.

Layer 1 did the memory management. It allocated space for processes in
main memory and on a 512K word drum used for holding parts of processes
(pages) for which there was no room in main memory. Above layer 1, processes
did not have to worry about whether they were in memory or on the drum; the
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layer 1 software took care of making sure pages were brought into memory when-
ever they were needed.

Layer 2 handled communication between each process and the operator con-
sole. Above this layer each process effectively had its own operator console.
Layer 3 took care of managing the I/O devices and buffering the information
streams to and from them. Above layer 3 each process could deal with abstract
I/O devices with nice properties, instead of real devices with many peculiarities.
Layer 4 was where the user programs were found. They did not have to worry
about process, memory, console, or I/O management. The system operator proc-
ess was located in layer 5.

A further generalization of the layering concept was present in the MULTICS
system. Instead of layers, MULTICS was organized as a series of concentric rings,
with the inner ones being more privileged than the outer ones. When a procedure
in an outer ring wanted to call a procedure in an inner ring, it had to make the
equivalent of a system call, that is, a TRAP instruction whose parameters were
carefully checked for validity before allowing the call to proceed. Although the
entire operating system was part of the address space of each user process in
MULTICS, the hardware made it possible to designate individual procedures
(memory segments, actually) as protected against reading, writing, or executing.

Whereas the THE layering scheme was really only a design aid, because all
the parts of the system were ultimately linked together into a single object pro-
gram, in MULTICS, the ring mechanism was very much present at run time and
enforced by the hardware. The advantage of the ring mechanism is that it can
easily be extended to structure user subsystems. For example, a professor could
write a program to test and grade student programs and run this program in ring n,
with the student programs running in ring n + 1 so that they could not change their
grades. The Pentium hardware supports the MULTICS ring structure, but no major
operating system uses it at present.

1.5.3 Virtual Machines

The initial releases of OS/360 were strictly batch systems. Nevertheless, many
360 users wanted to have timesharing, so various groups, both inside and outside
IBM decided to write timesharing systems for it. The official IBM timesharing
system, TSS/360, was delivered late, and when it finally arrived it was so big and
slow that few sites converted over to it. It was eventually abandoned after its
development had consumed some $50 million (Graham, 1970). But a group at
IBM’s Scientific Center in Cambridge, Massachusetts, produced a radically dif-
ferent system that IBM eventually accepted as a product, and which is now widely
used on its mainframes.

This system, originally called CP/CMS and later renamed VM/370 (Seawright
and MacKinnon, 1979), was based on a very astute observation: a timesharing
system provides (1) multiprogramming and (2) an extended machine with a more
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convenient interface than the bare hardware. The essence of VM/370 is to com-
pletely separate these two functions.

The heart of the system, known as the virtual machine monitor, runs on the
bare hardware and does the multiprogramming, providing not one, but several vir-
tual machines to the next layer up, as shown in Fig. 1-19. However, unlike all
other operating systems, these virtual machines are not extended machines, with
files and other nice features. Instead, they are exact copies of the bare hardware,
including kernel/user mode, I/O, interrupts, and everything else the real machine
has.

I/O instructions here

Trap here

Trap here

System calls here

Virtual 370s

CMS CMS CMS

VM/370

370 Bare hardware

Figure 1-19. The structure of VM/370 with CMS.

Because each virtual machine is identical to the true hardware, each one can
run any operating system that will run directly on the bare hardware. Different
virtual machines can, and frequently do, run different operating systems. Some
run one of the descendants of OS/360 for batch or transaction processing, while
others run a single-user, interactive system called CMS (Conversational Monitor
System) for timesharing users.

When a CMS program executes a system call, the call is trapped to the operat-
ing system in its own virtual machine, not to VM/370, just as it would if it were
running on a real machine instead of a virtual one. CMS then issues the normal
hardware I/O instructions for reading its virtual disk or whatever is needed to
carry out the call. These I/O instructions are trapped by VM/370, which then per-
forms them as part of its simulation of the real hardware. By making a complete
separation of the functions of multiprogramming and providing an extended
machine, each of the pieces can be much simpler, more flexible, and easier to
maintain.

The idea of a virtual machine is used nowadays in a different context: running
old MS-DOS programs on a Pentium. When designing the Pentium and its
software, both Intel and Microsoft realized that there would be a big demand for
running old software on new hardware. For this reason, Intel provided a virtual
8086 mode on the Pentium. In this mode, the machine acts like an 8086 (which is
identical to an 8088 from a software point of view), including 16-bit addressing
with a 1-MB limit.

This mode is used by Windows, and other operating systems for running old
MS-DOS programs. These programs are started up in virtual 8086 mode. As long
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as they execute normal instructions, they run on the bare hardware. However,
when a program tries to trap to the operating system to make a system call, or tries
to do protected I/O directly, a trap to the virtual machine monitor occurs.

Two variants on this design are possible. In the first one, MS-DOS itself is
loaded into the virtual 8086’s address space, so the virtual machine monitor just
reflects the trap back to MS-DOS, just as would happen on a real 8086. When
MS-DOS later tries to do the I/O itself, that operation is caught and carried out by
the virtual machine monitor.

In the other variant, the virtual machine monitor just catches the first trap and
does the I/O itself, since it knows what all the MS-DOS system calls are and thus
knows what each trap is supposed to do. This variant is less pure than the first
one, since it emulates only MS-DOS correctly, and not other operating systems, as
the first one does. On the other hand, it is much faster, since it saves the trouble
of starting up MS-DOS to do the I/O. A further disadvantage of actually running
MS-DOS in virtual 8086 mode is that MS-DOS fiddles around with the interrupt
enable/disable bit quite a lot, all of which must be emulated at considerable cost.

It is worth noting that neither of these approaches are really the same as
VM/370, since the machine being emulated is not a full Pentium, but only an 8086.
With the VM/370 system, it is possible to run VM/370, itself, in the virtual
machine. Even the earliest versions of Windows require at least a 286 and cannot
be run on a virtual 8086.

Several virtual machine implementations are marketed commercially. For
companies that provide web-hosting services, it can be more economical to run
multiple virtual machines on a single fast server (perhaps one with multiple
CPUs) than to run many small computers, each hosting a single Web site.
VMWare and Microsoft’s Virtual PC are marketed for such installations. These
programs use large files on a host system as simulated disks for their guest sys-
tems. To achieve efficiency they analyze guest system program binaries and
allow safe code to run directly on the host hardware, trapping instructions that
make operating system calls. Such systems are also useful in education. For
instance, students working on MINIX 3 lab assignments can work using MINIX 3
as a guest operating system on VMWare on a Windows, Linux or UNIX host with
no risk of damaging other software installed on the same PC. Most professors
teaching other subjects would be very nervous about sharing laboratory computers
with an operating systems course where student mistakes could corrupt or erase
disk data.

Another area where virtual machines are used, but in a somewhat different
way, is for running Java programs. When Sun Microsystems invented the Java
programming language, it also invented a virtual machine (i.e., a computer archi-
tecture) called the JVM (Java Virtual Machine). The Java compiler produces
code for JVM, which then typically is executed by a software JVM interpreter.
The advantage of this approach is that the JVM code can be shipped over the
Internet to any computer that has a JVM interpreter and run there. If the compiler
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had produced SPARC or Pentium binary programs, for example, they could not
have been shipped and run anywhere as easily. (Of course, Sun could have pro-
duced a compiler that produced SPARC binaries and then distributed a SPARC
interpreter, but JVM is a much simpler architecture to interpret.) Another advan-
tage of using JVM is that if the interpreter is implemented properly, which is not
completely trivial, incoming JVM programs can be checked for safety and then
executed in a protected environment so they cannot steal data or do any damage.

1.5.4 Exokernels

With VM/370, each user process gets an exact copy of the actual computer.
With virtual 8086 mode on the Pentium, each user process gets an exact copy of a
different computer. Going one step further, researchers at M.I.T. built a system
that gives each user a clone of the actual computer, but with a subset of the re-
sources (Engler et al., 1995; and Leschke, 2004). Thus one virtual machine might
get disk blocks 0 to 1023, the next one might get blocks 1024 to 2047, and so on.

At the bottom layer, running in kernel mode, is a program called the exoker-
nel. Its job is to allocate resources to virtual machines and then check attempts to
use them to make sure no machine is trying to use somebody else’s resources.
Each user-level virtual machine can run its own operating system, as on VM/370
and the Pentium virtual 8086s, except that each one is restricted to using only the
resources it has asked for and been allocated.

The advantage of the exokernel scheme is that it saves a layer of mapping. In
the other designs, each virtual machine thinks it has its own disk, with blocks run-
ning from 0 to some maximum, so the virtual machine monitor must maintain
tables to remap disk addresses (and all other resources). With the exokernel, this
remapping is not needed. The exokernel need only keep track of which virtual
machine has been assigned which resource. This method still has the advantage
of separating the multiprogramming (in the exokernel) from the user operating
system code (in user space), but with less overhead, since all the exokernel has to
do is keep the virtual machines out of each other’s hair.

1.5.5 Client-Server Model

VM/370 gains much in simplicity by moving a large part of the traditional
operating system code (implementing the extended machine) into a higher layer,
CMS. Nevertheless, VM/370 itself is still a complex program because simulating a
number of virtual 370s is not that simple (especially if you want to do it reason-
ably efficiently).

A trend in modern operating systems is to take this idea of moving code up
into higher layers even further and remove as much as possible from the operating
system, leaving a minimal kernel. The usual approach is to implement most of
the operating system functions in user processes. To request a service, such as
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reading a block of a file, a user process (now known as the client process) sends
the request to a server process, which then does the work and sends back the
answer.

Client
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File
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Memory
server
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Kernel mode

Client obtains
service by
sending messages
to server processes

Figure 1-20. The client-server model.

In this model, shown in Fig. 1-20, all the kernel does is handle the communi-
cation between clients and servers. By splitting the operating system up into
parts, each of which only handles one facet of the system, such as file service,
process service, terminal service, or memory service, each part becomes small
and manageable. Furthermore, because all the servers run as user-mode proc-
esses, and not in kernel mode, they do not have direct access to the hardware. As
a consequence, if a bug in the file server is triggered, the file service may crash,
but this will not usually bring the whole machine down.

Another advantage of the client-server model is its adaptability to use in dis-
tributed systems (see Fig. 1-21). If a client communicates with a server by send-
ing it messages, the client need not know whether the message is handled locally
in its own machine, or whether it was sent across a network to a server on a
remote machine. As far as the client is concerned, the same thing happens in both
cases: a request was sent and a reply came back.

Machine 1 Machine 2 Machine 3 Machine 4

Client

Kernel

File server

Kernel

Process server

Kernel

Terminal server

Kernel

Message from
client to server

Network

Figure 1-21. The client-server model in a distributed system.

The picture painted above of a kernel that handles only the transport of mes-
sages from clients to servers and back is not completely realistic. Some operating
system functions (such as loading commands into the physical I/O device regis-
ters) are difficult, if not impossible, to do from user-space programs. There are
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two ways of dealing with this problem. One way is to have some critical server
processes (e.g., I/O device drivers) actually run in kernel mode, with complete
access to all the hardware, but still communicate with other processes using the
normal message mechanism. A variant of this mechanism was used in earlier ver-
sions of MINIX where drivers were compiled into the kernel but ran as separate
processes.

The other way is to build a minimal amount of mechanism into the kernel but
leave the policy decisions up to servers in user space. For example, the kernel
might recognize that a message sent to a certain special address means to take the
contents of that message and load it into the I/O device registers for some disk, to
start a disk read. In this example, the kernel would not even inspect the bytes in
the message to see if they were valid or meaningful; it would just blindly copy
them into the disk’s device registers. (Obviously, some scheme for limiting such
messages to authorized processes only must be used.) This is how MINIX 3
works, drivers are in user space and use special kernel calls to request reads and
writes of I/O registers or to access kernel information. The split between mechan-
ism and policy is an important concept; it occurs again and again in operating sys-
tems in various contexts.

1.6 OUTLINE OF THE REST OF THIS BOOK

Operating systems typically have four major components: process manage-
ment, I/O device management, memory management, and file management.
MINIX 3 is also divided into these four parts. The next four chapters deal with
these four topics, one topic per chapter. Chapter 6 is a list of suggested readings
and a bibliography.

The chapters on processes, I/O, memory management, and file systems have
the same general structure. First the general principles of the subject are laid out.
Then comes an overview of the corresponding area of MINIX 3 (which also
applies to UNIX). Finally, the MINIX 3 implementation is discussed in detail. The
implementation section may be skimmed or skipped without loss of continuity by
readers just interested in the principles of operating systems and not interested in
the MINIX 3 code. Readers who are interested in finding out how a real operating
system (MINIX 3) works should read all the sections.

1.7 SUMMARY

Operating systems can be viewed from two viewpoints: resource managers
and extended machines. In the resource manager view, the operating system’s job
is to efficiently manage the different parts of the system. In the extended machine
view, the job of the system is to provide the users with a virtual machine that is
more convenient to use than the actual machine.
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Operating systems have a long history, starting from the days when they
replaced the operator, to modern multiprogramming systems.

The heart of any operating system is the set of system calls that it can handle.
These tell what the operating system really does. For MINIX 3, these calls can be
divided into six groups. The first group of system calls relates to process creation
and termination. The second group handles signals. The third group is for read-
ing and writing files. A fourth group is for directory management. The fifth
group protects information, and the sixth group is about keeping track of time.

Operating systems can be structured in several ways. The most common ones
are as a monolithic system, as a hierarchy of layers, as a virtual machine system,
using an exokernel, and using the client-server model.

PROBLEMS

1. What are the two main functions of an operating system?

2. What is the difference between kernel mode and user mode? Why is the difference
important to an operating system?

3. What is multiprogramming?

4. What is spooling? Do you think that advanced personal computers will have spooling
as a standard feature in the future?

5. On early computers, every byte of data read or written was directly handled by the
CPU (i.e., there was no DMA—Direct Memory Access). What implications does this
organization have for multiprogramming?

6. Why was timesharing not widespread on second-generation computers?

7. Which of the following instructions should be allowed only in kernel mode?

(a) Disable all interrupts.
(b) Read the time-of-day clock.
(c) Set the time-of-day clock.
(d) Change the memory map.

8. List some differences between personal computer operating systems and mainframe
operating systems.

9. Give one reason why a closed-source proprietary operating system like Windows
should have better quality than an open-source operating system like Linux. Now give
one reason why an open-source operating system like Linux should have better quality
than a closed-source proprietary operating system like Windows.

10. A MINIX file whose owner has UID = 12 and GID = 1 has mode rwxr-x---. Another
user with UID = 6, GID = 1 tries to execute the file. What will happen?
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11. In view of the fact that the mere existence of a superuser can lead to all kinds of security
problems, why does such a concept exist?

12. All versions of UNIX support file naming using both absolute paths (relative to the root)
and relative paths (relative to the working directory). Would it be possible to dispose of
one of these and just use the other? If so, which would you suggest keeping?

13. Why is the process table needed in a timesharing system? Is it also needed in personal
computer systems in which only one process exists, that process taking over the entire
machine until it is finished?

14. What is the essential difference between a block special file and a character special file?

15. In MINIX 3 if user 2 links to a file owned by user 1, then user 1 removes the file, what hap-
pens when user 2 tries to read the file?

16. Are pipes an essential facility? Would major functionality be lost if they were not avail-
able?

17. Modern consumer appliances such as stereos and digital cameras often have a display
where commands can be entered and the results of entering those commands can be
viewed. These devices often have a primitive operating system inside. To what part of a
personal computer software is the command processing via the stereo or camera’s display
similar to?

18. Windows does not have a fork system call, yet it is able to create new processes. Make an
educated guess about the semantics of the system call Windows uses to create new
processes.

19. Why is the chroot system call limited to the superuser? (Hint: Think about protection prob-
lems.)

20. Examine the list of system calls in Fig. 1-9. Which call do you think is likely to execute
most quickly. Explain your answer.

21. Suppose that a computer can execute 1 billion instructions/sec and that a system call takes
1000 instructions, including the trap and all the context switching. How many system calls
can the computer execute per second and still have half the CPU capacity for running
application code?

22. There is a mknod system call in Fig. 1-16 but there is no rmnod call. Does this mean that
you have to be very, very careful about making nodes this way because there is no way to
every remove them?

23. Why does MINIX 3 have the program update running in the background all the time?

24. Does it ever make any sense to ignore the SIGALRM signal?

25. The client-server model is popular in distributed systems. Can it also be used in a single-
computer system?

26. The initial versions of the Pentium could not support a virtual machine monitor. What
essential characteristic is needed to allow a machine to be virtualizable?

27. Write a program (or series of programs) to test all the MINIX 3 system calls. For each call,
try various sets of parameters, including some incorrect ones, to see if they are detected.



54 INTRODUCTION CHAP. 1

28. Write a shell that is similar to Fig. 1-10 but contains enough code that it actually works so
you can test it. You might also add some features such as redirection of input and output,
pipes, and background jobs.



2
PROCESSES

We are now about to embark on a detailed study of how operating systems, in
general, and MINIX 3, in particular, are designed and constructed. The most cen-
tral concept in any operating system is the process: an abstraction of a running
program. Everything else hinges on this concept, and it is important that the
operating system designer (and student) understand this concept well.

2.1 INTRODUCTION TO PROCESSES

All modern computers can do several things at the same time. While running
a user program, a computer can also be reading from a disk and outputting text to
a screen or printer. In a multiprogramming system, the CPU also switches from
program to program, running each for tens or hundreds of milliseconds. While,
strictly speaking, at any instant of time, the CPU is running only one program, in
the course of 1 second, it may work on several programs, thus giving the users the
illusion of parallelism. Sometimes people speak of pseudoparallelism in this
context, to contrast it with the true hardware parallelism of multiprocessor sys-
tems (which have two or more CPUs sharing the same physical memory). Keep-
ing track of multiple, parallel activities is hard for people to do. Therefore, oper-
ating system designers over the years have evolved a conceptual model (sequen-
tial processes) that makes parallelism easier to deal with. That model, its uses,
and some of its consequences form the subject of this chapter.

55
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2.1.1 The Process Model

In this model, all the runnable software on the computer, sometimes including
the operating system, is organized into a number of sequential processes, or just
processes for short. A process is just an executing program, including the current
values of the program counter, registers, and variables. Conceptually, each proc-
ess has its own virtual CPU. In reality, of course, the real CPU switches back and
forth from process to process, but to understand the system, it is much easier to
think about a collection of processes running in (pseudo) parallel, than to try to
keep track of how the CPU switches from program to program. This rapid
switching back and forth is called multiprogramming, as we saw in Chap. 1.

In Fig. 2-1(a) we see a computer multiprogramming four programs in mem-
ory. In Fig. 2-1(b) we see four processes, each with its own flow of control (i.e.,
its own program counter), and each one running independently of the other ones.
Of course, there is only one physical program counter, so when each process runs,
its logical program counter is loaded into the real program counter. When it is
finished for the time being, the physical program counter is saved in the process’
logical program counter in memory. In Fig. 2-1(c) we see that viewed over a long
enough time interval, all the processes have made progress, but at any given
instant only one process is actually running.
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Figure 2-1. (a) Multiprogramming of four programs. (b) Conceptual model of
four independent, sequential processes. (c) Only one program is active at any
instant.

With the CPU switching back and forth among the processes, the rate at
which a process performs its computation will not be uniform, and probably not
even reproducible if the same processes are run again. Thus, processes must not
be programmed with built-in assumptions about timing. Consider, for example,
an I/O process that starts a streamer tape to restore backed up files, executes an
idle loop 10,000 times to let it get up to speed, and then issues a command to read
the first record. If the CPU decides to switch to another process during the idle
loop, the tape process might not run again until after the first record was already



SEC. 2.1 INTRODUCTION TO PROCESSES 57

past the read head. When a process has critical real-time requirements like this,
that is, particular events must occur within a specified number of milliseconds,
special measures must be taken to ensure that they do occur. Normally, however,
most processes are not affected by the underlying multiprogramming of the CPU
or the relative speeds of different processes.

The difference between a process and a program is subtle, but crucial. An
analogy may help make this point clearer. Consider a culinary-minded computer
scientist who is baking a birthday cake for his daughter. He has a birthday cake
recipe and a kitchen well stocked with the necessary input: flour, eggs, sugar,
extract of vanilla, and so on. In this analogy, the recipe is the program (i.e., an al-
gorithm expressed in some suitable notation), the computer scientist is the proces-
sor (CPU), and the cake ingredients are the input data. The process is the activity
consisting of our baker reading the recipe, fetching the ingredients, and baking the
cake.

Now imagine that the computer scientist’s son comes running in crying, say-
ing that he has been stung by a bee. The computer scientist records where he was
in the recipe (the state of the current process is saved), gets out a first aid book,
and begins following the directions in it. Here we see the processor being switch-
ed from one process (baking) to a higher priority process (administering medical
care), each having a different program (recipe vs. first aid book). When the bee
sting has been taken care of, the computer scientist goes back to his cake, continu-
ing at the point where he left off.

The key idea here is that a process is an activity of some kind. It has a pro-
gram, input, output, and a state. A single processor may be shared among several
processes, with some scheduling algorithm being used to determine when to stop
work on one process and service a different one.

2.1.2 Process Creation

Operating systems need some way to make sure all the necessary processes
exist. In very simple systems, or in systems designed for running only a single
application (e.g., controlling a device in real time), it may be possible to have all
the processes that will ever be needed be present when the system comes up. In
general-purpose systems, however, some way is needed to create and terminate
processes as needed during operation. We will now look at some of the issues.

There are four principal events that cause processes to be created:

1. System initialization.

2. Execution of a process creation system call by a running process.

3. A user request to create a new process.

4. Initiation of a batch job.
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When an operating system is booted, often several processes are created. Some of
these are foreground processes, that is, processes that interact with (human) users
and perform work for them. Others are background processes, which are not as-
sociated with particular users, but instead have some specific function. For ex-
ample, a background process may be designed to accept incoming requests for
web pages hosted on that machine, waking up when a request arrives to service
the request. Processes that stay in the background to handle some activity such as
web pages, printing, and so on are called daemons. Large systems commonly
have dozens of them. In MINIX 3, the ps program can be used to list the running
processes.

In addition to the processes created at boot time, new processes can be created
afterward as well. Often a running process will issue system calls to create one or
more new processes to help it do its job. Creating new processes is particularly
useful when the work to be done can easily be formulated in terms of several
related, but otherwise independent interacting processes. For example, when
compiling a large program, the make program invokes the C compiler to convert
source files to object code, and then it invokes the install program to copy the pro-
gram to its destination, set ownership and permissions, etc. In MINIX 3, the C
compiler itself is actually several different programs, which work together. These
include a preprocessor, a C language parser, an assembly language code genera-
tor, an assembler, and a linker.

In interactive systems, users can start a program by typing a command. In
MINIX 3, virtual consoles allow a user to start a program, say a compiler, and then
switch to an alternate console and start another program, perhaps to edit documen-
tation while the compiler is running.

The last situation in which processes are created applies only to the batch sys-
tems found on large mainframes. Here users can submit batch jobs to the system
(possibly remotely). When the operating system decides that it has the resources
to run another job, it creates a new process and runs the next job from the input
queue in it.

Technically, in all these cases, a new process is created by having an existing
process execute a process creation system call. That process may be a running
user process, a system process invoked from the keyboard or mouse, or a batch
manager process. What that process does is execute a system call to create the
new process. This system call tells the operating system to create a new process
and indicates, directly or indirectly, which program to run in it.

In MINIX 3, there is only one system call to create a new process: fork. This
call creates an exact clone of the calling process. After the fork, the two proc-
esses, the parent and the child, have the same memory image, the same environ-
ment strings, and the same open files. That is all there is. Usually, the child proc-
ess then executes execve or a similar system call to change its memory image and
run a new program. For example, when a user types a command, say, sort, to the
shell, the shell forks off a child process and the child executes sort. The reason
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for this two-step process is to allow the child to manipulate its file descriptors
after the fork but before the execve to accomplish redirection of standard input,
standard output, and standard error.

In both MINIX 3 and UNIX, after a process is created both the parent and child
have their own distinct address spaces. If either process changes a word in its
address space, the change is not visible to the other process. The child’s initial
address space is a copy of the parent’s, but there are two distinct address spaces
involved; no writable memory is shared (like some UNIX implementations, MINIX
3 can share the program text between the two since that cannot be modified). It is,
however, possible for a newly created process to share some of its creator’s other
resources, such as open files.

2.1.3 Process Termination

After a process has been created, it starts running and does whatever its job is.
However, nothing lasts forever, not even processes. Sooner or later the new proc-
ess will terminate, usually due to one of the following conditions:

1. Normal exit (voluntary).

2. Error exit (voluntary).

3. Fatal error (involuntary).

4. Killed by another process (involuntary).

Most processes terminate because they have done their work. When a com-
piler has compiled the program given to it, the compiler executes a system call to
tell the operating system that it is finished. This call is exit in MINIX 3. Screen-
oriented programs also support voluntary termination. For instance, editors
always have a key combination that the user can invoke to tell the process to save
the working file, remove any temporary files that are open and terminate.

The second reason for termination is that the process discovers a fatal error.
For example, if a user types the command

cc foo.c

to compile the program foo.c and no such file exists, the compiler simply exits.
The third reason for termination is an error caused by the process, perhaps due

to a program bug. Examples include executing an illegal instruction, referencing
nonexistent memory, or dividing by zero. In MINIX 3, a process can tell the oper-
ating system that it wishes to handle certain errors itself, in which case the process
is signaled (interrupted) instead of terminated when one of the errors occurs.

The fourth reason a process might terminate is that one process executes a
system call telling the operating system to kill some other process. In MINIX 3,
this call is kill. Of course, the killer must have the necessary authorization to do in
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the killee. In some systems, when a process terminates, either voluntarily or oth-
erwise, all processes it created are immediately killed as well. MINIX 3 does not
work this way, however.

2.1.4 Process Hierarchies

In some systems, when a process creates another process, the parent and child
continue to be associated in certain ways. The child can itself create more proc-
esses, forming a process hierarchy. Unlike plants and animals that use sexual
reproduction, a process has only one parent (but zero, one, two, or more children).

In MINIX 3, a process, its children, and further descendants together may form
a process group. When a user sends a signal from the keyboard, the signal may be
delivered to all members of the process group currently associated with the key-
board (usually all processes that were created in the current window). This is
signal-dependent. If a signal is sent to a group, each process can catch the signal,
ignore the signal, or take the default action, which is to be killed by the signal.

As a simple example of how process trees are used, let us look at how MINIX
3 initializes itself. Two special processes, the reincarnation server and init are
present in the boot image. The reincarnation server’s job is to (re)start drivers and
servers. It begins by blocking, waiting for a message telling it what to create.

In contrast, init executes the /etc/rc script that causes it to issue commands to
the reincarnation server to start the drivers and servers not present in the boot
image. This procedure makes the drivers and servers so started children of the
reincarnation server, so if any of them ever terminate, the reincarnation server will
be informed and can restart (i.e., reincarnate) them again. This mechanism is
intended to allow MINIX 3 to tolerate a driver or server crash because a new one
will be started automatically. In practice, replacing a driver is much easier than
replacing a server, however, since there fewer repercussions elsewhere in the sys-
tem. (And, we do not say this always works perfectly; it is still work in progress.)

When init has finished this, it reads a configuration file /etc/ttytab) to see
which terminals and virtual terminals exist. Init forks a getty process for each one,
displays a login prompt on it, and then waits for input. When a name is typed,
getty execs a login process with the name as its argument. If the user succeeds in
logging in, login will exec the user’s shell. So the shell is a child of init. User
commands create children of the shell, which are grandchildren of init. This se-
quence of events is an example of how process trees are used. As an aside, the
code for the reincarnation server and init is not listed in this book; neither is the
shell. The line had to be drawn somewhere. But now you have the basic idea.

2.1.5 Process States

Although each process is an independent entity, with its own program counter
registers, stack, open files, alarms, and other internal state, processes often need to
interact, communicate, and synchronize with other processes. One process may
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generate some output that another process uses as input, for example. In that case,
the data needs to be moved between processes. In the shell command

cat chapter1 chapter2 chapter3 | grep tree

the first process, running cat, concatenates and outputs three files. The second
process, running grep, selects all lines containing the word ‘‘tree.’’ Depending on
the relative speeds of the two processes (which depends on both the relative com-
plexity of the programs and how much CPU time each one has had), it may hap-
pen that grep is ready to run, but there is no input waiting for it. It must then
block until some input is available.

When a process blocks, it does so because logically it cannot continue, typi-
cally because it is waiting for input that is not yet available. It is also possible for
a process that is conceptually ready and able to run to be stopped because the
operating system has decided to allocate the CPU to another process for a while.
These two conditions are completely different. In the first case, the suspension is
inherent in the problem (you cannot process the user’s command line until it has
been typed). In the second case, it is a technicality of the system (not enough
CPUs to give each process its own private processor). In Fig. 2-2 we see a state
diagram showing the three states a process may be in:

1. Running (actually using the CPU at that instant).

2. Ready (runnable; temporarily stopped to let another process run).

3. Blocked (unable to run until some external event happens).

Logically, the first two states are similar. In both cases the process is willing to
run, only in the second one, there is temporarily no CPU available for it. The
third state is different from the first two in that the process cannot run, even if the
CPU has nothing else to do.

1 23

4Blocked

Running

Ready

1. Process blocks for input
2. Scheduler picks another process
3. Scheduler picks this process
4. Input becomes available

Figure 2-2. A process can be in running, blocked, or ready state. Transitions
between these states are as shown.

Four transitions are possible among these three states, as shown. Transition 1
occurs when a process discovers that it cannot continue. In some systems the
process must execute a system call, block or pause to get into blocked state. In
other systems, including MINIX 3, when a process reads from a pipe or special file
(e.g., a terminal) and there is no input available, the process is automatically
moved from the running state to the blocked state.
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Transitions 2 and 3 are caused by the process scheduler, a part of the operat-
ing system, without the process even knowing about them. Transition 2 occurs
when the scheduler decides that the running process has run long enough, and it is
time to let another process have some CPU time. Transition 3 occurs when all the
other processes have had their fair share and it is time for the first process to get
the CPU to run again. The subject of scheduling—deciding which process should
run when and for how long—is an important one. Many algorithms have been
devised to try to balance the competing demands of efficiency for the system as a
whole and fairness to individual processes. We will look at scheduling and study
some of these algorithms later in this chapter.

Transition 4 occurs when the external event for which a process was waiting
(e.g., the arrival of some input) happens. If no other process is running then, tran-
sition 3 will be triggered immediately, and the process will start running. Other-
wise it may have to wait in ready state for a little while until the CPU is available.

Using the process model, it becomes much easier to think about what is going
on inside the system. Some of the processes run programs that carry out com-
mands typed in by a user. Other processes are part of the system and handle tasks
such as carrying out requests for file services or managing the details of running a
disk or a tape drive. When a disk interrupt occurs, the system may make a deci-
sion to stop running the current process and run the disk process, which was
blocked waiting for that interrupt. We say ‘‘may’’ because it depends upon rela-
tive priorities of the running process and the disk driver process. But the point is
that instead of thinking about interrupts, we can think about user processes, disk
processes, terminal processes, and so on, which block when they are waiting for
something to happen. When the disk block has been read or the character typed,
the process waiting for it is unblocked and is eligible to run again.

This view gives rise to the model shown in Fig. 2-3. Here the lowest level of
the operating system is the scheduler, with a variety of processes on top of it. All
the interrupt handling and details of actually starting and stopping processes are
hidden away in the scheduler, which is actually quite small. The rest of the
operating system is nicely structured in process form. The model of Fig. 2-3 is
used in MINIX 3. Of course, the ‘‘scheduler’’ is not the only thing in the lowest
layer, there is also support for interrupt handling and interprocess communication.
Nevertheless, to a first approximation, it does show the basic structure.

2.1.6 Implementation of Processes

To implement the process model, the operating system maintains a table (an
array of structures), called the process table, with one entry per process. (Some
authors call these entries process control blocks.) This entry contains informa-
tion about the process’ state, its program counter, stack pointer, memory alloca-
tion, the status of its open files, its accounting and scheduling information, alarms
and other signals, and everything else about the process that must be saved when
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Scheduler
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Figure 2-3. The lowest layer of a process-structured operating system handles
interrupts and scheduling. Above that layer are sequential processes.

the process is switched from running to ready state so that it can be restarted later
as if it had never been stopped.

In MINIX 3, interprocess communication, memory management, and file man-
agement are each handled by separate modules within the system, so the process
table is partitioned, with each module maintaining the fields that it needs. Figure
2-4 shows some of the more important fields. The fields in the first column are
the only ones relevant to this chapter. The other two columns are provided just to
give an idea of what information is needed elsewhere in the system.
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Registers Pointer to text segment UMASK mask
Program counter Pointer to data segment Root directory
Program status word Pointer to bss segment Working directory
Stack pointer Exit status File descriptors
Process state Signal status Real id
Current scheduling priority Process ID Effective UID
Maximum scheduling priority Parent process Real GID
Scheduling ticks left Process group Effective GID
Quantum size Children’s CPU time Controlling tty
CPU time used Real UID Save area for read/write
Message queue pointers Effective UID System call parameters
Pending signal bits Real GID Various flag bits
Various flag bits Effective GID
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Figure 2-4. Some of the fields of the MINIX 3 process table. The fields are dis-
tributed over the kernel, the process manager, and the file system.



64 PROCESSES CHAP. 2

Now that we have looked at the process table, it is possible to explain a little
more about how the illusion of multiple sequential processes is maintained on a
machine with one CPU and many I/O devices. What follows is technically a
description of how the ‘‘scheduler’’ of Fig. 2-3 works in MINIX 3 but most modern
operating systems work essentially the same way. Associated with each I/O
device class (e.g., floppy disks, hard disks, timers, terminals) is a data structure in
a table called the interrupt descriptor table. The most important part of each
entry in this table is called the interrupt vector. It contains the address of the
interrupt service procedure. Suppose that user process 23 is running when a disk
interrupt occurs. The program counter, program status word, and possibly one or
more registers are pushed onto the (current) stack by the interrupt hardware. The
computer then jumps to the address specified in the disk interrupt vector. That is
all the hardware does. From here on, it is up to the software.

The interrupt service procedure starts out by saving all the registers in the
process table entry for the current process. The current process number and a
pointer to its entry are kept in global variables so they can be found quickly. Then
the information deposited by the interrupt is removed from the stack, and the stack
pointer is set to a temporary stack used by the process handler. Actions such as
saving the registers and setting the stack pointer cannot even be expressed in
high-level languages such as C, so they are performed by a small assembly lan-
guage routine. When this routine is finished, it calls a C procedure to do the rest
of the work for this specific interrupt type.

Interprocess communication in MINIX 3 is via messages, so the next step is to
build a message to be sent to the disk process, which will be blocked waiting for
it. The message says that an interrupt occurred, to distinguish it from messages
from user processes requesting disk blocks to be read and things like that. The
state of the disk process is now changed from blocked to ready and the scheduler
is called. In MINIX 3, different processes have different priorities, to give better
service to I/O device handlers than to user processes, for example. If the disk
process is now the highest priority runnable process, it will be scheduled to run. If
the process that was interrupted is just as important or more so, then it will be
scheduled to run again, and the disk process will have to wait a little while.

Either way, the C procedure called by the assembly language interrupt code
now returns, and the assembly language code loads up the registers and memory
map for the now-current process and starts it running. Interrupt handling and
scheduling are summarized in Fig. 2-5. It is worth noting that the details vary
slightly from system to system.

2.1.7 Threads

In traditional operating systems, each process has an address space and a sin-
gle thread of control. In fact, that is almost the definition of a process. Neverthe-
less, there are often situations in which it is desirable to have multiple threads of
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3. Assembly language procedure saves registers.
4. Assembly language procedure sets up new stack.
5. C interrupt service constructs and sends message.
6. Message passing code marks waiting message recipient ready.
7. Scheduler decides which process is to run next.
8. C procedure returns to the assembly code.
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Figure 2-5. Skeleton of what the lowest level of the operating system does
when an interrupt occurs.

control in the same address space running in quasi-parallel, as though they were
separate processes (except for the shared address space). These threads of control
are usually just called threads, although some people call them lightweight proc-
esses.

One way of looking at a process is that it is a way to group related resources
together. A process has an address space containing program text and data, as well
as other resources. These resources may include open files, child processes, pend-
ing alarms, signal handlers, accounting information, and more. By putting them
together in the form of a process, they can be managed more easily.

The other concept a process has is a thread of execution, usually shortened to
just thread. The thread has a program counter that keeps track of which instruc-
tion to execute next. It has registers, which hold its current working variables. It
has a stack, which contains the execution history, with one frame for each pro-
cedure called but not yet returned from. Although a thread must execute in some
process, the thread and its process are different concepts and can be treated sep-
arately. Processes are used to group resources together; threads are the entities
scheduled for execution on the CPU.

What threads add to the process model is to allow multiple executions to take
place in the same process environment, to a large degree independent of one
another. In Fig. 2-6(a) we see three traditional processes. Each process has its own
address space and a single thread of control. In contrast, in Fig. 2-6(b) we see a
single process with three threads of control. Although in both cases we have three
threads, in Fig. 2-6(a) each of them operates in a different address space, whereas
in Fig. 2-6(b) all three of them share the same address space.

As an example of where multiple threads might be used, consider a web
browser process. Many web pages contain multiple small images. For each im-
age on a web page, the browser must set up a separate connection to the page’s
home site and request the image. A great deal of time is spent establishing and
releasing all these connections. By having multiple threads within the browser,
many images can be requested at the same time, greatly speeding up performance
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Kernel Kernel

Process 1 Process 1 Process 1 Process
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space

Kernel
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(a) (b)

Figure 2-6. (a) Three processes each with one thread. (b) One process with
three threads.

in most cases since with small images, the set-up time is the limiting factor, not
the speed of the transmission line.

When multiple threads are present in the same address space, a few of the
fields of Fig. 2-4 are not per process, but per thread, so a separate thread table is
needed, with one entry per thread. Among the per-thread items are the program
counter, registers, and state. The program counter is needed because threads, like
processes, can be suspended and resumed. The registers are needed because when
threads are suspended, their registers must be saved. Finally, threads, like proc-
esses, can be in running, ready, or blocked state. Fig. 2-7 lists some per-process
and per-thread items.
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Per process items Per thread items
Address space Program counter
Global variables Registers
Open files Stack
Child processes State
Pending alarms
Signals and signal handlers
Accounting information�����������������������������������������������������������������������������
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Figure 2-7. The first column lists some items shared by all threads in a process.
The second one lists some items private to each thread.

In some systems, the operating system is not aware of the threads. In other
words, they are managed entirely in user space. When a thread is about to block,
for example, it chooses and starts its successor before stopping. Several user-
level threads packages are in common use, including the POSIX P-threads and
Mach C-threads packages.
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In other systems, the operating system is aware of the existence of multiple
threads per process, so when a thread blocks, the operating system chooses the
next one to run, either from the same process or a different one. To do schedul-
ing, the kernel must have a thread table that lists all the threads in the system,
analogous to the process table.

Although these two alternatives may seem equivalent, they differ consider-
ably in performance. Switching threads is much faster when thread management
is done in user space than when a system call is needed. This fact argues strongly
for doing thread management in user space. On the other hand, when threads are
managed entirely in user space and one thread blocks (e.g., waiting for I/O or a
page fault to be handled), the kernel blocks the entire process, since it is not even
aware that other threads exist. This fact as well as others argue for doing thread
management in the kernel (Boehm, 2005). As a consequence, both systems are in
use, and various hybrid schemes have been proposed as well (Anderson et al.,
1992).

No matter whether threads are managed by the kernel or in user space, they
introduce a raft of problems that must be solved and which change the program-
ming model appreciably. To start with, consider the effects of the fork system
call. If the parent process has multiple threads, should the child also have them?
If not, the process may not function properly, since all of them may be essential.

However, if the child process gets as many threads as the parent, what hap-
pens if a thread was blocked on a read call, say, from the keyboard? Are two
threads now blocked on the keyboard? When a line is typed, do both threads get a
copy of it? Only the parent? Only the child? The same problem exists with open
network connections.

Another class of problems is related to the fact that threads share many data
structures. What happens if one thread closes a file while another one is still read-
ing from it? Suppose that one thread notices that there is too little memory and
starts allocating more memory. Then, part way through, a thread switch occurs,
and the new thread also notices that there is too little memory and also starts allo-
cating more memory. Does the allocation happen once or twice? In nearly all
systems that were not designed with threads in mind, the libraries (such as the
memory allocation procedure) are not reentrant, and will crash if a second call is
made while the first one is still active.

Another problem relates to error reporting. In UNIX, after a system call, the
status of the call is put into a global variable, errno. What happens if a thread
makes a system call, and before it is able to read errno, another thread makes a
system call, wiping out the original value?

Next, consider signals. Some signals are logically thread specific; others are
not. For example, if a thread calls alarm, it makes sense for the resulting signal to
go to the thread that made the call. When the kernel is aware of threads, it can us-
ually make sure the right thread gets the signal. When the kernel is not aware of
threads, the threads package must keep track of alarms by itself. An additional
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complication for user-level threads exists when (as in UNIX) a process may only
have one alarm at a time pending and several threads call alarm independently.

Other signals, such as a keyboard-initiated SIGINT, are not thread specific.
Who should catch them? One designated thread? All the threads? A newly
created thread? Each of these solutions has problems. Furthermore, what hap-
pens if one thread changes the signal handlers without telling other threads?

One last problem introduced by threads is stack management. In many sys-
tems, when stack overflow occurs, the kernel just provides more stack, automati-
cally. When a process has multiple threads, it must also have multiple stacks. If
the kernel is not aware of all these stacks, it cannot grow them automatically upon
stack fault. In fact, it may not even realize that a memory fault is related to stack
growth.

These problems are certainly not insurmountable, but they do show that just
introducing threads into an existing system without a fairly substantial system
redesign is not going to work at all. The semantics of system calls have to be
redefined and libraries have to be rewritten, at the very least. And all of these
things must be done in such a way as to remain backward compatible with exist-
ing programs for the limiting case of a process with only one thread. For addi-
tional information about threads, see Hauser et al. (1993) and Marsh et al. (1991).

2.2 INTERPROCESS COMMUNICATION

Processes frequently need to communicate with other processes. For exam-
ple, in a shell pipeline, the output of the first process must be passed to the second
process, and so on down the line. Thus there is a need for communication be-
tween processes, preferably in a well-structured way not using interrupts. In the
following sections we will look at some of the issues related to this InterProcess
Communication or IPC.

There are three issues here. The first was alluded to above: how one process
can pass information to another. The second has to do with making sure two or
more processes do not get into each other’s way when engaging in critical activi-
ties (suppose two processes each try to grab the last 1 MB of memory). The third
concerns proper sequencing when dependencies are present: if process A produces
data and process B prints it, B has to wait until A has produced some data before
starting to print. We will examine all three of these issues in some detail in this
section.

It is also important to mention that two of these issues apply equally well to
threads. The first one—passing information—is easy for threads since they share
a common address space (threads in different address spaces that need to com-
municate fall under the heading of communicating processes). However, the
other two—keeping out of each other’s hair and proper sequencing—apply as well
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to threads. The same problems exist and the same solutions apply. Below we will
discuss the problem in the context of processes, but please keep in mind that the
same problems and solutions also apply to threads.

2.2.1 Race Conditions

In some operating systems, processes that are working together may share
some common storage that each one can read and write. The shared storage may
be in main memory (possibly in a kernel data structure) or it may be a shared file;
the location of the shared memory does not change the nature of the communica-
tion or the problems that arise. To see how interprocess communication works in
practice, let us consider a simple but common example, a print spooler. When a
process wants to print a file, it enters the file name in a special spooler directory.
Another process, the printer daemon, periodically checks to see if so are any
files to be printed, and if so removes their names from the directory.

Imagine that our spooler directory has a large number of slots, numbered 0, 1,
2, ..., each one capable of holding a file name. Also imagine that there are two
shared variables, out, which points to the next file to be printed, and in, which
points to the next free slot in the directory. These two variables might well be
kept in a two-word file available to all processes. At a certain instant, slots 0 to 3
are empty (the files have already been printed) and slots 4 to 6 are full (with the
names of files to be printed). More or less simultaneously, processes A and B
decide they want to queue a file for printing. This situation is shown in Fig. 2-8.

4

5

6

7

abc

prog. c

prog. n
Process A

out = 4

in = 7

Process B

Spooler
directory

Figure 2-8. Two processes want to access shared memory at the same time.

In jurisdictions where Murphy’s law† is applicable, the following might well
happen. Process A reads in and stores the value, 7, in a local variable called
next�free�slot. Just then a clock interrupt occurs and the CPU decides that
������������������������������������������������

† If something can go wrong, it will.
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process A has run long enough, so it switches to process B. Process B also reads
in, and also gets a 7, so it stores the name of its file in slot 7 and updates in to be
an 8. Then it goes off and does other things.

Eventually, process A runs again, starting from the place it left off last time.
It looks at next� free�slot, finds a 7 there, and writes its file name in slot 7, eras-
ing the name that process B just put there. Then it computes next�free�slot + 1,
which is 8, and sets in to 8. The spooler directory is now internally consistent, so
the printer daemon will not notice anything wrong, but process B will never
receive any output. User B will hang around the printer room for years, wistfully
hoping for output that never comes. Situations like this, where two or more proc-
esses are reading or writing some shared data and the final result depends on who
runs precisely when, are called race conditions. Debugging programs containing
race conditions is no fun at all. The results of most test runs are fine, but once in a
blue moon something weird and unexplained happens.

2.2.2 Critical Sections

How do we avoid race conditions? The key to preventing trouble here and in
many other situations involving shared memory, shared files, and shared every-
thing else is to find some way to prohibit more than one process from reading and
writing the shared data at the same time. Put in other words, what we need is
mutual exclusion —some way of making sure that if one process is using a
shared variable or file, the other processes will be excluded from doing the same
thing. The difficulty above occurred because process B started using one of the
shared variables before process A was finished with it. The choice of appropriate
primitive operations for achieving mutual exclusion is a major design issue in any
operating system, and a subject that we will now examine in great detail.

The problem of avoiding race conditions can also be formulated in an abstract
way. Part of the time, a process is busy doing internal computations and other
things that do not lead to race conditions. However, sometimes a process may be
accessing shared memory or files. That part of the program where the shared
memory is accessed is called the critical region or critical section. If we could
arrange matters such that no two processes were ever in their critical regions at
the same time, we could avoid race conditions.

Although this requirement avoids race conditions, this is not sufficient for
having parallel processes cooperate correctly and efficiently using shared data.
We need four conditions to hold to have a good solution:

1. No two processes may be simultaneously inside their critical regions.

2. No assumptions may be made about speeds or the number of CPUs.

3. No process running outside its critical region may block other processes.

4. No process should have to wait forever to enter its critical region.
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The behavior that we want is shown in Fig. 2-9. Here process A enters its
critical region at time T 1. A little later, at time T 2 process B attempts to enter its
critical region but fails because another process is already in its critical region and
we allow only one at a time. Consequently, B is temporarily suspended until time
T 3 when A leaves its critical region, allowing B to enter immediately. Eventually
B leaves (at T 4) and we are back to the original situation with no processes in
their critical regions.

A enters critical region A leaves critical region

B attempts to
enter critical 

region

B enters
critical region

T1 T2 T3 T4

Process A 

Process B 

B blocked

B leaves
critical region

Time

Figure 2-9. Mutual exclusion using critical regions.

2.2.3 Mutual Exclusion with Busy Waiting

In this section we will examine various proposals for achieving mutual exclu-
sion, so that while one process is busy updating shared memory in its critical
region, no other process will enter its critical region and cause trouble.

Disabling Interrupts

The simplest solution is to have each process disable all interrupts just after
entering its critical region and reenable them just before leaving it. With inter-
rupts disabled, no clock interrupts can occur. The CPU is only switched from
process to process as a result of clock or other interrupts, after all, and with inter-
rupts turned off the CPU will not be switched to another process. Thus, once a
process has disabled interrupts, it can examine and update the shared memory
without fear that any other process will intervene.

This approach is generally unattractive because it is unwise to give user proc-
esses the power to turn off interrupts. Suppose that one of them did, and then
never turned them on again? That could be the end of the system. Furthermore, if
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the system is a multiprocessor, with two or more CPUs, disabling interrupts af-
fects only the CPU that executed the disable instruction. The other ones will con-
tinue running and can access the shared memory.

On the other hand, it is frequently convenient for the kernel itself to disable
interrupts for a few instructions while it is updating variables or lists. If an inter-
rupt occurred while the list of ready processes, for example, was in an inconsistent
state, race conditions could occur. The conclusion is: disabling interrupts is often
a useful technique within the operating system itself but is not appropriate as a
general mutual exclusion mechanism for user processes.

Lock Variables

As a second attempt, let us look for a software solution. Consider having a
single, shared, (lock) variable, initially 0. When a process wants to enter its criti-
cal region, it first tests the lock. If the lock is 0, the process sets it to 1 and enters
the critical region. If the lock is already 1, the process just waits until it becomes
0. Thus, a 0 means that no process is in its critical region, and a 1 means that
some process is in its critical region.

Unfortunately, this idea contains exactly the same fatal flaw that we saw in
the spooler directory. Suppose that one process reads the lock and sees that it is 0.
Before it can set the lock to 1, another process is scheduled, runs, and sets the lock
to 1. When the first process runs again, it will also set the lock to 1, and two proc-
esses will be in their critical regions at the same time.

Now you might think that we could get around this problem by first reading
out the lock value, then checking it again just before storing into it, but that really
does not help. The race now occurs if the second process modifies the lock just
after the first process has finished its second check.

Strict Alternation

A third approach to the mutual exclusion problem is shown in Fig. 2-10. This
program fragment, like most others in this book, is written in C. C was chosen
here because real operating systems are commonly written in C (or occasionally
C++), but hardly ever in languages like Java. C is powerful, efficient, and
predictable, characteristics critical for writing operating systems. Java, for exam-
ple, is not predictable because it might run out of storage at a critical moment and
need to invoke the garbage collector at a most inopportune time. This cannot hap-
pen in C because there is no garbage collection in C. A quantitative comparison
of C, C++, Java, and four other languages is given by Prechelt (2000).

In Fig. 2-10, the integer variable turn, initially 0, keeps track of whose turn it
is to enter the critical region and examine or update the shared memory. Initially,
process 0 inspects turn, finds it to be 0, and enters its critical region. Process 1
also finds it to be 0 and therefore sits in a tight loop continually testing turn to see
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while (TRUE) { while (TRUE) {
while (turn != 0) /* loop */ ; while (turn != 1) /* loop */ ;
critical�region( ); critical�region( );
turn = 1; turn = 0;
noncritical�region( ); noncritical�region( );

} }

(a) (b)

Figure 2-10. A proposed solution to the critical region problem. (a) Process 0.
(b) Process 1. In both cases, be sure to note the semicolons terminating the while
statements.

when it becomes 1. Continuously testing a variable until some value appears is
called busy waiting. It should usually be avoided, since it wastes CPU time.
Only when there is a reasonable expectation that the wait will be short is busy
waiting used. A lock that uses busy waiting is called a spin lock.

When process 0 leaves the critical region, it sets turn to 1, to allow process 1
to enter its critical region. Suppose that process 1 finishes its critical region
quickly, so both processes are in their noncritical regions, with turn set to 0. Now
process 0 executes its whole loop quickly, exiting its critical region and setting
turn to 1. At this point turn is 1 and both processes are executing in their noncriti-
cal regions.

Suddenly, process 0 finishes its noncritical region and goes back to the top of
its loop. Unfortunately, it is not permitted to enter its critical region now, because
turn is 1 and process 1 is busy with its noncritical region. It hangs in its while
loop until process 1 sets turn to 0. Put differently, taking turns is not a good idea
when one of the processes is much slower than the other.

This situation violates condition 3 set out above: process 0 is being blocked by
a process not in its critical region. Going back to the spooler directory discussed
above, if we now associate the critical region with reading and writing the spooler
directory, process 0 would not be allowed to print another file because process 1
was doing something else.

In fact, this solution requires that the two processes strictly alternate in enter-
ing their critical regions, for example, in spooling files. Neither one would be
permitted to spool two in a row. While this algorithm does avoid all races, it is
not really a serious candidate as a solution because it violates condition 3.

Peterson’s Solution

By combining the idea of taking turns with the idea of lock variables and
warning variables, a Dutch mathematician, T. Dekker, was the first one to devise
a software solution to the mutual exclusion problem that does not require strict
alternation. For a discussion of Dekker’s algorithm, see Dijkstra (1965).
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In 1981, G.L. Peterson discovered a much simpler way to achieve mutual ex-
clusion, thus rendering Dekker’s solution obsolete. Peterson’s algorithm is shown
in Fig. 2-11. This algorithm consists of two procedures written in ANSI C, which
means that function prototypes should be supplied for all the functions defined
and used. However, to save space, we will not show the prototypes in this or sub-
sequent examples.

#define FALSE 0
#define TRUE 1
#define N 2 /* number of processes */

int turn; /* whose turn is it? */
int interested[N]; /* all values initially 0 (FALSE) */

void enter�region(int process) /* process is 0 or 1 */
{

int other; /* number of the other process */

other = 1 − process; /* the opposite of process */
interested[process] = TRUE; /* show that you are interested */
turn = process; /* set flag */
while (turn == process && interested[other] == TRUE) /* null statement */ ;

}

void leave�region(int process) /* process: who is leaving */
{

interested[process] = FALSE; /* indicate departure from critical region */
}

Figure 2-11. Peterson’s solution for achieving mutual exclusion.

Before using the shared variables (i.e., before entering its critical region),
each process calls enter�region with its own process number, 0 or 1, as the
parameter. This call will cause it to wait, if need be, until it is safe to enter. After
it has finished with the shared variables, the process calls leave�region to indicate
that it is done and to allow the other process to enter, if it so desires.

Let us see how this solution works. Initially, neither process is in its critical
region. Now process 0 calls enter�region. It indicates its interest by setting its
array element and sets turn to 0. Since process 1 is not interested, enter�region
returns immediately. If process 1 now calls enter�region, it will hang there until
interested [0] goes to FALSE, an event that only happens when process 0 calls
leave�region to exit the critical region.

Now consider the case that both processes call enter�region almost simul-
taneously. Both will store their process number in turn. Whichever store is done
last is the one that counts; the first one is lost. Suppose that process 1 stores last,
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so turn is 1. When both processes come to the while statement, process 0 executes
it zero times and enters its critical region. Process 1 loops and does not enter its
critical region.

The TSL Instruction

Now let us look at a proposal that requires a little help from the hardware.
Many computers, especially those designed with multiple processors in mind,
have an instruction

TSL RX,LOCK

(Test and Set Lock) that works as follows: it reads the contents of the memory
word LOCK into register RX and then stores a nonzero value at the memory
address LOCK. The operations of reading the word and storing into it are
guaranteed to be indivisible—no other processor can access the memory word
until the instruction is finished. The CPU executing the TSL instruction locks the
memory bus to prohibit other CPUs from accessing memory until it is done.

To use the TSL instruction, we will use a shared variable, LOCK, to coordinate
access to shared memory. When LOCK is 0, any process may set it to 1 using the
TSL instruction and then read or write the shared memory. When it is done, the
process sets LOCK back to 0 using an ordinary move instruction.

How can this instruction be used to prevent two processes from simultane-
ously entering their critical regions? The solution is given in Fig. 2-12. There a
four-instruction subroutine in a fictitious (but typical) assembly language is
shown. The first instruction copies the old value of LOCK to the register and then
sets LOCK to 1. Then the old value is compared with 0. If it is nonzero, the lock
was already set, so the program just goes back to the beginning and tests it again.
Sooner or later it will become 0 (when the process currently in its critical region is
done with its critical region), and the subroutine returns, with the lock set. Clear-
ing the lock is simple. The program just stores a 0 in LOCK. No special instruc-
tions are needed.

enter�region:
TSL REGISTER,LOCK | copy LOCK to register and set LOCK to 1
CMP REGISTER,#0 | was LOCK zero?
JNE ENTER�REGION | if it was non zero, LOCK was set, so loop
RET | return to caller; critical region entered

leave�region:
MOVE LOCK,#0 | store a 0 in LOCK
RET | return to caller

Figure 2-12. Entering and leaving a critical region using the TSL instruction.
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One solution to the critical region problem is now straightforward. Before en-
tering its critical region, a process calls enter�region, which does busy waiting
until the lock is free; then it acquires the lock and returns. After the critical region
the process calls leave�region, which stores a 0 in LOCK. As with all solutions
based on critical regions, the processes must call enter�region and leave�region
at the correct times for the method to work. If a process cheats, the mutual exclu-
sion will fail.

2.2.4 Sleep and Wakeup

Both Peterson’s solution and the solution using TSL are correct, but both have
the defect of requiring busy waiting. In essence, what these solutions do is this:
when a process wants to enter its critical region, it checks to see if the entry is
allowed. If it is not, the process just sits in a tight loop waiting until it is.

Not only does this approach waste CPU time, but it can also have unexpected
effects. Consider a computer with two processes, H, with high priority and L,
with low priority, which share a critical region. The scheduling rules are such that
H is run whenever it is in ready state. At a certain moment, with L in its critical
region, H becomes ready to run (e.g., an I/O operation completes). H now begins
busy waiting, but since L is never scheduled while H is running, L never gets the
chance to leave its critical region, so H loops forever. This situation is sometimes
referred to as the priority inversion problem.

Now let us look at some interprocess communication primitives that block
instead of wasting CPU time when they are not allowed to enter their critical
regions. One of the simplest is the pair sleep and wakeup. sleep is a system call
that causes the caller to block, that is, be suspended until another process wakes it
up. The wakeup call has one parameter, the process to be awakened. Alterna-
tively, both sleep and wakeup each have one parameter, a memory address used
to match up sleeps with wakeups.

The Producer-Consumer Problem

As an example of how these primitives can be used in practice, let us consider
the producer-consumer problem (also known as the bounded buffer problem).
Two processes share a common, fixed-size buffer. One of them, the producer,
puts information into the buffer, and the other one, the consumer, takes it out. (It
is also possible to generalize the problem to have m producers and n consumers,
but we will only consider the case of one producer and one consumer because this
assumption simplifies the solutions).

Trouble arises when the producer wants to put a new item in the buffer, but it
is already full. The solution is for the producer to go to sleep, to be awakened
when the consumer has removed one or more items. Similarly, if the consumer
wants to remove an item from the buffer and sees that the buffer is empty, it goes
to sleep until the producer puts something in the buffer and wakes it up.
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This approach sounds simple enough, but it leads to the same kinds of race
conditions we saw earlier with the spooler directory. To keep track of the number
of items in the buffer, we will need a variable, count. If the maximum number of
items the buffer can hold is N, the producer’s code will first test to see if count is
N. If it is, the producer will go to sleep; if it is not, the producer will add an item
and increment count.

The consumer’s code is similar: first test count to see if it is 0. If it is, go to
sleep; if it is nonzero, remove an item and decrement the counter. Each of the
processes also tests to see if the other should be sleeping, and if not, wakes it up.
The code for both producer and consumer is shown in Fig. 2-13.

#define N 100 /* number of slots in the buffer */
int count = 0; /* number of items in the buffer */

void producer(void)
{

int item;

while (TRUE) { /* repeat forever */
item = produce� item( ); /* generate next item */
if (count == N) sleep( ); /* if buffer is full, go to sleep */
insert� item(item); /* put item in buffer */
count = count + 1; /* increment count of items in buffer */
if (count == 1) wakeup(consumer); /* was buffer empty? */

}
}

void consumer(void)
{

int item;

while (TRUE) { /* repeat forever */
if (count == 0) sleep( ); /* if buffer is empty, got to sleep */
item = remove� item( ); /* take item out of buffer */
count = count − 1; /* decrement count of items in buffer */
if (count == N − 1) wakeup(producer); /* was buffer full? */
consume� item(item); /* print item */

}
}

Figure 2-13. The producer-consumer problem with a fatal race condition.

To express system calls such as sleep and wakeup in C, we will show them as
calls to library routines. They are not part of the standard C library but presum-
ably would be available on any system that actually had these system calls. The
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procedures enter�item and remove�item, which are not shown, handle the book-
keeping of putting items into the buffer and taking items out of the buffer.

Now let us get back to the race condition. It can occur because access to
count is unconstrained. The following situation could possibly occur. The buffer
is empty and the consumer has just read count to see if it is 0. At that instant, the
scheduler decides to stop running the consumer temporarily and start running the
producer. The producer enters an item in the buffer, increments count, and no-
tices that it is now 1. Reasoning that count was just 0, and thus the consumer
must be sleeping, the producer calls wakeup to wake the consumer up.

Unfortunately, the consumer is not yet logically asleep, so the wakeup signal
is lost. When the consumer next runs, it will test the value of count it previously
read, find it to be 0, and go to sleep. Sooner or later the producer will fill up the
buffer and also go to sleep. Both will sleep forever.

The essence of the problem here is that a wakeup sent to a process that is not
(yet) sleeping is lost. If it were not lost, everything would work. A quick fix is to
modify the rules to add a wakeup waiting bit to the picture. When a wakeup is
sent to a process that is still awake, this bit is set. Later, when the process tries to
go to sleep, if the wakeup waiting bit is on, it will be turned off, but the process
will stay awake. The wakeup waiting bit is a piggy bank for wakeup signals.

While the wakeup waiting bit saves the day in this simple example, it is easy
to construct examples with three or more processes in which one wakeup waiting
bit is insufficient. We could make another patch, and add a second wakeup wait-
ing bit, or maybe 8 or 32 of them, but in principle the problem is still there.

2.2.5 Semaphores

This was the situation until E. W. Dijkstra (1965) suggested using an integer
variable to count the number of wakeups saved for future use. In his proposal, a
new variable type, called a semaphore, was introduced. A semaphore could have
the value 0, indicating that no wakeups were saved, or some positive value if one
or more wakeups were pending.

Dijkstra proposed having two operations, down and up (which are generaliza-
tions of sleep and wakeup, respectively). The down operation on a semaphore
checks to see if the value is greater than 0. If so, it decrements the value (i.e.,
uses up one stored wakeup) and just continues. If the value is 0, the process is put
to sleep without completing the down for the moment. Checking the value,
changing it, and possibly going to sleep is all done as a single, indivisible, atomic
action. It is guaranteed that once a semaphore operation has started, no other
process can access the semaphore until the operation has completed or blocked.
This atomicity is absolutely essential to solving synchronization problems and
avoiding race conditions.

The up operation increments the value of the semaphore addressed. If one or
more processes were sleeping on that semaphore, unable to complete an earlier
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down operation, one of them is chosen by the system (e.g., at random) and is al-
lowed to complete its down. Thus, after an up on a semaphore with processes
sleeping on it, the semaphore will still be 0, but there will be one fewer process
sleeping on it. The operation of incrementing the semaphore and waking up one
process is also indivisible. No process ever blocks doing an up, just as no process
ever blocks doing a wakeup in the earlier model.

As an aside, in Dijkstra’s original paper, he used the names p and v instead of
down and up, respectively, but since these have no mnemonic significance to peo-
ple who do not speak Dutch (and only marginal significance to those who do), we
will use the terms down and up instead. These were first introduced in Algol 68.

Solving the Producer-Consumer Problem using Semaphores

Semaphores solve the lost-wakeup problem, as shown in Fig. 2-14. It is es-
sential that they be implemented in an indivisible way. The normal way is to
implement up and down as system calls, with the operating system briefly disa-
bling all interrupts while it is testing the semaphore, updating it, and putting the
process to sleep, if necessary. As all of these actions take only a few instructions,
no harm is done in disabling interrupts. If multiple CPUs are being used, each
semaphore should be protected by a lock variable, with the TSL instruction used
to make sure that only one CPU at a time examines the semaphore. Be sure you
understand that using TSL to prevent several CPUs from accessing the semaphore
at the same time is quite different from busy waiting by the producer or consumer
waiting for the other to empty or fill the buffer. The semaphore operation will
only take a few microseconds, whereas the producer or consumer might take arbi-
trarily long.

This solution uses three semaphores: one called full for counting the number
of slots that are full, one called empty for counting the number of slots that are
empty, and one called mutex to make sure the producer and consumer do not
access the buffer at the same time. Full is initially 0, empty is initially equal to
the number of slots in the buffer, and mutex is initially 1. Semaphores that are ini-
tialized to 1 and used by two or more processes to ensure that only one of them
can enter its critical region at the same time are called binary semaphores. If
each process does a down just before entering its critical region and an up just
after leaving it, mutual exclusion is guaranteed.

Now that we have a good interprocess communication primitive at our dispo-
sal, let us go back and look at the interrupt sequence of Fig. 2-5 again. In a sys-
tem using semaphores, the natural way to hide interrupts is to have a semaphore,
initially set to 0, associated with each I/O device. Just after starting an I/O device,
the managing process does a down on the associated semaphore, thus blocking
immediately. When the interrupt comes in, the interrupt handler then does an up
on the associated semaphore, which makes the relevant process ready to run
again. In this model, step 6 in Fig. 2-5 consists of doing an up on the device’s
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#define N 100 /* number of slots in the buffer */
typedef int semaphore; /* semaphores are a special kind of int */
semaphore mutex = 1; /* controls access to critical region */
semaphore empty = N; /* counts empty buffer slots */
semaphore full = 0; /* counts full buffer slots */

void producer(void)
{

int item;

while (TRUE) { /* TRUE is the constant 1 */
item = produce� item( ); /* generate something to put in buffer */
down(&empty); /* decrement empty count */
down(&mutex); /* enter critical region */
insert� item(item); /* put new item in buffer */
up(&mutex); /* leave critical region */
up(&full); /* increment count of full slots */

}
}

void consumer(void)
{

int item;

while (TRUE) { /* infinite loop */
down(&full); /* decrement full count */
down(&mutex); /* enter critical region */
item = remove� item( ); /* take item from buffer */
up(&mutex); /* leave critical region */
up(&empty); /* increment count of empty slots */
consume� item(item); /* do something with the item */

}
}

Figure 2-14. The producer-consumer problem using semaphores.

semaphore, so that in step 7 the scheduler will be able to run the device manager.
Of course, if several processes are now ready, the scheduler may choose to run an
even more important process next. We will look at how scheduling is done later
in this chapter.

In the example of Fig. 2-14, we have actually used semaphores in two dif-
ferent ways. This difference is important enough to make explicit. The mutex
semaphore is used for mutual exclusion. It is designed to guarantee that only one
process at a time will be reading or writing the buffer and the associated variables.
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This mutual exclusion is required to prevent chaos. We will study mutual exclu-
sion and how to achieve it more in the next section.

The other use of semaphores is for synchronization. The full and empty sem-
aphores are needed to guarantee that certain event sequences do or do not occur.
In this case, they ensure that the producer stops running when the buffer is full,
and the consumer stops running when it is empty. This use is different from
mutual exclusion.

2.2.6 Mutexes

When the semaphore’s ability to count is not needed, a simplified version of
the semaphore, called a mutex, is sometimes used. Mutexes are good only for
managing mutual exclusion to some shared resource or piece of code. They are
easy and efficient to implement, which makes them especially useful in thread
packages that are implemented entirely in user space.

A mutex is a variable that can be in one of two states: unlocked or locked.
Consequently, only 1 bit is required to represent it, but in practice an integer often
is used, with 0 meaning unlocked and all other values meaning locked. Two pro-
cedures are used with mutexes. When a process (or thread) needs access to a crit-
ical region, it calls mutex� lock. If the mutex is currently unlocked (meaning that
the critical region is available), the call succeeds and the calling thread is free to
enter the critical region.

On the other hand, if the mutex is already locked, the caller is blocked until
the process in the critical region is finished and calls mutex�unlock. If multiple
processes are blocked on the mutex, one of them is chosen at random and allowed
to acquire the lock.

2.2.7 Monitors

With semaphores interprocess communication looks easy, right? Forget it.
Look closely at the order of the downs before entering or removing items from the
buffer in Fig. 2-14. Suppose that the two downs in the producer’s code were
reversed in order, so mutex was decremented before empty instead of after it. If
the buffer were completely full, the producer would block, with mutex set to 0.
Consequently, the next time the consumer tried to access the buffer, it would do a
down on mutex, now 0, and block too. Both processes would stay blocked forever
and no more work would ever be done. This unfortunate situation is called a
deadlock. We will study deadlocks in detail in Chap. 3.

This problem is pointed out to show how careful you must be when using
semaphores. One subtle error and everything comes to a grinding halt. It is like
programming in assembly language, only worse, because the errors are race con-
ditions, deadlocks, and other forms of unpredictable and irreproducible behavior.
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To make it easier to write correct programs, Brinch Hansen (1973) and Hoare
(1974) proposed a higher level synchronization primitive called a monitor. Their
proposals differed slightly, as described below. A monitor is a collection of pro-
cedures, variables, and data structures that are all grouped together in a special
kind of module or package. Processes may call the procedures in a monitor when-
ever they want to, but they cannot directly access the monitor’s internal data
structures from procedures declared outside the monitor. This rule, which is com-
mon in modern object-oriented languages such as Java, was relatively unusual for
its time, although objects can be traced back to Simula 67. Figure 2-15 illustrates
a monitor written in an imaginary language, Pidgin Pascal.

monitor example
integer i;
condition c;

procedure producer(x);
.
.
.
end;

procedure consumer(x);
.
.
.
end;

end monitor;

Figure 2-15. A monitor.

Monitors have a key property that makes them useful for achieving mutual ex-
clusion: only one process can be active in a monitor at any instant. Monitors are a
programming language construct, so the compiler knows they are special and can
handle calls to monitor procedures differently from other procedure calls. Typi-
cally, when a process calls a monitor procedure, the first few instructions of the
procedure will check to see if any other process is currently active within the
monitor. If so, the calling process will be suspended until the other process has
left the monitor. If no other process is using the monitor, the calling process may
enter.

It is up to the compiler to implement the mutual exclusion on monitor entries,
but a common way is to use a mutex or binary semaphore. Because the compiler,
not the programmer, arranges for the mutual exclusion, it is much less likely that
something will go wrong. In any event, the person writing the monitor does not
have to be aware of how the compiler arranges for mutual exclusion. It is suffi-
cient to know that by turning all the critical regions into monitor procedures, no
two processes will ever execute their critical regions at the same time.
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Although monitors provide an easy way to achieve mutual exclusion, as we
have seen above, that is not enough. We also need a way for processes to block
when they cannot proceed. In the producer-consumer problem, it is easy enough
to put all the tests for buffer-full and buffer-empty in monitor procedures, but how
should the producer block when it finds the buffer full?

The solution lies in the introduction of condition variables, along with two
operations on them, wait and signal. When a monitor procedure discovers that it
cannot continue (e.g., the producer finds the buffer full), it does a wait on some
condition variable, say, full. This action causes the calling process to block. It
also allows another process that had been previously prohibited from entering the
monitor to enter now.

This other process, for example, the consumer, can wake up its sleeping part-
ner by doing a signal on the condition variable that its partner is waiting on. To
avoid having two active processes in the monitor at the same time, we need a rule
telling what happens after a signal. Hoare proposed letting the newly awakened
process run, suspending the other one. Brinch Hansen proposed finessing the
problem by requiring that a process doing a signal must exit the monitor im-
mediately. In other words, a signal statement may appear only as the final state-
ment in a monitor procedure. We will use Brinch Hansen’s proposal because it is
conceptually simpler and is also easier to implement. If a signal is done on a con-
dition variable on which several processes are waiting, only one of them, deter-
mined by the system scheduler, is revived.

There is also a third solution, not proposed by either Hoare or Brinch Hansen.
This is to let the signaler continue to run and allow the waiting process to start
running only after the signaler has exited the monitor.

Condition variables are not counters. They do not accumulate signals for later
use the way semaphores do. Thus if a condition variable is signaled with no one
waiting on it, the signal is lost. In other words, the wait must come before the sig-
nal. This rule makes the implementation much simpler. In practice it is not a
problem because it is easy to keep track of the state of each process with vari-
ables, if need be. A process that might otherwise do a signal can see that this
operation is not necessary by looking at the variables.

A skeleton of the producer-consumer problem with monitors is given in
Fig. 2-16 in Pidgin Pascal. The advantage of using Pidgin Pascal here is that it is
pure and simple and follows the Hoare/Brinch Hansen model exactly.

You may be thinking that the operations wait and signal look similar to sleep
and wakeup, which we saw earlier had fatal race conditions. They are very simi-
lar, but with one crucial difference: sleep and wakeup failed because while one
process was trying to go to sleep, the other one was trying to wake it up. With
monitors, that cannot happen. The automatic mutual exclusion on monitor pro-
cedures guarantees that if, say, the producer inside a monitor procedure discovers
that the buffer is full, it will be able to complete the wait operation without having
to worry about the possibility that the scheduler may switch to the consumer just
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monitor ProducerConsumer
condition full, empty;
integer count;

procedure insert(item: integer);
begin

if count = N then wait(full);
insert�item(item);
count := count + 1;
if count = 1 then signal(empty)

end;

function remove: integer;
begin

if count = 0 then wait(empty);
remove = remove�item;
count := count − 1;
if count = N − 1 then signal(full)

end;

count := 0;
end monitor;

procedure producer;
begin

while true do
begin

item = produce�item;
ProducerConsumer.insert(item)

end
end;

procedure consumer;
begin

while true do
begin

item = ProducerConsumer.remove;
consume�item(item)

end
end;

Figure 2-16. An outline of the producer-consumer problem with monitors.
Only one monitor procedure at a time is active. The buffer has N slots.

before the wait completes. The consumer will not even be let into the monitor at
all until the wait is finished and the producer is marked as no longer runnable.

Although Pidgin Pascal is an imaginary language, some real programming
languages also support monitors, although not always in the form designed by
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Hoare and Brinch Hansen. One such language is Java. Java is an object-oriented
language that supports user-level threads and also allows methods (procedures) to
be grouped together into classes. By adding the keyword synchronized to a
method declaration, Java guarantees that once any thread has started executing
that method, no other thread will be allowed to start executing any other syn-
chronized method in that class.

Synchronized methods in Java differ from classical monitors in an essential
way: Java does not have condition variables. Instead, it offers two procedures,
wait and notify that are the equivalent of sleep and wakeup except that when they
are used inside synchronized methods, they are not subject to race conditions.

By making the mutual exclusion of critical regions automatic, monitors make
parallel programming much less error-prone than with semaphores. Still, they too
have some drawbacks. It is not for nothing that Fig. 2-16 is written in Pidgin Pas-
cal rather than in C, as are the other examples in this book. As we said earlier,
monitors are a programming language concept. The compiler must recognize
them and arrange for the mutual exclusion somehow. C, Pascal, and most other
languages do not have monitors, so it is unreasonable to expect their compilers to
enforce any mutual exclusion rules. In fact, how could the compiler even know
which procedures were in monitors and which were not?

These same languages do not have semaphores either, but adding semaphores
is easy: all you need to do is add two short assembly code routines to the library to
issue the up and down system calls. The compilers do not even have to know that
they exist. Of course, the operating systems have to know about the semaphores,
but at least if you have a semaphore-based operating system, you can still write
the user programs for it in C or C++ (or even FORTRAN if you are masochistic
enough). With monitors, you need a language that has them built in.

Another problem with monitors, and also with semaphores, is that they were
designed for solving the mutual exclusion problem on one or more CPUs that all
have access to a common memory. By putting the semaphores in the shared
memory and protecting them with TSL instructions, we can avoid races. When
we go to a distributed system consisting of multiple CPUs, each with its own
private memory, connected by a local area network, these primitives become in-
applicable. The conclusion is that semaphores are too low level and monitors are
not usable except in a few programming languages. Also, none of the primitives
provide for information exchange between machines. Something else is needed.

2.2.8 Message Passing

That something else is message passing. This method of interprocess com-
munication uses two primitives, send and receive, which, like semaphores and
unlike monitors, are system calls rather than language constructs. As such, they
can easily be put into library procedures, such as
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send(destination, &message);

and

receive(source, &message);

The former call sends a message to a given destination and the latter one receives
a message from a given source (or from ANY, if the receiver does not care). If no
message is available, the receiver could block until one arrives. Alternatively, it
could return immediately with an error code.

Design Issues for Message Passing Systems

Message passing systems have many challenging problems and design issues
that do not arise with semaphores or monitors, especially if the communicating
processes are on different machines connected by a network. For example, mes-
sages can be lost by the network. To guard against lost messages, the sender and
receiver can agree that as soon as a message has been received, the receiver will
send back a special acknowledgement message. If the sender has not received
the acknowledgement within a certain time interval, it retransmits the message.

Now consider what happens if the message itself is received correctly, but the
acknowledgement is lost. The sender will retransmit the message, so the receiver
will get it twice. It is essential that the receiver can distinguish a new message
from the retransmission of an old one. Usually, this problem is solved by putting
consecutive sequence numbers in each original message. If the receiver gets a
message bearing the same sequence number as the previous message, it knows
that the message is a duplicate that can be ignored.

Message systems also have to deal with the question of how processes are
named, so that the process specified in a send or receive call is unambiguous.
Authentication is also an issue in message systems: how can the client tell that he
is communicating with the real file server, and not with an imposter?

At the other end of the spectrum, there are also design issues that are impor-
tant when the sender and receiver are on the same machine. One of these is per-
formance. Copying messages from one process to another is always slower than
doing a semaphore operation or entering a monitor. Much work has gone into
making message passing efficient. Cheriton (1984), for example, has suggested
limiting message size to what will fit in the machine’s registers, and then doing
message passing using the registers.

The Producer-Consumer Problem with Message Passing

Now let us see how the producer-consumer problem can be solved with mes-
sage passing and no shared memory. A solution is given in Fig. 2-17. We assume
that all messages are the same size and that messages sent but not yet received are
buffered automatically by the operating system. In this solution, a total of N mes-
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sages is used, analogous to the N slots in a shared memory buffer. The consumer
starts out by sending N empty messages to the producer. Whenever the producer
has an item to give to the consumer, it takes an empty message and sends back a
full one. In this way, the total number of messages in the system remains constant
in time, so they can be stored in a given amount of memory known in advance.

If the producer works faster than the consumer, all the messages will end up
full, waiting for the consumer; the producer will be blocked, waiting for an empty
to come back. If the consumer works faster, then the reverse happens: all the
messages will be empties waiting for the producer to fill them up; the consumer
will be blocked, waiting for a full message.

#define N 100 /* number of slots in the buffer */

void producer(void)
{

int item;
message m; /* message buffer */

while (TRUE) {
item = produce� item( ); /* generate something to put in buffer */
receive(consumer, &m); /* wait for an empty to arrive */
build�message(&m, item); /* construct a message to send */
send(consumer, &m); /* send item to consumer */

}
}

void consumer(void)
{

int item, i;
message m;

for (i = 0; i < N; i++) send(producer, &m); /* send N empties */
while (TRUE) {

receive(producer, &m); /* get message containing item */
item = extract� item(&m); /* extract item from message */
send(producer, &m); /* send back empty reply */
consume� item(item); /* do some1thing with the item */

}
}

Figure 2-17. The producer-consumer problem with N messages.

Many variants are possible with message passing. For starters, let us look at
how messages are addressed. One way is to assign each process a unique address
and have messages be addressed to processes. A different way is to invent a new
data structure, called a mailbox. A mailbox is a place to buffer a certain number



88 PROCESSES CHAP. 2

of messages, typically specified when the mailbox is created. When mailboxes
are used, the address parameters in the send and receive calls are mailboxes, not
processes. When a process tries to send to a mailbox that is full, it is suspended
until a message is removed from that mailbox, making room for a new one.

For the producer-consumer problem, both the producer and consumer would
create mailboxes large enough to hold N messages. The producer would send
messages containing data to the consumer’s mailbox, and the consumer would
send empty messages to the producer’s mailbox. When mailboxes are used, the
buffering mechanism is clear: the destination mailbox holds messages that have
been sent to the destination process but have not yet been accepted.

The other extreme from having mailboxes is to eliminate all buffering. When
this approach is followed, if the send is done before the receive, the sending proc-
ess is blocked until the receive happens, at which time the message can be copied
directly from the sender to the receiver, with no intermediate buffering. Simi-
larly, if the receive is done first, the receiver is blocked until a send happens.
This strategy is often known as a rendezvous. It is easier to implement than a
buffered message scheme but is less flexible since the sender and receiver are for-
ced to run in lockstep.

The processes that make up the MINIX 3 operating system itself use the ren-
dezvous method with fixed size messages for communication among themselves.
User processes also use this method to communicate with operating system com-
ponents, although a programmer does not see this, since library routines mediate
systems calls. Interprocess communication between user processes in MINIX 3
(and UNIX) is via pipes, which are effectively mailboxes. The only real differ-
ence between a message system with mailboxes and the pipe mechanism is that
pipes do not preserve message boundaries. In other words, if one process writes
10 messages of 100 bytes to a pipe and another process reads 1000 bytes from that
pipe, the reader will get all 10 messages at once. With a true message system,
each read should return only one message. Of course, if the processes agree al-
ways to read and write fixed-size messages from the pipe, or to end each message
with a special character (e.g., linefeed), no problems arise.

Message passing is commonly used in parallel programming systems. One
well-known message-passing system, for example, is MPI (Message-Passing
Interface). It is widely used for scientific computing. For more information
about it, see for example Gropp et al. (1994) and Snir et al. (1996).

2.3 CLASSICAL IPC PROBLEMS

The operating systems literature is full of interprocess communication prob-
lems that have been widely discussed using a variety of synchronization methods.
In the following sections we will examine two of the better-known problems.
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2.3.1 The Dining Philosophers Problem

In 1965, Dijkstra posed and solved a synchronization problem he called the
dining philosophers problem. Since that time, everyone inventing yet another
synchronization primitive has felt obligated to demonstrate how wonderful the
new primitive is by showing how elegantly it solves the dining philosophers prob-
lem. The problem can be stated quite simply as follows. Five philosophers are
seated around a circular table. Each philosopher has a plate of spaghetti. The
spaghetti is so slippery that a philosopher needs two forks to eat it. Between each
pair of plates is one fork. The layout of the table is illustrated in Fig. 2-18.

Figure 2-18. Lunch time in the Philosophy Department.

The life of a philosopher consists of alternate periods of eating and thinking.
(This is something of an abstraction, even for philosophers, but the other activities
are irrelevant here.) When a philosopher gets hungry, she tries to acquire her left
and right fork, one at a time, in either order. If successful in acquiring two forks,
she eats for a while, then puts down the forks and continues to think. The key
question is: can you write a program for each philosopher that does what it is sup-
posed to do and never gets stuck? (It has been pointed out that the two-fork
requirement is somewhat artificial; perhaps we should switch from Italian to
Chinese food, substituting rice for spaghetti and chopsticks for forks.)

Figure 2-19 shows the obvious solution. The procedure take� fork waits until
the specified fork is available and then seizes it. Unfortunately, the obvious solu-
tion is wrong. Suppose that all five philosophers take their left forks simultane-
ously. None will be able to take their right forks, and there will be a deadlock.

We could modify the program so that after taking the left fork, the program
checks to see if the right fork is available. If it is not, the philosopher puts down
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#define N 5 /* number of philosophers */

void philosopher(int i) /* i: philosopher number, from 0 to 4 */
{

while (TRUE) {
think( ); /* philosopher is thinking */
take�fork(i); /* take left fork */
take�fork((i+1) % N); /* take right fork; % is modulo operator */
eat( ); /* yum-yum, spaghetti */
put�fork(i); /* put left fork back on the table */
put�fork((i+1) % N); /* put right fork back on the table */

}
}

Figure 2-19. A nonsolution to the dining philosophers problem.

the left one, waits for some time, and then repeats the whole process. This propo-
sal too, fails, although for a different reason. With a little bit of bad luck, all the
philosophers could start the algorithm simultaneously, picking up their left forks,
seeing that their right forks were not available, putting down their left forks, wait-
ing, picking up their left forks again simultaneously, and so on, forever. A situa-
tion like this, in which all the programs continue to run indefinitely but fail to
make any progress is called starvation. (It is called starvation even when the
problem does not occur in an Italian or a Chinese restaurant.)

Now you might think, ‘‘If the philosophers would just wait a random time
instead of the same time after failing to acquire the right-hand fork, the chance
that everything would continue in lockstep for even an hour is very small.’’ This
observation is true, and in nearly all applications trying again later is not a prob-
lem. For example, in a local area network using Ethernet, a computer sends a
packet only when it detects no other computer is sending one. However, because
of transmission delays, two computers separated by a length of cable may send
packets that overlap—a collision. When a collision of packets is detected each
computer waits a random time and tries again; in practice this solution works fine.
However, in some applications one would prefer a solution that always works and
cannot fail due to an unlikely series of random numbers. Think about safety con-
trol in a nuclear power plant.

One improvement to Fig. 2-19 that has no deadlock and no starvation is to
protect the five statements following the call to think by a binary semaphore.
Before starting to acquire forks, a philosopher would do a down on mutex. After
replacing the forks, she would do an up on mutex. From a theoretical viewpoint,
this solution is adequate. From a practical one, it has a performance bug: only one
philosopher can be eating at any instant. With five forks available, we should be
able to allow two philosophers to eat at the same time.
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#define N 5 /* number of philosophers */
#define LEFT (i+N−1)%N /* number of i’s left neighbor */
#define RIGHT (i+1)%N /* number of i’s right neighbor */
#define THINKING 0 /* philosopher is thinking */
#define HUNGRY 1 /* philosopher is trying to get forks */
#define EATING 2 /* philosopher is eating */
typedef int semaphore; /* semaphores are a special kind of int */
int state[N]; /* array to keep track of everyone’s state */
semaphore mutex = 1; /* mutual exclusion for critical regions */
semaphore s[N]; /* one semaphore per philosopher */

void philosopher(int i) /* i: philosopher number, from 0 to N−1 */
{

while (TRUE) { /* repeat forever */
think( ); /* philosopher is thinking */
take�forks(i); /* acquire two forks or block */
eat( ); /* yum-yum, spaghetti */
put�forks(i); /* put both forks back on table */

}
}

void take�forks(int i) /* i: philosopher number, from 0 to N−1 */
{

down(&mutex); /* enter critical region */
state[i] = HUNGRY; /* record fact that philosopher i is hungry */
test(i); /* try to acquire 2 forks */
up(&mutex); /* exit critical region */
down(&s[i]); /* block if forks were not acquired */

}

void put�forks(i) /* i: philosopher number, from 0 to N−1 */
{

down(&mutex); /* enter critical region */
state[i] = THINKING; /* philosopher has finished eating */
test(LEFT); /* see if left neighbor can now eat */
test(RIGHT); /* see if right neighbor can now eat */
up(&mutex); /* exit critical region */

}

void test(i) /* i: philosopher number, from 0 to N−1 */
{

if (state[i] == HUNGRY && state[LEFT] != EATING && state[RIGHT] != EATING) {
state[i] = EATING;
up(&s[i]);

}
}

Figure 2-20. A solution to the dining philosophers problem.
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The solution presented in Fig. 2-20 is deadlock-free and allows the maximum
parallelism for an arbitrary number of philosophers. It uses an array, state, to
keep track of whether a philosopher is eating, thinking, or hungry (trying to
acquire forks). A philosopher may move into eating state only if neither neighbor
is eating. Philosopher i’s neighbors are defined by the macros LEFT and RIGHT.
In other words, if i is 2, LEFT is 1 and RIGHT is 3.

The program uses an array of semaphores, one per philosopher, so hungry
philosophers can block if the needed forks are busy. Note that each process runs
the procedure philosopher as its main code, but the other procedures, take� forks,
put�forks, and test are ordinary procedures and not separate processes.

2.3.2 The Readers and Writers Problem

The dining philosophers problem is useful for modeling processes that are
competing for exclusive access to a limited number of resources, such as I/O
devices. Another famous problem is the readers and writers problem which
models access to a database (Courtois et al., 1971). Imagine, for example, an air-
line reservation system, with many competing processes wishing to read and write
it. It is acceptable to have multiple processes reading the database at the same
time, but if one process is updating (writing) the database, no other process may
have access to the database, not even a reader. The question is how do you pro-
gram the readers and the writers? One solution is shown in Fig. 2-21.

In this solution, the first reader to get access to the data base does a down on
the semaphore db. Subsequent readers merely have to increment a counter, rc.
As readers leave, they decrement the counter and the last one out does an up on
the semaphore, allowing a blocked writer, if there is one, to get in.

The solution presented here implicitly contains a subtle decision that is worth
commenting on. Suppose that while a reader is using the data base, another
reader comes along. Since having two readers at the same time is not a problem,
the second reader is admitted. A third and subsequent readers can also be admit-
ted if they come along.

Now suppose that a writer comes along. The writer cannot be admitted to the
data base, since writers must have exclusive access, so the writer is suspended.
Later, additional readers show up. As long as at least one reader is still active,
subsequent readers are admitted. As a consequence of this strategy, as long as
there is a steady supply of readers, they will all get in as soon as they arrive. The
writer will be kept suspended until no reader is present. If a new reader arrives,
say, every 2 seconds, and each reader takes 5 seconds to do its work, the writer
will never get in.

To prevent this situation, the program could be written slightly differently:
When a reader arrives and a writer is waiting, the reader is suspended behind the
writer instead of being admitted immediately. In this way, a writer has to wait for
readers that were active when it arrived to finish but does not have to wait for
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typedef int semaphore; /* use your imagination */
semaphore mutex = 1; /* controls access to ‘rc’ */
semaphore db = 1; /* controls access to the database */
int rc = 0; /* # of processes reading or wanting to */

void reader(void)
{

while (TRUE) { /* repeat forever */
down(&mutex); /* get exclusive access to ‘rc’ */
rc = rc + 1; /* one reader more now */
if (rc == 1) down(&db); /* if this is the first reader ... */
up(&mutex); /* release exclusive access to ‘rc’ */
read�data�base( ); /* access the data */
down(&mutex); /* get exclusive access to ‘rc’ */
rc = rc − 1; /* one reader fewer now */
if (rc == 0) up(&db); /* if this is the last reader ... */
up(&mutex); /* release exclusive access to ‘rc’ */
use�data�read( ); /* noncritical region */

}
}

void writer(void)
{

while (TRUE) { /* repeat forever */
think�up�data( ); /* noncritical region */
down(&db); /* get exclusive access */
write�data�base( ); /* update the data */
up(&db); /* release exclusive access */

}
}

Figure 2-21. A solution to the readers and writers problem.

readers that came along after it. The disadvantage of this solution is that it
achieves less concurrency and thus lower performance. Courtois et al. present a
solution that gives priority to writers. For details, we refer you to the paper.

2.4 SCHEDULING

In the examples of the previous sections, we have often had situations in
which two or more processes (e.g., producer and consumer) were logically run-
nable. When a computer is multiprogrammed, it frequently has multiple proc-
esses competing for the CPU at the same time. When more than one process is in
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the ready state and there is only one CPU available, the operating system must de-
cide which process to run first. The part of the operating system that makes the
choice is called the scheduler; the algorithm it uses is called the scheduling al-
gorithm.

Many scheduling issues apply both to processes and threads. Initially, we will
focus on process scheduling, but later we will take a brief look at some issues
specific to thread scheduling.

2.4.1 Introduction to Scheduling

Back in the old days of batch systems with input in the form of card images
on a magnetic tape, the scheduling algorithm was simple: just run the next job on
the tape. With timesharing systems, the scheduling algorithm became more com-
plex, because there were generally multiple users waiting for service. There may
be one or more batch streams as well (e.g., at an insurance company, for process-
ing claims). On a personal computer you might think there would be only one
active process. After all, a user entering a document on a word processor is
unlikely to be simultaneously compiling a program in the background. However,
there are often background jobs, such as electronic mail daemons sending or re-
ceiving e-mail. You might also think that computers have gotten so much faster
over the years that the CPU is rarely a scarce resource any more. However, new
applications tend to demand more resources. Processing digital photographs or
watching real time video are examples.

Process Behavior

Nearly all processes alternate bursts of computing with (disk) I/O requests, as
shown in Fig. 2-22. Typically the CPU runs for a while without stopping, then a
system call is made to read from a file or write to a file. When the system call
completes, the CPU computes again until it needs more data or has to write more
data, and so on. Note that some I/O activities count as computing. For example,
when the CPU copies bits to a video RAM to update the screen, it is computing,
not doing I/O, because the CPU is in use. I/O in this sense is when a process
enters the blocked state waiting for an external device to complete its work.

The important thing to notice about Fig. 2-22 is that some processes, such as
the one in Fig. 2-22(a), spend most of their time computing, while others, such as
the one in Fig. 2-22(b), spend most of their time waiting for I/O. The former are
called compute-bound; the latter are called I/O-bound. Compute-bound proc-
esses typically have long CPU bursts and thus infrequent I/O waits, whereas I/O-
bound processes have short CPU bursts and thus frequent I/O waits. Note that the
key factor is the length of the CPU burst, not the length of the I/O burst. I/O-
bound processes are I/O bound because they do not compute much between I/O
requests, not because they have especially long I/O requests. It takes the same
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Long CPU burst

Short CPU burst

Waiting for I/O

(a) 

(b) 

Time

Figure 2-22. Bursts of CPU usage alternate with periods of waiting for I/O. (a)
A CPU-bound process. (b) An I/O-bound process.

time to read a disk block no matter how much or how little time it takes to process
the data after they arrive.

It is worth noting that as CPUs get faster, processes tend to get more I/O-
bound. This effect occurs because CPUs are improving much faster than disks.
As a consequence, the scheduling of I/O-bound processes is likely to become a
more important subject in the future. The basic idea here is that if an I/O-bound
process wants to run, it should get a chance quickly so it can issue its disk request
and keep the disk busy.

When to Schedule

There are a variety of situations in which scheduling may occur. First,
scheduling is absolutely required on two occasions:

1. When a process exits.

2. When a process blocks on I/O, or a semaphore.

In each of these cases the process that had most recently been running becomes
unready, so another must be chosen to run next.

There are three other occasions when scheduling is usually done, although
logically it is not absolutely necessary at these times:

1. When a new process is created.

2. When an I/O interrupt occurs.

3. When a clock interrupt occurs.

In the case of a new process, it makes sense to reevaluate priorities at this time. In
some cases the parent may be able to request a different priority for its child.
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In the case of an I/O interrupt, this usually means that an I/O device has now
completed its work. So some process that was blocked waiting for I/O may now
be ready to run.

In the case of a clock interrupt, this is an opportunity to decide whether the
currently running process has run too long. Scheduling algorithms can be divided
into two categories with respect to how they deal with clock interrupts. A non-
preemptive scheduling algorithm picks a process to run and then just lets it run
until it blocks (either on I/O or waiting for another process) or until it voluntarily
releases the CPU. In contrast, a preemptive scheduling algorithm picks a process
and lets it run for a maximum of some fixed time. If it is still running at the end
of the time interval, it is suspended and the scheduler picks another process to run
(if one is available). Doing preemptive scheduling requires having a clock inter-
rupt occur at the end of the time interval to give control of the CPU back to the
scheduler. If no clock is available, nonpreemptive scheduling is the only option.

Categories of Scheduling Algorithms

Not surprisingly, in different environments different scheduling algorithms are
needed. This situation arises because different application areas (and different
kinds of operating systems) have different goals. In other words, what the sched-
uler should optimize for is not the same in all systems. Three environments worth
distinguishing are

1. Batch.

2. Interactive.

3. Real time.

In batch systems, there are no users impatiently waiting at their terminals for a
quick response. Consequently, nonpreemptive algorithms, or preemptive algo-
rithms with long time periods for each process are often acceptable. This ap-
proach reduces process switches and thus improves performance.

In an environment with interactive users, preemption is essential to keep one
process from hogging the CPU and denying service to the others. Even if no
process intentionally ran forever, due to a program bug, one process might shut
out all the others indefinitely. Preemption is needed to prevent this behavior.

In systems with real-time constraints, preemption is, oddly enough, sometimes
not needed because the processes know that they may not run for long periods of
time and usually do their work and block quickly. The difference with interactive
systems is that real-time systems run only programs that are intended to further
the application at hand. Interactive systems are general purpose and may run arbi-
trary programs that are not cooperative or even malicious.
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Scheduling Algorithm Goals

In order to design a scheduling algorithm, it is necessary to have some idea of
what a good algorithm should do. Some goals depend on the environment (batch,
interactive, or real time), but there are also some that are desirable in all cases.
Some goals are listed in Fig. 2-23. We will discuss these in turn below.

All systems
Fairness — giving each process a fair share of the CPU
Policy enforcement — seeing that stated policy is carried out
Balance — keeping all parts of the system busy

Batch systems
Throughput — maximize jobs per hour
Turnaround time — minimize time between submission and termination
CPU utilization — keep the CPU busy all the time

Interactive systems
Response time — respond to requests quickly
Proportionality — meet users’ expectations

Real—time systems
Meeting deadlines — avoid losing data
Predictability — avoid quality degradation in multimedia systems

Figure 2-23. Some goals of the scheduling algorithm under different circumstances.

Under all circumstances, fairness is important. Comparable processes should
get comparable service. Giving one process much more CPU time than an equiv-
alent one is not fair. Of course, different categories of processes may be treated
differently. Think of safety control and doing the payroll at a nuclear reactor’s
computer center.

Somewhat related to fairness is enforcing the system’s policies. If the local
policy is that safety control processes get to run whenever they want to, even if it
means the payroll is 30 sec late, the scheduler has to make sure this policy is
enforced.

Another general goal is keeping all parts of the system busy when possible. If
the CPU and all the I/O devices can be kept running all the time, more work gets
done per second than if some of the components are idle. In a batch system, for
example, the scheduler has control of which jobs are brought into memory to run.
Having some CPU-bound processes and some I/O-bound processes in memory
together is a better idea than first loading and running all the CPU-bound jobs and
then, when they are finished, loading and running all the I/O-bound jobs. If the
latter strategy is used, when the CPU-bound processes are running, they will fight
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for the CPU and the disk will be idle. Later, when the I/O-bound jobs come in,
they will fight for the disk and the CPU will be idle. Better to keep the whole sys-
tem running at once by a careful mix of processes.

The managers of corporate computer centers that run many batch jobs (e.g.,
processing insurance claims) typically look at three metrics to see how well their
systems are performing: throughput, turnaround time, and CPU utilization.
Throughput is the number of jobs per second that the system completes. All
things considered, finishing 50 jobs per second is better than finishing 40 jobs per
second. Turnaround time is the average time from the moment that a batch job is
submitted until the moment it is completed. It measures how long the average
user has to wait for the output. Here the rule is: Small is Beautiful.

A scheduling algorithm that maximizes throughput may not necessarily mini-
mize turnaround time. For example, given a mix of short jobs and long jobs, a
scheduler that always ran short jobs and never ran long jobs might achieve an
excellent throughput (many short jobs per second) but at the expense of a terrible
turnaround time for the long jobs. If short jobs kept arriving at a steady rate, the
long jobs might never run, making the mean turnaround time infinite while
achieving a high throughput.

CPU utilization is also an issue with batch systems because on the big main-
frames where batch systems run, the CPU is still a major expense. Thus computer
center managers feel guilty when it is not running all the time. Actually though,
this is not such a good metric. What really matters is how many jobs per second
come out of the system (throughput) and how long it takes to get a job back (turn-
around time). Using CPU utilization as a metric is like rating cars based on how
many times per second the engine turns over.

For interactive systems, especially timesharing systems and servers, different
goals apply. The most important one is to minimize response time, that is the
time between issuing a command and getting the result. On a personal computer
where a background process is running (for example, reading and storing email
from the network), a user request to start a program or open a file should take pre-
cedence over the background work. Having all interactive requests go first will
be perceived as good service.

A somewhat related issue is what might be called proportionality. Users
have an inherent (but often incorrect) idea of how long things should take. When
a request that is perceived as complex takes a long time, users accept that, but
when a request that is perceived as simple takes a long time, users get irritated.
For example, if clicking on a icon that calls up an Internet provider using an ana-
log modem takes 45 seconds to establish a connection, the user will probably
accept that as a fact of life. On the other hand, if clicking on an icon that breaks
the connection takes 45 seconds, the user will probably be swearing a blue streak
by the 30-sec mark and frothing at the mouth by 45 sec. This behavior is due to
the common user perception that placing a phone call and getting a connection is
supposed to take a lot longer than just hanging up. In some cases (such as this
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one), the scheduler cannot do anything about the response time, but in other cases
it can, especially when the delay is due to a poor choice of process order.

Real-time systems have different properties than interactive systems, and thus
different scheduling goals. They are characterized by having deadlines that must
or at least should be met. For example, if a computer is controlling a device that
produces data at a regular rate, failure to run the data-collection process on time
may result in lost data. Thus the foremost need in a real-time system is meeting
all (or most) deadlines.

In some real-time systems, especially those involving multimedia, predictabil-
ity is important. Missing an occasional deadline is not fatal, but if the audio proc-
ess runs too erratically, the sound quality will deteriorate rapidly. Video is also an
issue, but the ear is much more sensitive to jitter than the eye. To avoid this prob-
lem, process scheduling must be highly predictable and regular.

2.4.2 Scheduling in Batch Systems

It is now time to turn from general scheduling issues to specific scheduling al-
gorithms. In this section we will look at algorithms used in batch systems. In the
following ones we will examine interactive and real-time systems. It is worth
pointing out that some algorithms are used in both batch and interactive systems.
We will study these later. Here we will focus on algorithms that are only suitable
in batch systems.

First-Come First-Served

Probably the simplest of all scheduling algorithms is nonpreemptive first-
come first-served. With this algorithm, processes are assigned the CPU in the
order they request it. Basically, there is a single queue of ready processes. When
the first job enters the system from the outside in the morning, it is started
immediately and allowed to run as long as it wants to. As other jobs come in,
they are put onto the end of the queue. When the running process blocks, the first
process on the queue is run next. When a blocked process becomes ready, like a
newly arrived job, it is put on the end of the queue.

The great strength of this algorithm is that it is easy to understand and equally
easy to program. It is also fair in the same sense that allocating scarce sports or
concert tickets to people who are willing to stand on line starting at 2 A.M. is fair.
With this algorithm, a single linked list keeps track of all ready processes. Pick-
ing a process to run just requires removing one from the front of the queue.
Adding a new job or unblocked process just requires attaching it to the end of the
queue. What could be simpler?

Unfortunately, first-come first-served also has a powerful disadvantage. Sup-
pose that there is one compute-bound process that runs for 1 sec at a time and
many I/O-bound processes that use little CPU time but each have to perform 1000
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disk reads in order to complete. The compute-bound process runs for 1 sec, then
it reads a disk block. All the I/O processes now run and start disk reads. When
the compute-bound process gets its disk block, it runs for another 1 sec, followed
by all the I/O-bound processes in quick succession.

The net result is that each I/O-bound process gets to read 1 block per second
and will take 1000 sec to finish. With a scheduling algorithm that preempted the
compute-bound process every 10 msec, the I/O-bound processes would finish in
10 sec instead of 1000 sec, and without slowing down the compute-bound process
very much.

Shortest Job First

Now let us look at another nonpreemptive batch algorithm that assumes the
run times are known in advance. In an insurance company, for example, people
can predict quite accurately how long it will take to run a batch of 1000 claims,
since similar work is done every day. When several equally important jobs are
sitting in the input queue waiting to be started, the scheduler picks the shortest
job first. Look at Fig. 2-24. Here we find four jobs A, B, C, and D with run times
of 8, 4, 4, and 4 minutes, respectively. By running them in that order, the turn-
around time for A is 8 minutes, for B is 12 minutes, for C is 16 minutes, and for D
is 20 minutes for an average of 14 minutes.

(a)
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Figure 2-24. An example of shortest job first scheduling. (a) Running four jobs
in the original order. (b) Running them in shortest job first order.

Now let us consider running these four jobs using shortest job first, as shown
in Fig. 2-24(b). The turnaround times are now 4, 8, 12, and 20 minutes for an
average of 11 minutes. Shortest job first is provably optimal. Consider the case
of four jobs, with run times of a, b, c, and d, respectively. The first job finishes at
time a, the second finishes at time a + b, and so on. The mean turnaround time is
(4a + 3b + 2c + d) /4. It is clear that a contributes more to the average than the
other times, so it should be the shortest job, with b next, then c, and finally d as
the longest as it affects only its own turnaround time. The same argument applies
equally well to any number of jobs.

It is worth pointing out that shortest job first is only optimal when all the jobs
are available simultaneously. As a counterexample, consider five jobs, A through
E, with run times of 2, 4, 1, 1, and 1, respectively. Their arrival times are 0, 0, 3,
3, and 3. Initially, only A or B can be chosen, since the other three jobs have not
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arrived yet. Using shortest job first we will run the jobs in the order A, B, C, D, E,
for an average wait of 4.6. However, running them in the order B, C, D, E, A has
an average wait of 4.4.

Shortest Remaining Time Next

A preemptive version of shortest job first is shortest remaining time next.
With this algorithm, the scheduler always chooses the process whose remaining
run time is the shortest. Again here, the run time has to be known in advance.
When a new job arrives, its total time is compared to the current process’ remain-
ing time. If the new job needs less time to finish than the current process, the
current process is suspended and the new job started. This scheme allows new
short jobs to get good service.

Three-Level Scheduling

From a certain perspective, batch systems allow scheduling at three different
levels, as illustrated in Fig. 2-25. As jobs arrive at the system, they are initially
placed in an input queue stored on the disk. The admission scheduler decides
which jobs to admit to the system. The others are kept in the input queue until
they are selected. A typical algorithm for admission control might be to look for a
mix of compute-bound jobs and I/O-bound jobs. Alternatively, short jobs could
be admitted quickly whereas longer jobs would have to wait. The admission
scheduler is free to hold some jobs in the input queue and admit jobs that arrive
later if it so chooses.

CPU

Main
Memory

Arriving
job

Input
queue

Admission
scheduler

Memory
scheduler

Disk

CPU scheduler 

Figure 2-25. Three-level scheduling.

Once a job has been admitted to the system, a process can be created for it
and it can contend for the CPU. However, it might well happen that the number
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of processes is so large that there is not enough room for all of them in memory.
In that case, some of the processes have to be swapped out to disk. The second
level of scheduling is deciding which processes should be kept in memory and
which ones should be kept on disk. We will call this scheduler the memory
scheduler, since it determines which processes are kept in memory and which on
the disk.

This decision has to be reviewed frequently to allow the processes on disk to
get some service. However, since bringing a process in from disk is expensive,
the review probably should not happen more often than once per second, maybe
less often. If the contents of main memory are shuffled too often, a large amount
of disk bandwidth will be wasted, slowing down file I/O.

To optimize system performance as a whole, the memory scheduler might
well want to carefully decide how many processes it wants in memory, called the
degree of multiprogramming, and what kind of processes. If it has information
about which processes are compute bound and which are I/O bound, it can try to
keep a mix of these process types in memory. As a very crude approximation, if a
certain class of process computes about 20% of the time, keeping five of them
around is roughly the right number to keep the CPU busy.

To make its decisions, the memory scheduler periodically reviews each proc-
ess on disk to decide whether or not to bring it into memory. Among the criteria
that it can use to make its decision are the following ones:

1. How long has it been since the process was swapped in or out?

2. How much CPU time has the process had recently?

3. How big is the process? (Small ones do not get in the way.)

4. How important is the process?

The third level of scheduling is actually picking one of the ready processes in
main memory to run next. Often this is called the CPU scheduler and is the one
people usually mean when they talk about the ‘‘scheduler.’’ Any suitable algo-
rithm can be used here, either preemptive or nonpreemptive. These include the
ones described above as well as a number of algorithms to be described in the
next section.

2.4.3 Scheduling in Interactive Systems

We will now look at some algorithms that can be used in interactive systems.
All of these can also be used as the CPU scheduler in batch systems as well.
While three-level scheduling is not possible here, two-level scheduling (memory
scheduler and CPU scheduler) is possible and common. Below we will focus on
the CPU scheduler and some common scheduling algorithms.
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Round-Robin Scheduling

Now let us look at some specific scheduling algorithms. One of the oldest,
simplest, fairest, and most widely used algorithms is round robin. Each process
is assigned a time interval, called its quantum, which it is allowed to run. If the
process is still running at the end of the quantum, the CPU is preempted and given
to another process. If the process has blocked or finished before the quantum has
elapsed, the CPU switching is done when the process blocks, of course. Round
robin is easy to implement. All the scheduler needs to do is maintain a list of
runnable processes, as shown in Fig. 2-26(a). When the process uses up its quan-
tum, it is put on the end of the list, as shown in Fig. 2-26(b).

(a)

Current
process

Next
process

B F D G A

(b)

Current
process

F D G A B

Figure 2-26. Round-robin scheduling. (a) The list of runnable processes. (b)
The list of runnable processes after B uses up its quantum.

The only interesting issue with round robin is the length of the quantum.
Switching from one process to another requires a certain amount of time for doing
the administration—saving and loading registers and memory maps, updating var-
ious tables and lists, flushing and reloading the memory cache, etc. Suppose that
this process switch or context switch, as it is sometimes called, takes 1 msec,
including switching memory maps, flushing and reloading the cache, etc. Also
suppose that the quantum is set at 4 msec. With these parameters, after doing 4
msec of useful work, the CPU will have to spend 1 msec on process switching.
Twenty percent of the CPU time will be wasted on administrative overhead.
Clearly, this is too much.

To improve the CPU efficiency, we could set the quantum to, say, 100 msec.
Now the wasted time is only 1 percent. But consider what happens on a timeshar-
ing system if ten interactive users hit the carriage return key at roughly the same
time. Ten processes will be put on the list of runnable processes. If the CPU is
idle, the first one will start immediately, the second one may not start until 100
msec later, and so on. The unlucky last one may have to wait 1 sec before getting
a chance, assuming all the others use their full quanta. Most users will perceive a
1-sec response to a short command as sluggish.

Another factor is that if the quantum is set longer than the mean CPU burst,
preemption will rarely happen. Instead, most processes will perform a blocking
operation before the quantum runs out, causing a process switch. Eliminating pre-
emption improves performance because process switches then only happen when
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they are logically necessary, that is, when a process blocks and cannot continue
because it is logically waiting for something.

The conclusion can be formulated as follows: setting the quantum too short
causes too many process switches and lowers the CPU efficiency, but setting it
too long may cause poor response to short interactive requests. A quantum of
around 20–50 msec is often a reasonable compromise.

Priority Scheduling

Round-robin scheduling makes the implicit assumption that all processes are
equally important. Frequently, the people who own and operate multiuser com-
puters have different ideas on that subject. At a university, the pecking order may
be deans first, then professors, secretaries, janitors, and finally students. The need
to take external factors into account leads to priority scheduling. The basic idea
is straightforward: Each process is assigned a priority, and the runnable process
with the highest priority is allowed to run.

Even on a PC with a single owner, there may be multiple processes, some
more important than others. For example, a daemon process sending electronic
mail in the background should be assigned a lower priority than a process display-
ing a video film on the screen in real time.

To prevent high-priority processes from running indefinitely, the scheduler
may decrease the priority of the currently running process at each clock tick (i.e.,
at each clock interrupt). If this action causes its priority to drop below that of the
next highest process, a process switch occurs. Alternatively, each process may be
assigned a maximum time quantum that it is allowed to run. When this quantum
is used up, the next highest priority process is given a chance to run.

Priorities can be assigned to processes statically or dynamically. On a mili-
tary computer, processes started by generals might begin at priority 100, processes
started by colonels at 90, majors at 80, captains at 70, lieutenants at 60, and so on.
Alternatively, at a commercial computer center, high-priority jobs might cost 100
dollars an hour, medium priority 75 dollars an hour, and low priority 50 dollars an
hour. The UNIX system has a command, nice, which allows a user to voluntarily
reduce the priority of his process, in order to be nice to the other users. Nobody
ever uses it.

Priorities can also be assigned dynamically by the system to achieve certain
system goals. For example, some processes are highly I/O bound and spend most
of their time waiting for I/O to complete. Whenever such a process wants the
CPU, it should be given the CPU immediately, to let it start its next I/O request,
which can then proceed in parallel with another process actually computing.
Making the I/O-bound process wait a long time for the CPU will just mean having
it around occupying memory for an unnecessarily long time. A simple algorithm
for giving good service to I/O-bound processes is to set the priority to 1/ f, where f
is the fraction of the last quantum that a process used. A process that used only 1
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msec of its 50 msec quantum would get priority 50, while a process that ran 25
msec before blocking would get priority 2, and a process that used the whole
quantum would get priority 1.

It is often convenient to group processes into priority classes and use priority
scheduling among the classes but round-robin scheduling within each class. Fig-
ure 2-27 shows a system with four priority classes. The scheduling algorithm is as
follows: as long as there are runnable processes in priority class 4, just run each
one for one quantum, round-robin fashion, and never bother with lower priority
classes. If priority class 4 is empty, then run the class 3 processes round robin. If
classes 4 and 3 are both empty, then run class 2 round robin, and so on. If priori-
ties are not adjusted occasionally, lower priority classes may all starve to death.

Priority 4

Priority 3

Priority 2

Priority 1

Queue
headers

Runable processes

(Highest priority)

(Lowest priority)

Figure 2-27. A scheduling algorithm with four priority classes.

MINIX 3 uses a similar system to Fig. 2-27, although there are sixteen priority
classes in the default configuration. In MINIX 3, components of the operating sys-
tem run as processes. MINIX 3 puts tasks (I/O drivers) and servers (memory
manager, file system, and network) in the highest priority classes. The initial
priority of each task or service is defined at compile time; I/O from a slow device
may be given lower priority than I/O from a fast device or even a server. User
processes generally have lower priority than system components, but all priorities
can change during execution.

Multiple Queues

One of the earliest priority schedulers was in CTSS (Corbató et al., 1962).
CTSS had the problem that process switching was very slow because the 7094
could hold only one process in memory. Each switch meant swapping the current
process to disk and reading in a new one from disk. The CTSS designers quickly
realized that it was more efficient to give CPU-bound processes a large quantum
once in a while, rather than giving them small quanta frequently (to reduce swap-
ping). On the other hand, giving all processes a large quantum would mean poor
response time, as we have already observed. Their solution was to set up priority
classes. Processes in the highest class were run for one quantum. Processes in
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the next highest class were run for two quanta. Processes in the next class were
run for four quanta, and so on. Whenever a process used up all the quanta allo-
cated to it, it was moved down one class.

As an example, consider a process that needed to compute continuously for
100 quanta. It would initially be given one quantum, then swapped out. Next
time it would get two quanta before being swapped out. On succeeding runs it
would get 4, 8, 16, 32, and 64 quanta, although it would have used only 37 of the
final 64 quanta to complete its work. Only 7 swaps would be needed (including
the initial load) instead of 100 with a pure round-robin algorithm. Furthermore, as
the process sank deeper and deeper into the priority queues, it would be run less
and less frequently, saving the CPU for short, interactive processes.

The following policy was adopted to prevent a process that needed to run for a
long time when it first started but became interactive later, from being punished
forever. Whenever a carriage return was typed at a terminal, the process belong-
ing to that terminal was moved to the highest priority class, on the assumption that
it was about to become interactive. One fine day, some user with a heavily CPU-
bound process discovered that just sitting at the terminal and typing carriage
returns at random every few seconds did wonders for his response time. He told
all his friends. Moral of the story: getting it right in practice is much harder than
getting it right in principle.

Many other algorithms have been used for assigning processes to priority
classes. For example, the influential XDS 940 system (Lampson, 1968), built at
Berkeley, had four priority classes, called terminal, I/O, short quantum, and long
quantum. When a process that was waiting for terminal input was finally awak-
ened, it went into the highest priority class (terminal). When a process waiting for
a disk block became ready, it went into the second class. When a process was still
running when its quantum ran out, it was initially placed in the third class. How-
ever, if a process used up its quantum too many times in a row without blocking
for terminal or other I/O, it was moved down to the bottom queue. Many other
systems use something similar to favor interactive users and processes over back-
ground ones.

Shortest Process Next

Because shortest job first always produces the minimum average response
time for batch systems, it would be nice if it could be used for interactive proc-
esses as well. To a certain extent, it can be. Interactive processes generally fol-
low the pattern of wait for command, execute command, wait for command, exe-
cute command, and so on. If we regard the execution of each command as a
separate ‘‘job,’’ then we could minimize overall response time by running the
shortest one first. The only problem is figuring out which of the currently run-
nable processes is the shortest one.

One approach is to make estimates based on past behavior and run the process
with the shortest estimated running time. Suppose that the estimated time per



SEC. 2.4 SCHEDULING 107

command for some terminal is T 0 . Now suppose its next run is measured to be
T 1 . We could update our estimate by taking a weighted sum of these two
numbers, that is, aT 0 + (1 − a)T 1 . Through the choice of a we can decide to have
the estimation process forget old runs quickly, or remember them for a long time.
With a = 1/2, we get successive estimates of

T 0, T 0 /2 + T 1 /2, T 0 /4 + T 1 /4 + T 2 /2, T 0 /8 + T 1 /8 + T 2 /4 + T 3 /2

After three new runs, the weight of T 0 in the new estimate has dropped to 1/8.
The technique of estimating the next value in a series by taking the weighted

average of the current measured value and the previous estimate is sometimes
called aging. It is applicable to many situations where a prediction must be made
based on previous values. Aging is especially easy to implement when a = 1/2.
All that is needed is to add the new value to the current estimate and divide the
sum by 2 (by shifting it right 1 bit).

Guaranteed Scheduling

A completely different approach to scheduling is to make real promises to the
users about performance and then live up to them. One promise that is realistic to
make and easy to live up to is this: If there are n users logged in while you are
working, you will receive about 1/n of the CPU power. Similarly, on a single-
user system with n processes running, all things being equal, each one should get
1/n of the CPU cycles.

To make good on this promise, the system must keep track of how much CPU
each process has had since its creation. It then computes the amount of CPU each
one is entitled to, namely the time since creation divided by n. Since the amount
of CPU time each process has actually had is also known, it is straightforward to
compute the ratio of actual CPU time consumed to CPU time entitled. A ratio of
0.5 means that a process has only had half of what it should have had, and a ratio
of 2.0 means that a process has had twice as much as it was entitled to. The algo-
rithm is then to run the process with the lowest ratio until its ratio has moved
above its closest competitor.

Lottery Scheduling

While making promises to the users and then living up to them is a fine idea,
it is difficult to implement. However, another algorithm can be used to give simi-
larly predictable results with a much simpler implementation. It is called lottery
scheduling (Waldspurger and Weihl, 1994).

The basic idea is to give processes lottery tickets for various system
resources, such as CPU time. Whenever a scheduling decision has to be made, a
lottery ticket is chosen at random, and the process holding that ticket gets the
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resource. When applied to CPU scheduling, the system might hold a lottery 50
times a second, with each winner getting 20 msec of CPU time as a prize.

To paraphrase George Orwell: ‘‘All processes are equal, but some processes
are more equal.’’ More important processes can be given extra tickets, to increase
their odds of winning. If there are 100 tickets outstanding, and one process holds
20 of them, it will have a 20 percent chance of winning each lottery. In the long
run, it will get about 20 percent of the CPU. In contrast to a priority scheduler,
where it is very hard to state what having a priority of 40 actually means, here the
rule is clear: a process holding a fraction f of the tickets will get about a fraction f
of the resource in question.

Lottery scheduling has several interesting properties. For example, if a new
process shows up and is granted some tickets, at the very next lottery it will have
a chance of winning in proportion to the number of tickets it holds. In other
words, lottery scheduling is highly responsive.

Cooperating processes may exchange tickets if they wish. For example, when
a client process sends a message to a server process and then blocks, it may give
all of its tickets to the server, to increase the chance of the server running next.
When the server is finished, it returns the tickets so the client can run again. In
fact, in the absence of clients, servers need no tickets at all.

Lottery scheduling can be used to solve problems that are difficult to handle
with other methods. One example is a video server in which several processes are
feeding video streams to their clients, but at different frame rates. Suppose that
the processes need frames at 10, 20, and 25 frames/sec. By allocating these proc-
esses 10, 20, and 25 tickets, respectively, they will automatically divide the CPU
in approximately the correct proportion, that is, 10 : 20 : 25.

Fair-Share Scheduling

So far we have assumed that each process is scheduled on its own, without
regard to who its owner is. As a result, if user 1 starts up 9 processes and user 2
starts up 1 process, with round robin or equal priorities, user 1 will get 90% of the
CPU and user 2 will get only 10% of it.

To prevent this situation, some systems take into account who owns a process
before scheduling it. In this model, each user is allocated some fraction of the
CPU and the scheduler picks processes in such a way as to enforce it. Thus if two
users have each been promised 50% of the CPU, they will each get that, no matter
how many processes they have in existence.

As an example, consider a system with two users, each of which has been
promised 50% of the CPU. User 1 has four processes, A, B, C, and D, and user 2
has only 1 process, E. If round-robin scheduling is used, a possible scheduling
sequence that meets all the constraints is this one:

A E B E C E D E A E B E C E D E ...
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On the other hand, if user 1 is entitled to twice as much CPU time as user 2, we
might get

A B E C D E A B E C D E ...

Numerous other possibilities exist, of course, and can be exploited, depending on
what the notion of fairness is.

2.4.4 Scheduling in Real-Time Systems

A real-time system is one in which time plays an essential role. Typically,
one or more physical devices external to the computer generate stimuli, and the
computer must react appropriately to them within a fixed amount of time. For
example, the computer in a compact disc player gets the bits as they come off the
drive and must convert them into music within a very tight time interval. If the
calculation takes too long, the music will sound peculiar. Other real-time systems
are patient monitoring in a hospital intensive-care unit, the autopilot in an aircraft,
and robot control in an automated factory. In all these cases, having the right
answer but having it too late is often just as bad as not having it at all.

Real-time systems are generally categorized as hard real time, meaning there
are absolute deadlines that must be met, or else, and soft real time, meaning that
missing an occasional deadline is undesirable, but nevertheless tolerable. In both
cases, real-time behavior is achieved by dividing the program into a number of
processes, each of whose behavior is predictable and known in advance. These
processes are generally short lived and can run to completion in well under a
second. When an external event is detected, it is the job of the scheduler to
schedule the processes in such a way that all deadlines are met.

The events that a real-time system may have to respond to can be further
categorized as periodic (occurring at regular intervals) or aperiodic (occurring
unpredictably). A system may have to respond to multiple periodic event streams.
Depending on how much time each event requires for processing, it may not even
be possible to handle them all. For example, if there are m periodic events and
event i occurs with period Pi and requires Ci seconds of CPU time to handle each
event, then the load can only be handled if

i =1
Σ
m

Pi

Ci��� ≤ 1

A real-time system that meets this criteria is said to be schedulable.
As an example, consider a soft real-time system with three periodic events,

with periods of 100, 200, and 500 msec, respectively. If these events require 50,
30, and 100 msec of CPU time per event, respectively, the system is schedulable
because 0.5 + 0.15 + 0.2 < 1. If a fourth event with a period of 1 sec is added, the
system will remain schedulable as long as this event does not need more than 150
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msec of CPU time per event. Implicit in this calculation is the assumption that the
context-switching overhead is so small that it can be ignored.

Real-time scheduling algorithms can be static or dynamic. The former make
their scheduling decisions before the system starts running. The latter make their
scheduling decisions at run time. Static scheduling only works when there is per-
fect information available in advance about the work needed to be done and the
deadlines that have to be met. Dynamic scheduling algorithms do not have these
restrictions.

2.4.5 Policy versus Mechanism

Up until now, we have tacitly assumed that all the processes in the system
belong to different users and are thus competing for the CPU. While this is often
true, sometimes it happens that one process has many children running under its
control. For example, a database management system process may have many
children. Each child might be working on a different request, or each one might
have some specific function to perform (query parsing, disk access, etc.). It is
entirely possible that the main process has an excellent idea of which of its chil-
dren are the most important (or the most time critical) and which the least. Unfor-
tunately, none of the schedulers discussed above accept any input from user proc-
esses about scheduling decisions. As a result, the scheduler rarely makes the best
choice.

The solution to this problem is to separate the scheduling mechanism from
the scheduling policy. What this means is that the scheduling algorithm is
parameterized in some way, but the parameters can be filled in by user processes.
Let us consider the database example once again. Suppose that the kernel uses a
priority scheduling algorithm but provides a system call by which a process can
set (and change) the priorities of its children. In this way the parent can control in
detail how its children are scheduled, even though it does not do the scheduling
itself. Here the mechanism is in the kernel but policy is set by a user process.

2.4.6 Thread Scheduling

When several processes each have multiple threads, we have two levels of
parallelism present: processes and threads. Scheduling in such systems differs
substantially depending on whether user-level threads or kernel-level threads (or
both) are supported.

Let us consider user-level threads first. Since the kernel is not aware of the
existence of threads, it operates as it always does, picking a process, say, A, and
giving A control for its quantum. The thread scheduler inside A decides which
thread to run, say A1. Since there are no clock interrupts to multiprogram threads,
this thread may continue running as long as it wants to. If it uses up the process’
entire quantum, the kernel will select another process to run.
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When the process A finally runs again, thread A1 will resume running. It will
continue to consume all of A’s time until it is finished. However, its antisocial
behavior will not affect other processes. They will get whatever the scheduler
considers their appropriate share, no matter what is going on inside process A.

Now consider the case that A’s threads have relatively little work to do per
CPU burst, for example, 5 msec of work within a 50-msec quantum. Conse-
quently, each one runs for a little while, then yields the CPU back to the thread
scheduler. This might lead to the sequence A1, A2, A3, A1, A2, A3, A1, A2, A3,
A1, before the kernel switches to process B. This situation is illustrated in Fig. 2-
28(a).

Process A Process B Process BProcess A

1. Kernel picks a process 1. Kernel picks a thread

Possible:          A1, A2, A3, A1, A2, A3
Also possible:  A1, B1, A2, B2, A3, B3

Possible:          A1, A2, A3, A1, A2, A3
Not possible:   A1, B1, A2, B2, A3, B3

(a) (b)

Order in which
threads run

2. Runtime
    system
    picks a
    thread

1 2 3 1 3 2

Figure 2-28. (a) Possible scheduling of user-level threads with a 50-msec proc-
ess quantum and threads that run 5 msec per CPU burst. (b) Possible scheduling
of kernel-level threads with the same characteristics as (a).

The scheduling algorithm used by the run-time system can be any of the ones
described above. In practice, round-robin scheduling and priority scheduling are
most common. The only constraint is the absence of a clock to interrupt a thread
that has run too long.

Now consider the situation with kernel-level threads. Here the kernel picks a
particular thread to run. It does not have to take into account which process the
thread belongs to, but it can if it wants to. The thread is given a quantum and is
forceably suspended if it exceeds the quantum. With a 50-msec quantum but
threads that block after 5 msec, the thread order for some period of 30 msec might
be A1, B1, A2, B2, A3, B3, something not possible with these parameters and
user-level threads. This situation is partially depicted in Fig. 2-28(b).

A major difference between user-level threads and kernel-level threads is the
performance. Doing a thread switch with user-level threads takes a handful of
machine instructions. With kernel-level threads it requires a full context switch,
changing the memory map, and invalidating the cache, which is several orders of
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magnitude slower. On the other hand, with kernel-level threads, having a thread
block on I/O does not suspend the entire process as it does with user-level threads.

Since the kernel knows that switching from a thread in process A to a thread
in process B is more expensive that running a second thread in process A (due to
having to change the memory map and having the memory cache spoiled), it can
take this information into account when making a decision. For example, given
two threads that are otherwise equally important, with one of them belonging to
the same process as a thread that just blocked and one belonging to a different
process, preference could be given to the former.

Another important factor to consider is that user-level threads can employ an
application-specific thread scheduler. For example, consider a web server which
has a dispatcher thread to accept and distribute incoming requests to worker
threads. Suppose that a worker thread has just blocked and the dispatcher thread
and two worker threads are ready. Who should run next? The run-time system,
knowing what all the threads do, can easily pick the dispatcher to run next, so it
can start another worker running. This strategy maximizes the amount of parallel-
ism in an environment where workers frequently block on disk I/O. With kernel-
level threads, the kernel would never know what each thread did (although they
could be assigned different priorities). In general, however, application-specific
thread schedulers can tune an application better than the kernel can.

2.5 OVERVIEW OF PROCESSES IN MINIX 3

Having completed our study of the principles of process management, inter-
process communication, and scheduling, we can now take a look at how they are
applied in MINIX 3. Unlike UNIX, whose kernel is a monolithic program not split
up into modules, MINIX 3 itself is a collection of processes that communicate with
each other and also with user processes, using a single interprocess communica-
tion primitive—message passing. This design gives a more modular and flexible
structure, making it easy, for example, to replace the entire file system by a com-
pletely different one, without having even to recompile the kernel.

2.5.1 The Internal Structure of MINIX 3

Let us begin our study of MINIX 3 by taking a bird’s-eye view of the system.
MINIX 3 is structured in four layers, with each layer performing a well-defined
function. The four layers are illustrated in Fig. 2-29.

The kernel in the bottom layer schedules processes and manages the transi-
tions between the ready, running, and blocked states of Fig. 2-2. The kernel also
handles all messages between processes. Message handling requires checking for
legal destinations, locating the send and receive buffers in physical memory, and



SEC. 2.5 OVERVIEW OF PROCESSES IN MINIX 3 113

…

…

…

Init

Kernel

User
processes

Server
processes

Device
drivers

Kernel

User
mode

Kernel
mode

Layer

4

3

2

1

User
process

Process
manager

File
system

Disk
driver

Clock
task

System
task

TTY
driver

Ethernet
driver

Info
server

Network
server

User
process

User
process

Figure 2-29. MINIX 3 is structured in four layers. Only processes in the bottom
layer may use privileged (kernel mode) instructions.

copying bytes from sender to receiver. Also part of the kernel is support for
access to I/O ports and interrupts, which on modern processors require use of
privileged kernel mode instructions not available to ordinary processes.

In addition to the kernel itself, this layer contains two modules that function
similarly to device drivers. The clock task is an I/O device driver in the sense
that it interacts with the hardware that generates timing signals, but it is not user-
accessible like a disk or communications line driver—it interfaces only with the
kernel.

One of the main functions of layer 1 is to provide a set of privileged kernel
calls to the drivers and servers above it. These include reading and writing I/O
ports, copying data between address spaces, and so on. Implementation of these
calls is done by the system task. Although the system task and the clock task are
compiled into the kernel’s address space, they are scheduled as separate processes
and have their own call stacks.

Most of the kernel and all of the clock and system tasks are written in C.
However, a small amount of the kernel is written in assembly language. The as-
sembly language parts deal with interrupt handling, the low-level mechanics of
managing context switches between processes (saving and restoring registers and
the like), and low-level parts of manipulating the MMU hardware. By and large,
the assembly-language code handles those parts of the kernel that deal directly
with the hardware at a very low level and which cannot be expressed in C. These
parts have to be rewritten when MINIX 3 is ported to a new architecture.

The three layers above the kernel could be considered to be a single layer
because the kernel fundamentally treats them all of them the same way. Each one
is limited to user mode instructions, and each is scheduled to run by the kernel.
None of them can access I/O ports directly. Furthermore, none of them can
access memory outside the segments allotted to it.

However, processes potentially have special privileges (such as the ability to
make kernel calls). This is the real difference between processes in layers 2, 3,
and 4. The processes in layer 2 have the most privileges, those in layer 3 have
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some privileges, and those in layer 4 have no special privileges. For example,
processes in layer 2, called device drivers, are allowed to request that the system
task read data from or write data to I/O ports on their behalf. A driver is needed
for each device type, including disks, printers, terminals, and network interfaces.
If other I/O devices are present, a driver is needed for each one of those, as well.
Device drivers may also make other kernel calls, such as requesting that newly-
read data be copied to the address space of a different process.

The third layer contains servers, processes that provide useful services to the
user processes. Two servers are essential. The process manager (PM) carries
out all the MINIX 3 system calls that involve starting or stopping process execu-
tion, such as fork, exec, and exit, as well as system calls related to signals, such as
alarm and kill, which can alter the execution state of a process. The process
manager also is responsible for managing memory, for instance, with the brk sys-
tem call. The file system (FS) carries out all the file system calls, such as read,
mount, and chdir.

It is important to understand the difference between kernel calls and POSIX
system calls. Kernel calls are low-level functions provided by the system task to
allow the drivers and servers to do their work. Reading a hardware I/O port is a
typical kernel call. In contrast, the POSIX system calls such as read, fork, and
unlink are high-level calls defined by the POSIX standard, and are available to user
programs in layer 4. User programs contain many POSIX calls but no kernel calls.
Occasionally when we are not being careful with our language we may call a ker-
nel call a system call. The mechanisms used to make these calls are similar, and
kernel calls can be considered a special subset of system calls.

In addition to the PM and FS, other servers exist in layer 3. They perform
functions that are specific to MINIX 3. It is safe to say that the functionality of the
process manager and the file system will be found in any operating system. The
information server (IS) handles jobs such as providing debugging and status
information about other drivers and servers, something that is more necessary in a
system like MINIX 3, designed for experimentation, than would be the case for a
commercial operating system which users cannot alter. The reincarnation ser-
ver (RS) starts, and if necessary restarts, device drivers that are not loaded into
memory at the same time as the kernel. In particular, if a driver fails during
operation, the reincarnation server detects this failure, kills the driver if it is not
already dead, and starts a fresh copy of the driver, making the system highly fault
tolerant. This functionality is absent from most operating systems. On a net-
worked system the optional network server (inet) is also in level 3. Servers can-
not do I/O directly, but they can communicate with drivers to request I/O. Servers
can also communicate with the kernel via the system task.

As we noted at the start of Chap. 1, operating systems do two things: manage
resources and provide an extended machine by implementing system calls. In
MINIX 3 the resource management is largely done by the drivers in layer 2, with
help from the kernel layer when privileged access to I/O ports or the interrupt
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system is required. System call interpretation is done by the process manager and
file system servers in layer 3. The file system has been carefully designed as a
file ‘‘server’’ and could be moved to a remote machine with few changes.

The system does not need to be recompiled to include additional servers. The
process manager and the file system can be supplemented with the network server
and other servers by attaching additional servers as required when MINIX 3 starts
up or later. Device drivers, although typically started when the system is started,
can also be started later. Both device drivers and servers are compiled and stored
on disk as ordinary executable files, but when properly started up they are granted
access to the special privileges needed. A user program called service provides
an interface to the reincarnation server which manages this. Although the drivers
and servers are independent processes, they differ from user processes in that nor-
mally they never terminate while the system is active.

We will often refer to the drivers and servers in layers 2 and 3 as system
processes. Arguably, system processes are part of the operating system. They do
not belong to any user, and many if not all of them will be activated before the
first user logs on. Another difference between system processes and user proc-
esses is that system processes have higher execution priority than user processes.
In fact, normally drivers have higher execution priority than servers, but this is not
automatic. Execution priority is assigned on a case-by-case basis in MINIX 3; it is
possible for a driver that services a slow device to be given lower priority than a
server that must respond quickly.

Finally, layer 4 contains all the user processes—shells, editors, compilers, and
user-written a.out programs. Many user processes come and go as users log in, do
work, and log out. A running system normally has some user processes that are
started when the system is booted and which run forever. One of these is init,
which we will describe in the next section. Also, several daemons are likely to be
running. A daemon is a background process that executes periodically or always
waits for some event, such as the arrival of a packet from the network. In a sense
a daemon is a server that is started independently and runs as a user process. Like
true servers installed at startup time, it is possible to configure a daemon to have a
higher priority than ordinary user processes.

A note about the terms task and device driver is needed. In older versions of
MINIX all device drivers were compiled together with the kernel, which gave
them access to data structures belonging to the kernel and each other. They also
could all access I/O ports directly. They were referred to as ‘‘tasks’’ to distinguish
them from pure independent user-space processes. In MINIX 3, device drivers
have been implemented completely in user-space. The only exception is the clock
task, which is arguably not a device driver in the same sense as drivers that can be
accessed through device files by user processes. Within the text we have taken
pains to use the term ‘‘task’’ only when referring to the clock task or the system
task, both of which are compiled into the kernel to function. We have been care-
ful to replace the word ‘‘task’’ with ‘‘device driver’’ where we refer to user-space
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device drivers. However, function names, variable names, and comments in the
source code have not been as carefully updated. Thus, as you look at source code
during your study of MINIX 3 you may find the word ‘‘task’’ where ‘‘device
driver’’ is meant.

2.5.2 Process Management in MINIX 3

Processes in MINIX 3 follow the general process model described at length
earlier in this chapter. Processes can create subprocesses, which in turn can create
more subprocesses, yielding a tree of processes. In fact, all the user processes in
the whole system are part of a single tree with init (see Fig. 2-29) at the root.
Servers and drivers are a special case, of course, since some of them must be
started before any user process, including init.

MINIX 3 Startup

How does an operating system start up? We will summarize the MINIX 3
startup sequence in the next few pages. For a look at how some other operating
systems do this, see Dodge et al. (2005).

On most computers with disk devices, there is a boot disk hierarchy. Typi-
cally, if a floppy disk is in the first floppy disk drive, it will be the boot disk. If no
floppy disk is present and a CD-ROM is present in the first CD-ROM drive, it
becomes the boot disk. If there is neither a floppy disk nor a CD-ROM present,
the first hard drive becomes the boot disk. The order of this hierarchy may be
configurable by entering the BIOS immediately after powering the computer up.
Additional devices, especially other removable storage devices, may be supported
as well.

When the computer is turned on, if the boot device is a diskette, the hardware
reads the first sector of the first track of the boot disk into memory and executes
the code it finds there. On a diskette this sector contains the bootstrap program.
It is very small, since it has to fit in one sector (512 bytes). The MINIX 3 bootstrap
loads a larger program, boot, which then loads the operating system itself.

In contrast, hard disks require an intermediate step. A hard disk is divided
into partitions, and the first sector of a hard disk contains a small program and
the disk’s partition table. Collectively these two pieces are called the master
boot record. The program part is executed to read the partition table and to
select the active partition. The active partition has a bootstrap on its first sector,
which is then loaded and executed to find and start a copy of boot in the partition,
exactly as is done when booting from a diskette.

CD-ROMs came along later in the history of computers than floppy disks and
hard disks, and when support for booting from a CD-ROM is present it is capable
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of more than just loading one sector. A computer that supports booting from a
CD-ROM can load a large block of data into memory immediately. Typically
what is loaded from the CD-ROM is an exact copy of a bootable floppy disk,
which is placed in memory and used as a RAM disk. After this first step control
is transferred to the RAM disk and booting continues exactly as if a physical
floppy disk were the boot device. On an older computer which has a CD-ROM
drive but does not support booting from a CD-ROM, the bootable floppy disk
image can be copied to a floppy disk which can then be used to start the system.
The CD-ROM must be in the CD-ROM drive, of course, since the bootable floppy
disk image expects that.

In any case, the MINIX 3 boot program looks for a specific multipart file on
the diskette or partition and loads the individual parts into memory at the proper
locations. This is the boot image. The most important parts are the kernel (which
include the clock task and the system task), the process manager, and the file sys-
tem. Additionally, at least one disk driver must be loaded as part of the boot
image. There are several other programs loaded in the boot image. These include
the reincarnation server, the RAM disk, console, and log drivers, and init.

It should be strongly emphasized that all parts of the boot image are separate
programs. After the essential kernel, process manager and file system have been
loaded many other parts could be loaded separately. An exception is the reincar-
nation server. It must be part of the boot image. It gives ordinary processes
loaded after initialization the special priorities and privileges which make them
into system processes, It can also restart a crashed driver, which explains its
name. As mentioned above, at least one disk driver is essential. If the root file
system is to be copied to a RAM disk, the memory driver is also required, other-
wise it could be loaded later. The tty and log drivers are optional in the boot
image. They are loaded early just because it is useful to be able to display mes-
sages on the console and save information to a log early in the startup process.
Init could certainly be loaded later, but it controls initial configuration of the sys-
tem, and it was easiest just to include it in the boot image file.

Startup is not a trivial operation. Operations that are in the realms of the disk
driver and the file system must be performed by boot before these parts of the sys-
tem are active. In a later section we will detail how MINIX 3 is started. For now,
suffice it to say that once the loading operation is complete the kernel starts run-
ning.

During its initialization phase the kernel starts the system and clock tasks, and
then the process manager and the file system. The process manager and the file
system then cooperate in starting other servers and drivers that are part of the boot
image. When all these have run and initialized themselves, they will block, wait-
ing for something to do. MINIX 3 scheduling prioritizes processes. Only when all
tasks, drivers, and servers loaded in the boot image have blocked will init, the first
user process, be executed. System components loaded with the boot image or
during initialization are shown in Fig. 2-30.
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��������������������������������������������������������������������
Component Description Loaded by��������������������������������������������������������������������
kernel Kernel + clock and system tasks (in boot image)��������������������������������������������������������������������
pm Process manager (in boot image)��������������������������������������������������������������������
fs File system (in boot image)��������������������������������������������������������������������
rs (Re)starts servers and drivers (in boot image)��������������������������������������������������������������������
memory RAM disk driver (in boot image)��������������������������������������������������������������������
log Buffers log output (in boot image)��������������������������������������������������������������������
tty Console and keyboard driver (in boot image)��������������������������������������������������������������������
driver Disk (at, bios, or floppy) driver (in boot image)��������������������������������������������������������������������
init parent of all user processes (in boot image)��������������������������������������������������������������������
floppy Floppy driver (if booted from hard disk) /etc/rc��������������������������������������������������������������������
is Information server (for debug dumps) /etc/rc��������������������������������������������������������������������
cmos Reads CMOS clock to set time /etc/rc��������������������������������������������������������������������
random Random number generator /etc/rc��������������������������������������������������������������������
printer Printer driver /etc/rc����������������������������������������������������������������������
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Figure 2-30. Some important MINIX 3 system components. Others such as an
Ethernet driver and the inet server may also be present.

Initialization of the Process Tree

Init is the first user process, and also the last process loaded as part of the
boot image. You might think building of a process tree such as that of Fig. 1-5
begins once init starts running. Well, not exactly. That would be true in a con-
ventional operating system, but MINIX 3 is different. First, there are already quite
a few system processes running by the time init gets to run. The tasks CLOCK
and SYSTEM that run within the kernel are unique processes that are not visible
outside of the kernel. They receive no PIDs and are not considered part of any
tree of processes. The process manager is the first process to run in user space; it
is given PID 0 and is neither a child nor a parent of any other process. The rein-
carnation server is made the parent of all the other processes started from the boot
image (e.g., the drivers and servers). The logic of this is that the reincarnation
server is the process that should be informed if any of these should need to be res-
tarted.

As we will see, even after init starts running there are differences between the
way a process tree is built in MINIX 3 and the conventional concept. Init in a
UNIX-like system is given PID 1, and even though init is not the first process to
run, the traditional PID 1 is reserved for it in MINIX 3. Like all the user space
processes in the boot image (except the process manager), init is made one of the
children of the reincarnation server. As in a standard UNIX-like system, init first
executes the /etc/rc shell script. This script starts additional drivers and servers
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that are not part of the boot image. Any program started by the rc script will be a
child of init. One of the first programs run is a utility called service. Service
itself runs as a child of init, as would be expected. But now things once again
vary from the conventional.

Service is the user interface to the reincarnation server. The reincarnation ser-
ver starts an ordinary program and converts it into a system process. It starts
floppy (if it was not used in booting the system), cmos (which is needed to read
the real-time clock), and is, the information server which manages the debug
dumps that are produced by pressing function keys (F1, F2, etc.) on the console
keyboard. One of the actions of the reincarnation server is to adopt all system
processes except the process manager as its own children.

After the cmos device driver has been started the rc script can initialize the
real-time clock. Up to this point all files needed must be found on the root device.
The servers and drivers needed initially are in the /sbin directory; other commands
needed for startup are in /bin. Once the initial startup steps have been completed
other file systems such as /usr are mounted. An important function of the rc script
is to check for file system problems that might have resulted from a previous sys-
tem crash. The test is simple—when the system is shutdown correctly by execut-
ing the shutdown command an entry is written to the login history file,
/usr/adm/wtmp. The command shutdown –C checks whether the last entry in
wtmp is a shutdown entry. If not, it is assumed an abnormal shutdown occurred,
and the fsck utility is run to check all file systems. The final job of /etc/rc is to
start daemons. This may be done by subsidiary scripts. If you look at the output
of a ps axl command, which shows both PIDs and parent PIDs (PPIDs), you will
see that daemons such as update and usyslogd will normally be the among the first
persistent processes which are children of init.

Finally init reads the file /etc/ttytab, which lists all potential terminal devices.
Those devices that can be used as login terminals (in the standard distribution, just
the main console and up to three virtual consoles, but serial lines and network
pseudo terminals can be added) have an entry in the getty field of /etc/ttytab, and
init forks off a child process for each such terminal. Normally, each child exe-
cutes /usr/bin/getty which prints a message, then waits for a name to be typed. If
a particular terminal requires special treatment (e.g., a dial-up line) /etc/ttytab can
specify a command (such as /usr/bin/stty) to be executed to initialize the line
before running getty.

When a user types a name to log in, /usr/bin/login is called with the name as
its argument. Login determines if a password is required, and if so prompts for
and verifies the password. After a successful login, login executes the user’s shell
(by default /bin/sh, but another shell may be specified in the /etc/passwd file).
The shell waits for commands to be typed and then forks off a new process for
each command. In this way, the shells are the children of init, the user processes
are the grandchildren of init, and all the user processes in the system are part of a
single tree. In fact, except for the tasks compiled into the kernel and the process
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manager, all processes, both system processes and user processes, form a tree.
But unlike the process tree of a conventional UNIX system, init is not at the root
of the tree, and the structure of the tree does not allow one to determine the order
in which system processes were started.

The two principal MINIX 3 system calls for process management are fork and
exec. Fork is the only way to create a new process. Exec allows a process to exe-
cute a specified program. When a program is executed, it is allocated a portion of
memory whose size is specified in the program file’s header. It keeps this amount
of memory throughout its execution, although the distribution among data seg-
ment, stack segment, and unused can vary as the process runs.

All the information about a process is kept in the process table, which is
divided up among the kernel, process manager, and file system, with each one
having those fields that it needs. When a new process comes into existence (by
fork), or an old process terminates (by exit or a signal), the process manager first
updates its part of the process table and then sends messages to the file system and
kernel telling them to do likewise.

2.5.3 Interprocess Communication in MINIX 3

Three primitives are provided for sending and receiving messages. They are
called by the C library procedures

send(dest, &message);

to send a message to process dest,

receive(source, &message);

to receive a message from process source (or ANY), and

sendrec(src�dst, &message);

to send a message and wait for a reply from the same process. The second param-
eter in each call is the local address of the message data. The message passing
mechanism in the kernel copies the message from the sender to the receiver. The
reply (for sendrec) overwrites the original message. In principle this kernel
mechanism could be replaced by a function which copies messages over a net-
work to a corresponding function on another machine, to implement a distributed
system. In practice this would be complicated somewhat by the fact that message
contents sometimes include pointers to large data structures, and a distributed sys-
tem would have to provide for copying the data itself over the network.

Each task, driver or server process is allowed to exchange messages only with
certain other processes. Details of how this is enforced will be described later.
The usual flow of messages is downward in the layers of Fig 2-29, and messages
can be between processes in the same layer or between processes in adjacent
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layers. User processes cannot send messages to each other. User processes in
layer 4 can initiate messages to servers in layer 3, servers in layer 3 can initiate
messages to drivers in layer 2.

When a process sends a message to a process that is not currently waiting for
a message, the sender blocks until the destination does a receive. In other words,
MINIX 3 uses the rendezvous method to avoid the problems of buffering sent, but
not yet received, messages. The advantage of this approach is that it is simple and
eliminates the need for buffer management (including the possibility of running
out of buffers). In addition, because all messages are of fixed length determined
at compile time, buffer overrun errors, a common source of bugs, are structurally
prevented.

The basic purpose of the restrictions on exchanges of messages is that if proc-
ess A is allowed to generate a send or sendrec directed to process B, then process
B can be allowed to call receive with A designated as the sender, but B should not
be allowed to send to A. Obviously, if A tries to send to B and blocks, and B tries
to send to A and blocks we have a deadlock. The ‘‘resource’’ that each would
need to complete the operations is not a physical resource like an I/O device, it is
a call to receive by the target of the message. We will have more to say about
deadlocks in Chap. 3.

Occasionally something different from a blocking message is needed. There
exists another important message-passing primitive. It is called by the C library
procedure

notify(dest);

and is used when a process needs to make another process aware that something
important has happened. A notify is nonblocking, which means the sender contin-
ues to execute whether or not the recipient is waiting. Because it does not block,
a notification avoids the possibility of a message deadlock.

The message mechanism is used to deliver a notification, but the information
conveyed is limited. In the general case the message contains only the identity of
the sender and a timestamp added by the kernel. Sometimes this is all that is
necessary. For instance, the keyboard uses a notify call when one of the function
keys (F1 to F12 and shifted F1 to F12) is pressed. In MINIX 3, function keys are
used to trigger debugging dumps. The Ethernet driver is an example of a process
that generates only one kind of debug dump and never needs to get any other com-
munication from the console driver. Thus a notification to the Ethernet driver
from the keyboard driver when the dump-Ethernet-stats key is pressed is unambi-
guous. In other cases a notification is not sufficient, but upon receiving a notifica-
tion the target process can send a message to the originator of the notification to
request more information.

There is a reason notification messages are so simple. Because a notify call
does not block, it can be made when the recipient has not yet done a receive. But
the simplicity of the message means that a notification that cannot be received is
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easily stored so the recipient can be informed of it the next time the recipient calls
receive. In fact, a single bit suffices. Notifications are meant for use between
system processes, of which there can be only a relatively small number. Every
system process has a bitmap for pending notifications, with a distinct bit for every
system process. So if process A needs to send a notification to process B at a time
when process B is not blocked on a receive, the message-passing mechanism sets
a bit which corresponds to A in B’s bitmap of pending notifications. When B
finally does a receive, the first step is to check its pending notifications bitmap. It
can learn of attempted notifications from multiple sources this way. The single
bit is enough to regenerate the information content of the notification. It tells the
identity of the sender, and the message passing code in the kernel adds the times-
tamp when it is delivered. Timestamps are used primarily to see if timers have
expired, so it does not matter that the timestamp may be for a time later than the
time when the sender first tried to send the notification.

There is a further refinement to the notification mechanism. In certain cases
an additional field of the notification message is used. When the notification is
generated to inform a recipient of an interrupt, a bitmap of all possible sources of
interrupts is included in the message. And when the notification is from the sys-
tem task a bitmap of all pending signals for the recipient is part of the message.
The natural question at this point is, how can this additional information be stored
when the notification must be sent to a process that is not trying to receive a mes-
sage? The answer is that these bitmaps are in kernel data structures. They do not
need to be copied to be preserved. If a notification must be deferred and reduced
to setting a single bit, when the recipient eventually does a receive and the notifi-
cation message is regenerated, knowing the origin of the notification is enough to
specify which additional information needs to be included in the message. And
for the recipient, the origin of the notification also tells whether or not the mes-
sage contains additional information, and, if so, how it is to be interpreted,

A few other primitives related to interprocess communication exist. They will
be mentioned in a later section. They are less important than send, receive, send-
rec, and notify.

2.5.4 Process Scheduling in MINIX 3

The interrupt system is what keeps a multiprogramming operating system go-
ing. Processes block when they make requests for input, allowing other processes
to execute. When input becomes available, the current running process is inter-
rupted by the disk, keyboard, or other hardware. The clock also generates inter-
rupts that are used to make sure a running user process that has not requested
input eventually relinquishes the CPU, to give other processes their chance to run.
It is the job of the lowest layer of MINIX 3 to hide these interrupts by turning them
into messages. As far as processes are concerned, when an I/O device completes
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an operation it sends a message to some process, waking it up and making it eligi-
ble to run.

Interrupts are also generated by software, in which case they are often called
traps. The send and receive operations that we described above are translated by
the system library into software interrupt instructions which have exactly the
same effect as hardware-generated interrupts—the process that executes a
software interrupt is immediately blocked and the kernel is activated to process
the interrupt. User programs do not refer to send or receive directly, but any time
one of the system calls listed in Fig. 1-9 is invoked, either directly or by a library
routine, sendrec is used internally and a software interrupt is generated.

Each time a process is interrupted (whether by a conventional I/O device or
by the clock) or due to execution of a software interrupt instruction, there is an
opportunity to redetermine which process is most deserving of an opportunity to
run. Of course, this must be done whenever a process terminates, as well, but in a
system like MINIX 3 interruptions due to I/O operations or the clock or message
passing occur more frequently than process termination.

The MINIX 3 scheduler uses a multilevel queueing system. Sixteen queues
are defined, although recompiling to use more or fewer queues is easy. The
lowest priority queue is used only by the IDLE process which runs when there is
nothing else to do. User processes start by default in a queue several levels higher
than the lowest one.

Servers are normally scheduled in queues with priorities higher than allowed
for user processes, drivers in queues with priorities higher than those of servers,
and the clock and system tasks are scheduled in the highest priority queue. Not
all of the sixteen available queues are likely to be in use at any time. Processes
are started in only a few of them. A process may be moved to a different priority
queue by the system or (within certain limits) by a user who invokes the nice
command. The extra levels are available for experimentation, and as additional
drivers are added to MINIX 3 the default settings can be adjusted for best perfor-
mance. For instance, if it were desired to add a server to stream digital audio or
video to a network, such a server might be assigned a higher starting priority than
current servers, or the initial priority of a current server or driver might be reduced
in order for the new server to achieve better performance.

In addition to the priority determined by the queue on which a process is
placed, another mechanism is used to give some processes an edge over others.
The quantum, the time interval allowed before a process is preempted, is not the
same for all processes. User processes have a relatively low quantum. Drivers
and servers normally should run until they block. However, as a hedge against
malfunction they are made preemptable, but are given a large quantum. They are
allowed to run for a large but finite number of clock ticks, but if they use their
entire quantum they are preempted in order not to hang the system. In such a case
the timed-out process will be considered ready, and can be put on the end of its
queue. However, if a process that has used up its entire quantum is found to have
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been the process that ran last, this is taken as a sign it may be stuck in a loop and
preventing other processes with lower priority from running. In this case its prior-
ity is lowered by putting it on the end of a lower priority queue. If the process
times out again and another process still has not been able to run, its priority will
again be lowered. Eventually, something else should get a chance to run.

A process that has been demoted in priority can earn its way back to a higher
priority queue. If a process uses all of its quantum but is not preventing other
processes from running it will be promoted to a higher priority queue, up to the
maximum priority permitted for it. Such a process apparently needs its quantum,
but is not being inconsiderate of others.

Otherwise, processes are scheduled using a slightly modified round robin. If a
process has not used its entire quantum when it becomes unready, this is taken to
mean that it blocked waiting for I/O, and when it becomes ready again it is put on
the head of the queue, but with only the left-over part of its previous quantum.
This is intended to give user processes quick response to I/O. A process that
became unready because it used its entire quantum is placed at the end of the
queue in pure round robin fashion.

With tasks normally having the highest priority, drivers next, servers below
drivers, and user processes last, a user process will not run unless all system proc-
esses have nothing to do, and a system process cannot be prevented from running
by a user process.

When picking a process to run, the scheduler checks to see if any processes
are queued in the highest priority queue. If one or more are ready, the one at the
head of the queue is run. If none is ready the next lower priority queue is simi-
larly tested, and so on. Since drivers respond to requests from servers and servers
respond to requests from user processes, eventually all high priority processes
should complete whatever work was requested of them. They will then block
with nothing to do until user processes get a turn to run and make more requests.
If no process is ready, the IDLE process is chosen. This puts the CPU in a low-
power mode until the next interrupt occurs.

At each clock tick, a check is made to see if the current process has run for
more than its allotted quantum. If it has, the scheduler moves it to the end of its
queue (which may require doing nothing if it is alone on the queue). Then the
next process to run is picked, as described above. Only if there are no processes
on higher-priority queues and if the previous process is alone on its queue will it
get to run again immediately. Otherwise the process at the head of the highest
priority nonempty queue will run next. Essential drivers and servers are given
such large quanta that normally they are normally never preempted by the clock.
But if something goes wrong their priority can be temporarily lowered to prevent
the system from coming to a total standstill. Probably nothing useful can be done
if this happens to an essential server, but it may be possible to shut the system
down gracefully, preventing data loss and possibly collecting information that can
help in debugging the problem.
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2.6 IMPLEMENTATION OF PROCESSES IN MINIX 3

We are now moving closer to looking at the actual code, so a few words about
the notation we will use are perhaps in order. The terms ‘‘procedure,’’ ‘‘function,’’
and ‘‘routine’’ will be used interchangeably. Names of variables, procedures, and
files will be written in italics, as in rw�flag. When a variable, procedure, or file
name starts a sentence, it will be capitalized, but the actual names begin with
lower case letters. There are a few exceptions, the tasks which are compiled into
the kernel are identified by upper case names, such as CLOCK, SYSTEM, and
IDLE. System calls will be in lower case Helvetica, for example, read.

The book and the software, both of which are continuously evolving, did not
‘‘go to press’’ on the same day, so there may be minor discrepancies between the
references to the code, the printed listing, and the CD-ROM version. Such differ-
ences generally only affect a line or two, however. The source code printed in the
book has been simplified by omitting code used to compile options that are not
discussed in the book. The complete version is on the CD-ROM. The MINIX 3
Web site (www.minix3.org) has the current version, which has new features and
additional software and documentation.

2.6.1 Organization of the MINIX 3 Source Code

The implementation of MINIX 3 as described in this book is for an IBM PC-
type machine with an advanced processor chip (e.g., 80386, 80486, Pentium, Pen-
tium Pro, II, III, 4, M, or D) that uses 32-bit words. We will refer to all of these
as Intel 32-bit processors. The full path to the C language source code on a stan-
dard Intel-based platform is /usr/src/ (a trailing ‘‘/’’ in a path name indicates that it
refers to a directory). The source directory tree for other platforms may be in a
different location. Throughout the book, MINIX 3 source code files will be re-
ferred to using a path starting with the top src/ directory. An important subdirec-
tory of the source tree is src/include/, where the master copy of the C header files
are located. We will refer to this directory as include/.

Each directory in the source tree contains a file named Makefile which di-
rects the operation of the UNIX-standard make utility. The Makefile controls com-
pilation of files in its directory and may also direct compilation of files in one or
more subdirectories. The operation of make is complex and a full description is
beyond the scope of this section, but it can be summarized by saying that make
manages efficient compilation of programs involving multiple source files. Make
assures that all necessary files are compiled. It tests previously compiled modules
to see if they are up to date and recompiles any whose source files have been
modified since the previous compilation. This saves time by avoiding recompila-
tion of files that do not need to be recompiled. Finally, make directs the combina-
tion of separately compiled modules into an executable program and may also
manage installation of the completed program.

www.minix3.org
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All or part of the src/ tree can be relocated, since the Makefile in each source
directory uses a relative path to C source directories. For instance, you may want
to make a source directory on the root filesystem, /src/, for speedy compilation if
the root device is a RAM disk. If you are developing a special version you can
make a copy of src/ under another name.

The path to the C header files is a special case. During compilation every
Makefile expects to find header files in /usr/include/ (or the equivalent path on a
non-Intel platform). However, src/tools/Makefile, used to recompile the system,
expects to find a master copy of the headers in /usr/src/include (on an Intel sys-
tem). Before recompiling the system, however, the entire /usr/include/ directory
tree is deleted and /usr/src/include/ is copied to /usr/include/. This was done to
make it possible to keep all files needed in the development of MINIX 3 in one
place. This also makes it easy to maintain multiple copies of the entire source and
headers tree for experimenting with different configurations of the MINIX 3 sys-
tem. However, if you want to edit a header file as part of such an experiment, you
must be sure to edit the copy in the src/include directory and not the one in
/usr/include/.

This is a good place to point out for newcomers to the C language how file
names are quoted in a #include statement. Every C compiler has a default header
directory where it looks for include files. Frequently, this is /usr/include/. When
the name of a file to include is quoted between less-than and greater-than symbols
(‘‘< ... >’’) the compiler searches for the file in the default header directory or a
specified subdirectory, for example,

#include <filename>

includes a file from /usr/include/.
Many programs also require definitions in local header files that are not meant

to be shared system-wide. Such a header may have the same name as and be
meant to replace or supplement a standard header. When the name is quoted
between ordinary quote characters (‘‘ ′′ ... ′′’’) the file is searched for first in the
same directory as the source file (or a specified subdirectory) and then, if not
found there, in the default directory. Thus

#include ′′filename′′

reads a local file.
The include/ directory contains a number of POSIX standard header files. In

addition, it has three subdirectories:

sys/ – additional POSIX headers.

minix/ – header files used by the MINIX 3 operating system.

ibm/ – header files with IBM PC-specific definitions.

To support extensions to MINIX 3 and programs that run in the MINIX 3 environ-
ment, other files and subdirectories are also present in include/ as provided on the
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CD-ROM and also on the MINIX 3 Web site. For instance, include/arpa/ and the
include/net/ directory and its subdirectory include/net/gen/ support network exten-
sions. These are not necessary for compiling the basic MINIX 3 system, and files
in these directories are not listed in Appendix B.

In addition to src/include/, the src/ directory contains three other important
subdirectories with operating system source code:

kernel/ – layer 1 (scheduling, messages, clock and system tasks).

drivers/ – layer 2 (device drivers for disk, console, printer, etc. ).

servers/ –layer 3 (process manager, file system, other servers).

Three other source code directories are not printed or discussed in the text, but
are essential to producing a working system:

src/lib/ – source code for library procedures (e.g., open, read).

src/tools/ – Makefile and scripts for building the MINIX 3 system.

src/boot/ – the code for booting and installing MINIX 3.

The standard distribution of MINIX 3 includes many additional source files not
discussed in this text. In addition to the process manager and file system source
code, the system source directory src/servers/ contains source code for the init
program and the reincarnation server, rs, both of which are essential parts of a
running MINIX 3 system. The network server source code is in src/servers/inet/ .
Src/drivers/ has source code for device drivers not discussed in this text, including
alternative disk drivers, sound cards, and network adapters. Since MINIX 3 is an
experimental operating system, meant to be modified, there is a src/test/ directory
with programs designed to test thoroughly a newly compiled MINIX 3 system. An
operating system exists, of course, to support commands (programs) that will run
on it, so there is a large src/commands/ directory with source code for the utility
programs (e.g., cat, cp, date, ls, pwd and more than 200 others). Source code for
some major open source applications originally developed by the GNU and BSD
projects is here, too.

The ‘‘book’’ version of MINIX 3 is configured with many of the optional parts
omitted (trust us: we cannot fit everything into one book or into your head in a
semester-long course). The ‘‘book’’ version is compiled using modified Makefiles
that do not refer to unnecessary files. (A standard Makefile requires that files for
optional components be present, even if not to be compiled.) Omitting these files
and the conditional statements that select them makes reading the code easier.

For convenience we will usually refer to simple file names when it it is clear
from the context what the complete path is. However, be aware that some file
names appear in more than one directory. For instance, there are several files
named const.h. Src/kernel/const.h defines constants used in the kernel, while
src/servers/pm/const.h defines constants used by the process manager, etc.
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The files in a particular directory will be discussed together, so there should
not be any confusion. The files are listed in Appendix B in the order they are dis-
cussed in the text, to make it easier to follow along. Acquisition of a couple of
bookmarks might be of use at this point, so you can go back and forth between the
text and the listing. To keep the size of the listing reasonable, code for every file
is not printed. In general, those functions that are described in detail in the text
are listed in Appendix B; those that are just mentioned in passing are not listed,
but the complete source is on the CD-ROM and Web site, both of which also pro-
vide an index to functions, definitions, and global variables in the source code.

Appendix C contains an alphabetical list of all files described in Appendix B,
divided into sections for headers, drivers, kernel, file system, and process
manager. This appendix and the Web site and CD-ROM indices reference the
listed objects by line number in the source code.

The code for layer 1 is contained in the directory src/kernel/. Files in this
directory support process control, the lowest layer of the MINIX 3 structure we
saw in Fig. 2-29. This layer includes functions which handle system initialization,
interrupts, message passing and process scheduling. Intimately connected with
these are two modules compiled into the same binary, but which run as indepen-
dent processes. These are the system task which provides an interface between
kernel services and processes in higher layers, and the clock task which provides
timing signals to the kernel. In Chap. 3, we will look at files in several of the sub-
directories of src/drivers, which support various device drivers, the second layer
in Fig. 2-29. Then in Chap. 4, we will look at the process manager files in
src/servers/pm/. Finally, in Chap. 5, we will study the file system, whose source
files are located in src/servers/fs/.

2.6.2 Compiling and Running MINIX 3

To compile MINIX 3, run make in src/tools/. There are several options, for
installing MINIX 3 in different ways. To see the possibilities run make with no
argument. The simplest method is make image.

When make image is executed, a fresh copy of the header files in src/include/
is copied to /usr/include/. Then source code files in src/kernel/ and several sub-
directories of src/servers/ and src/drivers/ are compiled to object files. All the
object files in src/kernel/ are linked to form a single executable program, kernel.
The object files in src/servers/pm/ are also linked together to form a single exe-
cutable program, pm, and all the object files in src/servers/fs/ are linked to form
fs. The additional programs listed as part of the boot image in Fig. 2-30 are also
compiled and linked in their own directories. These include rs and init in subdir-
ectories of src/servers/ and memory/, log/, and tty/ in subdirectories of
src/drivers/. The component designated ‘‘driver’’ in Fig. 2-30 can be one of
several disk drivers; we discuss here a MINIX 3 system configured to boot from
the hard disk using the standard at�wini driver, which will be compiled in
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src/drivers/at�wini/. Other drivers can be added, but most drivers need not be com-
piled into the boot image. The same is true for networking support; compilation
of the basic MINIX 3 system is the same whether or not networking will be used.

Memory
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Memory
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user programs

src/servers/init/init
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Figure 2-31. Memory layout after MINIX 3 has been loaded from the disk into
memory. The kernel, servers, and drivers are independently compiled and
linked programs, listed on the left. Sizes are approximate and not to scale.

To install a working MINIX 3 system capable of being booted, a program
called installboot (whose source is in src/boot/) adds names to kernel, pm, fs, init,
and the other components of the boot image, pads each one out so that its length is
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a multiple of the disk sector size (to make it easier to load the parts indepen-
dently), and concatenates them onto a single file. This new file is the boot image
and can be copied into the /boot/ directory or the /boot/image/ directory of a
floppy disk or a hard disk partition. Later, the boot monitor program can load the
boot image and transfer control to the operating system.

Figure 2-31 shows the layout of memory after the concatenated programs are
separated and loaded. The kernel is loaded in low memory, all the other parts of
the boot image are loaded above 1 MB. When user programs are run, the avail-
able memory above the kernel will be used first. When a new program will not fit
there, it will be loaded in the high memory range, above init. Details, of course,
depend upon the system configuration. For instance, the example in the figure is
for a MINIX 3 file system configured with a block cache that can hold 512 4-KB
disk blocks. This is a modest amount; more is recommended if adequate memory
is available. On the other hand, if the size of the block cache were reduced drasti-
cally it would be possible to make the entire system fit into less than 640K of
memory, with room for a few user processes as well.

It is important to realize that MINIX 3 consists of several totally independent
programs that communicate only by passing messages. A procedure called panic
in the directory src/servers/fs/ does not conflict with a procedure called panic in
src/servers/pm/ because they ultimately are linked into different executable files.
The only procedures that the three pieces of the operating system have in common
are a few of the library routines in src/lib/. This modular structure makes it very
easy to modify, say, the file system, without having these changes affect the proc-
ess manager. It also makes it straightforward to remove the file system altogether
and to put it on a different machine as a file server, communicating with user
machines by sending messages over a network.

As another example of the modularity of MINIX 3, adding network support
makes absolutely no difference to the process manager, the file system, or the ker-
nel. Both an Ethernet driver and the inet server can be activated after the boot
image is loaded; they would appear in Fig. 2-30 with the processes started by
/etc/rc, and they would be loaded into one of the ‘‘Memory available for user pro-
grams’’ regions of Fig. 2-31. A MINIX 3 system with networking enabled can be
used as a remote terminal or an ftp and web server. Only if you want to allow
incoming logins to the MINIX 3 system over the network would any part of MINIX
3 as described in the text need modification: this is tty, the console driver, which
would need to be recompiled with pseudo terminals configured to allow remote
logins.

2.6.3 The Common Header Files

The include/ directory and its subdirectories contain a collection of files
defining constants, macros, and types. The POSIX standard requires many of these
definitions and specifies in which files of the main include/ directory and its sub-
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directory include/sys/ each required definition is to be found. The files in these
directories are header or include files, identified by the suffix .h, and used by
means of #include statements in C source files. These statements are a built-in
feature of the C language. Include files make maintenance of a large system
easier.

Headers likely to be needed for compiling user programs are mainly found in
include/ whereas include/sys/ traditionally is used for files that are used primarily
for compiling system programs and utilities. The distinction is not terribly impor-
tant, and a typical compilation, whether of a user program or part of the operating
system, will include files from both of these directories. We will discuss here the
files that are needed to compile the standard MINIX 3 system, first treating those
in include/ and then those in include/sys/. In the next section we will discuss files
in the include/minix/ and include/ibm/ directories, which, as the directory names
indicate, are unique to MINIX 3 and its implementation on IBM-type (really,
Intel-type) computers.

The first headers to be considered are truly general purpose ones, so much so
that they are not referenced directly by any of the C language source files for the
MINIX 3 system. Rather, they are themselves included in other header files. Each
major component of MINIX 3 has a master header file, such as src/kernel/kernel.h ,
src/servers/pm/pm.h , and src/servers/fs/fs.h . These are included in every compila-
tion of these components. Source code for each of the device drivers includes a
somewhat similar file, src/drivers/drivers.h . Each master header is tailored to the
needs of the corresponding part of the MINIX 3 system, but each one starts with a
section like the one shown in Fig. 2-32 and includes most of the files shown there.
The master headers will be discussed again in other sections of the book. This
preview is to emphasize that headers from several directories are used together.
In this section and the next one we will mention each of the files referenced in
Fig. 2-32.

#include <minix/config.h> /* MUST be first */
#include <ansi.h> /* MUST be second */
#include <limits.h>
#include <errno.h>
#include <sys/types.h>
#include <minix/const.h>
#include <minix/type.h>
#include <minix/syslib.h>
#include "const.h"

Figure 2-32. Part of a master header which ensures inclusion of header files
needed by all C source files. Note that two const.h files, one from the include/
tree and one from the local directory, are referenced.

Let us start with the first header in include/, ansi.h (line 0000). This is the
second header that is processed whenever any part of the MINIX 3 system is
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compiled; only include/minix/config.h is processed earlier. The purpose of ansi.h
is to test whether the compiler meets the requirements of Standard C, as defined
by the International Organization for Standards. Standard C is also often referred
to as ANSI C, since the standard was originally developed by the American Nat-
ional Standards Institute before gaining international recognition. A Standard C
compiler defines several macros that can then be tested in programs being com-
piled. ��STDC�� is such a macro, and it is defined by a standard compiler to
have a value of 1, just as if the C preprocessor had read a line like

#define ��STDC�� 1

The compiler distributed with current versions of MINIX 3 conforms to Standard
C, but older versions of MINIX were developed before the adoption of the stan-
dard, and it is still possible to compile MINIX 3 with a classic (Kernighan &
Ritchie) C compiler. It is intended that MINIX 3 should be easy to port to new
machines, and allowing older compilers is part of this. At lines 0023 to 0025 the
statement

#define �ANSI

is processed if a Standard C compiler is in use. Ansi.h defines several macros in
different ways, depending upon whether the �ANSI macro is defined. This is an
example of a feature test macro.

Another feature test macro defined here is �POSIX�SOURCE (line 0065).
This is required by POSIX. Here we ensure it is defined if other macros that imply
POSIX conformance are defined.

When compiling a C program the data types of the arguments and the returned
values of functions must be known before code that references such data can be
generated. In a complex system ordering of function definitions to meet this
requirement is difficult, so C allows use of function prototypes to declare the
arguments and return value types of a function before it is defined. The most
important macro in ansi.h is �PROTOTYPE. This macro allows us to write func-
tion prototypes in the form

�PROTOTYPE (return-type function-name, (argument-type argument, ... ) )

and have this transformed by the C preprocessor into

return-type function-name(argument-type, argument, ...)

if the compiler is an ANSI Standard C compiler, or

return-type function-name()

if the compiler is an old-fashioned (i.e., Kernighan & Ritchie) compiler.
Before we leave ansi.h let us mention one additional feature. The entire file

(except for initial comments) is enclosed between lines that read
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#ifndef �ANSI�H

and

#endif /* �ANSI�H */

On the line immediately following the #ifndef �ANSI�H itself is defined. A head-
er file should be included only once in a compilation; this construction ensures
that the contents of the file will be ignored if it is included multiple times. We
will see this technique used in all the header files in the include/ directory.

Two points about this deserve mention. First, in all of the #ifndef ... #define
sequences for files in the master header directories, the filename is preceded by an
underscore. Another header with the same name may exist within the C source
code directories, and the same mechanism will be used there, but underscores will
not be used. Thus inclusion of a file from the master header directory will not
prevent processing of another header file with the same name in a local directory.
Second, note that the comment /* �ANSI�H */ after the #ifndef is not required.
Such comments can be helpful in keeping track of nested #ifndef ... #endif and
#ifdef ... #endif sections. However, care is needed in writing such comments: if
incorrect they are worse than no comment at all.

The second file in include/ that is indirectly included in most MINIX 3 source
files is the limits.h header (line 0100). This file defines many basic sizes, both
language types such as the number of bits in an integer, as well as operating sys-
tem limits such as the length of a file name.

Note that for convenience, the line numbering in Appendix B is ratcheted up
to the next multiple of 100 when a new file is listed. Thus do not expect ansi.h to
contain 100 lines (00000 through 00099). In this way, small changes to one file
will (probably) not affect subsequent files in a revised listing. Also note that when
a new file is encountered in the listing, a special three-line header consisting of a
row of + signs, the file name, and another row of + signs is present (without line
numbering). An example of this header is shown between lines 00068 and 00100.

Errno.h (line 0200), is also included by most of the master headers. It con-
tains the error numbers that are returned to user programs in the global variable
errno when a system call fails. Errno is also used to identify some internal errors,
such as trying to send a message to a nonexistent task. Internally, it would be
inefficient to examine a global variable after a call to a function that might gen-
erate an error, but functions must often return other integers, for instance, the
number of bytes transferred during an I/O operation. The MINIX 3 solution is to
return error numbers as negative values to mark them as error codes within the
system, and then to convert them to positive values before being returned to user
programs. The trick that is used is that each error code is defined in a line like

#define EPERM (�SIGN 1)

(line 0236). The master header file for each part of the operating system defines
the �SYSTEM macro, but �SYSTEM is never defined when a user program is
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compiled. If �SYSTEM is defined, then �SIGN is defined as ‘‘−’’; otherwise it is
given a null definition.

The next group of files to be considered are not included in all the master
headers, but are nevertheless used in many source files in all parts of the MINIX 3
system. The most important is unistd.h (line 0400). This header defines many
constants, most of which are required by POSIX. In addition, it includes proto-
types for many C functions, including all those used to access MINIX 3 system
calls. Another widely used file is string.h (line 0600), which provides prototypes
for many C functions used for string manipulation. The header signal.h (line
0700) defines the standard signal names. Several MINIX 3-specific signals for
operating system use are defined, as well. The fact that operating systems func-
tions are handled by independent processes rather than within a monolithic kernel
requires some special signal-like communication between the system components.
Signal.h also contains prototypes for some signal-related functions. As we will
see later, signal handling involves all parts of MINIX 3.

Fcntl.h (line 0900) symbolically defines many parameters used in file control
operations. For instance, it allows one to use the macro O�RDONLY instead of
the numeric value 0 as a parameter to a open call. Although this file is referenced
mostly by the file system, its definitions are also needed in a number of places in
the kernel and the process manager.

As we will see when we look at the device driver layer in Chap. 3, the console
and terminal interface of an operating system is complex, because many different
types of hardware have to interact with the operating system and user programs in
a standardized way. Termios.h (line 1000) defines constants, macros, and func-
tion prototypes used for control of terminal-type I/O devices. The most important
structure is the termios structure. It contains flags to signal various modes of op-
eration, variables to set input and output transmission speeds, and an array to hold
special characters (e.g., the INTR and KILL characters). This structure is required
by POSIX, as are many of the macros and function prototypes defined in this file.

However, as all-encompassing as the POSIX standard is meant to be, it does
not provide everything one might want, and the last part of the file, from line 1140
onward, provides extensions to POSIX. Some of these are of obvious value, such
as extensions to define standard baud rates of 57,600 baud and higher, and support
for terminal display screen windows. The POSIX standard does not forbid exten-
sions, as no reasonable standard can ever be all-inclusive. But when writing a
program in the MINIX 3 environment which is intended to be portable to other
environments, some caution is required to avoid the use of definitions specific to
MINIX 3. This is fairly easy to do. In this file and other files that define MINIX 3-
specific extensions the use of the extensions is controlled by the

#ifdef �MINIX

statement. If the macro �MINIX is not defined, the compiler will not even see the
MINIX 3 extensions; they will all be completely ignored.
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Watchdog timers are supported by timers.h (line 1300), which is included in
the kernel’s master header. It defines a struct timer, as well as prototypes of func-
tions used to operate on lists of timers. On line 1321 appears a typedef for
tmr� func� t. This data type is a pointer to a function. At line 1332 its use is seen:
within a timer structure, used as an element in a list of timers, one element is a
tmr� func� t to specify a function to be called when the timer expires.

We will mention four more files in the include/ directory that are not listed in
Appendix B. Stdlib.h defines types, macros, and function prototypes that are
likely to be needed in the compilation of all but the most simple of C programs. It
is one of the most frequently used headers in compiling user programs, although
within the MINIX 3 system source it is referenced by only a few files in the kernel.
Stdio.h is familiar to everyone who has started to learn programming in C by writ-
ing the famous ‘‘Hello World!’’ program. It is hardly used at all in system files,
although, like stdlib.h, it is used in almost every user program. A.out.h defines the
format of the files in which executable programs are stored on disk. An exec
structure is defined here, and the information in this structure is used by the proc-
ess manager to load a new program image when an exec call is made. Finally,
stddef.h defines a few commonly used macros.

Now let us go on to the subdirectory include/sys/. As shown in Fig. 2-32, the
master headers for the main parts of the MINIX 3 system all cause sys/types.h (line
1400) to be read immediately after reading ansi.h. Sys/types.h defines many data
types used by MINIX 3. Errors that could arise from misunderstanding which fun-
damental data types are used in a particular situation can be avoided by using the
definitions provided here. Fig. 2-33 shows the way the sizes, in bits, of a few
types defined in this file differ when compiled for 16-bit or 32-bit processors.
Note that all type names end with ‘‘�t’’. This is not just a convention; it is a
requirement of the POSIX standard. This is an example of a reserved suffix, and
‘‘� t’’ should not be used as a suffix of any name which is not a type name.

�����������������������������������
Type 16-Bit MINIX 32-Bit MINIX�����������������������������������
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Figure 2-33. The size, in bits, of some types on 16-bit and 32-bit systems.

MINIX 3 currently runs natively on 32-bit microprocessors, but 64-bit proces-
sors will be increasingly important in the future. A type that is not provided by
the hardware can be synthesized if necessary. On line 1471 the u64� t type is
defined as struct {u32�t[2]}. This type is not needed very often in the current
implementation, but it can be useful—for instance, all disk and partition data
(offsets and sizes) is stored as 64 bit numbers, allowing for very large disks.
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MINIX 3 uses many type definitions that ultimately are interpreted by the
compiler as a relatively small number of common types. This is intended to help
make the code more readable; for instance, a variable declared as the type dev� t
is recognizable as a variable meant to hold the major and minor device numbers
that identify an I/O device. For the compiler, declaring such a variable as a short
would work equally well. Another thing to note is that many of the types defined
here are matched by corresponding types with the first letter capitalized, for
instance, dev�t and Dev�t. The capitalized variants are all equivalent to type int
to the compiler; these are provided to be used in function prototypes which must
use types compatible with the int type to support K&R compilers. The comments
in types.h explain this in more detail.

One other item worth mention is the section of conditional code that starts
with

#if �EM�WSIZE == 2

(lines 1502 to 1516). As noted earlier, most conditional code has been removed
from the source as discussed in the text. This example was retained so we could
point out one way that conditional definitions can be used. The macro used,
�EM�WSIZE, is another example of a compiler-defined feature test macro. It
tells the word size for the target system in bytes. The #if ... #else ... #endif se-
quence is a way of getting some definitions right once and for all, to make subse-
quent code compile correctly whether a 16-bit or 32-bit system is in use.

Several other files in include/sys/ are widely used in the MINIX 3 system. The
file sys/sigcontext.h (line 1600) defines structures used to preserve and restore
normal system operation before and after execution of a signal handling routine
and is used both in the kernel and the process manager. Sys/stat.h (line 1700)
defines the structure which we saw in Fig. 1-12, returned by the stat and fstat sys-
tem calls, as well as the prototypes of the functions stat and fstat and other func-
tions used to manipulate file properties. It is referenced in several parts of the file
system and the process manager.

Other files we will discuss in this section are not as widely referenced as the
ones discussed above. Sys/dir.h (line 1800) defines the structure of a MINIX 3
directory entry. It is only referenced directly once, but this reference includes it in
another header that is widely used in the file system. It is important because,
among other things, it tells how many characters a file name may contain (60).
The sys/wait.h (line 1900) header defines macros used by the wait and waitpid sys-
tem calls, which are implemented in the process manager.

Several other files in include/sys/ should be mentioned, although they are not
listed in Appendix B. MINIX 3 supports tracing executables and analyzing core
dumps with a debugger program, and sys/ptrace.h defines the various operations
possible with the ptrace system call. Sys/svrctl.h defines data structures and mac-
ros used by svrctl, which is not really a system call, but is used like one. Svrctl is
used to coordinate server-level processes as the system starts up. The select sys-
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tem call permits waiting for input on multiple channels—for instance, pseudo ter-
minals waiting for network connections. Definitions needed by this call are in
sys/select.h.

We have deliberately left discussion of sys/ioctl.h and related files until last,
because they cannot be fully understood without also looking at a file in the next
directory, minix/ioctl.h. The ioctl system call is used for device control opera-
tions. The number of devices which can be interfaced with a modern computer
system is ever increasing. All need various kinds of control. Indeed, the main
difference between MINIX 3 as described in this book and other versions is that
for purposes of the book we describe MINIX 3 with relatively few input/output
devices. Many others, such as network interfaces, SCSI controllers, and sound
cards, can be added.

To make things more manageable, a number of small files, each containing
one group of definitions, are used. They are all included by sys/ioctl.h (line
2000), which functions similarly to the master header of Fig. 2-32. We have
listed only one of these included files, sys/ioc�disk.h (line 2100), in Appendix B.
This and the other files included by sys�ioctl.h are located in the include/sys/
directory because they are considered part of the ‘‘published interface,’’ meaning
a programmer can use them in writing any program to be run in the MINIX 3
environment. However, they all depend upon additional macro definitions pro-
vided in minix/ioctl.h (line 2200), which is included by each. Minix/ioctl.h should
not be used by itself in writing programs, which is why it is in include/minix/
rather than include/sys/.

The macros defined together by these files define how the various elements
needed for each possible function are packed into a 32 bit integer to be passed to
ioctl. For instance, disk devices need five types of operations, as can be seen in
sys/ioc�disk.h at lines 2110 to 2114. The alphabetic ’d’ parameter tells ioctl that
the operation is for a disk device, an integer from 3 through 7 codes for the opera-
tion, and the third parameter for a write or read operation tells the size of the
structure in which data is to be passed. In minix/ioctl.h lines 2225 to 2231 show
that 8 bits of the alphabetic code are shifted 8 bits to the left, the 13 least signifi-
cant bits of the size of the structure are shifted 16 bits to the left, and these are
then logically ANDed with the small integer operation code. Another code in the
most significant 3 bits of a 32-bit number encodes the type of return value.

Although this looks like a lot of work, this work is done at compile time and
makes for a much more efficient interface to the system call at run time, since the
parameter actually passed is the most natural data type for the host machine CPU.
It does, however, bring to mind a famous comment Ken Thompson put into the
source code of an early version of UNIX:

/* You are not expected to understand this */

Minix/ioctl.h also contains the prototype for the ioctl system call at line 2241.
This call is not directly invoked by programmers in many cases, since the POSIX-
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defined functions prototyped in include/termios.h have replaced many uses of the
old ioctl library function for dealing with terminals, consoles, and similar devices.
Nevertheless, it is still necessary. In fact, the POSIX functions for control of ter-
minal devices are converted into ioctl system calls by the library.

2.6.4 The MINIX 3 Header Files

The subdirectories include/minix/ and include/ibm/ contain header files spe-
cific to MINIX 3. Files in include/minix/ are needed for an implementation of
MINIX 3 on any platform, although there are platform-specific alternative defini-
tions within some of them. We have already discussed one file here, ioctl.h. The
files in include/ibm/ define structures and macros that are specific to MINIX 3 as
implemented on IBM-type machines.

We will start with the minix/ directory. In the previous section, it was noted
that config.h (line 2300) is included in the master headers for all parts of the
MINIX 3 system, and is thus the first file actually processed by the compiler. On
many occasions, when differences in hardware or the way the operating system is
intended to be used require changes in the configuration of MINIX 3, editing this
file and recompiling the system is all that must be done. We suggest that if you
modify this file you should also modify the comment on line 2303 to help identify
the purpose of the modifications.

The user-settable parameters are all in the first part of the file, but some of
these parameters are not intended to be edited here. On line 2326 another header
file, minix/sys�config.h is included, and definitions of some parameters are inher-
ited from this file. The programmers thought this was a good idea because a few
files in the system need the basic definitions in sys�config.h without the rest of
those in config.h. In fact, there are many names in config.h which do not begin
with an underscore that are likely to conflict with names in common usage, such
as CHIP or INTEL that would be likely to be found in software ported to MINIX 3
from another operating system. All of the names in sys�config.h begin with
underscores, and conflicts are less likely.

MACHINE is actually configured as �MACHINE�IBM�PC in sys�config.h;
lines 2330 to 2334 lists short alternatives for all possible values for MACHINE.
Earlier versions of MINIX were ported to Sun, Atari, and MacIntosh platforms,
and the full source code contains alternatives for alternative hardware. Most of
the MINIX 3 source code is independent of the type of machine, but an operating
system always has some system-dependent code. Also, it should be noted that,
because MINIX 3 is so new, as of this writing additional work is needed to com-
plete porting MINIX 3 to non-Intel platforms.

Other definitions in config.h allow customization for other needs in a particu-
lar installation. For instance, the number of buffers used by the file system for the
disk cache should generally be as large as possible, but a large number of buffers
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requires lots of memory. Caching 128 blocks, as configured on line 2345, is con-
sidered minimal and satisfactory only for a MINIX 3 installation on a system with
less than 16 MB of RAM; for systems with ample memory a much larger number
can be put here. If it is desired to use a modem or log in over a network connec-
tion the NR�RS�LINES and NR�PTYS definitions (lines 2379 and 2380) should
be increased and the system recompiled. The last part of config.h contains defini-
tions that are necessary, but which should not be changed. Many definitions here
just define alternate names for constants defined in sys�config.h.

Sys�config.h (line 2500) contains definitions that are likely to be needed by a
system programmer, for instance someone writing a new device driver. You are
not likely to need to change very much in this file, with the possible exception of
�NR�PROCS (line 2522). This controls the size of the process table. If you want
to use a MINIX 3 system as a network server with many remote users or many
server processes running simultaneously, you might need to increase this constant.

The next file is const.h (line 2600), which illustrates another common use of
header files. Here we find a variety of constant definitions that are not likely to be
changed when compiling a new kernel but that are used in a number of places.
Defining them here helps to prevent errors that could be hard to track down if
inconsistent definitions were made in multiple places. Other files named const.h
can be found elsewhere in the MINIX 3 source tree, but they are for more limited
use. Similarly, definitions that are used only in the kernel are included in
src/kernel/const.h . Definitions that are used only in the file system are included in
src/servers/fs/const.h . The process manager uses src/servers/pm/const.h for its
local definitions. Only those definitions that are used in more than one part of the
MINIX 3 system are included in include/minix/const.h.

A few of the definitions in const.h are noteworthy. EXTERN is defined as a
macro expanding into extern (line 2608). Global variables that are declared in
header files and included in two or more files are declared EXTERN, as in

EXTERN int who;

If the variable were declared just as

int who;

and included in two or more files, some linkers would complain about a multiply
defined variable. Furthermore, the C reference manual explicitly forbids this con-
struction (Kernighan and Ritchie, 1988).

To avoid this problem, it is necessary to have the declaration read

extern int who;

in all places but one. Using EXTERN prevents this problem by having it expand
into extern everywhere that const.h is included, except following an explicit rede-
finition of EXTERN as the null string. This is done in each part of MINIX 3 by put-
ting global definitions in a special file called glo.h, for instance, src/kernel/glo.h,
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which is indirectly included in every compilation. Within each glo.h there is a
sequence

#ifdef �TABLE
#undef EXTERN
#define EXTERN
#endif

and in the table.c files of each part of MINIX 3 there is a line

#define �TABLE

preceding the #include section. Thus when the header files are included and ex-
panded as part of the compilation of table.c, extern is not inserted anywhere
(because EXTERN is defined as the null string within table.c) and storage for the
global variables is reserved only in one place, in the object file table.o.

If you are new to C programming and do not quite understand what is going
on here, fear not; the details are really not important. This is a polite way of re-
phrasing Ken Thompson’s famous comment cited earlier. Multiple inclusion of
header files can cause problems for some linkers because it can lead to multiple
declarations for included variables. The EXTERN business is simply a way to
make MINIX 3 more portable so it can be linked on machines whose linkers do not
accept multiply defined variables.

PRIVATE is defined as a synonym for static. Procedures and data that are not
referenced outside the file in which they are declared are always declared as
PRIVATE to prevent their names from being visible outside the file in which they
are declared. As a general rule, all variables and procedures should be declared
with a local scope, if possible. PUBLIC is defined as the null string. An example
from kernel/proc.c may help make this clear. The declaration

PUBLIC void lock�dequeue(rp)

comes out of the C preprocessor as

void lock�dequeue(rp)

which, according to the C language scope rules, means that the function name
lock�dequeue is exported from the file and the function can be called from any-
where in any file linked into the same binary, in this case, anywhere in the kernel.
Another function declared in the same file is

PRIVATE void dequeue(rp)

which is preprocessed to become

static void dequeue(rp)

This function can only be called from code in the same source file. PRIVATE and
PUBLIC are not necessary in any sense but are attempts to undo the damage
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caused by the C scope rules (the default is that names are exported outside the
file; it should be just the reverse).

The rest of const.h defines numerical constants used throughout the system. A
section of const.h is devoted to machine or configuration-dependent definitions.
For instance, throughout the source code the basic unit of memory allocation is
the click. Different values for the click size may be chosen for different processor
architectures. For Intel platforms it is 1024 bytes. Alternatives for Intel,
Motorola 68000, and Sun SPARC architectures are defined on lines 2673 to 2681.
This file also contains the macros MAX and MIN, so we can say

z = MAX(x, y);

to assign the larger of x and y to z.
Type.h (line 2800) is another file that is included in every compilation by

means of the master headers. It contains a number of key type definitions, along
with related numerical values.

The first two structs define two different types of memory map, one for local
memory regions (within the data space of a process) and one for remote memory
areas, such as a RAM disk (lines 2828 to 2840). This is a good place to mention
the concepts used in referring to memory. As we just mentioned, the click is the
basic unit of measurement of memory; in MINIX 3 for Intel processors a click is
1024 bytes. Memory is measured as phys�clicks, which can be used by the ker-
nel to access any memory element anywhere in the system, or as vir�clicks, used
by processes other than the kernel. A vir�clicks memory reference is always with
respect to the base of a segment of memory assigned to a particular process, and
the kernel often has to make translations between virtual (i.e. process-based) and
physical (RAM-based) addresses. The inconvenience of this is offset by the fact
that a process can do all its own memory references in vir�clicks.

One might suppose that the same unit could be used to specify the size of
either type of memory, but there is an advantage to using vir�clicks to specify the
size of a unit of memory allocated to a process, since when this unit is used a
check is done to be sure that no memory is accessed outside of what has been
specifically assigned to the current process. This is a major feature of the pro-
tected mode of modern Intel processors, such as the Pentium family. Its absence
in the early 8086 and 8088 processors caused some headaches in the design of
earlier versions of MINIX.

Another important structure defined here is sigmsg (lines 2866 to 2872).
When a signal is caught the kernel has to arrange that the next time the signaled
process gets to run it will run the signal handler, rather than continuing execution
where it was interrupted. The process manager does most of the work of manag-
ing signals; it passes a structure like this to the kernel when a signal is caught.

The kinfo structure (lines 2875 to 2893) is used to convey information about
the kernel to other parts of the system. The process manager uses this information
when it sets up its part of the process table.
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Data structures and function prototypes for interprocess communication are
defined in ipc.h (line 3000). The most important definition in this file is message
on lines 3020 to 3032. While we could have defined message to be an array of
some number of bytes, it is better programming practice to have it be a structure
containing a union of the various message types that are possible. Seven message
formats, mess�1 through mess�8, are defined (type mess�6 is obsolete). A mes-
sage is a structure containing a field m�source, telling who sent the message, a
field m�type, telling what the message type is (e.g., SYS�EXEC to the system
task) and the data fields.

The seven message types are shown in Fig. 2-34. In the figure four message
types, the first two and the last two, seem identical. Just in terms of size of the
data elements they are identical, but many of the data types are different. It hap-
pens that on an Intel CPU with a 32-bit word size the int, long, and pointer data
types are all 32-bit types, but this would not necessarily be the case on another
kind of hardware. Defining seven distinct formats makes it easier to recompile
MINIX 3 for a different architecture.

When it is necessary to send a message containing, say, three integers and
three pointers (or three integers and two pointers), then the first format in Fig. 2-
34 is the one to use. The same applies to the other formats. How does one assign
a value to the first integer in the first format? Suppose that the message is called
x. Then x.m�u refers to the union portion of the message struct. To refer to the
first of the six alternatives in the union, we use x.m�u.m�m1. Finally, to get at
the first integer in this struct we say x.m�u.m�m1.m1i1. This is quite a mouthful,
so somewhat shorter field names are defined as macros after the definition of mes-
sage itself. Thus x.m1� i1 can be used instead of x.m�u.m�m1.m1i1. The short
names all have the form of the letter m, the format number, an underscore, one or
two letters indicating whether the field is an integer, pointer, long, character, char-
acter array, or function, and a sequence number to distinguish multiple instances
of the same type within a message.

While discussing message formats, this is a good place to note that an operat-
ing system and its compiler often have an ‘‘understanding’’ about things like the
layout of structures, and this can make the implementer’s life easier. In MINIX 3,
the int fields in messages are sometimes used to hold unsigned data types. In
some cases this could cause overflow, but the code was written using the know-
ledge that the MINIX 3 compiler copies unsigned types to ints and vice versa
without changing the data or generating code to detect overflow. A more compul-
sive approach would be to replace each int field with a union of an int and an
unsigned. The same applies to the long fields in the messages; some of them may
be used to pass unsigned long data. Are we cheating here? Perhaps a little bit,
one might say, but if you wish to port MINIX 3 to a new platform, quite clearly the
exact format of the messages is something to which you must pay a great deal of
attention, and now you have been alerted that the behavior of the compiler is
another factor that needs attention.
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Figure 2-34. The seven message types used in MINIX 3. The sizes of message
elements will vary, depending upon the architecture of the machine; this diagram
illustrates sizes on CPUs with 32-bit pointers, such as those of Pentium family
members.

Also defined in ipc.h are prototypes for the message passing primitives des-
cribed earlier (lines 3095 to 3101). In addition to the important send, receive,
sendrec, and notify primitives, several others are defined. None of these are much
used; in fact one could say that they are relicts of earlier stages of development of
MINIX 3. Old computer programs make good archaeological digs. They might
disappear in a future release. Nevertheless, if we do not explain them now some
readers undoubtedly will worry about them. The nonblocking nb�send and
nb�receive calls have mostly been replaced by notify, which was implemented
later and considered a better solution to the problem of sending or checking for a
message without blocking. The prototype for echo has no source or destination
field. This primitive serves no useful purpose in production code, but was useful
during development to test the time it took to send and receive a message.
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One other file in include/minix/, syslib.h (line 3200), is almost universally
used by means of inclusion in the master headers of all of the user-space com-
ponents of MINIX 3. This file not included in the kernel’s master header file,
src/kernel/kernel.h , because the kernel does not need library functions to access
itself. Syslib.h contains prototypes for C library functions called from within the
operating system to access other operating system services.

We do not describe details of C libraries in this text, but many library func-
tions are standard and will be available for any C compiler. However, the C func-
tions referenced by syslib.h are of course quite specific to MINIX 3 and a port of
MINIX 3 to a new system with a different compiler requires porting these library
functions. Fortunately this is not difficult, since most of these functions simply
extract the parameters of the function call and insert them into a message struc-
ture, then send the message and extract the results from the reply message. Many
of these library functions are defined in a dozen or fewer lines of C code.

Noteworthy in this file are four macros for accessing I/O ports for input or
output using byte or word data types and the prototype of the sys�sdevio function
to which all four macros refer (lines 3241 to 3250). Providing a way for device
drivers to request reading and writing of I/O ports by the kernel is an essential part
of the MINIX 3 project to move all such drivers to user space.

A few functions which could have been defined in syslib.h are in a separate
file, sysutil.h (line 3400), because their object code is compiled into a separate
library. Two functions prototyped here need a little more explanation. The first is
printf (line 3442). If you have experience programming in C you will recognize
that printf is a standard library function, referenced in almost all programs.

This is not the printf function you think it is, however. The version of printf
in the standard library cannot be used within system components. Among other
things, the standard printf is intended to write to standard output, and must be able
to format floating point numbers. Using standard output would require going
through the file system, but for printing messages when there is a problem and a
system component needs to display an error message, it is desirable to be able to
do this without the assistance of any other system components. Also, support for
the full range of format specifications usable with the standard printf would bloat
the code for no useful purpose. So a simplified version of printf that does only
what is needed by operating system components is compiled into the system utili-
ties library. This is found by the compiler in a place that will depend upon the
platform; for 32-bit Intel systems it is /usr/lib/i386/libsysutil.a. When the file sys-
tem, the process manager, or another part of the operating system is linked to
library functions this version is found before the standard library is searched.

On the next line is a prototype for kputc. This is called by the system version
of printf to do the work of displaying characters on the console. However, more
tricky business is involved here. Kputc is defined in several places. There is a
copy in the system utilities library, which will be the one used by default. But
several parts of the system define their own versions. We will see one when we
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study the console interface in the next chapter. The log driver (which is not des-
cribed in detail here) also defines its own version. There is even a definition of
kputc in the kernel itself, but this is a special case. The kernel does not use printf.
A special printing function, kprintf, is defined as part of the kernel and is used
when the kernel needs to print.

When a process needs to execute a MINIX 3 system call, it sends a message to
the process manager (PM for short) or the file system (FS for short). Each mes-
sage contains the number of the system call desired. These numbers are defined
in the next file, callnr.h (line 3500). Some numbers are not used, these are
reserved for calls not yet implemented or represent calls implemented in other
versions which are now handled by library functions. Near the end of the file
some call numbers are defined that do not correspond to calls shown in Fig 1-9.
Svrctl (mentioned earlier), ksig, unpause, revive, and task�reply are used only
within the operating system itself. The system call mechanism is a convenient
way to implement these. In fact, because they will not be used by external pro-
grams, these ‘‘system calls,’’ may be modified in new versions of MINIX 3
without fear of breaking user programs.

The next file is com.h (line 3600). One interpretation of the file name is that
is stands for common, another is that it stands for communication. This file pro-
vides common definitions used for communication between servers and device
drivers. On lines 3623 to 3626 task numbers are defined. To distinguish them
from process numbers, task numbers are negative. On lines 3633 to 3640 process
numbers are defined for the processes that are loaded in the boot image. Note
these are slot numbers in the process table; they should not be confused with proc-
ess id (PID) numbers.

The next section of com.h defines how messages are constructed to carry out a
notify operation. The process numbers are used in generating the value that is
passed in the m� type field of the message. The message types for notifications
and other messages defined in this file are built by combining a base value that
signifies a type category with a small number that indicates the specific type. The
rest of this file is a compendium of macros that translate meaningful identifiers
into the cryptic numbers that identify message types and field names.

A few other files in include/minix/ are listed in Appendix B. Devio.h (line
4100) defines types and constants that support user-space access to I/O ports, as
well as some macros that make it easier to write code that specifies ports and
values. Dmap.h (line 4200) defines a struct and an array of that struct, both
named dmap. This table is used to relate major device numbers to the functions
that support them. Major and minor device numbers for the memory device driver
and major device numbers for other important device drivers are also defined.

Include/minix/ contains several additional specialized headers that are not
listed in Appendix B, but which must be present to compile the system. One is
u64.h which provides support for 64-bit integer arithmetic operations, necessary
to manipulate disk addresses on high capacity disk drives. These were not even
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dreamed of when UNIX, the C language, Pentium-class processors, and MINIX
were first conceived. A future version of MINIX 3 may be written in a language
that has built-in support for 64-bit integers on CPUs with 64-bit registers; until
then, the definitions in u64.h provide a work-around.

Three files remain to be mentioned. Keymap.h defines the structures used to
implement specialized keyboard layouts for the character sets needed for different
languages. It is also needed by programs which generate and load these tables.
Bitmap.h provides a few macros to make operations like setting, resetting, and
testing bits easier. Finally, partition.h defines the information needed by MINIX 3
to define a disk partition, either by its absolute byte offset and size on the disk, or
by a cylinder, head, sector address. The u64�t type is used for the offset and size,
to allow use of large disks. This file does not describe the layout of a partition
table on a disk, the file that does that is in the next directory.

The last specialized header directory we will consider, include/ibm/, contains
several files which provide definitions related to the IBM PC family of computers.
Since the C language knows only memory addresses, and has no provision for ac-
cessing I/O port addresses, the library contains routines written in assembly lan-
guage to read and write from ports. The various routines available are declared in
ibm/portio.h (line 4300). All possible input and output routines for byte, integer,
and long data types, singly or as strings, are available, from inb (input one byte) to
outsl (output a string of longs). Low-level routines in the kernel may also need to
disable or reenable CPU interrupts, which are also actions that C cannot handle.
The library provides assembly code to do this, and intr�disable and intr�enable
are declared on lines 4325 and 4326.

The next file in this directory is interrupt.h (line 4400), which defines port
address and memory locations used by the interrupt controller chip and the BIOS
of PC-compatible systems. Finally, more I/O ports are defined in ports.h (line
4500). This file provides addresses needed to access the keyboard interface and
the timer chip used by the clock chip.

Several additional files in include/ibm/ with IBM-specific data are not listed
in Appendix B, but are essential and should be mentioned. Bios.h, memory.h, and
partition.h are copiously commented and are worth reading if you would like to
know more about memory use or disk partition tables. Cmos.h, cpu.h, and int86.h
provide additional information on ports, CPU flag bits, and calling BIOS and
DOS services in 16-bit mode. Finally, diskparm.h defines a data structure needed
for formatting a floppy disk.

2.6.5 Process Data Structures and Header Files

Now let us dive in and see what the code in src/kernel/ looks like. In the pre-
vious two sections we structured our discussion around an excerpt from a typical
master header; we will look first at the real master header for the kernel, kernel.h
(line 4600). It begins by defining three macros. The first, �POSIX�SOURCE, is
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a feature test macro defined by the POSIX standard itself. All such macros are
required to begin with the underscore character, ‘‘�’’. The effect of defining the
�POSIX�SOURCE macro is to ensure that all symbols required by the standard
and any that are explicitly permitted, but not required, will be visible, while hid-
ing any additional symbols that are unofficial extensions to POSIX. We have
already mentioned the next two definitions: the �MINIX macro overrides the
effect of �POSIX�SOURCE for extensions defined by MINIX 3, and �SYSTEM
can be tested wherever it is important to do something differently when compiling
system code, as opposed to user code, such as changing the sign of error codes.
Kernel.h then includes other header files from include/ and its subdirectories
include/sys/ include/minix/, and include/ibm/ including all those referred to in
Fig. 2-32. We have discussed all of these files in the previous two sections.
Finally, six additional headers from the local directory, src/kernel/, are included,
their names included in quote characters.

Kernel.h makes it possible to guarantee that all source files share a large
number of important definitions by writing the single line

#include ′′kernel.h′′

in each of the other kernel source files. Since the order of inclusion of header files
is sometimes important, kernel.h also ensures that this ordering is done correctly,
once and forever. This carries to a higher level the ‘‘get it right once, then forget
the details’’ technique embodied in the header file concept. Similar master
headers are provided in source directories for other system components, such as
the file system and the process manager.

Now let us proceed to look at the local header files included in kernel.h. First
we have yet another file named config.h, which, analogous to the system-wide file
include/minix/config.h , must be included before any of the other local include
files. Just as we have files const.h and type.h in the common header directory
include/minix/, we also have files const.h. and type.h in the kernel source direc-
tory, src/kernel/. The files in include/minix/ are placed there because they are
needed by many parts of the system, including programs that run under the control
of the system. The files in src/kernel/ provide definitions needed only for compi-
lation of the kernel. The FS, PM, and other system source directories also contain
const.h and type.h files to define constants and types needed only for those parts
of the system. Two of the other files included in the master header, proto.h glo.h,
have no counterparts in the main include/ directories, but we will find that they,
too, have counterparts used in compiling the file system and the process manager.
The last local header included in kernel.h is another ipc.h.

Since this is the first time it has come up in our discussion, note at the begin-
ning of kernel/config.h there is a #ifndef ... #define sequence to prevent trouble if
the file is included multiple times. We have seen the general idea before. But
note here that the macro defined here is CONFIG�H without an underscore. Thus
it is distinct from the macro �CONFIG�H defined in include/minix/config.h .
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The kernel’s version of config.h gathers in one place a number of definitions
that are unlikely to need changes if your interest in MINIX 3 is studying how an
operating system works, or using this operating system in a conventional general-
purpose computer. However, suppose you want to make a really tiny version of
MINIX 3 for controlling a scientific instrument or a home-made cellular telephone.
The definitions on lines 4717 to 4743 allow selective disabling of kernel calls.
Eliminating unneeded functionality also reduces memory requirements because
the code needed to handle each kernel call is conditionally compiled using the
definitions on lines 4717 to 4743. If some function is disabled, the code needed to
execute it is omitted from the system binary. For example, a cellular telephone
might not need to fork off new processes, so the code for doing so could be omit-
ted from the executable file, resulting in a smaller memory footprint. Most other
constants defined in this file control basic parameters. For instance, while han-
dling interrupts a special stack of size K�STACK�BYTES is used. This value is
set on line 4772. The space for this stack is reserved within mpx386.s, an assem-
bly language file.

In const.h (line 4800) a macro for converting virtual addresses relative to the
base of the kernel’s memory space to physical addresses is defined on line 4814.
A C function, umap� local, is defined elsewhere in the kernel code so the kernel
can do this conversion on behalf of other components of the system, but for use
within the kernel the macro is more efficient. Several other useful macros are
defined here, including several for manipulating bitmaps. An important security
mechanism built into the Intel hardware is activated by two macro definition lines
here. The processor status word (PSW) is a CPU register, and I/O Protection
Level (IOPL) bits within it define whether access to the interrupt system and I/O
ports is allowed or denied. On lines 4850 and 4851 different PSW values are
defined that determine this access for ordinary and privileged processes. These
values are put on the stack as part of putting a new process in execution.

In the next file we will consider, type.h (line 4900), the memory structure
(lines 4925 to 4928) uses two quantities, base address and size, to uniquely
specify an area of memory.

Type.h defines several other prototypes and structures used in any implemen-
tation of MINIX 3. For instance, two structures, kmessages, used for diagnostic
messages from the kernel, and randomness, used by the random number genera-
tor, are defined. Type.h also contains several machine-dependent type definitions.
To make the code shorter and more readable we have removed conditional code
and definitions for other CPU types. But you should recognize that definitions
like the stackframe�s structure (lines 4955 to 4974), which defines how machine
registers are saved on the stack, is specific to Intel 32-bit processors. For another
platform the stackframe�s structure would be defined in terms of the register
structure of the CPU to be used. Another example is the segdesc�s structure
(lines 4976 to 4983), which is part of the protection mechanism that keeps proc-
esses from accessing memory regions outside those assigned to them. For another
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CPU the segdesc�s structure might not exist at all, depending upon the mechan-
ism used to implement memory protection.

Another point to make about structures like these is that making sure all the
required data is present is necessary, but possibly not sufficient for optimal perfor-
mance. The stackframe�s must be manipulated by assembly language code.
Defining it in a form that can be efficiently read or written by assembly language
code reduces the time required for a context switch.

The next file, proto.h (line 5100), provides prototypes of all functions that
must be known outside of the file in which they are defined. All are written using
the �PROTOTYPE macro discussed in the previous section, and thus the MINIX 3
kernel can be compiled either with a classic C (Kernighan and Ritchie) compiler,
such as the original MINIX 3 C compiler, or a modern ANSI Standard C compiler,
such as the one which is part of the MINIX 3 distribution. A number of these pro-
totypes are system-dependent, including interrupt and exception handlers and
functions that are written in assembly language.

In glo.h (line 5300) we find the kernel’s global variables. The purpose of the
macro EXTERN was described in the discussion of include/minix/const.h . It nor-
mally expands into extern. Note that many definitions in glo.h are preceded by
this macro. The symbol EXTERN is forced to be undefined when this file is
included in table.c, where the macro �TABLE is defined. Thus the actual storage
space for the variables defined this way is reserved when glo.h is included in the
compilation of table.c. Including glo.h in other C source files makes the variables
in table.c known to the other modules in the kernel.

Some of the kernel information structures here are used at startup. Aout (line
5321) will hold the address of an array of the headers of all of the MINIX 3 system
image components. Note that these are physical addresses, that is, addresses
relative to the entire address space of the processor. As we will see later, the phy-
sical address of aout will be passed from the boot monitor to the kernel when
MINIX 3 starts up, so the startup routines of the kernel can get the addresses of all
MINIX 3 components from the monitor’s memory space. Kinfo (line 5322) is also
an important piece of information. Recall that the structure was defined in
include/minix/type.h . Just as the boot monitor uses aout to pass information about
all processes in the boot image to the kernel, the kernel fills in the fields of kinfo
with information about itself that other components of the system may need to
know about.

The next section of glo.h contains variables related to control of process and
kernel execution. Prev�ptr, proc�ptr, and next�ptr point to the process table
entries of the previous, current, and next processes to run. Bill�ptr also points to
a process table entry; it shows which process is currently being billed for clock
ticks used. When a user process calls the file system, and the file system is run-
ning, proc�ptr points to the file system process. However, bill�ptr will point to
the user making the call, since CPU time used by the file system is charged as
system time to the caller. We have not actually heard of a MINIX system whose
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owner charges others for their use of CPU time, but it could be done. The next
variable, k�reenter, is used to count nested executions of kernel code, such as
when an interrupt occurs when the kernel itself, rather than a user process, is run-
ning. This is important, because switching context from a user process to the ker-
nel or vice versa is different (and more costly) than reentering the kernel. When
an interrupt service complete it is important for it to determine whether control
should remain with the kernel or if a user-space process should be restarted. This
variable is also tested by some functions which disable and reenable interrupts,
such as lock�enqueue. If such a function is executed when interrupts are disabled
already, the interrupts should not be reenabled when reenabling is not wanted.
Finally, in this section there is a counter for lost clock ticks. How a clock tick can
be lost and what is done about it will be discussed when we discuss the clock task.

The last few variables defined in glo.h, are declared here because they must
be known throughout the kernel code, but they are declared as extern rather than
as EXTERN because they are initialized variables, a feature of the C language.
The use of the EXTERN macro is not compatible with C-style initialization, since
a variable can only be initialized once.

Tasks that run in kernel space, currently just the clock task and the system
task, have their own stacks within t�stack. During interrupt handling, the kernel
uses a separate stack, but it is not declared here, since it is only accessed by the
assembly language level routine that handles interrupt processing, and does not
need to be known globally. The last file included in kernel.h, and thus used in
every compilation, is ipc.h (line 5400). It defines various constants used in inter-
process communication. We will discuss these later when we get to the file where
they are used, kernel/proc.c.

Several more kernel header files are widely used, although not so much that
they are included in kernel.h. The first of these is proc.h (line 5500), which de-
fines the kernel’s process table. The complete state of a process is defined by the
process’ data in memory, plus the information in its process table slot. The con-
tents of the CPU registers are stored here when a process is not executing and then
are restored when execution resumes. This is what makes possible the illusion
that multiple processes are executing simultaneously and interacting, although at
any instant a single CPU can be executing instructions of only one process. The
time spent by the kernel saving and restoring the process state during each con-
text switch is necessary, but obviously this is time during which the work of the
processes themselves is suspended. For this reason these structures are designed
for efficiency. As noted in the comment at the beginning of proc.h, many routines
written in assembly language also access these structures, and another header,
sconst.h, defines offsets to fields in the process table for use by the assembly
code. Thus changing a definition in proc.h may necessitate a change in sconst.h.

Before going further we should mention that, because of MINIX 3’s microker-
nel structure, the process table we will discuss is here is paralleled by tables in
PM and FS which contain per-process entries relevant to the function of these
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parts of MINIX 3. Together, all three of these tables are equivalent to the process
table of an operating system with a monolithic structure, but for the moment when
we speak of the process table we will be talking about only the kernel’s process
table. The others will be discussed in later chapters.

Each slot in the process table is defined as a struct proc (lines 5516 to 5545).
Each entry contains storage for the process’ registers, stack pointer, state, memory
map, stack limit, process id, accounting, alarm time, and message info. The first
part of each process table entry is a stackframe�s structure. A process that is
already in memory is put into execution by loading its stack pointer with the ad-
dress of its process table entry and popping all the CPU registers from this struct.

There is more to the state of a process than just the CPU registers and the data
in memory, however. In MINIX 3, each process has a pointer to a priv structure in
its process table slot (line 5522). This structure defines allowed sources and desti-
nations of messages for the process and many other privileges. We will look at
details later. For the moment, note that each system process has a pointer to a
unique copy of this structure, but user privileges are all equal—the pointers of all
user processes point to the same copy of the structure. There is also a byte-sized
field for a set of bit flags, p�rts�flags (line 5523). The meanings of the bits will
be described below. Setting any bit to 1 means a process is not runnable, so a
zero in this field indicates a process is ready.

Each slot in the process table provides space for information that may be
needed by the kernel. For instance, the p�max�priority field (line 5526), tells
which scheduling queue the process should be queued on when it is ready to run
for the first time. Because the priority of a process may be reduced if it prevents
other processes from running, there is also a p�priority field which is initially set
equal to p�max�priority. P�priority is the field that actually determines the
queue used each time the process is ready.

The time used by each process is recorded in the two clock�t variables at
lines 5532 and 5533. This information must be accessed by the kernel and it
would be inefficient to store this in a process’ own memory space, although logi-
cally that could be done. P�nextready (line 5535), is used to link processes to-
gether on the scheduler queues.

The next few fields hold information related to messages between processes.
When a process cannot complete a send because the destination is not waiting, the
sender is put onto a queue pointed to by the destination’s p�caller�q pointer (line
5536). That way, when the destination finally does a receive, it is easy to find all
the processes wanting to send to it. The p�q�link field (line 5537) is used to link
the members of the queue together.

The rendezvous method of passing messages is made possible by the storage
space reserved at lines 5538 to 5540. When a process does a receive and there is
no message waiting for it, it blocks and the number of the process it wants to
receive from is stored in p�getfrom. Similarly, p�sendto holds the process
number of the destination when a process does a send and the recipient is not
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waiting. The address of the message buffer is stored in p�messbuf. The penulti-
mate field in each process table slot is p�pending (line 5542), a bitmap used to
keep track of signals that have not yet been passed to the process manager
(because the process manager is not waiting for a message).

Finally, the last field in a process table entry is a character array, p�name, for
holding the name of the process. This field is not needed for process management
by the kernel. MINIX 3 provides various debug dumps triggered by pressing a
special key on the console keyboard. Some of these allow viewing information
about all processes, with the name of each process printed along with other data.
Having a meaningful name associated with each process makes understanding and
debugging kernel operation easier.

Following the definition of a process table slot come definitions of various
constants used in its elements. The various flag bits that can be set in p�rts�flags
are defined and described on lines 5548 to 5555. If the slot is not in use,
SLOT�FREE is set. After a fork, NO�MAP is set to prevent the child process
from running until its memory map has been set up. SENDING and RECEIVING
indicate that the process is blocked trying to send or receive a message. SIG-
NALED and SIG�PENDING indicate that signals have been received, and
P�STOP provides support for tracing. NO�PRIV is used to temporarily prevent a
new system process from executing until its setup is complete.

The number of scheduling queues and allowable values for the p�priority
field are defined next (lines 5562 to 5567). In the current version of this file user
processes are allowed to be given access to the highest priority queue; this is
probably a carry-over from the early days of testing drivers in user space and
MAX�USER�Q should probably adjusted to a lower priority (larger number).

Next come several macros that allow addresses of important parts of the proc-
ess table to be defined as constants at compilation time, to provide faster access at
run time, and then more macros for run time calculations and tests. The macro
proc�addr (line 5577) is provided because it is not possible to have negative sub-
scripts in C. Logically, the array proc should go from −NR�TASKS to
+NR�PROCS. Unfortunately, in C it must start at 0, so proc[0] refers to the most
negative task, and so forth. To make it easier to keep track of which slot goes with
which process, we can write

rp = proc�addr(n);

to assign to rp the address of the process slot for process n, either positive or
negative.

The process table itself is defined here as an array of proc structures,
proc[NR�TASKS + NR�PROCS] (line 5593). Note that NR�TASKS is defined in
include/minix/com.h (line 3630) and the constant NR�PROCS is defined in
include/minix/config.h (line 2522). Together these set the size of the kernel’s
process table. NR�PROCS can be changed to create a system capable of handling
a larger number of processes, if that is necessary (e.g., on a large server).
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Finally, several macros are defined to speed access. The process table is
accessed frequently, and calculating an address in an array requires slow multipli-
cation operations, so an array of pointers to the process table elements,
pproc�addr (line 5594), is provided. The two arrays rdy�head and rdy� tail are
used to maintain the scheduling queues. For example, the first process on the
default user queue is pointed to by rdy�head[USER�Q].

As we mentioned at the beginning of the discussion of proc.h there is another
file sconst.h (line 5600), which must be synchronized with proc.h if there are
changes in the structure of the process table. Sconst.h defines constants used by
assembler code, expressed in a form usable by the assembler. All of these are
offsets into the stackframe�s structure portion of a process table entry. Since
assembler code is not processed by the C compiler, it is simpler to have such
definitions in a separate file. Also, since these definitions are all machine depen-
dent, isolating them here simplifies the process of porting MINIX 3 to another pro-
cessor which will need a different version of sconst.h. Note that many offsets are
expressed as the previous value plus W, which is set equal to the word size at line
5601. This allows the same file to serve for compiling a 16-bit or 32-bit version
of MINIX 3.

Duplicate definitions create a potential problem. Header files are supposed to
allow one to provide a single correct set of definitions and then proceed to use
them in many places without devoting a lot of further attention to the details.
Obviously, duplicate definitions, like those in proc.h and sconst.h, violate that
principle. This is a special case, of course, but as such, special attention is re-
quired if changes are made to either of these files to ensure the two files remain
consistent.

The system privileges structure, priv, that was mentioned briefly in the discus-
sion of the process table is fully defined in priv.h, on lines 5718 to 5735. First
there is a set of flag bits, s� flags, and then come the s�trap�mask, s�ipc�from,
s� ipc�to, and s�call�mask fields which define which system calls may be ini-
tiated, which processes messages may be received from or sent to, and which ker-
nel calls are allowed.

The priv structure is not part of the process table, rather each process table
slot has a pointer to an instance of it. Only system processes have private copies;
user processes all point to the same copy. Thus, for a user process the remaining
fields of the structure are not relevant, as sharing them does not make sense.
These fields are bitmaps of pending notifications, hardware interrupts, and sig-
nals, and a timer. It makes sense to provide these here for system processes, how-
ever. User processes have notifications, signals, and timers managed on their
behalf by the process manager.

The organization of priv.h is similar to that of proc.h. After the definition of
the priv structure come macros definitions for the flag bits, some important ad-
dresses known at compile time, and some macros for address calculations at run
time. Then the table of priv structures, priv[NR�SYS�PROCS], is defined,
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followed by an array of pointers, ppriv�addr[NR�SYS�PROCS] (lines 5762 and
5763). The pointer array provides fast access, analogous to the array of pointers
that provides fast access to process table slots. The value of STACK�GUARD
defined on line 5738 is a pattern that is easily recognizable. Its use will be seen
later; the reader is invited to search the Internet to learn about the history of this
value.

The last item in priv.h is a test to make sure that NR�SYS�PROCS has been
defined to be larger than the number of processes in the boot image. The #error
line will print a message if the test condition tests true. Although behavior may
be different with other C compilers, with the standard MINIX 3 compiler this will
also abort the compilation.

The F4 key triggers a debug dump that shows some of the information in the
privilege table. Figure 2-35 shows a few lines of this table for some representa-
tive processes. The flags entries mean P: preemptable, B: billable, S: system. The
traps mean E: echo, S: send, R: receive, B: both, N: notification. The bitmap has
a bit for each of the NR�SYS�PROCS (32) system processes allowed, the order
corresponds to the id field. (In the figure only 16 bits are shown, to make it fit the
page better.) All user processes share id 0, which is the left-most bit position.
The bitmap shows that user processes such as init can send messages only to the
process manager, file system, and reincarnation server, and must use sendrec.
The servers and drivers shown in the figure can use any of the ipc primitives and
all but memory can send to any other process.

--nr- - id- -name- -flags- -traps- - ipc�to mask - - - - - -
(-4 ) (01) IDLE P- BS- - - - - - 00000000 00001111
[-3 ] (02) CLOCK - - - S - - - R - - 00000000 00001111
[-2 ] (03) SYSTEM - - - S - - - R - - 00000000 00001111
[-1 ] (04) KERNEL - - - S - - - - - - 00000000 00001111

0 (05) pm P- - S - ESRBN 11111111 11111111
1 (06) fs P- - S - ESRBN 11111111 11111111
2 (07) rs P- - S - ESRBN 11111111 11111111
3 (09) memory P- - S - ESRBN 00110111 01101111
4 (10) log P- - S - ESRBN 11111111 11111111
5 (08) tty P- - S - ESRBN 11111111 11111111
6 (11) driver P- - S - ESRBN 11111111 11111111
7 (00) init P- B - - E - - B - 00000111 00000000

Figure 2-35. Part of a debug dump of the privilege table. The clock task, file
server, tty, and init processes privileges are typical of tasks, servers, device
drivers, and user processes, respectively. The bitmap is truncated to 16 bits.

Another header that is included in a number of different source files is
protect.h (line 5800). Almost everything in this file deals with architecture details
of the Intel processors that support protected mode (the 80286, 80386, 80486, and
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the Pentium series). A detailed description of these chips is beyond the scope of
this book. Suffice it to say that they contain internal registers that point to
descriptor tables in memory. Descriptor tables define how system resources are
used and prevent processes from accessing memory assigned to other processes.

The architecture of 32-bit Intel processors also provides for four privilege
levels, of which MINIX 3 takes advantage of three. These are defined symboli-
cally on lines 5843 to 5845. The most central parts of the kernel, the parts that
run during interrupts and that manage context switches, always run with
INTR�PRIVILEGE. Every address in the memory and every register in the CPU
can be accessed by a process with this privilege level. The tasks run at
TASK�PRIVILEGE level, which allows them to access I/O but not to use instruc-
tions that modify special registers, like those that point to descriptor tables.
Servers and user processes run at USER�PRIVILEGE level. Processes executing
at this level are unable to execute certain instructions, for instance those that
access I/O ports, change memory assignments, or change privilege levels them-
selves.

The concept of privilege levels will be familiar to those who are familiar with
the architecture of modern CPUs, but those who have learned computer architec-
ture through study of the assembly language of low-end microprocessors may not
have encountered such features.

One header file in kernel/ has not yet been described: system.h, and we will
postpone discussing it until later in this chapter when we describe the system task,
which runs as an independent process, although it is compiled with the kernel.
For now we are through with header files and are ready to dig into the *.c C
language source files. The first of these that we will look at is table.c (line 6000).
Compilation of this produces no executable code, but the compiled object file
table.o will contain all the kernel data structures. We have already seen many of
these data structures defined, in glo.h and other headers. On line 6028 the macro
�TABLE is defined, immediately before the #include statements. As explained
earlier, this definition causes EXTERN to become defined as the null string, and
storage space to be allocated for all the data declarations preceded by EXTERN.

In addition to the variables declared in header files there are two other places
where global data storage is allocated. Some definitions are made directly in
table.c. On lines 6037 to 6041 the stack space needed by kernel components is
defined, and the total amount of stack space for tasks is reserved as the array
t�stack[TOT�STACK�SPACE] on line 6045.

The rest of table.c defines many constants related to properties of processes,
such as the combinations of flag bits, call traps, and masks that define to whom
messages and notifications can be sent that we saw in Fig. 2-35 (lines 6048 to
6071). Following this are masks to define the kernel calls allowed for various
processes. The process manager and file server are all allowed unique combina-
tions. The reincarnation server is allowed access to all kernel calls, not for its
own use, but because as the parent of other system processes it can only pass to its
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children subsets of its own privileges. Drivers are given a common set of kernel
call masks, except for the RAM disk driver which needs unusual access to
memory. (Note that the comment on line 6075 that mentions the ‘‘system services
manager’’ should say ‘‘reincarnation server’’—the name was changed during
development and some comments still refer to the old name.)

Finally, on lines 6095 to 6109, the image table is defined. It has been put here
rather than in a header file because the trick with EXTERN used to prevent multi-
ple declarations does not work with initialized variables; that is, you may not say

extern int x = 3;

anywhere. The image table provides details needed to initialize all of the proc-
esses that are loaded from the boot image. It will be used by the system at startup.
As an example of the information contained here, consider the field labeled ‘‘qs’’
in the comment on line 6096. This shows the size of the quantum assigned to
each process. Ordinary user processes, as children of init, get to run for 8 clock
ticks. The CLOCK and SYSTEM tasks are allowed to run for 64 clock ticks if
necessary. They are not really expected to run that long before blocking, but
unlike user-space servers and drivers they cannot be demoted to a lower-priority
queue if they prevent other processes from getting a chance to run.

If a new process is to be added to the boot image, a new row must be provided
in the image table. An error in matching the size of image to other constants is in-
tolerable and cannot be permitted. At the end of table.c tests are made for errors,
using a little trick. The array dummy is declared here twice. In each declaration
the size of dummy will be impossible and will trigger a compiler error if a mistake
has been made. Since dummy is declared as extern, no space is allocated for it
here (or anywhere). Since it is not referenced anywhere else in the code, this will
not bother the compiler.

Additional global storage is allocated at the end of the assembly language file
mpx386.s. Although it will require skipping ahead several pages in the listing to
see this, it is appropriate to discuss this now, since we are on the subject of global
variables. On line 6822 the assembler directive .sect .rom is used to put a magic
number (to identify a valid MINIX 3 kernel) at the very beginning of the kernel’s
data segment. A .sect bss assembler directive and the .space pseudoinstruction
are also used here to reserve space for the kernel’s stack. The .comm pseudoin-
struction labels several words at the top of the stack so they may be manipulated
directly. We will come back to mpx386.s in a few pages, after we have discussed
bootstrapping MINIX 3.

2.6.6 Bootstrapping MINIX 3

It is almost time to start looking at the executable code—but not quite. Before
we do that, let us take a few moments to understand how MINIX 3 is loaded into
memory. It is, of course, loaded from a disk, but the process is not completely



SEC. 2.6 IMPLEMENTATION OF PROCESSES IN MINIX 3 157

trivial and the exact sequence of events depends on the kind of disk. In particular,
it depends on whether the disk is partitioned or not. Figure 2-36 shows how
diskettes and partitioned disks are laid out.

Master boot record & partition

table

Bootblock

Partitio
n 1 bootblock

loads
Boot program loads

Boot program
for

partition1

Partition 2 bootblock
Boot program

forpartition2

loads

(a) (b)

Figure 2-36. Disk structures used for bootstrapping. (a) Unpartitioned disk.
The first sector is the bootblock. (b) Partitioned disk. The first sector is the mas-
ter boot record, also called masterboot.

When the system is started, the hardware (actually, a program in ROM) reads
the first sector of the boot disk, copies it to a fixed location in memory, and exe-
cutes the code found there. On an unpartitioned MINIX 3 diskette, the first sector
is a bootblock which loads the boot program, as in Fig. 2-36(a). Hard disks are
partitioned, and the program on the first sector (called masterboot on MINIX sys-
tems) first relocates itself to a different memory region, then reads the partition
table, loaded with it from the first sector. Then it loads and executes the first sec-
tor of the active partition, as shown in Fig. 2-36(b). (Normally one and only one
partition is marked active). A MINIX 3 partition has the same structure as an
unpartitioned MINIX 3 diskette, with a bootblock that loads the boot program.
The bootblock code is the same for an unpartitioned or a partitioned disk. Since
the masterboot program relocates itself the bootblock code can be written to run at
the same memory address where masterboot is originally loaded.

The actual situation can be a little more complicated than the figure shows,
because a partition may contain subpartitions. In this case the first sector of the
partition will be another master boot record containing the partition table for the
subpartitions. Eventually, however, control will be passed to a boot sector, the
first sector on a device that is not further subdivided. On a diskette the first sector
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is always a boot sector. MINIX 3 does allow a form of partitioning of a diskette,
but only the first partition may be booted; there is no separate master boot record,
and subpartitions are not possible. This makes it possible for partitioned and non-
partitioned diskettes to be mounted in exactly the same way. The main use for a
partitioned floppy disk is that it provides a convenient way to divide an installa-
tion disk into a root image to be copied to a RAM disk and a mounted portion that
can be dismounted when no longer needed, in order to free the diskette drive for
continuing the installation process.

The MINIX 3 boot sector is modified at the time it is written to the disk by a
special program called installboot which writes the boot sector and patches into it
the disk address of a file named boot on its partition or subpartition. In MINIX 3,
the standard location for the boot program is in a directory of the same name, that
is, /boot/boot. But it could be anywhere—the patching of the boot sector just
mentioned locates the disk sectors from which it is to be loaded. This is necessary
because previous to loading boot there is no way to use directory and file names
to find a file.

Boot is the secondary loader for MINIX 3. It can do more than just load the
operating system however, as it is a monitor program that allows the user to
change, set, and save various parameters. Boot looks in the second sector of its
partition to find a set of parameters to use. MINIX 3, like standard UNIX, reserves
the first 1K block of every disk device as a bootblock, but only one 512-byte sec-
tor is loaded by the ROM boot loader or the master boot sector, so 512 bytes are
available for saving settings. These control the boot operation, and are also
passed to the operating system itself. The default settings present a menu with
one choice, to start MINIX 3, but the settings can be modified to present a more
complex menu allowing other operating systems to be started (by loading and exe-
cuting boot sectors from other partitions), or to start MINIX 3 with various options.
The default settings can also be modified to bypass the menu and start MINIX 3
immediately.

Boot is not a part of the operating system, but it is smart enough to use the file
system data structures to find the actual operating system image. Boot looks for a
file with the name specified in the image= boot parameter, which by default is
/boot/image. If there is an ordinary file with this name it is loaded, but if this is
the name of a directory the newest file within it is loaded. Many operating sys-
tems have a predefined file name for the boot image. But MINIX 3 users are
encouraged to modify it and to create new versions. It is useful to be able to se-
lect from multiple versions, in order to return to an older version if an experiment
is unsuccessful.

We do not have space here to go into more detail about the boot monitor. It is
a sophisticated program, almost a miniature operating system in itself. It works
together with MINIX 3, and when MINIX 3 is properly shut down, the boot monitor
regains control. If you would like to know more, the MINIX 3 Web site provides a
link to a detailed description of the boot monitor source code.
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The MINIX 3 boot image (also called system image) is a concatenation of
several program files: the kernel, process manager, file system, reincarnation
server, several device drivers, and init, as shown in Fig 2-30. Note that MINIX 3
as described here is configured with just one disk driver in the boot image, but
several may be present, with the active one selected by a label. Like all binary
programs, each file in the boot image includes a header that tells how much space
to reserve for uninitialized data and stack after loading the executable code and
initialized data, so the next program can be loaded at the proper address.

The memory regions available for loading the boot monitor and the com-
ponent programs of MINIX 3 will depend upon the hardware. Also, some archi-
tectures may require adjustment of internal addresses within executable code to
correct them for the actual address where a program is loaded. The segmented
architecture of Intel processors makes this unnecessary.

Details of the loading process differ with machine type. The important thing
is that by one means or another the operating system is loaded into memory. Fol-
lowing this, a small amount of preparation is required before MINIX 3 can be
started. First, while loading the image, boot reads a few bytes from the image that
tell boot some of its properties, most importantly whether it was compiled to run
in 16-bit or 32-bit mode. Then some additional information needed to start the
system is made available to the kernel. The a.out headers of the components of
the MINIX 3 image are extracted into an array within boot’s memory space, and
the base address of this array is passed to the kernel. MINIX 3 can return control
to the boot monitor when it terminates, so the location where execution should
resume in the monitor is also passed on. These items are passed on the stack, as
we shall see later.

Several other pieces of information, the boot parameters, must be communi-
cated from the boot monitor to the operating system. Some are needed by the ker-
nel and some are not needed but are passed along for information, for instance,
the name of the boot image that was loaded. These items can all be represented as
string=value pairs, and the address of a table of these pairs is passed on the stack.
Fig. 2-37 shows a typical set of boot parameters as displayed by the sysenv com-
mand from the MINIX 3 command line.

In this example, an important item we will see again soon is the memory
parameter; in this case it indicates that the boot monitor has determined that there
are two segments of memory available for MINIX 3 to use. One begins at hexade-
cimal address 800 (decimal 2048) and has a size of hexadecimal 0x92540
(decimal 599,360) bytes; the other begins at 100000 (1,048,576) and contains
0x3df00000 (64,946,176) bytes. This is typical of all but the most elderly PC-
compatible computers. The design of the original IBM PC placed read-only
memory at the top of the usable range of memory, which is limited to 1 MB on an
8088 CPU. Modern PC-compatible machines always have more memory than the
original PC, but for compatibility they still have read-only memory at the same
addresses as the older machines. Thus, the read-write memory is discontinuous,
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rootdev=904
ramimagedev=904
ramsize=0
processor=686
bus=at
video=vga
chrome=color
memory=800:92540,100000:3DF0000
label=AT
controller=c0
image=boot/image

Figure 2-37. Boot parameters passed to the kernel at boot time in a typical
MINIX 3 system.

with a block of ROM between the lower 640 KB and the upper range above 1
MB. The boot monitor loads the kernel into the low memory range and the
servers, drivers, and init into the memory range above the ROM if possible. This
is primarily for the benefit of the file system, so a large block cache can be used
without bumping into the read-only memory.

We should also mention here that operating systems are not universally
loaded from local disks. Diskless workstations may load their operating systems
from a remote disk, over a network connection. This requires network software in
ROM, of course. Although details vary from what we have described here, the
elements of the process are likely to be similar. The ROM code must be just
smart enough to get an executable file over the net that can then obtain the com-
plete operating system. If MINIX 3 were loaded this way, very little would need
to be changed in the initialization process that occurs once the operating system
code is loaded into memory. It would, of course, need a network server and a
modified file system that could access files via the network.

2.6.7 System Initialization

Earlier versions of MINIX could be compiled in 16-bit mode if compatibility
with older processor chips were required, and MINIX 3 retains some source code
for 16-bit mode. However, the version described here and distributed on the CD-
ROM is usable only on 32-bit machines with 80386 or better processors. It does
not work in 16-bit mode, and creation of a 16-bit version may require removing
some features. Among other things, 32-bit binaries are larger than 16-bit ones,
and independent user-space drivers cannot share code the way it could be done
when drivers were compiled into a single binary. Nevertheless, a common base of
C source code is used and the compiler generates the appropriate output depend-
ing upon whether the compiler itself is the 16-bit or 32-bit version of the compiler.
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A macro defined by the compiler itself determines the definition of the
�WORD�SIZE macro in the file include/minix/sys �config.h.

The first part of MINIX 3 to execute is written in assembly language, and dif-
ferent source code files must be used for the 16-bit or 32-bit compiler. The 32-bit
version of the initialization code is in mpx386.s. The alternative, for 16-bit sys-
tems, is in mpx88.s. Both of these also include assembly language support for
other low-level kernel operations. The selection is made automatically in mpx.s.
This file is so short that the entire file can be presented in Fig. 2-38.

#include <minix/config.h>
#if �WORD�SIZE == 2
#include "mpx88.s"
#else
#include "mpx386.s"
#endif

Figure 2-38. How alternative assembly language source files are selected.

Mpx.s shows an unusual use of the C preprocessor #include statement. Cus-
tomarily the #include preprocessor directive is used to include header files, but it
can also be used to select an alternate section of source code. Using #if statements
to do this would require putting all the code in both of the large files mpx88.s and
mpx386.s into a single file. Not only would this be unwieldy; it would also be
wasteful of disk space, since in a particular installation it is likely that one or the
other of these two files will not be used at all and can be archived or deleted. In
the following discussion we will use the 32-bit mpx386.s.

Since this is almost our first look at executable code, let us start with a few
words about how we will do this throughout the book. The multiple source files
used in compiling a large C program can be hard to follow. In general, we will
keep discussions confined to a single file at a time. The order of inclusion of the
files in Appendix B is the order in which we discuss them in the text. We will
start with the entry point for each part of the MINIX 3 system, and we will follow
the main line of execution. When a call to a supporting function is encountered,
we will say a few words about the purpose of the call, but normally we will not go
into a detailed description of the internals of the function at that point, leaving that
until we arrive at the definition of the called function. Important subordinate
functions are usually defined in the same file in which they are called, following
the higher-level calling functions, but small or general-purpose functions are
sometimes collected in separate files. We do not attempt to discuss the internals
of every function, and files that contain such functions may not be listed in
Appendix B.

To facilitate portability to other platforms, separate files are frequently used
for machine-dependent and machine-independent code. To make code easier to
understand and reduce the overall size of the listings, most conditional code for
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platforms other than Intel 32-bit systems has been stripped from the printed files
in Appendix B. Complete versions of all files are in the source directories on the
CD-ROM and are also available on the MINIX 3 Web site.

A substantial amount of effort has been made to make the code readable by
humans. But a large program has many branches, and sometimes understanding a
main function requires reading the functions it calls, so having a few slips of
paper to use as bookmarks and deviating from our order of discussion to look at
things in a different order may be helpful at times.

Having laid out our intended way of organizing the discussion of the code, we
start by an exception. Startup of MINIX 3 involves several transfers of control
between the assembly language routines in mpx386.s and C language routines in
the files start.c and main.c. We will describe these routines in the order that they
are executed, even though that involves jumping from one file to another.

Once the bootstrap process has loaded the operating system into memory,
control is transferred to the label MINIX (in mpx386.s, line 6420). The first
instruction is a jump over a few bytes of data; this includes the boot monitor flags
(line 6423) mentioned earlier. At this point the flags have already served their
purpose; they were read by the monitor when it loaded the kernel into memory.
They are located here because it is an easily specified address. They are used by
the boot monitor to identify various characteristics of the kernel, most impor-
tantly, whether it is a 16-bit or 32-bit system. The boot monitor always starts in
16-bit mode, but switches the CPU to 32-bit mode if necessary. This happens
before control passes to the label MINIX.

Understanding the state of the stack at this point will help make sense of the
following code. The monitor passes several parameters to MINIX 3, by putting
them on the stack. First the monitor pushes the address of the variable aout,
which holds the address of an array of the header information of the component
programs of the boot image. Next it pushes the size and then the address of the
boot parameters. These are all 32-bit quantities. Next come the monitor’s code
segment address and the location to return to within the monitor when MINIX 3
terminates. These are both 16-bit quantities, since the monitor operates in 16-bit
protected mode. The first few instructions in mpx386.s convert the 16-bit stack
pointer used by the monitor into a 32-bit value for use in protected mode. Then
the instruction

mov ebp, esp

(line 6436) copies the stack pointer value to the ebp register, so it can be used
with offsets to retrieve from the stack the values placed there by the monitor, as is
done at lines 6464 to 6467. Note that because the stack grows downward with
Intel processors, 8(ebp) refers to a value pushed subsequent to pushing the value
located at 12(ebp).

The assembly language code must do a substantial amount of work, setting up
a stack frame to provide the proper environment for code compiled by the C
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compiler, copying tables used by the processor to define memory segments, and
setting up various processor registers. As soon as this work is complete, the ini-
tialization process continues by calling (at line 6481) the C function cstart (in
start.c, which we will consider next). Note that it is referred to as �cstart in the
assembly language code. This is because all functions compiled by the C compiler
have an underscore prepended to their names in the symbol tables, and the linker
looks for such names when separately compiled modules are linked. Since the
assembler does not add underscores, the writer of an assembly language program
must explicitly add one in order for the linker to be able to find a corresponding
name in the object file compiled by the C compiler.

Cstart calls another routine to initialize the Global Descriptor Table, the
central data structure used by Intel 32-bit processors to oversee memory protec-
tion, and the Interrupt Descriptor Table, used to select the code to be executed
for each possible interrupt type. Upon returning from cstart the lgdt and lidt
instructions (lines 6487 and 6488) make these tables effective by loading the dedi-
cated registers by which they are addressed. The instruction

jmpf CS�SELECTOR:csinit

looks at first glance like a no-operation, since it transfers control to exactly where
control would be if there were a series of nop instructions in its place. But this is
an important part of the initialization process. This jump forces use of the struc-
tures just initialized. After some more manipulation of the processor registers,
MINIX terminates with a jump (not a call) at line 6503 to the kernel’s main entry
point (in main.c). At this point the initialization code in mpx386.s is complete.
The rest of the file contains code to start or restart a task or process, interrupt
handlers, and other support routines that had to be written in assembly language
for efficiency. We will return to these in the next section.

We will now look at the top-level C initialization functions. The general stra-
tegy is to do as much as possible using high-level C code. As we have seen, there
are already two versions of the mpx code. One chunk of C code can eliminate two
chunks of assembler code. Almost the first thing done by cstart (in start.c, line
6920) is to set up the CPU’s protection mechanisms and the interrupt tables, by
calling prot�init. Then it copies the boot parameters to the kernel’s memory, and
it scans them, using the function get�value (line 6997) to search for parameter
names and return corresponding value strings. This process determines the type
of video display, processor type, bus type, and, if in 16-bit mode, the processor
operating mode (real or protected). All this information is stored in global vari-
ables, for access when needed by any part of the kernel code.

Main (in main.c, line 7130), completes initialization and then starts normal
execution of the system. It configures the interrupt control hardware by calling
intr� init. This is done here because it cannot be done until the machine type is
known. (Because intr� init is very dependent upon the hardware the procedure is
in a separate file which we will describe later.) The parameter (1) in the call tells
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intr� init that it is initializing for MINIX 3. With a parameter (0) it can be called to
reinitialize the hardware to the original state when MINIX 3 terminates and returns
control to the boot monitor. Intr�init ensures that any interrupts that occur before
initialization is complete have no effect. How this is done will be described later.

The largest part of main’s code is devoted to setup of the process table and the
privilege table, so that when the first tasks and processes are scheduled, their
memory maps, registers, and privilege information will be set correctly. All slots
in the process table are marked as free and the pproc�addr array that speeds
access to the process table is initialized by the loop on lines 7150 to 7154. The
loop on lines 7155 to 7159 clears the privilege table and the ppriv�addr array
similarly to the process table and its access array. For both the process and
privilege tables, putting a specific value in one field is adequate to mark the slot
as not in use. But for each table every slot, whether in use or not, needs to be ini-
tialized with an index number.

An aside on a minor characteristic of the C language: the code on line 7153

(pproc�addr + NR�TASKS)[i] = rp;

could just as well have been written as

pproc�addr[i + NR�TASKS] = rp;

In the C language a[i] is just another way of writing *(a+i). So it does not make
much difference if you add a constant to a or to i. Some C compilers generate
slightly better code if you add a constant to the array instead of the index.
Whether it really makes a difference here, we cannot say.

Now we come to the long loop on lines 7172 to 7242, which initializes the
process table with the necessary information to run all of the processes in the boot
image. (Note that there is another outdated comment on line 7161 which men-
tions only tasks and servers.) All of these processes must be present at startup
time and none of them will terminate during normal operation. At the start of the
loop, ip is assigned the address of an entry in the image table created in table.c
(line 7173). Since ip is a pointer to a structure, the elements of the structure can
be accessed using notation like ip−>proc�nr, as is done on line 7174. This nota-
tion is used extensively in the MINIX 3 source code. In a similar way, rp is a
pointer to a slot of the process table, and priv(rp) points to a slot of the privilege
table. Much of the initialization of the process and privilege tables in the long
loop consists of reading a value from the image table and storing it in the process
table or the privilege table.

On line 7185 a test is made for processes that are part of the kernel, and if this
is true the special STACK�GUARD pattern is stored in the base of the task’s stack
area. This can be checked later on to be sure the stack has not overflowed. Then
the initial stack pointer for each task is set up. Each task needs its own private
stack pointer. Since the stack grows toward lower addresses in memory, the initial
stack pointer is calculated by adding the size of the task’s stack to the current base
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address (lines 7190 and 7191). There is one exception: the KERNEL process (also
identified as HARDWARE in some places) is never considered ready, never runs
as an ordinary process, and thus has no need of a stack pointer.

The binaries of boot image components are compiled like any other MINIX 3
programs, and the compiler creates a header, as defined in include/a.out.h, at the
beginning of each of the files. The boot loader copies each of these headers into
its own memory space before MINIX 3 starts, and when the monitor transfers con-
trol to the MINIX: entry point in mpx386.s the physical address of the header area
is passed to the assembly code in the stack, as we have seen. At line 7202, one of
these headers is copied to a local exec structure, ehdr, using hdrindex as the index
into the array of headers. Then the data and text segment addresses are converted
to clicks and entered into the memory map for this process (lines 7205 to 7214).

Before continuing, we should mention a few points. First, for kernel proc-
esses hdrindex is always assigned a value of zero at line 7178. These processes
are all compiled into the same file as the kernel, and the information about their
stack requirements is in the image table. Since a task compiled into the kernel can
call code and access data located anywhere in the kernel’s space, the size of an
individual task is not meaningful. Thus the same element of the array at aout is
accessed for the kernel and for each task, and the size fields for a task is filled
with the sizes for the kernel itself. The tasks get their stack information from the
image table, initialized during compilation of table.c. After all kernel processes
have been processed, hdrindex is incremented on each pass through the loop (line
7196), so all the user-space system processes get the proper data from their own
headers.

Another point to mention here is that functions that copy data are not neces-
sarily consistent in the order in which the source and destination are specified. In
reading this loop, beware of potential confusion. The arguments to strncpy, a
function from the standard C library, are ordered such that the destination comes
first: strncpy(to, from, count). This is analogous to an assignment operation, in
which the left hand side specifies the variable being assigned to and the right hand
side is the expression specifying the value to be assigned. This function is used at
line 7179 to copy a process name into each process table slot for debugging and
other purposes. In contrast, the phys�copy function uses an opposite convention,
phys�copy(from, to, quantity). Phys�copy is used at line 7202 to copy program
headers of user-space processes.

Continuing our discussion of the initialization of the process table, at lines
7220 and 7221 the initial value of the program counter and the processor status
word are set. The processor status word for the tasks is different from that for
device drivers and servers, because tasks have a higher privilege level that allows
them to access I/O ports. Following this, if the process is a user-space one, its
stack pointer is initialized.

One entry in the process table does not need to be (and cannot be) scheduled.
The HARDWARE process exists only for bookkeeping purposes—it is credited
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with the time used while servicing an interrupt. All other processes are put on the
appropriate queues by the code in lines 7234 and 7235. The function called
lock�enqueue disables interrupts before modifying the queues and then reenables
them when the queue has been modified. This is not required at this point when
nothing is running yet, but it is the standard method, and there is no point in creat-
ing extra code to be used just once.

The last step in initializing each slot in the process table is to call the function
alloc�segments at line 7241. This machine-dependent routine sets into the proper
fields the locations, sizes, and permission levels for the memory segments used by
each process. For older Intel processors that do not support protected mode, it
defines only the segment locations. It would have to be rewritten to handle a pro-
cessor type with a different method of allocating memory.

Once the process table has been initialized for all the tasks, the servers, and
init, the system is almost ready to roll. The variable bill�ptr tells which process
gets billed for processor time; it needs to have an initial value set at line 7250, and
IDLE is clearly an appropriate choice. Now the kernel is ready to begin its nor-
mal work of controlling and scheduling the execution of processes, as illustrated
in Fig. 2-2.

Not all of the other parts of the system are ready for normal operation yet, but
all of these other parts run as independent processes and have been marked ready
and queued to run. They will initialize themselves when they run. All that is left
is for the kernel to call announce to announce it is ready and then to call restart
(lines 7251 and 7252). In many C programs main is a loop, but in the MINIX 3
kernel its job is done once the initialization is complete. The call to restart on
line 7252 starts the first queued process. Control never returns to main.

�Restart is an assembly language routine in mpx386.s. In fact, �restart is not
a complete function; it is an intermediate entry point in a larger procedure. We
will discuss it in detail in the next section; for now we will just say that �restart
causes a context switch, so the process pointed to by proc�ptr will run. When
�restart has executed for the first time we can say that MINIX 3 is running—it is
executing a process. �Restart is executed again and again as tasks, servers, and
user processes are given their opportunities to run and then are suspended, either
to wait for input or to give other processes their turns.

Of course, the first time �restart is executed, initialization is only complete
for the kernel. Recall that there are three parts to the MINIX 3 process table. You
might ask how can any processes run when major parts of the process table have
not been set up yet. The full answer to this will be seen in later chapters. The
short answer is that the instruction pointers of all processes in the boot image ini-
tially point to initialization code for each process, and all will block fairly soon.
Eventually, the process manager and the file system will get to run their initializa-
tion code, and their parts of the process table will be completed. Eventually init
will fork off a getty process for each terminal. These processes will block until
input is typed at some terminal, at which point the first user can log in.
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We have now traced the startup of MINIX 3 through three files, two written in
C and one in assembly language. The assembly language file, mpx386.s, contains
additional code used in handling interrupts, which we will look at in the next sec-
tion. However, before we go on let us wrap up with a brief description of the
remaining routines in the two C files. The remaining function in start.c is
get�value (line 6997). It is used to find entries in the kernel environment, which
is a copy of the boot parameters. It is a simplified version of a standard library
function which is rewritten here in order to keep the kernel simple.

There are three additional procedures in main.c. Announce displays a copy-
right notice and tells whether MINIX 3 is running in real mode or 16-bit or 32-bit
protected mode, like this:

MINIX 3.1 Copyright 2006 Vrije Universiteit, Amsterdam, The Netherlands
Executing in 32-bit protected mode

When you see this message you know initialization of the kernel is complete.
Prepare�shutdown (line 7272) signals all system processes with a SIGKSTOP
signal (system processes cannot be signaled in the same way as user processes).
Then it sets a timer to allow all the system process time to clean up before it calls
the final procedure here, shutdown. Shutdown will normally return control to the
MINIX 3 boot monitor. To do so the interrupt controllers are restored to the BIOS
settings by the intr� init(0) call on line 7338.

2.6.8 Interrupt Handling in MINIX

Details of interrupt hardware are system dependent, but any system must have
elements functionally equivalent to those to be described for systems with 32-bit
Intel CPUs. Interrupts generated by hardware devices are electrical signals and
are handled in the first place by an interrupt controller, an integrated circuit that
can sense a number of such signals and for each one generate a unique data pat-
tern on the processor’s data bus. This is necessary because the processor itself has
only one input for sensing all these devices, and thus cannot differentiate which
device needs service. PCs using Intel 32-bit processors are normally equipped
with two such controller chips. Each can handle eight inputs, but one is a slave
which feeds its output to one of the inputs of the master, so fifteen distinct exter-
nal devices can be sensed by the combination, as shown in Fig. 2-39. Some of the
fifteen inputs are dedicated; the clock input, IRQ 0, for instance, does not have a
connection to any socket into which a new adapter can be plugged. Others are
connected to sockets and can be used for whatever device is plugged in.

In the figure, interrupt signals arrive on the various IRQ n lines shown at the
right. The connection to the CPU’s INT pin tells the processor that an interrupt
has occurred. The INTA (interrupt acknowledge) signal from the CPU causes the
controller responsible for the interrupt to put data on the system data bus telling
the processor which service routine to execute. The interrupt controller chips are
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Figure 2-39. Interrupt processing hardware on a 32-bit Intel PC.

programmed during system initialization, when main calls intr�init. The pro-
gramming determines the output sent to the CPU for a signal received on each of
the input lines, as well as various other parameters of the controller’s operation.
The data put on the bus is an 8-bit number, used to index into a table of up to 256
elements. The MINIX 3 table has 56 elements. Of these, 35 are actually used; the
others are reserved for use with future Intel processors or for future enhancements
to MINIX 3. On 32-bit Intel processors this table contains interrupt gate descrip-
tors, each of which is an 8-byte structure with several fields.

Several modes of response to interrupts are possible; in the one used by
MINIX 3, the fields of most concern to us in each of the interrupt gate descriptors
point to the service routine’s executable code segment and the starting address
within it. The CPU executes the code pointed to by the selected descriptor. The
result is exactly the same as execution of an

int <nnn>

assembly language instruction. The only difference is that in the case of a
hardware interrupt the <nnn> originates from a register in the interrupt controller
chip, rather than from an instruction in program memory.

The task-switching mechanism of a 32-bit Intel processor that is called into
play in response to an interrupt is complex, and changing the program counter to
execute another function is only a part of it. When the CPU receives an interrupt
while running a process it sets up a new stack for use during the interrupt service.



SEC. 2.6 IMPLEMENTATION OF PROCESSES IN MINIX 3 169

The location of this stack is determined by an entry in the Task State Segment
(TSS). One such structure exists for the entire system, initialized by cstart’s call
to prot� init, and modified as each process is started. The effect is that the new
stack created by an interrupt always starts at the end of the stackframe�s structure
within the process table entry of the interrupted process. The CPU automatically
pushes several key registers onto this new stack, including those necessary to rein-
state the interrupted process’ own stack and restore its program counter. When the
interrupt handler code starts running, it uses this area in the process table as its
stack, and much of the information needed to return to the interrupted process will
have already been stored. The interrupt handler pushes the contents of additional
registers, filling the stackframe, and then switches to a stack provided by the ker-
nel while it does whatever must be done to service the interrupt.

Termination of an interrupt service routine is done by switching the stack
from the kernel stack back to a stackframe in the process table (but not necessarily
the same one that was created by the last interrupt), explicitly popping the addi-
tional registers, and executing an iretd (return from interrupt) instruction. Iretd
restores the state that existed before an interrupt, restoring the registers that were
pushed by the hardware and switching back to a stack that was in use before an
interrupt. Thus an interrupt stops a process, and completion of the interrupt ser-
vice restarts a process, possibly a different one from the one that was most
recently stopped. Unlike the simpler interrupt mechanisms that are the usual sub-
ject of assembly language programming texts, nothing is stored on the interrupted
process’ working stack when a user process is interrupted. Furthermore, because
the stack is created anew in a known location (determined by the TSS) after an
interrupt, control of multiple processes is simplified. To start a different process
all that is necessary is to point the stack pointer to the stackframe of another proc-
ess, pop the registers that were explicitly pushed, and execute an iretd instruction.

The CPU disables all interrupts when it receives an interrupt. This guarantees
that nothing can occur to cause the stackframe within a process table entry to
overflow. This is automatic, but assembly-level instructions exist to disable and
enable interrupts, as well. Interrupts remain disabled while the kernel stack, lo-
cated outside the process table, is in use. A mechanism exists to allow an excep-
tion handler (a response to an error detected by the CPU) to run when the kernel
stack is in use. An exception is similar to an interrupt and exceptions cannot be
disabled. Thus, for the sake of exceptions there must be a way to deal with what
are essentially nested interrupts. In this case a new stack is not created. Instead,
the CPU pushes the essential registers needed for resumption of the interrupted
code onto the existing stack. An exception is not supposed to occur while the ker-
nel is running, however, and will result in a panic.

When an iretd is encountered while executing kernel code, a the return
mechanism is simpler than the one used when a user process is interrupted. The
processor can determine how to handle the iretd by examining the code segment
selector that is popped from the stack as part of the iretd’s action.
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The privilege levels mentioned earlier control the different responses to inter-
rupts received while a process is running and while kernel code (including inter-
rupt service routines) is executing. The simpler mechanism is used when the
privilege level of the interrupted code is the same as the privilege level of the
code to be executed in response to the interrupt. The usual case, however, is that
the interrupted code is less privileged than the interrupt service code, and in this
case the more elaborate mechanism, using the TSS and a new stack, is employed.
The privilege level of a code segment is recorded in the code segment selector,
and as this is one of the items stacked during an interrupt, it can be examined
upon return from the interrupt to determine what the iretd instruction must do.

Another service is provided by the hardware when a new stack is created to
use while servicing an interrupt. The hardware checks to make sure the new stack
is big enough for at least the minimum quantity of information that must be placed
on it. This protects the more privileged kernel code from being accidentally (or
maliciously) crashed by a user process making a system call with an inadequate
stack. These mechanisms are built into the processor specifically for use in the
implementation of operating systems that support multiple processes.

This behavior may be confusing if you are unfamiliar with the internal work-
ing of 32-bit Intel CPUs. Ordinarily we try to avoid describing such details, but
understanding what happens when an interrupt occurs and when an iretd instruc-
tion is executed is essential to understanding how the kernel controls the transi-
tions to and from the ‘‘running’’ state of Fig. 2-2. The fact that the hardware han-
dles much of the work makes life much easier for the programmer, and presum-
ably makes the resulting system more efficient. All this help from the hardware
does, however, make it hard to understand what is happening just by reading the
software.

Having now described the interrupt mechanism, we will return to mpx386.s
and look at the tiny part of the MINIX 3 kernel that actually sees hardware inter-
rupts. An entry point exists for each interrupt. The source code at each entry
point, �hwint00 to �hwint07, (lines 6531 to 6560) looks like a call to
hwint�master (line 6515), and the entry points �hwint08 to �hwint15 (lines 6583
to 6612) look like calls to hwint�slave (line 6566). Each entry point appears to
pass a parameter in the call, indicating which device needs service. In fact, these
are really not calls, but macros, and eight separate copies of the code defined by
the macro definition of hwint�master are assembled, with only the irq parameter
different. Similarly, eight copies of the hwint�slave macro are assembled. This
may seem extravagant, but assembled code is very compact. The object code for
each expanded macro occupies fewer than 40 bytes. In servicing an interrupt,
speed is important, and doing it this way eliminates the overhead of executing
code to load a parameter, call a subroutine, and retrieve the parameter.

We will continue the discussion of hwint�master as if it really were a single
function, rather than a macro that is expanded in eight different places. Recall
that before hwint�master begins to execute, the CPU has created a new stack in
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the stackframe�s of the interrupted process, within its process table slot. Several
key registers have already been saved there, and all interrupts are disabled. The
first action of hwint�master is to call save (line 6516). This subroutine pushes all
the other registers necessary to restart the interrupted process. Save could have
been written inline as part of the macro to increase speed, but this would have
more than doubled the size of the macro, and in any case save is needed for calls
by other functions. As we shall see, save plays tricks with the stack. Upon
returning to hwint�master, the kernel stack, not a stackframe in the process table,
is in use.

Two tables declared in glo.h are now used. �Irq�handlers contains the hook
information, including addresses of handler routines. The number of the interrupt
being serviced is converted to an address within � irq�handlers. This address is
then pushed onto the stack as the argument to �intr�handle, and �intr�handle is
called, We will look at the code of �intr�handle later. For the moment, we will
just say that not only does it call the service routine for the interrupt that was
called, it sets or resets a flag in the �irq�actids array to indicate whether this
attempt to service the interrupt succeeded, and it gives other entries on the queue
another chance to run and be removed from the list. Depending upon exactly
what was required of the handler, the IRQ may or may not be available to receive
another interrupt upon the return from the call to �intr�handle. This is deter-
mined by checking the corresponding entry in �irq�actids.

A nonzero value in �irq�actids shows that interrupt service for this IRQ is
not complete. If so, the interrupt controller is manipulated to prevent it from re-
sponding to another interrupt from the same IRQ line. (lines 6722 to 6724). This
operation masks the ability of the controller chip to respond to a particular input;
the CPU’s ability to respond to all interrupts is inhibited internally when it first
receives the interrupt signal and has not yet been restored at this point.

A few words about the assembly language code used may be helpful to
readers unfamiliar with assembly language programming. The instruction

jz 0f

on line 6521 does not specify a number of bytes to jump over. The 0f is not a hex-
adecimal number, nor is it a normal label. Ordinary label names are not permitted
to begin with numeric characters. This is the way the MINIX 3 assembler speci-
fies a local label; the 0f means a jump forward to the next numeric label 0, on
line 6525. The byte written on line 6526 allows the interrupt controller to resume
normal operation, possibly with the line for the current interrupt disabled.

An interesting and possibly confusing point is that the 0: label on line 6525
occurs elsewhere in the same file, on line 6576 in hwint�slave. The situation is
even more complicated than it looks at first glance since these labels are within
macros and the macros are expanded before the assembler sees this code. Thus
there are actually sixteen 0: labels in the code seen by the assembler. The possible
proliferation of labels declared within macros is the reason why the assembly
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language provides local labels; when resolving a local label, the assembler uses
the nearest one that matches in the specified direction, and additional occurrences
of a local label are ignored.

�Intr�handle is hardware dependent, and details of its code will be discussed
when we get to the file i8259.c. However, a few word about how it functions are
in order now. �Intr�handle scans a linked list of structures that hold, among
other things, addresses of functions to be called to handle an interrupt for a de-
vice, and the process numbers of the device drivers. It is a linked list because a
single IRQ line may be shared with several devices. The handler for each device
is supposed to test whether its device actually needs service. Of course, this step
is not necessary for an IRQ such as the clock interrupt, IRQ 0, which is hard
wired to the chip that generates clock signals with no possibility of any other
device triggering this IRQ.

The handler code is intended to be written so it can return quickly. If there is
no work to be done or the interrupt service is completed immediately, the handler
returns TRUE. A handler may perform an operation like reading data from an
input device and transferring the data to a buffer where it can be accessed when
the corresponding driver has its next chance to run. The handler may then cause a
message to be sent to its device driver, which in turn causes the device driver to
be scheduled to run as a normal process. If the work is not complete, the handler
returns FALSE. An element of the �irq�act�ids array is a bitmap that records the
results for all the handlers on the list in such a way that the result will be zero if
and only if every one of the handlers returned TRUE. If that is not the case, the
code on lines 6522 to 6524 disables the IRQ before the interrupt controller as a
whole is reenabled on line 6536.

This mechanism ensures that none of the handlers on the chain belonging to
an IRQ will be activated until all of the device drivers to which these handlers
belong have completed their work. Obviously, there needs to be another way to
reenable an IRQ. That is provided in a function enable�irq which we will see
later. Suffice it to say, each device driver must be sure that enable�irq is called
when its work is done. It also is obvious that enable�irq first should reset its own
bit in the element of �irq�act�ids that corresponds to the IRQ of the driver, and
then should test whether all bits have been reset. Only then should the IRQ be
reenabled on the interrupt controller chip.

What we have just described applies in its simplest form only to the clock
driver, because the clock is the only interrupt-driven device that is compiled into
the kernel binary. The address of an interrupt handler in another process is not
meaningful in the context of the kernel, and the enable� irq function in the kernel
cannot be called by a separate process in its own memory space. For user-space
device drivers, which means all device drivers that respond to hardware-initiated
interrupts except for the clock driver, the address of a common handler,
generic�handler, is stored in the linked list of hooks. The source code for this
function is in the system task files, but since the system task is compiled together
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with the kernel and since this code is executed in response to an interrupt it cannot
really be considered part of the system task. The other information in each ele-
ment of the list of hooks includes the process number of the associated device
driver. When generic�handler is called it sends a message to the correct device
driver which causes the specific handler functions of the driver to run. The sys-
tem task supports the other end of the chain of events described above as well.
When a user-space device driver completes its work it makes a sys� irqctl kernel
call, which causes the system task to call enable�irq on behalf of that driver to
prepare for the next interrupt.

Returning our attention to hwint�master, note that it terminates with a ret
instruction (line 6527). It is not obvious that something tricky happens here. If a
process has been interrupted, the stack in use at this point is the kernel stack, and
not the stack within a process table that was set up by the hardware before
hwint�master was started. In this case, manipulation of the stack by save will
have left the address of �restart on the kernel stack. This results in a task, driver,
server, or user process once again executing. It may not be, and in fact very likely
is not, the same process as was executing when the interrupt occurred. This
depends upon whether the processing of the message created by the device-
specific interrupt service routine caused a change in the process scheduling
queues. In the case of a hardware interrupt this will almost always be the case.
Interrupt handlers usually result in messages to device drivers, and device drivers
generally are queued on higher priority queues than user processes. This, then, is
the heart of the mechanism which creates the illusion of multiple processes exe-
cuting simultaneously.

To be complete, let us mention that if an interrupt could occur while kernel
code were executing, the kernel stack would already be in use, and save would
leave the address of restart1 on the kernel stack. In this case, whatever the kernel
was doing previously would continue after the ret at the end of hwint�master.
This is a description of handling of nested interrupts, and these are not allowed to
occur in MINIX 3— interrupts are not enabled while kernel code is running. How-
ever, as mentioned previously, the mechanism is necessary in order to handle
exceptions. When all the kernel routines involved in responding to an exception
are complete �restart will finally execute. In response to an exception while exe-
cuting kernel code it will almost certainly be true that a process different from the
one that was interrupted last will be put into execution. The response to an excep-
tion in the kernel is a panic, and what happens will be an attempt to shut down the
system with as little damage as possible.

Hwint�slave (line 6566) is similar to hwint�master, except that it must reen-
able both the master and slave controllers, since both of them are disabled by
receipt of an interrupt by the slave.

Now let us move on to look at save (line 6622), which we have already men-
tioned. Its name describes one of its functions, which is to save the context of the
interrupted process on the stack provided by the CPU, which is a stackframe
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within the process table. Save uses the variable �k�reenter to count and deter-
mine the level of nesting of interrupts. If a process was executing when the cur-
rent interrupt occurred, the

mov esp, k�stktop

instruction on line 6635 switches to the kernel stack, and the following instruction
pushes the address of �restart. If an interrupt could occur while the kernel stack
were already in use the address of restart1 would be pushed instead (line 6642).
Of course, an interrupt is not allowed here, but the mechanism is here to handle
exceptions. In either case, with a possibly different stack in use from the one that
was in effect upon entry, and with the return address in the routine that called it
buried beneath the registers that have just been pushed, an ordinary return instruc-
tion is not adequate for returning to the caller. The

jmp RETADR-P�STACKBASE(eax)

instructions that terminate the two exit points of save, at line 6638 and line 6643
use the address that was pushed when save was called.

Reentrancy in the kernel causes many problems, and eliminating it resulted in
simplification of code in several places. In MINIX 3 the �k�reenter variable still
has a purpose—although ordinary interrupts cannot occur while kernel code is
executing exceptions are still possible. For now, the thing to keep in mind is that
the jump on line 6634 will never occur in normal operation. It is, however, neces-
sary for dealing with exceptions.

As an aside, we must admit that the elimination of reentrancy is a case where
programming got ahead of documentation in the development of MINIX 3. In
some ways documentation is harder than programming—the compiler or the pro-
gram will eventually reveal errors in a program. There is no such mechanism to
correct comments in source code. There is a rather long comment at the start of
mpx386.s which is, unfortunately, incorrect. The part of the comment on lines
6310 to 6315 should say that a kernel reentry can occur only when an exception is
detected.

The next procedure in mpx386.s is �s�call, which begins on line 6649.
Before looking at its internal details, look at how it ends. It does not end with a
ret or jmp instruction. In fact, execution continues at �restart (line 6681).
�S�call is the system call counterpart of the interrupt-handling mechanism. Con-
trol arrives at �s�call following a software interrupt, that is, execution of an int
<nnn> instruction. Software interrupts are treated like hardware interrupts, except
of course the index into the Interrupt Descriptor Table is encoded into the nnn part
of an int <nnn> instruction, rather than being supplied by an interrupt controller
chip. Thus, when �s�call is entered, the CPU has already switched to a stack
inside the process table (supplied by the Task State Segment), and several regis-
ters have already been pushed onto this stack. By falling through to �restart, the
call to �s�call ultimately terminates with an iretd instruction, and, just as with a
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hardware interrupt, this instruction will start whatever process is pointed to by
proc�ptr at that point. Figure 2-40 compares the handling of a hardware interrupt
and a system call using the software interrupt mechanism.

Device:
Send electrical signal to interrupt controller.

Controller:
1. Interrupt CPU.
2. Send digital identification of interrupting

device.

Kernel:
1. Save registers.
2. Send notification message to driver
3. Restart a process (probably the driver)

Caller:
1. Put message pointer and destination of

message into CPU registers.
2. Execute software interrupt instruction.

Kernel:
1. Save registers.
2. Send and/or receive message.
3. Restart a process (not necessarily the 

          calling process).

(a) (b)

Figure 2-40. (a) How a hardware interrupt is processed. (b) How a system call
is made.

Let us now look at some details of �s�call. The alternate label, �p�s�call, is
a vestige of the 16-bit version of MINIX 3, which has separate routines for pro-
tected mode and real mode operation. In the 32-bit version all calls to either label
end up here. A programmer invoking a MINIX 3 system call writes a function call
in C that looks like any other function call, whether to a locally defined function
or to a routine in the C library. The library code supporting a system call sets up a
message, loads the address of the message and the process id of the destination
into CPU registers, and then invokes an int SYS386�VECTOR instruction. As
described above, the result is that control passes to the start of �s�call, and
several registers have already been pushed onto a stack inside the process table.
All interrupts are disabled, too, as with a hardware interrupt.

The first part of the �s�call code resembles an inline expansion of save and
saves the additional registers that must be preserved. Just as in save, a

mov esp, k�stktop

instruction then switches to the kernel stack. (The similarity of a software inter-
rupt to a hardware interrupt extends to both disabling all interrupts). Following
this comes a call to �sys�call (line 6672), which we will discuss in the next sec-
tion. For now we just say that it causes a message to be delivered, and that this in
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turn causes the scheduler to run. Thus, when �sys�call returns, it is probable that
proc�ptr will be pointing to a different process from the one that initiated the sys-
tem call. Then execution falls through to restart.

We have seen that �restart (line 6681) is reached in several ways:

1. By a call from main when the system starts.

2. By a jump from hwint�master or hwint�slave after a hardware interrupt.

3. By falling through from �s�call after a system call.

Fig. 2-41 is a simplified summary of how control passes back and forth between
processes and the kernel via �restart.

User
space

process
or task

Kernel
space

restart()

service(int)

save()

syscall()

cold boot

external interrupt
(from hardware or clock)

software interrupt
(system call)

Figure 2-41. Restart is the common point reached after system startup, inter-
rupts, or system calls. The most deserving process (which may be and often is a
different process from the last one interrupted) runs next. Not shown in this di-
agram are interrupts that occur while the kernel itself is running.

In every case interrupts are disabled when �restart is reached. By line 6690
the next process to run has been definitively chosen, and with interrupts disabled
it cannot be changed. The process table was carefully constructed so it begins
with a stack frame, and the instruction on this line,

mov esp, (�proc�ptr)

points the CPU’s stack pointer register at the stack frame. The

lldt P�LDT�SEL(esp)

instruction then loads the processor’s local descriptor table register from the stack
frame. This prepares the processor to use the memory segments belonging to the
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next process to be run. The following instruction sets the address in the next proc-
ess’ process table entry to that where the stack for the next interrupt will be set up,
and the following instruction stores this address into the TSS.

The first part of �restart would not be necessary if an interrupt occured when
kernel code (including interrupt service code) were executing, since the kernel
stack would be in use and termination of the interrupt service would allow the ker-
nel code to continue. But, in fact, the kernel is not reentrant in MINIX 3, and ordi-
nary interrupts cannot occur this way. However, disabling interrupts does not dis-
able the ability of the processor to detect exceptions. The label restart1 (line
6694) marks the point where execution resumes if an exception occurs while exe-
cuting kernel code (something we hope will never happen). At this point
k�reenter is decremented to record that one level of possibly nested interrupts has
been disposed of, and the remaining instructions restore the processor to the state
it was in when the next process executed last. The penultimate instruction modi-
fies the stack pointer so the return address that was pushed when save was called
is ignored. If the last interrupt occurred when a process was executing, the final
instruction, iretd, completes the return to execution of whatever process is being
allowed to run next, restoring its remaining registers, including its stack segment
and stack pointer. If, however, this encounter with the iretd came via restart1, the
kernel stack in use is not a stackframe, but the kernel stack, and this is not a return
to an interrupted process, but the completion of handling an exception that
occurred while kernel code was executing. The CPU detects this when the code
segment descriptor is popped from the stack during execution of the iretd, and the
complete action of the iretd in this case is to retain the kernel stack in use.

Now it is time to say something more about exceptions. An exception is
caused by various error conditions internal to the CPU. Exceptions are not always
bad. They can be used to stimulate the operating system to provide a service, such
as providing more memory for a process to use, or swapping in a currently
swapped-out memory page, although such services are not implemented in MINIX
3. They also can be caused by programming errors. Within the kernel an excep-
tion is very serious, and grounds to panic. When an exception occurs in a user
program the program may need to be terminated, but the operating system should
be able to continue. Exceptions are handled by the same mechanism as interrupts,
using descriptors in the interrupt descriptor table. These entries in the table point
to the sixteen exception handler entry points, beginning with �divide�error and
ending with �copr�error, found near the end of mpx386.s, on lines 6707 to 6769.
These all jump to exception (line 6774) or errexception (line 6785) depending
upon whether the condition pushes an error code onto the stack or not. The han-
dling here in the assembly code is similar to what we have already seen, registers
are pushed and the C routine �exception (note the underscore) is called to handle
the event. The consequences of exceptions vary. Some are ignored, some cause
panics, and some result in sending signals to processes. We will examine �excep-
tion in a later section.
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One other entry point is handled like an interrupt: �level0�call (line 6714). It
is used when code must be run with privilege level 0, the most privileged level.
The entry point is here in mpx386.s with the interrupt and exception entry points
because it too is invoked by execution of an int <nnn> instruction. Like the
exception routines, it calls save, and thus the code that is jumped to eventually
will terminate with a ret that leads to �restart. Its usage will be described in a la-
ter section, when we encounter some code that needs privileges normally not
available, even to the kernel.

Finally, some data storage space is reserved at the end of the assembly
language file. Two different data segments are defined here. The

.sect .rom

declaration at line 6822 ensures that this storage space is allocated at the very
beginning of the kernel’s data segment and that it is the start of a read-only sec-
tion of memory. The compiler puts a magic number here so boot can verify that
the file it loads is a valid kernel image. When compiling the complete system
various string constants will be stored following this. The other data storage area
defined at the

.sect .bss

(line 6825) declaration reserves space in the kernel’s normal uninitialized variable
area for the kernel stack, and above that some space is reserved for variables used
by the exception handlers. Servers and ordinary processes have stack space
reserved when an executable file is linked and depend upon the kernel to properly
set the stack segment descriptor and the stack pointer when they are executed. The
kernel has to do this for itself.

2.6.9 Interprocess Communication in MINIX 3

Processes in MINIX 3 communicate by messages, using the rendezvous princi-
ple. When a process does a send, the lowest layer of the kernel checks to see if
the destination is waiting for a message from the sender (or from ANY sender). If
so, the message is copied from the sender’s buffer to the receiver’s buffer, and
both processes are marked as runnable. If the destination is not waiting for a mes-
sage from the sender, the sender is marked as blocked and put onto a queue of
processes waiting to send to the receiver.

When a process does a receive, the kernel checks to see if any process is
queued trying to send to it. If so, the message is copied from the blocked sender to
the receiver, and both are marked as runnable. If no process is queued trying to
send to it, the receiver blocks until a message arrives.

In MINIX 3, with components of the operating system running as totally sep-
arate processes, sometimes the rendezvous method is not quite good enough. The
notify primitive is provided for precisely these occasions. A notify sends a bare-
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bones message. The sender is not blocked if the destination is not waiting for a
message. The notify is not lost, however. The next time the destination does a
receive pending notifications are delivered before ordinary messages. Notifica-
tions can be used in situations where using ordinary messages could cause
deadlocks. Earlier we pointed out that a situation where process A blocks sending
a message to process B and process B blocks sending a message to process A must
be avoided. But if one of the messages is a nonblocking notification there is no
problem.

In most cases a notification informs the recipient of its origin, and little more.
Sometimes that is all that is needed, but there are two special cases where a notifi-
cation conveys some additional information. In any case, the destination process
can send a message to the source of the notification to request more information.

The high-level code for interprocess communication is found in proc.c. The
kernel’s job is to translate either a hardware interrupt or a software interrupt into a
message. The former are generated by hardware and the latter are the way a
request for system services, that is, a system call, is communicated to the kernel.
These cases are similar enough that they could have been handled by a single
function, but it was more efficient to create specialized functions.

One comment and two macro definitions near the beginning of this file
deserve mention. For manipulating lists, pointers to pointers are used extensively,
and a comment on lines 7420 to 7436 explains their advantages and use. Two
useful macros are defined. BuildMess (lines 7458 to 7471), although its name
implies more generality, is used only for constructing the messages used by notify.
The only function call is to get�uptime, which reads a variable maintained by the
clock task so the notification can include a timestamp. The apparent calls to a
function named priv are expansions of another macro, defined in priv.h,

#define priv(rp) ((rp)->p�priv)

The other macro, CopyMess, is a programmer-friendly interface to the assembly
language routine cp�mess in klib386.s.

More should be said about BuildMess. The priv macro is used for two special
cases. If the origin of a notification is HARDWARE, it carries a payload, a copy
of the destination process’ bitmap of pending interrupts. If the origin is SYSTEM,
the payload is the bitmap of pending signals. Because these bitmaps are available
in the priv table slot of the destination process, they can be accessed at any time.
Notifications can be delivered later if the destination process is not blocked wait-
ing for them at the time they are sent. For ordinary messages this would require
some kind of buffer in which an undelivered message could be stored. To store a
notification all that is required is a bitmap in which each bit corresponds to a proc-
ess that can send a notification. When a notification cannot be sent the bit cor-
responding to the sender is set in the recipient’s bitmap. When a receive is done
the bitmap is checked and if a bit is found to have been set the message is regen-
erated. The bit tells the origin of the message, and if the origin is HARDWARE or
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SYSTEM, the additional content is added. The only other item needed is the time-
stamp, which is added when the message is regenerated. For the purposes for
which they are used, timestamps do not need to show when a notification was first
attempted, the time of delivery is sufficient.

The first function in proc.c is sys�call (line 7480). It converts a software
interrupt (the int SYS386�VECTOR instruction by which a system call is initiated)
into a message. There are a wide range of possible sources and destinations, and
the call may require either sending or receiving or both sending and receiving a
message. A number of tests must be made. On lines 7480 and 7481 the function
code SEND), RECEIVE, etc.,) and the flags are extracted from the first argument
of the call. The first test is to see if the calling process is allowed to make the
call. Iskerneln, used on line 7501, is a macro defined in proc.h (line 5584). The
next test is to see that the specified source or destination is a valid process. Then
a check is made that the message pointer points to a valid area of memory. MINIX
3 privileges define which other processes any given process is allowed to send to,
and this is tested next (lines 7537 to 7541). Finally, a test is made to verify that
the destination process is running and has not initiated a shutdown (lines 7543 to
7547). After all the tests have been passed one of the functions mini�send,
mini�receive, or mini�notify is called to do the real work. If the function was
ECHO the CopyMess macro is used, with identical source and destination. ECHO
is meant only for testing, as mentioned earlier.

The errors tested for in sys�call are unlikely, but the tests are easily done, as
ultimately they compile into code to perform comparisons of small integers. At
this most basic level of the operating system testing for even the most unlikely
errors is advisable. This code is likely to be executed many times each second
during every second that the computer system on which it runs is active.

The functions mini�send, mini�rec, and mini�notify are the heart of the nor-
mal message passing mechanism of MINIX 3 and deserve careful study.

Mini�send (line 7591) has three parameters: the caller, the process to be sent
to, and a pointer to the buffer where the message is. After all the tests performed
by sys�call, only one more is necessary, which is to detect a send deadlock. The
test on lines 7606 to 7610 verifies that the caller and destination are not trying to
send to each other. The key test in mini�send is on lines 7615 and 7616. Here a
check is made to see if the destination is blocked on a receive, as shown by the
RECEIVING bit in the p�rts�flags field of its process table entry. If it is waiting,
then the next question is: ‘‘Who is it waiting for?’’ If it is waiting for the sender,
or for ANY, the CopyMess macro is used to copy the message and the receiver is
unblocked by resetting its RECEIVING bit. Then enqueue is called to give the
receiver an opportunity to run (line 7620).

If, on the other hand, the receiver is not blocked, or is blocked but waiting for
a message from someone else, the code on lines 7623 to 7632 is executed to block
and dequeue the sender. All processes wanting to send to a given destination are
strung together on a linked list, with the destination’s p�callerq field pointing to
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the process table entry of the process at the head of the queue. The example of
Fig. 2-42(a) shows what happens when process 3 is unable to send to process 0. If
process 4 is subsequently also unable to send to process 0, we get the situation of
Fig. 2-42(b).

p_q_link = 0

(a)

3

4

2

1

0 p_caller_q

p_q_link

p_q_link = 0

(b)

p_caller_q

Figure 2-42. Queueing of processes trying to send to process 0.

Mini�receive (line 7642) is called by sys�call when its function parameter is
RECEIVE or BOTH. As we mentioned earlier, notifications have a higher priority
than ordinary messages. However, a notification will never be the right reply to a
send, so the bitmaps are checked to see if there are pending notifications only if
the SENDREC�BUSY flag is not set. If a notification is found it is marked as no
longer pending and delivered (lines 7670 to 7685). Delivery uses both the Build-
Mess and CopyMess macros defined near the top of proc.c.

One might have thought that, because a timestamp is part of a notify message,
it would convey useful information, for instance, if the recipient had been unable
to do a receive for a while the timestamp would tell how long it had been
undelivered. But the notification message is generated (and timestamped) at the
time it is delivered, not at the time it was sent. There is a purpose behind con-
structing the notification messages at the time of delivery, however. The code is
unnecessary to save notification messages that cannot be delivered immediately.
All that is necessary is to set a bit to remember that a notification should be gen-
erated when delivery becomes possible. You cannot get more economical storage
than that: one bit per pending notification.

It is also the case that the current time is usually what is needed. For instance,
notification is used to deliver a SYN�ALARM message to the process manager,
and if the timestamp were not generated when the message was delivered the PM
would need to ask the kernel for the correct time before checking its timer queue.

Note that only one notification is delivered at a time, mini�send returns on
line 7684 after delivery of a notification. But the caller is not blocked, so it is free
to do another receive immediately after getting the notification. If there are no
notifications, the caller queues are checked to see if a message of any other type is
pending (lines 7690 to 7699. If such a message is found it is delivered by the
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CopyMess macro and the originator of the message is then unblocked by the call
to enqueue on line 7694. The caller is not blocked in this case.

If no notifications or other messages were available, the caller will be blocked
by the call to dequeue on line 7708.

Mini�notify (line 7719) is used to effectuate a notification. It is similar to
mini�send, and can be discussed quickly. If the recipient of a message is blocked
and waiting to receive, the notification is generated by BuildMess and delivered.
The recipient’s RECEIVING flag is turned off and it is then enqueue-ed (lines
7738 to 7743). If the recipient is not waiting a bit is set in its s�notify�pending
map, which indicates that a notification is pending and identifies the sender. The
sender then continues its own work, and if another notification to the same reci-
pient is needed before an earlier one has been received, the bit in the recipient’s
bitmap is overwritten—effectively, multiple notifications from the same sender
are merged into a single notification message. This design eliminates the need for
buffer management while offering asynchronous message passing.

When mini�notify is called because of a software interrupt and a subsequent
call to sys�call, interrupts will be disabled at the time. But the clock or system
task, or some other task that might be added to MINIX 3 in the future might need
to send a notification at a time when interrupts are not disabled. Lock�notify (line
7758) is a safe gateway to mini�notify. It checks k�reenter to see if interrupts are
already disabled, and if they are, it just calls mini�notify right away. If interrupts
are enabled they are disabled by a call to lock, mini�notify is called, and then
interrupts are reenabled by a call to unlock.

2.6.10 Scheduling in MINIX 3

MINIX 3 uses a multilevel scheduling algorithm. Processes are given initial
priorities that are related to the structure shown in Fig. 2-29, but there are more
layers and the priority of a process may change during its execution. The clock
and system tasks in layer 1 of Fig. 2-29 receive the highest priority. The device
drivers of layer 2 get lower priority, but they are not all equal. Server processes in
layer 3 get lower priorities than drivers, but some less than others. User processes
start with less priority than any of the system processes, and initially are all equal,
but the nice command can raise or lower the priority of a user process.

The scheduler maintains 16 queues of runnable processes, although not all of
them may be used at a particular moment. Fig. 2-43 shows the queues and the
processes that are in place at the instant the kernel completes initialization and
begins to run, that is, at the call to restart at line 7252 in main.c. The array
rdy�head has one entry for each queue, with that entry pointing to the process at
the head of the queue. Similarly, rdy�tail is an array whose entries point to the
last process on each queue. Both of these arrays are defined with the EXTERN
macro in proc.h (lines 5595 and 5596). The initial queueing of processes during
system startup is determined by the image table in table.c (lines 6095 to 6109).
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Figure 2-43. The scheduler maintains sixteen queues, one per priority level.
Shown here is the initial queuing of processes as MINIX 3 starts up.

Scheduling is round robin in each queue. If a running process uses up its
quantum it is moved to the tail of its queue and given a new quantum. However,
when a blocked process is awakened, it is put at the head of its queue if it had any
part of its quantum left when it blocked. It is not given a complete new quantum,
however; it gets only what it had left when it blocked. The existence of the array
rdy� tail makes adding a process to the end of a queue efficient. Whenever a run-
ning process becomes blocked, or a runnable process is killed by a signal, that
process is removed from the scheduler’s queues. Only runnable processes are
queued.

Given the queue structures just described, the scheduling algorithm is simple:
find the highest priority queue that is not empty and pick the process at the head
of that queue. The IDLE process is always ready, and is in the lowest priority
queue. If all the higher priority queues are empty, IDLE is run.

We saw a number of references to enqueue and dequeue in the last section.
Now let us look at them. Enqueue is called with a pointer to a process table entry
as its argument (line 7787). It calls another function, sched, with pointers to vari-
ables that determine which queue the process should be on and whether it is to be
added to the head or the tail of that queue. Now there are three possibilities.
These are classic data structures examples. If the chosen queue is empty, both
rdy�head and rdy� tail are made to point to the process being added, and the link
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field, p�nextready, gets the special pointer value that indicates nothing follows,
NIL�PROC. If the process is being added to the head of a queue, its p�nextready
gets the current value of rdy�head, and then rdy�head is pointed to the new proc-
ess. If the process is being added to the tail of a queue, the p�nextready of the
current occupant of the tail is pointed to the new process, as is rdy�tail. The
p�nextready of the newly-ready process then is pointed to NIL�PROC. Finally,
pick�proc is called to determine which process will run next.

When a process must be made unready dequeue line 7823 is called. A proc-
ess must be running in order to block, so the process to be removed is likely to be
at the head of its queue. However, a signal could have been sent to a process that
was not running. So the queue is traversed to find the victim, with a high likeli-
hood it will be found at the head. When it is found all pointers are adjusted
appropriately to take it out of the chain. If it was running, pick�proc must also be
called.

One other point of interest is found in this function. Because tasks that run in
the kernel share a common hardware-defined stack area, it is a good idea to check
the integrity of their stack areas occasionally. At the beginning of dequeue a test
is made to see if the process being removed from the queue is one that operates in
kernel space. If it is, a check is made to see that the distinctive pattern written at
the end of its stack area has not been overwritten (lines 7835 to 7838).

Now we come to sched, which picks which queue to put a newly-ready proc-
ess on, and whether to put it on the head or the tail of that queue. Recorded in the
process table for each process are its quantum, the time left on its quantum, its
priority, and the maximum priority it is allowed. On lines 7880 to 7885 a check is
made to see if the entire quantum was used. If not, it will be restarted with what-
ever it had left from its last turn. If the quantum was used up, then a check is
made to see if the process had two turns in a row, with no other process having
run. This is taken as a sign of a possible infinite, or at least, excessively long,
loop, and a penalty of +1 is assigned. However, if the entire quantum was used
but other processes have had a chance to run, the penalty value becomes −1. Of
course, this does not help if two or more processes are executing in a loop
together. How to detect that is an open problem.

Next the queue to use is determined. Queue 0 is highest priority; queue 15 is
lowest. One could argue it should be the other way around, but this way is con-
sistent with the traditional ‘‘nice’’ values used by UNIX, where a positive ‘‘nice’’
means a process runs with lower priority. Kernel processes (the clock and system
tasks) are immune, but all other processes may have their priority reduced, that is,
be moved to a higher-numbered queue, by adding a positive penalty. All proc-
esses start with their maximum priority, so a negative penalty does not change
anything until positive penalties have been assigned. There is also a lower bound
on priority, ordinary processes never can be put on the same queue as IDLE.

Now we come to pick�proc (line 7910). This function’s major job is to set
next�ptr. Any change to the queues that might affect the choice of which process
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to run next requires pick�proc to be called again. Whenever the current process
blocks, pick�proc is called to reschedule the CPU. In essence, pick�proc is the
scheduler.

Pick�proc is simple. Each queue is tested. TASK�Q is tested first, and if a
process on this queue is ready, pick�proc sets proc�ptr and returns immediately.
Otherwise, the next lower priority queue is tested, all the way down to IDLE�Q.
The pointer bill�ptr is changed to charge the user process for the CPU time it is
about to be given (line 7694). This assures that the last user process to run is
charged for work done on its behalf by the system.

The remaining procedures in proc.c are lock�send, lock�enqueue, and
lock�dequeue. These all provide access to their basic functions using lock and
unlock, in the same way we discussed for lock�notify.

In summary, the scheduling algorithm maintains multiple priority queues.
The first process on the highest priority queue is always run next. The clock task
monitors the time used by all processes. If a user process uses up its quantum, it
is put at the end of its queue, thus achieving a simple round-robin scheduling
among the competing user processes. Tasks, drivers, and servers are expected to
run until they block, and are given large quanta, but if they run too long they may
also be preempted. This is not expected to happen very often, but it is a mechan-
ism to prevent a high-priority process with a problem from locking up the system.
A process that prevents other processes from running may also be moved to a
lower priority queue temporarily.

2.6.11 Hardware-Dependent Kernel Support

Several functions written in C are nevertheless hardware specific. To facili-
tate porting MINIX 3 to other systems these functions are segregated in the files to
be discussed in this section, exception.c, i8259.c, and protect.c, rather than being
included in the same files with the higher-level code they support.

Exception.c contains the exception handler, exception (line 8012), which is
called (as �exception) by the assembly language part of the exception handling
code in mpx386.s. Exceptions that originate from user processes are converted to
signals. Users are expected to make mistakes in their own programs, but an ex-
ception originating in the operating system indicates something is seriously wrong
and causes a panic. The array ex�data (lines 8022 to 8040) determines the error
message to be printed in case of panic, or the signal to be sent to a user process for
each exception. Earlier Intel processors do not generate all the exceptions, and the
third field in each entry indicates the minimum processor model that is capable of
generating each one. This array provides an interesting summary of the evolution
of the Intel family of processors upon which MINIX 3 has been implemented. On
line 8065 an alternate message is printed if a panic results from an interrupt that
would not be expected from the processor in use.
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Hardware-Dependent Interrupt Support

The three functions in i8259.c are used during system initialization to initial-
ize the Intel 8259 interrupt controller chips. The macro on line 8119 defines a
dummy function (the real one is needed only when MINIX 3 is compiled for a 16-
bit Intel platform). Intr� init (line 8124) initializes the controllers. Two steps
ensure that no interrupts will occur before all the initialization is complete. First
intr�disable is called at line 8134. This is a C language call to an assembly
language function in the library that executes a single instruction, cli, which dis-
ables the CPU’s response to interrupts. Then a sequence of bytes is written to
registers on each interrupt controller, the effect of which is to inhibit response of
the controllers to external input. The byte written at line 8145 is all ones, except
for a zero at the bit that controls the cascade input from the slave controller to the
master controller (see Fig. 2-39). A zero enables an input, a one disables. The
byte written to the secondary controller at line 8151 is all ones.

A table stored in the i8259 interrupt controller chip generates an 8-bit index
that the CPU uses to find the correct interrupt gate descriptor for each possible
interrupt input (the signals on the right-hand side of Fig. 2-39). This is initialized
by the BIOS when the computer starts up, and these values can almost all be left
in place. As drivers that need interrupts start up, changes can be made where
necessary. Each driver can then request that a bit be reset in the interrupt con-
troller chip to enable its own interrupt input. The argument mine to intr�init is
used to determine whether MINIX 3 is starting up or shutting down. This function
can be used both to initialize at startup and to restore the BIOS settings when
MINIX 3 shuts down.

After initialization of the hardware is complete, the last step in intr�init is to
copy the BIOS interrupt vectors to the MINIX 3 vector table.

The second function in 8259.c is put� irq�handler (line 8162). At initializa-
tion put�irq�handler is called for each process that must respond to an interrupt.
This puts the address of the handler routine into the interrupt table, irq�handlers,
defined as EXTERN in glo.h. With modern computers 15 interrupt lines is not
always enough (because there may be more than 15 I/O devices) so two I/O
devices may need to share an interrupt line. This will not occur with any of the
basic devices supported by MINIX 3 as described in this text, but when network
interfaces, sound cards, or more esoteric I/O devices must be supported they may
need to share interrupt lines. To allow for this, the interrupt table is not just a
table of addresses. Irq�handlers[NR�IRQ�VECTORS] is an array of pointers to
irq�hook structs, a type defined in kernel/type.h. These structures contain a field
which is a pointer to another structure of the same type, so a linked list can be
built, starting with one of the elements of irq�handlers. Put�irq�handler adds an
entry to one of these lists. The most important element of such an entry is a
pointer to an interrupt handler, the function to be executed when an interrupt is
generated, for example, when requested I/O has completed.
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Some details of put�irq�handler deserve mention. Note the variable id
which is set to 1 just before the beginning of the while loop that scans through the
linked list (lines 8176 to 8180). Each time through the loop id is shifted left 1 bit.
The test on line 8181 limits the length of the chain to the size of id, or 32 handlers
for a 32-bit system. In the normal case the scan will result in finding the end of
the chain, where a new handler can be linked. When this is done, id is also stored
in the field of the same name in the new item on the chain. Put�irq�handler also
sets a bit in the global variable irq�use, to record that a handler exists for this
IRQ.

If you fully understand the MINIX 3 design goal of putting device drivers in
user-space, the preceding discussion of how interrupt handlers are called will have
left you slightly confused. The interrupt handler addresses stored in the hook
structures cannot be useful unless they point to functions within the kernel’s
address space. The only interrupt-driven device in the kernel’s address space is
the clock. What about device drivers that have their own address spaces?

The answer is, the system task handles it. Indeed, that is the answer to most
questions regarding communication between the kernel and processes in user-
space. A user space device driver that is to be interrupt driven makes a sys� irqctl
call to the system task when it needs to register as an interrupt handler. The sys-
tem task then calls put� irq�handler, but instead of the address of an interrupt
handler in the driver’s address space, the address of generic�handler, part of the
system task, is stored in the interrupt handler field. The process number field in
the hook structure is used by generic�handler to locate the priv table entry for the
driver, and the bit in the driver’s pending interrupts bitmap corresponding to the
interrupt is set. Then generic�handler sends a notification to the driver. The
notification is identified as being from HARDWARE, and the pending interrupts
bitmap for the driver is included in the message. Thus, if a driver must respond to
interrupts from more than one source, it can learn which one is responsible for the
current notification. In fact, since the bitmap is sent, one notification provides in-
formation on all pending interrupts for the driver. Another field in the hook struc-
ture is a policy field, which determines whether the interrupt is to be reenabled
immediately, or whether it should remain disabled. In the latter case, it will be up
to the driver to make a sys� irqenable kernel call when service of the current inter-
rupt is complete.

One of the goals of MINIX 3 design is to support run-time reconfiguration of
I/O devices. The next function, rm�irq�handler, removes a handler, a necessary
step if a device driver is to be removed and possibly replaced by another. Its
action is just the opposite of put�irq�handler.

The last function in this file, intr�handle (line 8221), is called from the
hwint�master and hwint�slave macros we saw in mpx386.s. The element of the
array of bitmaps irq�actids which corresponds the interrupt being serviced is used
to keep track of the current status of each handler in a list. For each function in
the list, intr�handle sets the corresponding bit in irq�actids, and calls the handler.
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If a handler has nothing to do or if it completes its work immediately, it returns
‘‘true’’ and the corresponding bit in irq�actids is cleared. The entire bitmap for
an interrupt, considered as an integer, is tested near the end of the hwint�master
and hwint�slave macros to determine if that interrupt can be reenabled before
another process is restarted.

Intel Protected Mode Support

Protect.c contains routines related to protected mode operation of Intel pro-
cessors. The Global Descriptor Table (GDT), Local Descriptor Tables
(LDTs), and the Interrupt Descriptor Table, all located in memory, provide pro-
tected access to system resources. The GDT and IDT are pointed to by special
registers within the CPU, and GDT entries point to LDTs. The GDT is available
to all processes and holds segment descriptors for memory regions used by the
operating system. Normally, there is one LDT for each process, holding segment
descriptors for the memory regions used by the process. Descriptors are 8-byte
structures with a number of components, but the most important parts of a seg-
ment descriptor are the fields that describe the base address and the limit of a
memory region. The IDT is also composed of 8-byte descriptors, with the most
important part being the address of the code to be executed when the correspond-
ing interrupt is activated.

Cstart in start.c calls prot�init (line 8368), which sets up the GDT on lines
8421 to 8438. The IBM PC BIOS requires that it be ordered in a certain way, and
all the indices into it are defined in protect.h. Space for an LDT for each process
is allocated in the process table. Each contains two descriptors, for a code seg-
ment and a data segment—recall we are discussing here segments as defined by
the hardware; these are not the same as the segments managed by the operating
system, which considers the hardware-defined data segment to be further divided
into data and stack segments. On lines 8444 to 8450 descriptors for each LDT are
built in the GDT. The functions init�dataseg and init�codeseg build these
descriptors. The entries in the LDTs themselves are initialized when a process’
memory map is changed (i.e., when an exec system call is made).

Another processor data structure that needs initialization is the Task State
Segment (TSS). The structure is defined at the start of this file (lines 8325 to
8354) and provides space for storage of processor registers and other information
that must be saved when a task switch is made. MINIX 3 uses only the fields that
define where a new stack is to be built when an interrupt occurs. The call to
init�dataseg on line 8460 ensures that it can be located using the GDT.

To understand how MINIX 3 works at the lowest level, perhaps the most
important thing is to understand how exceptions, hardware interrupts, or int <nnn>
instructions lead to the execution of the various pieces of code that has been writ-
ten to service them. These events are processed by means of the interrupt gate
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descriptor table. The array gate� table (lines 8383 to 8418), is initialized by the
compiler with the addresses of the routines that handle exceptions and hardware
interrupts and then is used in the loop at lines 8464 to 8468 to initialize this table,
using calls to the int�gate function.

There are good reasons for the way the data are structured in the descriptors,
based on details of the hardware and the need to maintain compatibility between
advanced processors and the 16-bit 286 processor. Fortunately, we can usually
leave these details to Intel’s processor designers. For the most part, the C lang-
uage allows us to avoid the details. However, in implementing a real operating
system the details must be faced at some point. Figure 2-44 shows the internal
structure of one kind of segment descriptor. Note that the base address, which C
programs can refer to as a simple 32-bit unsigned integer, is split into three parts,
two of which are separated by a number of 1-, 2-, and 4-bit quantities. The limit
is a 20-bit quantity stored as separate 16-bit and 4-bit chunks. The limit is inter-
preted as either a number of bytes or a number of 4096-byte pages, based on the
value of the G (granularity) bit. Other descriptors, such as those used to specify
how interrupts are handled, have different, but equally complex structures. We
discuss these structures in more detail in Chap. 4.

Relative
address

0

4

Base 0-15 Limit 0-15

Base 24-31 Base 16-23Limit
16-19G D 0 P DPL TypeS

�
�

32 Bits

Figure 2-44. The format of an Intel segment descriptor.

Most of the other functions defined in protect.c are devoted to converting
between variables used in C programs and the rather ugly forms these data take in
the machine readable descriptors such as the one in Fig. 2-44. Init�codeseg (line
8477) and init�dataseg (line 8493) are similar in operation and are used to con-
vert the parameters passed to them into segment descriptors. They each, in turn,
call the next function, sdesc (line 8508), to complete the job. This is where the
messy details of the structure shown in Fig. 2-44 are dealt with. Init�codeseg and
init�data�seg are not used just at system initialization. They are also called by
the system task whenever a new process is started up, in order to allocate the
proper memory segments for the process to use. Seg2phys (line 8533), called only
from start.c, performs an operation which is the inverse of that of sdesc, extract-
ing the base address of a segment from a segment descriptor. Phys2seg (line
8556), is no longer needed, the sys�segctl kernel call now handles access to
remote memory segments, for instance, memory in the PC’s reserved area
between 640K and 1M. Int�gate (line 8571) performs a similar function to
init�codeseg and init�dataseg in building entries for the interrupt descriptor table.
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Now we come to a function in protect.c, enable� iop (line 8589), that can per-
form a dirty trick. It changes the privilege level for I/O operations, allowing the
current process to execute instructions which read and write I/O ports. The des-
cription of the purpose of the function is more complicated than the function
itself, which just sets two bits in the word in the stack frame entry of the calling
process that will be loaded into the CPU status register when the process is next
executed. A function to undo this is not needed, as it will apply only to the calling
process. This function is not currently used and no method is provided for a user
space function to activate it.

The final function in protect.c is alloc�segments (line 8603). It is called by
do�newmap. It is also called by the main routine of the kernel during initializa-
tion. This definition is very hardware dependent. It takes the segment assignments
that are recorded in a process table entry and manipulates the registers and de-
scriptors the Pentium processor uses to support protected segments at the
hardware level. Multiple assignments like those on lines 8629 to 8633 are a
feature of the C language.

2.6.12 Utilities and the Kernel Library

Finally, the kernel has a library of support functions written in assembly
language that are included by compiling klib.s and a few utility programs, written
in C, in the file misc.c. Let us first look at the assembly language files. Klib.s
(line 8700) is a short file similar to mpx.s, which selects the appropriate machine-
specific version based upon the definition of WORD�SIZE. The code we will dis-
cuss is in klib386.s (line 8800). This contains about two dozen utility routines that
are in assembly code, either for efficiency or because they cannot be written in C
at all.

�Monitor (line 8844) makes it possible to return to the boot monitor. From the
point of view of the boot monitor, all of MINIX 3 is just a subroutine, and when
MINIX 3 is started, a return address to the monitor is left on the monitor’s stack.
�Monitor just has to restore the various segment selectors and the stack pointer
that was saved when MINIX 3 was started, and then return as from any other sub-
routine.

Int86 (line 8864) supports BIOS calls. The BIOS is used to provide alterna-
tive disk drivers which are not described here. Int86 transfers control to the boot
monitor, which manages a transfer from protected mode to real mode to execute a
BIOS call, then back to protected mode for the return to 32-bit MINIX 3. The boot
monitor also returns the number of clock ticks counted during the BIOS call.
How this is used will be seen in the discussion of the clock task.

Although �phys�copy (see below) could have been used for copying mes-
sages, �cp�mess (line 8952), a faster specialized procedure, has been provided for
that purpose. It is called by

cp�mess(source, src�clicks, src�offset, dest�clicks, dest�offset);
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where source is the sender’s process number, which is copied into the m�source
field of the receiver’s buffer. Both the source and destination addresses are speci-
fied by giving a click number, typically the base of the segment containing the
buffer, and an offset from that click. This form of specifying the source and desti-
nation is more efficient than the 32-bit addresses used by �phys�copy.

�Exit, ��exit, and ���exit (lines 9006 to 9008) are defined because some
library routines that might be used in compiling MINIX 3 make calls to the stan-
dard C function exit. An exit from the kernel is not a meaningful concept; there is
nowhere to go. Consequently, the standard exit cannot be used here. The solution
here is to enable interrupts and enter an endless loop. Eventually, an I/O opera-
tion or the clock will cause an interrupt and normal system operation will resume.
The entry point for ���main (line 9012) is another attempt to deal with a com-
piler action which, while it might make sense while compiling a user program,
does not have any purpose in the kernel. It points to an assembly language ret
(return from subroutine) instruction.

�Phys�insw (line 9022), �phys�insb (line 9047), �phys�outsw (line 9072),
and �phys�outsb (line 9098), provide access to I/O ports, which on Intel hardware
occupy a separate address space from memory and use different instructions from
memory reads and writes. The I/O instructions used here, ins, insb, outs, and
outsb, are designed to work efficiently with arrays (strings), and either 16-bit
words or 8-bit bytes. The additional instructions in each function set up all the
parameters needed to move a given number of bytes or words between a buffer,
addressed physically, and a port. This method provides the speed needed to ser-
vice disks, which must be serviced more rapidly than could be done with simpler
byte- or word-at-a-time I/O operations.

A single machine instruction can enable or disable the CPU’s response to all
interrupts. �Enable�irq (line 9126) and �disable�irq (line 9162) are more com-
plicated. They work at the level of the interrupt controller chips to enable and dis-
able individual hardware interrupts.

�Phys�copy (line 9204) is called in C by

phys�copy(source�address, destination�address, bytes);

and copies a block of data from anywhere in physical memory to anywhere else.
Both addresses are absolute, that is, address 0 really means the first byte in the
entire address space, and all three parameters are unsigned longs.

For security, all memory to be used by a program should be wiped clean of
any data remaining from a program that previously occupied that memory. This is
done by the MINIX 3 exec call, ultimately using the next function in klib386.s,
phys�memset (line 9248).

The next two short functions are specific to Intel processors. �Mem�rdw
(line 9291) returns a 16-bit word from anywhere in memory. The result is zero-
extended into the 32-bit eax register. The �reset function (line 9307) resets the
processor. It does this by loading the processor’s interrupt descriptor table register
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with a null pointer and then executing a software interrupt. This has the same
effect as a hardware reset.

The idle�task (line 9318) is called when there is nothing else to do. It is writ-
ten as an endless loop, but it is not just a busy loop (which could have been used
to have the same effect). Idle� task takes advantage of the availability of a hlt
instruction, which puts the processor into a power-conserving mode until an inter-
rupt is received. However, hlt is a privileged instruction and executing hlt when
the current privilege level is not 0 will cause an exception. So idle� task pushes
the address of a subroutine containing a hlt and then calls level0 (line 9322). This
function retrieves the address of the halt subroutine, and copies it to a reserved
storage area (declared in glo.h and actually reserved in table.c).

�Level0 treats whatever address is preloaded to this area as the functional part
of an interrupt service routine to be run with the most privileged permission level,
level zero.

The last two functions are read� tsc and read� flags. The former reads a CPU
register which executes an assembly language instruction known as rdtsc, read
time stamp counter. This counts CPU cycles and is intended for benchmarking or
debugging. This instruction is not supported by the MINIX 3 assembler, and is
generated by coding the opcode in hexadecimal. Finally, read�flags reads the
processor flags and returns them as a C variable. The programmer was tired and
the comment about the purpose of this function is incorrect.

The last file we will consider in this chapter is utility.c which provides three
important functions. When something goes really, really wrong in the kernel,
panic (line 9429) is invoked. It prints a message and calls prepare�shutdown.
When the kernel needs to print a message it cannot use the standard library printf,
so a special kprintf is defined here (line 9450). The full range of formatting
options available in the library version are not needed here, but much of the func-
tionality is available. Because the kernel cannot use the file system to access a
file or a device, it passes each character to another function, kputc (line 9525),
which appends each character to a buffer. Later, when kputc receives the
END�OF�KMESS code it informs the process which handles such messages.
This is defined in include/minix/config.h , and can be either the log driver or the
console driver. If it is the log driver the message will be passed on to the console
as well.

2.7 THE SYSTEM TASK IN MINIX 3

A consequence of making major system components independent processes
outside the kernel is that they are forbidden from doing actual I/O, manipulating
kernel tables and doing other things operating system functions normally do. For
example, the fork system call is handled by the process manager. When a new
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process is created, the kernel must know about it, in order to schedule it. How can
the process manager tell the kernel?

The solution to this problem is to have a kernel offer a set of services to the
drivers and servers. These services, which are not available to ordinary user proc-
esses, allow the drivers and servers to do actual I/O, access kernel tables, and do
other things they need to, all without being inside the kernel.

These special services are handled by the system task, which is shown in
layer 1 in Fig. 2-29. Although it is compiled into the kernel binary program, it is
really a separate process and is scheduled as such. The job of the system task is to
accept all the requests for special kernel services from the drivers and servers and
carry them out. Since the system task is part of the kernel’s address space, it
makes sense to study it here.

Earlier in this chapter we saw an example of a service provided by the system
task. In the discussion of interrupt handling we described how a user-space
device driver uses sys� irqctl to send a message to the system task to ask for instal-
lation of an interrupt handler. A user-space driver cannot access the kernel data
structure where addresses of interrupt service routines are placed, but the system
task is able to do this. Furthermore, since the interrupt service routine must also
be in the kernel’s address space, the address stored is the address of a function
provided by the system task, generic�handler. This function responds to an inter-
rupt by sending a notification message to the device driver.

This is a good place to clarify some terminology. In a conventional operating
system with a monolithic kernel, the term system call is used to refer to all calls
for services provided by the kernel. In a modern UNIX-like operating system the
POSIX standard describes the system calls available to processes. There may be
some nonstandard extensions to POSIX, of course, and a programmer taking
advantage of a system call will generally reference a function defined in the C
libraries, which may provide an easy-to-use programming interface. Also, some-
times separate library functions that appear to the programmer to be distinct ‘‘sys-
tem calls’’ actually use the same access to the kernel.

In MINIX 3 the landscape is different; components of the operating system run
in user space, although they have special privileges as system processes. We will
still use the name ‘‘system call’’ for any of the POSIX-defined system calls (and a
few MINIX extensions) listed in Fig. 1-9, but user processes do not request ser-
vices directly of the kernel. In MINIX 3 system calls by user processes are
transformed into messages to server processes. Server processes communicate
with each other, with device drivers, and with the kernel by messages. The sub-
ject of this section, the system task, receives all requests for kernel services.
Loosely speaking, we could call these requests system calls, but to be more exact
we will refer to them as kernel calls. Kernel calls cannot be made by user proc-
esses. In many cases a system call that originates with a user process results in a
kernel call with a similar name being made by a server. This is always because
some part of the service being requested can only be dealt with by the kernel. For
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instance a fork system call by a user process goes to the process manager, which
does some of the work. But a fork requires changes in the kernel part of the proc-
ess table, and to complete the action the process manager makes a sys�fork call to
the system task, which can manipulate data in kernel space. Not all kernel calls
have such a clear connection to a single system call. For instance, there is a
sys�devio kernel call to read or write I/O ports. This kernel call comes from a
device driver. More than half of all the system calls listed in Fig. 1-9 could result
in a device driver being activated and making one or more sys�devio calls.

Technically speaking, a third category of calls (besides system calls and ker-
nel calls) should be distinguished. The message primitives used for interprocess
communication such as send, receive, and notify can be thought of as system-
call-like. We have probably called them that in various places in this book—after
all, they do call the system. But they should properly be called something dif-
ferent from both system calls and kernel calls. Other terms may be used. IPC
primitive is sometimes used, as well as trap, and both of these may be found in
some comments in the source code. You can think of a message primitive as
being like the carrier wave in a radio communications system. Modulation is usu-
ally needed to make a radio wave useful; the message type and other components
of a message structure allow the message call to convey information. In a few
cases an unmodulated radio wave is useful; for instance, a radio beacon to guide
airplanes to an airport. This is analogous to the notify message primitive, which
conveys little information other than its origin.

2.7.1 Overview of the System Task

The system task accepts 28 kinds of messages, shown in Fig. 2-45. Each of
these can be considered a kernel call, although, as we shall see, in some cases
there are multiple macros defined with different names that all result in just one of
the message types shown in the figure. And in some other cases more than one of
the message types in the figure are handled by a single procedure that does the
work.

The main program of the system task is structured like other tasks. After
doing necessary initialization it runs in a loop. It gets a message, dispatches to the
appropriate service procedure, and then sends a reply. A few general support
functions are found in the main file, system.c, but the main loop dispatches to a
procedure in a separate file in the kernel/system/ directory to process each kernel
call. We will see how this works and the reason for this organization when we
discuss the implementation of the system task.

First we will briefly describe the function of each kernel call. The message
types in Fig. 2-45 fall into several categories. The first few are involved with
process management. Sys�fork, sys�exec, sys�exit, and sys�trace are obviously
closely related to standard POSIX system calls. Although nice is not a POSIX-
required system call, the command ultimately results in a sys�nice kernel call to
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������������������������������������������������������������������������������
Message type From Meaning������������������������������������������������������������������������������
sys�fork PM A process has forked������������������������������������������������������������������������������
sys�exec PM Set stack pointer after EXEC call������������������������������������������������������������������������������
sys�exit PM A process has exited������������������������������������������������������������������������������
sys�nice PM Set scheduling priority������������������������������������������������������������������������������
sys�privctl RS Set or change privileges������������������������������������������������������������������������������
sys�trace PM Carry out an operation of the PTRACE call������������������������������������������������������������������������������
sys�kill PM,FS, TTY Send signal to a process after KILL call������������������������������������������������������������������������������
sys�getksig PM PM is checking for pending signals������������������������������������������������������������������������������
sys�endksig PM PM has finished processing signal������������������������������������������������������������������������������
sys�sigsend PM Send a signal to a process������������������������������������������������������������������������������
sys�sigreturn PM Cleanup after completion of a signal������������������������������������������������������������������������������
sys� irqctl Drivers Enable, disable, or configure interrupt������������������������������������������������������������������������������
sys�devio Drivers Read from or write to an I/O port������������������������������������������������������������������������������
sys�sdevio Drivers Read or write string from/to I/O port������������������������������������������������������������������������������
sys�vdevio Drivers Carry out a vector of I/O requests������������������������������������������������������������������������������
sys� int86 Drivers Do a real-mode BIOS call������������������������������������������������������������������������������
sys�newmap PM Set up a process memory map������������������������������������������������������������������������������
sys�segctl Drivers Add segment and get selector (far data access)������������������������������������������������������������������������������
sys�memset PM Write char to memory area������������������������������������������������������������������������������
sys�umap Drivers Convert virtual address to physical address������������������������������������������������������������������������������
sys�vircopy FS, Drivers Copy using pure virtual addressing������������������������������������������������������������������������������
sys�physcopy Drivers Copy using physical addressing������������������������������������������������������������������������������
sys�virvcopy Any Vector of VCOPY requests������������������������������������������������������������������������������
sys�physvcopy Any Vector of PHYSCOPY requests������������������������������������������������������������������������������
sys�times PM Get uptime and process times������������������������������������������������������������������������������
sys�setalarm PM, FS, Drivers Schedule a synchronous alarm������������������������������������������������������������������������������
sys�abort PM, TTY Panic: MINIX is unable to continue������������������������������������������������������������������������������
sys�getinfo Any Request system information�������������������������������������������������������������������������������
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Figure 2-45. The message types accepted by the system task. ‘‘Any’’ means any
system process; user processes cannot call the system task directly.

change the priority of a process. The only one of this group that is likely to be
unfamiliar is sys�privctl. It is used by the reincarnation server (RS), the MINIX 3
component responsible for converting processes started as ordinary user processes
into system processes. Sys�privctl changes the privileges of a process, for
instance, to allow it to make kernel calls. Sys�privctl is used when drivers and
servers that are not part of the boot image are started by the /etc/rc script. MINIX
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3 drivers also can be started (or restarted) at any time; privilege changes are
needed whenever this is done.

The next group of kernel calls are related to signals. Sys�kill is related to the
user-accessible (and misnamed) system call kill. The others in this group,
sys�getksig, sys�endksig, sys�sigsend, and sys�sigreturn are all used by the
process manager to get the kernel’s help in handling signals.

The sys� irqctl, sys�devio, sys�sdevio, and sys�vdevio kernel calls are unique
to MINIX 3. These provide the support needed for user-space device drivers. We
mentioned sys� irqctl at the start of this section. One of its functions is to set a
hardware interrupt handler and enable interrupts on behalf of a user-space driver.
Sys�devio allows a user-space driver to ask the system task to read or write from
an I/O port. This is obviously essential; it also should be obvious that it involves
more overhead than would be the case if the driver were running in kernel space.
The next two kernel calls offer a higher level of I/O device support. Sys�sdevio
can be used when a sequence of bytes or words, i.e., a string, is to be read from or
written to a single I/O address, as might be the case when accessing a serial port.
Sys�vdevio is used to send a vector of I/O requests to the system task. By a vec-
tor is meant a series of (port, value) pairs. Earlier in this chapter, we described
the intr�init function that initializes the Intel i8259 interrupt controllers. On lines
8140 to 8152 a series of instructions writes a series of byte values. For each of
the two i8259 chips, there is a control port that sets the mode and another port that
receives a sequence of four bytes in the initialization sequence. Of course, this
code executes in the kernel, so no support from the system task is needed. But if
this were being done by a user-space process a single message passing the address
to a buffer containing 10 (port, value) pairs would be much more efficient than 10
messages each passing one port address and a value to be written.

The next three kernel calls shown in Fig. 2-45 involve memory in distinct
ways. The first, sys�newmap, is called by the process manager when the mem-
ory used by a process changes, so the kernel’s part of the process table can be
updated. Sys�segctl and sys�memset provide a safe way to provide a process
with access to memory outside its own data space. The memory area from
0xa0000 to 0xfffff is reserved for I/O devices, as we mentioned in the discussion
of startup of the MINIX 3 system. Some devices use part of this memory region
for I/O—for instance, video display cards expect to have data to be displayed
written into memory on the card which is mapped here. Sys�segctl is used by a
device driver to obtain a segment selector that will allow it to address memory in
this range. The other call, sys�memset, is used when a server wants to write data
into an area of memory that does not belong to it. It is used by the process mana-
ger to zero out memory when a new process is started, to prevent the new process
from reading data left by another process.

The next group of kernel calls is for copying memory. Sys�umap converts
virtual addresses to physical addresses. Sys�vircopy and sys�physcopy copy re-
gions of memory, using either virtual or physical addresses. The next two calls,
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sys�virvcopy and sys�physvcopy are vector versions of the previous two. As
with vectored I/O requests, these allow making a request to the system task for a
series of memory copy operations.

Sys�times obviously has to do with time, and corresponds to the POSIX times
system call. Sys�setalarm is related to the POSIX alarm system call, but the rela-
tion is a distant one. The POSIX call is mostly handled by the process manager,
which maintains a queue of timers on behalf of user processes. The process man-
ager uses a sys�setalarm kernel call when it needs to have a timer set on its be-
half in the kernel. This is done only when there is a change at the head of the
queue managed by the PM, and does not necessarily follow every alarm call from
a user process.

The final two kernel calls listed in Fig. 2-45 are for system control.
Sys�abort can originate in the process manager, after a normal request to shut-
down the system or after a panic. It can also originate from the tty device driver,
in response to a user pressing the Ctrl-Alt-Del key combination.

Finally, sys�getinfo is a catch-all that handles a diverse range of requests for
information from the kernel. If you search through the MINIX 3 C source files you
will, in fact, find very few references to this call by its own name. But if you
extend your search to the header directories you will find no less than 13 macros
in include/minix/syslib.h that give another name to Sys�getinfo. An example is

sys�getkinfo(dst) sys�getinfo(GET�KINFO, dst, 0,0,0)

which is used to return the kinfo structure (defined in include/minix/type.h on lines
2875 to 2893) to the process manager for use during system startup. The same
information may be needed at other times. For instance, the user command ps
needs to know the location of the kernel’s part of the process table to display
information about the status of all processes. It asks the PM, which in turn uses
the sys�getkinfo variant of sys�getinfo to get the information.

Before we leave this overview of kernel call types, we should mention that
sys�getinfo is not the only kernel call that is invoked by a number of different
names defined as macros in include/minix/syslib.h . For example, the sys�sdevio
call is usually invoked by one of the macros sys� insb, sys� insw, sys�outsb, or
sys�outsw. The names were devised to make it easy to see whether the operation
is input or output, with data types byte or word. Similarly, the sys� irqctl call is
usually invoked by a macro like sys� irqenable, sys� irqdisable, or one of several
others. Such macros make the meaning clearer to a person reading the code.
They also help the programmer by automatically generating constant arguments.

2.7.2 Implementation of the System Task

The system task is compiled from a header, system.h, and a C source file,
system.c, in the main kernel/ directory. In addition there is a specialized library
built from source files in a subdirectory, kernel/system/ . There is a reason for this
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organization. Although MINIX 3 as we describe it here is a general-purpose oper-
ating system, it is also potentially useful for special purposes, such as embedded
support in a portable device. In such cases a stripped-down version of the operat-
ing system might be adequate. For instance, a device without a disk might not
need a file system. We saw in kernel/config.h that compilation of kernel calls can
be selectively enabled and disabled. Having the code that supports each kernel
call linked from the library as the last stage of compilation makes it easier to build
a customized system.

Putting support for each kernel call in a separate file simplifies maintenance
of the software. But there is some redundancy between these files, and listing all
of them would add 40 pages to the length of this book. Thus we will list in Ap-
pendix B and describe in the text only a few of the files in the kernel/system/
directory. However, all the files are on the CD-ROM and the MINIX 3 Web site.

We will begin by looking at the header file, kernel/system.h (line 9600). It
provides prototypes for functions corresponding to most of the kernel calls listed
in Fig. 2-45. In addition there is a prototype for do�unused, the function that is
invoked if an unsupported kernel call is made. Some of the message types in
Fig. 2-45 correspond to macros defined here. These are on lines 9625 to 9630.
These are cases where one function can handle more than one call.

Before looking at the code in system.c, note the declaration of the call vector
call�vec, and the definition of the macro map on lines 9745 to 9749. Call�vec is
an array of pointers to functions, which provides a mechanism for dispatching to
the function needed to service a particular message by using the message type,
expressed as a number, as an index into the array. This is a technique we will see
used elsewhere in MINIX 3. The map macro is a convenient way to initialize such
an array. The macro is defined in such a way that trying to expand it with an
invalid argument will result in declaring an array with a negative size, which is, of
course, impossible, and will cause a compiler error.

The top level of the system task is the procedure sys�task. After a call to ini-
tialize an array of pointers to functions, sys� task runs in a loop. It waits for a
message, makes a few tests to validate the message, dispatches to the function that
handles the call that corresponds to the message type, possibly generating a reply
message, and repeats the cycle as long as MINIX 3 is running (lines 9768 to 9796).
The tests consists of a check of the priv table entry for the caller to determine that
it is allowed to make this type of call and making sure that this type of call is
valid. The dispatch to the function that does the work is done on line 9783. The
index into the call�vec array is the call number, the function called is the one
whose address is in that cell of the array, the argument to the function is a pointer
to the message, and the return value is a status code. A function may return a
EDONTREPLY status, meaning no reply message is required, otherwise a reply
message is sent at line 9792.

As you may have noticed in Fig. 2-43, when MINIX 3 starts up the system task
is at the head of the highest priority queue, so it makes sense that the system
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task’s initialize function initializes the array of interrupt hooks and the list of
alarm timers (lines 9808 to 9815). In any case, as we noted earlier, the system
task is used to enable interrupts on behalf of user-space drivers that need to
respond to interrupts, so it makes sense to have it prepare the table. The system
task is used to set up timers when synchronous alarms are requested by other sys-
tem processes, so initializing the timer lists is also appropriate here.

Continuing with initialization, on lines 9822 to 9824 all slots in the call�vec
array are filled with the address of the procedure do�unused, called if an unsup-
ported kernel call is made. Then the rest of the file lines 9827 to 9867, consists of
multiple expansions of the map macro, each one of which installs the address of a
function into the proper slot in call�vec.

The rest of system.c consists of functions that are declared PUBLIC and that
may be used by more than one of the routines that service kernel calls, or by other
parts of the kernel. For instance, the first such function, get�priv (line 9872), is
used by do�privctl, which supports the sys�privctl kernel call. It is also called by
the kernel itself while constructing process table entries for processes in the boot
image. The name is a perhaps a bit misleading. Get�priv does not retrieve infor-
mation about privileges already assigned, it finds an available priv structure and
assigns it to the caller. There are two cases—system processes each get their own
entry in the priv table. If one is not available then the process cannot become a
system process. User processes all share the same entry in the table.

Get�randomness (line 9899) is used to get seed numbers for the random
number generator, which is a implemented as a character device in MINIX 3. The
newest Pentium-class processors include an internal cycle counter and provide an
assembly language instruction that can read it. This is used if available, otherwise
a function is called which reads a register in the clock chip.

Send�sig generates a notification to a system process after setting a bit in the
s�sig�pending bitmap of the process to be signaled. The bit is set on line 9942.
Note that because the s�sig�pending bitmap is part of a priv structure, this
mechanism can only be used to notify system processes. All user processes share
a common priv table entry, and therefore fields like the s�sig�pending bitmap
cannot be shared and are not used by user processes. Verification that the target is
a system process is made before send�sig is called. The call comes either as a
result of a sys�kill kernel call, or from the kernel when kprintf is sending a string
of characters. In the former case the caller determines whether or not the target is
a system process. In the latter case the kernel only prints to the configured output
process, which is either the console driver or the log driver, both of which are sys-
tem processes.

The next function, cause�sig (line 9949), is called to send a signal to a user
process. It is used when a sys�kill kernel call targets a user process. It is here in
system.c because it also may be called directly by the kernel in response to an
exception triggered by the user process. As with send�sig a bit must be set in the
recipient’s bitmap for pending signals, but for user processes this is not in the priv
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table, it is in the process table. The target process must also be made not ready by
a call to lock�dequeue, and its flags (also in the process table) updated to indicate
it is going to be signaled. Then a message is sent—but not to the target process.
The message is sent to the process manager, which takes care of all of the aspects
of signaling a process that can be dealt with by a user-space system process.

Next come three functions which all support the sys�umap kernel call. Proc-
esses normally deal with virtual addresses, relative to the base of a particular seg-
ment. But sometimes they need to know the absolute (physical) address of a re-
gion of memory, for instance, if a request is going to be made for copying be-
tween memory regions belonging to two different segments. There are three ways
a virtual memory address might be specified. The normal one for a process is
relative to one of the memory segments, text, data, or stack, assigned to a process
and recorded in its process table slot. Requesting conversion of virtual to physical
memory in this case is done by a call to umap�local (line 9983).

The second kind of memory reference is to a region of memory that is outside
the text, data, or stack areas allocated to a process, but for which the process has
some responsibility. Examples of this are a video driver or an Ethernet driver,
where the video or Ethernet card might have a region of memory mapped in the
region from 0xa0000 to 0xfffff which is reserved for I/O devices. Another exam-
ple is the memory driver, which manages the ramdisk and also can provide access
to any part of the memory through the devices /dev/mem and /dev/kmem.
Requests for conversion of such memory references from virtual to physical are
handled by umap�remote (line 10025).

Finally, a memory reference may be to memory that is used by the BIOS.
This is considered to include both the lowest 2 KB of memory, below where
MINIX 3 is loaded, and the region from 0x90000 to 0xfffff, which includes some
RAM above where MINIX 3 is loaded plus the region reserved for I/O devices.
This could also be handled by umap�remote, but using the third function,
umap�bios (line 10047), ensures that a check will be made that the memory being
referenced is really in this region.

The last function defined in system.c is virtual�copy (line 10071). Most of
this function is a C switch which uses one of the three umap�* functions just
described to convert virtual addresses to physical addresses. This is done for both
the source and destination addresses. The actual copying is done (on line 10121)
by a call to the assembly language routine phys�copy in klib386.s.

2.7.3 Implementation of the System Library

Each of the functions with a name of the form do�xyz has its source code in a
file in a subdirectory, kernel/system/do �xyz.c. In the kernel/ directory the
Makefile contains a line

cd system && $(MAKE) –$(MAKEFLAGS) $@
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which causes all of the files in kernel/system/ to be compiled into a library,
system.a in the main kernel/ directory. When control returns to the main kernel
directory another line in the Makefile cause this local library to be searched first
when the kernel object files are linked.

We have listed two files from the kernel/system/ directory in Appendix B.
These were chosen because they represent two general classes of support that the
system task provides. One category of support is access to kernel data structures
on behalf of any user-space system process that needs such support. We will
describe system/do�setalarm.c as an example of this category. The other general
category is support for specific system calls that are mostly managed by user-
space processes, but which need to carry out some actions in kernel space. We
have chosen system/do�exec.c as our example.

The sys�setalarm kernel call is somewhat similar to sys� irqenable, which we
mentioned in the discussion of interrupt handling in the kernel. Sys� irqenable
sets up an address to an interrupt handler to be called when an IRQ is activated.
The handler is a function within the system task, generic�handler. It generates a
notify message to the device driver process that should respond to the interrupt.
System/do�setalarm.c (line 10200) contains code to manage timers in a way simi-
lar to how interrupts are managed. A sys�setalarm kernel call initializes a timer
for a user-space system process that needs to receive a synchronous alarm, and it
provides a function to be called to notify the user-space process when the timer
expires. It can also ask for cancellation of a previously scheduled alarm by pass-
ing zero in the expiration time field of its request message. The operation is
simple—on lines 10230 to 10232 information from the message is extracted. The
most important items are the time when the timer should go off and the process
that needs to know about it. Every system process has its own timer structure in
the priv table. On lines 10237 to 10239 the timer structure is located and the proc-
ess number and the address of a function, cause�alarm, to be executed when the
timer expires, are entered.

If the timer was already active, sys�setalarm returns the time remaining in its
reply message. A return value of zero means the timer is not active. There are
several possibilities to be considered. The timer might previously have been
deactivated—a timer is marked inactive by storing a special value, TMR�NEVER
in its exp�time field . As far as the C code is concerned this is just a large integer,
so an explicit test for this value is made as part of checking whether the expiration
time has passed. The timer might indicate a time that has already passed. This is
unlikley to happen, but it is easy to check. The timer might also indicate a time in
the future. In either of the first two cases the reply value is zero, otherwise the
time remaining is returned (lines 10242 to 10247).

Finally, the timer is reset or set. At this level this is done putting the desired
expiration time into the correct field of the timer structure and calling another
function to do the work. Of course, resetting the timer does not require storing a
value. We will see the functions reset and set soon, their code is in the source file
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for the clock task. But since the system task and the clock task are both compiled
into the kernel image all functions declared PUBLIC are accessible.

There is one other function defined in do�setalarm.c. This is cause�alarm,
the watchdog function whose address is stored in each timer, so it can be called
when the timer expires. It is simplicity itself—it generates a notify message to the
process whose process number is also stored in the timer structure. Thus the syn-
chronous alarm within the kernel is converted into a message to the system proc-
ess that asked for an alarm.

As an aside, note that when we talked about the initialization of timers a few
pages back (and in this section as well) we referred to synchronous alarms re-
quested by system processes. If that did not make complete sense at this point,
and if you are wondering what is a synchronous alarm or what about timers for
nonsystem processes, these questions will be dealt with in the next section, when
we discuss the clock task. There are so many interconnected parts in an operating
system that it is almost impossible to order all topics in a way that does not occa-
sionally require a reference to a part that has not been already been explained.
This is particularly true when discussing implementation. If we were not dealing
with a real operating system we could probably avoid bringing up messy details
like this. For that matter, a totally theoretical discussion of operating system prin-
ciples would probably never mention a system task. In a theory book we could
just wave our arms and ignore the problems of giving operating system com-
ponents in user space limited and controlled access to privileged resources like
interrupts and I/O ports.

The last file in the kernel/system/ directory which we will discuss in detail is
do�exec.c (line 10300). Most of the work of the exec system call is done within
the process manager. The process manager sets up a stack for a new program that
contains the arguments and the environment. Then it passes the resulting stack
pointer to the kernel using sys�exec, which is handled by do�exec (line 10618).
The stack pointer is set in the kernel part of the process table, and if the process
being exec-ed is using an extra segment the assembly language phys�memset
function defined in klib386.s is called to erase any data that might be left over
from previous use of that memory region (line 10330).

An exec call causes a slight anomaly. The process invoking the call sends a
message to the process manager and blocks. With other system calls, the resulting
reply would unblock it. With exec there is no reply, because the newly loaded
core image is not expecting a reply. Therefore, do�exec unblocks the process
itself on line 10333 The next line makes the new image ready to run, using the
lock�enqueue function that protects against a possible race condition. Finally, the
command string is saved so the process can be identified when the user invokes
the ps command or presses a function key to display data from the process table.

To finish our discussion of the system task, we will look at its role in handling
a typical operating service, providing data in response to a read system call.
When a user does a read call, the file system checks its cache to see if it has the
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block needed. If not, it sends a message to the appropriate disk driver to load it
into the cache. Then the file system sends a message to the system task telling it
to copy the block to the user process. In the worst case, eleven messages are
needed to read a block; in the best case, four messages are needed. Both cases are
shown in Fig. 2-46. In Fig. 2-46 (a), message 3 asks the system task to execute
I/O instructions; 4 is the ACK. When a hardware interrupt occurs the system task
tells the waiting driver about this event with message 5. Messages 6 and 7 are a
request to copy the data to the FS cache and the reply, message 8 tells the FS the
data is ready, and messages 9 and 10 are a request to copy the data from the cache
to the user, and the reply. Finally message 11 is the reply to the user. In Fig. 2-46
(b), the data is already in the cache, messages 2 and 3 are the request to copy it to
the user and the reply. These messages are a source of overhead in MINIX 3 and
are the price paid for the highly modular design.

User

Disk device driver
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Figure 2-46. (a) Worst case for reading a block requires eleven messages.
(b) Best case for reading a block requires four messages.

Kernel calls to request copying of data are probably the most heavily used
ones in MINIX 3. We have already seen the part of the system task that ultimately
does the work, the function virtual�copy. One way to deal with some of the inef-
ficiency of the message passing mechanism is to pack multiple requests into a
message. The sys�virvcopy and sys�physvcopy kernel calls do this. The content
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of a message that invokes one of these call is a pointer to a vector specifying mul-
tiple blocks to be copied between memory locations. Both are supported by
do�vcopy, which executes a loop, extracting source and destination addresses and
block lengths and calling phys�copy repeatedly until all the copies are complete.
We will see in the next chapter that disk devices have a similar ability to handle
multiple transfers based on a single request.

2.8 THE CLOCK TASK IN MINIX 3

Clocks (also called timers) are essential to the operation of any timesharing
system for a variety of reasons. For example, they maintain the time of day and
prevent one process from monopolizing the CPU. The MINIX 3 clock task has
some resemblance to a device driver, in that it is driven by interrupts generated by
a hardware device. However, the clock is neither a block device, like a disk, nor a
character device, like a terminal. In fact, in MINIX 3 an interface to the clock is
not provided by a file in the /dev/ directory. Furthermore, the clock task executes
in kernel space and cannot be accessed directly by user-space processes. It has
access to all kernel functions and data, but user-space processes can only access it
via the system task. In this section we will first a look at clock hardware and
software in general, and then we will see how these ideas are applied in MINIX 3.

2.8.1 Clock Hardware

Two types of clocks are used in computers, and both are quite different from
the clocks and watches used by people. The simpler clocks are tied to the 110- or
220-volt power line, and cause an interrupt on every voltage cycle, at 50 or 60 Hz.
These are essentially extinct in modern PCs.

The other kind of clock is built out of three components: a crystal oscillator, a
counter, and a holding register, as shown in Fig. 2-47. When a piece of quartz
crystal is properly cut and mounted under tension, it can be made to generate a
periodic signal of very high accuracy, typically in the range of 5 to 200 MHz,
depending on the crystal chosen. At least one such circuit is usually found in any
computer, providing a synchronizing signal to the computer’s various circuits.
This signal is fed into the counter to make it count down to zero. When the
counter gets to zero, it causes a CPU interrupt. Computers whose advertised
clock rate is higher than 200 MHz normally use a slower clock and a clock multi-
plier circuit.

Programmable clocks typically have several modes of operation. In one-shot
mode, when the clock is started, it copies the value of the holding register into the
counter and then decrements the counter at each pulse from the crystal. When the
counter gets to zero, it causes an interrupt and stops until it is explicitly started
again by the software. In square-wave mode, after getting to zero and causing the
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Crystal oscillator

Counter is decremented at each pulse

Holding register is used to load the counter

Figure 2-47. A programmable clock.

interrupt, the holding register is automatically copied into the counter, and the
whole process is repeated again indefinitely. These periodic interrupts are called
clock ticks.

The advantage of the programmable clock is that its interrupt frequency can
be controlled by software. If a 1-MHz crystal is used, then the counter is pulsed
every microsecond. With 16-bit registers, interrupts can be programmed to occur
at intervals from 1 microsecond to 65.536 milliseconds. Programmable clock
chips usually contain two or three independently programmable clocks and have
many other options as well (e.g., counting up instead of down, interrupts disabled,
and more).

To prevent the current time from being lost when the computer’s power is
turned off, most computers have a battery-powered backup clock, implemented
with the kind of low-power circuitry used in digital watches. The battery clock
can be read at startup. If the backup clock is not present, the software may ask the
user for the current date and time. There is also a standard protocol for a
networked system to get the current time from a remote host. In any case the time
is then translated into the number of seconds since 12 A.M. Universal Coordi-
nated Time (UTC) (formerly known as Greenwich Mean Time) on Jan. 1, 1970,
as UNIX and MINIX 3 do, or since some other benchmark. Clock ticks are
counted by the running system, and every time a full second has passed the real
time is incremented by one count. MINIX 3 (and most UNIX systems) do not take
into account leap seconds, of which there have been 23 since 1970. This is not
considered a serious flaw. Usually, utility programs are provided to manually set
the system clock and the backup clock and to synchronize the two clocks.

We should mention here that all but the earliest IBM-compatible computers
have a separate clock circuit that provides timing signals for the CPU, internal
data busses, and other components. This is the clock that is meant when people
speak of CPU clock speeds, measured in Megahertz on the earliest personal com-
puters, and in Gigahertz on modern systems. The basic circuitry of quartz crys-
tals, oscillators and counters is the same, but the requirements are so different that
modern computers have independent clocks for CPU control and timekeeping.
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2.8.2 Clock Software

All the clock hardware does is generate interrupts at known intervals. Every-
thing else involving time must be done by the software, the clock driver. The
exact duties of the clock driver vary among operating systems, but usually include
most of the following:

1. Maintaining the time of day.

2. Preventing processes from running longer than they are allowed to.

3. Accounting for CPU usage.

4. Handling the alarm system call made by user processes.

5. Providing watchdog timers for parts of the system itself.

6. Doing profiling, monitoring, and statistics gathering.

The first clock function, maintaining the time of day (also called the real
time) is not difficult. It just requires incrementing a counter at each clock tick, as
mentioned before. The only thing to watch out for is the number of bits in the
time-of-day counter. With a clock rate of 60 Hz, a 32-bit counter will overflow in
just over 2 years. Clearly the system cannot store the real time as the number of
ticks since Jan. 1, 1970 in 32 bits.

Three approaches can be taken to solve this problem. The first way is to use a
64-bit counter, although doing so makes maintaining the counter more expensive
since it has to be done many times a second. The second way is to maintain the
time of day in seconds, rather than in ticks, using a subsidiary counter to count
ticks until a whole second has been accumulated. Because 232 seconds is more
than 136 years, this method will work until well into the twenty-second century.

The third approach is to count ticks, but to do that relative to the time the sys-
tem was booted, rather than relative to a fixed external moment. When the backup
clock is read or the user types in the real time, the system boot time is calculated
from the current time-of-day value and stored in memory in any convenient form.
When the time of day is requested, the stored time of day is added to the counter
to get the current time of day. All three approaches are shown in Fig. 2-48.

(a) (b) (c)

Time of day in ticks

Time of day
in seconds

Counter in ticks

System boot time
in seconds

Number of ticks
in current second

64 bits 32 bits 32 bits

Figure 2-48. Three ways to maintain the time of day.
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The second clock function is preventing processes from running too long.
Whenever a process is started, the scheduler should initialize a counter to the
value of that process’ quantum in clock ticks. At every clock interrupt, the clock
driver decrements the quantum counter by 1. When it gets to zero, the clock driver
calls the scheduler to set up another process.

The third clock function is doing CPU accounting. The most accurate way to
do it is to start a second timer, distinct from the main system timer, whenever a
process is started. When that process is stopped, the timer can be read out to tell
how long the process has run. To do things right, the second timer should be saved
when an interrupt occurs and restored afterward.

A less accurate, but much simpler, way to do accounting is to maintain a
pointer to the process table entry for the currently running process in a global vari-
able. At every clock tick, a field in the current process’ entry is incremented. In
this way, every clock tick is ‘‘charged’’ to the process running at the time of the
tick. A minor problem with this strategy is that if many interrupts occur during a
process’ run, it is still charged for a full tick, even though it did not get much
work done. Properly accounting for the CPU during interrupts is too expensive
and is rarely done.

In MINIX 3 and many other systems, a process can request that the operating
system give it a warning after a certain interval. The warning is usually a signal,
interrupt, message, or something similar. One application requiring such warnings
is networking, in which a packet not acknowledged within a certain time interval
must be retransmitted. Another application is computer-aided instruction, where a
student not providing a response within a certain time is told the answer.

If the clock driver had enough clocks, it could set a separate clock for each
request. This not being the case, it must simulate multiple virtual clocks with a
single physical clock. One way is to maintain a table in which the signal time for
all pending timers is kept, as well as a variable giving the time of the next one.
Whenever the time of day is updated, the driver checks to see if the closest signal
has occurred. If it has, the table is searched for the next one to occur.

If many signals are expected, it is more efficient to simulate multiple clocks
by chaining all the pending clock requests together, sorted on time, in a linked list,
as shown in Fig. 2-49. Each entry on the list tells how many clock ticks following
the previous one to wait before causing a signal. In this example, signals are pend-
ing for 4203, 4207, 4213, 4215, and 4216.

In Fig. 2-49, a timer has just expired. The next interrupt occurs in 3 ticks, and
3 has just been loaded. On each tick, Next signal is decremented. When it gets to
0, the signal corresponding to the first item on the list is caused, and that item is
removed from the list. Then Next signal is set to the value in the entry now at the
head of the list, in this example, 4. Using absolute times rather than relative times
is more convenient in many cases, and that is the approach used by MINIX 3.

Note that during a clock interrupt, the clock driver has several things to do.
These things include incrementing the real time, decrementing the quantum and
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Figure 2-49. Simulating multiple timers with a single clock.

checking for 0, doing CPU accounting, and decrementing the alarm counter.
However, each of these operations has been carefully arranged to be very fast
because they have to be repeated many times a second.

Parts of the operating system also need to set timers. These are called watch-
dog timers. When we study the hard disk driver, we will see that a wakeup call is
scheduled each time the disk controller is sent a command, so an attempt at
recovery can be made if the command fails completely. Floppy disk drivers use
timers to wait for the disk motor to get up to speed and to shut down the motor if
no activity occurs for a while. Some printers with a movable print head can print
at 120 characters/sec (8.3 msec/character) but cannot return the print head to the
left margin in 8.3 msec, so the terminal driver must delay after typing a carriage
return.

The mechanism used by the clock driver to handle watchdog timers is the
same as for user signals. The only difference is that when a timer goes off,
instead of causing a signal, the clock driver calls a procedure supplied by the
caller. The procedure is part of the caller’s code. This presented a problem in the
design of MINIX 3, since one of the goals was to remove drivers from the kernel’s
address space. The short answer is that the system task, which is in kernel space,
can set alarms on behalf of some user-space processes, and then notify them when
a timer goes off. We will elaborate on this mechanism further on.

The last thing in our list is profiling. Some operating systems provide a
mechanism by which a user program can have the system build up a histogram of
its program counter, so it can see where it is spending its time. When profiling is a
possibility, at every tick the driver checks to see if the current process is being
profiled, and if so, computes the bin number (a range of addresses) corresponding
to the current program counter. It then increments that bin by one. This mechan-
ism can also be used to profile the system itself.

2.8.3 Overview of the Clock Driver in MINIX 3

The MINIX 3 clock driver is contained in the file kernel/clock.c . It can be
considered to have three functional parts. First, like the device drivers that we
will see in the next chapter, there is a task mechanism which runs in a loop, wait-
ing for messages and dispatching to subroutines that perform the action requested
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in each message. However, this structure is almost vestigial in the clock task.
The message mechanism is expensive, requiring all the overhead of a context
switch. So for the clock this is used only when there is a substantial amount of
work to be done. Only one kind of message is received, there is only one subrou-
tine to service the message, and a reply message is not sent when the job is done.

The second major part of the clock software is the interrupt handler that is
activated 60 times each second. It does basic timekeeping, updating a variable
that counts clock ticks since the system was booted. It compares this with the
time for the next timer expiration. It also updates counters that register how much
of the quantum of the current process has been used and how much total time the
current process has used. If the interrupt handler detects that a process has used
its quantum or that a timer has expired it generates the message that goes to the
main task loop. Otherwise no message is sent. The strategy here is that for each
clock tick the handler does as little as necessary, as fast as possible. The costly
main task is activated only when there is substantial work to do.

The third general part of the clock software is a collection of subroutines that
provide general support, but which are not called in response to clock interrupts,
either by the interrupt handler or by the main task loop. One of these subroutines
is coded as PRIVATE, and is called before the main task loop is entered. It initial-
izes the clock, which entails writing data to the clock chip to cause it to generate
interrupts at the desired intervals. The initialization routine also puts the address
of the interrupt handler in the right place to be found when the clock chip triggers
the IRQ 8 input to the interrupt controller chip, and then enables that input to
respond.

The rest of the subroutines in clock.c are declared PUBLIC, and can be called
from anywhere in the kernel binary. In fact none of them are called from clock.c
itself. They are mostly called by the system task in order to service system calls
related to time. These subroutines do such things as reading the time-since-boot
counter, for timing with clock-tick resolution, or reading a register in the clock
chip itself, for timing that requires microsecond resolution. Other subroutines are
used to set and reset timers. Finally, a subroutine is provided to be called when
MINIX 3 shuts down. This one resets the hardware timer parameters to those
expected by the BIOS.

The Clock Task

The main loop of the clock task accepts only a single kind of message,
HARD�INT, which comes from the interrupt handler. Anything else is an error.
Furthermore, it does not receive this message for every clock tick interrupt,
although the subroutine called each time a message is received is named
do�clocktick. A message is received, and do�clocktick is called only if process
scheduling is needed or a timer has expired.
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The Clock Interrupt Handler

The interrupt handler runs every time the counter in the clock chip reaches
zero and generates an interrupt. This is where the basic timekeeping work is
done. In MINIX 3 the time is kept using the method of Fig. 2-48(c). However, in
clock.c only the counter for ticks since boot is maintained; records of the boot
time are kept elsewhere. The clock software supplies only the current tick count
to aid a system call for the real time. Further processing is done by one of the
servers. This is consistent with the MINIX 3 strategy of moving functionality to
processes that run in user space.

In the interrupt handler the local counter is updated for each interrupt
received. When interrupts are disabled ticks are lost. In some cases it is possible
to correct for this effect. A global variable is available for counting lost ticks, and
it is added to the main counter and then reset to zero each time the handler is
activated. In the implementation section we will see an example of how this is
used.

The handler also affects variables in the process table, for billing and process
control purposes. A message is sent to the clock task only if the current time has
passed the expiration time of the next scheduled timer or if the quantum of the
running process has been decremented to zero. Everything done in the interrupt
service is a simple integer operation—arithmetic, comparison, logical AND/OR,
or assignment—which a C compiler can translate easily into basic machine opera-
tions. At worst there are five additions or subtractions and six comparisons, plus a
few logical operations and assignments in completing the interrupt service. In
particular there is no subroutine call overhead.

Watchdog Timers

A few pages back we left hanging the question of how user-space processes
can be provided with watchdog timers, which ordinarily are thought of as user-
supplied procedures that are part of the user’s code and are executed when a timer
expires. Clearly, this can not be done in MINIX 3. But we can use a synchronous
alarm to bridge the gap from the kernel to user space.

This is a good time to explain what is meant by a synchronous alarm. A sig-
nal may arrive or a conventional watchdog may be activated without any relation
to what part of a process is currently executing, so these mechanisms are asyn-
chronous. A synchronous alarm is delivered as a message, and thus can be
received only when the recipient has executed receive. So we say it is synchro-
nous because it will be received only when the receiver expects it. If the notify
method is used to inform a recipient of an alarm, the sender does not have to
block, and the recipient does not have to be concerned with missing the alarm.
Messages from notify are saved if the recipient is not waiting. A bitmap is used,
with each bit representing a possible source of a notification.
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Watchdog timers take advantage of the timer� t type s�alarm�timer field that
exists in each element of the priv table. Each system process has a slot in the priv
table. To set a timer, a system process in user space makes a sys�setalarm call,
which is handled by the system task. The system task is compiled in kernel space,
and thus can initialize a timer on behalf of the calling process. Initialization
entails putting the address of a procedure to execute when the timer expires into
the correct field, and then inserting the timer into a list of timers, as in Fig. 2-49.

The procedure to execute has to be in kernel space too, of course. No prob-
lem. The system task contains a watchdog function, cause�alarm, which gen-
erates a notify when it goes off, causing a synchronous alarm for the user. This
alarm can invoke the user-space watchdog function. Within the kernel binary this
is a true watchdog, but for the process that requested the timer, it is a synchronous
alarm. It is not the same as having the timer execute a procedure in the target’s
address space. There is a bit more overhead, but it is simpler than an interrupt.

What we wrote above was qualified: we said that the system task can set
alarms on behalf of some user-space processes. The mechanism just described
works only for system processes. Each system process has a copy of the priv
structure, but a single copy is shared by all non-system (user) processes. The
parts of the priv table that cannot be shared, such as the bitmap of pending notifi-
cations and the timer, are not usable by user processes. The solution is this: the
process manager manages timers on behalf of user processes in a way similar to
the way the system task manages timers for system processes. Every process has
a timer� t field of its own in the process manager’s part of the process table.

When a user process makes an alarm system call to ask for an alarm to be set,
it is handled by the process manager, which sets up the timer and inserts it into its
list of timers. The process manager asks the system task to send it a notification
when the first timer in the PM’s list of timers is scheduled to expire. The process
manager only has to ask for help when the head of its chain of timers changes,
either because the first timer has expired or has been cancelled, or because a new
request has been received that must go on the chain before the current head. This
is used to support the POSIX-standard alarm system call. The procedure to exe-
cute is within the address space of the process manager. When executed, the user
process that requested the alarm is sent a signal, rather than a notification.

Millisecond Timing

A procedure is provided in clock.c that provides microsecond resolution tim-
ing. Delays as short as a few microseconds may be needed by various I/O
devices. There is no practical way to do this using alarms and the message pass-
ing interface. The counter that is used for generating the clock interrupts can be
read directly. It is decremented approximately every 0.8 microseconds, and
reaches zero 60 times a second, or every 16.67 milliseconds. To be useful for I/O
timing it would have to be polled by a procedure running in kernel-space, but
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much work has gone into moving drivers out of kernel-space. Currently this func-
tion is used only as a source of randomness for the random number generator.
More use might be made of it on a very fast system, but this is a future project

Summary of Clock Services

Figure 2-50 summarizes the various services provided directly or indirectly by
clock.c. There are several functions declared PUBLIC that can be called from the
kernel or the system task. All other services are available only indirectly, by sys-
tem calls ultimately handled by the system task. Other system processes can ask
the system task directly, but user processes must ask the process manager, which
also relies on the system task.
�������������������������������������������������������������������������������

Service Access Response Clients�������������������������������������������������������������������������������
get�uptime Function call Ticks Kernel or system task�������������������������������������������������������������������������������
set�timer Function call None Kernel or system task�������������������������������������������������������������������������������
reset�timer Function call None Kernel or system task�������������������������������������������������������������������������������
read�clock Function call Count Kernel or system task�������������������������������������������������������������������������������
clock�stop Function call None Kernel or system task�������������������������������������������������������������������������������
Synchronous alarm System call Notification Server or driver, via system task�������������������������������������������������������������������������������
POSIX alarm System call Signal User process, via PM�������������������������������������������������������������������������������
Time System call Message Any process, via PM���������������������������������������������������������������������������������
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Figure 2-50. The time-related services supported by the clock driver.

The kernel or the system task can get the current uptime, or set or reset a
timer without the overhead of a message. The kernel or the system task can also
call read�clock, which reads the counter in the timer chip, to get time in units of
approximately 0.8 microseconds. The clock�stop function is intended to be
called only when MINIX 3 shuts down. It restores the BIOS clock rate. A system
process, either a driver or a server, can request a synchronous alarm, which causes
activation of a watchdog function in kernel space and a notification to the request-
ing process. A POSIX-alarm is requested by a user process by asking the process
manager, which then asks the system task to activate a watchdog. When the timer
expires, the system task notifies the process manager, and the process manager
delivers a signal to the user process.

2.8.4 Implementation of the Clock Driver in MINIX 3

The clock task uses no major data structures, but several variables are used to
keep track of time. The variable realtime (line 10462) is basic—it counts all
clockticks. A global variable, lost�ticks, is defined in glo.h (line 5333). This
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variable is provided for the use of any function that executes in kernel space that
might disable interrupts long enough that one or more clock ticks could be lost. It
currently is used by the int86 function in klib386.s. Int86 uses the boot monitor to
manage the transfer of control to the BIOS, and the monitor returns the number of
clock ticks counted while the BIOS call was busy in the ecx register just before
the return to the kernel. This works because, although the clock chip is not
triggering the MINIX 3 clock interrupt handler when the BIOS request is handled,
the boot monitor can keep track of the time with the help of the BIOS.

The clock driver accesses several other global variables. It uses proc�ptr,
prev�ptr, and bill�ptr to reference the process table entry for the currently run-
ning process, the process that ran previously, and the process that gets charged for
time. Within these process table entries it accesses various fields, including
p�user� time and p�sys�time for accounting and p�ticks� left for counting down
the quantum of a process.

When MINIX 3 starts up, all the drivers are called. Most of them do some ini-
tialization then try to get a message and block. The clock driver, clock�task (line
10468), does that too. First it calls init�clock to initialize the programmable clock
frequency to 60 Hz. When a message is received, it calls do�clocktick if the mes-
sage was a HARD�INT (line 10486). Any other kind of message is unexpected
and treated as an error.

Do�clocktick (line 10497) is not called on each tick of the clock, so its name
is not an exact description of its function. It is called when the interrupt handler
has determined there might be something important to do. One of the conditions
that results in running do�clocktick is the current process using up all of its quan-
tum. If the process is preemptable (the system and clock tasks are not) a call to
lock�dequeue followed immediately by a call to lock�enqueue (lines 10510 to
10512) removes the process from its queue, then makes it ready again and
reschedules it. The other thing that activates do�clocktick is expiration of a
watchdog timer. Timers and linked lists of timers are used so much in MINIX 3
that a library of functions to support them was created. The library function
tmrs�exptimers called on line 10517 runs the watchdog functions for all expired
timers and deactivates them.

Init�clock (line 10529) is called only once, when the clock task is started.
There are several places one could point to and say, ‘‘This is where MINIX 3 starts
running.’’ This is a candidate; the clock is essential to a preemptive multitasking
system. Init�clock writes three bytes to the clock chip that set its mode and set
the proper count into the master register. Then it registers its process number,
IRQ, and handler address so interrupts will be directed properly. Finally, it
enables the interrupt controller chip to accept clock interrupts.

The next function, clock�stop, undoes the initialization of the clock chip. It is
declared PUBLIC and is not called from anywhere in clock.c. It is placed here
because of the obvious similarity to init�clock. It is only called by the system
task when MINIX 3 is shut down and control is to be returned to the boot monitor.
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As soon as (or, more accurately, 16.67 milliseconds after) init�clock runs, the
first clock interrupt occurs, and clock interrupts repeat 60 times a second as long
as MINIX 3 runs. The code in clock�handler (line 10556) probably runs more fre-
quently than any other part of the MINIX 3 system. Consequently, clock�handler
was built for speed. The only subroutine calls are on line 10586; they are only
needed if running on an obsolete IBM PS/2 system. The update of the current
time (in ticks) is done on lines 10589 to 10591. Then user and accounting times
are updated.

Decisions were made in the design of the handler that might be questioned.
Two tests are done on line 10610 and if either condition is true the clock task is
notified. The do�clocktick function called by the clock task repeats both tests to
decide what needs to be done. This is necessary because the notify call used by
the handler cannot pass any information to distinguish different conditions. We
leave it to the reader to consider alternatives and how they might be evaluated.

The rest of clock.c contains utility functions we have already mentioned.
Get�uptime (line 10620) just returns the value of realtime, which is visible only
to functions in clock.c. Set�timer and reset� timer use other functions from the
timer library that take care of all the details of manipulating a chain of timers.
Finally, read�clock reads and returns the current count in the clock chip’s count-
down register.

2.9 SUMMARY

To hide the effects of interrupts, operating systems provide a conceptual
model consisting of sequential processes running in parallel. Processes can com-
municate with each other using interprocess communication primitives, such as
semaphores, monitors, or messages. These primitives are used to ensure that no
two processes are ever in their critical sections at the same time. A process can be
running, runnable, or blocked and can change state when it or another process
executes one of the interprocess communication primitives.

Interprocess communication primitives can be used to solve such problems as
the producer-consumer, dining philosophers, and reader-writer. Even with these
primitives, care has to be taken to avoid errors and deadlocks. Many scheduling
algorithms are known, including round-robin, priority scheduling, multilevel
queues, and policy-driven schedulers.

MINIX 3 supports the process concept and provides messages for interprocess
communication. Messages are not buffered, so a send succeeds only when the
receiver is waiting for it. Similarly, a receive succeeds only when a message is
already available. If either operation does not succeed, the caller is blocked.
MINIX 3 also provides a nonblocking supplement to messages with a notify primi-
tive. An attempt to send a notify to a receiver that is not waiting results in a bit
being set, which triggers notification when a receive is done later.
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As an example of the message flow, consider a user doing a read. The user
process sends a message to the FS requesting it. If the data are not in the FS’
cache, the FS asks the driver to read it from the disk. Then the FS blocks waiting
for the data. When the disk interrupt happens, the system task is notified, allow-
ing it to reply to the disk driver, which then replies to the FS. At this point, the FS
asks the system task to copy the data from its cache, where the newly requested
block has been placed, to the user. These steps are illustrated in Fig. 2-46.

Process switching may follow an interrupt. When a process is interrupted, a
stack is created within the process table entry of the process, and all the informa-
tion needed to restart it is put on the new stack. Any process can be restarted by
setting the stack pointer to point to its process table entry and initiating a sequence
of instructions to restore the CPU registers, culminating with an iretd instruction.
The scheduler decides which process table entry to put into the stack pointer.

Interrupts cannot occur when the kernel itself is running. If an exception
occurs when the kernel is running, the kernel stack, rather than a stack within the
process table, is used. When an interrupt has been serviced, a process is restarted.

The MINIX 3 scheduling algorithm uses multiple priority queues. System
processes normally run in the highest priority queues and user processes in lower
priority queues, but priorities are assigned on a process-by-process basis. A proc-
ess stuck in a loop may have its priority temporarily reduced; the priority can be
restored when other processes have had a chance to run. The nice command can
be used to change the priority of a process within defined limits. Processes are
run round robin for a quantum that can vary per process. However, after a process
has blocked and becomes ready again it will be put on the head of its queue with
just the unused part of its quantum. This is intended to give faster response to
processes doing I/O. Device drivers and servers are allowed a large quantum, as
they are expected to run until they block. However, even system processes can be
preempted if they run too long.

The kernel image includes a system task which facilitates communication of
user-space processes with the kernel. It supports the servers and device drivers by
performing privileged operations on their behalf. In MINIX 3, the clock task is
also compiled with the kernel. It is not a device driver in the ordinary sense.
User-space processes cannot access the clock as a device.

PROBLEMS

1. Why is multiprogramming central to the operation of a modern operating system?

2. What are the three main states that a process can be in? Describe the meaning of each
one briefly.
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3. Suppose that you were to design an advanced computer architecture that did process
switching in hardware, instead of having interrupts. What information would the CPU
need? Describe how the hardware process switching might work.

4. On all current computers, at least part of the interrupt handlers are written in assembly
language. Why?

5. Redraw Fig. 2-2 adding two new states: New and Terminated. When a process is
created, it is initially in the New state. When it exits, it is in the Terminated state.

6. In the text it was stated that the model of Fig. 2-6(a) was not suited to a file server
using a cache in memory. Why not? Could each process have its own cache?

7. What is the fundamental difference between a process and a thread?

8. In a system with threads, is there normally one stack per thread or one stack per proc-
ess? Explain.

9. What is a race condition?

10. Give an example of a race condition that could possibly occur when buying airplane
tickets for two people to go on a trip together.

11. Write a shell script that produces a file of sequential numbers by reading the last
number in the file, adding 1 to it, and then appending to the file. Run one instance of
the script in the background and one in the foreground, each accessing the same file.
How long does it take before a race condition manifests itself? What is the critical
section? Modify the script to prevent the race (Hint: use

ln file file.lock

to lock the data file).

12. Is a statement like

ln file file.lock

an effective locking mechanism for a user program like the scripts used in the previ-
ous problem? Why (or why not)?

13. Does the busy waiting solution using the turn variable (Fig. 2-10) work when the two
processes are running on a shared-memory multiprocessor, that is, two CPUs, sharing
a common memory?

14. Consider a computer that does not have a TEST AND SET LOCK instruction but does
have an instruction to swap the contents of a register and a memory word in a single
indivisible action. Can that be used to write a routine enter�region such as the one
found in Fig. 2-12?

15. Give a sketch of how an operating system that can disable interrupts could implement
semaphores.

16. Show how counting semaphores (i.e., semaphores that can hold an arbitrarily large
value) can be implemented using only binary semaphores and ordinary machine
instructions.
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17. In Sec. 2.2.4, a situation with a high-priority process, H, and a low-priority process, L,
was described, which led to H looping forever. Does the same problem occur if
round-robin scheduling is used instead of priority scheduling? Discuss.

18. Synchronization within monitors uses condition variables and two special operations,
WAIT and SIGNAL. A more general form of synchronization would be to have a sin-
gle primitive, WAITUNTIL, that had an arbitrary Boolean predicate as parameter.
Thus, one could say, for example,

WAITUNTIL x < 0 or y + z < n

The SIGNAL primitive would no longer be needed. This scheme is clearly more gen-
eral than that of Hoare or Brinch Hansen, but it is not used. Why not? (Hint: think
about the implementation.)

19. A fast food restaurant has four kinds of employees: (1) order takers, who take
customer’s orders; (2) cooks, who prepare the food; (3) packaging specialists, who
stuff the food into bags; and (4) cashiers, who give the bags to customers and take
their money. Each employee can be regarded as a communicating sequential process.
What form of interprocess communication do they use? Relate this model to proc-
esses in MINIX 3.

20. Suppose that we have a message-passing system using mailboxes. When sending to a
full mailbox or trying to receive from an empty one, a process does not block.
Instead, it gets an error code back. The process responds to the error code by just try-
ing again, over and over, until it succeeds. Does this scheme lead to race conditions?

21. In the solution to the dining philosophers problem (Fig. 2-20), why is the state variable
set to HUNGRY in the procedure take�forks?

22. Consider the procedure put�forks in Fig. 2-20. Suppose that the variable state[i] was
set to THINKING after the two calls to test, rather than before. How would this
change affect the solution for the case of 3 philosophers? For 100 philosophers?

23. The readers and writers problem can be formulated in several ways with regard to
which category of processes can be started when. Carefully describe three different
variations of the problem, each one favoring (or not favoring) some category of proc-
esses. For each variation, specify what happens when a reader or a writer becomes
ready to access the data base, and what happens when a process is finished using the
data base.

24. The CDC 6600 computers could handle up to 10 I/O processes simultaneously using
an interesting form of round-robin scheduling called processor sharing. A process
switch occurred after each instruction, so instruction 1 came from process 1, instruc-
tion 2 came from process 2, etc. The process switching was done by special hardware,
and the overhead was zero. If a process needed T sec to complete in the absence of
competition, how much time would it need if processor sharing was used with n proc-
esses?

25. Round- robin schedulers normally maintain a list of all runnable processes, with each
process occurring exactly once in the list. What would happen if a process occurred
twice in the list? Can you think of any reason for allowing this?
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26. Measurements of a certain system have shown that the average process runs for a time
T before blocking on I/O. A process switch requires a time S, which is effectively
wasted (overhead). For round-robin scheduling with quantum Q, give a formula for
the CPU efficiency for each of the following:

(a) Q = ∞
(b) Q > T
(c) S < Q < T
(d) Q = S
(e) Q nearly 0

27. Five jobs are waiting to be run. Their expected run times are 9, 6, 3, 5, and X. In what
order should they be run to minimize average response time? (Your answer will
depend on X.)

28. Five batch jobs A through E, arrive at a computer center at almost the same time.
They have estimated running times of 10, 6, 2, 4, and 8 minutes. Their (externally
determined) priorities are 3, 5, 2, 1, and 4, respectively, with 5 being the highest prior-
ity. For each of the following scheduling algorithms, determine the mean process tur-
naround time. Ignore process switching overhead.

(a) Round robin.
(b) Priority scheduling.
(c) First-come, first-served (run in order 10, 6, 2, 4, 8).
(d) Shortest job first.

For (a), assume that the system is multiprogrammed, and that each job gets its fair
share of the CPU. For (b) through (d) assume that only one job at a time runs, until it
finishes. All jobs are completely CPU bound.

29. A process running on CTSS needs 30 quanta to complete. How many times must it be
swapped in, including the very first time (before it has run at all)?

30. The aging algorithm with a = 1/2 is being used to predict run times. The previous four
runs, from oldest to most recent, are 40, 20, 40, and 15 msec. What is the prediction
of the next time?

31. In Fig. 2-25 we saw how three-level scheduling works in a batch system. Could this
idea be applied to an interactive system without newly-arriving jobs? How?

32. Suppose that the threads of Fig. 2-28(a) are run in the order: one from A, one from B,
one from A, one from B, etc. How many possible thread sequences are there for the
first four times scheduling is done?

33. A soft real-time system has four periodic events with periods of 50, 100, 200, and 250
msec each. Suppose that the four events require 35, 20, 10, and x msec of CPU time,
respectively. What is the largest value of x for which the system is schedulable?

34. During execution, MINIX 3 maintains a variable proc�ptr that points to the process
table entry for the current process. Why?

35. MINIX 3 does not buffer messages. Explain how this design decision causes problems
with clock and keyboard interrupts.
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36. When a message is sent to a sleeping process in MINIX 3, the procedure ready is called
to put that process on the proper scheduling queue. This procedure starts out by disa-
bling interrupts. Explain.

37. The MINIX 3 procedure mini�rec contains a loop. Explain what it is for.

38. MINIX 3 essentially uses the scheduling method in Fig. 2-43, with different priorities
for classes. The lowest class (user processes) has round-robin scheduling, but the
tasks and servers always are allowed to run until they block. Is it possible for proc-
esses in the lowest class to starve? Why (or why not)?

39. Is MINIX 3 suitable for real-time applications, such as data logging? If not, what could
be done to make it so?

40. Assume that you have an operating system that provides semaphores. Implement a
message system. Write the procedures for sending and receiving messages.

41. A student majoring in anthropology and minoring in computer science has embarked
on a research project to see if African baboons can be taught about deadlocks. He
locates a deep canyon and fastens a rope across it, so the baboons can cross hand-
over-hand. Several baboons can cross at the same time, provided that they are all
going in the same direction. If eastward moving and westward moving baboons ever
get onto the rope at the same time, a deadlock will result (the baboons will get stuck in
the middle) because it is impossible for one baboon to climb over another one while
suspended over the canyon. If a baboon wants to cross the canyon, he must check to
see that no other baboon is currently crossing in the opposite direction. Write a pro-
gram using semaphores that avoids deadlock. Do not worry about a series of eastward
moving baboons holding up the westward moving baboons indefinitely.

42. Repeat the previous problem, but now avoid starvation. When a baboon that wants to
cross to the east arrives at the rope and finds baboons crossing to the west, he waits
until the rope is empty, but no more westward moving baboons are allowed to start
until at least one baboon has crossed the other way.

43. Solve the dining philosophers problem using monitors instead of semaphores.

44. Add code to the MINIX 3 kernel to keep track of the number of messages sent from
process (or task) i to process (or task) j. Print this matrix when the F4 key is hit.

45. Modify the MINIX 3 scheduler to keep track of how much CPU time each user process
has had recently. When no task or server wants to run, pick the user process that has
had the smallest share of the CPU.

46. Modify MINIX 3 so that each process can explicitly set the scheduling priority of its
children using a new system call setpriority with parameters pid and priority.

47. Modify the hwint�master and hwint�slave macros in mpx386.s so the operations now
performed by the save function are performed inline. What is the cost in code size?
Can you measure an increase in performance?

48. Explain all of the items displayed by the MINIX 3 sysenv command on your MINIX 3
system. If you do not have access to a running MINIX 3 system, explain the items in
Fig. 2-37.
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49. In the discussion of initialization of the process table we mentioned that some C com-
pilers may generate slightly better code if you add a constant to the array instead of
the index. Write a pair of short C programs to test this hypothesis.

50. Modify MINIX 3 to collect statistics about messages sent by whom to whom and write
a program to collect and print these statistics in a useful way.



3
INPUT/OUTPUT

One of the main functions of an operating system is to control all the com-
puter’s I/O (Input/Output) devices. It must issue commands to the devices, catch
interrupts, and handle errors. It should also provide an interface between the
devices and the rest of the system that is simple and easy to use. To the extent
possible, the interface should be the same for all devices (device independence).
The I/O code represents a significant fraction of the total operating system. Thus
to really understand what an operating system does, you have to understand how
I/O works. How the operating system manages I/O is the main subject of this
chapter.

This chapter is organized as follows. First we will look at some of the princi-
ples of how I/O hardware is organized. Then we will look at I/O software in gen-
eral. I/O software can be structured in layers, with each layer having a well-
defined task to perform. We will look at these layers to see what they do and how
they fit together.

After that comes a section on deadlocks. We will define deadlocks precisely,
show how they are caused, give two models for analyzing them, and discuss some
algorithms for preventing their occurrence.

Then we will move on to look at MINIX 3 We will start with a bird’s-eye view
of I/O in MINIX 3, including interrupts, device drivers, device-dependent I/O and
device-independent I/O. Following that introduction, we will look at several I/O
devices in detail: disks, keyboards, and displays. For each device we will look at
its hardware and software.

221
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3.1 PRINCIPLES OF I/O HARDWARE

Different people look at I/O hardware in different ways. Electrical engineers
look at it in terms of chips, wires, power supplies, motors, and all the other physi-
cal components that make up the hardware. Programmers look at the interface
presented to the software—the commands the hardware accepts, the functions it
carries out, and the errors that can be reported back. In this book we are con-
cerned with programming I/O devices, not designing, building, or maintaining
them, so our interest will be restricted to how the hardware is programmed, not
how it works inside. Nevertheless, the programming of many I/O devices is often
intimately connected with their internal operation. In the next three subsections
we will provide a little general background on I/O hardware as it relates to pro-
gramming.

3.1.1 I/O Devices

I/O devices can be roughly divided into two categories: block devices and
character devices. A block device is one that stores information in fixed-size
blocks, each one with its own address. Common block sizes range from 512 bytes
to 32,768 bytes. The essential property of a block device is that it is possible to
read or write each block independently of all the other ones. Disks are the most
common block devices.

If you look closely, the boundary between devices that are block addressable
and those that are not is not well defined. Everyone agrees that a disk is a block
addressable device because no matter where the arm currently is, it is always pos-
sible to seek to another cylinder and then wait for the required block to rotate
under the head. Now consider a tape drive used for making disk backups. Tapes
contain a sequence of blocks. If the tape drive is given a command to read block
N, it can always rewind the tape and go forward until it comes to block N. This
operation is analogous to a disk doing a seek, except that it takes much longer.
Also, it may or may not be possible to rewrite one block in the middle of a tape.
Even if it were possible to use tapes as random access block devices, that is
stretching the point somewhat: they are not normally used that way.

The other type of I/O device is the character device. A character device de-
livers or accepts a stream of characters, without regard to any block structure. It is
not addressable and does not have any seek operation. Printers, network inter-
faces, mice (for pointing), rats (for psychology lab experiments), and most other
devices that are not disk-like can be seen as character devices.

This classification scheme is not perfect. Some devices just do not fit in.
Clocks, for example, are not block addressable. Nor do they generate or accept
character streams. All they do is cause interrupts at well-defined intervals. Still,
the model of block and character devices is general enough that it can be used as a
basis for making some of the operating system software dealing with I/O device
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independent. The file system, for example, deals only with abstract block devices
and leaves the device-dependent part to lower-level software called device
drivers.

I/O devices cover a huge range in speeds, which puts considerable pressure on
the software to perform well over many orders of magnitude in data rates. Fig. 3-
1 shows the data rates of some common devices. Most of these devices tend to get
faster as time goes on.

������������������������������������������
Device Data rate������������������������������������������

Keyboard 10 bytes/sec������������������������������������������
Mouse 100 bytes/sec������������������������������������������
56K modem 7 KB/sec������������������������������������������
Scanner 400 KB/sec������������������������������������������
Digital camcorder 4 MB/sec������������������������������������������
52x CD-ROM 8 MB/sec������������������������������������������
FireWire (IEEE 1394) 50 MB/sec������������������������������������������
USB 2.0 60 MB/sec������������������������������������������
XGA Monitor 60 MB/sec������������������������������������������
SONET OC-12 network 78 MB/sec������������������������������������������
Gigabit Ethernet 125 MB/sec������������������������������������������
Serial ATA disk 200 MB/sec������������������������������������������
SCSI Ultrawide 4 disk 320 MB/sec������������������������������������������
PCI bus 528 MB/sec��������������������������������������������
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Figure 3-1. Some typical device, network, and bus data rates.

3.1.2 Device Controllers

I/O units typically consist of a mechanical component and an electronic com-
ponent. It is often possible to separate the two portions to provide a more modular
and general design. The electronic component is called the device controller or
adapter. On personal computers, it often takes the form of a printed circuit card
that can be inserted into an expansion slot. The mechanical component is the
device itself. This arrangement is shown in Fig. 3-2

The controller card usually has a connector on it, into which a cable leading to
the device itself can be plugged. Many controllers can handle two, four, or even
eight identical devices. If the interface between the controller and device is a stan-
dard interface, either an official ANSI, IEEE, or ISO standard or a de facto one,
then companies can make controllers or devices that fit that interface. Many com-
panies, for example, make disk drives that match the IDE (Integrated Drive Elec-
tronics) and SCSI (Small Computer System Interface) interfaces.
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We mention this distinction between controller and device because the operat-
ing system nearly always deals with the controller, not the device. Most personal
computers and servers use the bus model of Fig. 3-2 for communication between
the CPU and the controllers. Large mainframes often use a different model, with
specialized I/O computers called I/O channels taking some of the load off the
main CPU.

Monitor

Keyboard USB
CD-ROM

Hard
disk drive

Hard
disk

controller

USB
controller

Keyboard
controller

Video
controllerMemoryCPU

Bus

Figure 3-2. A model for connecting the CPU, memory, controllers, and I/O
devices.

The interface between the controller and the device is often low-level. A disk,
for example, might be formatted with 1024 sectors of 512 bytes per track. What
actually comes off the drive, however, is a serial bit stream, starting with a pre-
amble, then the 4096 bits in a sector, and finally a checksum, also called an
Error-Correcting Code (ECC). The preamble is written when the disk is for-
matted and contains the cylinder and sector number, the sector size, and similar
data.

The controller’s job is to convert the serial bit stream into a block of bytes and
perform any error correction necessary. The block of bytes is typically first as-
sembled, bit by bit, in a buffer inside the controller. After its checksum has been
verified and the block declared to be free of errors, it can then be copied to main
memory.

The controller for a monitor also works as a bit serial device at an equally low
level. It reads bytes containing the characters to be displayed from memory and
generates the signals used to modulate the CRT beam. The controller also gen-
erates the signals for making a CRT beam do a horizontal retrace after it has fin-
ished a scan line, as well as the signals for making it do a vertical retrace after the
entire screen has been scanned. On an LCD screen these signals select individual
pixels and control their brightness, simulating the effect of the electron beam in a
CRT. If it were not for the video controller, the operating system programmer
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would have to program the scanning explicitly. With the controller, the operating
system initializes the controller with a few parameters, such as the number of
characters or pixels per line and number of lines per screen, and lets the controller
take care of actually driving the display.

Controllers for some devices, especially disks, are becoming extremely so-
phisticated. For example, modern disk controllers often have many megabytes of
memory inside the controller. As a result, when a read is being processed, as soon
as the arm gets to the correct cylinder, the controller begins reading and storing
data, even if it has not yet reached the sector it needs. This cached data may come
in handy for satisfying subsequent requests. Furthermore, even after the requested
data has been obtained, the controller may continue to cache data from subsequent
sectors, since they are likely to be needed later. In this manner, many disk reads
can be handled without any disk activity at all.

3.1.3 Memory-Mapped I/O

Each controller has a few registers that are used for communicating with the
CPU. By writing into these registers, the operating system can command the de-
vice to deliver data, accept data, switch itself on or off, or otherwise perform
some action. By reading from these registers, the operating system can learn what
the device’s state is, whether it is prepared to accept a new command, and so on.

In addition to the control registers, many devices have a data buffer that the
operating system can read and write. For example, a common way for computers
to display pixels on the screen is to have a video RAM, which is basically just a
data buffer, available for programs or the operating system to write into.

The issue thus arises of how the CPU communicates with the control registers
and the device data buffers. Two alternatives exist. In the first approach, each
control register is assigned an I/O port number, an 8- or 16-bit integer. Using a
special I/O instruction such as

IN REG,PORT

the CPU can read in control register PORT and store the result in CPU register
REG. Similarly, using

OUT PORT,REG

the CPU can write the contents of REG to a control register. Most early computers,
including nearly all mainframes, such as the IBM 360 and all of its successors,
worked this way.

In this scheme, the address spaces for memory and I/O are different, as shown
in Fig. 3-3(a).

On other computers, I/O registers are part of the regular memory address
space, as shown in Fig. 3-3(b). This scheme is called memory-mapped I/O, and
was introduced with the PDP-11 minicomputer. Each control register is assigned a
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Figure 3-3. (a) Separate I/O and memory space. (b) Memory-mapped I/O.
(c) Hybrid.

unique memory address to which no memory is assigned. Usually, the assigned
addresses are at the top of the address space. A hybrid scheme, with memory-
mapped I/O data buffers and separate I/O ports for the control registers is shown
in Fig. 3-3(c). The Pentium uses this architecture, with addresses 640K to 1M
being reserved for device data buffers in IBM PC compatibles, in addition to I/O
ports 0 through 64K.

How do these schemes work? In all cases, when the CPU wants to read a
word, either from memory or from an I/O port, it puts the address it needs on the
address lines of the bus and then asserts a READ signal on a bus control line. A
second signal line is used to tell whether I/O space or memory space is needed. If
it is memory space, the memory responds to the request. If it is I/O space, the I/O
device responds to the request. If there is only memory space [as in Fig. 3-3(b)],
every memory module and every I/O device compares the address lines to the
range of addresses that it services. If the address falls in its range, it responds to
the request. Since no address is ever assigned to both memory and an I/O device,
there is no ambiguity and no conflict.

3.1.4 Interrupts

Usually, controller registers have one or more status bits that can be tested to
determine if an output operation is complete or if new data is available from an
input device. A CPU can execute a loop, testing a status bit each time until a
device is ready to accept or provide new data. This is called polling or busy wait-
ing. We saw this concept in Sec. 2.2.3 as a possible method to deal with critical
sections, and in that context it was dismissed as something to be avoided in most
circumstances. In the realm of I/O, where you might have to wait a very long time
for the outside world to accept or produce data, polling is not acceptable except
for very small dedicated systems not running multiple processes.
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In addition to status bits, many controllers use interrupts to tell the CPU when
they are ready to have their registers read or written. We saw how interrupts are
handled by the CPU in Sec. 2.1.6. In the context of I/O, all you need to know is
that most interface devices provide an output which is logically the same as the
‘‘operation complete’’ or ‘‘data ready’’ status bit of a register, but which is meant
to be used to drive one of the IRQ (Interrupt ReQuest) lines of the system bus.
Thus when an interrupt-enabled operation completes, it interrupts the CPU and
starts the interrupt handler running. This piece of code informs the operating sys-
tem that I/O is complete. The operating system may then check the status bits to
verify that all went well, and either harvest the resulting data or initiate a retry.

The number of inputs to the interrupt controller may be limited; Pentium-class
PCs have only 15 available for I/O devices. Some controllers are hard-wired onto
the system parentboard, for example, the disk and keyboard controllers of an IBM
PC. On older systems, the IRQ used by the device was set by a switch or jumper
associated with the controller. If a user bought a new plug-in board, he had to
manually set the IRQ to avoid conflicts with existing IRQs. Few users could do
this correctly, which led the industry to develop Plug ’n Play, in which the BIOS
can automatically assign IRQs to devices at boot time to avoid conflicts.

3.1.5 Direct Memory Access (DMA)

Whether or not a system has memory-mapped I/O, its CPU needs to address
the device controllers to exchange data with them. The CPU can request data from
an I/O controller one byte at a time but doing so for a device like a disk that pro-
duces a large block of data wastes the CPU’s time, so a different scheme, called
DMA (Direct Memory Access) is often used. The operating system can only use
DMA if the hardware has a DMA controller, which most systems do. Sometimes
this controller is integrated into disk controllers and other controllers, but such a
design requires a separate DMA controller for each device. More commonly, a
single DMA controller is available (e.g., on the parentboard) for regulating trans-
fers to multiple devices, often concurrently.

No matter where it is physically located, the DMA controller has access to the
system bus independent of the CPU, as shown in Fig. 3-4. It contains several
registers that can be written and read by the CPU. These include a memory
address register, a byte count register, and one or more control registers. The con-
trol registers specify the I/O port to use, the direction of the transfer (reading from
the I/O device or writing to the I/O device), the transfer unit (byte at a time or
word at a time), and the number of bytes to transfer in one burst.

To explain how DMA works, let us first look at how disk reads occur when
DMA is not used. First the controller reads the block (one or more sectors) from
the drive serially, bit by bit, until the entire block is in the controller’s internal
buffer. Next, it computes the checksum to verify that no read errors have oc-
curred. Then the controller causes an interrupt. When the operating system starts
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Figure 3-4. Operation of a DMA transfer.

running, it can read the disk block from the controller’s buffer a byte or a word at
a time by executing a loop, with each iteration reading one byte or word from a
controller device register, storing it in main memory, incrementing the memory
address, and decrementing the count of items to be read until it reaches zero.

When DMA is used, the procedure is different. First the CPU programs the
DMA controller by setting its registers so it knows what to transfer where (step 1
in Fig. 3-4). It also issues a command to the disk controller telling it to read data
from the disk into its internal buffer and verify the checksum. When valid data
are in the disk controller’s buffer, DMA can begin.

The DMA controller initiates the transfer by issuing a read request over the
bus to the disk controller (step 2). This read request looks like any other read
request, and the disk controller does not know or care whether it came from the
CPU or from a DMA controller. Typically, the memory address to write to is on
the address lines of the bus so when the disk controller fetches the next word from
its internal buffer, it knows where to write it. The write to memory is another stan-
dard bus cycle (step 3). When the write is complete, the disk controller sends an
acknowledgement signal to the disk controller, also over the bus (step 4). The
DMA controller then increments the memory address to use and decrements the
byte count. If the byte count is still greater than 0, steps 2 through 4 are repeated
until the count reaches 0. At this point the controller causes an interrupt. When the
operating system starts up, it does not have to copy the block to memory; it is al-
ready there.

You may be wondering why the controller does not just store the bytes in
main memory as soon as it gets them from the disk. In other words, why does it
need an internal buffer? There are two reasons. First, by doing internal buffering,
the disk controller can verify the checksum before starting a transfer. If the check-
sum is incorrect, an error is signaled and no transfer to memory is done.
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The second reason is that once a disk transfer has started, the bits keep arriv-
ing from the disk at a constant rate, whether the controller is ready for them or
not. If the controller tried to write data directly to memory, it would have to go
over the system bus for each word transferred. If the bus were busy due to some
other device using it, the controller would have to wait. If the next disk word
arrived before the previous one had been stored, the controller would have to store
it somewhere. If the bus were very busy, the controller might end up storing quite
a few words and having a lot of administration to do as well. When the block is
buffered internally, the bus is not needed until the DMA begins, so the design of
the controller is much simpler because the DMA transfer to memory is not time
critical.

Not all computers use DMA. The argument against it is that the main CPU is
often far faster than the DMA controller and can do the job much faster (when the
limiting factor is not the speed of the I/O device). If there is no other work for it to
do, having the (fast) CPU wait for the (slow) DMA controller to finish is point-
less. Also, getting rid of the DMA controller and having the CPU do all the work
in software saves money, important on low-end (embedded) computers.

3.2 PRINCIPLES OF I/O SOFTWARE

Let us now turn away from the I/O hardware and look at the I/O software.
First we will look at the goals of the I/O software and then at the different ways
I/O can be done from the point of view of the operating system.

3.2.1 Goals of the I/O Software

A key concept in the design of I/O software is device independence . What
this means is that it should be possible to write programs that can access any I/O
device without having to specify the device in advance. For example, a program
that reads a file as input should be able to read a file on a floppy disk, on a hard
disk, or on a CD-ROM, without having to modify the program for each different
device. Similarly, one should be able to type a command such as

sort <input >output

and have it work with input coming from a floppy disk, an IDE disk, a SCSI disk,
or the keyboard, and the output going to any kind of disk or the screen. It is up to
the operating system to take care of the problems caused by the fact that these
devices really are different and require very different command sequences to read
or write.

Closely related to device independence is the goal of uniform naming. The
name of a file or a device should simply be a string or an integer and not depend
on the device in any way. In UNIX and MINIX 3, all disks can be integrated into
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the file system hierarchy in arbitrary ways so the user need not be aware of which
name corresponds to which device. For example, a floppy disk can be mounted
on top of the directory /usr/ast/backup so that copying a file to that directory
copies the file to the diskette. In this way, all files and devices are addressed the
same way: by a path name.

Another important issue for I/O software is error handling. In general, er-
rors should be handled as close to the hardware as possible. If the controller dis-
covers a read error, it should try to correct the error itself if it can. If it cannot,
then the device driver should handle it, perhaps by just trying to read the block
again. Many errors are transient, such as read errors caused by specks of dust on
the read head, and will go away if the operation is repeated. Only if the lower lay-
ers are not able to deal with the problem should the upper layers be told about it.
In many cases, error recovery can be done transparently at a low level without the
upper levels even knowing about the error.

Still another key issue is synchronous (blocking) versus asynchronous
(interrupt-driven) transfers. Most physical I/O is asynchronous—the CPU starts
the transfer and goes off to do something else until the interrupt arrives. User pro-
grams are much easier to write if the I/O operations are blocking—after a receive
system call the program is automatically suspended until the data are available in
the buffer. It is up to the operating system to make operations that are actually
interrupt-driven look blocking to the user programs.

Another issue for the I/O software is buffering. Often data that come off a
device cannot be stored directly in its final destination. For example, when a
packet comes in off the network, the operating system does not know where to put
it until it has stored the packet somewhere and examined it. Also, some devices
have severe real-time constraints (for example, digital audio devices), so the data
must be put into an output buffer in advance to decouple the rate at which the
buffer is filled from the rate at which it is emptied, in order to avoid buffer under-
runs. Buffering involves considerable copying and often has a major impact on
I/O performance.

The final concept that we will mention here is sharable versus dedicated
devices. Some I/O devices, such as disks, can be used by many users at the same
time. No problems are caused by multiple users having open files on the same
disk at the same time. Other devices, such as tape drives, have to be dedicated to a
single user until that user is finished. Then another user can have the tape drive.
Having two or more users writing blocks intermixed at random to the same tape
will definitely not work. Introducing dedicated (unshared) devices also introduces
a variety of problems, such as deadlocks. Again, the operating system must be
able to handle both shared and dedicated devices in a way that avoids problems.

I/O software is often organized in four layers, as shown in Fig. 3-5. In the fol-
lowing subsections we will look at each in turn, starting at the bottom. The em-
phasis in this chapter is on the device drivers (layer 2), but we will summarize the
rest of the I/O software to show how the pieces of the I/O system fit together.
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Figure 3-5. Layers of the I/O software system.

3.2.2 Interrupt Handlers

Interrupts are an unpleasant fact of life; although they cannot be avoided, they
should be hidden away, deep in the bowels of the operating system, so that as lit-
tle of the operating system as possible knows about them. The best way to hide
them is to have the driver starting an I/O operation block until the I/O has com-
pleted and the interrupt occurs. The driver can block itself by doing a down on a
semaphore, a wait on a condition variable, a receive on a message, or something
similar, for example.

When the interrupt happens, the interrupt procedure does whatever it has to in
order to handle the interrupt. Then it can unblock the driver that started it. In some
cases it will just complete up on a semaphore. In others it will do a signal on a
condition variable in a monitor. In still others, it will send a message to the
blocked driver. In all cases the net effect of the interrupt will be that a driver that
was previously blocked will now be able to run. This model works best if drivers
are structured as independent processes, with their own states, stacks, and pro-
gram counters.

3.2.3 Device Drivers

Earlier in this chapter we saw that each device controller has registers used to
give it commands or to read out its status or both. The number of registers and the
nature of the commands vary radically from device to device. For example, a
mouse driver has to accept information from the mouse telling how far it has
moved and which buttons are currently depressed. In contrast, a disk driver has to
know about sectors, tracks, cylinders, heads, arm motion, motor drives, head set-
tling times, and all the other mechanics of making the disk work properly. Obvi-
ously, these drivers will be very different.

Thus, each I/O device attached to a computer needs some device-specific
code for controlling it. This code, called the device driver, is generally written by
the device’s manufacturer and delivered along with the device on a CD-ROM.
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Since each operating system needs its own drivers, device manufacturers com-
monly supply drivers for several popular operating systems.

Each device driver normally handles one device type, or one class of closely
related devices. For example, it would probably be a good idea to have a single
mouse driver, even if the system supports several different brands of mice. As
another example, a disk driver can usually handle multiple disks of different sizes
and different speeds, and perhaps a CD-ROM as well. On the other hand, a mouse
and a disk are so different that different drivers are necessary.

In order to access the device’s hardware, meaning the controller’s registers,
the device driver traditionally has been part of the system kernel. This approach
gives the best performance and the worst reliability since a bug in any device
driver can crash the entire system. MINIX 3 departs from this model in order to
enhance reliability. As we shall see, in MINIX 3 each device driver is now a sep-
arate user-mode process.

As we mentioned earlier, operating systems usually classify drivers as block
devices, such as disks, or character devices, such as keyboards and printers.
Most operating systems define a standard interface that all block drivers must sup-
port and a second standard interface that all character drivers must support. These
interfaces consist of a number of procedures that the rest of the operating system
can call to get the driver to do work for it.

In general terms, the job of a device driver is to accept abstract requests from
the device-independent software above it and see to it that the request is executed.
A typical request to a disk driver is to read block n. If the driver is idle at the time
a request comes in, it starts carrying out the request immediately. If, however, it is
already busy with a request, it will normally enter the new request into a queue of
pending requests to be dealt with as soon as possible.

The first step in actually carrying out an I/O request is to check that the input
parameters are valid and to return an error if they are not. If the request is valid
the next step is to translate it from abstract to concrete terms. For a disk driver,
this means figuring out where on the disk the requested block actually is, checking
to see if the drive’s motor is running, determining if the arm is positioned on the
proper cylinder, and so on. In short, the driver must decide which controller op-
erations are required and in what sequence.

Once the driver has determined which commands to issue to the controller, it
starts issuing them by writing into the controller’s device registers. Simple con-
trollers can handle only one command at a time. More sophisticated controllers
are willing to accept a linked list of commands, which they then carry out by
themselves without further help from the operating system.

After the command or commands have been issued, one of two situations will
apply. In many cases the device driver must wait until the controller does some
work for it, so it blocks itself until the interrupt comes in to unblock it. In other
cases, however, the operation finishes without delay, so the driver need not block.
As an example of the latter situation, scrolling the screen on some graphics cards
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requires just writing a few bytes into the controller’s registers. No mechanical
motion is needed, so the entire operation can be completed in a few microseconds.

In the former case, the blocked driver will be awakened by the interrupt. In
the latter case, it will never go to sleep. Either way, after the operation has been
completed, it must check for errors. If everything is all right, the driver may have
data to pass to the device-independent software (e.g., a block just read). Finally, it
returns some status information for error reporting back to its caller. If any other
requests are queued, one of them can now be selected and started. If nothing is
queued, the driver blocks waiting for the next request.

Dealing with requests for reading and writing is the main function of a driver,
but there may be other requirements. For instance, the driver may need to initial-
ize a device at system startup or the first time it is used. Also, there may be a need
to manage power requirements, handle Plug ’n Play, or log events.

3.2.4 Device-Independent I/O Software

Although some of the I/O software is device specific, a large fraction of it is
device independent. The exact boundary between the drivers and the device-
independent software is system dependent, because some functions that could be
done in a device-independent way may actually be done in the drivers, for effi-
ciency or other reasons. The functions shown in Fig. 3-6 are typically done in the
device-independent software. In MINIX 3, most of the device-independent
software is part of the file system. Although we will study the file system in
Chap. 5, we will take a quick look at the device-independent software here, to
provide some perspective on I/O and show better where the drivers fit in.

����������������������������������������
Uniform interfacing for device drivers����������������������������������������
Buffering����������������������������������������
Error reporting����������������������������������������
Allocating and releasing dedicated devices����������������������������������������
Providing a device-independent block size�����������������������������������������

�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

Figure 3-6. Functions of the device-independent I/O software.

The basic function of the device-independent software is to perform the I/O
functions that are common to all devices and to provide a uniform interface to the
user-level software. Below we will look at the above issues in more detail.

Uniform Interfacing for Device Drivers

A major issue in an operating system is how to make all I/O devices and dri-
vers look more-or-less the same. If disks, printers, monitors, keyboards, etc., are
all interfaced in different ways, every time a new peripheral device comes along,
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the operating system must be modified for the new device. In Fig. 3-7(a) we illus-
trate symbolically a situation in which each device driver has a different interface
to the operating system. In contrast, in Fig. 3-7(b), we show a different design in
which all drivers have the same interface.

Operating system Operating system

Disk driver Printer driver Keyboard driver Disk driver Printer driver Keyboard driver

(a) (b)

Figure 3-7. (a) Without a standard driver interface. (b) With a standard driver
interface.

With a standard interface it is much easier to plug in a new driver, providing it
conforms to the driver interface. It also means that driver writers know what is ex-
pected of them (e.g., what functions they must provide and what kernel functions
they may call). In practice, not all devices are absolutely identical, but usually
there are only a small number of device types and even these are generally almost
the same. For example, even block and character devices have many functions in
common.

Another aspect of having a uniform interface is how I/O devices are named.
The device-independent software takes care of mapping symbolic device names
onto the proper driver. For example, in UNIX and MINIX 3 a device name, such as
/dev/disk0, uniquely specifies the i-node for a special file, and this i-node contains
the major device number, which is used to locate the appropriate driver. The i-
node also contains the minor device number, which is passed as a parameter to
the driver in order to specify the unit to be read or written. All devices have major
and minor numbers, and all drivers are accessed by using the major device
number to select the driver.

Closely related to naming is protection. How does the system prevent users
from accessing devices that they are not entitled to access? In UNIX, MINIX 3, and
also in later Windows versions such as Windows 2000 and Windows XP, devices
appear in the file system as named objects, which means that the usual protection
rules for files also apply to I/O devices. The system administrator can then set the
proper permissions (i.e., in UNIX the rwx bits) for each device.
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Buffering

Buffering is also an issue for both block and character devices. For block
devices, the hardware generally insists upon reading and writing entire blocks at
once, but user processes are free to read and write in arbitrary units. If a user proc-
ess writes half a block, the operating system will normally keep the data around
internally until the rest of the data are written, at which time the block can go out
to the disk. For character devices, users can write data to the system faster than it
can be output, necessitating buffering. Keyboard input that arrives before it is
needed also requires buffering.

Error Reporting

Errors are far more common in the context of I/O than in any other context.
When they occur, the operating system must handle them as best it can. Many
errors are device-specific, so only the driver knows what to do (e.g., retry, ignore,
or panic). A typical error is caused by a disk block that has been damaged and
cannot be read any more. After the driver has tried to read the block a certain
number of times, it gives up and informs the device-independent software. How
the error is treated from here on is device independent. If the error occurred while
reading a user file, it may be sufficient to report the error back to the caller. How-
ever, if it occurred while reading a critical system data structure, such as the block
containing the bitmap showing which blocks are free, the operating system may
have to display an error message and terminate.

Allocating and Releasing Dedicated Devices

Some devices, such as CD-ROM recorders, can be used only by a single proc-
ess at any given moment. It is up to the operating system to examine requests for
device usage and accept or reject them, depending on whether the requested
device is available or not. A simple way to handle these requests is to require
processes to perform opens on the special files for devices directly. If the device
is unavailable, the open fails. Closing such a dedicated device then releases it.

Device-Independent Block Size

Not all disks have the same sector size. It is up to the device-independent
software to hide this fact and provide a uniform block size to higher layers, for
example, by treating several sectors as a single logical block. In this way, the
higher layers only deal with abstract devices that all use the same logical block
size, independent of the physical sector size. Similarly, some character devices
deliver their data one byte at a time (e.g., modems), while others deliver theirs in
larger units (e.g., network interfaces). These differences may also be hidden.
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3.2.5 User-Space I/O Software

Although most of the I/O software is within the operating system, a small por-
tion of it consists of libraries linked together with user programs, and even whole
programs running outside the kernel. System calls, including the I/O system calls,
are normally made by library procedures. When a C program contains the call

count = write(fd, buffer, nbytes);

the library procedure write will be linked with the program and contained in the
binary program present in memory at run time. The collection of all these library
procedures is clearly part of the I/O system.

While these procedures do little more than put their parameters in the
appropriate place for the system call, there are other I/O procedures that actually
do real work. In particular, formatting of input and output is done by library pro-
cedures. One example from C is printf, which takes a format string and possibly
some variables as input, builds an ASCII string, and then calls write to output the
string. As an example of printf, consider the statement

printf("The square of %3d is %6d\n", i, i*i);

It formats a string consisting of the 14-character string ‘‘The square of ’’ followed
by the value i as a 3-character string, then the 4-character string ‘‘ is ’’, then i 2 as
six characters, and finally a line feed.

An example of a similar procedure for input is scanf which reads input and
stores it into variables described in a format string using the same syntax as printf.
The standard I/O library contains a number of procedures that involve I/O and all
run as part of user programs.

Not all user-level I/O software consists of library procedures. Another impor-
tant category is the spooling system. Spooling is a way of dealing with dedicated
I/O devices in a multiprogramming system. Consider a typical spooled device: a
printer. Although it would be technically simple to let any user process open the
character special file for the printer, suppose a process opened it and then did
nothing for hours? No other process could print anything.

Instead what is done is to create a special process, called a daemon, and a
special directory, called a spooling directory. To print a file, a process first gen-
erates the entire file to be printed and puts it in the spooling directory. It is up to
the daemon, which is the only process having permission to use the printer’s spe-
cial file, to print the files in the directory. By protecting the special file against
direct use by users, the problem of having someone keeping it open unnecessarily
long is eliminated.

Spooling is used not only for printers, but also in various other situations. For
example, electronic mail usually uses a daemon. When a message is submitted it
is put in a mail spool directory. Later on the mail daemon tries to send it. At any
given instant of time a particular destination may be temporarily unreachable, so
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the daemon leaves the message in the spool with status information indicating it
should be tried again in a while. The daemon may also send a message back to the
sender saying delivery is delayed, or, after a delay of hours or days, saying the
message cannot be delivered. All of this is outside the operating system.

Figure 3-8 summarizes the I/O system, showing the layers and principal func-
tions of each layer. Starting at the bottom, the layers are the hardware, interrupt
handlers, device drivers, device-independent software, and the user processes.

I/O
request

Layer
I/O
reply I/O functions

Make I/O call; format I/O; spooling

Naming, protection, blocking, buffering, allocation

Set up device registers; check status

Wake up driver when I/O completed

Perform I/O operation

User processes

Device-independent
software

Device drivers

Interrupt handlers

Hardware

Figure 3-8. Layers of the I/O system and the main functions of each layer.

The arrows in Fig. 3-8 show the flow of control. When a user program tries to
read a block from a file, for example, the operating system is invoked to carry out
the call. The device-independent software looks for it in the buffer cache, for
example. If the needed block is not there, it calls the device driver to issue the
request to the hardware to go get it from the disk. The process is then blocked
until the disk operation has been completed.

When the disk is finished, the hardware generates an interrupt. The interrupt
handler is run to discover what has happened, that is, which device wants atten-
tion right now. It then extracts the status from the device and wakes up the sleep-
ing process to finish off the I/O request and let the user process continue.

3.3 DEADLOCKS

Computer systems are full of resources that can only be used by one process
at a time. Common examples include printers, tape drives, and slots in the
system’s internal tables. Having two processes simultaneously writing to the
printer leads to gibberish. Having two processes using the same file system table
slot will invariably lead to a corrupted file system. Consequently, all operating
systems have the ability to (temporarily) grant a process exclusive access to cer-
tain resources, both hardware and software.
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For many applications, a process needs exclusive access to not one resource,
but several. Suppose, for example, two processes each want to record a scanned
document on a CD. Process A requests permission to use the scanner and is
granted it. Process B is programmed differently and requests the CD recorder first
and is also granted it. Now A asks for the CD recorder, but the request is denied
until B releases it. Unfortunately, instead of releasing the CD recorder B asks for
the scanner. At this point both processes are blocked and will remain so forever.
This situation is called a deadlock.

Deadlocks can occur in a variety of situations besides requesting dedicated
I/O devices. In a database system, for example, a program may have to lock sev-
eral records it is using, to avoid race conditions. If process A locks record R1 and
process B locks record R2, and then each process tries to lock the other one’s
record, we also have a deadlock. Thus deadlocks can occur on hardware resources
or on software resources.

In this section, we will look at deadlocks more closely, see how they arise,
and study some ways of preventing or avoiding them. Although this material is
about deadlocks in the context of operating systems, they also occur in database
systems and many other contexts in computer science, so this material is actually
applicable to a wide variety of multiprocess systems.

3.3.1 Resources

Deadlocks can occur when processes have been granted exclusive access to
devices, files, and so forth. To make the discussion of deadlocks as general as
possible, we will refer to the objects granted as resources. A resource can be a
hardware device (e.g., a tape drive) or a piece of information (e.g., a locked
record in a database). A computer will normally have many different resources
that can be acquired. For some resources, several identical instances may be avail-
able, such as three tape drives. When interchangeable copies of a resource are
available, called fungible resources†, any one of them can be used to satisfy any
request for the resource. In short, a resource is anything that can be used by only
a single process at any instant of time.

Resources come in two types: preemptable and nonpreemptable. A preempt-
able resource is one that can be taken away from the process owning it with no ill
effects. Memory is an example of a preemptable resource. Consider, for example,
a system with 64 MB of user memory, one printer, and two 64-MB processes that
each want to print something. Process A requests and gets the printer, then starts
to compute the values to print. Before it has finished with the computation, it
exceeds its time quantum and is swapped or paged out.

Process B now runs and tries, unsuccessfully, to acquire the printer. Poten-
tially, we now have a deadlock situation, because A has the printer and B has the
������������������������������������������������

†This is a legal and financial term. Gold is fungible: one gram of gold is as good as any other.
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memory, and neither can proceed without the resource held by the other. Fortun-
ately, it is possible to preempt (take away) the memory from B by swapping it out
and swapping A in. Now A can run, do its printing, and then release the printer.
No deadlock occurs.

A nonpreemptable resource, in contrast, is one that cannot be taken away
from its current owner without causing the computation to fail. If a process has
begun to burn a CD-ROM, suddenly taking the CD recorder away from it and giv-
ing it to another process will result in a garbled CD. CD recorders are not pre-
emptable at an arbitrary moment.

In general, deadlocks involve nonpreemptable resources. Potential deadlocks
that involve preemptable resources can usually be resolved by reallocating
resources from one process to another. Thus our treatment will focus on nonpre-
emptable resources.

The sequence of events required to use a resource is given below in an
abstract form.

1. Request the resource.

2. Use the resource.

3. Release the resource.

If the resource is not available when it is requested, the requesting process is
forced to wait. In some operating systems, the process is automatically blocked
when a resource request fails, and awakened when it becomes available. In other
systems, the request fails with an error code, and it is up to the calling process to
wait a little while and try again.

3.3.2 Principles of Deadlock

Deadlock can be defined formally as follows:

A set of processes is deadlocked if each process in the set is waiting for an
event that only another process in the set can cause.

Because all the processes are waiting, none of them will ever cause any of the
events that could wake up any of the other members of the set, and all the
processes continue to wait forever. For this model, we assume that processes have
only a single thread and that there are no interrupts possible to wake up a blocked
process. The no-interrupts condition is needed to prevent an otherwise deadlocked
process from being awakened by, say, an alarm, and then causing events that
release other processes in the set.

In most cases, the event that each process is waiting for is the release of some
resource currently possessed by another member of the set. In other words, each
member of the set of deadlocked processes is waiting for a resource that is owned
by a deadlocked process. None of the processes can run, none of them can release
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any resources, and none of them can be awakened. The number of processes and
the number and kind of resources possessed and requested are unimportant. This
result holds for any kind of resource, including both hardware and software.

Conditions for Deadlock

Coffman et al. (1971) showed that four conditions must hold for there to be a
deadlock:

1. Mutual exclusion condition. Each resource is either currently as-
signed to exactly one process or is available.

2. Hold and wait condition. Processes currently holding resources that
were granted earlier can request new resources.

3. No preemption condition. Resources previously granted cannot be
forcibly taken away from a process. They must be explicitly released
by the process holding them.

4. Circular wait condition. There must be a circular chain of two or
more processes, each of which is waiting for a resource held by the
next member of the chain.

All four of these conditions must be present for a deadlock to occur. If one of
them is absent, no deadlock is possible.

In a series of papers, Levine (2003a, 2003b, 2005) points out there are various
situations called deadlock in the literature, and that Coffman et al.’s conditions
apply only to what should properly be called resource deadlock. The literature
contains examples of ‘‘deadlock’’ that do not really meet all of these conditions.
For instance, if four vehicles arrive simultaneously at a crossroad and try to obey
the rule that each should yield to the vehicle on the right, none can proceed, but
this is not a case where one process already has possession of a unique resource.
Rather, this problem is a ‘‘scheduling deadlock’’ which can be resolved by a deci-
sion about priorities imposed from outside by a policeman.

It is worth noting that each condition relates to a policy that a system can have
or not have. Can a given resource be assigned to more than one process at once?
Can a process hold a resource and ask for another? Can resources be preempted?
Can circular waits exist? Later on we will see how deadlocks can be attacked by
trying to negate some of these conditions.

Deadlock Modeling

Holt (1972) showed how these four conditions can be modeled using directed
graphs. The graphs have two kinds of nodes: processes, shown as circles, and
resources, shown as squares. An arc from a resource node (square) to a process
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node (circle) means that the resource has previously been requested by, granted
to, and is currently held by that process. In Fig. 3-9(a), resource R is currently
assigned to process A.

(a) (b) (c)

T U

D

C

S

B

A

R

Figure 3-9. Resource allocation graphs. (a) Holding a resource. (b) Requesting
a resource. (c) Deadlock.

An arc from a process to a resource means that the process is currently
blocked waiting for that resource. In Fig. 3-9(b), process B is waiting for resource
S. In Fig. 3-9(c) we see a deadlock: process C is waiting for resource T, which is
currently held by process D. Process D is not about to release resource T because
it is waiting for resource U, held by C. Both processes will wait forever. A cycle
in the graph means that there is a deadlock involving the processes and resources
in the cycle (assuming that there is one resource of each kind). In this example,
the cycle is C−T−D−U−C.

Now let us see how resource graphs can be used. Imagine that we have three
processes, A, B, and C, and three resources, R, S, and T. The requests and releases
of the three processes are given in Fig. 3-10(a)-(c). The operating system is free
to run any unblocked process at any instant, so it could decide to run A until A fin-
ished all its work, then run B to completion, and finally run C.

This ordering does not lead to any deadlocks (because there is no competition
for resources) but it also has no parallelism at all. In addition to requesting and
releasing resources, processes compute and do I/O. When the processes are run
sequentially, there is no possibility that while one process is waiting for I/O,
another can use the CPU. Thus running the processes strictly sequentially may not
be optimal. On the other hand, if none of the processes do any I/O at all, shortest
job first is better than round robin, so under some circumstances running all
processes sequentially may be the best way.

Let us now suppose that the processes do both I/O and computing, so that
round robin is a reasonable scheduling algorithm. The resource requests might
occur in the order of Fig. 3-10(d). If these six requests are carried out in that
order, the six resulting resource graphs are shown in Fig. 3-10(e)-(j). After
request 4 has been made, A blocks waiting for S, as shown in Fig. 3-10(h). In the
next two steps B and C also block, ultimately leading to a cycle and the deadlock
of Fig. 3-10(j). From this point on, the system is frozen.
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However, as we have already mentioned, the operating system is not required
to run the processes in any special order. In particular, if granting a particular
request might lead to deadlock, the operating system can simply suspend the proc-
ess without granting the request (i.e., just not schedule the process) until it is safe.
In Fig. 3-10, if the operating system knew about the impending deadlock, it could
suspend B instead of granting it S. By running only A and C, we would get the
requests and releases of Fig. 3-10(k) instead of Fig. 3-10(d). This sequence leads
to the resource graphs of Fig. 3-10(l)-(q), which do not lead to deadlock.

After step (q), process B can be granted S because A is finished and C has
everything it needs. Even if B should eventually block when requesting T, no
deadlock can occur. B will just wait until C is finished.

Later in this chapter we will study a detailed algorithm for making allocation
decisions that do not lead to deadlock. For the moment, the point to understand is
that resource graphs are a tool that let us see if a given request/release sequence
leads to deadlock. We just carry out the requests and releases step by step, and
after every step check the graph to see if it contains any cycles. If so, we have a
deadlock; if not, there is no deadlock. Although our treatment of resource graphs
has been for the case of a single resource of each type, resource graphs can also
be generalized to handle multiple resources of the same type (Holt, 1972). How-
ever, Levine (2003a, 2003b) points out that with fungible resources this can get
very complicated indeed. If even one branch of the graph is not part of a cycle,
that is, if one process which is not deadlocked holds a copy of one of the re-
sources, then deadlock may not occur.

In general, four strategies are used for dealing with deadlocks.

1. Just ignore the problem altogether. Maybe if you ignore it, it will ig-
nore you.

2. Detection and recovery. Let deadlocks occur, detect them, and take
action.

3. Dynamic avoidance by careful resource allocation.

4. Prevention, by structurally negating one of the four conditions neces-
sary to cause a deadlock.

We will examine each of these methods in turn in the next four sections.

3.3.3 The Ostrich Algorithm

The simplest approach is the ostrich algorithm: stick your head in the sand
and pretend there is no problem at all.† Different people react to this strategy in����������������
†Actually, this bit of folklore is nonsense. Ostriches can run at 60 km/hour and their kick is powerful

enough to kill any lion with visions of a big chicken dinner.
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Figure 3-10. An example of how deadlock occurs and how it can be avoided.
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very different ways. Mathematicians find it completely unacceptable and say that
deadlocks must be prevented at all costs. Engineers ask how often the problem is
expected, how often the system crashes for other reasons, and how serious a
deadlock is. If deadlocks occur on the average once every five years, but system
crashes due to hardware failures, compiler errors, and operating system bugs
occur once a week, most engineers would not be willing to pay a large penalty in
performance or convenience to eliminate deadlocks.

To make this contrast more specific, UNIX (and MINIX 3) potentially suffer
from deadlocks that are not even detected, let alone automatically broken. The
total number of processes in a system is determined by the number of entries in
the process table. Thus process table slots are finite resources. If a fork fails be-
cause the table is full, a reasonable approach for the program doing the fork is to
wait a random time and try again.

Now suppose that a MINIX 3 system has 100 process slots. Ten programs are
running, each of which needs to create 12 (sub)processes. After each process has
created 9 processes, the 10 original processes and the 90 new processes have
exhausted the table. Each of the 10 original processes now sits in an endless loop
forking and failing—a deadlock. The probability of this happening is minuscule,
but it could happen. Should we abandon processes and the fork call to eliminate
the problem?

The maximum number of open files is similarly restricted by the size of the i-
node table, so a similar problem occurs when it fills up. Swap space on the disk is
another limited resource. In fact, almost every table in the operating system
represents a finite resource. Should we abolish all of these because it might hap-
pen that a collection of n processes might each claim 1/n of the total, and then
each try to claim another one?

Most operating systems, including UNIX, MINIX 3, and Windows, just ignore
the problem on the assumption that most users would prefer an occasional dead-
lock to a rule restricting all users to one process, one open file, and one of every-
thing. If deadlocks could be eliminated for free, there would not be much discus-
sion. The problem is that the price is high, mostly in terms of putting inconvenient
restrictions on processes, as we will see shortly. Thus we are faced with an
unpleasant trade-off between convenience and correctness, and a great deal of dis-
cussion about which is more important, and to whom. Under these conditions,
general solutions are hard to find.

3.3.4 Detection and Recovery

A second technique is detection and recovery. When this technique is used,
the system does not do anything except monitor the requests and releases of
resources. Every time a resource is requested or released, the resource graph is
updated, and a check is made to see if any cycles exist. If a cycle exists, one of the
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processes in the cycle is killed. If this does not break the deadlock, another proc-
ess is killed, and so on until the cycle is broken.

A somewhat cruder method is not even to maintain the resource graph but in-
stead periodically to check to see if there are any processes that have been con-
tinuously blocked for more than say, 1 hour. Such processes are then killed.

Detection and recovery is the strategy often used on large mainframe comput-
ers, especially batch systems in which killing a process and then restarting it is
usually acceptable. Care must be taken to restore any modified files to their origi-
nal state, however, and undo any other side effects that may have occurred.

3.3.5 Deadlock Prevention

The third deadlock strategy is to impose suitable restrictions on processes so
that deadlocks are structurally impossible. The four conditions stated by Coffman
et al. (1971) provide a clue to some possible solutions.

First let us attack the mutual exclusion condition. If no resource were ever
assigned exclusively to a single process, we would never have deadlocks. How-
ever, it is equally clear that allowing two processes to write on the printer at the
same time will lead to chaos. By spooling printer output, several processes can
generate output at the same time. In this model, the only process that actually
requests the physical printer is the printer daemon. Since the daemon never re-
quests any other resources, we can eliminate deadlock for the printer.

Unfortunately, not all devices can be spooled (the process table does not lend
itself well to being spooled). Furthermore, competition for disk space for spooling
can itself lead to deadlock. What would happen if two processes each filled up
half of the available spooling space with output and neither was finished produc-
ing output? If the daemon was programmed to begin printing even before all the
output was spooled, the printer might lie idle if an output process decided to wait
several hours after the first burst of output. For this reason, daemons are normally
programmed to print only after the complete output file is available. In this case
we have two processes that have each finished part, but not all, of their output,
and cannot continue. Neither process will ever finish, so we have a deadlock on
the disk.

The second of the conditions stated by Coffman et al. looks slightly more
promising. If we can prevent processes that hold resources from waiting for more
resources, we can eliminate deadlocks. One way to achieve this goal is to require
all processes to request all their resources before starting execution. If everything
is available, the process will be allocated whatever it needs and can run to com-
pletion. If one or more resources are busy, nothing will be allocated and the proc-
ess would just wait.

An immediate problem with this approach is that many processes do not know
how many resources they will need until after they have started running. Another
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problem is that resources will not be used optimally with this approach. Take, as
an example, a process that reads data from an input tape, analyzes it for an hour,
and then writes an output tape as well as plotting the results. If all resources must
be requested in advance, the process will tie up the output tape drive and the
plotter for an hour.

A slightly different way to break the hold-and-wait condition is to require a
process requesting a resource to first temporarily release all the resources it cur-
rently holds. Then it tries to get everything it needs all at once.

Attacking the third condition (no preemption) is even less promising than
attacking the second one. If a process has been assigned the printer and is in the
middle of printing its output, forcibly taking away the printer because a needed
plotter is not available is tricky at best and impossible at worst.

Only one condition is left. The circular wait can be eliminated in several
ways. One way is simply to have a rule saying that a process is entitled only to a
single resource at any moment. If it needs a second one, it must release the first
one. For a process that needs to copy a huge file from a tape to a printer, this res-
triction is unacceptable.

Another way to avoid the circular wait is to provide a global numbering of all
the resources, as shown in Fig. 3-11(a). Now the rule is this: processes can
request resources whenever they want to, but all requests must be made in numer-
ical order. A process may request first a scanner and then a tape drive, but it may
not request first a plotter and then a scanner.

A1. Imagesetter
2. Scanner
3. Plotter
4. Tape drive
5. CD Rom drive

i

B

j

(a) (b)

Figure 3-11. (a) Numerically ordered resources. (b) A resource graph.

With this rule, the resource allocation graph can never have cycles. Let us see
why this is true for the case of two processes, in Fig. 3-11(b). We can get a
deadlock only if A requests resource j and B requests resource i. Assuming i and j
are distinct resources, they will have different numbers. If i > j, then A is not
allowed to request j because that is lower than what it already has. If i < j, then B
is not allowed to request i because that is lower than what it already has. Either
way, deadlock is impossible.

With multiple processes, the same logic holds. At every instant, one of the
assigned resources will be highest. The process holding that resource will never
ask for a resource already assigned. It will either finish, or at worst, request even
higher numbered resources, all of which are available. Eventually, it will finish
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and free its resources. At this point, some other process will hold the highest
resource and can also finish. In short, there exists a scenario in which all
processes finish, so no deadlock is present.

A minor variation of this algorithm is to drop the requirement that resources
be acquired in strictly increasing sequence and merely insist that no process
request a resource lower than what it is already holding. If a process initially
requests 9 and 10, and then releases both of them, it is effectively starting all over,
so there is no reason to prohibit it from now requesting resource 1.

Although numerically ordering the resources eliminates the problem of
deadlocks, it may be impossible to find an ordering that satisfies everyone. When
the resources include process table slots, disk spooler space, locked database
records, and other abstract resources, the number of potential resources and dif-
ferent uses may be so large that no ordering could possibly work. Also, as Levine
(2005) points out, ordering resources negates fungibility—a perfectly good and
available copy of a resource could be inaccessible with such a rule.

The various approaches to deadlock prevention are summarized in Fig. 3-12.
�����������������������������������������������

Condition Approach�����������������������������������������������
Mutual exclusion Spool everything�����������������������������������������������
Hold and wait Request all resources initially�����������������������������������������������
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Figure 3-12. Summary of approaches to deadlock prevention.

3.3.6 Deadlock Avoidance

In Fig. 3-10 we saw that deadlock was avoided not by imposing arbitrary rules
on processes but by carefully analyzing each resource request to see if it could be
safely granted. The question arises: is there an algorithm that can always avoid
deadlock by making the right choice all the time? The answer is a qualified yes—
we can avoid deadlocks, but only if certain information is available in advance. In
this section we examine ways to avoid deadlock by careful resource allocation.

The Banker’s Algorithm for a Single Resource

A scheduling algorithm that can avoid deadlocks is due to Dijkstra (1965) and
is known as the banker’s algorithm. It is modeled on the way a small-town
banker might deal with a group of customers to whom he has granted lines of
credit. The banker does not necessarily have enough cash on hand to lend every
customer the full amount of each one’s line of credit at the same time. In Fig. 3-
13(a) we see four customers, A, B, C, and D, each of whom has been granted a
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certain number of credit units (e.g., 1 unit is 1K dollars). The banker knows that
not all customers will need their maximum credit immediately, so he has reserved
only 10 units rather than 22 to service them. He also trusts every customer to be
able to repay his loan soon after receiving his total line of credit (it is a small
town), so he knows eventually he can service all the requests. (In this analogy,
customers are processes, units are, say, tape drives, and the banker is the operat-
ing system.)
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Figure 3-13. Three resource allocation states: (a) Safe. (b) Safe. (c) Unsafe.

Each part of the figure shows a state of the system with respect to resource
allocation, that is, a list of customers showing the money already loaned (tape
drives already assigned) and the maximum credit available (maximum number of
tape drives needed at once later). A state is safe if there exists a sequence of other
states that leads to all customers getting loans up to their credit limits (all
processes getting all their resources and terminating).

The customers go about their respective businesses, making loan requests
from time to time (i.e., asking for resources). At a certain moment, the situation is
as shown in Fig. 3-13(b). This state is safe because with two units left, the banker
can delay any requests except C’s, thus letting C finish and release all four of his
resources. With four units in hand, the banker can let either D or B have the
necessary units, and so on.

Consider what would happen if a request from B for one more unit were
granted in Fig. 3-13(b). We would have situation Fig. 3-13(c), which is unsafe. If
all the customers suddenly asked for their maximum loans, the banker could not
satisfy any of them, and we would have a deadlock. An unsafe state does not have
to lead to deadlock, since a customer might not need the entire credit line avail-
able, but the banker cannot count on this behavior.

The banker’s algorithm considers each request as it occurs, and sees if grant-
ing it leads to a safe state. If it does, the request is granted; otherwise, it is post-
poned until later. To see if a state is safe, the banker checks to see if he has
enough resources to satisfy some customer. If so, those loans are assumed to be
repaid, and the customer now closest to the limit is checked, and so on. If all loans
can eventually be repaid, the state is safe and the initial request can be granted.
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Resource Trajectories

The above algorithm was described in terms of a single resource class (e.g.,
only tape drives or only printers, but not some of each). In Fig. 3-14 we see a
model for dealing with two processes and two resources, for example, a printer
and a plotter. The horizontal axis represents the number of instructions executed
by process A. The vertical axis represents the number of instructions executed by
process B. At I 1 A requests a printer; at I 2 it needs a plotter. The printer and
plotter are released at I 3 and I 4, respectively. Process B needs the plotter from I 5
to I 7 and the printer from I 6 to I 8 .
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Figure 3-14. Two process resource trajectories.

Every point in the diagram represents a joint state of the two processes. Ini-
tially, the state is at p, with neither process having executed any instructions. If
the scheduler chooses to run A first, we get to the point q, in which A has executed
some number of instructions, but B has executed none. At point q the trajectory
becomes vertical, indicating that the scheduler has chosen to run B. With a single
processor, all paths must be horizontal or vertical, never diagonal. Furthermore,
motion is always to the north or east, never to the south or west (processes cannot
run backward).

When A crosses the I 1 line on the path from r to s, it requests and is granted
the printer. When B reaches point t, it requests the plotter.

The regions that are shaded are especially interesting. The region with lines
slanting from southwest to northeast represents both processes having the printer.
The mutual exclusion rule makes it impossible to enter this region. Similarly, the
region shaded the other way represents both processes having the plotter, and is
equally impossible. Under no conditions can the system enter the shaded regions.
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If the system ever enters the box bounded by I 1 and I 2 on the sides and I 5 and
I 6 top and bottom, it will eventually deadlock when it gets to the intersection of
I 2 and I 6 . At this point, A is requesting the plotter and B is requesting the printer,
and both are already assigned. The entire box is unsafe and must not be entered.
At point t the only safe thing to do is run process A until it gets to I 4 . Beyond that,
any trajectory to u will do.

The important thing to see here is at point t B is requesting a resource. The
system must decide whether to grant it or not. If the grant is made, the system will
enter an unsafe region and eventually deadlock. To avoid the deadlock, B should
be suspended until A has requested and released the plotter.

The Banker’s Algorithm for Multiple Resources

This graphical model is difficult to apply to the general case of an arbitrary
number of processes and an arbitrary number of resource classes, each with multi-
ple instances (e.g., two plotters, three tape drives). However, the banker’s algo-
rithm can be generalized to do the job. Figure 3-15 shows how it works.
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Figure 3-15. The banker’s algorithm with multiple resources.

In Fig. 3-15 we see two matrices. The one on the left shows how many of
each resource are currently assigned to each of the five processes. The matrix on
the right shows how many resources each process still needs in order to complete.
As in the single resource case, processes must state their total resource needs
before executing, so that the system can compute the right-hand matrix at each
instant.

The three vectors at the right of the figure show the existing resources, E, the
possessed resources, P, and the available resources, A, respectively. From E we
see that the system has six tape drives, three plotters, four printers, and two CD-
ROM drives. Of these, five tape drives, three plotters, two printers, and two CD-
ROM drives are currently assigned. This fact can be seen by adding up the four
resource columns in the left-hand matrix. The available resource vector is simply
the difference between what the system has and what is currently in use.
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The algorithm for checking to see if a state is safe can now be stated.

1. Look for a row, R, whose unmet resource needs are all smaller than
or equal to A. If no such row exists, the system will eventually
deadlock since no process can run to completion.

2. Assume the process of the row chosen requests all the resources it
needs (which is guaranteed to be possible) and finishes. Mark that
process as terminated and add all its resources to the A vector.

3. Repeat steps 1 and 2 until either all processes are marked terminated,
in which case the initial state was safe, or until a deadlock occurs, in
which case it was not.

If several processes are eligible to be chosen in step 1, it does not matter which
one is selected: the pool of available resources either gets larger or stays the same.

Now let us get back to the example of Fig. 3-15. The current state is safe.
Suppose that process B now requests a printer. This request can be granted
because the resulting state is still safe (process D can finish, and then processes A
or E, followed by the rest).

Now imagine that after giving B one of the two remaining printers, E wants
the last printer. Granting that request would reduce the vector of available
resources to (1 0 0 0), which leads to deadlock. Clearly E’s request must be
deferred for a while.

The banker’s algorithm was first published by Dijkstra in 1965. Since that
time, nearly every book on operating systems has described it in detail. Innumer-
able papers have been written about various aspects of it. Unfortunately, few
authors have had the audacity to point out that although in theory the algorithm is
wonderful, in practice it is essentially useless because processes rarely know in
advance what their maximum resource needs will be. In addition, the number of
processes is not fixed, but dynamically varying as new users log in and out. Furth-
ermore, resources that were thought to be available can suddenly vanish (tape
drives can break). Thus in practice, few, if any, existing systems use the banker’s
algorithm for avoiding deadlocks.

In summary, the schemes described earlier under the name ‘‘prevention’’ are
overly restrictive, and the algorithm described here as ‘‘avoidance’’ requires infor-
mation that is usually not available. If you can think of a general-purpose algo-
rithm that does the job in practice as well as in theory, write it up and send it to
your local computer science journal.

Although both avoidance and prevention are not terribly promising in the gen-
eral case, for specific applications, many excellent special-purpose algorithms are
known. As an example, in many database systems, an operation that occurs fre-
quently is requesting locks on several records and then updating all the locked
records. When multiple processes are running at the same time, there is a real dan-
ger of deadlock. To eliminate this problem, special techniques are used.
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The approach most often used is called two-phase locking. In the first phase,
the process tries to lock all the records it needs, one at a time. If it succeeds, it be-
gins the second phase, performing its updates and releasing the locks. No real
work is done in the first phase.

If during the first phase, some record is needed that is already locked, the
process just releases all its locks and starts the first phase all over. In a certain
sense, this approach is similar to requesting all the resources needed in advance,
or at least before anything irreversible is done. In some versions of two-phase
locking, there is no release and restart if a lock is encountered during the first
phase. In these versions, deadlock can occur.

However, this strategy is not applicable in general. In real-time systems and
process control systems, for example, it is not acceptable to just terminate a proc-
ess partway through because a resource is not available and start all over again.
Neither is it acceptable to start over if the process has read or written messages to
the network, updated files, or anything else that cannot be safely repeated. The
algorithm works only in those situations where the programmer has very carefully
arranged things so that the program can be stopped at any point during the first
phase and restarted. Many applications cannot be structured this way.

3.4 OVERVIEW OF I/O IN MINIX 3

MINIX 3 I/O is structured as shown in Fig. 3-8. The top four layers of that
figure correspond to the four-layered structure of MINIX 3 shown in Fig. 2-29. In
the following sections we will look briefly at each of the layers, with an emphasis
on the device drivers. Interrupt handling was covered in Chap. 2 and the device-
independent I/O will be discussed when we come to the file system, in Chap. 5.

3.4.1 Interrupt Handlers and I/O Access in MINIX 3

Many device drivers start some I/O device and then block, waiting for a mes-
sage to arrive. That message is usually generated by the interrupt handler for the
device. Other device drivers do not start any physical I/O (e.g., reading from
RAM disk and writing to a memory-mapped display), do not use interrupts, and
do not wait for a message from an I/O device. In the previous chapter the
mechanisms in the kernel by which interrupts generate messages and cause task
switches has been presented in great detail, and we will say no more about it here.
Here we will discuss in a general way interrupts and I/O in device drivers. We
will return to the details when we look at the code for various devices.

For disk devices, input and output is generally a matter of commanding a
device to perform its operation, and then waiting until the operation is complete.
The disk controller does most of the work, and very little is required of the inter-
rupt handler. Life would be simple if all interrupts could be handled so easily.
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However, there is sometimes more for the low-level handler to do. The mes-
sage passing mechanism has a cost. When an interrupt may occur frequently but
the amount of I/O handled per interrupt is small, it may pay to make the handler
itself do somewhat more work and to postpone sending a message to the driver
until a subsequent interrupt, when there is more for the driver to do. In MINIX 3
this is not possible for most I/O, because the low level handler in the kernel is a
general purpose routine used for almost all devices.

In the last chapter we saw that the clock is an exception. Because it is com-
piled with the kernel the clock can have its own handler that does extra work. On
many clock ticks there is very little to be done, except for maintaining the time.
This is done without sending a message to the clock task itself. The clock’s inter-
rupt handler increments a variable, appropriately named realtime, possibly adding
a correction for ticks counted during a BIOS call. The handler does some addi-
tional very simple arithmetic—it increments counters for user time and billing
time, decrements the ticks�left counter for the current process, and tests to see if a
timer has expired. A message is sent to the clock task only if the current process
has used up its quantum or a timer has expired.

The clock interrupt handler is unique in MINIX 3, because the clock is the on-
ly interrupt driven device that runs in kernel space. The clock hardware is
integral to the PC—in fact, the clock interrupt line does not connect to any pin on
the sockets where add-on I/O controllers can be plugged in—so it is impossible to
install a clock upgrade package with replacement clock hardware and a driver
provided by the manufacturer. It is reasonable, then, for the clock driver to be
compiled into the kernel and have access to any variable in kernel space. But a
key design goal of MINIX 3 is to make it unnecessary for any other device driver
to have that kind of access.

Device drivers that run in user space cannot directly access kernel memory or
I/O ports. Although possible, it would also violate the design principles of MINIX
3 to allow an interrupt service routine to make a far call to execute a service rou-
tine within the text segment of a user process. This would be even more danger-
ous than letting a user space process call a function within kernel space. In that
case we would at least be sure the function was written by a competent, security-
aware operating system designer, possibly one who had read this book. But the
kernel should not trust code provided by a user program.

There are several different levels of I/O access that might be needed by a
user-space device driver.

1. A driver might need access to memory outside its normal data space.
The memory driver, which manages the RAM disk, is an example of
a driver which needs only this kind of access.

2. A driver may need to read and write to I/O ports. The machine-level
instructions for these operations are available only in kernel mode.
As we will soon see, the hard disk driver needs this kind of access.
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3. A driver may need to respond to predictable interrupts. For example,
the hard disk driver writes commands to the disk controller, which
causes an interrupt to occur when the desired operation is complete.

4. A driver may need to respond to unpredictable interrupts. The key-
board driver is in this category. This could be considered a subclass
of the preceding item, but unpredictability complicates things.

All of these cases are supported by kernel calls handled by the system task.
The first case, access to extra memory segments, takes advantage of the hard-

ware segmentation support provided by Intel processors. Although a normal proc-
ess has access only to its own text, data, and stack segments, the system task al-
lows other segments to be defined and accessed by user-space processes. Thus
the memory driver can access a memory region reserved for use as a RAM disk,
as well as other regions designated for special access. The console driver ac-
cesses memory on a video display adapter in the same way.

For the second case, MINIX 3 provides kernel calls to use I/O instructions.
The system task does the actual I/O on behalf of a less-privileged process. Later
in this chapter we will see how the hard disk driver uses this service. We will
present a preview here. The disk driver may have to write to a single output port
to select a disk, then read from another port in order to verify the device is ready.
If response is normally expected to be very quick, polling can be done. There are
kernel calls to specify a port and data to be written or a location for receipt of data
read. This requires that a call to read a port be nonblocking, and in fact, kernel
calls do not block.

Some insurance against device failure is useful. A polling loop could include
a counter that terminates the loop if the device does not become ready after a cer-
tain number of iterations. This is not a good idea in general because the loop exe-
cution time will depend upon the CPU speed. One way around this is to start the
counter with a value that is related to CPU time, possibly using a global variable
initialized when the system starts. A better way is provided by the MINIX 3 sys-
tem library, which provides a getuptime function. This uses a kernel call to
retrieve a counter of clock ticks since system startup maintained by the clock task.
The cost of using this information to keep track of time spent in a loop is the over-
head of an additional kernel call on each iteration. Another possibility is to ask
the system task to set a watchdog timer. But to receive a notification from a timer
a receive operation, which will block, is required. This is not a good solution if a
fast response is expected.

The hard disk also makes use of variants of the kernel calls for I/O that make
it possible to send a list of ports and data to write or variables to be altered to the
system task. This is very useful—the hard disk driver we will examine requires
writing a sequence of byte values to seven output ports to initiate an operation.
The last byte in the sequence is a command, and the disk controller generates an
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interrupt when it completes a command. All this can be accomplished with a sin-
gle kernel call, greatly reducing the number of messages needed.

This brings us to the third item in the list: responding to an expected interrupt.
As noted in the discussion of the system task, when an interrupt is initialized on
behalf of a user space program (using a sys� irqctl kernel call), the handler routine
for the interrupt is always generic�handler, a function defined as part of the sys-
tem task. This routine converts the interrupt into a notification message to the
process on whose behalf the interrupt was set. The device driver therefore must
initiate a receive operation after the kernel call that issues the command to the
controller. When the notification is received the device driver can proceed to do
what must be done to service the interrupt.

Although in this case an interrupt is expected, it is prudent to hedge against
the possibility that something might go wrong sometime. To prepare for the pos-
sibility that the interrupt might fail to be triggered, a process can request the sys-
tem task to set up a watchdog timer. Watchdog timers also generate notification
messages, and thus the receive operation could get a notification either because an
interrupt occurred or because a timer expired. This is not a problem because,
although a notification does not convey much information, the notification mes-
sage indicates its origin. Although both notifications are generated by the system
task, notification of an interrupt will appear to come from HARDWARE, and notif-
ication of a timer expiring will appear to come from CLOCK.

There is another problem. If an interrupt is received in a timely way and a
watchdog timer has been set, expiration of the timer at some future time will be
detected by another receive operation, possibly in the main loop of the driver.
One solution is to make a kernel call to disable the timer when the notification
from HARDWARE is received. Alternatively, if it is likely that the next receive
operation will be one where a message from CLOCK is not expected, such a mes-
sage could be ignored and receive called again. Although less likely, it is con-
ceivable that a disk operation could occur after an unexpectedly long delay, gen-
erating the interrupt only after the watchdog has timed out. The same solutions
apply here. When a timeout occurs a kernel call can be made to disable an inter-
rupt, or a receive operation that does not expect an interrupt could ignore any
message from HARDWARE.

This is a good time to mention that when an interrupt is first enabled, a kernel
call can be made to set a ‘‘policy’’ for the interrupt. The policy is simply a flag
that determines whether the interrupt should be automatically reenabled or
whether it should remain disabled until the device driver it serves makes a kernel
call to reenable it. For the disk driver there may be a substantial amount of work
to be done after an interrupt, and thus it may be best to leave the interrupt disabled
until all data has been copied.

The fourth item in our list is the most problematic. Keyboard support is part
of the tty driver, which provides output as well as input. Furthermore, multiple
devices may be supported. So input may come from a local keyboard, but it can
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also come from a remote user connected by a serial line or a network connection.
And several processes may be running, each producing output for a different local
or remote terminal. When you do not know when, if ever, an interrupt might oc-
cur, you cannot just make a blocking receive call to accept input from a single
source if the same process may need to respond to other input and output sources.

MINIX 3 uses several techniques to deal with this problem. The principal
technique used by the terminal driver for dealing with keyboard input is to make
the interrupt response as fast as possible, so characters will not be lost. The mini-
mum possible amount of work is done to get characters from the keyboard
hardware to a buffer. Additionally, when data has been fetched from the key-
board in response to an interrupt, as soon as the data is buffered the keyboard is
read again before returning from the interrupt. Interrupts generate notification
messages, which do not block the sender; this helps to prevent loss of input. A
nonblocking receive operation is available, too, although it is only used to handle
messages during a system crash. Watchdog timers are also used to activate the
routine that checks the keyboard.

3.4.2 Device Drivers in MINIX 3

For each class of I/O device present in a MINIX 3 system, a separate I/O
device driver is present. These drivers are full-fledged processes, each one with
its own state, registers, stack, and so on. Device drivers communicate with the
file system using the standard message passing mechanism used by all MINIX 3
processes. A simple device driver may be written as a single source file. For the
RAM disk, hard disk, and floppy disk there is a source file to support each type of
device, as well as a set of common routines in driver.c and drvlib.c to support all
blcok device types. This separation of the hardware-dependent and hardware-
independent parts of the software makes for easy adaptation to a variety of dif-
ferent hardware configurations. Although some common source code is used, the
driver for each disk type runs as a separate process, in order to support rapid data
transfers and isolate drivers from each other.

The terminal driver source code is organized in a similar way, with the
hardware-independent code in tty.c and source code to support different devices,
such as memory-mapped consoles, the keyboard, serial lines, and pseudo termi-
nals in separate files. In this case, however, a single process supports all of the
different device types.

For groups of devices such as disk devices and terminals, for which there are
several source files, there are also header files. Driver.h supports all the block
device drivers. Tty.h provides common definitions for all the terminal devices.

The MINIX 3 design principle of running components of the operating system
as completely separate processes in user space is highly modular and moderately
efficient. It is also one of the few places where MINIX 3 differs from UNIX in an
essential way. In MINIX 3 a process reads a file by sending a message to the file
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system process. The file system, in turn, may send a message to the disk driver
asking it to read the needed block. The disk driver uses kernel calls to ask the
system task to do the actual I/O and to copy data between processes. This se-
quence (slightly simplified from reality) is shown in Fig. 3-16(a). By making
these interactions via the message mechanism, we force various parts of the sys-
tem to interface in standard ways with other parts.
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Figure 3-16. Two ways of structuring user-system communication.

In UNIX all processes have two parts: a user-space part and a kernel-space
part, as shown in Fig. 3-16(b). When a system call is made, the operating system
switches from the user-space part to the kernel-space part in a somewhat magical
way. This structure is a remnant of the MULTICS design, in which the switch was
just an ordinary procedure call, rather than a trap followed by saving the state of
the user-part, as it is in UNIX.

Device drivers in UNIX are simply kernel procedures that are called by the
kernel-space part of the process. When a driver needs to wait for an interrupt, it
calls a kernel procedure that puts it to sleep until some interrupt handler wakes it
up. Note that it is the user process itself that is being put to sleep here, because
the kernel and user parts are really different parts of the same process.

Among operating system designers, arguments about the merits of monolithic
systems, as in UNIX, versus process-structured systems, as in MINIX 3, are end-
less. The MINIX 3 approach is better structured (more modular), has cleaner inter-
faces between the pieces, and extends easily to distributed systems in which the
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various processes run on different computers. The UNIX approach is more effi-
cient, because procedure calls are much faster than sending messages. MINIX 3
was split into many processes because we believe that with increasingly powerful
personal computers available, cleaner software structure was worth making the
system slightly slower. The performance loss due to having most of the operating
system run in user space is typically in the range of 5–10%. Be warned that some
operating system designers do not share the belief that it is worth sacrificing a lit-
tle speed for a more modular and more reliable system.

In this chapter, drivers for RAM disk, hard disk, clock, and terminal are dis-
cussed. The standard MINIX 3 configuration also includes drivers for the floppy
disk and the printer, which are not discussed in detail. The MINIX 3 software dis-
tribution contains source code for additional drivers for RS-232 serial lines, CD-
ROMs, various Ethernet adapter, and sound cards. These may be compiled sepa-
rately and started on the fly at any time.

All of these drivers interface with other parts of the MINIX 3 system in the
same way: request messages are sent to the drivers. The messages contain a vari-
ety of fields used to hold the operation code (e.g., READ or WRITE) and its
parameters. A driver attempts to fulfill a request and returns a reply message.

For block devices, the fields of the request and reply messages are shown in
Fig. 3-17. The request message includes the address of a buffer area containing
data to be transmitted or in which received data are expected. The reply includes
status information so the requesting process can verify that its request was prop-
erly carried out. The fields for the character devices are basically similar but can
vary slightly from driver to driver. Messages to the terminal driver can contain
the address of a data structure which specifies all of the many configurable
aspects of a terminal, such as the characters to use for the intraline editing func-
tions erase-character and kill-line.

The function of each driver is to accept requests from other processes, nor-
mally the file system, and carry them out. All the block device drivers have been
written to get a message, carry it out, and send a reply. Among other things, this
decision means that these drivers are strictly sequential and do not contain any
internal multiprogramming, to keep them simple. When a hardware request has
been issued, the driver does a receive operation specifying that it is interested only
in accepting interrupt messages, not new requests for work. Any new request
messages are just kept waiting until the current work has been done (rendezvous
principle). The terminal driver is slightly different, since a single driver services
several devices. Thus, it is possible to accept a new request for input from the
keyboard while a request to read from a serial line is still being fulfilled.
Nevertheless, for each device a request must be completed before beginning a
new one.

The main program for each block device driver is structurally the same and is
outlined in Fig. 3-18. When the system first comes up, each one of the drivers is
started up in turn to give each a chance to initialize internal tables and similar
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Figure 3-17. Fields of the messages sent by the file system to the block device
drivers and fields of the replies sent back.

things. Then each device driver blocks by trying to get a message. When a mes-
sage comes in, the identity of the caller is saved, and a procedure is called to carry
out the work, with a different procedure invoked for each operation available.
After the work has been finished, a reply is sent back to the caller, and the driver
then goes back to the top of the loop to wait for the next request.

Each of the dev�XXX procedures handles one of the operations of which the
driver is capable. It returns a status code telling what happened. The status code,
which is included in the reply message as the field REP�STATUS, is the count of
bytes transferred (zero or positive) if all went well, or the error number (negative)
if something went wrong. This count may differ from the number of bytes re-
quested. When the end of a file is reached, the number of bytes available may be
less than number requested. On terminals at most one line is returned (except in
raw mode), even if the count requested is larger.

3.4.3 Device-Independent I/O Software in MINIX 3

In MINIX 3 the file system process contains all the device-independent I/O
code. The I/O system is so closely related to the file system that they were
merged into one process. The functions performed by the file system are those
shown in Fig. 3-6, except for requesting and releasing dedicated devices, which
do not exist in MINIX 3 as it is presently configured. They could, however, easily
be added to the relevant device drivers should the need arise in the future.
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message mess; /* message buffer */

void io�driver() {
initialize(); /* only done once, during system init. */
while (TRUE) {

receive(ANY, &mess); /* wait for a request for work */
caller = mess.source; /* process from whom message came */
switch(mess.type) {

case READ: rcode = dev�read(&mess); break;
case WRITE: rcode = dev�write(&mess); break;
/* Other cases go here, including OPEN, CLOSE, and IOCTL */
default: rcode = ERROR;

}
mess.type = DRIVER�REPLY;
mess.status = rcode; /* result code */
send(caller, &mess); /* send reply message back to caller */

}
}

Figure 3-18. Outline of the main procedure of an I/O device driver.

In addition to handling the interface with the drivers, buffering, and block
allocation, the file system also handles protection and the management of i-nodes,
directories, and mounted file systems. This will be covered in detail in Chap. 5.

3.4.4 User-Level I/O Software in MINIX 3

The general model outlined earlier in this chapter also applies here. Library
procedures are available for making system calls and for all the C functions
required by the POSIX standard, such as the formatted input and output functions
printf and scanf. The standard MINIX 3 configuration contains one spooler dae-
mon, lpd, which spools and prints files passed to it by the lp command. The stan-
dard MINIX 3 software distribution also provides a number of daemons that sup-
port various network functions. The MINIX 3 configuration described in this book
supports most network operations, all that is needed is to enable the network ser-
ver and drivers for ethernet adapters at startup time. Recompiling the terminal
driver with pseudo terminals and serial line support will add support for logins
from remote terminals and networking over serial lines (including modems). The
network server runs at the same priority as the memory manager and the file sys-
tem, and like them, it runs as a user process.

3.4.5 Deadlock Handling in MINIX 3

True to its heritage, MINIX 3 follows the same path as UNIX with respect to
deadlocks of the types described earlier in this chapter: it just ignores the problem.
Normally, MINIX 3 does not contain any dedicated I/O devices, although if
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someone wanted to hang an industry standard DAT tape drive on a PC, making
the software for it would not pose any special problems. In short, the only place
deadlocks can occur are with the implicit shared resources, such as process table
slots, i-node table slots, and so on. None of the known deadlock algorithms can
deal with resources like these that are not requested explicitly.

Actually, the above is not strictly true. Accepting the risk that user processes
could deadlock is one thing, but within the operating system itself a few places do
exist where considerable care has been taken to avoid problems. The main one is
the message-passing interaction between processes. For instance, user processes
are only allowed to use the sendrec messaging method, so a user process should
never lock up because it did a receive when there was no process with an interest
in sending to it. Servers only use send or sendrec to communicate with device
drivers, and device drivers only use send or sendrec to communicate with the sys-
tem task in the kernel layer. In the rare case where servers must communicate be-
tween themselves, such as exchanges between the process manager and the file
system as they initialize their parts of the process table, the order of communica-
tion is very carefully designed to avoid deadlock. Also, at the very lowest level of
the message passing system there is a check to make sure that when a process is
about to do a send that the destination process is not trying to the same thing.

In addition to the above restrictions, in MINIX 3 the new notify message primi-
tive is provided to handle those situations in which a message must be sent in the
‘‘upstream’’ direction. Notify is nonblocking, and notifications are stored when a
recipient is not immediately available. As we examine the implementation of
MINIX 3 device drivers in this chapter we will see that notify is used extensively.

Locks are another mechanism that can prevent deadlocks. It is possible to
lock devices and files even without operating system support. A file name can
serve as a truly global variable, whose presence or absence can be noted by all
other processes. A special directory, /usr/spool/locks/, is usually present on
MINIX 3 systems, as on most UNIX-like systems, where processes can create lock
files, to mark any resources they are using. The MINIX 3 file system also supports
POSIX-style advisory file locking. But neither of these mechanisms is enforce-
able. They depend upon the good behavior of processes, and there is nothing to
prevent a program from trying to use a resource that is locked by another process.
This is not exactly the same thing as preemption of the resource, because it does
not prevent the first process from attempting to continue its use of the resource.
In other words, there is no mutual exclusion. The result of such an action by an
ill-behaved process is likely to be a mess, but no deadlock results.

3.5 BLOCK DEVICES IN MINIX 3

MINIX 3 supports several different block devices, so we will begin by discuss-
ing common aspects of all block devices. Then we will discuss the RAM disk, the
hard disk, and the floppy disk. Each of these is interesting for a different reason.
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The RAM disk is a good example to study because it has all the properties of
block devices in general except the actual I/O—because the ‘‘disk’’ is actually just
a portion of memory. This simplicity makes it a good place to start. The hard
disk shows what a real disk driver looks like. One might expect the floppy disk to
be easier to support than the hard disk, but, in fact, it is not. We will not discuss
all the details of the floppy disk, but we will point out several of the complications
to be found in the floppy disk driver.

Looking ahead, after the discussion of block drivers, we will discuss the ter-
minal (keyboard + display) driver, which is important on all systems, and, furth-
ermore is a good example of a character device driver.

Each of these sections describes the relevant hardware, the software principles
behind the driver, an overview of the implementation, and the code itself. This
structure may make the sections useful reading even for readers who are not
interested in the details of the code itself.

3.5.1 Overview of Block Device Drivers in MINIX 3

We mentioned earlier that the main procedures of all I/O drivers have a simi-
lar structure. MINIX 3 always has at least two block device drivers compiled into
the system: the RAM disk driver, and either one of several possible hard disk
drivers or a floppy disk driver. Usually, there are three block devices—both the
floppy disk driver and an IDE (Integrated Drive Electronics) hard disk driver are
present. The driver for each block device driver is compiled independently, but a
common library of source code is shared by all of them.

In older versions of MINIX a separate CD-ROM driver was sometimes pres-
ent, and could be added if necessary. Separate CD-ROM drivers are now obso-
lete. They used to be necessary to support the proprietary interfaces of different
drive manufacturers, but modern CD-ROM drives are usually connected to the
IDE controller, although on notebook computers some CD-ROMs are USB. The
full version of the MINIX 3 hard disk device driver includes CD-ROM support, but
we have taken the CD-ROM support out of the driver as described in this text and
listed in Appendix B.

Each block device driver has to do some initialization, of course. The RAM
disk driver has to reserve some memory, the hard disk driver has to determine the
parameters of the hard disk hardware, and so on. All of the disk drivers are called
individually for hardware-specific initialization. After doing whatever may be
necessary, each driver then calls the function containing its main loop. This loop
is executed forever; there is no return to the caller. Within the main loop a mes-
sage is received, a function to perform the operation needed by each message is
called, and then a reply message is generated.

The common main loop called by each disk driver process is compiled when
drivers/libdriver/driver.c and the other files in its directory are compiled, and then
a copy of the object file driver.o is linked into each disk driver’s executable file.
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The technique used is to have each driver pass to the main loop a parameter con-
sisting of a pointer to a table of the addresses of the functions that driver will use
for each operation and then to call these functions indirectly.

If the drivers were compiled together in a single executable file only one copy
of the main loop would be needed. This code was, in fact, first written for an ear-
lier version of MINIX in which all the drivers were compiled together. The em-
phasis in MINIX 3 is on making individual operating system components as in-
dependent as possible, but using common source code for separate programs is
still a good way to increase reliability. Assuming you get it right once, it will be
right for all the drivers. Or, a bug found in one use might very well exist unno-
ticed in other uses. Thus, shared source code gets tested more thoroughly.

A number of other functions potentially useful to multiple disk drivers are de-
fined in drivers/libdriver/drvlib.c, and linking drvlib.o makes these available. All
of the functionality could have been provided in a single file, but not all of it is
needed by every disk driver. For instance, the memory driver, which is simpler
than other drivers, links in only driver.o. The at�wini driver links in both driver.o
and drvlib.o.

Figure 3-19 shows an outline of the main loop, in a form similar to that of
Fig. 3-18. Statements like

code = (*entry�points−>dev�read)(&mess);

are indirect function calls. A different dev�read function is called by each driver,
even though each driver is executing a main loop compiled from the same source
file. But some other operations, for example close, are simple enough that more
than one device can call the same function.

There are six possible operations that can be requested of any device driver.
These correspond to the possible values that can be found in the m.m�type field
of the message of Fig. 3-17. They are:

1. OPEN

2. CLOSE

3. READ

4. WRITE

5. IOCTL

6. SCATTERED�IO

Many of these operations are most likely familiar to readers with programming
experience. At the device driver level most operations are related to system calls
with the same name. For instance, the meanings of READ and WRITE should be
fairly clear. For each of these operations, a block of data is transferred from the
device to the memory of the process that initiated the call, or vice versa. A READ
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message mess; /* message buffer */

void shared� io�driver(struct driver�table *entry�points) {
/* initialization is done by each driver before calling this */

while (TRUE) {
receive(ANY, &mess);
caller = mess.source;
switch(mess.type) {

case READ: rcode = (*entry�points−>dev�read)(&mess); break;
case WRITE: rcode = (*entry�points−>dev�write)(&mess); break;
/* Other cases go here, including OPEN, CLOSE, and IOCTL */
default: rcode = ERROR;

}
mess.type = DRIVER�REPLY;
mess.status = rcode; /* result code */
send(caller, &mess);

}
}

Figure 3-19. An I/O driver main procedure using indirect calls.

operation normally does not result in a return to the caller until the data transfer is
complete, but an operating system may buffer data transferred during a WRITE for
actual transfer to the destination at a later time, and return to the caller immedi-
ately. That is fine as far as the caller is concerned; it is then free to reuse the
buffer from which the operating system has copied the data to write. OPEN and
CLOSE for a device have similar meanings to the way the open and close system
calls apply to operations on files: an OPEN operation should verify that the device
is accessible, or return an error message if not, and a CLOSE should guarantee
that any buffered data that were written by the caller are completely transferred to
their final destination on the device.

The IOCTL operation may not be so familiar. Many I/O devices have opera-
tional parameters which occasionally must be examined and perhaps changed.
IOCTL operations do this. A familiar example is changing the speed of transmis-
sion or the parity of a communications line. For block devices, IOCTL operations
are less common. Examining or changing the way a disk device is partitioned is
done using an IOCTL operation in MINIX 3 (although it could just as well have
been done by reading and writing a block of data).

The SCATTERED�IO operation is no doubt the least familiar of these.
Except with exceedingly fast disk devices (for example, the RAM disk), satisfac-
tory disk I/O performance is difficult to obtain if all disk requests are for indivi-
dual blocks, one at a time. A SCATTERED�IO request allows the file system to
make a request to read or write multiple blocks. In the case of a READ operation,
the additional blocks may not have been requested by the process on whose behalf
the call is made; the operating system attempts to anticipate future requests for
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data. In such a request not all the transfers requested are necessarily honored by
the device driver. The request for each block may be modified by a flag bit that
tells the device driver that the request is optional. In effect the file system can
say: ‘‘It would be nice to have all these data, but I do not really need them all right
now.’’ The device can do what is best for it. The floppy disk driver, for instance,
will return all the data blocks it can read from a single track, effectively saying, ‘‘I
will give you these, but it takes too long to move to another track; ask me again
later for the rest.’’

When data must be written, there is no question of its being optional; every
write is mandatory. Nevertheless, the operating system may buffer a number of
write requests in the hope that writing multiple blocks can be done more effi-
ciently than handling each request as it comes in. In a SCATTERED�IO request,
whether for reading or writing, the list of blocks requested is sorted, and this
makes the operation more efficient than handling the requests randomly. In addi-
tion, making only one call to the driver to transfer multiple blocks reduces the
number of messages sent within MINIX 3.

3.5.2 Common Block Device Driver Software

Definitions that are needed by all of the block device drivers are located in
drivers/libdriver/driver.h. The most important thing in this file is the driver struc-
ture, on lines 10829 to 10845, which is used by each driver to pass a list of the
addresses of the functions it will use to perform each part of its job. Also defined
here is the device structure (lines 10856 to 10859) which holds the most important
information about partitions, the base address, and the size, in byte units. This
format was chosen so no conversions are necessary when working with memory-
based devices, maximizing speed of response. With real disks there are so many
other factors delaying access that converting to sectors is not a significant incon-
venience.

The source of the main loop and common functions of all the block device
drivers are in driver.c. After doing whatever hardware-specific initialization may
be necessary, each driver calls driver�task, passing a driver structure as the argu-
ment to the call. After obtaining the address of a buffer to use for DMA opera-
tions the main loop (lines 11071 to 11120) is entered.

In the switch statement in the main loop, the first five message types,
DEV�OPEN, DEV�CLOSE, DEV�IOCTL, DEV�CANCEL, and DEV�SELECT
result in indirect calls using addresses passed in the driver structure. The
DEV�READ and DEV�WRITE messages both result in direct calls to do�rdwt;
DEV�GATHER and DEV�SCATTER messages both result in direct calls to
do�vrdwt. The driver structure is passed as an argument by all the calls from
within the switch, whether direct or indirect, so all called functions can make
further use of it as needed. Do�rdwt and do�vrdwt do some preliminary process-
ing, but then they too make indirect calls to device-specific routines.
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The other cases, HARD�INT, SYS�SIG, and SYN�ALARM, respond to notifi-
cations. These also result in indirect calls, but upon completion each of these exe-
cutes a continue statement. This causes control to return to the top of the loop,
bypassing the cleanup and reply message steps.

After doing whatever is requested in the message, some sort of cleanup may
be necessary, depending upon the nature of the device. For a floppy disk, for
instance, this might involve starting a timer to turn off the disk drive motor if
another request does not arrive soon. An indirect call is used for this as well. Fol-
lowing the cleanup, a reply message is constructed and sent to the caller (lines
11113 to 11119). It is possible for a routine that services one of the message types
to return a EDONTREPLY value to suppress the reply message, but none of the
current drivers use this option.

The first thing each driver does after entering the main loop is to make a call
to init�buffer (line 11126), which assigns a buffer for use in DMA operations.
That this initialization is even necessary at all is due to a quirk of the hardware of
the original IBM PC, which requires that the DMA buffer not cross a 64K boun-
dary. That is, a 1-KB DMA buffer may begin at 64510, but not at 64514, because
a buffer starting at the latter address extends just beyond the 64K boundary at
65536.

This annoying rule occurs because the IBM PC used an old DMA chip, the
Intel 8237A, which contains a 16-bit counter. A bigger counter is needed because
DMA uses absolute addresses, not addresses relative to a segment register. On
older machines that can address only 1M of memory, the low-order 16 bits of the
DMA address are loaded into the 8237A, and the high-order 4 bits are loaded into
a 4-bit latch. Newer machines use an 8-bit latch and can address 16M. When the
8237A goes from 0xFFFF to 0x0000, it does not generate a carry into the latch, so
the DMA address suddenly jumps down by 64K in memory.

A portable C program cannot specify an absolute memory location for a data
structure, so there is no way to prevent the compiler from placing the buffer in an
unusable location. The solution is to allocate an array of bytes twice as large as
necessary at buffer (line 11044) and to reserve a pointer tmp�buf (line 11045) to
use for actually accessing this array. Init�buffer makes a trial setting of tmp�buf
pointing to the beginning of buffer, then tests to see if that allows enough space
before a 64K boundary is hit. If the trial setting does not provide enough space,
tmp�buf is incremented by the number of bytes actually required. Thus some
space is always wasted at one end or the other of the space allocated in buffer, but
there is never a failure due to the buffer falling on a 64K boundary.

Newer computers of the IBM PC family have better DMA controllers, and
this code could be simplified, and a small amount of memory reclaimed, if one
could be sure that one’s machine were immune to this problem. If you are consid-
ering this, however, consider how the bug will manifest itself if you are wrong. If
a 1K DMA buffer is desired, the chance is 1 in 64 that there will be a problem on
a machine with the old DMA chip. Every time the kernel source code is modified
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in a way that changes the size of the compiled kernel, there is the same probability
that the problem will manifest itself. Most likely, when the failure occurs next
month or next year, it will be attributed to the code that was last modified. Unex-
pected hardware ‘‘features’’ like this can cause weeks of time spent looking for
exceedingly obscure bugs (all the more so when, like this one, the technical refer-
ence manual says nary a word about them).

Do�rdwt (line 11148) is the next function in driver.c. It, in turn calls two
device-dependent functions pointed to by the dr�prepare and dr�transfer fields
in the driver structure. Here and in what follows we will use the C language-like
notation (*function�pointer) to indicate we are talking about the function pointed
to by function�pointer.

After checking to see that the byte count in the request is positive, do�rdwt
calls (*dr�prepare). This operation fills in the base and size of the disk, partition,
or subpartition being accessed in a device structure. For the memory driver,
which does not support partitions, it just checks that the minor device number is
valid. For the hard disk it uses the minor device number to get the size of the par-
tition or subpartition indicated by the minor device number. This should succeed,
since (*dr�prepare) can fail only if an invalid device is specified in an open oper-
ation. Next, an iovec�t structure (which is defined on lines 2856 to 2859 in
include/minix/type.h), iovec1, is filled in. This structure specifies the virtual ad-
dress and size of the local buffer to or from which data will be copied by the sys-
tem task. This is the same structure that is used as an element of an array of
requests when the call is for multiple blocks. The address of a variable and the
address of the first element of an array of the same type of variable can be han-
dled exactly the same way. Then comes another indirect call, this time to
(*dr� transfer), which performs the data copy and I/O operations required. The
routines that handle transfers all expect to receive an array of requests. In
do�rdwt the last argument to the call is 1, specifying an array of one element.

As we will see in the discussion of disk hardware in the next section, respond-
ing to disk requests in the order they are received can be inefficient, and this rou-
tine allows a particular device to handle requests in the way that is best for the
device. The indirection here masks much possible variation in the way individual
devices perform. For the RAM disk, dr�transfer points to a routine that makes a
kernel call to ask the system task to copy data from one part of physical memory
to another, if the minor device being accessed is /dev/ram, /dev/mem, /dev/kmem,
/dev/boot, or /dev/zero. (No copying is required to access /dev/null, of course.)
For a real disk, the code pointed to by dr� transfer also has to ask the system task
for a data transfer. But before the copy operation (for a read) or after it (for a
write) a kernel call must also be made to ask the system task to do actual I/O,
writing bytes to registers that are part of the disk controller to select the location
on the disk and the size and direction of the transfer.

In the transfer routine the iov�size count in the iovec1 structure is modified,
returning an error code (a negative number) if there was an error or a positive
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number indicating the number of bytes transferred. It is not necessarily an error if
no bytes are transferred; this indicates that the end of the device has been reached.
Upon returning to the main loop, the error code or the byte count is returned in the
REP�STATUS field in the reply message from driver�task.

The next function, do�vrdwt (line 11182), handles scattered I/O requests. A
message that requests a scattered I/O request uses the ADDRESS field to point to
an array of iovec�t structures, each of which specifies the address of a buffer and
the number of bytes to transfer. In MINIX 3 such a request can be made only for
contiguous blocks on the disk; the initial offset on the device and whether the
operation is a read or a write are in the message. So all the operations in one re-
quest will be for either reading or writing, and they will be sorted into block order
on the device. On line 11198 a check is done to see if this call is being done on
behalf of a kernel-space I/O task; this is a vestige of an early phase of the
development of MINIX 3 before all the disk drivers had been rewritten to run in
user space.

Fundamentally, the code for this operation is very similar to that for the sim-
ple read or write performed by do�rdwt. The same indirect calls to the device-
dependent (*dr�prepare) and (*dr�transfer) routines are made. The looping in
order to handle multiple requests is all done internal to the function pointed to by
(*dr� transfer). The last argument in this case is not 1, it is the size of the array of
iovec�t elements. After termination of the loop the array of requests is copied
back where it came from. The io�size field of each element in the array will
show the number of bytes transferred for that request, and although the total is not
passed back directly in the reply message that driver� task constructs, the caller
can extract the total from this array.

The next few routines in driver.c are for general support of the above opera-
tions. A (*dr�name) call can be used to return the name of a device. For a
device with no specific name the no�name function returns the string ‘‘noname’’.
Some devices may not require a particular service, for instance, a RAM disk does
not require that anything special be done upon a DEV�CLOSE request. The
do�nop function fills in here, returning various codes depending upon the kind of
request made. Additional functions, nop�signal, nop�alarm, nop�prepare,
nop�cleanup, and nop�cancel, are similar dummy routines for devices that do not
need these services.

Finally, do�diocntl (line 11216) carries out DEV�IOCTL requests for a block
device. It is an error if any DEV�IOCTL operation other than reading
(DIOCGETP) or writing (DIOCSETP) partition information is requested.
Do�diocntl calls the device’s (*dr�prepare) function to verify the device is valid
and to get a pointer to the device structure that describes the partition base and
size in byte units. On a request to read, it calls the device’s (*dr�geometry) func-
tion to get the last cylinder, head, and sector information about the partition. In
each case a sys�datacopy kernel call is made to request that the system task copy
the data between the memory spaces of the driver and the requesting process.
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3.5.3 The Driver Library

The files drvlib.h and drvlib.c contain system-dependent code that supports
disk partitions on IBM PC compatible computers.

Partitioning allows a single storage device to be divided up into subdevices.
It is most commonly used with hard disks, but MINIX 3 provides support for parti-
tioning floppy disks, as well. Some reasons to partition a disk device are:

1. Disk capacity is cheaper per unit in large disks. If two or more op-
erating systems with different file systems are used, it is more econ-
omical to partition a single large disk than to install multiple smaller
disks for each operating system.

2. Operating systems may have limits to the device size they can han-
dle. The version of MINIX 3 discussed here can handle a 4-GB file
system, but older versions are limited to 256 MB. Any disk space
beyond that is wasted.

3. Two or more different file systems may be used by an operating sys-
tem. For example, a standard file system may be used for ordinary
files and a differently structured file system may be used for virtual
memory swap space.

4. It may be convenient to put a portion of a system’s files on a separate
logical device. Putting the MINIX 3 root file system on a small de-
vice makes it easy to back up and facilitates copying it to a RAM
disk at boot time.

Support for disk partitions is platform specific. This specificity is not related
to the hardware. Partition support is device independent. But if more than one
operating system is to run on a particular set of hardware, all must agree on a for-
mat for the partition table. On IBM PCs the standard is set by the MS-DOS fdisk
command, and other OSs, such as MINIX 3, Windows, and Linux, use this format
so they can coexist with MS-DOS. When MINIX 3 is ported to another machine
type, it makes sense to use a partition table format compatible with other operat-
ing systems used on the new hardware. Thus the MINIX 3 source code to support
partitions on IBM computers is put in drvlib.c, rather than being included in
driver.c, for two reasons. First, not all disk types support partitions. As noted
earlier, the memory driver links to driver.o but does not use the functions com-
piled into drvlib.o. Second, this makes it easier to port MINIX 3 to different
hardware. It is easier to replace one small file than to edit a large one with many
sections to be conditionally compiled for different environments.

The basic data structure inherited from the firmware designers is defined in
include/ibm/partition.h, which is included by a #include statement in drvlib.h (line
10900). This includes information on the cylinder-head-sector geometry of each
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partition, as well as codes identifying the type of file system on the partition and
an active flag indicating if it is bootable. Most of this information is not needed
by MINIX 3 once the file system is verified.

The partition function (in drvlib.c, line 11426) is called the first time a block
device is opened. Its arguments include a driver structure, so it can call device-
specific functions, an initial minor device number, and a parameter indicating
whether the partitioning style is floppy disk, primary partition, or subpartition. It
calls the device-specific (*dr�prepare) function to verify the device is valid and
to get the base address and the size into a device structure of the type mentioned
in the previous section. Then it calls get�part�table to determine if a partition
table is present and, if so, to read it. If there is no partition table, the work is
done. Otherwise the minor device number of the first partition is computed, using
the rules for numbering minor devices that apply to the style of partitioning speci-
fied in the original call. In the case of primary partitions the partition table is
sorted so the order of the partitions is consistent with that used by other operating
systems.

At this point another call is made to (*dr�prepare), this time using the newly
calculated device number of the first partition. If the subdevice is valid, then a
loop is made over all the entries in the table, checking that the values read from
the table on the device are not out of the range obtained earlier for the base and
size of the entire device. If there is a discrepancy, the table in memory is adjusted
to conform. This may seem paranoid, but since partition tables may be written by
different operating systems, a programmer using another system may have clev-
erly tried to use the partition table for something unexpected or there could be
garbage in the table on disk for some other reason. We put the most trust in the
numbers we calculate using MINIX 3. Better safe than sorry.

Still within the loop, for all partitions on the device, if the partition is identi-
fied as a MINIX 3 partition, partition is called recursively to gather subpartition
information. If a partition is identified as an extended partition, the next function,
extpartition, is called instead.

Extpartition (line 11501) has nothing to do with MINIX 3 itself, so we will not
discuss details. Some other operating systems (e.g., Windows) use extended par-
titions. These use linked lists rather than fixed-size arrays to support subparti-
tions. For simplicity MINIX 3 uses the same mechanism for subpartitions as for
primary partitions. However, minimal support for extended partitions is provided
to support MINIX 3 commands to read and write files and directories of other
operating systems. These operations are easy; providing full support for mounting
and otherwise using extended partitions in the same way as primary partitions
would be much more complicated.

Get�part� table (line 11549) calls do�rdwt to get the sector on a device (or
subdevice) where a partition table is located. The offset argument is zero if it is
called to get a primary partition or nonzero for a subpartition. It checks for the
magic number (0xaa55) and returns true or false status to indicate whether a valid
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partition table was found. If a table is found, it copies it to the table address that
was passed as an argument.

Finally, sort (line 11582) sorts the entries in a partition table by lowest sector.
Entries that are marked as having no partition are excluded from the sort, so they
come at the end, even though they may have a zero value in their low sector field.
The sort is a simple bubble sort; there is no need to use a fancy algorithm to sort a
list of four items.

3.6 RAM DISKS

Now we will get back to the individual block device drivers and study several
of them in detail. The first one we will look at is the memory driver. It can be
used to provide access to any part of memory. Its primary use is to allow a part of
memory to be reserved for use like an ordinary disk, and we will also refer to it as
the RAM disk driver. A RAM disk does not provide permanent storage, but once
files have been copied to this area they can be accessed extremely quickly.

A RAM disk is also useful for initial installation of an operating system on a
computer with only one removable storage device, whether a floppy disk, CD-
ROM, or some other device. By putting the root device on the RAM disk, remov-
able storage devices can be mounted and unmounted as needed to transfer data to
the hard disk. Putting the root device on a floppy disk would make it impossible
to save files on floppies, since the root device (the only floppy) cannot be un-
mounted. RAM disks also are used with ‘‘live’’ CD-ROMs that allow one to run
an operating system for tests and demonstrations, without copying any files onto
the hard disk. Having the root device on the RAM disk makes the system highly
flexible: any combination of floppy disks or hard disks can be mounted on it.
MINIX 3 and many other operating systems are distributed on live CD-ROMs.

As we shall see, the memory driver supports several other functions in addi-
tion to a RAM disk. It supports straightforward random access to any part of
memory, byte by byte or in chunks of any size. Used this way it acts as a charac-
ter device rather than as a block device. Other character devices supported by the
memory driver are /dev/zero, and /dev/null, otherwise known as the great bit
bucket in the sky.

3.6.1 RAM Disk Hardware and Software

The idea behind a RAM disk is simple. A block device is a storage medium
with two commands: write a block and read a block. Normally, these blocks are
stored on rotating memories, such as floppy disks or hard disks. A RAM disk is
simpler. It just uses a preallocated portion of main memory for storing the blocks.
A RAM disk has the advantage of having instant access (no seek or rotational de-
lay), making it suitable for storing programs or data that are frequently accessed.
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As an aside, it is worth briefly pointing out a difference between systems that
support mounted file systems and those that do not (e.g., MS-DOS and Windows).
With mounted file systems, the root device is always present and in a fixed loca-
tion, and removable file systems (i.e., disks) can be mounted in the file tree to
form an integrated file system. Once everything has been mounted, the user need
not worry at all about which device a file is on.

In contrast, with systems like MS-DOS, the user must specify the location of
each file, either explicitly as in B: \ DIR \ FILE or by using certain defaults
(current device, current directory, and so on). With only one or two floppy disks,
this burden is manageable, but on a large computer system, with dozens of disks,
having to keep track of devices all the time would be unbearable. Remember that
UNIX-like operating systems run on hardware ranging from small home and office
machines to supercomputers such as the IBM Blue Gene/L supercomputer, the
world’s fastest computer as of this writing; MS-DOS runs only on small systems.

Figure 3-20 shows the idea behind a RAM disk. The RAM disk is split up
into n blocks, depending on how much memory has been allocated for it. Each
block is the same size as the block size used on the real disks. When the driver
receives a message to read or write a block, it just computes where in the RAM
disk memory the requested block lies and reads from it or writes to it, instead of
from or to a floppy or hard disk. Ultimately the system task is called to carry out
the transfer. This is done by phys�copy, an assembly language procedure in the
kernel that copies to or from the user program at the maximum speed of which the
hardware is capable.

User
programs

RAM
disk RAM disk block 1

Main Memory (RAM)

Read and writes of RAM block 0
use this memory

Operating
system

…

Figure 3-20. A RAM disk.

A RAM disk driver may support several areas of memory used as RAM disk,
each distinguished by a different minor device number. Usually, these areas are
distinct, but in some fairly specific situations it may be convenient to have them
overlap, as we shall see in the next section.
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3.6.2 Overview of the RAM Disk Driver in MINIX 3

The MINIX 3 RAM disk driver is actually six closely related drivers in one.
Each message to it specifies a minor device as follows:

0: /dev/ram 2: /dev/kmem 4: /dev/boot
1: /dev/mem 3: /dev/null 5: /dev/zero

The first special file listed above, /dev/ram, is a true RAM disk. Neither its
size nor its origin is built into the driver. They are determined by the file system
when MINIX 3 is booted. If the boot parameters specify that the root file system is
to be on the RAM disk but the RAM disk size is not specified, a RAM disk of the
same size as the root file system image device is created. A boot parameter can
be used to specify a RAM disk larger than the root file system, or if the root is not
to be copied to the RAM, the specified size may be any value that fits in memory
and leaves enough memory for system operation. Once the size is known, a block
of memory big enough is found and removed from the memory pool by the proc-
ess manager during its initialization. This strategy makes it possible to increase or
reduce the amount of RAM disk present without having to recompile the operat-
ing system.

The next two minor devices are used to read and write physical memory and
kernel memory, respectively. When /dev/mem is opened and read, it yields the
contents of physical memory locations starting at absolute address zero (the real-
mode interrupt vectors). Ordinary user programs never do this, but a system pro-
gram concerned with debugging the system might possibly need this facility.
Opening /dev/mem and writing on it will change the interrupt vectors. Needless to
say, this should only be done with the greatest of caution by an experienced user
who knows exactly what he is doing.

The special file /dev/kmem is like /dev/mem, except that byte 0 of this file is
byte 0 of the kernel’s data memory, a location whose absolute address varies,
depending on the size of the MINIX 3 kernel text segment. It too is used mostly
for debugging and very special programs. Note that the RAM disk areas covered
by these two minor devices overlap. If you know exactly how the kernel is placed
in memory, you can open /dev/mem, seek to the beginning of the kernel’s data
area, and see exactly the same thing as reading from the beginning of /dev/kmem.
But, if you recompile the kernel, changing its size, or if in a subsequent version of
MINIX 3 the kernel is moved somewhere else in memory, you will have to seek a
different amount in /dev/mem to see the same thing you now see at the start of
/dev/kmem. Both of these special files should be protected to prevent everyone
except the superuser from using them.

The next file in this group, /dev/null, is a special file that accepts data and
throws them away. It is commonly used in shell commands when the program
being called generates output that is not needed. For example,

a.out >/dev/null
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runs the program a.out but discards its output. The RAM disk driver effectively
treats this minor device as having zero size, so no data are ever copied to or from
it. If you read from it you will get an immediate EOF (End of File).

If you have looked at the directory entries for these files in /dev/ you may
have noticed that, of those mentioned so far, only /dev/ram is a block special file.
All the others are character devices. There is one more block device supported by
the memory driver. This is /dev/boot. From the point of view of the device driver
it is another block device implemented in RAM, just like /dev/ram. However, it is
meant to be initialized by copying a file appended to the boot image after init into
memory, rather than starting with an empty block of memory, as is done for
/dev/ram. Support for this device is provided for future use and it is not used in
MINIX 3 as described in this text.

Finally, the last device supported by the memory driver is another character
special file, /dev/zero. It is sometimes convenient to have a source of zeros.
Writing to /dev/zero is like writing to /dev/null; it throws data away. But reading
/dev/zero gives you zeros, in any quantity you want, whether a single character or
a disk full.

At the driver level, the code for handling /dev/ram, /dev/mem, /dev/kmem, and
/dev/boot is identical. The only difference among them is that each one cor-
responds to a different region of memory, indicated by the arrays ram�origin and
ram� limit, each indexed by minor device number. The file system manages de-
vices at a higher level. The file system interprets devices as character or block
devices, and thus can mount /dev/ram and /dev/boot and manage directories and
files on these devices. For the devices defined as character devices the file system
can only read and write streams of data (although a stream read from /dev/null
gets only EOF).

3.6.3 Implementation of the RAM Disk Driver in MINIX 3

As with other disk drivers, the main loop of the RAM disk driver is in the file
driver.c. The device-specific support for memory devices is in memory.c (line
10800). When the memory driver is compiled, a copy of the object file called
drivers/libdriver/driver.o, produced by compiling drivers/libdriver/driver.c, is
linked with the object file drivers/memory/memory.o , the product of compiling
drivers/memory/memory.c .

It may be worth taking a moment to consider how the main loop is compiled.
The declaration of the driver structure in driver.h (lines 10829 to 10845) defines a
data structure, but does not create one. The declaration of m�dtab on lines 11645
to 11660 creates an instance of this with each part of the structure filled in with a
pointer to a function. Some of these functions are generic code compiled when
driver.c is compiled, for instance, all of the nop functions. Others are code com-
piled when memory.c is compiled, for instance, m�do�open. Note that for the
memory driver seven of the entries are do-little or do-nothing routines and the last
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two are defined as NULL (which means these functions will never be called, there
is no need even for a do�nop). All this is a sure clue that the operation of a RAM
disk is not terribly complicated.

The memory device does not require definition of a large number of data
structures, either. The array m�geom[NR�DEVS] (line 11627) holds the base and
size of each of the six memory devices in bytes, as 64 bit unsigned integers, so
there is no immediate danger of MINIX 3 not being able to have a big enough
RAM disk. The next line defines an interesting structure that will not be seen in
other drivers. M�seg[NR�DEVS] is apparently just an aray of integers, but these
integers are indices that allow segment descriptors to be found. The memory
device driver is unusual among user-space processes in having the ability to
access regions of memory outside of the ordinary text, data, and stack segments
every process owns. This array holds the information that allows access to the
designated additional memory regions. The variable m�device just holds the
index into these arrays of the currently active minor device.

To use /dev/ram as the root device the memory driver must be initialized very
early during startup of MINIX 3. The kinfo and machine structures that are defined
next will hold data retrieved from the kernel during startup that is necessary for
initializing the memory driver.

One other data structure is defined before the executable code begins. This is
dev�zero, an array of 1024 bytes, used to supply data when a read call is made to
/dev/zero.

The main procedure main (line 11672) calls one function to do some local ini-
tialization. After that, it calls the main loop, which gets messages, dispatches to
the appropriate procedures, and sends the replies. There is no return to main upon
completion.

The next function, m�name, is trivial. It returns the string ‘‘memory’’ when
called.

On a read or write operation, the main loop makes three calls: one to prepare a
device, one to do the actual data transfer, and one to do cleanup. For a memory
device, a call to m�prepare is the first of these. It checks that a valid minor
device has been requested and then returns the address of the structure that holds
the base address and size of the requested RAM area. The second call is for
m�transfer (line 11706). This does all the work. As we saw in driver.c, all calls
to read or write data are transformed into calls to read or write multiple contigu-
ous blocks of data—if only one block is needed the request is passed on as a re-
quest for multiple blocks with a count of one. So only two kinds of transfer re-
quests are passed on to the driver, DEV�GATHER, requesting a read of one or
more blocks, and DEV�SCATTER, a request to write one or more blocks. Thus,
after getting the minor device number, m�transfer enters a loop, repeated for the
number of transfers requested. Within the loop there is a switch on the device type.

The first case is for /dev/null, and the action is to return immediately on a
DEV�GATHER request or on a DEV�SCATTER request to fall through to the end
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of the switch. This is so the number of bytes transferred (although this number is
zero for /dev/null) can be returned, as would be done for any write operation.

For all of the device types that refer to real locations in memory the action is
similar. The requested offset is checked against the size of the device to deter-
mine that the request is within the bounds of the memory allocated to the device.
Then a kernel call is made to copy data either to or from the memory of the caller.
There are two chunks of code that do this, however. For /dev/ram, /dev/kmem,
and /dev/boot virtual addresses are used, which requires retrieving the segment
address of the memory region to be accessed from the m�seg array, and then
making a sys�vircopy kernel call (lines 11640 to 11652). For /dev/mem a physical
address is used and the call is to sys�physcopy.

The remaining operation is a read or write to /dev/zero. For reading the data
is taken from the dev�zero array mentioned earlier. You might ask, why not just
generate zero values as needed, rather than copying from a buffer full of them?
Since the copying of the data to its destination has to be done by a kernel call,
such a method would require either an inefficient copying of single bytes from the
memory driver to the system task, or building code to generate zeros into the sys-
tem task. The latter approach would increase the complexity of kernel-space
code, something that we would like to avoid in MINIX 3.

A memory device does not need a third step to finish a read or write opera-
tion, and the corresponding slot in m�dtab is a call to nop� finish.

Opening a memory device is done by m�do�open (line 11801). The job is
done by calling m�prepare to check that a valid device is being referenced. More
interesting than the code that exists is a comment about code that was found here
in older versions of MINIX. Previously a trick was hidden here. A call by a user
process to open /dev/mem or /dev/kmem would also magically confer upon the
caller the ability to execute instructions which access I/O ports. Pentium-class
CPUs implement four privilege levels, and user processes normally run at the
least-privileged level. The CPU generates a general protection exception when an
process tries to execute an instruction not allowed at its privilege level. Providing
a way to get around this was considered safe because the memory devices could
only be accessed by a user with root privileges. In any case, this possibly risky
‘‘feature’’ is absent from MINIX 3 because kernel calls that allow I/O access via
the system task are now available. The comment remains, to point out that if
MINIX 3 is ported to hardware that uses memory-mapped I/O such a feature might
need to be reintroduced. The function to do this, enable�iop, remains in the ker-
nel code to show how this can be done, although it is now an orphan.

The next function, m� init (line 11817), is called only once, when mem�task
is called for the first time. This routine uses a number of kernel calls, and is worth
study to see how MINIX 3 drivers interact with kernel space by using system task
services. First a sys�getkinfo kernel call is made to get a copy of the kernel’s
kinfo data. From this data it copies the base address and size of /dev/kmem into
the corresponding fields of the m�geom data structure. A different kernel call,
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sys�segctl, converts the physical address and size of /dev/kmem into the segment
descriptor information needed to treat the kernel memory as a virtual memory
space. If an image of a boot device has been compiled into the system boot im-
age, the field for the base address of /dev/boot will be non-zero. If this is so, then
information to access the memory region for this device is set up in exactly the
same way it was done for /dev/kmem. Next the array used to supply data when
/dev/zero is accessed is explicitly filled with zeros. This is probably unnecessary;
C compilers are supposed to initialize newly created static variables to all zeros.

Finally, m�init uses a sys�getmachine kernel call to get another set of data
from the kernel, the machine structure which flags various possible hardware
alternatives. In this case the information needed is whether or not the CPU is cap-
able of protected mode operation. Based on this information the size of /dev/mem
is set to either 1 MB, or 4 GB − 1, depending upon whether MINIX 3 is running in
8088 or 80386 mode. These sizes are the maximum sizes supported by MINIX 3
and do not have anything to do with how much RAM is installed in the machine.
Only the size of the device is set; the compiler is trusted to set the base address
correctly to zero. Also, since /dev/mem is accessed as physical (not virtual)
memory there is no need to make a sys�segctl kernel call to set up a segment
descriptor.

Before we leave m�init we should mention another kernel call used here, al-
though it is not obvious in the code. Many of the actions taken during initializa-
tion of the memory driver are essential to proper functioning of MINIX 3, and thus
several tests are made and panic is called if a test fails. In this case panic is a
library routine which ultimately results in a sys�exit kernel call. The kernel and
(as we shall see) the process manager and the file system have their own panic
routines. The library routine is provided for device drivers and other small system
components.

Surprisingly, the function we just examined, m�init, does not initialize the
quintessential memory device, /dev/ram. This is taken care of in the next func-
tion, m�ioctl (line 11863). In fact, there is only one ioctl operation defined for the
RAM disk; this is MIOCRAMSIZE, which is used by the file system to set the
RAM disk size. Much of the job is done without requiring any services from the
kernel. The call to allocmem on line 11887 is a system call, but not a kernel call.
It is handled by the process manager, which maintains all of the information
necessary to find an available region of memory. However, at the end one kernel
call is needed. At line 11894 a sys�segctl call is made to convert the physical
address and size returned by allocmem into the segment information needed for
further access.

The last function defined in memory.c is m�geometry. This is a fake. Obvi-
ously, cylinders, heads, and sectors are irrelevant in addressing semiconductor
memory, but if a request is made for such information for a memory device this
function pretends it has 64 heads and 32 sectors per track, and calculates from the
size how many cylinders there are.
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3.7 DISKS

All modern computers except embedded ones have disk drives. For that rea-
son, we will now study them, starting with the hardware, then moving on to say
some general things about disk software. After that we will delve into the way
MINIX 3 controls its disks.

3.7.1 Disk Hardware

All real disks are organized into cylinders, each one containing as many
tracks as there are heads stacked vertically. The tracks are divided into sectors,
with the number of sectors around the circumference typically being 8 to 32 on
floppy disks, and up to several hundred on some hard disks. The simplest designs
have the same number of sectors on each track. All sectors contain the same
number of bytes, although a little thought will make it clear that sectors close to
the outer rim of the disk will be physically longer than those close to the hub. The
time to read or write each sector will be same, however. The data density is obvi-
ously higher on the innermost cylinders, and some disk designs require a change
in the drive current to the read-write heads for the inner tracks. This is handled by
the disk controller hardware and is not visible to the user (or the implementer of
an operating system).

The difference in data density between inner and outer tracks means a sacri-
fice in capacity, and more sophisticated systems exist. Floppy disk designs that
rotate at higher speeds when the heads are over the outer tracks have been tried.
This allows more sectors on those tracks, increasing disk capacity. Such disks are
not supported by any system for which MINIX 3 is currently available, however.
Modern large hard drives also have more sectors per track on outer tracks than on
inner tracks. These are IDE (Integrated Drive Electronics) drives, and the
sophisticated processing done by the drive’s built-in electronics masks the details.
To the operating system they appear to have a simple geometry with the same
number of sectors on each track.

The drive and controller electronics are as important as the mechanical hard-
ware. The main element of the disk controller is a specialized integrated circuit,
really a small microcomputer. Once this would have been on a card plugged into
the computer’s backplane, but on modern systems, the disk controller is on the
parentboard. For a modern hard disk this disk controller circuitry may be simpler
than for a floppy disk, since a hard drive has a powerful electronic controller
integrated into the drive itself.

A device feature that has important implications for the disk driver is the pos-
sibility of a controller doing seeks on two or more drives at the same time. These
are known as overlapped seeks. While the controller and software are waiting
for a seek to complete on one drive, the controller can initiate a seek on another
drive. Many controllers can also read or write on one drive while seeking on one



SEC. 3.7 DISKS 279

or more other drives, but a floppy disk controller cannot read or write on two
drives at the same time. (Reading or writing requires the controller to move bits
on a microsecond time scale, so one transfer uses up most of its computing
power.) The situation is different for hard disks with integrated controllers, and in
a system with more than one of these hard drives they can operate simultaneously,
at least to the extent of transferring between the disk and the controller’s buffer
memory. Only one transfer between the controller and the system memory is pos-
sible at once, however. The ability to perform two or more operations at the same
time can reduce the average access time considerably.

One thing to be aware of in looking at the specifications of modern hard disks
is that the geometry specified, and used by the driver software, is almost always
different from the physical format. In fact, if you look up the ‘‘recommended
setup parameters’’ for a large hard disk, you are likely to find it specified as 16383
cylinders, 16 heads, and 63 sectors per track, no matter what the size of the disk.
These numbers correspond to a disk size of 8 GB, but are used for all disks this
size or larger. The designers of the original IBM PC ROM BIOS allotted a 6-bit
field for the sector count, 4 bits to specify the head, and 14 bits to select a
cylinder. With 512 byte sectors this comes out to 8 GB. So if you try to install a
large hard drive into a very old computer you may find you can access only 8 GB,
even though you have a much bigger disk. The usual way around this limitation is
to use logical block addressing in which disk sectors are just numbered consecu-
tively starting at zero, without regard to the disk geometry.

The geometry of a modern disk is a fiction, anyway. On a modern disk the
surface is divided into 20 or more zones. Zones closer to the center of the disk
have fewer sectors per track than zones nearer the periphery. Thus sectors have
approximately the same physical length no matter where they are located on the
disk, making more efficient use of the disk surface. Internally, the integrated con-
troller addresses the disk by calculating the zone, cylinder, head, and sector. But
this is never visible to the user, and the details are rarely found in published speci-
fications. The bottom line is, there is no point to using cylinder, head, sector ad-
dressing of a disk unless you are working with a very old computer that does not
support logical block addressing. Also, it does not make sense to buy a new 400
GB drive for the PC-XT you bought in 1983; you will get no more than 8 GB use
out of it.

This is a good place to mention a confusing point about disk capacity specifi-
cations. Computer professionals are accustomed to using powers of 2—a Kilo-
byte (KB) is 210 = 1024 bytes, a Megabyte (MB) is 220 = 10242 bytes, etc., to
express the size of memory devices. A Gigabyte (GB), then, should be 10243, or
230 bytes. However, disk manufacturers have adopted the habit of using the term
‘‘Gigabyte’’ to mean 109, which (on paper) instantly increases the size of their
products. Thus the 8 GB limit mentioned above is an 8.4 GB disk in the language
of the disk salesman. Recently there has been a move toward using the term Gibi-
byte (GiB) to mean 230. However, in this text the authors, being set in their ways
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and in protest of the hijacking of tradition for advertising purposes, will continue
to use terms like Megabyte and Gigabyte to mean what they have always meant.

3.7.2 RAID

Although modern disks are much faster than older ones, improvements in
CPU performance have far exceeded improvements in disk performance. It has
occurred to various people over the years that parallel disk I/O might be helpful.
Thus has come about a new class of I/O device called a RAID, an acronym for
Redundant Array of Independent Disks. Actually, the designers of RAID (at
Berkeley) originally used the acronym RAID to stand for ‘‘Redundant Array of
Inexpensive Disks’’ to contrast this design with a SLED (Single Large Expen-
sive Disk). However, when RAID became commercially popular, disk manufac-
turers changed the meaning of the acronym because it was tough to sell an expen-
sive product whose name stood for ‘‘inexpensive.’’ The basic idea behind a RAID
is to install a box full of disks next to the computer, typically a large server, re-
place the disk controller card with a RAID controller, copy the data over to the
RAID, and then continue normal operation.

The independent disks can be used together in a variety of ways. We do not
have space for an exhaustive description of all of these, and MINIX 3 does not
(yet) support RAID, but an introduction to operating systems should at least men-
tion some of the possibilities. RAID can be used both to speed disk access and to
make data more secure.

For example, consider a very simple RAID of two drives. When multiple sec-
tors of data are to be written to the ‘‘disk’’ the RAID controller sends sectors 0, 2,
4, etc., to the first drive, and sectors 1, 3, 5, etc., to the second drive. The con-
troller divides up the data and the two disks are written simultaneously, doubling
the writing speed. When reading, both drives are read simultaneously, but the
controller reassembles the data in the proper order, and to the rest of the system it
just looks like the reading speed is twice as fast. This technique is called strip-
ing. This is a simple example of RAID level 0. In practice four or more drives
would be used. This works best when data are usually read or written in large
blocks. Obviously, nothing is gained if a typical disk request is for a single sector
at a time.

The previous example shows how multiple drives can increase speed. What
about reliability? RAID level 1 works like RAID level 0, except the data is dupli-
cated. Again, a very simple array of two drives could be used, and all of the data
could be written to both of them. This provides no speedup, but there is 100%
redundancy. If an error is detected during reading there is no need for a retry if
the other drive reads the data correctly. The controller just has to make sure the
correct data is passed on to the system. It probably would not be a good idea to
skip retries if errors are detected while writing, however. And if errors occur fre-
quently enough that skipping retries actually makes reading noticeably faster it is
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probably time to decide complete failure is imminent. Typically the drives used
for RAIDs are hot-swappable, meaning they can be replaced without powering
down the system.

More complex arrays of multiple disks can increase both speed and reliability.
Consider, for instance, an array of 7 disks. Bytes could be split into 4-bit nybbles,
with each bit being recorded on one of four drives and with the other three drives
being used to record a three bit error-correcting code. If a drive goes bad and
needs to be hot-swapped for a new one, a missing drive is equivalent to one bad
bit, so the system can keep running while maintenance is done. For the cost of
seven drives you get reliable performance that is four times as fast as one drive,
and no downtime.

3.7.3 Disk Software

In this section we will look at some issues related to disk drivers in general.
First, consider how long it takes to read or write a disk block. The time required
is determined by three factors:

1. The seek time (the time to move the arm to the proper cylinder).

2. The rotational delay (the time for the proper sector to rotate under
the head).

3. The actual data transfer time.

For most disks, the seek time dominates the other two times, so reducing the mean
seek time can improve system performance substantially.

Disk devices are prone to errors. Some kind of error check, a checksum or a
cyclic redundancy check, is always recorded along with the data in each sector on
a disk. Even the sector addresses recorded when the disk is formatted have check
data. Floppy disk controller hardware can usually report when an error is de-
tected, but the software must then decide what to do about it. Hard disk controll-
ers often take on much of this burden.

Particularly with hard disks, the transfer time for consecutive sectors within a
track can be very fast. Thus reading more data than requested and caching it in
memory can be very effective in speeding disk access.

Disk Arm Scheduling Algorithms

If the disk driver accepts requests one at a time and carries them out in that
order, that is, First-Come, First-Served (FCFS), little can be done to optimize seek
time. However, another strategy is possible when the disk is heavily loaded. It is
likely that while the arm is seeking on behalf of one request, other disk requests
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may be generated by other processes. Many disk drivers maintain a table, indexed
by cylinder number, with all pending requests for each cylinder chained together
in a linked list headed by the table entries.

Given this kind of data structure, we can improve upon the first-come, first-
served scheduling algorithm. To see how, consider a disk with 40 cylinders. A
request comes in to read a block on cylinder 11. While the seek to cylinder 11 is
in progress, new requests come in for cylinders 1, 36, 16, 34, 9, and 12, in that
order. They are entered into the table of pending requests, with a separate linked
list for each cylinder. The requests are shown in Fig. 3-21.
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Figure 3-21. Shortest Seek First (SSF) disk scheduling algorithm.

When the current request (for cylinder 11) is finished, the disk driver has a
choice of which request to handle next. Using FCFS, it would go next to cylinder
1, then to 36, and so on. This algorithm would require arm motions of 10, 35, 20,
18, 25, and 3, respectively, for a total of 111 cylinders.

Alternatively, it could always handle the closest request next, to minimize
seek time. Given the requests of Fig. 3-21, the sequence is 12, 9, 16, 1, 34, and
36, as shown as the jagged line at the bottom of Fig. 3-21. With this sequence, the
arm motions are 1, 3, 7, 15, 33, and 2, for a total of 61 cylinders. This algorithm,
Shortest Seek First (SSF), cuts the total arm motion almost in half compared to
FCFS.

Unfortunately, SSF has a problem. Suppose that more requests keep coming
in while the requests of Fig. 3-21 are being processed. For example, if, after
going to cylinder 16, a new request for cylinder 8 is present, that request will have
priority over cylinder 1. If a request for cylinder 13 then comes in, the arm will
next go to 13, instead of 1. With a heavily loaded disk, the arm will tend to stay
in the middle of the disk most of the time, so requests at either extreme will have
to wait until a statistical fluctuation in the load causes there to be no requests near
the middle. Requests far from the middle may get poor service. The goals of
minimal response time and fairness are in conflict here.

Tall buildings also have to deal with this trade-off. The problem of schedul-
ing an elevator in a tall building is similar to that of scheduling a disk arm. Re-
quests come in continuously calling the elevator to floors (cylinders) at random.
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The microprocessor running the elevator could easily keep track of the sequence
in which customers pushed the call button and service them using FCFS. It could
also use SSF.

However, most elevators use a different algorithm to reconcile the conflicting
goals of efficiency and fairness. They keep moving in the same direction until
there are no more outstanding requests in that direction, then they switch direc-
tions. This algorithm, known both in the disk world and the elevator world as the
elevator algorithm, requires the software to maintain 1 bit: the current direction
bit, UP or DOWN. When a request finishes, the disk or elevator driver checks the
bit. If it is UP, the arm or cabin is moved to the next highest pending request. If
no requests are pending at higher positions, the direction bit is reversed. When
the bit is set to DOWN, the move is to the next lowest requested position, if any.

Figure 3-22 shows the elevator algorithm using the same seven requests as
Fig. 3-21, assuming the direction bit was initially UP. The order in which the
cylinders are serviced is 12, 16, 34, 36, 9, and 1, which yields arm motions of 1, 4,
18, 2, 27, and 8, for a total of 60 cylinders. In this case the elevator algorithm is
slightly better than SSF, although it is usually worse. One nice property that the
elevator algorithm has is that given any collection of requests, the upper bound on
the total motion is fixed: it is just twice the number of cylinders.

Initial
position

Cylinder

X X X X X X X

0 5 10 15 20 25 30 35

Ti
m

e Sequence of seeks

Figure 3-22. The elevator algorithm for scheduling disk requests.

A slight modification of this algorithm that has a smaller variance in response
times is to always scan in the same direction (Teory, 1972). When the highest
numbered cylinder with a pending request has been serviced, the arm goes to the
lowest-numbered cylinder with a pending request and then continues moving in an
upward direction. In effect, the lowest-numbered cylinder is thought of as being
just above the highest-numbered cylinder.

Some disk controllers provide a way for the software to inspect the current
sector number under the head. With such a controller, another optimization is
possible. If two or more requests for the same cylinder are pending, the driver can
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issue a request for the sector that will pass under the head next. Note that when
multiple tracks are present in a cylinder, consecutive requests can be for different
tracks with no penalty. The controller can select any of its heads instantaneously,
because head selection involves neither arm motion nor rotational delay.

With a modern hard disk, the data transfer rate is so much faster than that of a
floppy disk that some kind of automatic caching is necessary. Typically any re-
quest to read a sector will cause that sector and up to the rest of the current track
to be read, depending upon how much space is available in the controller’s cache
memory. Current caches are often 8 MB or more.

When several drives are present, a pending request table should be kept for
each drive separately. Whenever any drive is idle, a seek should be issued to
move its arm to the cylinder where it will be needed next (assuming the controller
allows overlapped seeks). When the current transfer finishes, a check can be
made to see if any drives are positioned on the correct cylinder. If one or more
are, the next transfer can be started on a drive that is already on the right cylinder.
If none of the arms is in the right place, the driver should issue a new seek on the
drive that just completed a transfer and wait until the next interrupt to see which
arm gets to its destination first.

Error Handling

RAM disks do not have to worry about seek or rotational optimization: at any
instant all blocks can be read or written without any physical motion. Another
area in which RAM disks are simpler than real disks is error handling. RAM
disks always work; real ones do not always work. They are subject to a wide var-
iety of errors. Some of the more common ones are:

1. Programming error (e.g., request for nonexistent sector).

2. Transient checksum error (e.g., caused by dust on the head).

3. Permanent checksum error (e.g., disk block physically damaged).

4. Seek error (e.g., the arm was sent to cylinder 6 but it went to 7).

5. Controller error (e.g., controller refuses to accept commands).

It is up to the disk driver to handle each of these as best it can.
Programming errors occur when the driver tells the controller to seek to a

nonexistent cylinder, read from a nonexistent sector, use a nonexistent head, or
transfer to or from nonexistent memory. Most controllers check the parameters
given to them and complain if they are invalid. In theory, these errors should
never occur, but what should the driver do if the controller indicates that one has
happened? For a home-grown system, the best thing to do is stop and print a mes-
sage like ‘‘Call the programmer’’ so the error can be tracked down and fixed. For
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a commercial software product in use at thousands of sites around the world, this
approach is less attractive. Probably the only thing to do is terminate the current
disk request with an error and hope it will not recur too often.

Transient checksum errors are caused by specks of dust in the air that get
between the head and the disk surface. Most of the time they can be eliminated
by just repeating the operation a few times. If the error persists, the block has to
be marked as a bad block and avoided.

One way to avoid bad blocks is to write a very special program that takes a
list of bad blocks as input and carefully hand crafts a file containing all the bad
blocks. Once this file has been made, the disk allocator will think these blocks
are occupied and never allocate them. As long as no one ever tries to read the bad
block file, no problems will occur.

Not reading the bad block file is easier said than done. Many disks are
backed up by copying their contents a track at a time to a backup tape or disk
drive. If this procedure is followed, the bad blocks will cause trouble. Backing
up the disk one file at a time is slower but will solve the problem, provided that
the backup program knows the name of the bad block file and refrains from copy-
ing it.

Another problem that cannot be solved with a bad block file is the problem of
a bad block in a file system data structure that must be in a fixed location. Almost
every file system has at least one data structure whose location is fixed, so it can
be found easily. On a partitioned file system it may be possible to repartition and
work around a bad track, but a permanent error in the first few sectors of either a
floppy or hard disk generally means the disk is unusable.

‘‘Intelligent’’ controllers reserve a few tracks not normally available to user
programs. When a disk drive is formatted, the controller determines which blocks
are bad and automatically substitutes one of the spare tracks for the bad one. The
table that maps bad tracks to spare tracks is kept in the controller’s internal mem-
ory and on the disk. This substitution is transparent (invisible) to the driver,
except that its carefully worked out elevator algorithm may perform poorly if the
controller is secretly using cylinder 800 whenever cylinder 3 is requested. The
technology of manufacturing disk recording surfaces is better than it used to be,
but it is still not perfect. However, the technology of hiding the imperfections
from the user has also improved. Many controllers also manage new errors that
may develop with use, permanently assigning substitute blocks when they deter-
mine that an error is unrecoverable. With such disks the driver software rarely
sees any indication that there any bad blocks.

Seek errors are caused by mechanical problems in the arm. The controller
keeps track of the arm position internally. To perform a seek, it issues a series of
pulses to the arm motor, one pulse per cylinder, to move the arm to the new
cylinder. When the arm gets to its destination, the controller reads the actual cyl-
inder number (written when the drive was formatted). If the arm is in the wrong
place, a seek error has occurred and some corrective action is required.
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Most hard disk controllers correct seek errors automatically, but many floppy
controllers (including the IBM PCs) just set an error bit and leave the rest to the
driver. The driver handles this error by issuing a recalibrate command, to move
the arm as far out as it will go and reset the controller’s internal idea of the current
cylinder to 0. Usually, this solves the problem. If it does not, the drive must be
repaired.

As we have seen, the controller is really a specialized little computer, com-
plete with software, variables, buffers, and occasionally, bugs. Sometimes an un-
usual sequence of events such as an interrupt on one drive occurring simultane-
ously with a recalibrate command for another drive will trigger a bug and cause
the controller to go into a loop or lose track of what it was doing. Controller de-
signers usually plan for the worst and provide a pin on the chip which, when as-
serted, forces the controller to forget whatever it was doing and reset itself. If all
else fails, the disk driver can set a bit to invoke this signal and reset the controller.
If that does not help, all the driver can do is print a message and give up.

Track-at-a-Time Caching

The time required to seek to a new cylinder is usually much more than the ro-
tational delay, and always vastly more than the transfer time to read or write one
sector. In other words, once the driver has gone to the trouble of moving the arm
somewhere, it hardly matters whether it reads one sector or a whole track. This
effect is especially true if the controller provides rotational sensing, so the driver
can see which sector is currently under the head and issue a request for the next
sector, thereby making it possible to read an entire disk track in a single rotation
time. (Normally it takes half a rotation plus one sector time just to read a single
sector, on the average.)

Some disk drivers take advantage of these timing properties by maintaining a
secret track-at-a-time cache, unknown to the device-independent software. If a
sector that is in the cache is needed, no disk transfer is required. A disadvantage
of track-at-a-time caching (in addition to the software complexity and buffer
space needed) is that transfers from the cache to the calling program will have to
be done by the CPU using a programmed loop, rather than letting the DMA
hardware do the job.

Some controllers take this process a step further, and do track-at-a-time cach-
ing in their own internal memory, transparent to the driver, so that transfer be-
tween the controller and memory can use DMA. If the controller works this way,
there is little point in having the disk driver do it as well. Note that both the con-
troller and the driver are in a good position to read and write entire tracks in one
command, but that the device-independent software cannot, because it regards a
disk as a linear sequence of blocks, without regard to how they are divided up into
tracks and cylinders. Only the controller knows the true geometry for sure.
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3.7.4 Overview of the Hard Disk Driver in MINIX 3

The hard disk driver is the first part of MINIX 3 we have looked at that has to
deal with a range of different types of hardware. Before we discuss the driver, we
will briefly consider some of the problems hardware differences can cause.

The ‘‘PC’’ is really a family of different computers. Not only are different
processors used in different members of the family, there are also some major
differences in the basic hardware. MINIX 3 has been developed on and for newer
systems with Pentium-class CPUs, but even among these there are differences.
For instance, the oldest Pentium systems use the 16-bit AT bus originally de-
signed for the 80286 processor. A feature of the AT bus is that it was cleverly
designed so older 8-bit peripherals could still be used. Later systems added a 32-
bit PCI bus for peripherals, while still providing AT bus slots. The newest
designs have dropped AT-bus support, providing only a PCI bus. But it is reason-
able to expect that users with computers of a certain age may want to be able to
use MINIX 3 with a mix of 8-bit, 16-bit, and 32-bit peripherals.

For every bus there is a different family of I/O adapters. On older systems
these are separate circuit boards which plug into the system parentboard. On
newer systems many standard adapters, especially disk controllers, are integrated
parts of the parentboard chipset. In itself this is not a problem for the program-
mer, as integrated adapters usually have a software interface identical to that of
removable devices. Also, integrated controllers can usually be disabled. This al-
lows use of a more advanced add-on device, such as a SCSI controller, in place of
a built-in device. To take advantage of this flexibility the operating system should
not be restricted to using just one kind of adapter.

In the IBM PC family, as in most other computer systems, each bus design
also comes with firmware in the Basic I/O System Read-Only Memory (the BIOS
ROM) which is designed to bridge the gap between the operating system and the
peculiarities of the hardware. Some peripheral devices may even provide exten-
sions to the BIOS in ROM chips on the peripheral cards themselves. The diffi-
culty faced by an operating system implementer is that the BIOS in IBM-type
computers (certainly the early ones) was designed for an operating system, MS-
DOS, that does not support multiprogramming and that runs in 16-bit real mode,
the lowest common denominator of the various modes of operation available from
the 80x86 family of CPUs.

The implementer of a new operating system for the IBM PC is thus faced with
several choices. One is whether to use the driver support for peripherals in the
BIOS or to write new drivers from scratch. This was not a hard choice in the
design of early versions of MINIX, since the BIOS was in many ways not suitable
to its needs. Of course, to start MINIX 3 the boot monitor uses the BIOS to do the
initial loading of the system, whether from hard disk, CD-ROM, or floppy disk—
there is no practical alternative to doing it this way. Once we have loaded the sys-
tem, including our own I/O drivers, we can do better than the BIOS.
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The second choice then must be faced: without the BIOS support how are we
going to make our drivers adapt to the varied kinds of hardware on different sys-
tems? To make the discussion concrete, consider that there are two fundamen-
tally different types of hard disk controller usable on the modern 32-bit Pentium
systems for which MINIX 3 has been designed: the integrated IDE controller and
add-on SCSI controllers for the PCI bus. If you would like to take advantage of
older hardware and adapt MINIX 3 to work on the hardware targeted by earlier
versions of MINIX, there are four hard disk controller types to consider: the origi-
nal 8-bit XT-type controller, the 16-bit AT-type controller, and two different con-
trollers for two different types of IBM PS/2 series computers. There are several
possible ways to deal with all these alternatives:

1. Recompile a unique version of the operating system for each type of
hard disk controller we need to accommodate.

2. Compile several different hard disk drivers into the boot image and
have the system automatically determine at startup time which one to
use.

3. Compile several different hard disk drivers into the boot image and
provide a way for the user to determine which one to use.

As we shall see, these are not mutually exclusive.
The first way is really the best way in the long run. For use on a particular in-

stallation there is no need to use up disk and memory space with code for alterna-
tive drivers that will never be used. However, it is a nightmare for the distributor
of the software. Supplying four different startup disks and advising users on how
to use them is expensive and difficult. Thus, another method is advisable, at least
for the initial installation.

The second method is to have the operating system probe the peripherals, by
reading the ROM on each card or writing and reading I/O ports to identify each
card. This is possible (and works better on newer IBM-type systems than on older
ones), but it does not accommodate nonstandard I/O devices. Also, probing I/O
ports to identify one device sometimes can activate another device which seizes
control and disables the system. This method complicates the startup code for
each device, and yet still does not work very well. Operating systems that do use
this method generally have to provide some kind of override, typically a mechan-
ism such as we use with MINIX 3.

The third method, used in MINIX 3, is to allow inclusion of several drivers in
the boot image. The MINIX 3 boot monitor allows various boot parameters to be
read at startup time. These can be entered by hand, or stored permanently on the
disk. At startup time, if a boot parameter of the form

label = AT

is found, this forces the IDE disk controller (at�wini) to be used when MINIX 3 is
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started. This depends upon the at�wini driver being assigned this label. Labels
are assigned when the boot image is compiled.

There are two other things MINIX 3 does to try to minimize problems with
multiple hard disk drivers. One is that there is, after all, a driver that interfaces
between MINIX 3 and the ROM BIOS hard disk support. This driver is almost
guaranteed to work on any system and can be selected by use of a

label=BIOS

boot parameter. Generally, this should be a last resort, however. MINIX 3 as des-
cribed here runs only in protected mode on systems with an 80386 or better pro-
cessor, but the BIOS code always runs in real (8086) mode. Switching out of pro-
tected mode and back again whenever a routine in the BIOS is called is very slow.

The other strategy MINIX 3 uses in dealing with drivers is to postpone initiali-
zation until the last possible moment. Thus, if on some hardware configuration
none of the hard disk drivers work, we can still start MINIX 3 from a floppy disk
and do some useful work. MINIX 3 will have no problems as long as no attempt is
made to access the hard disk. This may not seem like a major breakthrough in
user friendliness, but consider this: if all the drivers try to initialize immediately
on system startup, the system can be totally paralyzed by improper configuration
of some device we do not need anyway. By postponing initialization of each
driver until it is needed, the system can continue with whatever does work, while
the user tries to resolve the problems.

We learned this lesson the hard way: earlier versions of MINIX tried to initial-
ize the hard disk as soon as the system was booted. If no hard disk was present,
the system hung. This behavior was especially unfortunate because MINIX would
run quite happily on a system without a hard disk, albeit with restricted storage
capacity and reduced performance.

In the discussion in this section and the next, we will take as our model the
AT-style hard disk driver, which is the default driver in the standard MINIX 3 dis-
tribution. This is a versatile driver that handles hard disk controllers from the
ones used in the earliest 80286 systems to modern EIDE (Extended Integrated
Drive Electronics) controllers that handle gigabyte capacity hard disks. Modern
EIDE controllers also support standard CD-ROM drives. However, in order to
simplify our discussion the extensions that support CD-ROMs have been taken
out of the code listed in Appendix B. The general aspects of hard disk operation
we discuss in this section apply to the other supported drivers as well.

The main loop of the hard disk driver is the same common code we have al-
ready discussed, and supports the standard nine kinds of requests that can be
made. A DEV�OPEN request can entail a substantial amount of work, as there
are always partitions and may be subpartitions on a hard disk. These must be read
when a device is opened, (i.e., when it is first accessed). When CD-ROMs are
supported, on a DEV�OPEN the presence of the medium must be verified, since it
is removable. On a CD-ROM a DEV�CLOSE operation also has meaning: it
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requires that the door be unlocked and the CD-ROM ejected. There are other
complications of removable media that are more applicable to floppy drives, so
we will discuss these in a later section. For CD-ROMs a DEV�IOCTL operation
is used to set a flag to mark that the medium should be ejected from the drive
upon a DEV�CLOSE. A DEV�IOCTL operation is also used to read and write
partition tables.

DEV�READ, DEV�WRITE, DEV�GATHER and DEV�SCATTER requests
are each handled in two phases, prepare and transfer, as we saw previously. For
the hard disk DEV�CANCEL and DEV�SELECT calls are ignored.

No scheduling is done by the hard disk device driver at all, that is done by the
file system, which assembles the vector requests for gather/scatter I/O. Requests
come from the file system cache as DEV��GATHER or DEV�SCATTER requests
for multiples of blocks (4-KB in the default configuration of MINIX 3), but the
hard disk driver is able to handle requests for any multiple of a sector (512 bytes).
In any case, as we have seen, the main loop of all disk drivers transforms requests
for single blocks of data into one element vector requests.

Requests for reading and writing are not mixed in a vector of requests, nor can
requests be marked as optional. The elements of a request vector are for contigu-
ous disk sectors, and the vector is sorted by the file system before being passed to
the device driver, so it suffices to specify just the starting position on the disk for
an entire array of requests.

The driver is expected to succeed in reading or writing at least the first request
in a request vector, and to return when a request fails. It is up to the file system to
decide what to do; the file system will try to complete a write operation but will
return to the calling process only as much data as it can get on a read.

The file system itself, by using scattered I/O, can implement something simi-
lar to Teory’s version of the elevator algorithm—recall that in a scattered I/O
request the list of requests is sorted on the block number. The second step in
scheduling takes place in the controller of a modern hard disk. Such controllers
are ‘‘smart’’ and can buffer large quantities of data, using internally programmed
algorithms to retrieve data in the most efficient order, irrespective of the order of
receipt of the requests.

3.7.5 Implementation of the Hard Disk Driver in MINIX 3

Small hard disks used on microcomputers are sometimes called ‘‘winchester’’
disks. The term was IBM’s code name for the project that developed the disk
technology in which the read/write heads fly on a thin cushion of air and land on
the recording medium when the disk stops spinning. The explanation of the name
is that an early model had two data modules, a 30-Mbyte fixed and a 30-Mbyte
removable one. Supposedly this reminded the developers of the Winchester 30-30
firearm which figures in many tales of the United States’ western frontier. What-
ever the origin of the name, the basic technology remains the same, although
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today’s typical PC disk is much smaller and the capacity is much larger than the
14-inch disks that were typical of the early 1970s when the winchester technology
was developed.

The MINIX 3 AT-style hard disk driver is in at�wini.c (line 12100). This is a
complicated driver for a sophisticated device, and there are several pages of
macro definitions specifying controller registers, status bits and commands, data
structures, and prototypes. As with other block device drivers, a driver structure,
w�dtab (lines 12316 to 12331), is initialized with pointers to the functions that
actually do the work. Most of them are defined in at�wini.c, but as the hard disk
requires no special cleanup operation, its dr�cleanup entry points to the common
nop�cleanup in driver.c, shared with other drivers that have no special cleanup
requirement. Several other possible functions are also irrelevant for this driver
and also are initialized to point to nop� functions. The entry function, called
at�winchester�task (line 12336), calls a procedure that does hardware-specific
initialization and then calls the main loop in driver.c, passing the address of
w�dtab. The main loop, driver�task in libdriver/driver.c , runs forever, dispatch-
ing calls to the various functions pointed to by the driver table.

Since we are now dealing with real electromechanical storage devices, there
is a substantial amount of work to be done by init�params (line 12347) to initial-
ize the hard disk driver. Various parameters about the hard disks are kept in the
wini table defined on lines 12254 to 12276, which has an element for each of the
MAX�DRIVES (8) drives supported, up to four conventional IDE drives, and up to
four drives on the PCI bus, either plug-in IDE controllers or SATA (Serial AT
Attachment) controllers.

Following the policy of postponing initialization steps that could fail until the
first time they are truly necessary, init�params does not do anything that requires
accessing the disk devices themselves. The main thing it does is to copy informa-
tion about the hard disk logical configuration into the wini array. The ROM BIOS
on a Pentium-class computer retrieves basic configuration information from the
CMOS memory used to preserve basic configuration data. The BIOS does this
when the computer is first turned on, before the first part of the MINIX 3 loading
process begins. On lines 12366 to 12392 the information is copied from the
BIOS. Many of the constants used here, such as NR�HD�DRIVES�ADDR are
defined in include/ibm/bios.h, a file which is not listed in Appendix B but which
can be found on the MINIX 3 CD-ROM. It is not necessarily fatal if this informa-
tion cannot be retrieved. If the disk is a modern one, the information can be
retrieved directly from the disk when it is accessed for the first time. Following
the entry of data obtained from the BIOS, additional disk information is filled in
for each drive using a call to the next function, init�drive.

On older systems with IDE controllers, the disk functions as if it were an AT-
style peripheral card, even though it may be integrated on the parentboard.
Modern drive controllers usually function as PCI devices, with a 32-bit data path
to the CPU, rather than the 16-bit AT bus. Fortunately for us, once initialization
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is complete, the interface to both generations of disk controller appears the same
to the programmer. To make this work, init�params�pci (line 12437) is called if
necessary to get the parameters of the PCI devices. We will not describe the
details of this routine, but a few points should be mentioned. First, the boot par-
ameter ata� instance is used on line 12361 to set the value of the variable
w�instance. If the boot parameter is not explicitly set the value will be zero. If it
is set and greater than zero the test on line 12365 causes querying the BIOS and
initialization of standard IDE drives to be skipped. In this case only drives found
on the PCI bus will be registered.

The second point is that a controller found on the PCI bus will be identified as
controlling devices c0d4 through c0d7. If w�instance is non-zero the drive iden-
tifiers c0d0 through c0d3 will be skipped, unless a PCI bus controller identifies
itself as ‘‘compatible.’’ Drives handled by a compatible PCI bus controller will be
designated c0d0 through c0d3. For most MINIX 3 users all of these complications
can probably be ignored. A computer with less than four drives (including the
CD-ROM drive), will most likely appear to the user to have the classical confi-
guration, with drives designated c0d0 to c0d3, whether they are connected to IDE
or PCI controllers, and whether or not they use the classic 40-pin parallel connec-
tors or the newer serial connectors. But the programming required to create this
illusion is complicated.

After the call to the common main loop, nothing may happen for a while until
the first attempt is made to access the hard disk. When the first attempt to access
a disk is made a message requesting a DEV�OPEN operation will be received by
the main loop and w�do�open (line 12521) will be indirectly called. In turn,
w�do�open calls w�prepare to determine if the device requested is valid, and
then w� identify to identify the type of device and initialize some more parameters
in the wini array. Finally, a counter in the wini array is used to test whether this is
first time the device has been opened since MINIX 3 was started. After being
examined, the counter is incremented. If it is the first DEV�OPEN operation, the
partition function (in drvlib.c) is called.

The next function, w�prepare (line 12577), accepts an integer argument,
device, which is the minor device number of the drive or partition to be used, and
returns a pointer to the device structure that indicates the base address and size of
the device. In the C language, the use of an identifier to name a structure does not
preclude use of the same identifier to name a variable. Whether a device is a
drive, a partition, or a subpartition can be determined from the minor device
number. Once w�prepare has completed its job, none of the other functions used
to read or write the disk need to concern themselves with partitioning. As we
have seen, w�prepare is called when a DEV�OPEN request is made; it is also
one phase of the prepare/transfer cycle used by all data transfer requests.

Software-compatible AT-style disks have been in use for quite a while, and
w�identify (line 12603) has to distinguish between a number of different designs
that have been introduced over the years. The first step is to see that a readable
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and writeable I/O port exists where one should exist on all disk controllers in this
family. This is the first example we have seen of I/O port access by a user-space
driver, and the operation merits a description. For a disk device I/O is done using
a command structure, defined on lines 12201 to 12208, which is filled in with a
series of byte values. We will describe this in a bit more detail later; for the
moment note that two bytes of this structure are filled in, one with a value
ATA�IDENTIFY, interpreted as a command that asks an ATA (AT Attached)
drive to identify itself, and another with a bit pattern that selects the drive. Then
com�simple is called.

This function hides all the work of constructing a vector of seven I/O port
addresses and bytes to be written to them, sending this information to the system
task, waiting for an interrupt, and checking the status returned. This tests that the
drive is alive and allows a string of 16-bit values to be read by the sys� insw ker-
nel call on line 12629. Decoding this information is a messy process, and we will
not describe it in detail. Suffice it to say that a considerable amount of informa-
tion is retrieved, including a string that identifies the model of the disk, and the
preferred physical cylinder, head, and sector parameters for the device. (Note that
the ‘‘physical’’ configuration reported may not be the true physical configuration,
but we have no alternative to accepting what the disk drive claims.) The disk
information also indicates whether or not the disk is capable of Logical Block
Addressing (LBA). If it is, the driver can ignore the cylinder, head, and sector
parameters and can address the disk using absolute sector numbers, which is much
simpler.

As we mentioned earlier, it is possible that init�params may not recover the
logical disk configuration information from the BIOS tables. If that happens, the
code at lines 12666 to 12674 tries to create an appropriate set of parameters based
on what it reads from the drive itself. The idea is that the maximum cylinder,
head, and sector numbers can be 1023, 255, and 63 respectively, due to the num-
ber of bits allowed for these fields in the original BIOS data structures.

If the ATA�IDENTIFY command fails, it may simply mean that the disk is an
older model that does not support the command. In this case the logical confi-
guration values previously read by init�params are all we have. If they are valid,
they are copied to the physical parameter fields of wini; otherwise an error is
returned and the disk is not usable.

Finally, MINIX 3 uses a u32�t variable to count addresses in bytes. This lim-
its the size of a partition to 4 GB. However, the device structure used to record
the base and size of a partition (defined in drivers/libdriver/driver.h on lines
10856 to 10858) uses u64�t numbers, and a 64 bit multiplication operation is used
to calculate the size of the drive on (line 12688), and the base and size of the
whole drive are then entered into the wini array, and w�specify is called, twice if
necessary, to pass the parameters to be used back to the disk controller (line
12691). Finally, more kernel calls are made: a sys� irqsetpolicy call (line 12699)
ensures that when a disk controller interrupt occurs and is serviced the interrupt
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will be automatically reenabled in preparation for the next one. Following that, a
sys� irqenablecall actually enables the interrupt.

W�name (line 12711) returns a pointer to a string containing the device name,
which will be either ‘‘AT-D0,’’ ‘‘AT-D1’’ ‘‘AT-D2,’’ or ‘‘AT-D3.’’ When an error
message must be generated this function tells which drive produced it.

It is possible that a drive will turn out to be incompatible with MINIX 3 for
some reason. The function w�io�test (line 12723) is provided to test each drive
the first time an attempt is made to open it. This routine tries to read the first
block on the drive, with shorter timeout values than are used in normal operation.
If the test fails the drive is permanently marked as unavailable.

W�specify (line 12775), in addition to passing the parameters to the con-
troller, also recalibrates the drive (if it is an older model), by doing a seek to
cylinder zero.

Do�transfer (line 12814) does what its name implies, it assembles a com-
mand structure with all the byte values needed to request transfer of a chunk of
data (possibly as many as 255 disk sectors), and then it calls com�out, which
sends the command to the disk controller. The data must be formatted differently
depending upon how the disk is to be addressed, that is, whether by cylinder,
head, and sector or by LBA. Internally MINIX 3 addresses disk blocks linearly, so
if LBA is supported the first three byte-wide fields are filled in by shifting the sec-
tor count an appropriate number of bits to the right and then masking to get 8-bit
values. The sector count is a 28 bit number, so the last masking operation uses a
4-bit mask (line 12830). If the disk does not support LBA then cylinder, head,
and sector values are calculated, based on the parameters of the disk in use (lines
12833 to 12835).

The code contains a hint of a future enhancement. LBA addressing with a
28-bit sector count limits MINIX 3 to fully utilizing disks of 128 GB or smaller
size. (You can use a bigger disk, but MINIX 3 can only access the first 128 GB).
The programmers have been thinking about, but have not yet implemented, use of
the newer LBA48 method, which uses 48 bits to address disk blocks. On line
12824 a test is made for whether this is enabled. The test will always fail with the
version of MINIX 3 described here. This is good, because no code is provided to
be executed if the test succeeds. Keep in mind if you decide to modify MINIX 3
yourself to use LBA48 that you need to do more than just add some code here.
You will have to make changes in many places to handle the 48-bit addresses.
You might find it easier to wait until MINIX 3 has been ported to a 64-bit proces-
sor, too. But if a 128 GB disk is not big enough for you, LBA48 will give you
access to 128 PB (Petabytes).

Now we will briefly look at how a data transfer takes place at a higher level.
W�prepare, which we have already discussed, is called first. If the transfer
operation requested was for multiple blocks (that is, a DEV�GATHER or
DEV�SCATTER request), w�transfer line 12848 is called immediately afterward.
If the transfer is for a single block (a DEV�READ or DEV�WRITE request), a one
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element scatter/gather vector is created, and then w�transfer is called. Accord-
ingly, w�transfer is written to expect a vector of iovec�t requests. Each element
of the request vector consists of a buffer address and the size of the buffer, con-
strained that the size must be a multiple of the size of a disk sector. All other
information needed is passed as an argument to the call, and applies to the entire
request vector.

The first thing done is a simple test to see if the disk address requested for the
start of the transfer is aligned on a sector boundary (line 12863). Then the outer
loop of the function is entered. This loop repeats for each element of the request
vector. Within the loop, as we have seen many times before, a number of tests are
made before the real work of the function is done. First the total number of bytes
remaining in the request is calculated by summing the iov�size fields of each ele-
ment of the request vector. This result is checked to be sure it is an exact multiple
of the size of a sector. Other tests check that the starting position is not at or
beyond the end of the device, and if the request would end past the end of the
device the size of the request is truncated. All calculations so far have been in
bytes, but on line 12876 a calculation is made of the block position on the disk,
using 64 bit arithmetic. Note that although the variable used is named block, this
is a number of disk blocks, that is, 512 byte sectors, not the ‘‘block’’ used inter-
nally by MINIX 3, normally 4096 bytes. After this one more adjustment is made.
Every drive has a maximum number of bytes that can be requested at one time,
and the request is scaled back to this quantity if necessary. After verifying that
the disk has been initialized, and doing so again if necessary, a request for a chunk
of data is made by calling do�transfer (line 12887).

After a transfer request has been made the inner loop is entered, which repeats
for each sector. For a read or write operation an interrupt will be generated for
each sector. On a read the interrupt signifies data is ready and can be transferred.
The sys� insw kernel call on line 12913 asks the system task to read the specified
I/O port repeatedly, transferring the data to a virtual address in the data space of
the specified process. For a write operation the order is reversed. The sys�outsw
call a few lines further down writes a string of data to the controller, and the inter-
rupt comes from the disk controller when the transfer to the disk is complete. In
the case of either a read or a write, at� intr�wait is called to receive the interrupt,
for example, on line 12920 following the write operation. Although the interrupt
is expected, this function provides a way to abort the wait if a malfunction occurs
and the interrupt never arrives. At�intr�wait also reads the disk controller’s
status register and returns various codes. This is tested on line 12933. On an
error when either reading or writing, there is a break which skips over the section
where results are recorded and poiners and counters adjusted for the next sector,
so the next time through the inner loop will be a retry of the same sector, if
another try is allowed. If the disk controller reports a bad sector w�transfer ter-
minates immediately. For other errors a counter is incremented and the function
is allowed to continue if max�errors has not been reached.
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The next function we will discuss is com�out, which sends the command to
the disk controller, but before we look at its code let us first look at the controller
as it is seen by the software. The disk controller is controlled through a set of
registers, which could be memory mapped on some systems, but on an IBM com-
patible appear as I/O ports. We will look at these registers and discuss a few
aspects of how they (and I/O control registers in general) are used. In MINIX 3
there is the added complication that drivers run in user space and cannot execute
the instructions that read or write registers. This will provide an opportunity to
look at how kernel calls are used to work around this restriction.

The registers used by a standard IBM-AT class hard disk controller are shown
in Fig. 3-23.
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LBA: 0 = Cylinder/Head/Sector Mode
1 = Logical Block Addressing Mode

D: 0 = master drive
1 = slave drive

HSn: CHS mode: Head select in CHS mode
LBA mode: Block select bits 24 - 27

(b)

Figure 3-23. (a) The control registers of an IDE hard disk controller. The
numbers in parentheses are the bits of the logical block address selected by each
register in LBA mode. (b) The fields of the Select Drive/Head register.

We have mentioned several times reading and writing to I/O ports, but we
tacitly treated them just like memory addresses. In fact, I/O ports often behave
differently from memory addresses. For one thing, input and output registers that
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happen to have the same I/O port address are not the same register. Thus, the data
written to a particular address cannot necessarily be retrieved by a subsequent
read operation. For example, the last register address shown in Fig. 3-23 shows
the status of the disk controller when read and is used to issue commands to the
controller when written to. It is also common that the very act of reading or writ-
ing an I/O device register causes an action to occur, independently of the details
of the data transferred. This is true of the command register on the AT disk con-
troller. In use, data are written to the lower-numbered registers to select the disk
address to be read from or written to, and then the command register is written
last with an operation code. The data written to the command register determines
what the operation will be. The act of writing the operation code into the com-
mand register starts the operation.

It is also the case that the use of some registers or fields in the registers may
vary with different modes of operation. In the example given in the figure, writ-
ing a 0 or a 1 to the LBA bit, bit 6 of register 6, selects whether CHS (Cylinder-
Head-Sector) or LBA (Logical Block Addressing) mode is used. The data written
to or read from registers 3, 4, and 5, and the low four bits of register 6 are inter-
preted differently according to the setting of the LBA bit.

Now let us take a look at how a command is sent to the controller by calling
com�out (line 12947). This function is called after setting up a cmd structure
(with do�transfer, which we saw earlier). Before changing any registers, the
status register is read to determine that the controller is not busy. This is done by
testing the STATUS�BSY bit. Speed is important here, and normally the disk con-
troller is ready or will be ready in a short time, so busy waiting is used. On line
12960 w�waitfor is called to test STATUS�BSY. W�waitfor uses a kernel call to
ask the system task to read an I/O port so w�waitfor can test a bit in the status
register. It loops until the bit is ready or until there is a timeout. The loop is pro-
grammed for a quick return when the disk is ready. Thus the returned value will
be true with the minimum possible delay if the controller is ready, true after a
delay if it is temporarily unavailable, or false if it is not ready after the timeout
period. We will have more to say about the timeout when we discuss w�waitfor
itself.

A controller can handle more than one drive, so once it is determined that the
controller is ready, a byte is written to select the drive, head, and mode of opera-
tion (line 12966) and w�waitfor is called again. A disk drive sometimes fails to
carry out a command or to properly return an error code—it is, after all, a
mechanical device that can stick, jam, or break internally—and as insurance a
sys�setalarm kernel call is made to have the system task schedule a call to a
wakeup routine. Following this, the command is issued by first writing all the
parameters to the various registers and finally writing the command code itself to
the command register. This is done with a sys�voutb kernel call, which sends a
vector of (value, address) pairs to the system task. The system task writes each
value to the I/O port specified by the address in order. The vector of data for the
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sys�voutb call is constructed by use of a macro, pv�set, which is defined in
include/minix/devio.h . The act of writing the operation code to the command
register makes the operation begin. When it is complete, an interrupt is generated
and a notification message is sent. If the command times out the alarm will expire
and a synchronous alarm notification will wake up the disk driver.

The next several functions are short. W�need�reset (line 12999) is called
when timeouts occur while waiting for the disk to interrupt or become ready. The
action of w�need�reset is just to mark the state variable for every drive in the
wini array to force initialization on the next access.

W�do�close (line 13016) has very little to do for a conventional hard disk.
Additional code is needed to support CD-ROMs.

Com�simple is called to issue controller commands that terminate immedi-
ately without a data transfer phase. Commands that fall into this category include
those that retrieve the disk identification, setting of some parameters, and recali-
bration. We saw an example of its use in w�identify. Before it is called the com-
mand structure must be correctly initialized. Note that immediately after the call
to com�out a call to at�intr�wait is made. This eventually does a receive which
blocks until a notification arrives signifying that an interrupt has occurred.

We noted that com�out does a sys�setalarm kernel call before asking the sys-
tem task to write the registers which set up and execute a command. As we men-
tioned in the overview section, the next receive operation normally should receive
a notification indicating an interrupt. If an alarm has been set and no interrupt
occurs, the next message will be a SYN�ALARM. In this case w�timeout line
13046 is called. What needs to be done depends on the current command in
w�command. The timeout might have been left over from a previous operation,
and w�command may have the value CMD�IDLE, meaning the disk completed
its operation. In that case there is nothing to do. If the command does not com-
plete and the operation is a read or write, it may help to reduce the size of I/O
requests. This is done in two steps, first reducing the maximum number of sectors
that can be requested to 8, and then to 1. For all timeouts a message is printed and
w�need�reset is called to force re-initialization of all drives on the next
attempted access.

When a reset is required, w�reset (line 13076) is called. This function makes
use of a library function, tickdelay, that sets a watchdog timer and then waits for it
to expire. After an initial delay to give the drive time to recover from previous
operations, a bit in the disk controller’s control register is strobed—that is, set to
a logical 1 level for a definite period, then returned to the logical 0 level. Follow-
ing this operation, w�waitfor is called to give the drive a reasonable period to sig-
nal it is ready. In case the reset does not succeed, a message is printed and an
error status returned.

Commands to the disk that involve data transfer normally terminate by gen-
erating an interrupt, which sends a message back to the disk driver. In fact, an
interrupt is generated for each sector read or written. The function w� intr�wait
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(line 13123) calls receive in a loop, and if a SYN�ALARM message is received
w�timeout is called. The only other message type this function should see is
HARD�INT. When this is received the status register is read and ack�args is
called to reinitialize the interrupt.

W�intr�wait is not called directly; when an interrupt is expected the function
called is the next one, at� intr�wait (line 13152). After an interrupt is received by
at�intr�wait a quick check is made of the drive status bits. All is OK if the bits
corresponding to busy, write fault, and error are all clear. Otherwise a closer look
is taken. If the register could not be read at all, it is panic time. If the problem
was a bad sector a specific error is returned, any other problem results in a general
error code. In all cases the STATUS�ADMBSY bit is set, to be reset later by the
caller.

We have seen several places where w�waitfor (line 13177) is called to do
busy waiting on a bit in the disk controller status register. This is used in situa-
tions where it is expected the bit might be clear on the first test, and a quick test is
desirable. For the sake of speed, a macro that read the I/O port directly was used
in earlier versions of MINIX—this is, of course, not allowable for a user-space
driver in MINIX 3. The solution here is to use a do ... while loop with a minimum
of overhead before the first test is made. If the bit being tested is clear there is an
immediate return from within the loop. To deal with the possibility of failure a
timeout is implemented within the loop by keeping track of clock ticks. If a
timeout does occur w�need�reset is called.

The timeout parameter that is used by the w�waitfor function is defined by
DEF�TIMEOUT�TICKS on line 12228 as 300 ticks, or 5 seconds. A similar
parameter, WAKEUP (line 12216), used to schedule wakeups from the clock task,
is set to 31 seconds. These are very long periods of time to spend busy waiting,
when you consider that an ordinary process only gets 100 msec to run before it
will be evicted. But, these numbers are based upon the published standard for
interfacing disk devices to AT-class computers, which states that up to 31 seconds
must be allowed for a disk to ‘‘spin up’’ to speed. The fact is, of course, that this
is a worst-case specification, and that on most systems spin up will only occur at
power-on time, or possibly after long periods of inactivity, at least for hard disks.
For CD-ROMs or other devices which must spin up frequently this may be a more
important issue.

There are a few more functions in at�wini.c. W�geometry returns the logical
maximum cylinder, head, and sector values of the selected hard disk device. In
this case the numbers are real ones, not made up as they were for the RAM disk
driver. W�other is a catch-all for unrecognized commands and ioctls. In fact, it
is not used in the current release of MINIX 3, and we should probably have
removed it from the Appendix B listing. W�hw�int is called when a hardware
interrupt is received when it is not expected. In the overview we mentioned that
this can happen when a timeout expires before an expected interrupt occurs. This
will satisfy a receive operation that was blocked waiting for the interrupt, but the
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interrupt notification may then be found by a subsequent receive. The only thing
to be done is to reenable the interrupt, which is done by calling the next function,
ack�irqs (line 13297). It cycles through all the known drives and uses the
sys� irqenable kernel call to ensure all interrupts are enabled. Finally, at the end
of at�wini.c two strange little functions are found, strstatus and strerr. These use
macros defined just ahead of them on lines 13313 and 13314 to concatenate error
codes into strings. These functions are not used in MINIX 3 as described here.

3.7.6 Floppy Disk Handling

The floppy disk driver is longer and more complicated than the hard disk
driver. This may seem paradoxical, since floppy disk mechanisms are simpler
than those of hard disks, but the simpler mechanism has a more primitive con-
troller that requires more attention from the operating system. Also, the fact that
the medium is removable adds complications. In this section we will describe
some of the things an implementer must consider in dealing with floppy disks.
However, we will not go into the details of the MINIX 3 floppy disk driver code.
In fact, we have not listed the floppy disk driver in Appendix B. The most impor-
tant parts are similar to those for the hard disk.

One of the things we do not have to worry about with the floppy driver is the
multiple types of controller to support that we had to deal with in the case of the
hard disk driver. Although the high-density floppy disks currently used were not
supported in the design of the original IBM PC, the floppy disk controllers of all
computers in the IBM PC family are supported by a single software driver. The
contrast with the hard disk situation is probably due to lack of motivation to
increase floppy disk performance. Floppy disks are rarely used as working stor-
age during operation of a computer system; their speed and data capacity are too
limited compared to those of hard disks. Floppy disks at one time were important
for distribution of new software and for backup, but as networks and larger-
capacity removable storage devices have become common, PCs rarely come stan-
dard with a floppy disk drives any more.

The floppy disk driver does not use the SSF or the elevator algorithm. It is
strictly sequential, accepting a request and carrying it out before even accepting
another request. In the original design of MINIX it was felt that, since MINIX was
intended for use on personal computers, most of the time there would be only one
process active. Thus the chance of a disk request arriving while another was
being carried out was small. There would be little to gain from the considerable
increase in software complexity that would be required for queueing requests.
Complexity is even less worthwhile now, since floppy disks are rarely used for
anything but transferring data into or out of a system with a hard disk.

That said, the floppy driver, like any other block driver, can handle a request
for scattered I/O. However, in the case of the floppy driver the array of requests
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is smaller than for the hard disk, limited to the maximum number of sectors per
track on a floppy diskette.

The simplicity of the floppy disk hardware is responsible for some of the
complications in floppy disk driver software. Cheap, slow, low-capacity floppy
drives do not justify the sophisticated integrated controllers that are part of mod-
ern hard drives, so the driver software has to deal explicitly with aspects of disk
operation that are hidden in the operation of a hard drive. As an example of a
complication caused by the simplicity of floppy drives, consider positioning the
read/write head to a particular track during a SEEK operation. No hard disk has
ever required the driver software to explicitly call for a SEEK. For a hard disk the
cylinder, head, and sector geometry visible to the programmer often do not
correspond to the physical geometry. In fact, the physical geometry may be quite
complicated. Typically there are multiple zones (groups of cylinders) with more
sectors per track on outer zones than on inner ones. This is not visible to the user,
however. Modern hard disks accept Logical Block Addressing (LBA), addressing
by the absolute sector number on the disk, as an alternative to cylinder, head, and
sector addressing. Even if addressing is done by cylinder, head, and sector, any
geometry that does not address nonexistent sectors may be used, since the in-
tegrated controller on the disk calculates where to move the read/write heads and
does a seek operation when required.

For a floppy disk, however, explicit programming of SEEK operations is
needed. In case a SEEK fails, it is necessary to provide a routine to perform a
RECALIBRATE operation, which forces the heads to cylinder 0. This makes it
possible for the controller to advance them to a desired track position by stepping
the heads a known number of times. Similar operations are necessary for the hard
drive, of course, but the controller handles them without detailed guidance from
the device driver software.

Some characteristics of a floppy disk drive that complicate its driver are:

1. Removable media.

2. Multiple disk formats.

3. Motor control.

Some hard disk controllers provide for removable media, for instance, on a
CD-ROM drive, but the drive controller is generally able to handle any complica-
tions without support in the device driver software. With a floppy disk, however,
the built-in support is not there, and yet it is needed more. Some of the most com-
mon uses for floppy disks—installing new software or backing up files—are
likely to require switching of disks in and out of the drives. It will cause grief if
data intended for one diskette are written onto another. The device driver should
do what it can to prevent this. This is not always possible, as not all floppy drive
hardware allows determination of whether the drive door has been opened since
the last access. Another problem that can be caused by removable media is that a
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system can become hung up if an attempt is made to access a floppy drive that
currently has no diskette inserted. This can be solved if an open door can be
detected, but since this is not always possible some provision must be made for a
timeout and an error return if an operation on a floppy disk does not terminate in a
reasonable time.

Removable media can be replaced with other media, and in the case of floppy
disks there are many different possible formats. IBM compatible hardware sup-
ports both 3.5-inch and 5.25-inch disk drives and the diskettes can be formatted in
a variety of ways to hold from 360 KB up to 1.2 MB (on a 5.25-inch diskette) or
1.44 MB (on a 3.5-inch diskette).

MINIX 3 supports seven different floppy disk formats. Two possible solutions
are possible for the problem this causes. One way is to refer to each possible for-
mat as a distinct drive and provide multiple minor devices. Older versions of
MINIX did this. Fourteen different devices were defined, ranging from /dev/pc0, a
360 KB 5.25-inch diskette in the first drive, to /dev/PS1, a 1.44 MB 3.5-inch
diskette in the second drive. This was a cumbersome solution. MINIX 3 uses
another method: when the first floppy disk drive is addressed as /dev/fd0, or the
second as /dev/fd1, the floppy disk driver tests the diskette currently in the drive
when it is accessed, in order to determine the format. Some formats have more
cylinders, and others have more sectors per track than other formats. Determina-
tion of the format of a diskette is done by attempting to read the higher numbered
sectors and tracks. By a process of elimination the format can be determined.
This takes time, but on modern computers only 1.44 MB 3.5-inch diskettes are
likely to be found, and this format is probed first. Another possible problem is
that a disk with bad sectors could be misidentified. A utility program is available
for testing disks; doing so automatically in the operating system would be too
slow.

The final complication of the floppy disk driver is motor control. Diskettes
cannot be read or written unless they are revolving. Hard disks are designed to
run for thousands of hours on end without wearing out, but leaving the motors on
all the time causes a floppy drive and diskette to wear out quickly. If the motor is
not already on when a drive is accessed, it is necessary to issue a command to
start the drive and then to wait about a half second before attempting to read or
write data. Turning the motors on or off is slow, so MINIX 3 leaves a drive motor
on for a few seconds after a drive is used. If the drive is used again within this
interval, the timer is extended for another few seconds. If the drive is not used in
this interval, the motor is turned off.

3.8 TERMINALS

For decades, users have communicated with computers using devices consist-
ing of a keyboard for user input and a display for computer output. For many
years, these were combined into free-standing devices called terminals, which
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were connected to the computer by a wire. Large mainframes used in the finan-
cial and travel industries sometimes still use these terminals, typically connected
to the mainframe via a modem, especially when they are far from the mainframe.
However, with the emergence of the personal computer, the keyboard and display
have become separate peripherals rather than a single device, but they are so
closely interrelated that we will discuss them together here under the combined
name of ‘‘terminal.’’

Historically, terminals have come in a variety of forms. It is up to the termi-
nal driver to hide all these differences, so that the device-independent part of the
operating system and the user programs do not have to be rewritten for each kind
of terminal. In the following sections we will follow our now-standard approach
of first discussing terminal hardware and software in general, and then discussing
the MINIX 3 software.

3.8.1 Terminal Hardware

From the operating system’s point of view, terminals can be divided into three
broad categories based on how the operating system communicates with them as
well as their actual hardware characteristics. The first category consists of
memory-mapped terminals, which consist of a keyboard and a display, both of
which are hardwired to the computer. This model is used in all personal comput-
ers for the keyboard and the monitor. The second category consists of terminals
that interface via a serial communication line using the RS-232 standard, most fre-
quently over a modem. This model is still used on some mainframes, but PCs
also have serial line interfaces. The third category consists of terminals that are
connected to the computer via a network. This taxonomy is shown in Fig. 3-24.

RS-232
interface

Network
interface

Memory-mapped
interface

Terminals

X terminalCharacter
oriented

Bit
oriented

Glass
 tty

Intelligent
terminal

Figure 3-24. Terminal types.
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Memory-Mapped Terminals

The first broad category of terminals named in Fig. 3-24 consists of memory-
mapped terminals. These are an integral part of the computers themselves, espe-
cially personal computers. They consist of a display and a keyboard. Memory-
mapped displays are interfaced via a special memory called a video RAM, which
forms part of the computer’s address space and is addressed by the CPU the same
way as the rest of memory (see Fig. 3-25).

Also on the video RAM card is a chip called a video controller. This chip
pulls bytes out of the video RAM and generates the video signal used to drive the
display. Displays are usually one of two types: CRT monitors or flat panel
displays. A CRT monitor generates a beam of electrons that scans horizontally
across the screen, painting lines on it. Typically the screen has 480 to 1200 lines
from top to bottom, with 640 to 1920 points per line. These points are called pix-
els. The video controller signal modulates the intensity of the electron beam, de-
termining whether a given pixel will be light or dark. Color monitors have three
beams, for red, green, and blue, which are modulated independently.

A flat panel display works very differently internally, but a CRT-compatible
flat-panel display accepts the same synchronization and video signals as a CRT
and uses these to control a liquid crystal element at each pixel position.

CPU Memory
Graphics
adapter Video

controllerVideo
RAM

Analog
video signal

Parallel port

Bus

Figure 3-25. Memory-mapped terminals write directly into video RAM.

A simple monochrome display might fit each character in a box 9 pixels wide
by 14 pixels high (including the space between characters), and have 25 lines of
80 characters. The display would then have 350 scan lines of 720 pixels each.
Each of these frames is redrawn 45 to 70 times a second. The video controller
could be designed to fetch the first 80 characters from the video RAM, generate
14 scan lines, fetch the next 80 characters from the video RAM, generate the fol-
lowing 14 scan lines, and so on. In fact, most fetch each character once per scan
line to eliminate the need for buffering in the controller. The 9-by-14 bit patterns
for the characters are kept in a ROM used by the video controller. (RAM may
also be used to support custom fonts.) The ROM is addressed by a 12-bit address,
8 bits from the character code and 4 bits to specify a scan line. The 8 bits in each
byte of the ROM control 8 pixels; the 9th pixel between characters is always
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blank. Thus 14 × 80 = 1120 memory references to the video RAM are needed per
line of text on the screen. The same number of references are made to the charac-
ter generator ROM.

The original IBM PC had several modes for the screen. In the simplest one, it
used a character-mapped display for the console. In Fig. 3-26(a) we see a portion
of the video RAM. Each character on the screen of Fig. 3-26(b) occupied two
characters in the RAM. The low-order character was the ASCII code for the char-
acter to be displayed. The high-order character was the attribute byte, which was
used to specify the color, reverse video, blinking, and so on. The full screen of 25
by 80 characters required 4000 bytes of video RAM in this mode. All modern
displays still support this mode of operation.

… × 3 × 2 × 1 × 0

160 characters

(a)

Video RAM

0×B00A0

RAM address

0×B0000

80 characters

(a)

Screen

A B C D
0 1 2 3

25 lines

… × D × C × B × A

Figure 3-26. (a) A video RAM image for the IBM monochrome display. The
×s are attribute bytes. (b) The corresponding screen.

Contemporary bitmap displays use the same principle, except that each pixel
on the screen is individually controlled. In the simplest configuration, for a mono-
chrome display, each pixel has a corresponding bit in the video RAM. At the
other extreme, each pixel is represented by a 24-bit number, with 8 bits each for
red, green, and blue. A 768 × 1024 color display with 24 bits per pixel requires 2
MB of RAM to hold the image.

With a memory-mapped display, the keyboard is completely decoupled from
the screen. It may be interfaced via a serial or parallel port. On every key action
the CPU is interrupted, and the keyboard driver extracts the character typed by
reading an I/O port.

On a PC, the keyboard contains an embedded microprocessor which commun-
icates through a specialized serial port with a controller chip on the main board.
An interrupt is generated whenever a key is struck and also when one is released.
Furthermore, all that the keyboard hardware provides is the key number, not the
ASCII code. When the A key is struck, the key code (30) is put in an I/O register.
It is up to the driver to determine whether it is lower case, upper case, CTRL-A,
ALT-A, CTRL-ALT-A, or some other combination. Since the driver can tell
which keys have been depressed but not yet released (e.g., shift), it has enough
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information to do the job. Although this keyboard interface puts the full burden
on the software, it is extremely flexible. For example, user programs may be
interested in whether a digit just typed came from the top row of keys or the
numeric key pad on the side. In principle, the driver can provide this information.

RS-232 Terminals

RS-232 terminals are devices containing a keyboard and a display that com-
municate using a serial interface, one bit at a time (see Fig. 3-27). These termi-
nals use a 9-pin or 25-pin connector, of which one pin is used for transmitting
data, one pin is for receiving data, and one pin is ground. The other pins are for
various control functions, most of which are not used. To send a character to an
RS-232 terminal, the computer must transmit it 1 bit at a time, prefixed by a start
bit, and followed by 1 or 2 stop bits to delimit the character. A parity bit which
provides rudimentary error detection may also be inserted preceding the stop bits,
although this is commonly required only for communication with mainframe sys-
tems. Common transmission rates are 14,400 and 56,000 bits/sec, the former
being for fax and the latter for data. RS-232 terminals are commonly used to
communicate with a remote computer using a modem and a telephone line.

CPU Memory
RS-232
interface

UART

Computer

Transmit

Recieve

Bus

Figure 3-27. An RS-232 terminal communicates with a computer over a com-
munication line, one bit at a time. The computer and the terminal are completely
independent.

Since both computers and terminals work internally with whole characters but
must communicate over a serial line a bit at a time, chips have been developed to
do the character-to-serial and serial-to-character conversions. They are called
UARTs (Universal Asynchronous Receiver Transmitters). UARTs are attached
to the computer by plugging RS-232 interface cards into the bus as illustrated in
Fig. 3-27. On modern computers the UART and RS-232 interface is frequently
part of the parentboard chipset. It may be possible disable the on-board UART to
allow use of a modem interface card plugged into the bus or two of them may be
able to coexist. A modem also provides a UART (although it may be integrated
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with other functions in a multi-purpose chip), and the communication channel is a
telephone line rather than a serial cable. However, to the computer the UART
looks the same whether the medium is a dedicated serial cable or a telephone line.

RS-232 terminals are gradually dying off, being replaced by PCs, but they are
still encountered on older mainframe systems, especially in banking, airline reser-
vation, and similar applications. Terminal programs that allow a remote computer
to simulate a terminal are still widely used, however.

To print a character, the terminal driver writes the character to the interface
card, where it is buffered and then shifted out over the serial line one bit at a time
by the UART. Even at 56,000 bps, it takes just over 140 microsec to send a char-
acter. As a result of this slow transmission rate, the driver generally outputs a
character to the RS-232 card and blocks, waiting for the interrupt generated by the
interface when the character has been transmitted and the UART is able to accept
another character. The UART can simultaneously send and receive characters, as
its name implies. An interrupt is also generated when a character is received, and
usually a small number of input characters can be buffered. The terminal driver
must check a register when an interrupt is received to determine the cause of the
interrupt. Some interface cards have a CPU and memory and can handle multiple
lines, taking over much of the I/O load from the main CPU.

RS-232 terminals can be subdivided into categories, as mentioned above. The
simplest ones were hardcopy (printing) terminals. Characters typed on the key-
board were transmitted to the computer. Characters sent by the computer were
typed on the paper. These terminals are obsolete and rarely seen any more.

Dumb CRT terminals work the same way, only with a screen instead of paper.
These are frequently called ‘‘glass ttys’’ because they are functionally the same as
hardcopy ttys. (The term ‘‘tty’’ is an abbreviation for Teletype,® a former com-
pany that pioneered in the computer terminal business; ‘‘tty’’ has come to mean
any terminal.) Glass ttys are also obsolete.

Intelligent CRT terminals are in fact miniature, specialized computers. They
have a CPU and memory and contain software, usually in ROM. From the operat-
ing system’s viewpoint, the main difference between a glass tty and an intelligent
terminal is that the latter understands certain escape sequences. For example, by
sending the ASCII ESC character (033), followed by various other characters, it
may be possible to move the cursor to any position on the screen, insert text in the
middle of the screen, and so forth.

3.8.2 Terminal Software

The keyboard and display are almost independent devices, so we will treat
them separately here. (They are not quite independent, since typed characters
must be displayed on the screen.) In MINIX 3 the keyboard and screen drivers are
part of the same process; in other systems they may be split into distinct drivers.
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Input Software

The basic job of the keyboard driver is to collect input from the keyboard and
pass it to user programs when they read from the terminal. Two possible philoso-
phies can be adopted for the driver. In the first one, the driver’s job is just to
accept input and pass it upward unmodified. A program reading from the terminal
gets a raw sequence of ASCII codes. (Giving user programs the key numbers is
too primitive, as well as being highly machine dependent.)

This philosophy is well suited to the needs of sophisticated screen editors such
as emacs, which allow the user to bind an arbitrary action to any character or se-
quence of characters. It does, however, mean that if the user types dste instead of
date and then corrects the error by typing three backspaces and ate, followed by a
carriage return, the user program will be given all 11 ASCII codes typed.

Most programs do not want this much detail. They just want the corrected
input, not the exact sequence of how it was produced. This observation leads to
the second philosophy: the driver handles all the intraline editing, and just delivers
corrected lines to the user programs. The first philosophy is character-oriented;
the second one is line-oriented. Originally they were referred to as raw mode and
cooked mode, respectively. The POSIX standard uses the less-picturesque term
canonical mode to describe line-oriented mode. On most systems canonical
mode refers to a well-defined configuration. Noncanonical mode is equivalent to
raw mode, although many details of terminal behavior can be changed. POSIX-
compatible systems provide several library functions that support selecting either
mode and changing many aspects of terminal configuration. In MINIX 3 the ioctl
system call supports these functions.

The first task of the keyboard driver is to collect characters. If every key-
stroke causes an interrupt, the driver can acquire the character during the inter-
rupt. If interrupts are turned into messages by the low-level software, it is possi-
ble to put the newly acquired character in the message. Alternatively, it can be
put in a small buffer in memory and the message used to tell the driver that some-
thing has arrived. The latter approach is actually safer if a message can be sent
only to a waiting process and there is some chance that the keyboard driver might
still be busy with the previous character.

Once the driver has received the character, it must begin processing it. If the
keyboard delivers key numbers rather than the character codes used by application
software, then the driver must convert between the codes by using a table. Not all
IBM ‘‘compatibles’’ use standard key numbering, so if the driver wants to support
these machines, it must map different keyboards with different tables. A simple
approach is to compile a table that maps between the codes provided by the key-
board and ASCII (American Standard Code for Information Interchange) codes
into the keyboard driver, but this is unsatisfactory for users of languages other
than English. Keyboards are arranged differently in different countries, and the
ASCII character set is not adequate even for the majority of people in the Western
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Hemisphere, where speakers of Spanish, Portuguese, and French need accented
characters and punctuation marks not used in English. To respond to the need for
flexibility of keyboard layouts to provide for different languages, many operating
systems provide for loadable keymaps or code pages, which make it possible to
choose the mapping between keyboard codes and codes delivered to the applica-
tion, either when the system is booted or later.

If the terminal is in canonical (i.e., cooked) mode, characters must be stored
until an entire line has been accumulated, because the user may subsequently
decide to erase part of it. Even if the terminal is in raw mode, the program may
not yet have requested input, so the characters must be buffered to allow type
ahead. (System designers who do not allow users to type far ahead ought to be
tarred and feathered, or worse yet, be forced to use their own system.)

Two approaches to character buffering are common. In the first one, the
driver contains a central pool of buffers, each buffer holding perhaps 10 charac-
ters. Associated with each terminal is a data structure, which contains, among
other items, a pointer to the chain of buffers for input collected from that terminal.
As more characters are typed, more buffers are acquired and hung on the chain.
When the characters are passed to a user program, the buffers are removed and
put back in the central pool.

The other approach is to do the buffering directly in the terminal data struc-
ture itself, with no central pool of buffers. Since it is common for users to type a
command that will take a little while (say, a compilation) and then type a few
lines ahead, to be safe the driver should allocate something like 200 characters per
terminal. In a large-scale timesharing system with 100 terminals, allocating 20K
all the time for type ahead is clearly overkill, so a central buffer pool with space
for perhaps 5K is probably enough. On the other hand, a dedicated buffer per ter-
minal makes the driver simpler (no linked list management) and is to be preferred
on personal computers with only one or two terminals. Figure 3-28 shows the
difference between these two methods.

Although the keyboard and display are logically separate devices, many users
have grown accustomed to seeing the characters they have just typed appear on
the screen. Some (older) terminals oblige by automatically displaying (in hard-
ware) whatever has just been typed, which is not only a nuisance when passwords
are being entered but greatly limits the flexibility of sophisticated editors and
other programs. Fortunately, PC keyboards display nothing when keys are struck.
It is therefore up to the software to display the input. This process is called echo-
ing.

Echoing is complicated by the fact that a program may be writing to the
screen while the user is typing. At the very least, the keyboard driver has to fig-
ure out where to put the new input without it being overwritten by program out-
put.

Echoing also gets complicated when more than 80 characters are typed on a
terminal with 80-character lines. Depending on the application, wrapping around
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Figure 3-28. (a) Central buffer pool. (b) Dedicated buffer for each terminal.

to the next line may be appropriate. Some drivers just truncate lines to 80 charac-
ters by throwing away all characters beyond column 80.

Another problem is tab handling. All keyboards have a tab key, but displays
can handle tab on output. It is up to the driver to compute where the cursor is cur-
rently located, taking into account both output from programs and output from
echoing, and compute the proper number of spaces to be echoed.

Now we come to the problem of device equivalence. Logically, at the end of
a line of text, one wants a carriage return, to move the cursor back to column 1,
and a linefeed, to advance to the next line. Requiring users to type both at the end
of each line would not sell well (although some old terminals had a key which
generated both, with a 50 percent chance of doing so in the order that the software
wanted them). It was (and still is) up to the driver to convert whatever comes in
to the standard internal format used by the operating system.

If the standard form is just to store a linefeed (the convention in UNIX and all
its descendants), carriage returns should be turned into linefeeds. If the internal
format is to store both, then the driver should generate a linefeed when it gets a
carriage return and a carriage return when it gets a linefeed. No matter what the
internal convention, the terminal may require both a linefeed and a carriage return
to be echoed in order to get the screen updated properly. Since a large computer
may well have a wide variety of different terminals connected to it, it is up to the
keyboard driver to get all the different carriage return/linefeed combinations con-
verted to the internal system standard and arrange for all echoing to be done right.

A related problem is the timing of carriage return and linefeeds. On some ter-
minals, it may take longer to display a carriage return or linefeed than a letter or
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number. If the microprocessor inside the terminal actually has to copy a large
block of text to achieve scrolling, then linefeeds may be slow. If a mechanical
print head has to be returned to the left margin of the paper, carriage returns may
be slow. In both cases it is up to the driver to insert filler characters (dummy
null characters) into the output stream or just stop outputting long enough for the
terminal to catch up. The amount of time to delay is often related to the terminal
speed; for example, at 4800 bps or slower, no delays may be needed, but at 9600
bps or higher one filler character might be required. Terminals with hardware
tabs, especially hardcopy ones, may also require a delay after a tab.

When operating in canonical mode, a number of input characters have special
meanings. Figure 3-29 shows all of the special characters required by POSIX and
the additional ones recognized by MINIX 3. The defaults are all control characters
that should not conflict with text input or codes used by programs, but all except
the last two can be changed using the stty command, if desired. Older versions of
UNIX used different defaults for many of these.

������������������������������������������������������������
Character POSIX name Comment������������������������������������������������������������
CTRL-D EOF End of file������������������������������������������������������������

EOL End of line (undefined)������������������������������������������������������������
CTRL-H ERASE Backspace one character������������������������������������������������������������
CTRL-C INTR Interrupt process (SIGINT)������������������������������������������������������������
CTRL-U KILL Erase entire line being typed������������������������������������������������������������
CTRL-\ QUIT Force core dump (SIGQUIT)������������������������������������������������������������
CTRL-Z SUSP Suspend (ignored by MINIX)������������������������������������������������������������
CTRL-Q START Start output������������������������������������������������������������
CTRL-S STOP Stop output������������������������������������������������������������
CTRL-R REPRINT Redisplay input (MINIX extension)������������������������������������������������������������
CTRL-V LNEXT Literal next (MINIX extension)������������������������������������������������������������
CTRL-O DISCARD Discard output (MINIX extension)������������������������������������������������������������
CTRL-M CR Carriage return (unchangeable)������������������������������������������������������������
CTRL-J NL Linefeed (unchangeable)��������������������������������������������������������������
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Figure 3-29. Characters that are handled specially in canonical mode.

The ERASE character allows the user to rub out the character just typed. In
MINIX 3 it is the backspace (CTRL-H). It is not added to the character queue but
instead removes the previous character from the queue. It should be echoed as a
sequence of three characters, backspace, space, and backspace, in order to remove
the previous character from the screen. If the previous character was a tab, eras-
ing it requires keeping track of where the cursor was prior to the tab. In most sys-
tems, backspacing will only erase characters on the current line. It will not erase
a carriage return and back up into the previous line.
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When the user notices an error at the start of the line being typed in, it is often
convenient to erase the entire line and start again. The KILL character (in MINIX
3 CTRL-U) erases the entire line. MINIX 3 makes the erased line vanish from the
screen, but some systems echo it plus a carriage return and linefeed because some
users like to see the old line. Consequently, how to echo KILL is a matter of taste.
As with ERASE it is usually not possible to go further back than the current line.
When a block of characters is killed, it may or may not be worth the trouble for
the driver to return buffers to the pool, if one is used.

Sometimes the ERASE or KILL characters must be entered as ordinary data.
The LNEXT character serves as an escape character. In MINIX 3 CTRL-V is the
default. As an example, older UNIX systems normally used the @ sign for KILL,
but the Internet mail system uses addresses of the form linda@cs.washington.edu.
Someone who feels more comfortable with older conventions might redefine
KILL as @, but then need to enter an @ sign literally to address e-mail. This can
be done by typing CTRL-V @. The CTRL-V itself can be entered literally by
typing CTRL-V CTRL-V. After seeing a CTRL-V, the driver sets a flag saying
that the next character is exempt from special processing. The LNEXT character
itself is not entered in the character queue.

To allow users to stop a screen image from scrolling out of view, control
codes are provided to freeze the screen and restart it later. In MINIX 3 these are
STOP (CTRL-S) and START (CTRL-Q), respectively. They are not stored but are
used to set and clear a flag in the terminal data structure. Whenever output is
attempted, the flag is inspected. If it is set, no output occurs. Usually, echoing is
also suppressed along with program output.

It is often necessary to kill a runaway program being debugged. The INTR
(CTRL-C) and QUIT (CTRL-\) characters can be used for this purpose. In MINIX
3, CTRL-C sends the SIGINT signal to all the processes started up from the termi-
nal. Implementing CTRL-C can be quite tricky. The hard part is getting the in-
formation from the driver to the part of the system that handles signals, which, af-
ter all, has not asked for this information. CTRL-\ is similar to CTRL-C, except
that it sends the SIGQUIT signal, which forces a core dump if not caught or
ignored.

When either of these keys is struck, the driver should echo a carriage return
and linefeed and discard all accumulated input to allow for a fresh start. Histori-
cally, DEL was commonly used as the default value for INTR on many UNIX sys-
tems. Since many programs use DEL interchangeably with the backspace for
editing, CTRL-C is now preferred.

Another special character is EOF (CTRL-D), which in MINIX 3 causes any
pending read requests for the terminal to be satisfied with whatever is available in
the buffer, even if the buffer is empty. Typing CTRL-D at the start of a line
causes the program to get a read of 0 bytes, which is conventionally interpreted as
end-of-file and causes most programs to act the same way as they would upon
seeing end-of-file on an input file.
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Some terminal drivers allow much fancier intraline editing than we have
sketched here. They have special control characters to erase a word, skip back-
ward or forward characters or words, go to the beginning or end of the line being
typed, and so forth. Adding all these functions to the terminal driver makes it
much larger and, furthermore, is wasted when using fancy screen editors that
work in raw mode anyway.

To allow programs to control terminal parameters, POSIX requires that several
functions be available in the standard library, of which the most important are
tcgetattr and tcsetattr. Tcgetattr retrieves a copy of the structure shown in
Fig. 3-30, the termios structure, which contains all the information needed to
change special characters, set modes, and modify other characteristics of a termi-
nal. A program can examine the current settings and modify them as desired.
Tcsetattr then writes the structure back to the terminal driver.

struct termios {
tcflag�t c� iflag; /* input modes */
tcflag�t c�oflag; /* output modes */
tcflag�t c�cflag; /* control modes */
tcflag�t c� lflag; /* local modes */
speed�t c� ispeed; /* input speed */
speed�t c�ospeed; /* output speed */
cc�t c�cc[NCCS]; /* control characters */

};

Figure 3-30. The termios structure. In MINIX 3 tc�flag�t is a short, speed�t is
an int, and cc�t is a char.

The POSIX standard does not specify whether its requirements should be
implemented through library functions or system calls. MINIX 3 provides a sys-
tem call, ioctl, called by

ioctl(file�descriptor, request, argp);

that is used to examine and modify the configurations of many I/O devices. This
call is used to implement the tcgetattr and tcsetattr functions. The variable
request specifies whether the termios structure is to be read or written, and in the
latter case, whether the request is to take effect immediately or should be deferred
until all currently queued output is complete. The variable argp is a pointer to a
termios structure in the calling program. This particular choice of communication
between program and driver was chosen for its UNIX compatibility, rather than for
its inherent beauty.

A few notes about the termios structure are in order. The four flag words pro-
vide a great deal of flexibility. The individual bits in c�iflag control various ways
input is handled. For instance, the ICRNL bit causes CR characters to be con-
verted into NL on input. This flag is set by default in MINIX 3. The c�oflag holds
bits that affect output processing. For instance, the OPOST bit enables output
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processing. It and the ONLCR bit, which causes NL characters in the output to be
converted into a CR NL sequence, are also set by default in MINIX 3. The c�cflag
is the control flags word. The default settings for MINIX 3 enable a line to receive
8-bit characters and cause a modem to hang up if a user logs out on the line. The
c�lflag is the local mode flags field. One bit, ECHO, enables echoing (this can be
turned off during a login to provide security for entering a password). Its most
important bit is the ICANON bit, which enables canonical mode. With ICANON
off, several possibilities exist. If all other settings are left at their defaults, a mode
identical to the traditional cbreak mode is entered. In this mode, characters are
passed to the program without waiting for a full line, but the INTR, QUIT, START,
and STOP characters retain their effects. All of these can be disabled by resetting
bits in the flags, however, to produce the equivalent of traditional raw mode.

The various special characters that can be changed, including those which are
MINIX 3 extensions, are held in the c�cc array. This array also holds two parame-
ters which are used in noncanonical mode. The quantity MIN, stored in
c�cc[VMIN], specifies the minimum number of characters that must be received
to satisfy a read call. The quantity TIME in c�cc[VTIME] sets a time limit for
such calls. MIN and TIME interact as shown in Fig. 3-31. A call that asks for N
bytes is illustrated. With TIME = 0 and MIN = 1, the behavior is similar to the
traditional raw mode.
������������������������������������������������������������������������������������

TIME = 0 TIME > 0������������������������������������������������������������������������������������
MIN = 0 Return immediately with whatever

is available, 0 to N bytes
Timer starts immediately. Return with first
byte entered or with 0 bytes after timeout������������������������������������������������������������������������������������

MIN > 0 Return with at least MIN and up to
N bytes. Possible indefinite block

Interbyte timer starts after first byte. Return
N bytes if received by timeout, or at least
1 byte at timeout. Possible indefinite block�������������������������������������������������������������������������������������
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Figure 3-31. MIN and TIME determine when a call to read returns in noncanon-
ical mode. N is the number of bytes requested.

Output Software

Output is simpler than input, but drivers for RS-232 terminals are radically
different from drivers for memory-mapped terminals. The method that is com-
monly used for RS-232 terminals is to have output buffers associated with each
terminal. The buffers can come from the same pool as the input buffers, or be
dedicated, as with input. When programs write to the terminal, the output is first
copied to the buffers. Similarly, output from echoing is also copied to the buffers.
After all the output has been copied to the buffers (or the buffers are full), the first
character is output, and the driver goes to sleep. When the interrupt comes in, the
next character is output, and so on.
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With memory-mapped terminals, a simpler scheme is possible. Characters to
be printed are extracted one at a time from user space and put directly in the video
RAM. With RS-232 terminals, each character to be output is just put on the line
to the terminal. With memory mapping, some characters require special treat-
ment, among them, backspace, carriage return, linefeed, and the audible bell
(CTRL-G). A driver for a memory-mapped terminal must keep track in software
of the current position in the video RAM, so that printable characters can be put
there and the current position advanced. Backspace, carriage return, and linefeed
all require this position to be updated appropriately. Tabs also require special
processing.

In particular, when a linefeed is output on the bottom line of the screen, the
screen must be scrolled. To see how scrolling works, look at Fig. 3-26. If the
video controller always began reading the RAM at 0xB0000, the only way to
scroll the screen when in character mode would be to copy 24 × 80 characters
(each character requiring 2 bytes) from 0xB00A0 to 0xB0000, a time-consuming
proposition. In bitmap mode, it would be even worse.

Fortunately, the hardware usually provides some help here. Most video con-
trollers contain a register that determines where in the video RAM to begin fetch-
ing bytes for the top line on the screen. By setting this register to point to
0xB00A0 instead of 0xB0000, the line that was previously number two moves to
the top, and the whole screen scrolls up one line. The only other thing the driver
must do is copy whatever is needed to the new bottom line. When the video con-
troller gets to the top of the RAM, it just wraps around and continues merrily
fetching bytes starting at the lowest address. Similar hardware assistance is pro-
vided in bitmap mode.

Another issue that the driver must deal with on a memory-mapped terminal is
cursor positioning. Again, the hardware usually provides some assistance in the
form of a register that tells where the cursor is to go. Finally, there is the problem
of the bell. It is sounded by outputting a sine or square wave to the loudspeaker, a
part of the computer quite separate from the video RAM.

Screen editors and many other sophisticated programs need to be able to
update the screen in more complex ways than just scrolling text onto the bottom
of the display. To accommodate them, many terminal drivers support a variety of
escape sequences. Although some terminals support idiosyncratic escape se-
sequence sets, it is advantageous to have a standard to facilitate adapting software
from one system to another. The American National Standards Institute (ANSI)
has defined a set of standard escape sequences, and MINIX 3 supports a subset of
the ANSI sequences, shown in Fig. 3-32, that is adequate for many common
operations. When the driver sees the character that starts the escape sequences, it
sets a flag and waits until the rest of the escape sequence comes in. When every-
thing has arrived, the driver must carry it out in software. Inserting and deleting
text require moving blocks of characters around the video RAM. The hardware is
of no help with anything except scrolling and displaying the cursor.
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�����������������������������������������������������������������������������
Escape sequence Meaning�����������������������������������������������������������������������������
ESC [ n A Move up n lines�����������������������������������������������������������������������������
ESC [ n B Move down n lines�����������������������������������������������������������������������������
ESC [ n C Move right n spaces�����������������������������������������������������������������������������
ESC [ n D Move left n spaces�����������������������������������������������������������������������������
ESC [ m ; n H Move cursor to (y = m, x = n)�����������������������������������������������������������������������������
ESC [ s J Clear screen from cursor (0 to end, 1 from start, 2 all)�����������������������������������������������������������������������������
ESC [ s K Clear line from cursor (0 to end, 1 from start, 2 all)�����������������������������������������������������������������������������
ESC [ n L Insert n lines at cursor�����������������������������������������������������������������������������
ESC [ n M Delete n lines at cursor�����������������������������������������������������������������������������
ESC [ n P Delete n chars at cursor�����������������������������������������������������������������������������
ESC [ n @ Insert n chars at cursor�����������������������������������������������������������������������������
ESC [ n m Enable rendition n (0=normal, 4=bold, 5=blinking, 7=reverse)�����������������������������������������������������������������������������
ESC M Scroll the screen backward if the cursor is on the top line�������������������������������������������������������������������������������
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Figure 3-32. The ANSI escape sequences accepted by the terminal driver on
output. ESC denotes the ASCII escape character (0x1B), and n, m, and s are op-
tional numeric parameters.

3.8.3 Overview of the Terminal Driver in MINIX 3

The terminal driver is contained in four C files (six if RS-232 and pseudo ter-
minal support are enabled) and together they far and away constitute the largest
driver in MINIX 3. The size of the terminal driver is partly explained by the
observation that the driver handles both the keyboard and the display, each of
which is a complicated device in its own right, as well as two other optional types
of terminals. Still, it comes as a surprise to most people to learn that terminal I/O
requires thirty times as much code as the scheduler. (This feeling is reinforced by
looking at the numerous books on operating systems that devote thirty times as
much space to scheduling as to all I/O combined.)

The terminal driver accepts more than a dozen message types. The most
important are:

1. Read from the terminal (from FS on behalf of a user process).

2. Write to the terminal (from FS on behalf of a user process).

3. Set terminal parameters for ioctl (from FS on behalf of a user process).

4. A keyboard interrupt has occurred (key pressed or released).

5. Cancel previous request (from FS when a signal occurs).

6. Open a device.

7. Close a device.
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Other message types are used for special purposes such as generating diagnostic
displays when function keys are pressed or triggering panic dumps.

The messages used for reading and writing have the same format as shown in
Fig. 3-17, except that no POSITION field is needed. With a disk, the program has
to specify which block it wants to read. With a keyboard, there is no choice: the
program always gets the next character typed in. Keyboards do not support seeks.

The POSIX functions tcgetattr and tcgetattr, used to examine and modify ter-
minal attributes (properties), are supported by the ioctl system call. Good pro-
gramming practice is to use these functions and others in include/termios.h and
leave it to the C library to convert library calls to ioctl system calls. There are,
however, some control operations needed by MINIX 3 that are not provided for in
POSIX, for example, loading an alternate keymap, and for these the programmer
must use ioctl explicitly.

The message sent to the driver by an ioctl system call contains a function
request code and a pointer. For the tcsetattr function, an ioctl call is made with a
TCSETS, TCSETSW, or TCSETSF request type, and a pointer to a termios struc-
ture like the one shown in Fig. 3-30. All such calls replace the current set of attri-
butes with a new set, the differences being that a TCSETS request takes effect
immediately, a TCSETSW request does not take effect until all output has been
transmitted, and a TCSETSF waits for output to finish and discards all input that
has not yet been read. Tcgetattr is translated into an ioctl call with a TCGETS
request type and returns a filled in termios structure to the caller, so the current
state of a device can be examined. Ioctl calls that do not correspond to functions
defined by POSIX, like the KIOCSMAP request used to load a new keymap, pass
pointers to other kinds of structures, in this case to a keymap� t which is a 1536-
byte structure (16-bit codes for 128 keys × 6 modifiers). Figure 3-39 summarizes
how standard POSIX calls are converted into ioctl system calls.

The terminal driver uses one main data structure, tty�table, which is an array
of tty structures, one per terminal. A standard PC has only one keyboard and
display, but MINIX 3 can support up to eight virtual terminals, depending upon the
amount of memory on the display adapter card. This permits the person at the
console to log on multiple times, switching the display output and keyboard input
from one ‘‘user’’ to another. With two virtual consoles, pressing ALT-F2 selects
the second one and ALT-F1 returns to the first. ALT plus the arrow keys also can
be used. In addition, serial lines can support two users at remote locations, con-
nected by RS-232 cable or modem, and pseudo terminals can support users con-
nected through a network. The driver has been written to make it easy to add
additional terminals. The standard configuration illustrated in the source code in
this text has two virtual consoles, with serial lines and pseudo terminals disabled.

Each tty structure in tty�table keeps track of both input and output. For input,
it holds a queue of all characters that have been typed but not yet read by the pro-
gram, information about requests to read characters that have not yet been
received, and timeout information, so input can be requested without the driver
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blocking permanently if no character is typed. For output, it holds the parameters
of write requests that are not yet finished. Other fields hold various general vari-
ables, such as the termios structure discussed above, which affects many proper-
ties of both input and output. There is also a field in the tty structure to point to
information which is needed for a particular class of devices but is not needed in
the tty�table entry for every device. For instance, the hardware-dependent part of
the console driver needs the current position on the screen and in the video RAM,
and the current attribute byte for the display, but this information is not needed to
support an RS-232 line. The private data structures for each device type are also
where the buffers that receive input from the interrupt service routines are located.
Slow devices, such as the keyboard, do not need buffers as large as those needed
by fast devices.

Terminal Input

To better understand how the driver works, let us first look at how characters
typed in on the keyboard work their way through the system to the program that
wants them. Although this section is intended as an overview we will use line
number references to help the reader find each function used. You may find this a
wild ride, getting input exercises code in tty.c, keyboard.c, and console.c, all of
which are large files,

When a user logs in on the system console, a shell is created for him with
/dev/console as standard input, standard output, and standard error. The shell
starts up and tries to read from standard input by calling the library procedure
read. This procedure sends a message that contains the file descriptor, buffer ad-
dress, and count to the file system. This message is shown as (1) in Fig. 3-33.
After sending the message, the shell blocks, waiting for the reply. (User
processes execute only the sendrec primitive, which combines a send with a
receive from the process sent to.)

The file system gets the message and locates the i-node corresponding to the
specified file descriptor. This i-node is for the character special file /dev/console
and contains the major and minor device numbers for the terminal. The major
device type for terminals is 4; for the console the minor device number is 0.

The file system indexes into its device map, dmap, to find the number of the
terminal driver, TTY. Then it sends a message to TTY, shown as (2) in Fig. 3-33.
Normally, the user will not have typed anything yet, so the terminal driver will be
unable to satisfy the request. It sends a reply back immediately to unblock the file
system and report that no characters are available, shown as (3). The file system
records the fact that a process is waiting for terminal (i.e., keyboard) input in the
console’s structure in tty� table and then goes off to get the next request for work.
The user’s shell remains blocked until the requested characters arrive, of course.

When a character is finally typed on the keyboard, it causes two interrupts,
one when the key is depressed and one when it is released. An important point is
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TTY

1 11
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9…

…

2

4 5

87

6

3 10

Keyboard
Interrupt

System
task

Figure 3-33. Read request from the keyboard when no characters are pending.
FS is the file system. TTY is the terminal driver. The TTY receives a message
for every keypress and queues scan codes as they are entered. Later these are
interpreted and assembled into a buffer of ASCII codes which is copied to the
user process.

that a PC keyboard does not generate ASCII codes; each key generates a scan
code when pressed, and a different code when released. The lower 7 bits of the
‘‘press’’ and ‘‘release’’ codes are identical. The difference is the most significant
bit, which is a 0 when the key is pressed and a 1 when it is released. This also
applies to modifier keys such as CTRL and SHIFT. Although ultimately these
keys do not cause ASCII codes to be returned to the user process, they generate
scan codes indicating which key was pressed (the driver can distinguish between
the left and right shift keys if desired), and they still cause two interrupts per key.

The keyboard interrupt is IRQ 1. This interrupt line is not accessible on the
system bus, and can not be shared by any other I/O adapter. When �hwint01 (line
6535) calls intr�handle (line 8221) there will not be a long list of hooks to
traverse to find that the TTY should be notified. In Fig. 3-33 we show the system
task originating the notification message (4) because it is generated by
generic�handler in system/do�irqctl.c (not listed), but this routine is called
directly by the low-level interrupt processing routines. The system task process is
not activated. Upon receiving a HARD�INT message tty�task (line 13740)
dispatches to kbd�interrupt (line 15335) which in turn calls scan�keyboard (line
15800). Scan�keyboard makes three kernel calls (5, 6, 7) to cause the system
task to read from and write to several I/O ports, which ultimately returns the scan
code, then is added to a circular buffer. A tty�events flag is then set to indicate
this buffer contains characters and is not empty.
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No message is needed as of this point. Every time the main loop of tty�task
starts another cycle it inspects the tty�events flag for each terminal device, and,
for each device which has the flag set, calls handle�events (line 14358). The
tty�events flag can signal various kinds of activity (although input is the most
likely), so handle�events always calls the device-specific functions for both input
and output. For input from the keyboard this results in a call to kb�read (line
15360), which keeps track of keyboard codes that indicate pressing or releasing of
the CTRL, SHIFT, and ALT keys and converts scan codes into ASCII codes.
Kb�read in turn calls in�process (line 14486), which processes the ASCII codes,
taking into account special characters and different flags that may be set, includ-
ing whether or not canonical mode is in effect. The effect is normally to add
characters to the console’s input queue in tty�table, although some codes, for
instance BACKSPACE, have other effects. Normally, also, in�process initiates
echoing of the ASCII codes to the display.

When enough characters have come in, the terminal driver makes another ker-
nel call (8) to ask the system task to copy the data to the address requested by the
shell. The copying of the data is not message passing and for that reason is shown
by dashed lines (9) in Fig. 3-33. More than one such line is shown because there
may be more than one such operation before the user’s request has been com-
pletely fulfilled. When the operation is finally complete, the terminal driver sends
a message to the file system telling it that the work has been done (10), and the
file system reacts to this message by sending a message back to the shell to
unblock it (11).

The definition of when enough characters have come in depends upon the ter-
minal mode. In canonical mode a request is complete when a linefeed, end-of-
line, or end-of-file code is received, and, in order for proper input processing to be
done, a line of input cannot exceed the size of the input queue. In noncanonical
mode a read can request a much larger number of characters, and in�process may
have to transfer characters more than once before a message is returned to the file
system to indicate the operation is complete.

Note that the system task copies the actual characters directly from the TTY’s
address space to that of the shell. They do not go through the file system. With
block I/O, data pass through the file system to allow it to maintain a buffer cache
of the most recently used blocks. If a requested block happens to be in the cache,
the request can be satisfied directly by the file system, without doing any actual
disk I/O.

For keyboard I/O, a cache makes no sense. Furthermore, a request from the
file system to a disk driver can always be satisfied in at most a few hundred mil-
liseconds, so there is no harm in having the file system wait. Keyboard I/O may
take hours to complete, or may never be complete (in canonical mode the terminal
driver waits for a complete line, and it may also wait a long time in noncanonical
mode, depending upon the settings of MIN and TIME). Thus, it is unacceptable to
have the file system block until a terminal input request is satisfied.
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Later on, it may happen that the user has typed ahead, and that characters are
available before they have been requested, from previous interrupts and event 4.
In that case, events 1, 2, and 5 through 11 all happen in quick succession after the
read request; 3 does not occur at all.

Readers who are familiar with earlier versions of MINIX may remember that
in these versions the TTY driver (and all other drivers) were compiled together
with the kernel. Each driver had its own interrupt handler in kernel space. In the
case of the keyboard driver, the interrupt handler itself could buffer a certain
number of scan codes, and also do some preliminary processing (scan codes for
most key releases could be dropped, only for modifier keys like the shift key is it
necessary to buffer the release codes). The interrupt handler itself did not send
messages to the TTY driver, because the probability was high that the TTY would
not be blocked on a receive and able to receive a message at any given time.
Instead, the clock interrupt handler awakened the TTY driver periodically. These
techniques were adopted to avoid losing keyboard input.

Earlier we made something of a point of the differences between handling ex-
pected interrupts, such as those generated by a disk controller, and handling un-
predictable interrupts like those from a keyboard. But in MINIX 3 nothing special
seems to have been done to deal with the problems of unpredictable interrupts.
How is this possible? One thing to keep in mind is the enormous difference in
performance between the computers for which the earliest versions of MINIX
were written and current designs. CPU clock speeds have increased, and the num-
ber of clock cycles needed to execute an instruction has decreased. The minimum
processor recommended for use with MINIX 3 is an 80386. A slow 80386 will
execute instructions approximately 20 times as fast as the original IBM PC. A
100 MHz Pentium will execute perhaps 25 times as fast as the slow 80386. So
perhaps CPU speed is enough.

Another thing to keep in mind is that keyboard input is very slow by computer
standards. At 100 words per minute a typist enters fewer than 10 characters per
second. Even with a fast typist the terminal driver will probably be sent an inter-
rupt message for each character typed at the keyboard. However, in the case of
other input devices higher data rates are probable—rates 1000 or more times fas-
ter than those of a typist are possible from a serial port connected to a 56,000-bps
modem. At that speed approximately 120 characters may be received by the
modem between clock ticks, but to allow for data compression on the modem link
the serial port connected to the modem must be able to handle at least twice as
many.

One thing to consider with a serial port, however, is that characters, not scan
codes, are transmitted, so even with an old UART that does no buffering, there
will be only one interrupt per keypress instead of two. And newer PCs are
equipped with UARTs that typically buffer at least 16, and perhaps as many 128
characters. So one interrupt per character is not required. For instance, a UART
with a 16-character buffer might be configured to interrupt when 14 characters are
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in the buffer. Ethernet-based networks can deliver characters at a rate much faster
than a serial line, but ethernet adapters buffer entire packets, and only one inter-
rupt is necessary per packet.

We will complete our overview of terminal input by summarizing the events
that occur when the terminal driver is first activated by a read request and when it
is reactivated after receipt of keyboard input (see Fig. 3-34). In the first case,
when a message comes in to the terminal driver requesting characters from the
keyboard, the main procedure, tty� task (line 13740) calls do�read (line 13953) to
handle the request. Do�read stores the parameters of the call in the keyboard’s
entry in tty�table, in case there are insufficient characters buffered to satisfy the
request.

Other functions

Receive message
from clock

Receive message
from user

via FS

tty_task

do_read handle_events

in_transfer

handle_events kb_read

Other functions

in_transfer

kb_read in_transfer

Figure 3-34. Input handling in the terminal driver. The left branch of the tree is
taken to process a request to read characters. The right branch is taken when a
keyboard message is sent to the driver before a user has requested input. [figure
3-X to be revised]

Then it calls in�transfer (line 14416) to get any input already waiting, and
then handle�events (line 14358) which in turn calls (via the function pointer
(*tp->tty�devread)) kb�read (line 15360) and then in�transfer once again, in
order to try to milk the input stream for a few more characters. Kb�read calls
several other procedures not shown in Fig. 3-34 to accomplish its work. The
result is that whatever is immediately available is copied to the user. If nothing is
available then, nothing is copied. If the read is completed by in�transfer or by
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handle�events, a message is sent to the file system when all characters have been
transferred, so the file system can unblock the caller. If the read was not com-
pleted (no characters, or not enough characters) do�read reports back to the file
system, telling it whether it should suspend the original caller, or, if a nonblocking
read was requested, cancel the read.

The right side of Fig. 3-34 summarizes the events that occur when the termi-
nal driver is awakened subsequent to an interrupt from the keyboard. When a
character is typed, the interrupt ‘‘handler’’ kbd� interrupt (line 15335) calls
scan�keyboard which calls the system task to do the I/O. (We put ‘‘handler’’ in
quotes because it is not a real handler called when an interrupt occurs, it is
activated by a message sent to tty�task from generic�handler in the system task.)
Then kbd�interrupt puts the scan code into the keyboard buffer, ibuf, and sets a
flag to identify that the console device has experienced an event. When
kbd� interrupt returns control to tty�task a continue statement results in starting
another iteration of the main loop. The event flags of all terminal devices are
checked and handle�events is called for each device with a raised flag. In the
case of the keyboard, handle�events calls kb�read and in� transfer, just as was
done on receipt of the original read request. The events shown on the right side of
the figure may occur several times, until enough characters are received to fulfill
the request accepted by do�read after the first message from the FS. If the FS
tries to initiate a request for more characters from the same device before the first
request is complete, an error is returned. Of course, each device is independent; a
read request on behalf of a user at a remote terminal is processed separately from
one for a user at the console.

The functions not shown in Fig. 3-34 that are called by kb�read include
map�key, (line 15303) which converts the key codes (scan codes) generated by
the hardware into ASCII codes, make�break, (line 15431) which keeps track of
the state of modifier keys such as the SHIFT key, and in�process, (line 14486)
which handles complications such as attempts by the user to backspace over input
entered by mistake, other special characters, and options available in different
input modes. In�process also calls tty�echo (line 14647), so the typed characters
will be displayed on the screen.

Terminal Output

In general, console output is simpler than terminal input, because the operat-
ing system is in control and does not need to be concerned with requests for out-
put arriving at inconvenient times. Also, because the MINIX 3 console is a
memory-mapped display, output to the console is particularly simple. No inter-
rupts are needed; the basic operation is to copy data from one memory region to
another. On the other hand, all the details of managing the display, including han-
dling escape sequences, must be handled by the driver software. As we did with
keyboard input in the previous section, we will trace through the steps involved in
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sending characters to the console display. We will assume in this example that
the active display is being written; minor complications caused by virtual consoles
will be discussed later.

When a process wants to print something, it generally calls printf. Printf calls
write to send a message to the file system. The message contains a pointer to the
characters that are to be printed (not the characters themselves). The file system
then sends a message to the terminal driver, which fetches them and copies them
to the video RAM. Figure 3-35 shows the main procedures involved in output.

tty_task

do_write

handle_events

cons_write

out_char

flush

pause_escape

Special
characters

End of line
Escape

sequences
“Easy”

characters

scroll_screen

Figure 3-35. Major procedures used in terminal output. The dashed line indi-
cates characters copied directly to ramqueue by cons�write.

When a message comes in to the terminal driver requesting it to write on the
screen, do�write (line 14029) is called to store the parameters in the console’s tty
struct in the tty� table. Then handle�events (the same function called whenever
the tty�events flag is found set) is called. On every call this function calls both
the input and output routines for the device selected in its argument. In the case
of the console display this means that any keyboard input that is waiting is pro-
cessed first. If there is input waiting, characters to be echoed are added to what-
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ever characters are already awaiting output. Then a call is made to cons�write
(line 16036), the output procedure for memory-mapped displays. This procedure
uses phys�copy to copy blocks of characters from the user process to a local
buffer, possibly repeating this and the following steps a number of times, since the
local buffer holds only 64 bytes. When the local buffer is full, each 8-bit byte is
transferred to another buffer, ramqueue. This is an array of 16-bit words. Alter-
nate bytes are filled in with the current value of the screen attribute byte, which
determines foreground and background colors and other attributes. When possi-
ble, characters are transferred directly into ramqueue, but certain characters, such
as control characters or characters that are parts of escape sequences, need special
handling. Special handling is also required when a character’s screen position
would exceed the width of the screen, or when ramqueue becomes full. In these
cases out�char (line 16119) is called to transfer the characters and take whatever
additional action is called for. For instance, scroll�screen (line 16205) is called
when a linefeed character is received while addressing the last line of the screen,
and parse�escape handles characters during an escape sequence. Usually
out�char calls flush (line 16259) which copies the contents of ramqueue to the
video display memory, using the assembly language routine mem�vid�copy.
Flush is also called after the last character is transferred into ramqueue to be sure
all output is displayed. The final result of flush is to command the 6845 video
controller chip to display the cursor in the correct position.

Logically, the bytes fetched from the user process could be written into the
video RAM one per loop iteration. However, accumulating the characters in ram-
queue and then copying the block with a call to mem�vid�copy are more efficient
in the protected memory environment of Pentium-class processors. Interestingly,
this technique was introduced in early versions of MINIX 3 that ran on older pro-
cessors without protected memory. The precursor of mem�vid�copy dealt with a
timing problem—with older video displays the copy into the video memory had to
be done when the screen was blanked during vertical retrace of the CRT beam to
avoid generating visual garbage all over the screen. MINIX 3 no longer provides
this support for obsolete equipment as the performance penalty is too great. How-
ever, the modern version of MINIX 3 benefits in other ways from copying ram-
queue as a block.

The video RAM available to a console is delimited in the console structure by
the fields c�start and c�limit. The current cursor position is stored in the
c�column and c�row fields. The coordinate (0, 0) is in the upper left corner of
the screen, which is where the hardware starts to fill the screen. Each video scan
begins at the address given by c�org and continues for 80 × 25 characters (4000
bytes). In other words, the 6845 chip pulls the word at offset c�org from the
video RAM and displays the character byte in the upper left-hand corner, using
the attribute byte to control color, blinking, and so forth. Then it fetches the next
word and displays the character at (1, 0). This process continues until it gets to
(79, 0), at which time it begins the second line on the screen, at coordinate (0, 1).
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When the computer is first started, the screen is cleared, output is written into
the video RAM starting at location c�start, and c�org is assigned the same value
as c�start. Thus the first line appears on the top line of the screen. When output
must go to a new line, either because the first line is full or because a newline
character is detected by out�char, output is written into the location given by
c�start plus 80. Eventually, all 25 lines are filled, and scrolling of the screen is
required. Some programs, editors, for example, require scrolling in the downward
direction too, when the cursor is on the top line and further movement upward
within the text is required.

There are two ways scrolling the screen can be managed. In software scrol-
ling, the character to be displayed at position (0, 0) is always in the first location
in video memory, word 0 relative to the position pointed to by c�start, and the
video controller chip is commanded to display this location first by keeping the
same address in c�org. When the screen is to be scrolled, the contents of relative
location 80 in the video RAM, the beginning of the second line on the screen, is
copied to relative location 0, word 81 is copied to relative location 1, and so on.
The scan sequence is unchanged, putting the data at location 0 in the memory at
screen position (0, 0) and the image on the screen appears to have moved up one
line. The cost is that the CPU has moved 80 × 24 = 1920 words. In hardware
scrolling, the data are not moved in the memory; instead the video controller chip
is instructed to start the display at a different point, for instance, with the data at
word 80. The bookkeeping is done by adding 80 to the contents of c�org, saving
it for future reference, and writing this value into the correct register of the video
controller chip. This requires either that the controller be smart enough to wrap
around the video RAM, taking data from the beginning of the RAM (the address
in c�start) when it reaches the end (the address in c� limit), or that the video
RAM have more capacity than just the 80 × 2000 words necessary to store a sin-
gle screen of display.

Older display adapters generally have smaller memory but are able to wrap
around and do hardware scrolling. Newer adapters generally have much more
memory than needed to display a single screen of text, but the controllers are not
able to wrap. Thus an adapter with 32,768 bytes of display memory can hold 204
complete lines of 160 bytes each, and can do hardware scrolling 179 times before
the inability to wrap becomes a problem. But, eventually a memory copy opera-
tion will be needed to move the data for the last 24 lines back to location 0 in the
video memory. Whichever method is used, a row of blanks is copied to the video
RAM to ensure that the new line at the bottom of the screen is empty.

When virtual consoles are enabled, the available memory within a video adap-
ter is divided equally between the number of consoles desired by properly initial-
izing the c�start and c�limit fields for each console. This has an effect on scrol-
ling. On any adapter large enough to support virtual consoles, software scrolling
takes place every so often, even though hardware scrolling is nominally in effect.
The smaller the amount of memory available to each console display, the more
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frequently software scrolling must be used. The limit is reached when the max-
imum possible number of consoles is configured. Then every scroll operation will
be a software scroll operation.

The position of the cursor relative to the start of the video RAM can be de-
rived from c�column and c�row, but it is faster to store it explicitly (in c�cur).
When a character is to be printed, it is put into the video RAM at location c�cur,
which is then updated, as is c�column. Figure 3-36 summarizes the fields of the
console structure that affect the current position and the display origin.

����������������������������������������������������������
Field Meaning����������������������������������������������������������

c�start Start of video memory for this console����������������������������������������������������������
c� limit Limit of video memory for this console����������������������������������������������������������
c�column Current column (0-79) with 0 at left����������������������������������������������������������
c�row Current row (0-24) with 0 at top����������������������������������������������������������
c�cur Offset into video RAM for cursor����������������������������������������������������������
c�org Location in RAM pointed to by 6845 base register������������������������������������������������������������
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Figure 3-36. Fields of the console structure that relate to the current screen po-
sition.

The characters that affect the cursor position (e.g., linefeed, backspace) are
handled by adjusting the values of c�column, c�row, and c�cur. This work is
done at the end of flush by a call to set�6845 which sets the registers in the video
controller chip.

The terminal driver supports escape sequences to allow screen editors and
other interactive programs to update the screen in a flexible way. The sequences
supported are a subset of an ANSI standard and should be adequate to allow many
programs written for other hardware and other operating systems to be easily
ported to MINIX 3. There are two categories of escape sequences: those that never
contain a variable parameter, and those that may contain parameters. In the first
category the only representative supported by MINIX 3 is ESC M, which reverse
indexes the screen, moving the cursor up one line and scrolling the screen down-
ward if the cursor is already on the first line. The other category can have one or
two numeric parameters. Sequences in this group all begin with ESC [. The ‘‘[’’
is the control sequence introducer. A table of escape sequences defined by the
ANSI standard and recognized by MINIX 3 was shown in Fig. 3-32.

Parsing escape sequences is not trivial. Valid escape sequences in MINIX 3
can be as short as two characters, as in ESC M, or up to 8 characters long in the
case of a sequence that accepts two numeric parameters that each can have a
two-digit values as in ESC [20;60H, which moves the cursor to line 20, column
60. In a sequence that accepts a parameter, the parameter may be omitted, and in
a sequence that accepts two parameters either or both of them may be omitted.
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When a parameter is omitted or one that is outside the valid range is used, a
default is substituted. The default is the lowest valid value.

Consider the following ways a program could construct a sequence to move to
the upper-left corner of the screen:

1. ESC [H is acceptable, because if no parameters are entered the
lowest valid parameters are assumed.

2. ESC [1;1H will correctly send the cursor to row 1 and column 1
(with ANSI, the row and column numbers start at 1).

3. Both ESC [1;H and ESC [;1H have an omitted parameter, which
defaults to 1 as in the first example.

4. ESC [0;0H will do the same, since each parameter is less than the
minimum valid value the minimum is substituted.

These examples are presented not to suggest one should deliberately use invalid
parameters but to show that the code that parses such sequences is nontrivial.

MINIX 3 implements a finite state automaton to do this parsing. The variable
c�esc�state in the console structure normally has a value of 0. When out�char
detects an ESC character, it changes c�esc�state to 1, and subsequent characters
are processed by parse�escape (line 16293). If the next character is the control
sequence introducer, state 2 is entered; otherwise the sequence is considered com-
plete, and do�escape (line 16352) is called. In state 2, as long as incoming char-
acters are numeric, a parameter is calculated by multiplying the previous value of
the parameter (initially 0) by 10 and adding the numeric value of the current char-
acter. The parameter values are kept in an array and when a semicolon is detected
the processing shifts to the next cell in the array. (The array in MINIX 3 has only
two elements, but the principle is the same). When a nonnumeric character that is
not a semicolon is encountered the sequence is considered complete, and again
do�escape is called. The current character on entry to do�escape then is used to
select exactly what action to take and how to interpret the parameters, either the
defaults or those entered in the character stream. This is illustrated in Fig. 3-44.

Loadable Keymaps

The IBM PC keyboard does not generate ASCII codes directly. The keys are
each identified with a number, starting with the keys that are located in the upper
left of the original PC keyboard—1 for the ‘‘ESC’’ key, 2 for the ‘‘1’’, and so on.
Each key is assigned a number, including modifier keys like the left SHIFT and
right SHIFT keys, numbers 42 and 54. When a key is pressed, MINIX 3 receives
the key number as a scan code. A scan code is also generated when a key is
released, but the code generated upon release has the most significant bit set
(equivalent to adding 128 to the key number). Thus a key press and a key release
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can be distinguished. By keeping track of which modifier keys have been pressed
and not yet released, a large number of combinations are possible. For ordinary
purposes, of course, two-finger combinations, such as SHIFT-A or CTRL-D, are
most manageable for two-handed typists, but for special occasions three-key (or
more) combinations are possible, for instance, CTRL-SHIFT-A, or the well-
known CTRL-ALT-DEL combination that PC users recognize as the way to reset
and reboot the system.

The complexity of the PC keyboard allows for a great deal of flexibility in
how it used. A standard keyboard has 47 ordinary character keys defined (26
alphabetic, 10 numeric, and 11 punctuation). If we are willing to use three-
fingered modifier key combinations, such as CTRL-ALT-SHIFT, we can support
a character set of 376 (8 × 47) members. This is by no means the limit of what is
possible, but for now let us assume we do not want to distinguish between the left-
and right-hand modifier keys, or use any of the numeric keypad or function keys.
Indeed, we are not limited to using just the CTRL, ALT, and SHIFT keys as
modifiers; we could retire some keys from the set of ordinary keys and use them
as modifiers if we desired to write a driver that supported such a system.

Operating systems that use such keyboards use a keymap to determine what
character code to pass to a program based upon the key being pressed and the
modifiers in effect. The MINIX 3 keymap logically is an array of 128 rows,
representing possible scan code values (this size was chosen to accommodate
Japanese keyboards; U.S. and European keyboards do not have this many keys)
and 6 columns. The columns represent no modifier, the SHIFT key, the Control
key, the left ALT key, the right ALT key, and a combination of either ALT key
plus the SHIFT key. There are thus 720 ((128 − 6) × 6) character codes that can
be generated by this scheme, given an adequate keyboard. This requires that each
entry in the table be a 16-bit quantity. For U.S. keyboards the ALT and ALT2
columns are identical. ALT2 is named ALTGR on keyboards for other languages,
and many of these keymaps support keys with three symbols by using this key as
a modifier.

A standard keymap (determined by the line

#include keymaps/us-std.src

in keyboard.c) is compiled into the MINIX 3 kernel at compilation time, but an

ioctl(0, KIOCSMAP, keymap)

call can be used to load a different map into the kernel at address keymap. A full
keymap occupies 1536 bytes (128 × 6 × 2). Extra keymaps are stored in
compressed form. A program called genmap is used to make a new compressed
keymap. When compiled, genmap includes the keymap.src code for a particular
keymap, so the map is compiled within genmap. Normally, genmap is executed
immediately after being compiled, at which time it outputs the compressed ver-
sion to a file, and then the genmap binary is deleted. The command loadkeys
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reads a compressed keymap, expands it internally, and then calls ioctl to transfer
the keymap into the kernel memory. MINIX 3 can execute loadkeys automatically
upon starting, and the program can also be invoked by the user at any time.
�������������������������������������������������������������������������������������
Scan code Character Regular SHIFT ALT1 ALT2 ALT+SHIFT CTRL�������������������������������������������������������������������������������������

00 none 0 0 0 0 0 0�������������������������������������������������������������������������������������
01 ESC C(’[’) C(’[’) CA(’[’) CA(’[’) CA(’[’) C(’[’)�������������������������������������������������������������������������������������
02 ’1’ ’1’ ’!’ A(’1’) A(’1’) A(’!’) C(’A’)�������������������������������������������������������������������������������������
13 ’=’ ’=’ ’+’ A(’=’) A(’=’) A(’+’) C(’@’)�������������������������������������������������������������������������������������
16 ’q’ L(’q’) ’Q’ A(’q’) A(’q’) A(’Q’) C(’Q’)�������������������������������������������������������������������������������������
28 CR/LF C(’M’) C(’M’) CA(’M’) CA(’M’) CA(’M’) C(’J’)�������������������������������������������������������������������������������������
29 CTRL CTRL CTRL CTRL CTRL CTRL CTRL�������������������������������������������������������������������������������������
59 F1 F1 SF1 AF1 AF1 ASF1 CF1�������������������������������������������������������������������������������������

127 ??? 0 0 0 0 0 0��������������������������������������������������������������������������������������
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Figure 3-37. A few entries from a keymap source file.

The source code for a keymap defines a large initialized array, and in the
interest of saving space a keymap file is not printed in Appendix B. Figure 3-37
shows in tabular form the contents of a few lines of src/kernel/keymaps/us-std.src
which illustrate several aspects of keymaps. There is no key on the IBM-PC key-
board that generates a scan code of 0. The entry for code 1, the ESC key, shows
that the value returned is unchanged when the SHIFT key or CTRL key are
pressed, but that a different code is returned when an ALT key is pressed simul-
taneously with the ESC key. The values compiled into the various columns are
determined by macros defined in include/minix/keymap.h:

#define C(c) ((c) & 0x1F) /* Map to control code */
#define A(c) ((c) | 0x80) /* Set eight bit (ALT) */
#define CA(c) A(C(c)) /* CTRL-ALT */
#define L(c) ((c) | HASCAPS) /* Add "Caps Lock has effect" attribute */

The first three of these macros manipulate bits in the code for the quoted character
to produce the necessary code to be returned to the application. The last one sets
the HASCAPS bit in the high byte of the 16-bit value. This is a flag that indicates
that the state of the capslock variable has to be checked and the code possibly
modified before being returned. In the figure, the entries for scan codes 2, 13, and
16 show how typical numeric, punctuation, and alphabetic keys are handled. For
code 28 a special feature is seen—normally the ENTER key produces a CR
(0x0D) code, represented here as C(’M’). Because the newline character in UNIX
files is the LF (0x0A) code, and it is sometimes necessary to enter this directly,
this keyboard map provides for a CTRL-ENTER combination, which produces
this code, C(’J’).
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Scan code 29 is one of the modifier codes and must be recognized no matter
what other key is pressed, so the CTRL value is returned regardless of any other
key that may be pressed. The function keys do not return ordinary ASCII values,
and the row for scan code 59 shows symbolically the values (defined in
include/minix/keymap.h) that are returned for the F1 key in combination with
other modifiers. These values are F1: 0x0110, SF1: 0x1010, AF1: 0x0810, ASF1:
0x0C10, and CF1: 0x0210. The last entry shown in the figure, for scan code 127,
is typical of many entries near the end of the array. For many keyboards, cer-
tainly most of those used in Europe and the Americas, there are not enough keys
to generate all the possible codes, and these entries in the table are filled with
zeroes.

Loadable Fonts

Early PCs had the patterns for generating characters on a video screen stored
only in ROM, but the displays used on modern systems provide RAM on the
video display adapters into which custom character generator patterns can be
loaded. This is supported by MINIX 3 with a

ioctl(0, TIOCSFON, font)

ioctl operation. MINIX 3 supports an 80 lines × 25 rows video mode, and font files
contain 4096 bytes. Each byte represents a line of 8 pixels that are illuminated if
the bit value is 1, and 16 such lines are needed to map each character. However
the video display adapter uses 32 bytes to map each character, to provide higher
resolution in modes not currently supported by MINIX 3. The loadfont command
is provided to convert these files into the 8192-byte font structure referenced by
the ioctl call and to use that call to load the font. As with the keymaps, a font can
be loaded at startup time, or at any time during normal operation. However, every
video adapter has a standard font built into its ROM that is available by default.
There is no need to compile a font into MINIX 3 itself, and the only font support
necessary in the kernel is the code to carry out the TIOCSFON ioctl operation.

3.8.4 Implementation of the Device-Independent Terminal Driver

In this section we will begin to look at the source code of the terminal driver
in detail. We saw when we studied the block devices that multiple drivers sup-
porting several different devices could share a common base of software. The
case with the terminal devices is similar, but with the difference that there is one
terminal driver that supports several different kinds of terminal device. Here we
will start with the device-independent code. In later sections we will look at the
device-dependent code for the keyboard and the memory-mapped console display.
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Terminal Driver Data Structures

The file tty.h contains definitions used by the C files which implement the ter-
minal drivers. Since this driver supports many different devices, the minor device
numbers must be used to distinguish which device is being supported on a particu-
lar call, and they are defined on lines 13405 to 13409.

Within tty.h, the definitions of the O�NOCTTY and O�NONBLOCK flags
(which are optional arguments to the open call) are duplicates of definitions in
include/fcntl.h but they are repeated here so as not to require including another
file. The devfun�t and devfunarg�t types (lines 13423 and 13424) are used to
define pointers to functions, in order to provide for indirect calls using a mechan-
ism similar to what we saw in the code for the main loop of the disk drivers.

Many variables declared in this file are identified by the prefix tty� . The
most important definition in tty.h is the tty structure (lines 13426 to 13488). There
is one such structure for each terminal device (the console display and keyboard
together count as a single terminal). The first variable in the tty structure,
tty�events, is the flag that is set when an interrupt causes a change that requires
the terminal driver to attend to the device.

The rest of the tty structure is organized to group together variables that deal
with input, output, status, and information about incomplete operations. In the
input section, tty� inhead and tty�intail define the queue where received charac-
ters are buffered. Tty�incount counts the number of characters in this queue, and
tty�eotct counts lines or characters, as explained below. All device-specific calls
are done indirectly, with the exception of the routines that initialize the terminals,
which are called to set up the pointers used for the indirect calls. The tty�devread
and tty�icancel fields hold pointers to device-specific code to perform the read
and input cancel operations. Tty�min is used in comparisons with tty�eotct.
When the latter becomes equal to the former, a read operation is complete. Dur-
ing canonical input, tty�min is set to 1 and tty�eotct counts lines entered. During
noncanonical input, tty�eotct counts characters and tty�min is set from the MIN
field of the termios structure. The comparison of the two variables thus tells when
a line is ready or when the minimum character count is reached, depending upon
the mode. Tty� tmr is a timer for this tty, used for the TIME field of termios.

Since queueing of output is handled by the device-specific code, the output
section of tty declares no variables and consists entirely of pointers to device-
specific functions that write, echo, send a break signal, and cancel output. In the
status section the flags tty�reprint, tty�escaped, and tty�inhibited indicate that
the last character seen has a special meaning; for instance, when a CTRL-V
(LNEXT) character is seen, tty�escaped is set to 1 to indicate that any special
meaning of the next character is to be ignored.

The next part of the structure holds data about DEV�READ, DEV�WRITE,
and DEV�IOCTL operations in progress. There are two processes involved in
each of these operations. The server managing the system call (normally FS) is
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identified in tty� incaller (line 13458). The server calls the tty driver on behalf of
another process that needs to do an I/O operation, and this client is identified in
tty� inproc (line 13459). As described in Fig. 3-33, during a read, characters are
transferred directly from the terminal driver to a buffer within the memory space
of the original caller. Tty�inproc and tty� in�vir locate this buffer. The next two
variables, tty� inleft and tty�incum, count the characters still needed and those
already transferred. Similar sets of variables are needed for a write system call.
For ioctl there may be an immediate transfer of data between the requesting proc-
ess and the driver, so a virtual address is needed, but there is no need for variables
to mark the progress of an operation. An ioctl request may be postponed, for
instance, until current output is complete, but when the time is right the request is
carried out in a single operation.

Finally, the tty structure includes some variables that fall into no other cat-
egory, including pointers to the functions to handle the DEV�IOCTL and
DEV�CLOSE operations at the device level, a POSIX-style termios structure, and
a winsize structure that provides support for window-oriented screen displays.
The last part of the structure provides storage for the input queue itself in the array
tty� inbuf. Note that this is an array of u16�t, not of 8-bit char characters.
Although applications and devices use 8-bit codes for characters, the C language
requires the input function getchar to work with a larger data type so it can return
a symbolic EOF value in addition to all 256 possible byte values.

The tty� table, an array of tty structures, is declared as extern on line 13491.
There is one array element for each terminal enabled by the NR�CONS,
NR�RS�LINES, and NR�PTYS definitions in include/minix/config.h . For the
configuration discussed in this book, two consoles are enabled, but MINIX 3 may
be recompiled to add additional virtual consoles, one or two 2 serial lines, and up
to 64 pseudo terminals.

There is one other extern definition in tty.h. Tty�timers (line 13516) is a
pointer used by the timer to hold the head of a linked list of timer�t fields. The
tty.h header file is included in many files and storage for tty�table and tty�timers
is allocated during compilation of tty.c.

Two macros, buflen and bufend, are defined on lines 13520 and 13521. These
are used frequently in the terminal driver code, which does much copying of data
into and out of buffers.

The Device-Independent Terminal Driver

The main terminal driver and the device-independent supporting functions are
all in tty.c. Following this there are a number of macro definitions. If a device is
not initialized, the pointers to that device’s device-specific functions will contain
zeroes put there by the C compiler. This makes it possible to define the tty�active
macro (line 13687) which returns FALSE if a null pointer is found. Of course, the
initialization code for a device cannot be accessed indirectly if part of its job is to
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initialize the pointers that make indirect access possible. On lines 13690 to 13696
are conditional macro definitions to equate initialization calls for RS-232 or
pseudo terminal devices to calls to a null function when these devices are not con-
figured. Do�pty may be similarly disabled in this section. This makes it possible
to omit the code for these devices entirely if it is not needed.

Since there are so many configurable parameters for each terminal, and there
may be quite a few terminals on a networked system, a termios�defaults structure
is declared and initialized with default values (all of which are defined in
include/termios.h) on lines 13720 to 13727. This structure is copied into the
tty� table entry for a terminal whenever it is necessary to initialize or reinitialize
it. The defaults for the special characters were shown in Fig. 3-29. Figure 3-38
shows the default values for the various flags used. On the following line the
winsize�defaults structure is similarly declared. It is left to be initialized to all
zeroes by the C compiler. This is the proper default action; it means ‘‘window
size is unknown, use /etc/termcap.’’

The final set of definitions before executable code begins are the PUBLIC
declarations of global variables previously declared as extern in tty.h (lines 13731
to 13735).

����������������������������������������������
Field Default values����������������������������������������������

c�iflag BRKINT ICRNL IXON IXANY����������������������������������������������
c�oflag OPOST ONLCR����������������������������������������������
c�cflag CREAD CS8 HUPCL����������������������������������������������
c�lflag ISIG IEXTEN ICANON ECHO ECHOE�����������������������������������������������
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Figure 3-38. Default termios flag values.

The entry point for the terminal driver is tty�task (line 13740). Before enter-
ing the main loop, a call is made to tty� init (line 13752). Information about the
host machine that will be needed to initialize the keyboard and the console is
obtained by a sys�getmachine kernel call, and then the keyboard hardware is ini-
tialized. The routine called for this is kb� init�once. It is so named to distinguish
it from another initialization routine which is called as part of initialization of
each virtual console later on. Finally, a single 0 is printed to exercise the output
system and kick anything that does not get initialized until first use. The source
code shows a call to printf, but this is not the same printf used by user programs, it
is a special version that calls a local function in the console driver called putk.

The main loop on lines 13764 to 13876 is, in principle, like the main loop of
any driver—it receives a message, executes a switch on the message type to call
the appropriate function, and then generates a return message. However, there are
some complications. The first one is that since the last interrupt additional char-
acters may have been read or characters to be written to an output device may be
ready. Before attempting to receive a message, the main loop always checks the
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tp−>tty�events flags for all terminals and handle�events is called as necessary to
take care of unfinished business. Only when nothing demands immediate atten-
tion is a call made to receive.

The diagram showing message types in the comments near the beginning of
tty.c shows the most often used types. A number of message types requesting spe-
cialized services from the terminal driver are not shown. These are not specific to
any one device. The tty� task main loop checks for these and handles them before
checking for device-specific messages. First a check is made for a SYN�ALARM
message, and, if this is the message type a call is made to expire�timers to cause
a watchdog routine to execute. Then comes a continue statement. In fact all of
the next few cases we will look at are followed by continue. We will say more
about this soon.

The next message type tested for is HARD�INT. This is most likely the result
of a key being pressed or released on the local keyboard. It could also mean bytes
have been received by a serial port, if serial ports are enabled—in the configura-
tion we are studying they are not, but we left conditional code in the file here to
illustrate how serial port input would be handled. A bit field in the message is
used to determine the source of the interrupt.

Next a check is made for SYS�SIG. System processes (drivers and servers)
are expected to block waiting for messages. Ordinary signals are received only by
active processes, so the standard UNIX signaling method does not work with sys-
tem processes. A SYS�SIG message is used to signal a system process. A signal
to the terminal driver can mean the kernel is shutting down (SIGKSTOP), the ter-
minal driver is being shut down (SIGTERM), or the kernel needs to print a mes-
sage to the console (SIGKMESS), and appropriate routines are called for these
cases.

The last group of non-device-specific messages are PANIC�DUMPS, DIAG-
NOSTICS, and FKEY�CONTROL. We will say more about these when we get to
the functions that service them.

Now, about the continue statements: in the C language, a continue statement
short-circuits a loop, and returns control to the top of the loop. So if any one of
the message types mentioned so far is detected, as soon as it is serviced control
returns to the top of the main loop, at line 13764, the check for events is repeated,
and receive is called again to await a new message. Particularly in the case of
input it is important to be ready to respond again as quickly as possible. Also, if
any of the message-type tests in the first part of the loop succeeded there is no
point in making any of the tests that come after the first switch.

Above we mentioned complications that the terminal driver must deal with.
The second complication is that this driver services several devices. If the inter-
rupt is not a hardware interrupt the TTY�LINE field in the message is used to
determine which device should respond to the message. The minor device
number is decoded by a series of comparisons, by means of which tp is pointed to
the correct entry in the tty�table (lines 13834 to 13847). If the device is a pseudo
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terminal, do�pty (in pty.c) is called and the main loop is restarted. In this case
do�pty generates the reply message. Of course, if pseudo terminals are not en-
abled, the call to do�pty uses the dummy macro defined earlier. One would hope
that attempts to access nonexistent devices would not occur, but it is always easier
to add another check than to verify that there are no errors elsewhere in the sys-
tem. In case the device does not exist or is not configured, a reply message with
an ENXIO error message is generated and, again, control returns to the top of the
loop.

The rest of this driver resembles what we have seen in the main loop of other
drivers, a switch on the message type (lines 13862 to 13875). The appropriate
function for the type of request, do�read, do�write, and so on, is called. In each
case the called function generates the reply message, rather than pass the informa-
tion needed to construct the message back to the main loop. A reply message is
generated at the end of the main loop only if a valid message type was not
received, in which case an EINVAL error message is sent. Because reply mes-
sages are sent from many different places within the terminal driver a common
routine, tty�reply, is called to handle the details of constructing reply messages.

If the message received by tty�task is a valid message type, not the result of
an interrupt, and does not come from a pseudo terminal, the switch at the end of
the main loop will dispatch to one of the functions do�read, do�write, do� ioctl,
do�open, do�close, do�select, or do�cancel. The arguments to each of these
calls are tp, a pointer to a tty structure, and the address of the message. Before
looking at each of them in detail, we will mention a few general considerations.
Since tty�task may service multiple terminal devices, these functions must return
quickly so the main loop can continue.

However, do�read, do�write, and do�ioctl may not be able to complete all
the requested work immediately. In order to allow FS to service other calls, an
immediate reply is required. If the request cannot be completed immediately, the
SUSPEND code is returned in the status field of the reply message. This
corresponds to the message marked (3) in Fig. 3-33 and suspends the process that
initiated the call, while unblocking the FS. Messages corresponding to (10) and
(11) in the figure will be sent later when the operation can be completed. If the
request can be fully satisfied, or an error occurs, either the count of bytes
transferred or the error code is returned in the status field of the return message to
the FS. In this case a message will be sent immediately from the FS back to the
process that made the original call, to wake it up.

Reading from a terminal is fundamentally different from reading from a disk
device. The disk driver issues a command to the disk hardware and eventually
data will be returned, barring a mechanical or electrical failure. The computer
can display a prompt upon the screen, but there is no way for it to force a person
sitting at the keyboard to start typing. For that matter, there is no guarantee that
anybody will be sitting there at all. In order to make the speedy return that is
required, do�read (line 13953) starts by storing information that will enable the
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request to be completed later, when and if input arrives. There are a few error
checks to be made first. It is an error if the device is still expecting input to fulfill
a previous request, or if the parameters in the message are invalid (lines 13964 to
13972). If these tests are passed, information about the request is copied into the
proper fields in the device’s tp−>tty�table entry on lines 13975 to 13979. The
last step, setting tp−>tty� inleft to the number of characters requested, is impor-
tant. This variable is used to determine when the read request is satisfied. In
canonical mode tp−>tty�inleft is decremented by one for each character returned,
until an end of line is received, at which point it is suddenly reduced to zero. In
noncanonical mode it is handled differently, but in any case it is reset to zero
whenever the call is satisfied, whether by a timeout or by receiving at least the
minimum number of bytes requested. When tp−>tty�inleft reaches zero, a reply
message is sent. As we will see, reply messages can be generated in several
places. It is sometimes necessary to check whether a reading process still expects
a reply; a nonzero value of tp−>tty�inleft serves as a flag for that purpose.

In canonical mode a terminal device waits for input until either the number of
characters asked for in the call has been received, or the end of a line or the end of
the file is reached. The ICANON bit in the termios structure is tested on line
13981 to see if canonical mode is in effect for the terminal. If it is not set, the ter-
mios MIN and TIME values are checked to determine what action to take.

In Fig. 3-31 we saw how MIN and TIME interact to provide different ways a
read call can behave. TIME is tested on line 13983. A value of zero corresponds
to the left-hand column in Fig. 3-31, and in this case no further tests are needed at
this point. If TIME is nonzero, then MIN is tested. If it is zero, settimer is called
to start the timer that will terminate the DEV�READ request after a delay, even if
no bytes have been received. Tp−>tty�min is set to 1 here, so the call will ter-
minate immediately if one or more bytes are received before the timeout. At this
point no check for possible input has yet been made, so more than one character
may already be waiting to satisfy the request. In that case, as many characters as
are ready, up to the number specified in the read call, will be returned as soon as
the input is found. If both TIME and MIN are nonzero, the timer has a different
meaning. The timer is used as an inter-character timer in this case. It is started
only after the first character is received and is restarted after each successive char-
acter. Tp−>tty�eotct counts characters in noncanonical mode, and if it is zero at
line 13993, no characters have been received yet and the inter-byte timer is inhi-
bited.

In any case, at line 14001, in�transfer is called to transfer any bytes already
in the input queue directly to the reading process. Next there is a call to
handle�events, which may put more data into the input queue and which calls
in�transfer again. This apparent duplication of calls requires some explanation.
Although the discussion so far has been in terms of keyboard input, do�read is in
the device-independent part of the code and also services input from remote ter-
minals connected by serial lines. It is possible that previous input has filled the
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RS-232 input buffer to the point where input has been inhibited. The first call to
in�transfer does not start the flow again, but the call to handle�events can have
this effect. The fact that it then causes a second call to in�transfer is just a bonus.
The important thing is to be sure the remote terminal is allowed to send again.
Either of these calls may result in satisfaction of the request and sending of the
reply message to the FS. Tp−>tty�inleft is used as a flag to see if the reply has
been sent; if it is still nonzero at line 14004, do�read generates and sends the
reply message itself. This is done on lines 14013 to 14021. (We assume here that
no use has been made of the select system call, and therefore there will be no call
to select�retry on line 14006).

If the original request specified a nonblocking read, the FS is told to pass an
EAGAIN error code back to original caller. If the call is an ordinary blocking
read, the FS receives a SUSPEND code, unblocking it but telling it to leave the
original caller blocked. In this case the terminal’s tp−>tty� inrepcode field is set
to REVIVE. When and if the read is later satisfied, this code will be placed in the
reply message to the FS to indicate that the original caller was put to sleep and
needs to be revived.

Do�write (line 14029) is similar to do�read, but simpler, because there are
fewer options to be concerned about in handling a write system call. Checks simi-
lar to those made by do�read are made to see that a previous write is not still in
progress and that the message parameters are valid, and then the parameters of the
request are copied into the tty structure. Handle�events is then called, and
tp−>tty�outleft is checked to see if the work was done (lines 14058 to 14060). If
so, a reply message already has been sent by handle�events and there is nothing
left to do. If not, a reply message is generated. with the message parameters
depending upon whether or not the original write call was called in nonblocking
mode.

The next function, do� ioctl (line 14079), is a long one, but not difficult to
understand. The body of do�ioctl is two switch statements. The first determines
the size of the parameter pointed to by the pointer in the request message (lines
14094 to 14125). If the size is not zero, the parameter’s validity is tested. The
contents cannot be tested here, but what can be tested is whether a structure of the
required size beginning at the specified address fits within the segment it is speci-
fied to be in. The rest of the function is another switch on the type of ioctl opera-
tion requested (lines 14128 to 14225).

Unfortunately, supporting the POSIX-required operations with the ioctl call
meant that names for ioctl operations had to be invented that suggest, but do not
duplicate, names required by POSIX. Figure 3-39 shows the relationship between
the POSIX request names and the names used by the MINIX 3 ioctl call. A
TCGETS operation services a tcgetattr call by the user and simply returns a copy
of the terminal device’s tp−>tty�termios structure. The next four request types
share code. The TCSETSW, TCSETSF, and TCSETS request types correspond to
user calls to the POSIX-defined function tcsetattr, and all have the basic action of



SEC. 3.8 TERMINALS 339

�������������������������������������������������������������������
POSIX function POSIX operation IOCTL type IOCTL parameter�������������������������������������������������������������������
tcdrain (none) TCDRAIN (none)�������������������������������������������������������������������
tcflow TCOOFF TCFLOW int=TCOOFF�������������������������������������������������������������������
tcflow TCOON TCFLOW int=TCOON�������������������������������������������������������������������
tcflow TCIOFF TCFLOW int=TCIOFF�������������������������������������������������������������������
tcflow TCION TCFLOW int=TCION�������������������������������������������������������������������
tcflush TCIFLUSH TCFLSH int=TCIFLUSH�������������������������������������������������������������������
tcflush TCOFLUSH TCFLSH int=TCOFLUSH�������������������������������������������������������������������
tcflush TCIOFLUSH TCFLSH int=TCIOFLUSH�������������������������������������������������������������������
tcgetattr (none) TCGETS termios�������������������������������������������������������������������
tcsetattr TCSANOW TCSETS termios�������������������������������������������������������������������
tcsetattr TCSADRAIN TCSETSW termios�������������������������������������������������������������������
tcsetattr TCSAFLUSH TCSETSF termios�������������������������������������������������������������������
tcsendbreak (none) TCSBRK int=duration���������������������������������������������������������������������
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Figure 3-39. POSIX calls and IOCTL operations.

copying a new termios structure into a terminal’s tty structure. The copying is
done immediately for TCSETS calls and may be done for TCSETSW and
TCSETSF calls if output is complete, by a sys�vircopy kernel call to get the data
from the user, followed by a call to setattr, on lines 14153 to 14156. If tcsetattr
was called with a modifier requesting postponement of the action until completion
of current output, the parameters for the request are placed in the terminal’s tty
structure for later processing if the test of tp−>tty�outleft on line 14139 reveals
output is not complete. Tcdrain suspends a program until output is complete and
is translated into an ioctl call of type TCDRAIN. If output is already complete, it
has nothing more to do. If output is not complete, it also must leave information
in the tty structure.

The POSIX tcflush function discards unread input and/or unsent output data,
according to its argument, and the ioctl translation is straightforward, consisting of
a call to the tty�icancel function that services all terminals, and/or the device-
specific function pointed to by tp−>tty�ocancel (lines 14159 to 14167). Tcflow is
similarly translated in a straightforward way into an ioctl call. To suspend or res-
tart output, it sets a TRUE or FALSE value into tp−>tty�inhibited and then sets
the tp−>tty�events flag. To suspend or restart input, it sends the appropriate
STOP (normally CTRL-S) or START (CTRL-Q) code to the remote terminal,
using the device-specific echo routine pointed to by tp−>tty�echo (lines 14181 to
14186).

Most of the rest of the operations handled by do�ioctl are handled in one line
of code, by calling an appropriate function. In the cases of the KIOCSMAP (load
keymap) and TIOCSFON (load font) operations, a test is made to be sure the
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device really is a console, since these operations do not apply to other terminals.
If virtual terminals are in use the same keymap and font apply to all consoles, the
hardware does not permit any easy way of doing otherwise. The window size
operations copy a winsize structure between the user process and the terminal
driver. Note, however, the comment under the code for the TIOCSWINSZ opera-
tion. When a process changes its window size, the kernel is expected to send a
SIGWINCH signal to the process group under some versions of UNIX. The signal
is not required by the POSIX standard and is not implemented in MINIX 3. How-
ever, anyone thinking of using these structures should consider adding code here
to initiate this signal.

The last two cases in do�ioctl support the POSIX required tcgetpgrp and
tcsetpgrp functions. There is no action associated with these cases, and they
always return an error. There is nothing wrong with this. These functions support
job control, the ability to suspend and restart a process from the keyboard. Job
control is not required by POSIX and is not supported by MINIX 3. However,
POSIX requires these functions, even when job control is not supported, to ensure
portability of programs.

Do�open (line 14234) has a simple basic action to perform—it increments the
variable tp−>tty�openct for the device so it can be verified that it is open. How-
ever, there are some tests to be done first. POSIX specifies that for ordinary termi-
nals the first process to open a terminal is the session leader, and when a session
leader dies, access to the terminal is revoked from other processes in its group.
Daemons need to be able to write error messages, and if their error output is not
redirected to a file, it should go to a display that cannot be closed.

For this purpose a device called /dev/log exists in MINIX 3. Physically it is
the same device as /dev/console, but it is addressed by a separate minor device
number and is treated differently. It is a write-only device, and thus do�open
returns an EACCESS error if an attempt is made to open it for reading (line
14246). The other test done by do�open is to test the O�NOCTTY flag. If it is
not set and the device is not /dev/log, the terminal becomes the controlling termi-
nal for a process group. This is done by putting the process number of the caller
into the tp−>tty�pgrp field of the tty�table entry. Following this, the
tp−>tty�openct variable is incremented and the reply message is sent.

A terminal device may be opened more than once, and the next function,
do�close (line 14260), has nothing to do except decrement tp−>tty�openct. The
test on line 14266 foils an attempt to close the device if it happens to be /dev/log.
If this operation is the last close, input is canceled by calling tp−>tty�icancel.
Device-specific routines pointed to by tp−>tty�ocancel and tp−>tty�close are
also called. Then various fields in the tty structure for the device are set back to
their default values and the reply message is sent.

The last message type handler we will consider is do�cancel (line 14281).
This is invoked when a signal is received for a process that is blocked trying to
read or write. There are three states that must be checked:
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1. The process may have been reading when killed.

2. The process may have been writing when killed.

3. The process may have been suspended by tcdrain until its output was
complete.

A test is made for each case, and the general tp−>tty�icancel, or the device-
specific routine pointed to by tp−>tty�ocancel, is called as necessary. In the last
case the only action required is to reset the flag tp−>tty�ioreq, to indicate the
ioctl operation is now complete. Finally, the tp−>tty�events flag is set and a
reply message is sent.

Terminal Driver Support Code

Now that we have looked at the top-level functions called in the main loop of
tty� task, it is time to look at the code that supports them. We will start with
handle�events (line 14358). As mentioned earlier, on each pass through the main
loop of the terminal driver, the tp−>tty�events flag for each terminal device is
checked and handle�events is called if it shows that attention is required for a
particular terminal. Do�read and do�write also call handle�events. This routine
must work fast. It resets the tp−>tty�events flag and then calls device-specific
routines to read and write, using the pointers to the functions tp−>tty�devread
and tp−>ttydevwrite (lines 14382 to 14385).

These functions are called unconditionally, because there is no way to test
whether a read or a write caused the raising of the flag—a design choice was
made here, that checking two flags for each device would be more expensive than
making two calls each time a device was active. Also, most of the time a charac-
ter received from a terminal must be echoed, so both calls will be necessary. As
noted in the discussion of the handling of tcsetattr calls by do�ioctl, POSIX may
postpone control operations on devices until current output is complete, so
immediately after calling the device-specific tty�devwrite function is a good time
take care of ioctl operations. This is done on line 14388, where dev�ioctl is
called if there is a pending control request.

Since the tp−>tty�events flag is raised by interrupts, and characters may
arrive in a rapid stream from a fast device, there is a chance that by the time the
calls to the device-specific read and write routines and dev�ioctl are completed,
another interrupt will have raised the flag again. A high priority is placed on get-
ting input moved along from the buffer where the interrupt routine places it ini-
tially. Thus handle�events repeats the calls to the device-specific routines as long
as the tp−>tty�events flag is found raised at the end of the loop (line 14389).
When the flow of input stops (it also could be output, but input is more likely to
make such repeated demands), in�transfer is called to transfer characters from the
input queue to the buffer within the process that called for the read operation.
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In�transfer itself sends a reply message if the transfer completes the request, ei-
ther by transferring the maximum number of characters requested or by reaching
the end of a line (in canonical mode). If it does so, tp−>tty� left will be zero upon
the return to handle�events. Here a further test is made and a reply message is
sent if the number of characters transferred has reached the minimum number
requested. Testing tp−>tty� inleft prevents sending a duplicate message.

Next we will look at in� transfer (line 14416), which is responsible for mov-
ing data from the input queue in the driver’s memory space to the buffer of the
user process that requested the input. However, a straightforward block copy is
not possible here. The input queue is a circular buffer and characters have to be
checked to see that the end of the file has not been reached, or, if canonical mode
is in effect, that the transfer only continues up through the end of a line. Also, the
input queue is a queue of 16-bit quantities, but the recipient’s buffer is an array of
8-bit characters. Thus an intermediate local buffer is used. Characters are
checked one by one as they are placed in the local buffer, and when it fills up or
when the input queue has been emptied, sys�vircopy is called to move the con-
tents of the local buffer to the receiving process’ buffer (lines 14432 to 14459).

Three variables in the tty structure, tp−>tty�inleft, tp−>tty�eotct, and
tp−>tty�min, are used to decide whether in� transfer has any work to do, and the
first two of these control its main loop. As mentioned earlier, tp−>tty�inleft is
set initially to the number of characters requested by a read call. Normally, it is
decremented by one whenever a character is transferred but it may be abruptly
decreased to zero when a condition signaling the end of input is reached. When-
ever it becomes zero, a reply message to the reader is generated, so it also serves
as a flag to indicate whether or not a message has been sent. Thus in the test on
line 14429, finding that tp−>tty�inleft is already zero is a sufficient reason to
abort execution of in� transfer without sending a reply.

In the next part of the test, tp−>tty�eotct and tp−>tty�min are compared. In
canonical mode both of these variables refer to complete lines of input, and in
noncanonical mode they refer to characters. Tp−>tty�eotct is incremented when-
ever a ‘‘line break’’ or a byte is placed in the input queue and is decremented by
in�transfer whenever a line or byte is removed from the queue. In other words, it
counts the number of lines or bytes that have been received by the terminal driver
but not yet passed on to a reader. Tp−>tty�min indicates the minimum number of
lines (in canonical mode) or characters (in noncanonical mode) that must be
transferred to complete a read request. Its value is always 1 in canonical mode
and may be any value from 0 up to MAX�INPUT (255 in MINIX 3) in noncanoni-
cal mode. The second half of the test on line 14429 causes in�transfer to return
immediately in canonical mode if a full line has not yet been received. The
transfer is not done until a line is complete so the queue contents can be modified
if, for instance, an ERASE or KILL character is subsequently typed in by the user
before the ENTER key is pressed. In noncanonical mode an immediate return
occurs if the minimum number of characters is not yet available.
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A few lines later, tp−>tty�inleft and tp−>tty�eotct are used to control the
main loop of in�transfer. In canonical mode the transfer continues until there is
no longer a complete line left in the queue. In noncanonical mode tp−>tty�eotct
is a count of pending characters. Tp−>tty�min controls whether the loop is
entered but is not used in determining when to stop. Once the loop is entered,
either all available characters or the number of characters requested in the original
call will be transferred, whichever is smaller.

������������������������������������������������������������������
0 V D N c c c c 7 6 5 4 3 2 1 0�������������������������������������������������������������������� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� ��

V: IN�ESC, escaped by LNEXT (CTRL-V)
D: IN�EOF, end of file (CTRL-D)
N: IN�EOT, line break (NL and others)
cccc: count of characters echoed
7: Bit 7, may be zeroed if ISTRIP is set
6-0: Bits 0-6, ASCII code

Figure 3-40. The fields in a character code as it is placed into the input queue.

Characters are 16-bit quantities in the input queue. The actual character code
to be transferred to the user process is in the low 8 bits. Fig. 3-40 shows how the
high bits are used. Three are used to flag whether the character is being escaped
(by CTRL-V), whether it signifies end-of-file, or whether it represents one of
several codes that signify a line is complete. Four bits are used for a count to
show how much screen space is used when the character is echoed. The test on
line 14435 checks whether the IN�EOF bit (D in the figure) is set. This is tested
at the top of the inner loop because an end-of-file (CTRL-D) is not itself
transferred to a reader, nor is it counted in the character count. As each character
is transferred, a mask is applied to zero the upper 8 bits, and only the ASCII value
in the low 8 bits is transferred into the local buffer (line 14437).

There is more than one way to signal the end of input, but the device-specific
input routine is expected to determine whether a character received is a linefeed,
CTRL-D, or other such character and to mark each such character. In�transfer
only needs to test for this mark, the IN�EOT bit (N in Fig. 3-40), on line 14454.
If this is detected, tp−>tty�eotct is decremented. In noncanonical mode every
character is counted this way as it is put into the input queue, and every character
is also marked with the IN�EOT bit at that time, so tp−>tty�eotct counts charac-
ters not yet removed from the queue. The only difference in the operation of the
main loop of in�transfer in the two different modes is found on line 14457. Here
tp−>tty�inleft is zeroed in response to finding a character marked as a line break,
but only if canonical mode is in effect. Thus when control returns to the top of the
loop, the loop terminates properly after a line break in canonical mode, but in non-
canonical line breaks are ignored.
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When the loop terminates there is usually a partially full local buffer to be
transferred (lines 14461 to 14468). Then a reply message is sent if tp−>tty� inleft
has reached zero. This is always the case in canonical mode, but if noncanonical
mode is in effect and the number of characters transferred is less than the full
request, the reply is not sent. This may be puzzling if you have a good enough
memory for details to remember that where we have seen calls to in� transfer (in
do�read and handle�events), the code following the call to in�transfer sends a
reply message if in� transfer returns having transferred more than the amount
specified in tp−>tty�min, which will certainly be the case here. The reason why
a reply is not made unconditionally from in�transfer will be seen when we dis-
cuss the next function, which calls in�transfer under a different set of cir-
cumstances.

That next function is in�process (line 14486). It is called from the device-
specific software to handle the common processing that must be done on all input.
Its parameters are a pointer to the tty structure for the source device, a pointer to
the array of 8-bit characters to be processed, and a count. The count is returned to
the caller. In�process is a long function, but its actions are not complicated. It
adds 16-bit characters to the input queue that is later processed by in�transfer.

There are several categories of treatment provided by in� transfer.

1. Normal characters are added to the input queue, extended to 16 bits.

2. Characters which affect later processing modify flags to signal the
effect but are not placed in the queue.

3. Characters which control echoing are acted upon immediately with-
out being placed in the queue.

4. Characters with special significance have codes such as the EOT bit
added to their high byte as they are placed in the input queue.

Let us look first at a completely normal situation: an ordinary character, such
as ‘‘x’’ (ASCII code 0x78), typed in the middle of a short line, with no escape
sequence in effect, on a terminal that is set up with the standard MINIX 3 default
properties. As received from the input device this character occupies bits 0
through 7 in Fig. 3-40. On line 14504 it would have its most significant bit, bit 7,
reset to zero if the ISTRIP bit were set, but the default in MINIX 3 is not to strip
the bit, allowing full 8-bit codes to be entered. This would not affect our ‘‘x’’
anyway. The MINIX 3 default is to allow extended processing of input, so the test
of the IEXTEN bit in tp−>tty�termios.c�lflag (line 14507) passes, but the
succeeding tests fail under the conditions we postulate: no character escape is in
effect (line 14510), this input is not itself the character escape character (line
14517), and this input is not the REPRINT character (line 14524).

Tests on the next several lines find that the input character is not the special
�POSIX�VDISABLE character, nor is it a CR or an NL. Finally, a positive result:
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canonical mode is in effect, this is the normal default (line 14324). However our
‘‘x’’ is not the ERASE character, nor is it any of the KILL, EOF (CTRL-D), NL, or
EOL characters, so by line 14576 still nothing will have happened to it. Here it is
found that the IXON bit is set, by default, allowing use of the STOP (CTRL-S)
and START (CTRL-Q) characters, but in the ensuing tests for these no match is
found. On line 14597 it is found that the ISIG bit, enabling the use of the INTR
and QUIT characters, is set by default, but again no match is found.

In fact, the first interesting thing that might happen to an ordinary character
occurs on line 14610, where a test is made to see if the input queue is already full.
If this were the case, the character would be discarded at this point, since canoni-
cal mode is in effect, and the user would not see it echoed on the screen. (The
continue statement discards the character, since it causes the outer loop to restart).
However, since we postulate completely normal conditions for this illustration, let
us assume the buffer is not full yet. The next test, to see if special noncanonical
mode processing is needed (line 14616), fails, causing a jump forward to line
14629. Here echo is called to display the character to the user, since the ECHO
bit in tp−>tty� termios.c�lflag is set by default.

Finally, on lines 14632 to 14636 the character is disposed of by being put into
the input queue. At this time tp−>tty�incount is incremented, but since this is an
ordinary character, not marked by the EOT bit, tp−>tty�eotct is not changed.

The last line in the loop calls in�transfer if the character just transferred into
the queue fills it. However, under the ordinary conditions we postulate for this
example, in�transfer would do nothing, even if called, since (assuming the queue
has been serviced normally and previous input was accepted when the previous
line of input was complete) tp−>tty�eotct is zero, tp−>tty�min is one, and the
test at the start of in�transfer (line 14429) causes an immediate return.

Having passed through in�process with an ordinary character under ordinary
conditions, let us now go back to the start of in�process and look at what happens
in less ordinary circumstances. First, we will look at the character escape, which
allows a character which ordinarily has a special effect to be passed on to the user
process. If a character escape is in effect, the tp−>tty�escaped flag is set, and
when this is detected (on line 14510) the flag is reset immediately and the
IN�ESC bit, bit V in Fig. 3-40, is added to the current character. This causes spe-
cial processing when the character is echoed—escaped control characters are
displayed as ‘‘ˆ’’ plus the character to make them visible. The IN�ESC bit also
prevents the character from being recognized by tests for special characters.

The next few lines process the escape character itself, the LNEXT character
(CTRL-V by default). When the LNEXT code is detected the tp−>tty�escaped
flag is set, and rawecho is called twice to output a ‘‘ˆ’’ followed by a backspace.
This reminds the user at the keyboard that an escape is in effect, and when the fol-
lowing character is echoed, it overwrites the ‘‘ˆ’’. The LNEXT character is an
example of one that affects later characters (in this case, only the very next char-
acter). It is not placed in the queue, and the loop restarts after the two calls to
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rawecho. The order of these two tests is important, making it possible to enter the
LNEXT character itself twice in a row, in order to pass the second copy on to a
process as actual data.

The next special character processed by in�process is the REPRINT character
(CTRL-R). When it is found a call to reprint ensues (line 14525), causing the
current echoed output to be redisplayed. The REPRINT itself is then discarded
with no effect upon the input queue.

Going into detail on the handling of every special character would be tedious,
and the source code of in�process is straightforward. We will mention just a few
more points. One is that the use of special bits in the high byte of the 16-bit value
placed in the input queue makes it easy to identify a class of characters that have
similar effects. Thus, EOT (CTRL-D), LF, and the alternate EOL character
(undefined by default) are all marked by the EOT bit, bit D in Fig. 3-40 (lines
14566 to 14573), making later recognition easy.

Finally, we will justify the peculiar behavior of in�transfer noted earlier. A
reply is not generated each time it terminates, although in the calls to in�transfer
we have seen previously, it seemed that a reply would always be generated upon
return. Recall that the call to in�transfer made by in�process when the input
queue is full (line 14639) has no effect when canonical mode is in effect. But if
noncanonical processing is desired, every character is marked with the EOT bit on
line 14618, and thus every character is counted by tp−>tty�eotct on line 14636.
In turn, this causes entry into the main loop of in� transfer when it is called
because of a full input queue in noncanonical mode. On such occasions no mes-
sage should be sent at the termination of in�transfer, because there are likely to
be more characters read after returning to in�process. Indeed, although in canon-
ical mode input to a single read is limited by the size of the input queue (255
characters in MINIX 3), in noncanonical mode a read call must be able to deliver
the POSIX-required constant �POSIX�SSIZE�MAX number of characters. Its
value in MINIX 3 is 32767.

The next few functions in tty.c support character input. Tty�echo (line
14647) treats a few characters in a special way, but most just get displayed on the
output side of the same device being used for input. Output from a process may
be going to a device at the same time input is being echoed, which makes things
messy if the user at the keyboard tries to backspace. To deal with this, the
tp−>tty�reprint flag is always set to TRUE by the device-specific output routines
when normal output is produced, so the function called to handle a backspace can
tell that mixed output has been produced. Since tty�echo also uses the device-
output routines, the current value of tp−>tty�reprint is preserved while echoing,
using the local variable rp (lines 14668 to 14701). However, if a new line of input
has just begun, rp is set to FALSE instead of taking on the old value, thus assuring
that tp−>tty�reprint will be reset when echo terminates.

You may have noticed that tty�echo returns a value, for instance, in the call
on line 14629 in in�process:
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ch = tty�echo(tp, ch)

The value returned by echo contains the number of spaces used on the screen for
the echo display, which may be up to eight if the character is a TAB. This count is
placed in the cccc field in Fig. 3-40. Ordinary characters occupy one space on the
screen, but if a control character (other than TAB, NL, or CR or a DEL (0x7F) is
echoed, it is displayed as a ‘‘ˆ’’ plus a printable ASCII character and occupies two
positions on the screen. On the other hand an NL or CR occupies zero spaces.
The actual echoing must be done by a device-specific routine, of course, and
whenever a character must be passed to the device, an indirect call is made using
tp−>tty�echo, as, for instance, on line 14696, for ordinary characters.

The next function, rawecho, is used to bypass the special handling done by
echo. It checks to see if the ECHO flag is set, and if it is, sends the character
along to the device-specific tp−>tty�echo routine without any special processing.
A local variable rp is used here to prevent rawecho’s own call to the output rou-
tine from changing the value of tp−>tty�reprint.

When a backspace is found by in�process, the next function, back�over (line
14721), is called. It manipulates the input queue to remove the previous head of
the queue if backing up is possible—if the queue is empty or if the last character
is a line break, then backing up is not possible. Here the tp−>tty�reprint flag
mentioned in the discussions of echo and rawecho is tested. If it is TRUE, then
reprint is called (line 14732) to put a clean copy of the output line on the screen.
Then the len field of the last character displayed (the cccc field of Fig. 3-40) is
consulted to find out how many characters have to be deleted on the display, and
for each character a sequence of backspace-space-backspace characters is sent
through rawecho to remove the unwanted character from the screen and have it
replaced by a space.

Reprint is the next function. In addition to being called by back�over, it may
be invoked by the user pressing the REPRINT key (CTRL-R). The loop on lines
14764 to 14769 searches backward through the input queue for the last line break.
If it is found in the last position filled, there is nothing to do and reprint returns.
Otherwise, it echos the CTRL-R, which appears on the display as the two charac-
ter sequence ‘‘ˆR’’, and then moves to the next line and redisplays the queue from
the last line break to the end.

Now we have arrived at out�process (line 14789). Like in�process, it is cal-
led by device-specific output routines, but it is simpler. It is called by the RS-232
and pseudo terminal device-specific output routines, but not by the console rou-
tine. Out�process works upon a circular buffer of bytes but does not remove
them from the buffer. The only change it makes to the array is to insert a CR
character ahead of an NL character in the buffer if the OPOST (enable output
processing) and ONLCR (map NL to CR-NL) bits in tp−>tty�termios.oflag are
both set. Both bits are set by default in MINIX 3. Its job is to keep the
tp−>tty�position variable in the device’s tty structure up to date. Tabs and back-
spaces complicate life.
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The next routine is dev� ioctl (line 14874). It supports do� ioctl in carrying
out the tcdrain function and the tcsetattr function when it is called with either the
TCSADRAIN or TCSAFLUSH options. In these cases, do�ioctl cannot complete
the action immediately if output is incomplete, so information about the request is
stored in the parts of the tty structure reserved for delayed ioctl operations. When-
ever handle�events runs, it first checks the tp−>tty�ioreq field after calling the
device-specific output routine and calls dev� ioctl if an operation is pending.
Dev�ioctl tests tp−>tty�outleft to see if output is complete, and if so, carries out
the same actions that do�ioctl would have carried out immediately if there had
been no delay. To service tcdrain, the only action is to reset the tp−>tty�ioreq
field and send the reply message to the FS, telling it to wake up the process that
made the original call. The TCSAFLUSH variant of tcsetattr calls tty�icancel to
cancel input. For both variants of tcsetattr, the termios structure whose address
was passed in the original call to ioctl is copied to the device’s tp−>tty�termios
structure. Setattr is then called, followed, as with tcdrain, by sending a reply
message to wake up the blocked original caller.

Setattr (line 14899) is the next procedure. As we have seen, it is called by
do�ioctl or dev� ioctl to change the attributes of a terminal device, and by
do�close to reset the attributes back to the default settings. Setattr is always
called after copying a new termios structure into a device’s tty structure, because
merely copying the parameters is not enough. If the device being controlled is
now in noncanonical mode, the first action is to mark all characters currently in
the input queue with the IN�EOT bit, as would have been done when these char-
acters were originally entered in the queue if noncanonical mode had been in ef-
fect then. It is easier just to go ahead and do this (lines 14913 to 14919) than to
test whether the characters already have the bit set. There is no way to know
which attributes have just been changed and which still retain their old values.

The next action is to check the MIN and TIME values. In canonical mode
tp−>tty�min is always 1; that is set on line 14926. In noncanonical mode the
combination of the two values allows for four different modes of operation, as we
saw in Fig. 3-31. On lines 14931 to 14933 tp−>tty�min is first set up with the
value passed in tp−>tty�termios.cc[VMIN], which is then modified if it is zero
and tp−>tty�termios.cc[VTIME] is not zero.

Finally, setattr makes sure output is not stopped if XON/XOFF control is dis-
abled, sends a SIGHUP signal if the output speed is set to zero, and makes an
indirect call to the device-specific routine pointed to by tp−>tty� ioctl to do what
can only be done at the device level.

The next function, tty�reply (line 14952) has been mentioned many times in
the preceding discussion. Its action is entirely straightforward, constructing a
message and sending it. If for some reason the reply fails, a panic ensues. The
following functions are equally simple. Sigchar (line 14973) asks MM to send a
signal. If the NOFLSH flag is not set, queued input is removed—the count of
characters or lines received is zeroed and the pointers to the tail and head of the
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queue are equated. This is the default action. When a SIGHUP signal is to be
caught, NOFLSH can be set, to allow input and output to resume after catching
the signal. Tty� icancel (line 15000) unconditionally discards pending input in the
way described for sigchar, and in addition calls the device-specific function
pointed to by tp−>tty�icancel, to cancel input that may exist in the device itself
or be buffered in the low-level code.

Tty�init (line 15013) is called when tty� task first starts. It loops through all
possible terminals and sets up defaults. Initially, a pointer to tty�devnop, a
dummy function that does nothing, is set into the tp−>tty�icancel,
tp−>tty�ocancel, tp−>tty�ioctl, and tp−>tty�close variables. Tty� init then calls
a device-specific initialization functions for the appropriate category of terminal
(console, serial line, or pseudo terminal). These set up the real pointers to
indirectly called device-specific functions. Recall that if there are no devices at
all configured in a particular device category, a macro that returns immediately is
created, so no part of the code for a nonconfigured device need be compiled. The
call to scr�init initializes the console driver and also calls the initialization routine
for the keyboard.

The next three functions support timers. A watchdog timer is initialized with
a pointer to a function to run when the timer expires. Tty�timed�out is that func-
tion for most timers set by the terminal task. It sets the events flag to force proc-
essing of input and output. Expire� timers handles the terminal driver’s timer
queue. Recall that this is the function called from the main loop of tty�task when
a SYN�ALARM message is received. A library routine, tmrs�exptimers, is used
to traverse the linked list of timers, expiring and calling the watchdog functions of
any that have timed out. On returning from the library function, if the queue is
still active a sys�setalarm kernel call is made to ask for another SYN�ALARM.
Finally, settimer (line 15089), sets timers for determining when to return from a
read call in noncanonical mode. It is called with parameters of tty�ptr, a pointer
to a tty structure, and enable, an integer which represents TRUE or FALSE.
Library functions tmrs�settimer and tmrs�clrtimer are used to enable or disable a
timer as determined by the enable argument. When a timer is enabled, the watch-
dog function is always tty� timed�out, described previously.

A description of tty�devnop (line 15125) is necessarily longer than its execut-
able code, since it has none. It is a ‘‘no-operation’’ function to be indirectly
addressed where a device does not require a service. We have seen tty�devnop
used in tty� init as the default value entered into various function pointers before
calling the initialization routine for a device.

The final item in tty.c needs some explanation. Select is a system call used
when multiple I/O devices may require service at unpredictable times by a single
process. A classic example is a communications program which needs to pay
attention to a local keyboard and a remote system, perhaps connected by a
modem. The select call allows opening several device files and monitoring all of
them to see when they can be read from or written to without blocking. Without
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select it is necessary to use two processes to handle two-way communication, one
acting as a master and handling communication in one direction, the other a slave
handling communication in the other direction. Select is an example of a feature
that is very nice to have, but which substantially complicates the system. One of
the design goals of MINIX 3 is to be simple enough to be understood with reason-
able effort in a reasonable time, and we have to set some limits. For that reason
we will not discuss do�select (line 15135) and the support routines select�try
(line 14313) and select�retry (line 14348) here.

3.8.5 Implementation of the Keyboard Driver

Now we turn to the device-dependent code that supports the MINIX 3 console,
which consists of an IBM PC keyboard and a memory-mapped display. The phy-
sical devices that support these are entirely separate: on a standard desktop system
the display uses an adapter card (of which there are at least a half-dozen basic
types) plugged into the backplane, while the keyboard is supported by circuitry
built into the parentboard which interfaces with an 8-bit single-chip computer
inside the keyboard unit. The two subdevices require entirely separate software
support, which is found in the files keyboard.c and console.c.

The operating system sees the keyboard and console as parts of the same
device, /dev/console. If there is enough memory available on the display adapter,
virtual console support may be compiled, and in addition to /dev/console there
may be additional logical devices, /dev/ttyc1, /dev/ttyc2, and so on. Output from
only one goes to the display at any given time, and there is only one keyboard to
use for input to whichever console is active. Logically the keyboard is subser-
vient to the console, but this is manifested in only two relatively minor ways.
First, tty�table contains a tty structure for the console, and where separate fields
are provided for input and output, for instance, the tty�devread and tty�devwrite
fields, pointers to functions in keyboard.c and console.c are filled in at startup
time. However, there is only one tty�priv field, and this points to the console’s
data structures only. Second, before entering its main loop, tty�task calls each
logical device once to initialize it. The routine called for /dev/console is in
console.c, and the initialization code for the keyboard is called from there. The
implied hierarchy could just as well have been reversed, however. We have
always looked at input before output in dealing with I/O devices and we will con-
tinue that pattern, discussing keyboard.c in this section and leaving the discussion
of console.c for the following section.

Keyboard.c begins, like most source files we have seen, with several #include
statements. One of these is unusual, however. The file keymaps/us-std.src
(included on line 15218) is not an ordinary header; it is a C source file that results
in compilation of the default keymap within keyboard.o as an initialized array.
The keymap source file is not included in Appendix B because of its size, but
some representative entries are illustrated in Fig. 3-37. Following the #include
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statements are macros to define various constants. The first group are used in
low-level interaction with the keyboard controller. Many of these are I/O port
addresses or bit combinations that have meaning in these interactions. The next
group includes symbolic names for special keys. On line 15249 the size of the
circular keyboard input buffer is symbolically defined as KB�IN�BYTES, with a
value of 32, and the buffer itself and variables to manage it are defined next.
Since there is only one of these buffers care must be taken to make sure all of its
contents are processed before virtual consoles are changed.

The next group of variables are used to hold various states that must be
remembered to properly interpret a key press. They are used in different ways.
For instance, the value of the caps�down flag (line 15266) is toggled between
TRUE and FALSE each time the Caps Lock key is pressed. The shift flag (line
15264) is set to TRUE when either Shift key is pressed and to FALSE when both
Shift keys are released. The esc variable is set when a scan code escape is
received. It is always reset upon receipt of the following character.

Map�key0 (line 15297) is defined as a macro. It returns the ASCII code that
corresponds to a scan code, ignoring modifiers. This is equivalent to the first
column (unshifted) in the keymap array. Its big brother is map�key (line 15303),
which performs the complete mapping of a scan code to an ASCII code, including
accounting for (multiple) modifier keys that are depressed at the same time as
ordinary keys.

The keyboard interrupt service routine is kbd�interrupt (line 15335), called
whenever a key is pressed or released. It calls scode to get the scan code from the
keyboard controller chip. The most significant bit of the scan code is set when a
key release causes the interrupt, such codes could be ignored unless they were one
of the modifier keys. However, in the interest of doing as little as possible in
order to service an interrupt as quickly as possible, all raw scan codes are placed
in the circular buffer and the tp−>tty�events flag for the current console is raised
(line 15350). For purposes of this discussion we will assume, as we did earlier,
that no select calls have been made, and that kbd� interrupt returns immediately
after this. Figure 3-41 shows scan codes in the buffer for a short line of input that
contains two upper case characters, each preceded by the scan code for depression
of a shift key and followed by the code for the release of the shift key. Initially
codes for both key presses and releases are stored.

When a HARD�INT from the keyboard is received by tty�task, the complete
main loop is not executed. A continue statement at line 13795 causes a new itera-
tion of the main loop to begin immediately, at line 13764. (This is slightly simpli-
fied, we left some conditional code in the listing to show that if the serial line
driver is enabled its user-space interrupt handler could also be called.) When exe-
cution transfers to the top of the loop the tp−>tty�events flag for the console
device is now found to be set, and kb�read (line 15360), the device-specific rou-
tine, is called using the pointer in the tp−>tty�devread field of the console’s tty
structure.
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Figure 3-41. Scan codes in the input buffer, with corresponding key actions
below, for a line of text entered at the keyboard. L and R represent the left and
right Shift keys. + and - indicate a key press and a key release. The code for a
release is 128 more than the code for a press of the same key.

Kb�read takes scan codes from the keyboard’s circular buffer and places
ASCII codes in its local buffer, which is large enough to hold the escape se-
quences that must be generated in response to some scan codes from the numeric
keypad. Then it calls in�process in the hardware-independent code to put the
characters into the input queue. On line 15379 icount is decremented. The call to
make�break returns the ASCII code as an integer. Special keys, such as keypad
and function keys, have values greater than 0xFF at this point. Codes in the range
from HOME to INSRT (0x101 to 0x10C, defined in file include/minix/keymap.h)
result from pressing the numeric keypad, and are converted into 3-character
escape sequences shown in Fig. 3-42 using the numpad�map array.

The sequences are then passed to in�process (lines 15392 to 15397). Higher
codes are not passed on to in�process. Instead, a check is made for the codes for
ALT-LEFT-ARROW, ALT-RIGHT-ARROW, and ALT-F1 through ALT-F12,
and if one of these is found, select�console is called to switch virtual consoles.
CTRL-F1 through CTRL-F12 are similarly given special handling. CTRL-F1
shows the mappings of function keys (more on this later). CTRL-F3 toggles be-
tween hardware scrolling and software scrolling of the console screen. CTRL-F7,
CTRL-F8, and CTRL-F9 generate signals with the same effects as CTRL-\,
CTRL-C, and CTRL-U, respectively, except these cannot be changed by the stty
command.

Make�break (line 15431) converts scan codes into ASCII and then updates
the variables that keep track of the state of modifier keys. First, however, it
checks for the magic CTRL-ALT-DEL combination that PC users all know as the
way to force a reboot under MS-DOS. Note the comment that it would be better to
do this at a lower level. However, the simplicity of MINIX 3 interrupt handling in
kernel space makes detecting CTRL-ALT-DEL impossible there, when an inter-
rupt notification is sent the scan code has not yet been read.

An orderly shutdown is desirable, so rather than try to start the PC BIOS rou-
tines, a sys�kill kernel call is made to initiate sending a SIGKILL signal TO init,
the parent process of all other processes (line 15448). Init is expected to catch
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− 74 0x10A ESC [ S������������������������������������������������������
Left Arrow 75 0x105 ESC [ D������������������������������������������������������
5 76 0x109 ESC [ G������������������������������������������������������
Right Arrow 77 0x106 ESC [ C������������������������������������������������������
+ 78 0x10B ESC [ T������������������������������������������������������
End 79 0x102 ESC [ Y������������������������������������������������������
Down Arrow 80 0x104 ESC [ B������������������������������������������������������
Pg Dn 81 0x108 ESC [ U������������������������������������������������������
Ins 82 0x10C ESC [ @��������������������������������������������������������
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Figure 3-42. Escape codes generated by the numeric keypad. When scan codes
for ordinary keys are translated into ASCII codes the special keys are assigned
‘‘pseudo ASCII’’ codes with values greater than 0xFF.

this signal and interpret it as a command to begin an orderly process of shutting
down, prior to causing a return to the boot monitor, from which a full restart of the
system or a reboot of MINIX 3 can be commanded.

Of course, it is not realistic to expect this to work every time. Most users
understand the dangers of an abrupt shutdown and do not press CTRL-ALT-DEL
until something is really going wrong and normal control of the system has
become impossible. At this point it is likely that the system may be so disrupted
that signaling another process may be impossible. This is why there is a static
variable CAD�count in make�break. Most system crashes leave the interrupt
system still functioning, so keyboard input can still be received and the terminal
driver will remain active. Here MINIX 3 takes advantage of the expected behavior
of computer users, who are likely to bang on the keys repeatedly when something
does not seem to work correctly (possibly evidence our ancestors really were
apes). If the attempt to kill init fails and the user presses CTRL-ALT-DEL twice
more, a sys�abort kernel call is made, causing a return to the monitor without
going through the call to init.

The main part of make�break is not hard to follow. The variable make
records whether the scan code was generated by a key press or a key release, and
then the call to map�key returns the ASCII code to ch. Next is a switch on ch
(lines 15460 to 15499). Let us consider two cases, an ordinary key and a special
key. For an ordinary key, none of the cases match, and in the default case (line
15498), the key code is returned if make is true. If somehow an ordinary key code
is accepted at key release, a value of −1 is substituted here, and this is ignored by
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the caller, kb�read. A special key, for example CTRL, is identified at the ap-
propriate place in the switch, in this case on line 15461. The corresponding vari-
able, in this case ctrl, records the state of make, and −1 is substituted for the char-
acter code to be returned (and ignored). The handling of the ALT, CALOCK,
NLOCK, and SLOCK keys is more complicated, but for all of these special keys
the effect is similar: a variable records either the current state (for keys that are
only effective while pressed) or toggles the previous state (for the lock keys).

There is one more case to consider, that of the EXTKEY code and the esc vari-
able. This is not to be confused with the ESC key on the keyboard, which returns
the ASCII code 0x1B. There is no way to generate the EXTKEY code alone by
pressing any key or combination of keys; it is the PC keyboard’s extended key
prefix, the first byte of a 2-byte scan code that signifies that a key that was not
part of the original PC’s complement of keys but that has the same scan code, has
been pressed. In many cases software treats the two keys identically. For
instance, this is almost always the case for the normal ‘‘/’’ key and the gray ‘‘/’’
key on the numeric keyboard. In other cases, one would like to distinguish
between such keys. For instance, many keyboard layouts for languages other than
English treat the left and right ALT keys differently, to support keys that must
generate three different character codes. Both ALT keys generate the same scan
code (56), but the EXTKEY code precedes this when the right-hand ALT is
pressed. When the EXTKEY code is returned, the esc flag is set. In this case,
make�break returns from within the switch, thus bypassing the last step before a
normal return, which sets esc to zero in every other case (line 15458). This has
the effect of making the esc effective only for the very next code received. If you
are familiar with the intricacies of the PC keyboard as it is ordinarily used, this
will be both familiar and yet a little strange, because the PC BIOS does not allow
one to read the scan code for an ALT key and returns a different value for the
extended code than does MINIX 3.

Set� leds (line 15508) turns on and off the lights that indicate whether the
Num Lock, Caps Lock, or Scroll Lock keys on a PC keyboard have been pressed.
A control byte, LED�CODE, is written to an output port to instruct the keyboard
that the next byte written to that port is for control of the lights, and the status of
the three lights is encoded in 3 bits of that next byte. These operations are, of
course, carried out by kernel calls which ask the system task write to the outport
ports. The next two functions support this operation. Kb�wait (line 15530) is
called to determine that the keyboard is ready to receive a command sequence,
and kb�ack (line 15552) is called to verify that the command has been acknowl-
edged. Both of these commands use busy waiting, continually reading until a
desired code is seen. This is not a recommended technique for handling most I/O
operations, but turning lights on and off on the keyboard is not going to be done
very often and doing it inefficiently does not waste much time. Note also that
both kb�wait and kb�ack could fail, and one can determine from the return code
if this happens. Timeouts are handled by limiting the number of retries by means
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of a counter in the loop. But setting the light on the keyboard is not important
enough to merit checking the value returned by either call, and set�leds just
proceeds blindly.

Since the keyboard is part of the console, its initialization routine, kb� init
(line 15572), is called from scr�init in console.c, not directly from tty�init in
tty.c. If virtual consoles are enabled, (i.e., NR�CONS in include/minix/config.h is
greater than 1), kb�init is called once for each logical console. The next function,
kb�init�once (line 15583), is called just once, as its name implies. It sets the
lights on the keyboard, and scans the keyboard to be sure no leftover keystroke is
read. Then it initializes two arrays, fkey�obs and sfkey�obs which are used to
bind function keys to the processes that must respond to them. When all is ready,
it makes two kernel calls, sys� irqsetpolicy and sys� irqenable to set up the IRQ
for the keyboard and configure it to automatically reenable, so a notification mes-
sage will be sent to tty�task whenever a key is pressed or released.

Although we will soon have more opportunities to discuss how function keys
work, this is a good place to describe the fkey�obs and sfkey�obs arrays. Each
has twelve elements, since modern PC keyboards have twelve F-keys. The first
array is for unmodified F-keys, the second is used when a shifted F-key is
detected. They are composed of elements of type obs�t, which is a structure that
can hold a process number and an integer. This structure and these arrays are
declared in keyboard.c on lines 15279 to 15281. Initialization stores a special val-
ue, symbolically represented as NONE, in the proc�nr component of the structure
to indicate it is not in use. NONE is a value outside the range of valid process
numbers. Note that the process number is not a pid, it identifies a slot in the proc-
ess table. This terminology may be confusing. But to send a notification a proc-
ess number rather than a pid is used, because process numbers are used to index
the priv table which determines whether a process is allowed to receive notifica-
tions. The integer events is also initially set to zero. It will be used to count
events.

The next three functions are all rather simple. Kbd� loadmap (line 15610) is
almost trivial. It is called by do� ioctl in tty.c to do the copying of a keymap from
user space to overwrite the default keymap. The default is compiled by the inclu-
sion of a keymap source file at the start of keyboard.c.

From its first release, MINIX has always provided for dumps of various kinds
of system information or other special actions in response to pressing the function
keys F1, F2, etc., on the system console. This is not a service generally provided
in other operating systems, but MINIX was always intended to be a teaching tool.
Users are encouraged to tinker with it, which means users may need extra help for
debugging. In many cases the output produced by pressing one of the F-keys will
be available even when the system has crashed. Figure 3-43 summarizes these
keys and their effects.

These keys fall into two categories. As noted earlier, the CTRL-F1 through
CTRL-F12 key combinations are detected by kb�read. These trigger events that
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������������������������������������������������
Key Purpose������������������������������������������������
F1 Kernel process table������������������������������������������������
F2 Process memory maps������������������������������������������������
F3 Boot image������������������������������������������������
F4 Process privileges������������������������������������������������
F5 Boot monitor parameters������������������������������������������������
F6 IRQ hooks and policies������������������������������������������������
F7 Kernel messages������������������������������������������������
F10 Kernel parameters������������������������������������������������
F11 Timing details (if enabled)������������������������������������������������
F12 Scheduling queues������������������������������������������������
SF1 Process manager process table������������������������������������������������
SF2 Signals������������������������������������������������
SF3 File system process table������������������������������������������������
SF4 Device/driver mapping������������������������������������������������
SF5 Print key mappings������������������������������������������������
SF9 Ethernet statistics (RTL8139 only)������������������������������������������������
CF1 Show key mappings������������������������������������������������
CF3 Toggle software/hardware console scrolling������������������������������������������������
CF7 Send SIGQUIT, same effect as CTRL-\������������������������������������������������
CF8 Send SIGINT, same effect as CTRL-C������������������������������������������������
CF9 Send SIGKILL, same effect as CTRL-U��������������������������������������������������
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Figure 3-43. The function keys detected by func�key().

can be handled by the terminal driver. These events are not necessarily display
dumps. In fact, currently only CTRL-F1 provides an information display; it lists
function key bindings. CTRL-F3 toggles hardware and software scrolling of the
console screen, and the others cause signals.

Function keys pressed by themselves or together with the shift key are used to
trigger events that cannot be handled by the terminal driver. They may result in
notification messages to a server or driver. Because servers and drivers can be
loaded, enabled, and disabled after MINIX 3 is already running, static binding of
these keys at compilation time is not satisfactory. To enable run-time changes
tty� task accepts messages of type FKEY�CONTROL. Do� fkey�ctl (line 15624)
services such requests. Request types are FKEY�MAP, FKEY�UNMAP, or
FKEY�EVENTS. The first two register or unregister a process with a key speci-
fied in a bitmap in the message, and the third message type returns a bitmap of
keys belonging to the caller which have been pressed and resets the events field
for these keys. A server process, the information server, (or IS) initializes the
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settings for processes in the boot image and also mediates generating responses.
But individual drivers can also register to respond to a function key. Ethernet
drivers typically do this, as a dump that shows packet statistics can be helpful in
solving network problems.

Func�key (line 15715) is called from kb�read to see if a special key meant
for local processing has been pressed. This is done for every scan code received,
prior to any other processing. If it is not a function key at most three comparisons
are made before control is returned to kb�read. If a function key is registered a
notification message is sent to the appropriate process. If the process is one that
has registered only one key the notification by itself is adequate for the process to
know what to do. If a process is the information server or another that has
registered several keys, a dialogue is required—the process must send an
FKEY�EVENTS request to the terminal driver, to be processed by do�fkey�ctl
which will inform the caller which keys have been active. The caller can then
dispatch to the routine for each key that has been pressed.

Scan�keyboard (line 15800) works at the hardware interface level, by reading
and writing bytes from I/O ports. The keyboard controller is informed that a char-
acter has been read by the sequence on lines 15809 and 15810, which reads a
byte, writes it again with the most significant bit set to 1, and then rewrites it with
the same bit rest to 0. This prevents the same data from being read on a subse-
quent read. There is no status checking in reading the keyboard, but there should
be no problems in any case, since scan�keyboard is only called in response to an
interrupt.

The last function in keyboard.c is do�panic�dumps (line 15819). If invoked
as a result of a system panic, it provides an opportunity for the user to use the
function keys to display debugging information. The loop on lines 15830 to
15854 is another example of busy waiting. The keyboard is read repeatedly until
an ESC is typed. Certainly no one can claim that a more efficient technique is
needed after a crash, while awaiting a command to reboot. Within the loop, the
rarely-used nonblocking receive operation, nb�receive, is used to permit alter-
nately accepting messages, if available, and testing the keyboard for input, which
can be expected to be one of the options suggested in the message

Hit ESC to reboot, DEL to shutdown, F-keys for debug dumps

printed on entering this function. In the next section we will see the code that
implements do�newkmess and do�diagnostics.

3.8.6 Implementation of the Display Driver

The IBM PC display may be configured as several virtual terminals, if suffi-
cient memory is available. We will examine the console’s device-dependent code
in this section. We will also look at the debug dump routines that use low-level



358 INPUT/OUTPUT CHAP. 3

services of the keyboard and display. These provide support for limited interac-
tion with the user at the console, even when other parts of the MINIX 3 system are
not functioning and can provide useful information even following a near-total
system crash.

Hardware-specific support for console output to the PC memory-mapped
screen is in console.c. The console structure is defined on lines 15981 to 15998.
In a sense this structure is an extension of the tty structure defined in tty.c. At ini-
tialization the tp−>tty�priv field of a console’s tty structure is assigned a pointer
to its own console structure. The first item in the console structure is a pointer
back to the corresponding tty structure. The components of a console structure
are what one would expect for a video display: variables to record the row and
column of the cursor location, the memory addresses of the start and limit of
memory used for the display, the memory address pointed to by the controller
chip’s base pointer, and the current address of the cursor. Other variables are
used for managing escape sequences. Since characters are initially received as 8-
bit bytes and must be combined with attribute bytes and transferred as 16-bit
words to video memory, a block to be transferred is built up in c�ramqueue, an
array big enough to hold an entire 80-column row of 16-bit character-attribute
pairs. Each virtual console needs one console structure, and the storage is allo-
cated in the array cons� table (line 16001). As we have done with the tty and
other structures, we will usually refer to the elements of a console structure using
a pointer, for example, cons−>c� tty.

The function whose address is stored in each console’s tp−>tty�devwrite
entry is cons�write (line 16036). It is called from only one place, handle�events
in tty.c. Most of the other functions in console.c exist to support this function.
When it is called for the first time after a client process makes a write call, the
data to be output are in the client’s buffer, which can be found using the
tp−>tty�outproc and tp−>out�vir fields in the tty structure. The tp−>tty�outleft
field tells how many characters are to be transferred, and the tp−>tty�outcum
field is initially zero, indicating none have yet been transferred. This is the usual
situation upon entry to cons�write, because normally, once called, it transfers all
the data requested in the original call. However, if the user wants to slow the
process in order to review the data on the screen, he may enter a STOP (CTRL-S)
character at the keyboard, resulting in raising of the tp−>tty�inhibited flag.
Cons�write returns immediately when this flag is raised, even though the write
has not been completed. In such a case handle�events will continue to call
cons�write, and when tp−>tty�inhibited is finally reset, by the user entering a
START (CTRL-Q) character, cons�write continues with the interrupted transfer.

Cons�write’s first argument is a pointer to the particular console’s tty struc-
ture, so the first thing that must be done is to initialize cons, the pointer to this
console’s console structure (line 16049). Then, because handle�events calls
cons�write whenever it runs, the first action is a test to see if there really is work
to be done. A quick return is made if not (line 16056). Following this the main
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loop on lines 16061 to 16089 is entered. This loop is similar in structure to the
main loop of in�transfer in tty.c. A local buffer that can hold 64 characters is
filled by using the sys�vircopy kernel call to get the data from the client’s buffer.
Following this, the pointer to the source and the counts are updated, and then each
character in the local buffer is transferred to the cons−>c�ramqueue array, along
with an attribute byte, for later transfer to the screen by flush.

The transfer of characters from cons−>c�ramqueue can be done in more than
one way, as we saw in Fig. 3-35. Out�char can be called to do this for each char-
acter, but it is predictable that none of the special services of out�char will be
needed if the character is a visible character, an escape sequence is not in pro-
gress, the screen width has not been exceeded, and cons−>c�ramqueue is not
full. If the full service of out�char is not needed, the character is placed directly
into cons−>c�ramqueue, along with the attribute byte (which is retrieved from
cons−>c�attr), and cons−>c�rwords (which is the index into the queue),
cons−>c�column (which keeps track of the column on the screen), and tbuf, the
pointer into the buffer, are all incremented. This direct placement of characters
into cons−>c�ramqueue corresponds to the dashed line on the left side of Fig. 3-
35. If needed, out�char is called (line 16082). It does all of the bookkeeping,
and additionally calls flush, which does the final transfer to screen memory, when
necessary.

The transfer from the user buffer to the local buffer to the queue is repeated as
long as tp−>tty�outleft indicates there are still characters to be transferred and
the flag tp−>tty� inhibited has not been raised. When the transfer stops, whether
because the write operation is complete or because tp−>tty�inhibited has been
raised, flush is called again to transfer the last characters in the queue to screen
memory. If the operation is complete (tested by seeing if tp−>tty�outleft is zero),
a reply message is sent by calling tty�reply lines 16096 and 16097).

In addition to calls to cons�write from handle�events, characters to be
displayed are also sent to the console by echo and rawecho in the hardware-
independent part of the terminal driver. If the console is the current output
device, calls via the tp−>tty�echo pointer are directed to the next function,
cons�echo (line 16105). Cons�echo does all of its work by calling out�char and
then flush. Input from the keyboard arrives character by character and the person
doing the typing wants to see the echo with no perceptible delay, so putting char-
acters into the output queue would be unsatisfactory.

Out�char (line 16119). does a test to see if an escape sequence is in progress,
calling parse�escape and then returning immediately if so (lines 16124 to 16126).
Otherwise, a switch is entered to check for special cases: null, backspace, the bell
character, and so on. The handling of most of these is easy to follow. The
linefeed and the tab are the most complicated, since they involve complicated
changes to the position of the cursor on the screen and may require scrolling as
well. The last test is for the ESC code. If it is found, the cons−>c�esc�state flag
is set (line 16181), and future calls to out�char are diverted to parse�escape until
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the sequence is complete. At the end, the default is taken for printable characters.
If the screen width has been exceeded, the screen may need to be scrolled, and
flush is called. Before a character is placed in the output queue a test is made to
see that the queue is not full, and flush is called if it is. Putting a character into
the queue requires the same bookkeeping we saw earlier in cons�write.

The next function is scroll�screen (line 16205). Scroll�screen handles both
scrolling up, the normal situation that must be dealt with whenever the bottom line
on the screen is full, and scrolling down, which occurs when cursor positioning
commands attempt to move the cursor beyond the top line of the screen. For each
direction of scroll there are three possible methods. These are required to support
different kinds of video cards.

We will look at the scrolling up case. To begin, chars is assigned the size of
the screen minus one line. Softscrolling is accomplished by a single call to
vid�vid�copy to move chars characters lower in memory, the size of the move
being the number of characters in a line. Vid�vid�copy can wrap, that is, if asked
to move a block of memory that overflows the upper end of the block assigned to
the video display, it fetches the overflow portion from the low end of the memory
block and moves it to an address higher than the part that is moved lower, treating
the entire block as a circular array. The simplicity of the call hides a fairly slow
operation, even though vid�vid�copy is an assembly language routine (defined in
drivers/tty/vidcopy.s, not listed in Appendix B). This call requires the CPU to
move 3840 bytes, which is a large job even in assembly language.

The softscroll method is never the default; the operator is supposed to select it
only if hardware scrolling does not work or is not desired for some reason. One
reason might be a desire to use the screendump command, either to save the
screen memory in a file or to view the main console display when working from a
remote terminal. When hardware scrolling is in effect, screendump is likely to
give unexpected results, because the start of the screen memory is likely not to
coincide with the start of the visible display.

On line 16226 the wrap variable is tested as the first part of a compound test.
Wrap is true for older displays that can support hardware scrolling, and if the test
fails, simple hardware scrolling occurs on line 16230, where the origin pointer
used by the video controller chip, cons−>c�org, is updated to point to the first
character to be displayed at the upper-left corner of the display. If wrap is
FALSE, the compound test continues with a test of whether the block to be moved
up in the scroll operation overflows the bounds of the memory block designated
for this console. If this is so, vid�vid�copy is called again to make a wrapped
move of the block to the start of the console’s allocated memory, and the origin
pointer is updated. If there is no overlap, control passes to the simple hardware
scrolling method always used by older video controllers. This consists of adjust-
ing cons−>c�org and then putting the new origin in the correct register of the
controller chip. The call to do this is executed later, as is a call to blank the bot-
tom line on the screen to achieve the ‘‘scrolling’’ effect.
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The code for scrolling down is very similar to that for scrolling up. Finally,
mem�vid�copy is called to blank out the line at the bottom (or top) addressed by
new�line. Then set�6845 is called to write the new origin from cons−>c�org
into the appropriate registers, and flush makes sure all changes become visible on
the screen.

We have mentioned flush (line 16259) several times. It transfers the charac-
ters in the queue to the video memory using mem�vid�copy, updates some vari-
ables, and then makes sure the row and column numbers are reasonable, adjusting
them if, for instance, an escape sequence has tried to move the cursor to a nega-
tive column position. Finally, a calculation of where the cursor ought to be is
made and is compared with cons−>c�cur. If they do not agree, and if the video
memory that is currently being handled belongs to the current virtual console, a
call to set�6845 is made to set the correct value in the controller’s cursor register.

ESC
Not “[”

call
do_escape

“[” numeric
or “;”

collect
numeric

parameters

Not numeric
or “;”

call
do_escape

Not ESC

c_esc_state = 1

c_esc_state = 0 c_esc_state = 2

Figure 3-44. Finite state machine for processing escape sequences.

Figure 3-44 shows how escape sequence handling can be represented as a fin-
ite state machine. This is implemented by parse�escape (line 16293) which is
called at the start of out�char if cons−>c�esc�state is nonzero. An ESC itself is
detected by out�char and makes cons−>c�esc�state equal to 1. When the next
character is received, parse�escape prepares for further processing by putting a
‘‘\0’’ in cons−>c�esc�intro, a pointer to the start of the array of parameters,
cons−>c�esc�parmv[0] into cons−>c�esc�parmp, and zeroes into the parame-
ter array itself. Then the first character directly following the ESC is
examined—valid values are either ‘‘[’’ or ‘‘M’’. In the first case the ‘‘[’’ is copied
to cons−>c�esc� intro and the state is advanced to 2. In the second case,
do�escape is called to carry out the action, and the escape state is reset to zero. If
the first character after the ESC is not one of the valid ones, it is ignored and
succeeding characters are once again displayed normally.

When an ESC [ sequence has been seen, the next character entered is pro-
cessed by the escape state 2 code. There are three possibilities at this point. If the



362 INPUT/OUTPUT CHAP. 3

character is a numeric character, its value is extracted and added to 10 times the
existing value in the position currently pointed to by cons−>c�esc�parmp, ini-
tially cons−>c�esc�parmv[0] (which was initialized to zero). The escape state
does not change. This makes it possible to enter a series of decimal digits and
accumulate a large numeric parameter, although the maximum value currently
recognized by MINIX 3 is 80, used by the sequence that moves the cursor to an
arbitrary position (lines 16335 to 16337). If the character is a semicolon there is
another parameter, so the pointer to the parameter string is advanced, allowing
succeeding numeric values to be accumulated in the second parameter (lines
16339 to 16341). If MAX�ESC�PARMS were to be changed to allocate a larger
array for the parameters, this code would not have to be altered to accumulate
additional numeric values after entry of additional parameters. Finally, if the
character is neither a numeric digit nor a semicolon, do�escape is called.

Do�escape (line 16352) is one of the longer functions in the MINIX 3 system
source code, even though MINIX 3’s complement of recognized escape sequences
is relatively modest. For all its length, however, the code should be easy to fol-
low. After an initial call to flush to make sure the video display is fully updated,
there is a simple if choice, depending upon whether the character immediately fol-
lowing the ESC character was a special control sequence introducer or not. If not,
there is only one valid action, moving the cursor up one line if the sequence was
ESC M. Note that the test for the ‘‘M’’ is done within a switch with a default
action, as a validity check and in anticipation of addition of other sequences that
do not use the ESC [ format. The action is typical of many escape sequences: the
cons−>c�row variable is inspected to determine if scrolling is required. If the
cursor is already on row 0, a SCROLL�DOWN call is made to scroll�screen; oth-
erwise the cursor is moved up one line. The latter is accomplished just by decre-
menting cons−>c�row and then calling flush. If a control sequence introducer is
found, the code following the else on line 16377 is taken. A test is made for ‘‘[’’,
the only control sequence introducer currently recognized by MINIX 3. If the
sequence is valid, the first parameter found in the escape sequence, or zero if no
numeric parameter was entered, is assigned to value (line 16380). If the sequence
is invalid, nothing happens except that the large switch that ensues (lines 16381 to
16586) is skipped and the escape state is reset to zero before returning from
do�escape. In the more interesting case that the sequence is valid, the switch is
entered. We will not discuss all the cases; we will just note several that are
representative of the types of actions governed by escape sequences.

The first five sequences are generated, with no numeric arguments, by the
four ‘‘arrow’’ keys and the Home key on the IBM PC keyboard. The first two,
ESC [A and ESC [B, are similar to ESC M, except they can accept a numeric
parameter and move up and down by more than one line, and they do not scroll
the screen if the parameter specifies a move that exceeds the bounds of the screen.
In such cases, flush catches requests to move out of bounds and limits the move to
the last row or the first row, as appropriate. The next two sequences, ESC [C and
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ESC [D, which move the cursor right and left, are similarly limited by flush.
When generated by the ‘‘arrow’’ keys there is no numeric argument, and thus the
default movement of one line or column occurs.

ESC [H can take two numeric parameters, for instance, ESC [20;60H. The
parameters specify an absolute position rather than one relative to the current
position and are converted from 1-based numbers to 0-based numbers for proper
interpretation. The Home key generates the default (no parameters) sequence
which moves the cursor to position (1, 1).

ESC [sJ and ESC [sK clear a part of either the entire screen or the current
line, depending upon the parameter that is entered. In each case a count of char-
acters is calculated. For instance, for ESC [1J, count gets the number of charac-
ters from the start of the screen to the cursor position, and the count and a position
parameter, dst, which may be the start of the screen, cons−>c�org, or the current
cursor position, cons−>c�cur, are used as parameters to a call to mem�vid�copy.
This procedure is called with a parameter that causes it to fill the specified region
with the current background color.

The next four sequences insert and delete lines and spaces at the cursor posi-
tion, and their actions do not require detailed explanation. The last case, ESC [nm
(note the n represents a numeric parameter, but the ‘‘m’’ is a literal character) has
its effect upon cons−>c�attr, the attribute byte that is interleaved between the
character codes when they are written to video memory.

The next function, set�6845 (line 16594), is used whenever it is necessary to
update the video controller chip. The 6845 has internal 16-bit registers that are
programmed 8 bits at a time, and writing a single register requires four I/O port
write operations. These are carried out by setting up an array (vector) of (port,
value) pairs and invoking a sys�voutb kernel call to get the system task to do the
I/O. Some of the registers of the 6845 video controller chip are shown in Fig. 3-
45
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Figure 3-45. Some of the 6845’s registers.

The next function is get�6845 (line 16613), which returns the values of readable
video controller registers. It also uses kernel calls to accomplish its job. It does
not appear to be called from anywhere in the current MINIX 3 code, but it may be
useful for future enhancements such as adding graphics support.

The beep function (line 16629) is called when a CTRL-G character must be
output. It takes advantage of the built-in support provided by the PC for making
sounds by sending a square wave to the speaker. The sound is initiated by more
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of the kind of magic manipulation of I/O ports that only assembly language pro-
grammers can love. The more interesting part of the code is using the ability to
set an alarm to turn off the beep. As a process with system privileges (i.e., a slot
in the priv table), the terminal driver is allowed to set a timer using the library
function tmrs�settimers. On line 16655 this is done, with the next function,
stop�beep, specified as the function to run when the timer expires. This timer is
put into the terminal task’s own timer queue. The sys�setalarm kernel call that
follows asks the system task to set a timer in the kernel. When that expires, a
SYN�ALARM message is detected by the main loop of the terminal driver,
tty� task, which calls expire� timers to deal with all timers belonging to the termi-
nal driver, one of which is the one set by beep.

The next routine, stop�beep (line 16666), is the one whose address is put into
the tmr�func field of the timer initiated by beep. It stops the beep after the desig-
nated time has elapsed and also resets the beeping flag. This prevents superfluous
calls to the beep routine from having any effect.

Scr� init (line 16679) is called by tty� init NR�CONS times. Each time its
argument is a pointer to a tty structure, one element of the tty�table. On lines
16693 and 16694 line, to be used as the index into the cons� table array, is calcu-
lated, tested for validity, and, if valid, used to initialize cons, the pointer to the
current console table entry. At this point the cons−>c�tty field can be initialized
with the pointer to the main tty structure for the device, and, in turn, tp−>tty�priv
can be pointed to this device’s console� t structure. Next, kb�init is called to ini-
tialize the keyboard, and then the pointers to device specific routines are set up,
tp−>tty�devwrite pointing to cons�write, tp−>tty�echo pointing to cons�echo,
and tp−>tty�ioctl pointing to cons�ioctl. The I/O address of the base register of
the CRT controller is fetched from the BIOS, the address and size of the video
memory are determined on lines 16708 to 16731, and the wrap flag (used to deter-
mine how to scroll) is set according to the class of video controller in use. On line
16735 the segment descriptor for the video memory is initialized in the global
descriptor table by the system task.

Next comes the initialization of virtual consoles. Each time scr� init is called,
the argument is a different value of tp, and thus a different line and cons are used
on lines 16750 to 16753 to provide each virtual console with its own share of the
available video memory. Each screen is then blanked, ready to start, and finally
console 0 is selected to be the first active one.

Several routines display output on behalf of the terminal driver itself, the ker-
nel, or another system component. The first one, kputc (line 16775) just calls
putk, a routine to output text a byte at a time, to be described below. This routine
is here because the library routine that provides the printf function used within
system components is written to be linked to a character printing routine with this
name, but other functions in the terminal driver expect one named putk.

Do�new�kmess (line 16784) is used to print messages from the kernel. Actu-
ally, ‘‘messages’’ is not the best word to use here; we do not mean messages as
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used for interprocess communication. This function is for displaying text on the
console to report information, warnings, or errors to the user.

The kernel needs a special mechanism to display information. It needs to be
robust, too, so it can be used during startup, before all components of MINIX 3 are
running, or during a panic, another time when major parts of the system may be
unavailable. The kernel writes text into a circular character buffer, part of a struc-
ture that also contains pointers to the next byte to write and the size of the yet-to-
be processed text. The kernel sends a SYS�SIG message to the terminal driver
when there is new text, and do�new�kmess is called when the main loop in
tty� task is running. When things are not going so smoothly, (i.e., when the sys-
tem crashes) the SYS�SIG will be detected by the loop that includes a nonblock-
ing read operation in do�panic�dumps, which we saw in keyboard.c, and
do�new�kmess will be called from there. In either case, the kernel call
sys�getkmessages retrieves a copy of the kernel structure, and the bytes are
displayed, one by one, by passing them to putk, followed by a final call to putk
with a null byte to force it to flush the output. A local static variable is used to
keep track of the position in the buffer between messages.

Do�diagnostics (line 16823) has a function similar to that of do�new�kmess,
but do�diagnostics is used to display messages from system processes, rather than
the kernel. A DIAGNOSTICS message can be received either by the tty�task
main loop or the loop in do�panic�dumps, and in either case a call is made to
do�diagnostics. The message contains a pointer to a buffer in the calling process
and a count of the size of the message. No local buffer is used; instead repeated
sys�vircopy kernel calls are made to get the text one byte at a time. This protects
the terminal driver; if something goes wrong and a process starts generates an
excessive amount of output there is no buffer to overrun. The characters are out-
put one by one by calling putk, followed by a null byte.

Putk (line 16850) can print characters on behalf of any code linked into the
terminal driver, and is used by the functions just described to output text on behalf
of the kernel or other system components. It just calls out�char for each non-null
byte received, and then calls flush for the null byte at the end of the string.

The remaining routines in console.c are short and simple and we will review
them quickly. Toggle�scroll (line 16869) does what its name says, it toggles the
flag that determines whether hardware or software scrolling is used. It also
displays a message at the current cursor position to identify the selected mode.
Cons�stop (line 16881) reinitializes the console to the state that the boot monitor
expects, prior to a shutdown or reboot. Cons�org0 (line 16893) is used only
when a change of scrolling mode is forced by the F3 key, or when preparing to
shut down. Select�console (line 16917) selects a virtual console. It is called with
the new index and calls set�6845 twice to get the video controller to display the
proper part of the video memory.

The next two routines are highly hardware-specific. Con�loadfont (line
16931) loads a font into a graphics adapter, in support of the ioctl TIOCSFON
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operation. It calls ga�program (line 16971) to do a series of magical writes to an
I/O port that cause the video adapter’s font memory, which is normally not ad-
dressable by the CPU, to be visible. Then phys�copy is called to copy the font
data to this area of memory, and another magic sequence is invoked to return the
graphics adapter to its normal mode of operation.

The last function is cons� ioctl (line 16987). It performs only one function,
setting the screen size, and is called only by scr�init, which uses values obtained
from the BIOS. If there were a need for a real ioctl call to change the sizeMINIX
3screen code to provide the new dimensions would have to be written.

3.9 SUMMARY

Input/output is an important topic that is often neglected. A substantial frac-
tion of any operating system is concerned with I/O. But I/O device drivers are
often responsible for operating system problems. Drivers are often written by pro-
grammers working for device manufacturers. Conventional operating system
designs usually require allowing drivers to have access to critical resources, such
as interrupts, I/O ports, and memory belonging to other processes. The design of
MINIX 3 isolates drivers as independent processes with limited privileges, so a
bug in a driver cannot crash the entire system.

We started out by looking at I/O hardware, and the relation of I/O devices to
I/O controllers, which are what the software has to deal with. Then we moved on
to the four levels of I/O software: the interrupt routines, the device drivers, the
device-independent I/O software, and the I/O libraries and spoolers that run in
user space.

Then we examined the problem of deadlock and how it can be tackled.
Deadlock occurs when a group of processes each have been granted exclusive
access to some resources, and each one wants yet another resource that belongs to
another process in the group. All of them are blocked and none will ever run
again. Deadlock can be prevented by structuring the system so it can never occur,
for example, by allowing a process to hold only one resource at any instant. It can
also be avoided by examining each resource request to see if it leads to a situation
in which deadlock is possible (an unsafe state) and denying or delaying those that
lead to trouble.

Device drivers in MINIX 3 are implemented as independent processes running
in user space. We have looked at the RAM disk driver, hard disk driver, and ter-
minal driver. Each of these drivers has a main loop that gets requests and
processes them, eventually sending back replies to report on what happened.
Source code for the main loops and common functions of the RAM disk, hard
disk, and floppy disk drivers is provided in a common driver library, but each
driver is compiled and linked with its own copy of the library routines. Each
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device driver runs in its own address space. Several different terminals, using the
system console, the serial lines, and network connections, are all supported by a
single terminal driver process.

Device drivers have varying relationships to the interrupt system. Devices
which can complete their work rapidly, such as the RAM disk and the memory-
mapped display, do not use interrupts at all. The hard disk driver does most of its
work in the driver code itself, and the interrupt handlers just return status informa-
tion. Interrupts are always expected, and a receive can be done to wait for one. A
keyboard interrupt can happen at any time. Messages generated by all interrupts
for the terminal driver are received and processed in the main loop of the driver.
When a keyboard interrupt occurs the first stage of processing the input is done as
quickly as possible in order to be ready for subsequent interrupts.

MINIX 3 drivers have limited privileges, and cannot handle interrupts or ac-
cess I/O ports on their own. Interrupts are handled by the system task, which
sends a message to notify a driver when an interrupt occurs. Access to I/O ports
is similarly mediated by the system task. Drivers cannot read or write I/O ports
directly.

PROBLEMS

1. A 1x DVD reader can deliver data at a rate of 1.32 MB/sec. What is the highest speed
DVD drive that could be connected over a USB 2.0 connection without losing data?

2. Many disks contain an ECC at the end of each sector. If the ECC is wrong, what
actions might be taken and by which piece of hardware or software?

3. What is memory-mapped I/O? Why is it sometimes used?

4. Explain what DMA is and why it is used.

5. Although DMA does not use the CPU, the maximum transfer rate is still limited. Con-
sider reading a block from the disk. Name three factors that might ultimately limit the
rate of transfer.

6. CD-quality music requires sampling the sound signal 44,100 times per second. Sup-
pose that a timer generates an interrupt at this rate and that each interrupt takes 1
microsec to handle on a 1-GHz CPU. What is the slowest clock rate that could be
used and not lose any data? Assume that the number of instructions to be processed
for an interrupt is constant, so halving the clock speed doubles the interrupt handling
time.

7. An alternative to interrupts is polling. Are there any circumstances you can think of in
which polling is a better choice?

8. Disk controllers have internal buffers and they are getting larger with each new model.
Why?
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9. Each device driver has two different interfaces with the operating system. One inter-
face is a set of function calls that the operating system makes on the driver. The other
is a set of calls that the driver makes on the operating system. Name one likely call in
each interface.

10. Why do operating system designers attempt to provide device-independent I/O wher-
ever it is possible?

11. In which of the four I/O software layers is each of the following done?

(a) Computing the track, sector, and head for a disk read.
(b) Maintaining a cache of recently used blocks.
(c) Writing commands to the device registers.
(d) Checking to see if the user is permitted to use the device.
(e) Converting binary integers to ASCII for printing.

12. Why are output files for the printer normally spooled on disk before being printed?

13. Give an example of a deadlock that could occur in the physical world.

14. Consider Fig. 3-10. Suppose that in step (o) C requested S instead of requesting R.
Would this lead to deadlock? Suppose that it requested both S and R?

15. Take a careful look at Fig. 3-13(b). If D asks for one more unit, does this lead to a
safe state or an unsafe one? What if the request came from C instead of D?

16. All the trajectories in Fig. 3-14 are horizontal or vertical. Can you envision any cir-
cumstances in which diagonal trajectories were also possible?

17. Suppose that process A in Fig. 3-15 requests the last tape drive. Does this action lead
to a deadlock?

18. A computer has six tape drives, with n processes competing for them. Each process
may need two drives. For which values of n is the system deadlock free?

19. Can a system be in a state that is neither deadlocked nor safe? If so, give an example.
If not, prove that all states are either deadlocked or safe.

20. A distributed system using mailboxes has two IPC primitives, SEND and RECEIVE.
The latter primitive specifies a process to receive from, and blocks if no message from
that process is available, even though messages may be waiting from other processes.
There are no shared resources, but processes need to communicate frequently about
other matters. Is deadlock possible? Discuss.

21. In an electronic funds transfer system, there are hundreds of identical processes that
work as follows. Each process reads an input line specifying an amount of money, the
account to be credited, and the account to be debited. Then it locks both accounts and
transfers the money, releasing the locks when done. With many processes running in
parallel, there is a very real danger that having locked account x it will be unable to
lock y because y has been locked by a process now waiting for x. Devise a scheme
that avoids deadlocks. Do not release an account record until you have completed the
transactions. (In other words, solutions that lock one account and then release it im-
mediately if the other is locked are not allowed.)
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22. The banker’s algorithm is being run in a system with m resource classes and n proc-
esses. In the limit of large m and n, the number of operations that must be performed
to check a state for safety is proportional to m an b . What are the values of a and b?

23. Consider the banker’s algorithm of Fig. 3-15. Assume that processes A and D change
their requests to an additional (1, 2, 1, 0) and (1, 2, 1, 0) respectively. Can these
requests be met and the system still remain in a safe state?

24. Cinderella and the Prince are getting divorced. To divide their property, they have
agreed on the following algorithm. Every morning, each one may send a letter to the
other’s lawyer requesting one item of property. Since it takes a day for letters to be
delivered, they have agreed that if both discover that they have requested the same
item on the same day, the next day they will send a letter canceling the request.
Among their property is their dog, Woofer, Woofer’s doghouse, their canary, Tweeter,
and Tweeter’s cage. The animals love their houses, so it has been agreed that any
division of property separating an animal from its house is invalid, requiring the whole
division to start over from scratch. Both Cinderella and the Prince desperately want
Woofer. So they can go on (separate) vacations, each spouse has programmed a per-
sonal computer to handle the negotiation. When they come back from vacation, the
computers are still negotiating. Why? Is deadlock possible? Is starvation (waiting for-
ever) possible? Discuss.

25. Consider a disk with 1000 512-byte sectors/track, eight tracks per cylinder, and 10,000
cylinders with a rotation time of 10 msec. The track-to-track seek time is 1 msec.
What is the maximum sustainable burst rate? How long can such a burst last?

26. A local area network is used as follows. The user issues a system call to write data
packets to the network. The operating system then copies the data to a kernel buffer.
Then it copies the data to the network controller board. When all the bytes are safely
inside the controller, they are sent over the network at a rate of 10 megabits/sec. The
receiving network controller stores each bit a microsecond after it is sent. When the
last bit arrives, the destination CPU is interrupted, and the kernel copies the newly
arrived packet to a kernel buffer to inspect it. Once it has figured out which user the
packet is for, the kernel copies the data to the user space. If we assume that each in-
terrupt and its associated processing takes 1 msec, that packets are 1024 bytes (ignore
the headers), and that copying a byte takes 1 microsec, what is the maximum rate at
which one process can pump data to another? Assume that the sender is blocked until
the work is finished at the receiving side and an acknowledgement comes back. For
simplicity, assume the time to get the acknowledgement back is so small it can be
ignored.

27. The message format of Fig. 3-17 is used for sending request messages to drivers for
block devices. Could any fields be omitted for character devices? Which ones?

28. Disk requests come in to the driver for cylinders 10, 22, 20, 2, 40, 6, and 38, in that
order. A seek takes 6 msec per cylinder moved. How much seek time is needed for

(a) First-come, first served.
(b) Closest cylinder next.
(c) Elevator algorithm (initially moving upward).

In all cases, the arm is initially at cylinder 20.
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29. A personal computer salesman visiting a university in South-West Amsterdam
remarked during his sales pitch that his company had devoted substantial effort to
making their version of UNIX very fast. As an example, he noted that their disk driver
used the elevator algorithm and also queued multiple requests within a cylinder in sec-
tor order. A student, Harry Hacker, was impressed and bought one. He took it home
and wrote a program to randomly read 10,000 blocks spread across the disk. To his
amazement, the performance that he measured was identical to what would be
expected from first-come, first-served. Was the salesman lying?

30. A UNIX process has two parts—the user part and the kernel part. Is the kernel part
like a subroutine or a coroutine?

31. The clock interrupt handler on a certain computer requires 2 msec (including process
switching overhead) per clock tick. The clock runs at 60 Hz. What fraction of the
CPU is devoted to the clock?

32. Two examples of watchdog timers were given in the text: timing the startup of the
floppy disk motor and allowing for carriage return on hardcopy terminals. Give a
third example.

33. Why are RS232 terminals interrupt driven, but memory-mapped terminals not inter-
rupt driven?

34. Consider how a terminal works. The driver outputs one character and then blocks.
When the character has been printed, an interrupt occurs and a message is sent to the
blocked driver, which outputs the next character and then blocks again. If the time to
pass a message, output a character, and block is 4 msec, does this method work well
on 110-baud lines? How about 4800-baud lines?

35. A bitmap terminal contains 1200 by 800 pixels. To scroll a window, the CPU (or con-
troller) must move all the lines of text upward by copying their bits from one part of
the video RAM to another. If a particular window is 66 lines high by 80 characters
wide (5280 characters, total), and a character’s box is 8 pixels wide by 12 pixels high,
how long does it take to scroll the whole window at a copying rate of 500 nsec per
byte? If all lines are 80 characters long, what is the equivalent baud rate of the termi-
nal? Putting a character on the screen takes 50 microsec. Now compute the baud rate
for the same terminal in color, with 4 bits/pixel. (Putting a character on the screen
now takes 200 microsec.)

36. Why do operating systems provide escape characters, such as CTRL-V in MINIX?

37. After receiving a CTRL-C (SIGINT) character, the MINIX driver discards all output
currently queued for that terminal. Why?

38. Many RS232 terminals have escape sequences for deleting the current line and mov-
ing all the lines below it up one line. How do you think this feature is implemented
inside the terminal?

39. On the original IBM PC’s color display, writing to the video RAM at any time other
than during the CRT beam’s vertical retrace caused ugly spots to appear all over the
screen. A screen image is 25 by 80 characters, each of which fits in a box 8 pixels by
8 pixels. Each row of 640 pixels is drawn on a single horizontal scan of the beam,
which takes 63.6 microsec, including the horizontal retrace. The screen is redrawn 60
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times a second, each of which requires a vertical retrace period to get the beam back
to the top. What fraction of the time is the video RAM available for writing in?

40. Write a graphics driver for the IBM color display, or some other suitable bitmap dis-
play. The driver should accept commands to set and clear individual pixels, move rec-
tangles around the screen, and any other features you think are interesting. User pro-
grams interface to the driver by opening /dev/graphics and writing commands to it.

41. Modify the MINIX floppy disk driver to do track-at-a-time caching.

42. Implement a floppy disk driver that works as a character, rather than a block device, to
bypass the file system’s block cache. In this way, users can read large chunks of data
from the disk, which are DMA’ed directly to user space, greatly improving perfor-
mance. This driver would primarily be of interest to programs that need to read the
raw bits on the disk, without regard to the file system. File system checkers fall into
this category.

43. Implement the UNIX PROFIL system call, which is missing from MINIX.

44. Modify the terminal driver so that in addition to a having a special key to erase the
previous character, there is a key to erase the previous word.

45. A new hard disk device with removable media has been added to a MINIX 3 system.
This device must spin up to speed every time the media are changed, and the spin up
time is quite long. It is anticipated media changes will be made frequently while the
system is running. Suddenly the waitfor routine in at�wini.c is unsatisfactory. Design
a new waitfor routine in which, if the bit pattern being awaited is not found after 1
second of busy waiting, a phase will be entered in which the disk driver will sleep for
1 second, test the port, and go back to sleep for another second until either the sought-
for pattern is found or the preset TIMEOUT period expires.
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4
MEMORY MANAGEMENT

Memory is an important resource that must be carefully managed. While the
average home computer nowadays has two thousand times as much memory as
the IBM 7094 (the largest computer in the world in the early 1960s), programs
and the data they are expected to handle have also grown tremendously. To para-
phrase Parkinson’s law, ‘‘Programs and their data expand to fill the memory avail-
able to hold them.’’ In this chapter we will study how operating systems manage
memory.

Ideally, what every programmer would like is an infinitely large, infinitely
fast memory that is also nonvolatile, that is, does not lose its contents when the
electric power fails. While we are at it, why not also ask for it to be inexpensive,
too? Unfortunately technology cannot turn such dreams into memories. Conse-
quently, most computers have a memory hierarchy, with a small amount of very
fast, expensive, volatile cache memory, hundreds of megabytes of medium-speed,
medium-price, volatile main memory (RAM), and tens or hundreds of gigabytes
of slow, cheap, nonvolatile disk storage. It is the job of the operating system to
coordinate how these memories are used.

The part of the operating system that manages the memory hierarchy is usu-
ally called the memory manager. Its job is to keep track of which parts of mem-
ory are in use and which parts are not in use, to allocate memory to processes
when they need it and deallocate it when they are done, and to manage swapping
between main memory and disk when main memory is too small to hold all the
processes. In most systems (but not MINIX 3), it is in the kernel.

373
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In this chapter we will investigate a number of different memory management
schemes, ranging from very simple to highly sophisticated. We will start at the
beginning and look first at the simplest possible memory management system and
then gradually progress to more and more elaborate ones.

As we pointed out in Chap. 1, history tends to repeat itself in the computer
world: minicomputer software was initially like mainframe software and personal
computer software was initially like minicomputer software. The cycle is now re-
peating itself with palmtops, PDAs, and embedded systems. In these systems,
simple memory management schemes are still in use. For this reason, they are
still worth studying.

4.1 BASIC MEMORY MANAGEMENT

Memory management systems can be divided into two basic classes: those
that move processes back and forth between main memory and disk during execu-
tion (swapping and paging), and those that do not. The latter are simpler, so we
will study them first. Later in the chapter we will examine swapping and paging.
Throughout this chapter the reader should keep in mind that swapping and paging
are largely artifacts caused by the lack of sufficient main memory to hold all pro-
grams and data at once. If main memory ever gets so large that there is truly
enough of it, the arguments in favor of one kind of memory management scheme
or another may become obsolete.

On the other hand, as mentioned above, software seems to grow as fast as
memory, so efficient memory management may always be needed. In the 1980s,
there were many universities that ran a timesharing system with dozens of (more-
or-less satisfied) users on a 4 MB VAX. Now Microsoft recommends having at
least 128 MB for a single-user Windows XP system. The trend toward multi-
media puts even more demands on memory, so good memory management is
probably going to be needed for the next decade at least.

4.1.1 Monoprogramming without Swapping or Paging

The simplest possible memory management scheme is to run just one program
at a time, sharing the memory between that program and the operating system.
Three variations on this theme are shown in Fig. 4-1. The operating system may
be at the bottom of memory in RAM (Random Access Memory), as shown in
Fig. 4-1(a), or it may be in ROM (Read-Only Memory) at the top of memory, as
shown in Fig. 4-1(b), or the device drivers may be at the top of memory in a ROM
and the rest of the system in RAM down below, as shown in Fig. 4-1(c). The first
model was formerly used on mainframes and minicomputers but is rarely used
any more. The second model is used on some palmtop computers and embedded
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systems. The third model was used by early personal computers (e.g., running
MS-DOS), where the portion of the system in the ROM is called the BIOS (Basic
Input Output System).

(a) (b) (c)

0xFFF …

0 0 0

User
program

User
program

User
program

Operating
system in

RAM

Operating
system in

RAM

Operating
system in

ROM

Device
drivers in ROM

Figure 4-1. Three simple ways of organizing memory with an operating system
and one user process. Other possibilities also exist.

When the system is organized in this way, only one process at a time can be
running. As soon as the user types a command, the operating system copies the
requested program from disk to memory and executes it. When the process fin-
ishes, the operating system displays a prompt character and waits for a new com-
mand. When it receives the command, it loads a new program into memory,
overwriting the first one.

4.1.2 Multiprogramming with Fixed Partitions

Except on very simple embedded systems, monoprogramming is hardly used
any more. Most modern systems allow multiple processes to run at the same time.
Having multiple processes running at once means that when one process is
blocked waiting for I/O to finish, another one can use the CPU. Thus multipro-
gramming increases the CPU utilization. Network servers always have the ability
to run multiple processes (for different clients) at the same time, but most client
(i.e., desktop) machines also have this ability nowadays.

The easiest way to achieve multiprogramming is simply to divide memory up
into n (possibly unequal) partitions. This partitioning can, for example, be done
manually when the system is started up.

When a job arrives, it can be put into the input queue for the smallest partition
large enough to hold it. Since the partitions are fixed in this scheme, any space in
a partition not used by a job is wasted while that job runs. In Fig. 4-2(a) we see
how this system of fixed partitions and separate input queues looks.

The disadvantage of sorting the incoming jobs into separate queues becomes
apparent when the queue for a large partition is empty but the queue for a small
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Figure 4-2. (a) Fixed memory partitions with separate input queues for each
partition. (b) Fixed memory partitions with a single input queue.

partition is full, as is the case for partitions 1 and 3 in Fig. 4-2(a). Here small jobs
have to wait to get into memory, even though plenty of memory is free. An alter-
native organization is to maintain a single queue as in Fig. 4-2(b). Whenever a
partition becomes free, the job closest to the front of the queue that fits in it could
be loaded into the empty partition and run. Since it is undesirable to waste a large
partition on a small job, a different strategy is to search the whole input queue
whenever a partition becomes free and pick the largest job that fits. Note that the
latter algorithm discriminates against small jobs as being unworthy of having a
whole partition, whereas usually it is desirable to give the smallest jobs (often
interactive jobs) the best service, not the worst.

One way out is to have at least one small partition around. Such a partition
will allow small jobs to run without having to allocate a large partition for them.

Another approach is to have a rule stating that a job that is eligible to run may
not be skipped over more than k times. Each time it is skipped over, it gets one
point. When it has acquired k points, it may not be skipped again.

This system, with fixed partitions set up by the operator in the morning and
not changed thereafter, was used by OS/360 on large IBM mainframes for many
years. It was called MFT (Multiprogramming with a Fixed number of Tasks or
OS/MFT). it is simple to understand and equally simple to implement: incoming
jobs are queued until a suitable partition is available, at which time the job is
loaded into that partition and run until it terminates. However, nowadays, few, if
any, operating systems, support this model, even on mainframe batch systems.
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4.1.3 Relocation and Protection

Multiprogramming introduces two essential problems that must be solved—
relocation and protection. Look at Fig. 4-2. From the figure it is clear that dif-
ferent jobs will be run at different addresses. When a program is linked (i.e., the
main program, user-written procedures, and library procedures are combined into
a single address space), the linker must know at what address the program will
begin in memory.

For example, suppose that the first instruction is a call to a procedure at abso-
lute address 100 within the binary file produced by the linker. If this program is
loaded in partition 1 (at address 100K), that instruction will jump to absolute
address 100, which is inside the operating system. What is needed is a call to
100K + 100. If the program is loaded into partition 2, it must be carried out as a
call to 200K + 100, and so on. This problem is known as the relocation problem.

One possible solution is to actually modify the instructions as the program is
loaded into memory. Programs loaded into partition 1 have 100K added to each
address, programs loaded into partition 2 have 200K added to addresses, and so
forth. To perform relocation during loading like this, the linker must include in
the binary program a list or bitmap telling which program words are addresses to
be relocated and which are opcodes, constants, or other items that must not be
relocated. OS/MFT worked this way.

Relocation during loading does not solve the protection problem. A malicious
program can always construct a new instruction and jump to it. Because programs
in this system use absolute memory addresses rather than addresses relative to a
register, there is no way to stop a program from building an instruction that reads
or writes any word in memory. In multiuser systems, it is highly undesirable to let
processes read and write memory belonging to other users.

The solution that IBM chose for protecting the 360 was to divide memory into
blocks of 2-KB bytes and assign a 4-bit protection code to each block. The PSW
(Program Status Word) contained a 4-bit key. The 360 hardware trapped any
attempt by a running process to access memory whose protection code differed
from the PSW key. Since only the operating system could change the protection
codes and key, user processes were prevented from interfering with one another
and with the operating system itself.

An alternative solution to both the relocation and protection problems is to
equip the machine with two special hardware registers, called the base and limit
registers. When a process is scheduled, the base register is loaded with the ad-
dress of the start of its partition, and the limit register is loaded with the length of
the partition. Every memory address generated automatically has the base register
contents added to it before being sent to memory. Thus if the base register con-
tains the value 100K, a CALL 100 instruction is effectively turned into a CALL
100K + 100 instruction, without the instruction itself being modified. Addresses
are also checked against the limit register to make sure that they do not attempt to
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address memory outside the current partition. The hardware protects the base and
limit registers to prevent user programs from modifying them.

A disadvantage of this scheme is the need to perform an addition and a com-
parison on every memory reference. Comparisons can be done fast, but additions
are slow due to carry propagation time unless special addition circuits are used.

The CDC 6600—the world’s first supercomputer—used this scheme. The
Intel 8088 CPU used for the original IBM PC used a slightly weaker version of
this scheme—base registers, but no limit registers. Few computers use it now.

4.2 SWAPPING

With a batch system, organizing memory into fixed partitions is simple and
effective. Each job is loaded into a partition when it gets to the head of the queue.
It stays in memory until it has finished. As long as enough jobs can be kept in
memory to keep the CPU busy all the time, there is no reason to use anything
more complicated.

With timesharing systems or graphics-oriented personal computers, the situa-
tion is different. Sometimes there is not enough main memory to hold all the cur-
rently active processes, so excess processes must be kept on disk and brought in to
run dynamically.

Two general approaches to memory management can be used, depending (in
part) on the available hardware. The simplest strategy, called swapping, consists
of bringing in each process in its entirety, running it for a while, then putting it
back on the disk. The other strategy, called virtual memory, allows programs to
run even when they are only partially in main memory. Below we will study
swapping; in Sec. 4.3 we will examine virtual memory.

The operation of a swapping system is illustrated in Fig. 4-3. Initially, only
process A is in memory. Then processes B and C are created or swapped in from
disk. In Fig. 4-3(d) A is swapped out to disk. Then D comes in and B goes out.
Finally A comes in again. Since A is now at a different location, addresses con-
tained in it must be relocated, either by software when it is swapped in or (more
likely) by hardware during program execution.

The main difference between the fixed partitions of Fig. 4-2 and the variable
partitions of Fig. 4-3 is that the number, location, and size of the partitions vary
dynamically in the latter as processes come and go, whereas they are fixed in the
former. The flexibility of not being tied to a fixed number of partitions that may
be too large or too small improves memory utilization, but it also complicates
allocating and deallocating memory, as well as keeping track of it.

When swapping creates multiple holes in memory, it is possible to combine
them all into one big one by moving all the processes downward as far as possi-
ble. This technique is known as memory compaction. It is usually not done
because it requires a lot of CPU time. For example, on a 1-GB machine that can
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Figure 4-3. Memory allocation changes as processes come into memory and
leave it. The shaded regions are unused memory.

copy at a rate of 2 GB/sec (0.5 nsec/byte) it takes about 0.5 sec to compact all of
memory. That may not seem like much time, but it would be noticeably disrup-
tive to a user watching a video stream.

A point that is worth making concerns how much memory should be allocated
for a process when it is created or swapped in. If processes are created with a
fixed size that never changes, then the allocation is simple: the operating system
allocates exactly what is needed, no more and no less.

If, however, processes’ data segments can grow, for example, by dynamically
allocating memory from a heap, as in many programming languages, a problem
occurs whenever a process tries to grow. If a hole is adjacent to the process, it
can be allocated and the process can be allowed to grow into the hole. On the
other hand, if the process is adjacent to another process, the growing process will
either have to be moved to a hole in memory large enough for it, or one or more
processes will have to be swapped out to create a large enough hole. If a process
cannot grow in memory and the swap area on the disk is full, the process will
have to wait or be killed.

If it is expected that most processes will grow as they run, it is probably a
good idea to allocate a little extra memory whenever a process is swapped in or
moved, to reduce the overhead associated with moving or swapping processes that
no longer fit in their allocated memory. However, when swapping processes to
disk, only the memory actually in use should be swapped; it is wasteful to swap
the extra memory as well. In Fig. 4-4(a) we see a memory configuration in which
space for growth has been allocated to two processes.

If processes can have two growing segments, for example, the data segment
being used as a heap for variables that are dynamically allocated and released and
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Figure 4-4. (a) Allocating space for a growing data segment. (b) Allocating
space for a growing stack and a growing data segment.

a stack segment for the normal local variables and return addresses, an alternative
arrangement suggests itself, namely that of Fig. 4-4(b). In this figure we see that
each process illustrated has a stack at the top of its allocated memory that is grow-
ing downward, and a data segment just beyond the program text that is growing
upward. The memory between them can be used for either segment. If it runs
out, either the process will have to be moved to a hole with sufficient space,
swapped out of memory until a large enough hole can be created, or killed.

4.2.1 Memory Management with Bitmaps

When memory is assigned dynamically, the operating system must manage it.
In general terms, there are two ways to keep track of memory usage: bitmaps and
free lists. In this section and the next one we will look at these two methods in
turn.

With a bitmap, memory is divided up into allocation units, perhaps as small as
a few words and perhaps as large as several kilobytes. Corresponding to each
allocation unit is a bit in the bitmap, which is 0 if the unit is free and 1 if it is
occupied (or vice versa). Figure 4-5 shows part of memory and the corresponding
bitmap.

The size of the allocation unit is an important design issue. The smaller the
allocation unit, the larger the bitmap. However, even with an allocation unit as
small as 4 bytes, 32 bits of memory will require only 1 bit of the map. A memory
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Figure 4-5. (a) A part of memory with five processes and three holes. The tick
marks show the memory allocation units. The shaded regions (0 in the bitmap)
are free. (b) The corresponding bitmap. (c) The same information as a list.

of 32n bits will use n map bits, so the bitmap will take up only 1/33 of memory. If
the allocation unit is chosen large, the bitmap will be smaller, but appreciable
memory may be wasted in the last unit of the process if the process size is not an
exact multiple of the allocation unit.

A bitmap provides a simple way to keep track of memory words in a fixed
amount of memory because the size of the bitmap depends only on the size of
memory and the size of the allocation unit. The main problem with it is that when
it has been decided to bring a k unit process into memory, the memory manager
must search the bitmap to find a run of k consecutive 0 bits in the map. Searching
a bitmap for a run of a given length is a slow operation (because the run may
straddle word boundaries in the map); this is an argument against bitmaps.

4.2.2 Memory Management with Linked Lists

Another way of keeping track of memory is to maintain a linked list of allo-
cated and free memory segments, where a segment is either a process or a hole
between two processes. The memory of Fig. 4-5(a) is represented in Fig. 4-5(c)
as a linked list of segments. Each entry in the list specifies a hole (H) or process
(P), the address at which it starts, the length, and a pointer to the next entry.

In this example, the segment list is kept sorted by address. Sorting this way
has the advantage that when a process terminates or is swapped out, updating the
list is straightforward. A terminating process normally has two neighbors (except
when it is at the very top or very bottom of memory). These may be either proc-
esses or holes, leading to the four combinations shown in Fig. 4-6. In Fig. 4-6(a)
updating the list requires replacing a P by an H. In Fig. 4-6(b) and also in Fig. 4-
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6(c), two entries are coalesced into one, and the list becomes one entry shorter. In
Fig. 4-6(d), three entries are merged and two items are removed from the list.
Since the process table slot for the terminating process will normally point to the
list entry for the process itself, it may be more convenient to have the list as a
double-linked list, rather than the single-linked list of Fig. 4-5(c). This structure
makes it easier to find the previous entry and to see if a merge is possible.
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Figure 4-6. Four neighbor combinations for the terminating process, X.

When the processes and holes are kept on a list sorted by address, several
algorithms can be used to allocate memory for a newly created process (or an
existing process being swapped in from disk). We assume that the memory mana-
ger knows how much memory to allocate. The simplest algorithm is first fit. The
process manager scans along the list of segments until it finds a hole that is big
enough. The hole is then broken up into two pieces, one for the process and one
for the unused memory, except in the statistically unlikely case of an exact fit.
First fit is a fast algorithm because it searches as little as possible.

A minor variation of first fit is next fit. It works the same way as first fit,
except that it keeps track of where it is whenever it finds a suitable hole. The next
time it is called to find a hole, it starts searching the list from the place where it
left off last time, instead of always at the beginning, as first fit does. Simulations
by Bays (1977) show that next fit gives slightly worse performance than first fit.

Another well-known algorithm is best fit. Best fit searches the entire list and
takes the smallest hole that is adequate. Rather than breaking up a big hole that
might be needed later, best fit tries to find a hole that is close to the actual size
needed.

As an example of first fit and best fit, consider Fig. 4-5 again. If a block of
size 2 is needed, first fit will allocate the hole at 5, but best fit will allocate the
hole at 18.

Best fit is slower than first fit because it must search the entire list every time
it is called. Somewhat surprisingly, it also results in more wasted memory than
first fit or next fit because it tends to fill up memory with tiny, useless holes. First
fit generates larger holes on the average.

To get around the problem of breaking up nearly exact matches into a process
and a tiny hole, one could think about worst fit, that is, always take the largest
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available hole, so that the hole broken off will be big enough to be useful. Simu-
lation has shown that worst fit is not a very good idea either.

All four algorithms can be speeded up by maintaining separate lists for
processes and holes. In this way, all of them devote their full energy to inspecting
holes, not processes. The inevitable price that is paid for this speedup on alloca-
tion is the additional complexity and slowdown when deallocating memory, since
a freed segment has to be removed from the process list and inserted into the hole
list.

If distinct lists are maintained for processes and holes, the hole list may be
kept sorted on size, to make best fit faster. When best fit searches a list of holes
from smallest to largest, as soon as it finds a hole that fits, it knows that the hole is
the smallest one that will do the job, hence the best fit. No further searching is
needed, as it is with the single list scheme. With a hole list sorted by size, first fit
and best fit are equally fast, and next fit is pointless.

When the holes are kept on separate lists from the processes, a small optimi-
zation is possible. Instead of having a separate set of data structures for maintain-
ing the hole list, as is done in Fig. 4-5(c), the holes themselves can be used. The
first word of each hole could be the hole size, and the second word a pointer to the
following entry. The nodes of the list of Fig. 4-5(c), which require three words
and one bit (P/H), are no longer needed.

Yet another allocation algorithm is quick fit, which maintains separate lists
for some of the more common sizes requested. For example, it might have a table
with n entries, in which the first entry is a pointer to the head of a list of 4-KB
holes, the second entry is a pointer to a list of 8-KB holes, the third entry a pointer
to 12-KB holes, and so on. Holes of say, 21 KB, could either be put on the 20-KB
list or on a special list of odd-sized holes. With quick fit, finding a hole of the
required size is extremely fast, but it has the same disadvantage as all schemes
that sort by hole size, namely, when a process terminates or is swapped out, find-
ing its neighbors to see if a merge is possible is expensive. If merging is not done,
memory will quickly fragment into a large number of small holes into which no
processes fit.

4.3 VIRTUAL MEMORY

Many years ago people were first confronted with programs that were too big
to fit in the available memory. The solution usually adopted was to split the pro-
gram into pieces, called overlays. Overlay 0 would start running first. When it
was done, it would call another overlay. Some overlay systems were highly com-
plex, allowing multiple overlays in memory at once. The overlays were kept on
the disk and swapped in and out of memory by the operating system, dynamically,
as needed.

Although the actual work of swapping overlays in and out was done by the sys-
tem, the decision of how to split the program into pieces had to be done by the
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programmer. Splitting up large programs into small, modular pieces was time
consuming and boring. It did not take long before someone thought of a way to
turn the whole job over to the computer.

The method that was devised has come to be known as virtual memory
(Fotheringham, 1961). The basic idea behind virtual memory is that the combined
size of the program, data, and stack may exceed the amount of physical memory
available for it. The operating system keeps those parts of the program currently
in use in main memory, and the rest on the disk. For example, a 512-MB program
can run on a 256-MB machine by carefully choosing which 256 MB to keep in
memory at each instant, with pieces of the program being swapped between disk
and memory as needed.

Virtual memory can also work in a multiprogramming system, with bits and
pieces of many programs in memory at once. While a program is waiting for part
of itself to be brought in, it is waiting for I/O and cannot run, so the CPU can be
given to another process, the same way as in any other multiprogramming system.

4.3.1 Paging

Most virtual memory systems use a technique called paging, which we will
now describe. On any computer, there exists a set of memory addresses that pro-
grams can produce. When a program uses an instruction like

MOV REG,1000

it does this to copy the contents of memory address 1000 to REG (or vice versa,
depending on the computer). Addresses can be generated using indexing, base
registers, segment registers, and other ways.

CPU
package

CPU

The CPU sends virtual
addresses to the MMU

The MMU sends physical
addresses to the memory

Memory
management

unit

Memory
Disk

controller

Bus

Figure 4-7. The position and function of the MMU. Here the MMU is shown
as being a part of the CPU chip because it commonly is nowadays. However,
logically it could be a separate chip and was in years gone by.
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These program-generated addresses are called virtual addresses and form the
virtual address space. On computers without virtual memory, the virtual address
is put directly onto the memory bus and causes the physical memory word with
the same address to be read or written. When virtual memory is used, the virtual
addresses do not go directly to the memory bus. Instead, they go to an MMU
(Memory Management Unit) that maps the virtual addresses onto the physical
memory addresses as illustrated in Fig. 4-7.

A very simple example of how this mapping works is shown in Fig. 4-8. In
this example, we have a computer that can generate 16-bit addresses, from 0 up to
64K. These are the virtual addresses. This computer, however, has only 32 KB
of physical memory, so although 64-KB programs can be written, they cannot be
loaded into memory in their entirety and run. A complete copy of a program’s
memory image, up to 64 KB, must be present on the disk, however, so that pieces
can be brought in as needed.

The virtual address space is divided up into units called pages. The corre-
sponding units in the physical memory are called page frames. The pages and
page frames are always the same size. In this example they are 4 KB, but page
sizes from 512 bytes to 1 MB have been used in real systems. With 64 KB of vir-
tual address space and 32 KB of physical memory, we get 16 virtual pages and 8
page frames. Transfers between RAM and disk are always in units of a page.

When the program tries to access address 0, for example, using the instruction

MOV REG,0

virtual address 0 is sent to the MMU. The MMU sees that this virtual address falls
in page 0 (0 to 4095), which according to its mapping is page frame 2 (8192 to
12287). It thus transforms the address to 8192 and outputs address 8192 onto the
bus. The memory knows nothing at all about the MMU and just sees a request for
reading or writing address 8192, which it honors. Thus, the MMU has effectively
mapped all virtual addresses between 0 and 4095 onto physical addresses 8192 to
12287.

Similarly, an instruction

MOV REG,8192

is effectively transformed into

MOV REG,24576

because virtual address 8192 is in virtual page 2 and this page is mapped onto
physical page frame 6 (physical addresses 24576 to 28671). As a third example,
virtual address 20500 is 20 bytes from the start of virtual page 5 (virtual addresses
20480 to 24575) and maps onto physical address 12288 + 20 = 12308.

By itself, this ability to map the 16 virtual pages onto any of the eight page
frames by setting the MMU’s map appropriately does not solve the problem that
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Figure 4-8. The relation between virtual addresses and physical memory ad-
dresses is given by the page table.

the virtual address space is larger than the physical memory. Since we have only
eight physical page frames, only eight of the virtual pages in Fig. 4-8 are mapped
onto physical memory. The others, shown as crosses in the figure, are not map-
ped. In the actual hardware, a present/absent bit keeps track of which pages are
physically present in memory.

What happens if the program tries to use an unmapped page, for example, by
using the instruction

MOV REG,32780

which is byte 12 within virtual page 8 (starting at 32768)? The MMU notices that
the page is unmapped (indicated by a cross in the figure) and causes the CPU to
trap to the operating system. This trap is called a page fault. The operating sys-
tem picks a little-used page frame and writes its contents back to the disk. It then
fetches the page just referenced into the page frame just freed, changes the map,
and restarts the trapped instruction.

For example, if the operating system decided to evict page frame 1, it would
load virtual page 8 at physical address 4K and make two changes to the MMU
map. First, it would mark virtual page 1’s entry as unmapped, to trap any future
accesses to virtual addresses between 4K and 8K. Then it would replace the cross
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in virtual page 8’s entry with a 1, so that when the trapped instruction is re-
executed, it will map virtual address 32780 onto physical address 4108.

Now let us look inside the MMU to see how it works and why we have
chosen to use a page size that is a power of 2. In Fig. 4-9 we see an example of a
virtual address, 8196 (0010000000000100 in binary), being mapped using the
MMU map of Fig. 4-8. The incoming 16-bit virtual address is split into a 4-bit
page number and a 12-bit offset. With 4 bits for the page number, we can have 16
pages, and with 12 bits for the offset, we can address all 4096 bytes within a page.
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Figure 4-9. The internal operation of the MMU with 16 4-KB pages.

The page number is used as an index into the page table, yielding the number
of the page frame corresponding to that virtual page. If the present/absent bit is 0,
a trap to the operating system is caused. If the bit is 1, the page frame number
found in the page table is copied to the high-order 3 bits of the output register,
along with the 12-bit offset, which is copied unmodified from the incoming virtual
address. Together they form a 15-bit physical address. The output register is then
put onto the memory bus as the physical memory address.
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4.3.2 Page Tables

In the simplest case, the mapping of virtual addresses onto physical addresses
is as we have just described it. The virtual address is split into a virtual page
number (high-order bits) and an offset (low-order bits). For example, with a 16-
bit address and a 4-KB page size, the upper 4 bits could specify one of the 16 vir-
tual pages and the lower 12 bits would then specify the byte offset (0 to 4095)
within the selected page. However a split with 3 or 5 or some other number of
bits for the page is also possible. Different splits imply different page sizes.

The virtual page number is used as an index into the page table to find the
entry for that virtual page. From the page table entry, the page frame number (if
any) is found. The page frame number is attached to the high-order end of the
offset, replacing the virtual page number, to form a physical address that can be
sent to the memory.

The purpose of the page table is to map virtual pages onto page frames.
Mathematically speaking, the page table is a function, with the virtual page
number as argument and the physical frame number as result. Using the result of
this function, the virtual page field in a virtual address can be replaced by a page
frame field, thus forming a physical memory address.

Despite this simple description, two major issues must be faced:

1. The page table can be extremely large.

2. The mapping must be fast.

The first point follows from the fact that modern computers use virtual addresses
of at least 32 bits. With, say, a 4-KB page size, a 32-bit address space has 1 mil-
lion pages, and a 64-bit address space has more than you want to contemplate.
With 1 million pages in the virtual address space, the page table must have 1 mil-
lion entries. And remember that each process needs its own page table (because it
has its own virtual address space).

The second point is a consequence of the fact that the virtual-to-physical map-
ping must be done on every memory reference. A typical instruction has an
instruction word, and often a memory operand as well. Consequently, it is neces-
sary to make one, two, or sometimes more page table references per instruction.
If an instruction takes, say, 1 nsec, the page table lookup must be done in under
250 psec to avoid becoming a major bottleneck.

The need for large, fast page mapping is a significant constraint on the way
computers are built. Although the problem is most serious with top-of-the-line
machines that must be very fast, it is also an issue at the low end as well, where
cost and the price/performance ratio are critical In this section and the following
ones, we will look at page table design in detail and show a number of hardware
solutions that have been used in actual computers.
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The simplest design (at least conceptually) is to have a single page table con-
sisting of an array of fast hardware registers, with one entry for each virtual page,
indexed by virtual page number, as shown in Fig. 4-9. When a process is started
up, the operating system loads the registers with the process’ page table, taken
from a copy kept in main memory. During process execution, no more memory
references are needed for the page table. The advantages of this method are that it
is straightforward and requires no memory references during mapping. A disad-
vantage is that it is potentially expensive (if the page table is large). Also, having
to load the full page table at every context switch hurts performance.

At the other extreme, the page table can be entirely in main memory. All the
hardware needs then is a single register that points to the start of the page table.
This design allows the memory map to be changed at a context switch by reload-
ing one register. Of course, it has the disadvantage of requiring one or more
memory references to read page table entries during the execution of each instruc-
tion. For this reason, this approach is rarely used in its most pure form, but below
we will study some variations that have much better performance.

Multilevel Page Tables

To get around the problem of having to store huge page tables in memory all
the time, many computers use a multilevel page table. A simple example is
shown in Fig. 4-10. In Fig. 4-10(a) we have a 32-bit virtual address that is parti-
tioned into a 10-bit PT1 field, a 10-bit PT2 field, and a 12-bit Offset field. Since
offsets are 12 bits, pages are 4 KB, and there are a total of 220 of them.

The secret to the multilevel page table method is to avoid keeping all the page
tables in memory all the time. In particular, those that are not needed should not
be kept around. Suppose, for example, that a process needs 12 megabytes, the
bottom 4 megabytes of memory for program text, the next 4 megabytes for data,
and the top 4 megabytes for the stack. In between the top of the data and the bot-
tom of the stack is a gigantic hole that is not used.

In Fig. 4-10(b) we see how the two-level page table works in this example.
On the left we have the top-level page table, with 1024 entries, corresponding to
the 10-bit PT1 field. When a virtual address is presented to the MMU, it first
extracts the PT1 field and uses this value as an index into the top-level page table.
Each of these 1024 entries represents 4M because the entire 4-gigabyte (i.e., 32-
bit) virtual address space has been chopped into chunks of 1024 bytes.

The entry located by indexing into the top-level page table yields the address
or the page frame number of a second-level page table. Entry 0 of the top-level
page table points to the page table for the program text, entry 1 points to the page
table for the data, and entry 1023 points to the page table for the stack. The other
(shaded) entries are not used. The PT2 field is now used as an index into the
selected second-level page table to find the page frame number for the page itself.
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Figure 4-10. (a) A 32-bit address with two page table fields. (b) Two-level
page tables.

As an example, consider the 32-bit virtual address 0x00403004 (4,206,596
decimal), which is 12,292 bytes into the data. This virtual address corresponds to
PT 1 = 1, PT 2 = 2, and Offset = 4. The MMU first uses PT1 to index into the
top-level page table and obtain entry 1, which corresponds to addresses 4M to 8M.
It then uses PT2 to index into the second-level page table just found and extract
entry 3, which corresponds to addresses 12,288 to 16,383 within its 4M chunk
(i.e., absolute addresses 4,206,592 to 4,210,687). This entry contains the page
frame number of the page containing virtual address 0x00403004. If that page is
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not in memory, the present/absent bit in the page table entry will be zero, causing
a page fault. If the page is in memory, the page frame number taken from the
second-level page table is combined with the offset (4) to construct a physical
address. This address is put on the bus and sent to memory.

The interesting thing to note about Fig. 4-10 is that although the address space
contains over a million pages, only four page tables are actually needed: the top-
level table, the second-level tables for 0 to 4M, 4M to 8M, and the top 4M. The
present/absent bits in 1021 entries of the top-level page table are set to 0, forcing
a page fault if they are ever accessed. Should this occur, the operating system
will notice that the process is trying to reference memory that it is not supposed to
and will take appropriate action, such as sending it a signal or killing it. In this
example we have chosen round numbers for the various sizes and have picked
PT1 equal to PT2 but in actual practice other values are also possible, of course.

The two-level page table system of Fig. 4-10 can be expanded to three, four,
or more levels. Additional levels give more flexibility, but it is doubtful that the
additional complexity is worth it beyond two levels.

Structure of a Page Table Entry

Let us now turn from the structure of the page tables in the large, to the details
of a single page table entry. The exact layout of an entry is highly machine
dependent, but the kind of information present is roughly the same from machine
to machine. In Fig. 4-11 we give a sample page table entry. The size varies from
computer to computer, but 32 bits is a common size. The most important field is
the page frame number. After all, the goal of the page mapping is to locate this
value. Next to it we have the present/absent bit. If this bit is 1, the entry is valid
and can be used. If it is 0, the virtual page to which the entry belongs is not
currently in memory. Accessing a page table entry with this bit set to 0 causes a
page fault.

Caching
disabled Modified Present/absent

Page frame number

Referenced Protection

�
�

Figure 4-11. A typical page table entry.

The protection bits tell what kinds of access are permitted. In the simplest
form, this field contains 1 bit, with 0 for read/write and 1 for read only. A more
sophisticated arrangement is having 3 independent bits, one bit each for individu-
ally enabling reading, writing, and executing the page.
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The modified and referenced bits keep track of page usage. When a page is
written to, the hardware automatically sets the modified bit. This bit is used when
the operating system decides to reclaim a page frame. If the page in it has been
modified (i.e., is ‘‘dirty’’), it must be written back to the disk. If it has not been
modified (i.e., is ‘‘clean’’), it can just be abandoned, since the disk copy is still
valid. The bit is sometimes called the dirty bit, since it reflects the page’s state.

The referenced bit is set whenever a page is referenced, either for reading or
writing. Its value is to help the operating system choose a page to evict when a
page fault occurs. Pages that are not being used are better candidates than pages
that are, and this bit plays an important role in several of the page replacement
algorithms that we will study later in this chapter.

Finally, the last bit allows caching to be disabled for the page. This feature is
important for pages that map onto device registers rather than memory. If the
operating system is sitting in a tight loop waiting for some I/O device to respond
to a command it was just given, it is essential that the hardware keep fetching the
word from the device, and not use an old cached copy. With this bit, caching can
be turned off. Machines that have a separate I/O space and do not use memory
mapped I/O do not need this bit.

Note that the disk address used to hold the page when it is not in memory is
not part of the page table. The reason is simple. The page table holds only that
information the hardware needs to translate a virtual address to a physical address.
Information the operating system needs to handle page faults is kept in software
tables inside the operating system. The hardware does not need it.

4.3.3 TLBs—Translation Lookaside Buffers

In most paging schemes, the page tables are kept in memory, due to their
large size. Potentially, this design has an enormous impact on performance. Con-
sider, for example, an instruction that copies one register to another. In the ab-
sence of paging, this instruction makes only one memory reference, to fetch the
instruction. With paging, additional memory references will be needed to access
the page table. Since execution speed is generally limited by the rate the CPU can
get instructions and data out of the memory, having to make two page table refer-
ences per memory reference reduces performance by 2/3. Under these conditions,
no one would use it.

Computer designers have known about this problem for years and have come
up with a solution. Their solution is based on the observation that most programs
tend to make a large number of references to a small number of pages, and not the
other way around. Thus only a small fraction of the page table entries are heavily
read; the rest are barely used at all. This is an example of locality of reference, a
concept we will come back to in a later section.

The solution that has been devised is to equip computers with a small hard-
ware device for rapidly mapping virtual addresses to physical addresses without
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going through the page table. The device, called a TLB (Translation Lookaside
Buffer) or sometimes an associative memory, is illustrated in Fig. 4-12. It is
usually inside the MMU and consists of a small number of entries, eight in this
example, but rarely more than 64. Each entry contains information about one
page, including the virtual page number, a bit that is set when the page is modi-
fied, the protection code (read/write/execute permissions), and the physical page
frame in which the page is located. These fields have a one-to-one correspon-
dence with the fields in the page table. Another bit indicates whether the entry is
valid (i.e., in use) or not.

���������������������������������������������������������
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Figure 4-12. A TLB to speed up paging.

An example that might generate the TLB of Fig. 4-12 is a process in a loop
that spans virtual pages 19, 20, and 21, so these TLB entries have protection codes
for reading and executing. The main data currently being used (say, an array
being processed) are on pages 129 and 130. Page 140 contains the indices used in
the array calculations. Finally, the stack is on pages 860 and 861.

Let us now see how the TLB functions. When a virtual address is presented
to the MMU for translation, the hardware first checks to see if its virtual page
number is present in the TLB by comparing it to all the entries simultaneously
(i.e., in parallel). If a valid match is found and the access does not violate the pro-
tection bits, the page frame is taken directly from the TLB, without going to the
page table. If the virtual page number is present in the TLB but the instruction is
trying to write on a read-only page, a protection fault is generated, the same way
as it would be from the page table itself.

The interesting case is what happens when the virtual page number is not in
the TLB. The MMU detects the miss and does an ordinary page table lookup. It
then evicts one of the entries from the TLB and replaces it with the page table
entry just looked up. Thus if that page is used again soon, the second time around
it will result in a hit rather than a miss. When an entry is purged from the TLB,
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the modified bit is copied back into the page table entry in memory. The other
values are already there. When the TLB is loaded from the page table, all the
fields are taken from memory.

Software TLB Management

Up until now, we have assumed that every machine with paged virtual mem-
ory has page tables recognized by the hardware, plus a TLB. In this design, TLB
management and handling TLB faults are done entirely by the MMU hardware.
Traps to the operating system occur only when a page is not in memory.

In the past, this assumption was true. However, many modern RISC ma-
chines, including the SPARC, MIPS, HP PA, and PowerPC, do nearly all of this
page management in software. On these machines, the TLB entries are explicitly
loaded by the operating system. When a TLB miss occurs, instead of the MMU
just going to the page tables to find and fetch the needed page reference, it just
generates a TLB fault and tosses the problem into the lap of the operating system.
The system must find the page, remove an entry from the TLB, enter the new one,
and restart the instruction that faulted. And, of course, all of this must be done in
a handful of instructions because TLB misses occur much more frequently than
page faults.

Surprisingly enough, if the TLB is reasonably large (say, 64 entries) to reduce
the miss rate, software management of the TLB turns out to be acceptably effi-
cient. The main gain here is a much simpler MMU, which frees up a considerable
amount of area on the CPU chip for caches and other features that can improve
performance. Software TLB management is discussed by Uhlig et al. (1994).

Various strategies have been developed to improve performance on machines
that do TLB management in software. One approach attacks both reducing TLB
misses and reducing the cost of a TLB miss when it does occur (Bala et al., 1994).
To reduce TLB misses, sometimes the operating system can use its intuition to
figure out which pages are likely to be used next and to preload entries for them in
the TLB. For example, when a client process sends a message to a server process
on the same machine, it is very likely that the server will have to run soon.
Knowing this, while processing the trap to do the send, the system can also check
to see where the server’s code, data, and stack pages are and map them in before
they can cause TLB faults.

The normal way to process a TLB miss, whether in hardware or in software,
is to go to the page table and perform the indexing operations to locate the page
referenced. The problem with doing this search in software is that the pages hold-
ing the page table may not be in the TLB, which will cause additional TLB faults
during the processing. These faults can be reduced by maintaining a large (e.g.,
4-KB or larger) software cache of TLB entries in a fixed location whose page is
always kept in the TLB. By first checking the software cache, the operating sys-
tem can substantially reduce the number of TLB misses.
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4.3.4 Inverted Page Tables

Traditional page tables of the type described so far require one entry per vir-
tual page, since they are indexed by virtual page number. If the address space
consists of 232 bytes, with 4096 bytes per page, then over 1 million page table
entries are needed. As a bare minimum, the page table will have to be at least 4
megabytes. On large systems, this size is probably doable.

However, as 64-bit computers become more common, the situation changes
drastically. If the address space is now 264 bytes, with 4-KB pages, we need a
page table with 252 entries. If each entry is 8 bytes, the table is over 30 million
gigabytes. Tying up 30 million gigabytes just for the page table is not doable, not
now and not for years to come, if ever. Consequently, a different solution is
needed for 64-bit paged virtual address spaces.

One such solution is the inverted page table. In this design, there is one
entry per page frame in real memory, rather than one entry per page of virtual
address space. For example, with 64-bit virtual addresses, a 4-KB page, and 256
MB of RAM, an inverted page table only requires 65,536 entries. The entry keeps
track of which (process, virtual page) is located in the page frame.

Although inverted page tables save vast amounts of space, at least when the
virtual address space is much larger than the physical memory, they have a seri-
ous downside: virtual-to-physical translation becomes much harder. When proc-
ess n references virtual page p, the hardware can no longer find the physical page
by using p as an index into the page table. Instead, it must search the entire
inverted page table for an entry (n, p). Furthermore, this search must be done on
every memory reference, not just on page faults. Searching a 64K table on every
memory reference is definitely not a good way to make your machine blindingly
fast.

The way out of this dilemma is to use the TLB. If the TLB can hold all of the
heavily used pages, translation can happen just as fast as with regular page tables.
On a TLB miss, however, the inverted page table has to be searched in software.
One feasible way to accomplish this search is to have a hash table hashed on the
virtual address. All the virtual pages currently in memory that have the same hash
value are chained together, as shown in Fig. 4-13. If the hash table has as many
slots as the machine has physical pages, the average chain will be only one entry
long, greatly speeding up the mapping. Once the page frame number has been
found, the new (virtual, physical) pair is entered into the TLB and the faulting
instruction restarted.

Inverted page tables are currently used on IBM, Sun, and Hewlett-Packard
workstations and will become more common as 64-bit machines become wide-
spread. Inverted page tables are essential on this machines. Other approaches to
handling large virtual memories can be found in Huck and Hays (1993), Talluri
and Hill (1994), and Talluri et al. (1995). Some hardware issues in implementa-
tion of virtual memory are discussed by Jacob and Mudge (1998).
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Figure 4-13. Comparison of a traditional page table with an inverted page table.

4.4 PAGE REPLACEMENT ALGORITHMS

When a page fault occurs, the operating system has to choose a page to re-
move from memory to make room for the page that has to be brought in. If the
page to be removed has been modified while in memory, it must be rewritten to
the disk to bring the disk copy up to date. If, however, the page has not been
changed (e.g., it contains program text), the disk copy is already up to date, so no
rewrite is needed. The page to be read in just overwrites the page being evicted.

While it would be possible to pick a random page to evict at each page fault,
system performance is much better if a page that is not heavily used is chosen. If
a heavily used page is removed, it will probably have to be brought back in
quickly, resulting in extra overhead. Much work has been done on the subject of
page replacement algorithms, both theoretical and experimental. Below we will
describe some of the most important algorithms.

It is worth noting that the problem of ‘‘page replacement’’ occurs in other
areas of computer design as well. For example, most computers have one or more
memory caches consisting of recently used 32-byte or 64-byte memory blocks.
When the cache is full, some block has to be chosen for removal. This problem is
precisely the same as page replacement except on a shorter time scale (it has to be
done in a few nanoseconds, not milliseconds as with page replacement). The rea-
son for the shorter time scale is that cache block misses are satisfied from main
memory, which has no seek time and no rotational latency.

A second example is in a web browser. The browser keeps copies of previ-
ously accessed web pages in its cache on the disk. Usually, the maximum cache
size is fixed in advance, so the cache is likely to be full if the browser is used a
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lot. Whenever a web page is referenced, a check is made to see if a copy is in the
cache and if so, if the page on the web is newer. If the cached copy is up to date,
it is used; otherwise, a fresh copy is fetched from the Web. If the page is not in
the cache at all or a newer version is available, it is downloaded. If it is a newer
copy of a cached page it replaces the one in the cache. When the cache is full a
decision has to be made to evict some other page in the case of a new page or a
page that is larger than an older version. The considerations are similar to pages
of virtual memory, except for the fact that the Web pages are never modified in
the cache and thus are never written back to the web server. In a virtual memory
system, pages in main memory may be either clean or dirty.

4.4.1 The Optimal Page Replacement Algorithm

The best possible page replacement algorithm is easy to describe but impossi-
ble to implement. It goes like this. At the moment that a page fault occurs, some
set of pages is in memory. One of these pages will be referenced on the very next
instruction (the page containing that instruction). Other pages may not be refer-
enced until 10, 100, or perhaps 1000 instructions later. Each page can be labeled
with the number of instructions that will be executed before that page is first
referenced.

The optimal page algorithm simply says that the page with the highest label
should be removed. If one page will not be used for 8 million instructions and
another page will not be used for 6 million instructions, removing the former
pushes the page fault that will fetch it back as far into the future as possible.
Computers, like people, try to put off unpleasant events for as long as they can.

The only problem with this algorithm is that it is unrealizable. At the time of
the page fault, the operating system has no way of knowing when each of the
pages will be referenced next. (We saw a similar situation earlier with the
shortest-job-first scheduling algorithm—how can the system tell which job is
shortest?) Still, by running a program on a simulator and keeping track of all page
references, it is possible to implement optimal page replacement on the second
run by using the page reference information collected during the first run.

In this way it is possible to compare the performance of realizable algorithms
with the best possible one. If an operating system achieves a performance of, say,
only 1 percent worse than the optimal algorithm, effort spent in looking for a
better algorithm will yield at most a 1 percent improvement.

To avoid any possible confusion, it should be made clear that this log of page
references refers only to the one program just measured and then with only one
specific input. The page replacement algorithm derived from it is thus specific to
that one program and input data. Although this method is useful for evaluating
page replacement algorithms, it is of no use in practical systems. Below we will
study algorithms that are useful on real systems.
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4.4.2 The Not Recently Used Page Replacement Algorithm

In order to allow the operating system to collect useful statistics about which
pages are being used and which ones are not, most computers with virtual mem-
ory have two status bits associated with each page. R is set whenever the page is
referenced (read or written). M is set when the page is written to (i.e., modified).
The bits are contained in each page table entry, as shown in Fig. 4-11. It is impor-
tant to realize that these bits must be updated on every memory reference, so it is
essential that they be set by the hardware. Once a bit has been set to 1, it stays 1
until the operating system resets it to 0 in software.

If the hardware does not have these bits, they can be simulated as follows.
When a process is started up, all of its page table entries are marked as not in
memory. As soon as any page is referenced, a page fault will occur. The operat-
ing system then sets the R bit (in its internal tables), changes the page table entry
to point to the correct page, with mode READ ONLY, and restarts the instruction.
If the page is subsequently written on, another page fault will occur, allowing the
operating system to set the M bit as well and change the page’s mode to
READ/WRITE.

The R and M bits can be used to build a simple paging algorithm as follows.
When a process is started up, both page bits for all its pages are set to 0 by the
operating system. Periodically (e.g., on each clock interrupt), the R bit is cleared,
to distinguish pages that have not been referenced recently from those that have
been.

When a page fault occurs, the operating system inspects all the pages and
divides them into four categories based on the current values of their R and M
bits:

Class 0: not referenced, not modified.
Class 1: not referenced, modified.
Class 2: referenced, not modified.
Class 3: referenced, modified.

Although class 1 pages seem, at first glance, impossible, they occur when a class
3 page has its R bit cleared by a clock interrupt. Clock interrupts do not clear the
M bit because this information is needed to know whether the page has to be
rewritten to disk or not. Clearing R but not M leads to a class 1 page.

The NRU (Not Recently Used) algorithm removes a page at random from the
lowest numbered nonempty class. Implicit in this algorithm is that it is better to
remove a modified page that has not been referenced in at least one clock tick
(typically 20 msec) than a clean page that is in heavy use. The main attraction of
NRU is that it is easy to understand, moderately efficient to implement, and gives
a performance that, while certainly not optimal, may be adequate.
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4.4.3 The First-In, First-Out (FIFO) Page Replacement Algorithm

Another low-overhead paging algorithm is the FIFO (First-In, First-Out)
algorithm. To illustrate how this works, consider a supermarket that has enough
shelves to display exactly k different products. One day, some company intro-
duces a new convenience food—instant, freeze-dried, organic yogurt that can be
reconstituted in a microwave oven. It is an immediate success, so our finite
supermarket has to get rid of one old product in order to stock it.

One possibility is to find the product that the supermarket has been stocking
the longest (i.e., something it began selling 120 years ago) and get rid of it on the
grounds that no one is interested any more. In effect, the supermarket maintains a
linked list of all the products it currently sells in the order they were introduced.
The new one goes on the back of the list; the one at the front of the list is dropped.

As a page replacement algorithm, the same idea is applicable. The operating
system maintains a list of all pages currently in memory, with the page at the head
of the list the oldest one and the page at the tail the most recent arrival. On a page
fault, the page at the head is removed and the new page added to the tail of the
list. When applied to stores, FIFO might remove mustache wax, but it might also
remove flour, salt, or butter. When applied to computers the same problem arises.
For this reason, FIFO in its pure form is rarely used.

4.4.4 The Second Chance Page Replacement Algorithm

A simple modification to FIFO that avoids the problem of throwing out a
heavily used page is to inspect the R bit of the oldest page. If it is 0, the page is
both old and unused, so it is replaced immediately. If the R bit is 1, the bit is
cleared, the page is put onto the end of the list of pages, and its load time is
updated as though it had just arrived in memory. Then the search continues.

The operation of this algorithm, called second chance, is shown in Fig. 4-14.
In Fig. 4-14(a) we see pages A through H kept on a linked list and sorted by the
time they arrived in memory.

Suppose that a page fault occurs at time 20. The oldest page is A, which
arrived at time 0, when the process started. If A has the R bit cleared, it is evicted
from memory, either by being written to the disk (if it is dirty), or just abandoned
(if it is clean). On the other hand, if the R bit is set, A is put onto the end of the
list and its ‘‘load time’’ is reset to the current time (20). The R bit is also cleared.
The search for a suitable page continues with B.

What second chance is doing is looking for an old page that has not been
referenced in the previous clock interval. If all the pages have been referenced,
second chance degenerates into pure FIFO. Specifically, imagine that all the
pages in Fig. 4-14(a) have their R bits set. One by one, the operating system
moves the pages to the end of the list, clearing the R bit each time it appends a
page to the end of the list. Eventually, it comes back to page A, which now has its
R bit cleared. At this point A is evicted. Thus the algorithm always terminates.
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Figure 4-14. Operation of second chance. (a) Pages sorted in FIFO order. (b)
Page list if a page fault occurs at time 20 and A has its R bit set. The numbers
above the pages are their loading times.

4.4.5 The Clock Page Replacement Algorithm

Although second chance is a reasonable algorithm, it is unnecessarily ineffi-
cient because it is constantly moving pages around on its list. A better approach
is to keep all the page frames on a circular list in the form of a clock, as shown in
Fig. 4-15. A hand points to the oldest page.

When a page fault occurs,
the page the hand is
pointing to is inspected.
The action taken depends
on the R bit:
   R = 0: Evict the page
   R = 1: Clear R and advance hand

A
B

C

D

E

F
G

H

I

J

K

L

Figure 4-15. The clock page replacement algorithm.

When a page fault occurs, the page being pointed to by the hand is inspected.
If its R bit is 0, the page is evicted, the new page is inserted into the clock in its
place, and the hand is advanced one position. If R is 1, it is cleared and the hand
is advanced to the next page. This process is repeated until a page is found with
R = 0. Not surprisingly, this algorithm is called clock. It differs from second
chance only in the implementation, not in the page selected.
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4.4.6 The Least Recently Used (LRU) Page Replacement Algorithm

A good approximation to the optimal algorithm is based on the observation
that pages that have been heavily used in the last few instructions will probably be
heavily used again in the next few. Conversely, pages that have not been used for
ages will probably remain unused for a long time. This idea suggests a realizable
algorithm: when a page fault occurs, throw out the page that has been unused for
the longest time. This strategy is called LRU (Least Recently Used) paging.

Although LRU is theoretically realizable, it is not cheap. To fully implement
LRU, it is necessary to maintain a linked list of all pages in memory, with the
most recently used page at the front and the least recently used page at the rear.
The difficulty is that the list must be updated on every memory reference. Find-
ing a page in the list, deleting it, and then moving it to the front is a very time-
consuming operation, even in hardware (assuming that such hardware could be
built).

However, there are other ways to implement LRU with special hardware. Let
us consider the simplest way first. This method requires equipping the hardware
with a 64-bit counter, C, that is automatically incremented after each instruction.
Furthermore, each page table entry must also have a field large enough to contain
the counter. After each memory reference, the current value of C is stored in the
page table entry for the page just referenced. When a page fault occurs, the
operating system examines all the counters in the page table to find the lowest
one. That page is the least recently used.

Now let us look at a second hardware LRU algorithm. For a machine with n
page frames, the LRU hardware can maintain a matrix of n × n bits, initially all
zero. Whenever page frame k is referenced, the hardware first sets all the bits of
row k to 1, then sets all the bits of column k to 0. At any instant, the row whose
binary value is lowest is the least recently used, the row whose value is next
lowest is next least recently used, and so forth. The workings of this algorithm
are given in Fig. 4-16 for four page frames and page references in the order

0 1 2 3 2 1 0 3 2 3

After page 0 is referenced, we have the situation of Fig. 4-16(a). After page 1 is
referenced, we have the situation of Fig. 4-16(b), and so forth.

4.4.7 Simulating LRU in Software

Although both of the previous LRU algorithms are realizable in principle,
few, if any, machines have this hardware, so they are of little use to the operating
system designer who is making a system for a machine that does not have this
hardware. Instead, a solution that can be implemented in software is needed. One
possible software solution is called the NFU (Not Frequently Used) algorithm.
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Figure 4-16. LRU using a matrix when pages are referenced in the order 0, 1,
2, 3, 2, 1, 0, 3, 2, 3.

It requires a software counter associated with each page, initially zero. At each
clock interrupt, the operating system scans all the pages in memory. For each
page, the R bit, which is 0 or 1, is added to the counter. In effect, the counters are
an attempt to keep track of how often each page has been referenced. When a
page fault occurs, the page with the lowest counter is chosen for replacement.

The main problem with NFU is that it never forgets anything. For example,
in a multipass compiler, pages that were heavily used during pass 1 may still have
a high count well into later passes. In fact, if pass 1 happens to have the longest
execution time of all the passes, the pages containing the code for subsequent
passes may always have lower counts than the pass 1 pages. Thus the operating
system will remove useful pages instead of pages no longer in use.

Fortunately, a small modification to NFU makes it able to simulate LRU quite
well. The modification has two parts. First, the counters are each shifted right 1
bit before the R bit is added in. Second, the R bit is added to the leftmost, rather
than the rightmost bit.

Figure 4-17 illustrates how the modified algorithm, known as aging, works.
Suppose that after the first clock tick the R bits for pages 0 to 5 have the values 1,
0, 1, 0, 1, and 1, respectively (page 0 is 1, page 1 is 0, page 2 is 1, etc.). In other
words, between tick 0 and tick 1, pages 0, 2, 4, and 5 were referenced, setting
their R bits to 1, while the other ones remain 0. After the six corresponding
counters have been shifted and the R bit inserted at the left, they have the values
shown in Fig. 4-17(a). The four remaining columns show the values of the six
counters after the next four clock ticks, respectively.
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Figure 4-17. The aging algorithm simulates LRU in software. Shown are six
pages for five clock ticks. The five clock ticks are represented by (a) to (e).

When a page fault occurs, the page whose counter is the lowest is removed. It
is clear that a page that has not been referenced for, say, four clock ticks will have
four leading zeros in its counter and thus will have a lower value than a counter
that has not been referenced for three clock ticks.

This algorithm differs from LRU in two ways. Consider pages 3 and 5 in
Fig. 4-17(e). Neither has been referenced for two clock ticks; both were refer-
enced in the tick prior to that. According to LRU, if a page must be replaced, we
should choose one of these two. The trouble is, we do not know which of these
two was referenced last in the interval between tick 1 and tick 2. By recording
only one bit per time interval, we have lost the ability to distinguish references
early in the clock interval from those occurring later. All we can do is remove
page 3, because page 5 was also referenced two ticks earlier and page 3 was not
referenced then.

The second difference between LRU and aging is that in aging the counters
have a finite number of bits, 8 bits in this example. Suppose that two pages each
have a counter value of 0. All we can do is pick one of them at random. In real-
ity, it may well be that one of the pages was last referenced 9 ticks ago and the
other was last referenced 1000 ticks ago. We have no way of seeing that. In
practice, however, 8 bits is generally enough if a clock tick is around 20 msec. If
a page has not been referenced in 160 msec, it probably is not that important.
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4.5 DESIGN ISSUES FOR PAGING SYSTEMS

In the previous sections we have explained how paging works and have given
a few of the basic page replacement algorithms and shown how to model them.
But knowing the bare mechanics is not enough. To design a system, you have to
know a lot more to make it work well. It is like the difference between knowing
how to move the rook, knight, and other pieces in chess, and being a good player.
In the following sections, we will look at other issues that operating system de-
signers must consider in order to get good performance from a paging system.

4.5.1 The Working Set Model

In the purest form of paging, processes are started up with none of their pages
in memory. As soon as the CPU tries to fetch the first instruction, it gets a page
fault, causing the operating system to bring in the page containing the first instruc-
tion. Other page faults for global variables and the stack usually follow quickly.
After a while, the process has most of the pages it needs and settles down to run
with relatively few page faults. This strategy is called demand paging because
pages are loaded only on demand, not in advance.

Of course, it is easy enough to write a test program that systematically reads
all the pages in a large address space, causing so many page faults that there is not
enough memory to hold them all. Fortunately, most processes do not work this
way. They exhibit a locality of reference, meaning that during any phase of exe-
cution, the process references only a relatively small fraction of its pages. Each
pass of a multipass compiler, for example, references only a fraction of the pages,
and a different fraction at that. The concept of locality of reference is widely
applicable in computer science, for a history see Denning (2005).

The set of pages that a process is currently using is called its working set
(Denning, 1968a; Denning, 1980). If the entire working set is in memory, the
process will run without causing many faults until it moves into another execution
phase (e.g., the next pass of the compiler). If the available memory is too small to
hold the entire working set, the process will cause numerous page faults and run
slowly since executing an instruction takes a few nanoseconds and reading in a
page from the disk typically takes 10 milliseconds. At a rate of one or two in-
structions per 10 milliseconds, it will take ages to finish. A program causing page
faults every few instructions is said to be thrashing (Denning, 1968b).

In a multiprogramming system, processes are frequently moved to disk (i.e.,
all their pages are removed from memory) to let other processes have a turn at the
CPU. The question arises of what to do when a process is brought back in again.
Technically, nothing need be done. The process will just cause page faults until
its working set has been loaded. The problem is that having 20, 100, or even 1000
page faults every time a process is loaded is slow, and it also wastes considerable
CPU time, since it takes the operating system a few milliseconds of CPU time to
process a page fault, not to mention a fair amount of disk I/O.
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Therefore, many paging systems try to keep track of each process’ working
set and make sure that it is in memory before letting the process run. This
approach is called the working set model (Denning, 1970). It is designed to
greatly reduce the page fault rate. Loading the pages before letting processes run
is also called prepaging. Note that the working set changes over time.

It has long been known that most programs do not reference their address
space uniformly Instead the references tend to cluster on a small number of pages.
A memory reference may fetch an instruction, it may fetch data, or it may store
data. At any instant of time, t, there exists a set consisting of all the pages used by
the k most recent memory references. This set, w(k, t), is the working set.
Because a larger value of k means looking further into the past, the number of
pages counted as part of the working set cannot decrease as k is made larger. So
w(k, t) is a monotonically nondecreasing function of k. The limit of w(k, t) as k
becomes large is finite because a program cannot reference more pages than its
address space contains, and few programs will use every single page. Figure 4-18
depicts the size of the working set as a function of k.

w(k,t)

k

Figure 4-18. The working set is the set of pages used by the k most recent
memory references. The function w(k, t) is the size of the working set at time t.

The fact that most programs randomly access a small number of pages, but
that this set changes slowly in time explains the initial rapid rise of the curve and
then the slow rise for large k. For example, a program that is executing a loop
occupying two pages using data on four pages, may reference all six pages every
1000 instructions, but the most recent reference to some other page may be a mil-
lion instructions earlier, during the initialization phase. Due to this asymptotic
behavior, the contents of the working set is not sensitive to the value of k chosen.
To put it differently, there exists a wide range of k values for which the working
set is unchanged. Because the working set varies slowly with time, it is possible
to make a reasonable guess as to which pages will be needed when the program is
restarted on the basis of its working set when it was last stopped. Prepaging con-
sists of loading these pages before the process is allowed to run again.
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To implement the working set model, it is necessary for the operating system
to keep track of which pages are in the working set. One way to monitor this
information is to use the aging algorithm discussed above. Any page containing a
1 bit among the high order n bits of the counter is considered to be a member of
the working set. If a page has not been referenced in n consecutive clock ticks, it
is dropped from the working set. The parameter n has to be determined experi-
mentally for each system, but the system performance is usually not especially
sensitive to the exact value.

Information about the working set can be used to improve the performance of
the clock algorithm. Normally, when the hand points to a page whose R bit is 0,
the page is evicted. The improvement is to check to see if that page is part of the
working set of the current process. If it is, the page is spared. This algorithm is
called wsclock.

4.5.2 Local versus Global Allocation Policies

In the preceding sections we have discussed several algorithms for choosing a
page to replace when a fault occurs. A major issue associated with this choice
(which we have carefully swept under the rug until now) is how memory should
be allocated among the competing runnable processes.

Take a look at Fig. 4-19(a). In this figure, three processes, A, B, and C, make
up the set of runnable processes. Suppose A gets a page fault. Should the page
replacement algorithm try to find the least recently used page considering only the
six pages currently allocated to A, or should it consider all the pages in memory?
If it looks only at A’s pages, the page with the lowest age value is A5, so we get
the situation of Fig. 4-19(b).

On the other hand, if the page with the lowest age value is removed without
regard to whose page it is, page B3 will be chosen and we will get the situation of
Fig. 4-19(c). The algorithm of Fig. 4-19(b) is said to be a local page replacement
algorithm, whereas that of Fig. 4-19(c) is said to be a global algorithm. Local
algorithms effectively correspond to allocating every process a fixed fraction of
the memory. Global algorithms dynamically allocate page frames among the run-
nable processes. Thus the number of page frames assigned to each process varies
in time.

In general, global algorithms work better, especially when the working set
size can vary over the lifetime of a process. If a local algorithm is used and the
working set grows, thrashing will result, even if there are plenty of free page
frames. If the working set shrinks, local algorithms waste memory. If a global
algorithm is used, the system must continually decide how many page frames to
assign to each process. One way is to monitor the working set size as indicated by
the aging bits, but this approach does not necessarily prevent thrashing. The
working set may change size in microseconds, whereas the aging bits are a crude
measure spread over a number of clock ticks.
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Figure 4-19. Local versus global page replacement. (a) Original configuration.
(b) Local page replacement. (c) Global page replacement.

Another approach is to have an algorithm for allocating page frames to proc-
esses. One way is to periodically determine the number of running processes and
allocate each process an equal share. Thus with 12,416 available (i.e., nonoper-
ating system) page frames and 10 processes, each process gets 1241 frames. The
remaining 6 go into a pool to be used when page faults occur.

Although this method seems fair, it makes little sense to give equal shares of
the memory to a 10-KB process and a 300-KB process. Instead, pages can be
allocated in proportion to each process’ total size, with a 300-KB process getting
30 times the allotment of a 10-KB process. It is probably wise to give each proc-
ess some minimum number, so it can run, no matter how small it is. On some
machines, for example, a single two-operand instruction may need as many as six
pages because the instruction itself, the source operand, and the destination
operand may all straddle page boundaries. With an allocation of only five pages,
programs containing such instructions cannot execute at all.

If a global algorithm is used, it may be possible to start each process up with
some number of pages proportional to the process’ size, but the allocation has to
be updated dynamically as the processes run. One way to manage the allocation
is to use the PFF (Page Fault Frequency) algorithm. It tells when to increase or
decrease a process’ page allocation but says nothing about which page to replace
on a fault. It just controls the size of the allocation set.

For a large class of page replacement algorithms, including LRU, it is known
that the fault rate decreases as more pages are assigned, as we discussed above.
This is the assumption behind PFF. This property is illustrated in Fig. 4-20.
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Figure 4-20. Page fault rate as a function of the number of page frames assigned.

Measuring the page fault rate is straightforward: just count the number of
faults per second, possibly taking a running mean over past seconds as well. One
easy way to do this is to add the present second’s value to the current running
mean and divide by two. The dashed line marked A corresponds to a page fault
rate that is unacceptably high, so the faulting process is given more page frames to
reduce the fault rate. The dashed line marked B corresponds to a page fault rate
so low that it can be concluded that the process has too much memory. In this
case, page frames may be taken away from it. Thus, PFF tries to keep the paging
rate for each process within acceptable bounds.

If it discovers that there are so many processes in memory that it is not possi-
ble to keep all of them below A, then some process is removed from memory, and
its page frames are divided up among the remaining processes or put into a pool
of available pages that can be used on subsequent page faults. The decision to
remove a process from memory is a form of load control. It shows that even with
paging, swapping is still needed, only now swapping is used to reduce potential
demand for memory, rather than to reclaim blocks of it for immediate use. Swap-
ping processes out to relieve the load on memory is reminiscent of two-level
scheduling, in which some processes are put on disk and a short-term scheduler is
used to schedule the remaining processes. Clearly, the two ideas can be com-
bined, with just enough processes swapped out to make the page-fault rate accept-
able.

4.5.3 Page Size

The page size is often a parameter that can be chosen by the operating system.
Even if the hardware has been designed with, for example, 512-byte pages, the
operating system can easily regard pages 0 and 1, 2 and 3, 4 and 5, and so on, as
1-KB pages by always allocating two consecutive 512-byte page frames for them.

Determining the best page size requires balancing several competing factors.
As a result, there is no overall optimum. To start with, there are two factors that
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argue for a small page size. A randomly chosen text, data, or stack segment will
not fill an integral number of pages. On the average, half of the final page will be
empty. The extra space in that page is wasted. This wastage is called internal
fragmentation. With n segments in memory and a page size of p bytes, np /2
bytes will be wasted on internal fragmentation. This argues for a small page size.

Another argument for a small page size becomes apparent if we think about a
program consisting of eight sequential phases of 4 KB each. With a 32-KB page
size, the program must be allocated 32 KB all the time. With a 16-KB page size,
it needs only 16 KB. With a page size of 4 KB or smaller, it requires only 4 KB
at any instant. In general, a large page size will cause more unused program to be
in memory than a small page size.

On the other hand, small pages mean that programs will need many pages,
hence a large page table. A 32-KB program needs only four 8-KB pages, but 64
512-byte pages. Transfers to and from the disk are generally a page at a time,
with most of the time being for the seek and rotational delay, so that transferring a
small page takes almost as much time as transferring a large page. It might take
64 × 10 msec to load 64 512-byte pages, but only 4 × 10.1 msec to load four 8-KB
pages.

On some machines, the page table must be loaded into hardware registers
every time the CPU switches from one process to another. On these machines
having a small page size means that the time required to load the page registers
gets longer as the page size gets smaller. Furthermore, the space occupied by the
page table increases as the page size decreases.

This last point can be analyzed mathematically. Let the average process size
be s bytes and the page size be p bytes. Furthermore, assume that each page entry
requires e bytes. The approximate number of pages needed per process is then
s /p, occupying se /p bytes of page table space. The wasted memory in the last
page of the process due to internal fragmentation is p /2. Thus, the total overhead
due to the page table and the internal fragmentation loss is given by the sum of
these two terms:

overhead = se /p + p /2

The first term (page table size) is large when the page size is small. The
second term (internal fragmentation) is large when the page size is large. The
optimum must lie somewhere in between. By taking the first derivative with
respect to p and equating it to zero, we get the equation

−se /p 2 + 1/2 = 0

From this equation we can derive a formula that gives the optimum page size
(considering only memory wasted in fragmentation and page table size). The
result is:

p = √���2se
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For s = 1MB and e = 8 bytes per page table entry, the optimum page size is 4 KB.
Commercially available computers have used page sizes ranging from 512 bytes
to 1 MB. A typical value used to 1 KB, but nowadays 4 KB or 8 KB are more
common. As memories get larger, the page size tends to get larger as well (but
not linearly). Quadrupling the RAM size rarely even doubles the page size.

4.5.4 Virtual Memory Interface

Up until now, our whole discussion has assumed that virtual memory is trans-
parent to processes and programmers. That is, all they see is a large virtual ad-
dress space on a computer with a small(er) physical memory. With many sys-
tems, that is true, but in some advanced systems, programmers have some control
over the memory map and can use it in nontraditional ways to enhance program
behavior. In this section, we will briefly look at a few of these.

One reason for giving programmers control over their memory map is to al-
low two or more processes to share the same memory. If programmers can name
regions of their memory, it may be possible for one process to give another proc-
ess the name of a memory region so that process can also map it in. With two (or
more) processes sharing the same pages, high bandwidth sharing becomes pos-
sible: one process writes into the shared memory and another one reads from it.

Sharing of pages can also be used to implement a high-performance mes-
sage-passing system. Normally, when messages are passed, the data are copied
from one address space to another, at considerable cost. If processes can control
their page map, a message can be passed by having the sending process unmap the
page(s) containing the message, and the receiving process mapping them in. Here
only the page names have to be copied, instead of all the data.

Yet another advanced memory management technique is distributed shared
memory (Feeley et al., 1995; Li and Hudak, 1989; and Zekauskas et al., 1994).
The idea here is to allow multiple processes over a network to share a set of
pages, possibly, but not necessarily, as a single shared linear address space. When
a process references a page that is not currently mapped in, it gets a page fault.
The page fault handler, which may be in the kernel or in user space, then locates
the machine holding the page and sends it a message asking it to unmap the page
and send it over the network. When the page arrives, it is mapped in and the
faulting instruction is restarted.

4.6 SEGMENTATION

The virtual memory discussed so far is one-dimensional because the virtual
addresses go from 0 to some maximum address, one address after another. For
many problems, having two or more separate virtual address spaces may be much
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better than having only one. For example, a compiler has many tables that are
built up as compilation proceeds, possibly including

1. The source text being saved for the printed listing (on batch systems).

2. The symbol table, containing the names and attributes of variables.

3. The table containing all the integer and floating-point constants used.

4. The parse tree, containing the syntactic analysis of the program.

5. The stack used for procedure calls within the compiler.

Each of the first four tables grows continuously as compilation proceeds. The last
one grows and shrinks in unpredictable ways during compilation. In a one-
dimensional memory, these five tables would have to be allocated contiguous
chunks of virtual address space, as in Fig. 4-21.

Parse tree

Call stack

Space currently being
used by the parse tree

Free

Virtual address space

Symbol table
Symbol table has
bumped into the
source text table

Address space
allocated to the
parse tree

Source text

Constant table

Figure 4-21. In a one-dimensional address space with growing tables, one table
may bump into another.

Consider what happens if a program has an exceptionally large number of
variables but a normal amount of everything else. The chunk of address space
allocated for the symbol table may fill up, but there may be lots of room in the
other tables. The compiler could, of course, simply issue a message saying that
the compilation cannot continue due to too many variables, but doing so does not
seem very sporting when unused space is left in the other tables.

Another possibility is to play Robin Hood, taking space from the tables with
an excess of room and giving it to the tables with little room. This shuffling can
be done, but it is analogous to managing one’s own overlays—a nuisance at best
and a great deal of tedious, unrewarding work at worst.
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What is really needed is a way of freeing the programmer from having to
manage the expanding and contracting tables, in the same way that virtual mem-
ory eliminates the worry of organizing the program into overlays.

A straightforward and extremely general solution is to provide the machine
with many completely independent address spaces, called segments. Each seg-
ment consists of a linear sequence of addresses, from 0 to some maximum. The
length of each segment may be anything from 0 to the maximum allowed. Dif-
ferent segments may, and usually do, have different lengths. Moreover, segment
lengths may change during execution. The length of a stack segment may be
increased whenever something is pushed onto the stack and decreased whenever
something is popped off the stack.

Because each segment constitutes a separate address space, different seg-
ments can grow or shrink independently, without affecting each other. If a stack
in a certain segment needs more address space to grow, it can have it, because
there is nothing else in its address space to bump into. Of course, a segment can
fill up but segments are usually very large, so this occurrence is rare. To specify
an address in this segmented or two-dimensional memory, the program must sup-
ply a two-part address, a segment number, and an address within the segment.
Figure 4-22 illustrates a segmented memory being used for the compiler tables
discussed earlier. Five independent segments are shown here.
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Figure 4-22. A segmented memory allows each table to grow or shrink in-
dependently of the other tables.

We emphasize that in its purest form, a segment is a logical entity, which the
programmer is aware of and uses as a logical entity. A segment might contain
one or more procedures, or an array, or a stack, or a collection of scalar variables,
but usually it does not contain a mixture of different types.
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A segmented memory has other advantages besides simplifying the handling
of data structures that are growing or shrinking. If each procedure occupies a
separate segment, with address 0 as its starting address, the linking up of pro-
cedures compiled separately is greatly simplified. After all the procedures that
constitute a program have been compiled and linked up, a procedure call to the
procedure in segment n will use the two-part address (n, 0) to address word 0 (the
entry point).

If the procedure in segment n is subsequently modified and recompiled, no
other procedures need be changed (because no starting addresses have been modi-
fied), even if the new version is larger than the old one. With a one-dimensional
memory, the procedures are packed tightly next to each other, with no address
space between them. Consequently, changing one procedure’s size can affect the
starting address of other, unrelated procedures. This, in turn, requires modifying
all procedures that call any of the moved procedures, in order to incorporate their
new starting addresses. If a program contains hundreds of procedures, this proc-
ess can be costly.

Segmentation also facilitates sharing procedures or data between several
processes. A common example is the shared library. Modern workstations that
run advanced window systems often have extremely large graphical libraries com-
piled into nearly every program. In a segmented system, the graphical library can
be put in a segment and shared by multiple processes, eliminating the need for
having it in every process’ address space. While it is also possible to have shared
libraries in pure paging systems, it is much more complicated. In effect, these
systems do it by simulating segmentation.

Because each segment forms a logical entity of which the programmer is
aware, such as a procedure, or an array, or a stack, different segments can have
different kinds of protection. A procedure segment can be specified as execute
only, prohibiting attempts to read from it or store into it. A floating-point array
can be specified as read/write but not execute, and attempts to jump to it will be
caught. Such protection is helpful in catching programming errors.

You should try to understand why protection makes sense in a segmented
memory but not in a one-dimensional paged memory. In a segmented memory
the user is aware of what is in each segment. Normally, a segment would not con-
tain a procedure and a stack, for example, but one or the other. Since each seg-
ment contains only one type of object, the segment can have the protection
appropriate for that particular type. Paging and segmentation are compared in
Fig. 4-23.

The contents of a page are, in a certain sense, accidental. The programmer is
unaware of the fact that paging is even occurring. Although putting a few bits in
each entry of the page table to specify the access allowed would be possible, to
utilize this feature the programmer would have to keep track of where in his ad-
dress space all the page boundaries were. However, that is precisely the sort of
complex administration that paging was invented to eliminate. Because the user
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Figure 4-23. Comparison of paging and segmentation.

of a segmented memory has the illusion that all segments are in main memory all
the time—that is, he can address them as though they were—he can protect each
segment separately, without having to be concerned with the administration of
overlaying them.

4.6.1 Implementation of Pure Segmentation

The implementation of segmentation differs from paging in an essential way:
pages are fixed size and segments are not. Figure 4-24(a) shows an example of
physical memory initially containing five segments. Now consider what happens
if segment 1 is evicted and segment 7, which is smaller, is put in its place. We
arrive at the memory configuration of Fig. 4-24(b). Between segment 7 and seg-
ment 2 is an unused area—that is, a hole. Then segment 4 is replaced by segment
5, as in Fig. 4-24(c), and segment 3 is replaced by segment 6, as in Fig. 4-24(d).
After the system has been running for a while, memory will be divided up into a
number of chunks, some containing segments and some containing holes. This
phenomenon, called checkerboarding or external fragmentation, wastes mem-
ory in the holes. It can be dealt with by compaction, as shown in Fig. 4-24(e).
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Figure 4-24. (a)-(d) Development of checkerboarding. (e) Removal of the
checkerboarding by compaction.

4.6.2 Segmentation with Paging: The Intel Pentium

The Pentium supports up to 16K segments, each with up to 232 bytes of vir-
tual address space. The Pentium can be set up (by the operating system) to use
only segmentation, only paging, or both. Most operating systems, including Win-
dows XP and all flavors of UNIX, use the pure paging model, in which each proc-
ess has a single segment of 232 bytes. Since the Pentium is capable of providing
processes with a much larger address space, and one operating system (OS/2) did
actually use the full power of the addressing, we will describe how Pentium vir-
tual memory works in its full generality.

The heart of the Pentium virtual memory consists of two tables, the LDT
(Local Descriptor Table) and the GDT (Global Descriptor Table). Each pro-
gram has its own LDT, but there is a single GDT, shared by all the programs on
the computer. The LDT describes segments local to each program, including its
code, data, stack, and so on, whereas the GDT describes system segments, includ-
ing the operating system itself.

To access a segment, a Pentium program first loads a selector for that segment
into one of the machine’s six segment registers. During execution, the CS register
holds the selector for the code segment and the DS register holds the selector for
the data segment. The other segment registers are less important. Each selector is
a 16-bit number, as shown in Fig. 4-25.

One of the selector bits tells whether the segment is local or global (i.e.,
whether it is in the LDT or GDT). Thirteen other bits specify the LDT or GDT
entry number; thus tables are each restricted to holding 8K segment descriptors.
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Index
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Figure 4-25. A Pentium selector.

The other 2 bits relate to protection, and will be described later. Descriptor 0 is
forbidden. It may be safely loaded into a segment register to indicate that the seg-
ment register is not currently available. It causes a trap if used.

At the time a selector is loaded into a segment register, the corresponding
descriptor is fetched from the LDT or GDT and stored in microprogram registers,
so it can be accessed quickly. A descriptor consists of 8 bytes, including the
segment’s base address, size, and other information, as depicted in Fig. 4-26.
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Figure 4-26. Pentium code segment descriptor. Data segments differ slightly.

The format of the selector has been cleverly chosen to make locating the
descriptor easy. First either the LDT or GDT is selected, based on selector bit 2.
Then the selector is copied to an internal scratch register, and the 3 low-order bits
set to 0. Finally, the address of either the LDT or GDT table is added to it, to give
a direct pointer to the descriptor. For example, selector 72 refers to entry 9 in the
GDT, which is located at address GDT + 72.

Let us trace the steps by which a (selector, offset) pair is converted to a physi-
cal address. As soon as the microprogram knows which segment register is being
used, it can find the complete descriptor corresponding to that selector in its inter-
nal registers. If the segment does not exist (selector 0), or is currently paged out,
a trap occurs.

It then checks to see if the offset is beyond the end of the segment, in which
case a trap also occurs. Logically, there should simply be a 32-bit field in the
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descriptor giving the size of the segment, but there are only 20 bits available, so a
different scheme is used. If the gbit (Granularity) field is 0, the limit field is the
exact segment size, up to 1 MB. If it is 1, the limit field gives the segment size in
pages instead of bytes. The Pentium page size is fixed at 4 KB, so 20 bits are
enough for segments up to 232 bytes.

Assuming that the segment is in memory and the offset is in range, the Pen-
tium then adds the 32-bit base field in the descriptor to the offset to form what is
called a linear address, as shown in Fig. 4-27. The base field is broken up into
three pieces and spread all over the descriptor for compatibility with the 286, in
which the base is only 24 bits. In effect, the base field allows each segment to
start at an arbitrary place within the 32-bit linear address space.

Descriptor

Base address

Limit

Other fields

32-Bit linear address

++

Selector Offset

Figure 4-27. Conversion of a (selector, offset) pair to a linear address.

If paging is disabled (by a bit in a global control register), the linear address is
interpreted as the physical address and sent to the memory for the read or write.
Thus with paging disabled, we have a pure segmentation scheme, with each
segment’s base address given in its descriptor. Segments are permitted to overlap,
incidentally, probably because it would be too much trouble and take too much
time to verify that they were all disjoint.

On the other hand, if paging is enabled, the linear address is interpreted as a
virtual address and mapped onto the physical address using page tables, pretty
much as in our earlier examples. The only real complication is that with a 32-bit
virtual address and a 4-KB page, a segment might contain 1 million pages, so a
two-level mapping is used to reduce the page table size for small segments.

Each running program has a page directory consisting of 1024 32-bit entries.
It is located at an address pointed to by a global register. Each entry in this direc-
tory points to a page table also containing 1024 32-bit entries. The page table
entries point to page frames. The scheme is shown in Fig. 4-28.

In Fig. 4-28(a) we see a linear address divided into three fields, dir, page, and
offset. The dir field is used to index into the page directory to locate a pointer to
the proper page table. Then the page field is used as an index into the page table
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Figure 4-28. Mapping of a linear address onto a physical address.

to find the physical address of the page frame. Finally, offset is added to the
address of the page frame to get the physical address of the byte or word needed.

The page table entries are 32 bits each, 20 of which contain a page frame
number. The remaining bits contain access and dirty bits, set by the hardware for
the benefit of the operating system, protection bits, and other utility bits.

Each page table has entries for 1024 4-KB page frames, so a single page table
handles 4 megabytes of memory. A segment shorter than 4-MB will have a page
directory with a single entry, a pointer to its one and only page table. In this way,
the overhead for short segments is only two pages, instead of the million pages
that would be needed in a one-level page table.

To avoid making repeated references to memory, the Pentium has a small
TLB that directly maps the most recently used dir−page combinations onto the
physical address of the page frame. Only when the current combination is not
present in the TLB is the mechanism of Fig. 4-28 actually carried out and the TLB
updated. As long as TLB misses are rare, performance is good.

A little thought will reveal the fact that when paging is used, there is really no
point in having the base field in the descriptor be nonzero. All that base does is
cause a small offset to use an entry in the middle of the page directory, instead of
at the beginning. The real reason for including base at all is to allow pure (non-
paged) segmentation, and for compatibility with the 286, which always has paging
disabled (i.e., the 286 has only pure segmentation, but not paging).
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It is also worth noting that if some application does not need segmentation but
is content with a single, paged, 32-bit address space, that model is possible. All
the segment registers can be set up with the same selector, whose descriptor has
base = 0 and limit set to the maximum. The instruction offset will then be the
linear address, with only a single address space used—in effect, normal paging.
In fact, all current operating systems for the Pentium work this way. OS/2 was the
only one that used the full power of the Intel MMU architecture.

All in all, one has to give credit to the Pentium designers. Given the conflict-
ing goals of implementing pure paging, pure segmentation, and paged segments,
while at the same time being compatible with the 286, and doing all of this effi-
ciently, the resulting design is surprisingly simple and clean.

Although we have covered the complete architecture of the Pentium virtual
memory, albeit briefly, it is worth saying a few words about protection, since this
subject is intimately related to the virtual memory. The Pentium supports four
protection levels with level 0 being the most privileged and level 3 the least.
These are shown in Fig. 4-29. At each instant, a running program is at a certain
level, indicated by a 2-bit field in its PSW. Each segment in the system also has a
level.

Kernel

0

1

2

3

Level

Typical uses of
the levels

System calls

Shared libraries

User programs

Figure 4-29. Protection on the Pentium.

As long as a program restricts itself to using segments at its own level, every-
thing works fine. Attempts to access data at a higher level are permitted.
Attempts to access data at a lower level are illegal and cause traps. Attempts to
call procedures at a different level (higher or lower) are allowed, but in a carefully
controlled way. To make an interlevel call, the CALL instruction must contain a
selector instead of an address. This selector designates a descriptor called a call
gate, which gives the address of the procedure to be called. Thus it is not possible
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to jump into the middle of an arbitrary code segment at a different level. Only
official entry points may be used.

A typical use for this mechanism is suggested in Fig. 4-29. At level 0, we
find the kernel of the operating system, which handles I/O, memory management,
and other critical matters. At level 1, the system call handler is present. User pro-
grams may call procedures here to have system calls carried out, but only a
specific and protected list of procedures may be called. Level 2 contains library
procedures, possibly shared among many running programs. User programs may
call these procedures and read their data, but they may not modify them. Finally,
user programs run at level 3, which has the least protection.

Traps and interrupts use a mechanism similar to the call gates. They, too,
reference descriptors, rather than absolute addresses, and these descriptors point
to specific procedures to be executed. The type field in Fig. 4-26 distinguishes
between code segments, data segments, and the various kinds of gates.

4.7 OVERVIEW OF THE MINIX 3 PROCESS MANAGER

Memory management in MINIX 3 is simple: paging is not used at all. MINIX 3
memory management as we will discuss it here does not include swapping either.
Swapping code is available in the complete source and could be activated to make
MINIX 3 work on a system with limited physical memory. In practice, memories
are so large now that swapping is rarely needed.

In this chapter we will study a user-space server designated the process man-
ager, or PM for short. The process manager handles system calls relating to
process management. Of these some are intimately involved with memory man-
agement. The fork, exec, and brk calls are in this category. Process management
also includes processing system calls related to signals, setting and examining
process properties such as user and group ownership, and reporting CPU usage
times. The MINIX 3 process manager also handles setting and querying the real
time clock.

Sometimes when we are referring to that part of the process manager that han-
dles memory management, we will refer to it as the ‘‘memory manager.’’ It is pos-
sible that in a future release, process management and memory management will
be completely separated, but in MINIX 3 the two functions are merged into one
process.

The PM maintains a list of holes sorted in numerical memory address order.
When memory is needed, either due to a fork or an exec system call, the hole list
is searched using first fit for a hole that is big enough. Without swapping, a proc-
ess that has been placed in memory remains in exactly the same place during its
entire execution. It is never moved to another place in memory, nor does its allo-
cated memory area ever grow or shrink.
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This strategy for managing memory is somewhat unusual and deserves some
explanation. It was originally derived from three factors:

1. The desire to keep the system easy to understand.

2. The architecture of the original IBM PC CPU (an Intel 8088),

3. The goal of making MINIX 3 easy to port to other hardware,

First, as a teaching system, avoiding complexity was highly desirable; a
source code listing of nearly 250 pages was deemed long enough. Second, the
system was designed for the original IBM PC, which did not even have an MMU,
so including paging was impossible to start with. Third, since other computers of
its era also lacked MMUs, this memory management strategy made porting to the
Macintosh, Atari, Amiga, and other machines easier.

Of course, one can rightly ask if such a strategy still makes sense. The first
point is still valid, although the system has definitely grown over the years. How-
ever, several new factors also play a role now. Modern PCs have more than 1000
times as much memory available as the original IBM PC. While programs are
bigger, most systems have so much memory that swapping and paging are hardly
needed. Finally, MINIX 3 is targeted to some extent at low-end systems such as
embedded systems. Nowadays, digital cameras, DVD players, stereos, cell
phones, and other products have operating systems, but certainly do not support
swapping or paging. MINIX 3 is quite a reasonable choice in this world, so swap-
ping and paging are not a high priority. Nevertheless, some work is in progress to
see what can be done in the area of virtual memory in the simplest possible way.
The Web site should be consulted to follow current developments.

It is also worth pointing out another way in which implementation of memory
management in MINIX 3 differs from that of many other operating systems. The
PM is not part of the kernel. Instead, it is a process that runs in user space and
communicates with the kernel by the standard message mechanism. The position
of the PM is shown in Fig. 2-29.

Moving the PM out of the kernel is an example of the separation of policy and
mechanism. The decisions about which process will be placed where in memory
(policy) are made by the PM. The actual setting of memory maps for processes
(mechanism) is done by the system task within the kernel. This split makes it
relatively easy to change the memory management policy (algorithms, etc.)
without having to modify the lowest layers of the operating system.

Most of the PM code is devoted to handling the MINIX 3 system calls that
involve creating processes, primarily fork and exec, rather than just manipulating
lists of processes and holes. In the next section we will look at the memory lay-
out, and in subsequent sections we will take a bird’s-eye view of how the process
management system calls are handled by the PM.
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4.7.1 Memory Layout

MINIX 3 programs may be compiled to use combined I and D space, in
which all parts of the process (text, data, and stack) share a block of memory
which is allocated and released as one block. This was the default for the original
version of MINIX. In MINIX 3, however, the default is to compile programs to use
separate I and D space. For clarity, allocation of memory for the simpler com-
bined model will be discussed first. Processes using separate I and D space can
use memory more efficiently, but taking advantage of this feature complicates
things. We will discuss the complications after the simple case has been outlined.

In normal MINIX 3 operation memory is allocated on two occasions. First,
when a process forks, the amount of memory needed by the child is allocated.
Second, when a process changes its memory image via the exec system call, the
space occupied by the old image is returned to the free list as a hole, and memory
is allocated for the new image. The new image may be in a part of memory dif-
ferent from the released memory. Its location will depend upon where an ade-
quate hole is found. Memory is also released whenever a process terminates,
either by exiting or by being killed by a signal. There is a third case: a system
process can request memory for its own use; for instance, the memory driver can
request memory for the RAM disk. This can only happen during system initiali-
zation.

Figure 4-30 shows memory allocation during a fork and an exec. In Fig. 4-
30(a) we see two processes, A and B, in memory. If A forks, we get the situation
of Fig. 4-30(b). The child is an exact copy of A. If the child now execs the file
C, the memory looks like Fig. 4-30(c). The child’s image is replaced by C.

MINIX 3

(c)
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MINIX 3MINIX 3

(b)

A

A’s child

0

Upper
memory

limit

(a)
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B B B

Figure 4-30. Memory allocation. (a) Originally. (b) After a fork. (c) After the
child does an exec. The shaded regions are unused memory. The process is a
common I&D one.

Note that the old memory for the child is released before the new memory for
C is allocated, so that C can use the child’s memory. In this way, a series of fork
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and exec pairs (such as the shell setting up a pipeline) can result in all the
processes being adjacent, with no holes between them, assuming a large block of
unallocated memory exists. Holes would remain if the new memory had been
allocated before the old memory had been released.

Doing it this way is not trivial. Consider the possible error condition that
there is not enough memory to perform an exec. A test for sufficient memory to
complete the operation should be performed before the child’s memory is
released, so the child can respond to the error somehow. This means the child’s
memory must be considered as if it were a hole while it is still in use.

When memory is allocated, either by the fork or exec system calls, a certain
amount of it is taken for the new process. In the former case, the amount taken is
identical to what the parent process has. In the latter case, the PM takes the
amount specified in the header of the file executed. Once this allocation has been
made, under no conditions is the process ever allocated any more total memory.

What has been said so far applies to programs that have been compiled with
combined I and D space. Programs with separate I and D space take advantage of
an enhanced mode of memory management called shared text. When such a
process does a fork, only the amount of memory needed for a copy of the new
process’ data and stack is allocated. Both the parent and the child share the exe-
cutable code already in use by the parent. When such a process does an exec, the
process table is searched to see if another process is already using the executable
code needed. If one is found, new memory is allocated only for the data and
stack, and the text already in memory is shared. Shared text complicates termina-
tion of a process. When a process terminates it always releases the memory occu-
pied by its data and stack. But it only releases the memory occupied by its text
segment after a search of the process table reveals that no other current process is
sharing that memory. Thus a process may be allocated more memory when it
starts than it releases when it terminates, if it loaded its own text when it started
but that text is being shared by one or more other processes when the first process
terminates.

Figure 4-31 shows how a program is stored as a disk file and how this is trans-
ferred to the internal memory layout of a MINIX 3 process. The header on the disk
file contains information about the sizes of the different parts of the image, as
well as the total size. In the header of a program with common I and D space, a
field specifies the total size of the text and data parts; these parts are copied
directly to the memory image. The data part in the image is enlarged by the
amount specified in the bss field in the header. This area is cleared to contain all
zeroes and is used for uninitialized static data. The total amount of memory to be
allocated is specified by the total field in the header. If, for example, a program
has 4 KB of text, 2 KB of data plus bss, and 1 KB of stack, and the header says to
allocate 40 KB total, the gap of unused memory between the data segment and the
stack segment will be 33 KB. A program file on the disk may also contain a sym-
bol table. This is for use in debugging and is not copied into memory.
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Header

(b)�
��

Text

Data + bss

Data segment grows upward
(or downward) when BRK
calls are made.

Stack
Stack segment grows downward

Gap

Size
of disk

file

Total
memory

use

(a)

Text

Symbols

Data

Figure 4-31. (a) A program as stored in a disk file. (b) Internal memory layout
for a single process. In both parts of the figure the lowest disk or memory ad-
dress is at the bottom and the highest address is at the top.

If the programmer knows that the total memory needed for the combined
growth of the data and stack segments for the file a.out is at most 10 KB, he can
give the command

chmem =10240 a.out

which changes the header field so that upon exec the PM allocates a space 10240
bytes more than the sum of the initial text and data segments. For the above
example, a total of 16 KB will be allocated on all subsequent execs of the file. Of
this amount, the topmost 1 KB will be used for the stack, and 9 KB will be in the
gap, where it can be used by growth of the stack, the data area, or both, as actually
needed.

For a program using separate I and D space (indicated by a bit in the header
that is set by the linker), the total field in the header applies to the combined data
and stack space only. A program with 4 KB of text, 2 KB of data, 1 KB of stack,
and a total size of 64 KB will be allocated 68 KB (4 KB instruction space, 64 KB
stack and data space), leaving 61 KB for the data segment and stack to consume
during execution. The boundary of the data segment can be moved only by the
brk system call. All brk does is check to see if the new data segment bumps into
the current stack pointer, and if not, notes the change in some internal tables. This
is entirely internal to the memory originally allocated to the process; no additional
memory is allocated by the operating system. If the new data segment bumps into
the stack, the call fails.

This is a good place to mention a possible semantic difficulty. When we use
the word ‘‘segment,’’ we refer to an area of memory defined by the operating sys-
tem. Intel processors have a set of internal segment registers and segment
descriptor tables which provide hardware support for ‘‘segments.’’ The Intel
hardware designers’ concept of a segment is similar to, but not always the same
as, the segments used and defined by MINIX 3. All references to segments in this
text should be interpreted as references to memory areas delineated by MINIX 3
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data structures. We will refer explicitly to ‘‘segment registers’’ or ‘‘segment
descriptors’’ when talking about the hardware.

This warning can be generalized. Hardware designers often try to provide
support for the operating systems that they expect to be used on their machines,
and the terminology used to describe registers and other aspects of a processor’s
architecture usually reflects an idea of how the features will be used. Such
features are often useful to the implementer of an operating system, but they may
not be used in the same way the hardware designer foresaw. This can lead to
misunderstandings when the same word has different meanings when used to
describe an aspect of an operating system or of the underlying hardware.

4.7.2 Message Handling

Like all the other components of MINIX 3, the process manager is message
driven. After the system has been initialized, PM enters its main loop, which con-
sists of waiting for a message, carrying out the request contained in the message,
and sending a reply.

Two message categories may be received by the process manager. For high
priority communication between the kernel and system servers such as PM, a sys-
tem notification message is used. These are special cases to be discussed in the
implementation section of this chapter. The majority of messages received by the
process manager result from system calls originated by user processes. For this
category, Figure 4-32 gives the list of legal message types, input parameters, and
values sent back in the reply message.

Fork, exit, wait, waitpid, brk, and exec are clearly closely related to memory
allocation and deallocation. The calls kill, alarm, and pause are all related to sig-
nals, as are sigaction, sigsuspend, sigpending, sigmask, and sigreturn. These also
can affect what is in memory, because when a signal kills a process the memory
used by that process is deallocated. The seven get/set calls have nothing to do
with memory management at all, but they certainly relate to process management.
Other calls could go either in the file system or the PM, since every system call is
handled by one or the other. They were put here simply because the file system
was large enough already. The time, stime, and times calls were put here for this
reason, as was ptrace, which is used in debugging.

Reboot has effects throughout the operating system, but its first job is to send
signals to terminate all processes in a controlled way, so the PM is a good place
for it. The same is true of svrctl, whose most important use is to enable or disable
swapping in the PM.

You may have noticed that the last two calls mentioned here, reboot and
svrctl, were not listed in Fig. 1-9. This also true of the remaining calls in Fig. 4-
32, getsysinfo, getprocnr, memalloc, memfree, and getsetpriority. None of these
are intended for use by ordinary user processes, and they are not parts of the
POSIX standard. They are provided because they are needed in a system like
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MINIX 3. In a system with a monolithic kernel the operations provided by these
calls could be provided by calls to functions compiled into the kernel. But in
MINIX 3 components that are normally considered part of the operating system
run in user space, and additional system calls are needed. Some of these do little
more than implement an interface to a kernel call, a term we use for calls that
request kernel services via the system task.

As mentioned in Chap. 1, although there is a library routine sbrk, there is no
system call sbrk. The library routine computes the amount of memory needed by
adding the increment or decrement specified as parameter to the current size and
makes a brk call to set the size. Similarly, there are no separate system calls for
geteuid and getegid. The calls getuid and getgid return both the effective and real
identifiers. In like manner, getpid returns the PID of both the calling process and
its parent.

A key data structure used for message processing is the call�vec table de-
clared in table.c. It contains pointers to the procedures that handle the various
message types. When a message comes in to the PM, the main loop extracts the
message type and puts it in the global variable call�nr. This value is then used to
index into call�vec to find the pointer to the procedure that handles the newly
arrived message. That procedure is then called to execute the system call. The
value that it returns is sent back to the caller in the reply message to report on the
success or failure of the call. The mechanism is similar to the table of pointers to
system call handlers used in step 7 of Fig. 1-16, only in user space rather than in
the kernel.

4.7.3 Process Manager Data Structures and Algorithms

Two key data structures are used by the process manager: the process table
and the hole table. We will now look at each of these in turn.

In Fig. 2-4 we saw that some process table fields are needed by the kernel,
others by the process manager, and yet others by the file system. In MINIX 3,
each of these three pieces of the operating system has its own process table, con-
taining just those fields that it needs. With a few exceptions, entries correspond
exactly, to keep things simple. Thus, slot k of the PM’s table refers to the same
process as slot k of the file system’s table. When a process is created or des-
troyed, all three parts update their tables to reflect the new situation, in order to
keep them synchronized.

The exceptions are processes that are not known outside of the kernel, either
because they are compiled into the kernel, like the CLOCK and SYSTEM tasks, or
because they are place holders like IDLE, and KERNEL. In the kernel process
table their slots are designated by negative numbers. These slots do not exist in
the process manager or file system process tables. Thus, strictly speaking, what
was said above about slot k in the tables is true for k equal to or greater than zero.
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����������������������������������������������������������������������������������
Message type Input parameters Reply value����������������������������������������������������������������������������������
fork (none) Child’s PID, (to child: 0)����������������������������������������������������������������������������������
exit Exit status (No reply if successful)����������������������������������������������������������������������������������
wait (none) Status����������������������������������������������������������������������������������
waitpid Process identifier and flags Status����������������������������������������������������������������������������������
brk New size New size����������������������������������������������������������������������������������
exec Pointer to initial stack (No reply if successful)����������������������������������������������������������������������������������
kill Process identifier and signal Status����������������������������������������������������������������������������������
alarm Number of seconds to wait Residual time����������������������������������������������������������������������������������
pause (none) (No reply if successful)����������������������������������������������������������������������������������
sigaction Signal number, action, old action Status����������������������������������������������������������������������������������
sigsuspend Signal mask (No reply if successful)����������������������������������������������������������������������������������
sigpending (none) Status����������������������������������������������������������������������������������
sigprocmask How, set, old set Status����������������������������������������������������������������������������������
sigreturn Context Status����������������������������������������������������������������������������������
getuid (none) Uid, effective uid����������������������������������������������������������������������������������
getgid (none) Gid, effective gid����������������������������������������������������������������������������������
getpid (none) PID, parent PID����������������������������������������������������������������������������������
setuid New uid Status����������������������������������������������������������������������������������
setgid New gid Status����������������������������������������������������������������������������������
setsid New sid Process group����������������������������������������������������������������������������������
getpgrp New gid Process group����������������������������������������������������������������������������������
time Pointer to place where current time goes Status����������������������������������������������������������������������������������
stime Pointer to current time Status����������������������������������������������������������������������������������
times Pointer to buffer for process and child times Uptime since boot����������������������������������������������������������������������������������
ptrace Request, PID, address, data Status����������������������������������������������������������������������������������
reboot How (halt, reboot, or panic) (No reply if successful)����������������������������������������������������������������������������������
svrctl Request, data (depends upon function) Status����������������������������������������������������������������������������������
getsysinfo Request, data (depends upon function) Status����������������������������������������������������������������������������������
getprocnr (none) Proc number����������������������������������������������������������������������������������
memalloc Size, pointer to address Status����������������������������������������������������������������������������������
memfree Size, address Status����������������������������������������������������������������������������������
getpriority Pid, type, value Priority (nice value)����������������������������������������������������������������������������������
setpriority Pid, type, value Priority (nice value)����������������������������������������������������������������������������������
gettimeofday (none) Time, uptime������������������������������������������������������������������������������������
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Figure 4-32. The message types, input parameters, and reply values used for
communicating with the PM.
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Processes in Memory

The PM’s process table is called mproc and its definition is given in
src/servers/pm/mproc.h . It contains all the fields related to a process’ memory
allocation, as well as some additional items. The most important field is the array
mp�seg, which has three entries, for the text, data, and stack segments, respec-
tively. Each entry is a structure containing the virtual address, physical address,
and length of the segment, all measured in clicks rather than in bytes. The size of
a click is implementation dependent. In early MINIX versions it was 256 bytes.
For MINIX 3 it is 1024 bytes. All segments must start on a click boundary and
occupy an integral number of clicks.

The method used for recording memory allocation is shown in Fig. 4-33. In
this figure we have a process with 3 KB of text, 4 KB of data, a gap of 1 KB, and
then a 2-KB stack, for a total memory allocation of 10 KB. In Fig. 4-33(b) we see
what the virtual, physical, and length fields for each of the three segments are,
assuming that the process does not have separate I and D space. In this model, the
text segment is always empty, and the data segment contains both text and data.
When a process references virtual address 0, either to jump to it or to read it (i.e.,
as instruction space or as data space), physical address 0x32000 (in decimal,
200K) will be used. This address is at click 0xc8.

Address (hex)

210K (0x34800)

0
208K (0x34000)

207K (0x33c00)

203K (0x32c00)

200K (0x32000)

(a)

(b)

0

0xc8

0xc8

0xd00x8

Text

Data

Stack

0

0x7

PhysicalVirtual Length

0x2

0

(c)

0

0xc8

0xcb

0xd00x5

0x3

0x4

0x2

Text

Data

Stack

PhysicalVirtual Length

Stack

Data

Text

Figure 4-33. (a) A process in memory. (b) Its memory representation for com-
bined I and D space. (c) Its memory representation for separate I and D space.

Note that the virtual address at which the stack begins depends initially on the
total amount of memory allocated to the process. If the chmem command were
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used to modify the file header to provide a larger dynamic allocation area (bigger
gap between data and stack segments), the next time the file was executed, the
stack would start at a higher virtual address. If the stack grows longer by one
click, the stack entry should change from the triple (0x8, 0xd0, 0x2) to the triple
(0x7, 0xcf, 0x3). Note that, in this example, growth of the stack by one click
would reduce the gap to nothing if there were no increase of the total memory
allocation.

The 8088 hardware does not have a stack limit trap, and MINIX defined the
stack in a way that will not trigger the trap on 32-bit processors until the stack has
already overwritten the data segment. Thus, this change will not be made until
the next brk system call, at which point the operating system explicitly reads SP
and recomputes the segment entries. On a machine with a stack trap, the stack
segment’s entry could be updated as soon as the stack outgrew its segment. This
is not done by MINIX 3 on 32-bit Intel processors, for reasons we will now dis-
cuss.

We mentioned previously that the efforts of hardware designers may not al-
ways produce exactly what the software designer needs. Even in protected mode
on a Pentium, MINIX 3 does not trap when the stack outgrows its segment.
Although in protected mode the Intel hardware detects attempted access to mem-
ory outside a segment (as defined by a segment descriptor such as the one in
Fig. 4-26), in MINIX 3 the data segment descriptor and the stack segment descrip-
tor are always identical. The MINIX 3 data and stack segments each use part of
this space, and thus either or both can expand into the gap between them. How-
ever, only MINIX 3 can manage this. The CPU has no way to detect errors involv-
ing the gap, since as far as the hardware is concerned the gap is a valid part of
both the data area and the stack area. Of course, the hardware can detect a very
large error, such as an attempt to access memory outside the combined data-gap-
stack area. This will protect one process from the mistakes of another process but
is not enough to protect a process from itself.

A design decision was made here. We recognize an argument can be made
for abandoning the shared hardware-defined segment that allows MINIX 3 to
dynamically reallocate the gap area. The alternative, using the hardware to define
nonoverlapping stack and data segments, would offer somewhat more security
from certain errors but would make MINIX 3 more memory-hungry. The source
code is available to anybody who wants to evaluate the other approach.

Fig. 4-33(c) shows the segment entries for the memory layout of Fig. 4-33(a)
for separate I and D space. Here both the text and data segments are nonzero in
length. The mp�seg array shown in Fig. 4-33(b) or (c) is primarily used to map
virtual addresses onto physical memory addresses. Given a virtual address and
the space to which it belongs, it is a simple matter to see whether the virtual ad-
dress is legal or not (i.e., falls inside a segment), and if legal, what the correspond-
ing physical address is. The kernel procedure umap�local performs this mapping
for the I/O tasks and for copying to and from user space, for example.
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0x3d400
0x3d000

0x3c000

0x3dc00

0

Process 2

(c)

0

0xc8

0xf0

0xf50x5

0x3

0x4

0x2

0 0xcb

0xd00x5

0x4

0x2

Text

Data

Stack

PhysicalVirtual Length

0 0xc8 0x3Text

Data

Stack

PhysicalVirtual Length Gap
0x34000
0x33c00

0x32c00

0x34800

0x32000

(b)

Process 1

(a)

Stack
(proc 1)

Data
(proc 1)

Gap

Stack
(proc 2)

Data
(proc 2)

Text
(shared)

Figure 4-34. (a) The memory map of a separate I and D space process, as in the
previous figure. (b) The layout in memory after a second process starts, execut-
ing the same program image with shared text. (c) The memory map of the
second process.

Shared Text

The contents of the data and stack areas belonging to a process may change as
the process executes, but the text does not change. It is common for several
processes to be executing copies of the same program, for instance several users
may be executing the same shell. Memory efficiency is improved by using
shared text. When exec is about to load a process, it opens the file holding the
disk image of the program to be loaded and reads the file header. If the process
uses separate I and D space, a search of the mp�dev, mp�ino, and mp�ctime
fields in each slot of mproc is made. These hold the device and i-node numbers
and changed-status times of the images being executed by other processes. If a
process in memory is found to be executing the same program that is about to be
loaded, there is no need to allocate memory for another copy of the text. Instead
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the mp�seg[T] portion of the new process’ memory map is initialized to point to
the same place where the text segment is already loaded, and only the data and
stack portions are set up in a new memory allocation. This is shown in Fig. 4-34.
If the program uses combined I and D space or no match is found, memory is allo-
cated as shown in Fig. 4-33 and the text and data for the new process are copied in
from the disk.

In addition to the segment information, mproc also holds additional informa-
tion about the process. This includes the process ID (PID) of the process itself
and of its parent, the UIDs and GIDs (both real and effective), information about
signals, and the exit status, if the process has already terminated but its parent has
not yet done a wait for it. Also in mproc there are fields for a timer for sigalarm
and for accumulated user and system time use by child processes. The kernel was
responsible for these items in earlier versions of MINIX, but responsibility for
them has been shifted to the process manager in MINIX 3.

The Hole List

The other major process manager data structure is the hole table, hole, de-
fined in src/servers/pm/alloc.c , which lists every hole in memory in order of in-
creasing memory address. The gaps between the data and stack segments are not
considered holes; they have already been allocated to processes. Consequently,
they are not contained in the free hole list. Each hole list entry has three fields:
the base address of the hole, in clicks; the length of the hole, in clicks; and a
pointer to the next entry on the list. The list is singly linked, so it is easy to find
the next hole starting from any given hole, but to find the previous hole, you have
to search the entire list from the beginning until you come to the given hole.
Because of space limitations alloc.c is not included in the printed listing although
it is on the CD-ROM. But the code defining the hole list is simple, and is shown
in Fig. 4-35.

PRIVATE struct hole {
struct hole *h�next; /* pointer to next entry on the list */
phys�clicks h�base; /* where does the hole begin? */
phys�clicks h�len; /* how big is the hole? */

} hole[NR�HOLES];

Figure 4-35. The hole list is an array of struct hole.

The reason for recording everything about segments and holes in clicks rather
than bytes is simple: it is much more efficient. In 16-bit mode, 16-bit integers are
used for recording memory addresses, so with 1024-byte clicks, up to 64 MB of
memory can be supported. In 32-bit mode, address fields can refer to up to as
many as 232 × 210 = 242 bytes, which is 4 terabytes (4096 gigabytes).
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The principal operations on the hole list are allocating a piece of memory of a
given size and returning an existing allocation. To allocate memory, the hole list
is searched, starting at the hole with the lowest address, until a hole that is large
enough is found (first fit). The segment is then allocated by reducing the hole by
the amount needed for the segment, or in the rare case of an exact fit, removing
the hole from the list. This scheme is fast and simple but suffers from both a
small amount of internal fragmentation (up to 1023 bytes may be wasted in the
final click, since an integral number of clicks is always taken) and external frag-
mentation.

When a process terminates and is cleaned up, its data and stack memory are
returned to the free list. If it uses combined I and D, this releases all its memory,
since such programs never have a separate allocation of memory for text. If the
program uses separate I and D and a search of the process table reveals no other
process is sharing the text, the text allocation will also be returned. Since with
shared text the text and data regions are not necessarily contiguous, two regions of
memory may be returned. For each region returned, if either or both of the
region’s neighbors are holes, they are merged, so adjacent holes never occur. In
this way, the number, location, and sizes of the holes vary continuously during
system operation. Whenever all user processes have terminated, all of available
memory is once again ready for allocation. This is not necessarily a single hole,
however, since physical memory may be interrupted by regions unusable by the
operating system, as in IBM compatible systems where read-only memory (ROM)
and memory reserved for I/O transfers separate usable memory below address
640K from memory above 1 MB.

4.7.4 The FORK, EXIT, and WAIT System Calls

When processes are created or destroyed, memory must be allocated or deal-
located. Also, the process table must be updated, including the parts held by the
kernel and FS. The PM coordinates all this activity. Process creation is done by
fork, and carried out in the series of steps shown in Fig. 4-36.

It is difficult and inconvenient to stop a fork call part way through, so the PM
maintains a count at all times of the number of processes currently in existence in
order to see easily if a process table slot is available. If the table is not full, an
attempt is made to allocate memory for the child. If the program is one with
separate I and D space, only enough memory for new data and stack allocations is
requested. If this step also succeeds, the fork is guaranteed to work. The newly
allocated memory is then filled in, a process slot is located and filled in, a PID is
chosen, and the other parts of the system are informed that a new process has been
created.

A process fully terminates when two events have both happened: (1) the proc-
ess itself has exited (or has been killed by a signal), and (2) its parent has exe-
cuted a wait system call to find out what happened. A process that has exited or
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�������������������������������������������������������
1. Check to see if process table is full.�������������������������������������������������������
2. Try to allocate memory for the child’s data and stack.�������������������������������������������������������
3. Copy the parent’s data and stack to the child’s memory.�������������������������������������������������������
4. Find a free process slot and copy parent’s slot to it.�������������������������������������������������������
5. Enter child’s memory map in process table.�������������������������������������������������������
6. Choose a PID for the child.�������������������������������������������������������
7. Tell kernel and file system about child.�������������������������������������������������������
8. Report child’s memory map to kernel.�������������������������������������������������������
9. Send reply messages to parent and child.���������������������������������������������������������
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Figure 4-36. The steps required to carry out the fork system call.

has been killed, but whose parent has not (yet) done a wait for it, enters a kind of
suspended animation, sometimes known as zombie state. It is prevented from
being scheduled and has its alarm timer turned off (if it was on), but it is not
removed from the process table. Its memory is freed. Zombie state is temporary
and rarely lasts long. When the parent finally does the wait, the process table slot
is freed, and the file system and kernel are informed.

A problem arises if the parent of an exiting process is itself already dead. If
no special action were taken, the exiting process would remain a zombie forever.
Instead, the tables are changed to make it a child of the init process. When the
system comes up, init reads the /etc/ttytab file to get a list of all terminals, and
then forks off a login process to handle each one. It then blocks, waiting for
processes to terminate. In this way, orphan zombies are cleaned up quickly.

4.7.5 The EXEC System Call

When a command is typed at the terminal, the shell forks off a new process,
which then executes the command requested. It would have been possible to have
a single system call to do both fork and exec at once, but they were provided as
two distinct calls for a very good reason: to make it easy to implement I/O
redirection. When the shell forks, if standard input is redirected, the child closes
standard input and then opens the new standard input before executing the com-
mand. In this way the newly started process inherits the redirected standard input.
Standard output is handled the same way.

Exec is the most complex system call in MINIX 3. It must replace the current
memory image with a new one, including setting up a new stack. The new image
must be a binary executable file, of course. An executable file may also be a
script that must be interpreted by another program, such as the shell or perl. In
that case the file whose image must be placed in memory is the binary of the
interpreter, with the name of the script as an argument. In this section we discuss
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the simple case of an exec call that refers to a binary executable. Later, when we
discuss implementation of exec, the additional processing required to execute a
script will be described.

Exec carries out its job in a series of steps, as shown in Fig. 4-37.
������������������������������������������������������������

1. Check permissions—is the file executable?������������������������������������������������������������
2. Read the header to get the segment and total sizes.������������������������������������������������������������
3. Fetch the arguments and environment from the caller.������������������������������������������������������������
4. Allocate new memory and release unneeded old memory.������������������������������������������������������������
5. Copy stack to new memory image.������������������������������������������������������������
6. Copy data (and possibly text) segment to new memory image.������������������������������������������������������������
7. Check for and handle setuid, setgid bits.������������������������������������������������������������
8. Fix up process table entry.������������������������������������������������������������
9. Tell kernel that process is now runnable.��������������������������������������������������������������
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Figure 4-37. The steps required to carry out the exec system call.

Each step consists, in turn, of yet smaller steps, some of which can fail. For
example, there might be insufficient memory available. The order in which the
tests are made has been carefully chosen to make sure the old memory image is
not released until it is certain that the exec will succeed, to avoid the embarrassing
situation of not being able to set up a new memory image, but not having the old
one to go back to, either. Normally exec does not return, but if it fails, the calling
process must get control again, with an error indication.

A few steps in Fig. 4-37 deserve some more comment. First is the question of
whether or not there is enough room. After determining how much memory is
needed, which requires determining if the text memory of another process can be
shared, the hole list is searched to check whether there is sufficient physical mem-
ory before freeing the old memory. If the old memory were freed first and there
were insufficient memory, it would be hard to get the old image back again and
we would be up a tree.

However, this test is overly strict. It sometimes rejects exec calls that, in fact,
could succeed. Suppose, for example, the process doing the exec call occupies 20
KB and its text is not shared by any other process. Further suppose that there is a
30-KB hole available and that the new image requires 50 KB. By testing before
releasing, we will discover that only 30 KB is available and reject the call. If we
had released first, we might have succeeded, depending on whether or not the new
20-KB hole were adjacent to, and thus now merged with, the 30 KB hole. A more
sophisticated implementation could handle this situation a little better.

Another possible improvement would be to search for two holes, one for the
text segment and one for the data segment, if the process to be execed uses
separate I and D space. The segments do not need to be contiguous.
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A more subtle issue is whether the executable file fits in the virtual address
space. The problem is that memory is allocated not in bytes, but in 1024-byte
clicks. Each click must belong to a single segment, and may not be, for example,
half data, half stack, because the entire memory administration is in clicks.

To see how this restriction can give trouble, note that the address space on
16-bit Intel processors (8086 and 80286) is limited to 64 KB, which with a click
size of 1024 allows 64 clicks. Suppose that a separate I and D space program has
40,000 bytes of text, 32,770 bytes of data, and 32,760 bytes of stack. The data
segment occupies 33 clicks, although only 2 bytes of the last click is used; still,
the whole click must be alloted for the data segment. The stack segment is 32
clicks. Together they exceed 64 clicks, and thus cannot co-exist, even though the
number of bytes needed fits in the virtual address space (barely). In theory this
problem exists on all machines whose click size is larger than 1 byte, but in prac-
tice it rarely occurs on Pentium-class processors, since they permit large (4-GB)
segments. Unfortunately, the code has to check for this case. A system that does
not check for rare, but possible, conditions is likely to crash in an unexpected way
if one of them ever occurs.

Another important issue is how the initial stack is set up. The library call nor-
mally used to invoke exec with arguments and an environment is

execve(name, argv, envp);

where name is a pointer to the name of the file to be executed, argv is a pointer to
an array of pointers, each one pointing to an argument, and envp is a pointer to an
array of pointers, each one pointing to an environment string.

It would be easy enough to implement exec by just putting the three pointers
in the message to the PM and letting it fetch the file name and two arrays by itself.
Then it would have to fetch each argument and each string one at a time. Doing it
this way requires at least one message to the system task per argument or string
and probably more, since the PM has no way of knowing in advance the size of
each one.

To avoid the overhead of multiple messages to read all these pieces, a com-
pletely different strategy has been chosen. The execve library procedure builds
the entire initial stack inside itself and passes its base address and size to the PM.
Building the new stack within the user space is highly efficient, because refer-
ences to the arguments and strings are just local memory references, not refer-
ences to a different address space.

To make this mechanism clearer, consider an example. When a user types

ls –l f.c g.c

to the shell, the shell interprets it and then makes the call

execve(′′/bin/ls′′, argv, envp);

to the library procedure. The contents of the two pointer arrays are shown in
Fig. 4-38(a). The procedure execve, within the shell’s address space, now builds
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Figure 4-38. (a) The arrays passed to execve. (b) The stack built by execve. (c)
The stack after relocation by the PM. (d) The stack as it appears to main at the
start of execution.

the initial stack, as shown in Fig. 4-38(b). This stack is eventually copied intact to
the PM during the processing of the exec call.

When the stack is finally copied to the user process, it will not be put at vir-
tual address 0. Instead, it will be put at the end of the memory allocation, as de-
termined by the total memory size field in the executable file’s header. As an ex-
ample, let us arbitrarily assume that the total size is 8192 bytes, so the last byte
available to the program is at address 8191. It is up to the PM to relocate the
pointers within the stack so that when deposited into the new address, the stack
looks like Fig. 4-38(c).

When the exec call completes and the program starts running, the stack will
indeed look exactly like Fig. 4-38(c), with the stack pointer having the value
8136. However, another problem is yet to be dealt with. The main program of
the executed file is probably declared something like this:

main(argc, argv, envp);

As far as the C compiler is concerned, main is just another function. It does not
know that main is special, so it compiles code to access the three parameters on
the assumption that they will be passed on the stack according to the standard C
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calling convention, last parameter first. With one integer and two pointers, the
three parameters are expected to occupy the three words just before the return
address. Of course, the stack of Fig. 4-38(c) does not look like that at all.

The solution is that programs do not begin with main. Instead, a small, as-
sembly language routine called the C run-time, start-off procedure, or crtso, is
always linked in at text address 0 so it gets control first. Its job is to push three
more words onto the stack and then to call main using the standard call instruc-
tion. This results in the stack of Fig. 4-38(d) at the time that main starts execut-
ing. Thus, main is tricked into thinking it was called in the usual way (actually, it
is not really a trick; it is called that way).

If the programmer neglects to call exit at the end of main, control will pass
back to the C run-time, start-off routine when main is finished. Again, the com-
piler just sees main as an ordinary procedure and generates the usual code to re-
turn from it after the last statement. Thus main returns to its caller, the C run-
time, start-off routine which then calls exit itself. Most of the code of 32-bit crtso
is shown in Fig. 4-39. The comments should make its operation clear. Left out
are initialization of the environment if not defined by the programmer, code to
load the registers that are pushed and a few lines that set a flag that indicates if a
floating point coprocessor is present or not. The complete source is in the file
src/lib/i386/rts/crtso.s.

push ecx ! push environ
push edx ! push argv
push eax ! push argc
call �main ! main(argc, argv, envp)
push eax ! push exit status
call �exit
hlt ! force a trap if exit fails

Figure 4-39. The key part of crtso, the C run-time, start-off routine.

4.7.6 The BRK System Call

The library procedures brk and sbrk are used to adjust the upper bound of the
data segment. The former takes an absolute size (in bytes) and calls brk. The lat-
ter takes a positive or negative increment to the current size, computes the new
data segment size, and then calls brk. Actually, there is no sbrk system call.

An interesting question is: ‘‘How does sbrk keep track of the current size, so it
can compute the new size?’’ The answer is that a variable, brksize, always holds
the current size so sbrk can find it. This variable is initialized to a compiler gen-
erated symbol giving the initial size of text plus data (combined I and D) or just
data (separate I and D). The name, and, in fact, very existence of such a symbol
is compiler dependent, and thus it will not be found defined in any header file in



438 MEMORY MANAGEMENT CHAP. 4

the source file directories. It is defined in the library, in the file brksize.s. Exactly
where it will be found depends on the system, but it will be in the same directory
as crtso.s.

Carrying out brk is easy for the process manager. All that must be done is to
check to see that everything still fits in the address space, adjust the tables, and
tell the kernel.

4.7.7 Signal Handling

In Chap. 1, signals were described as a mechanism to convey information to a
process that is not necessarily waiting for input. A defined set of signals exists,
and each signal has a default action—either kill the process to which it is directed,
or ignore the signal. Signal processing would be easy to understand and to imple-
ment if these were the only alternatives. However, processes can use system calls
to alter these responses. A process can request that any signal (except for the spe-
cial sigkill signal) be ignored. Furthermore, a user process can prepare to catch a
signal by requesting that a signal handler procedure internal to the process be ac-
tivated instead of the default action for any signal (except, again, for sigkill). Thus
to the programmer it appears that there are two distinct times when the operating
system deals with signals: a preparation phase when a process may modify its
response to a future signal, and a response phase when a signal is generated and
acted upon. The action can be execution of a custom-written signal handler. A
third phase also occurs, as shown in Fig. 4-40. When a user-written handler ter-
minates, a special system call cleans up and restores normal operation of the sig-
naled process. The programmer does not need to know about this third phase. He
writes a signal handler just like any other function. The operating system takes
care of the details of invoking and terminating the handler and managing the
stack.

����������������������������������������������������
Preparation: program code prepares for possible signal.����������������������������������������������������
Response: signal is received and action is taken.����������������������������������������������������
Cleanup: restore normal operation of the process.������������������������������������������������������
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Figure 4-40. Three phases of dealing with signals.

In the preparation phase there are several system calls that a process can exe-
cute at any time to change its response to a signal. The most general of these is
sigaction, which can specify that the process ignore some signal, catch some sig-
nal (replacing the default action with execution of user-defined signal-handling
code within the process), or restore the default response to some signal. Another
system call, sigprocmask, can block a signal, causing it to be queued and to be
acted upon only when and if the process unblocks that particular signal at a later
time. These calls may be made at any time, even from within a signal catching
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function. In MINIX 3 the preparation phase of signal processing is handled en-
tirely by the PM, since the necessary data structures are all in the PM’s part of the
process table. For each process there are several sigset� t variables. These are
bitmaps, in which each possible signal is represented by a bit. One such variable
defines a set of signals to be ignored, another defines a set to be caught, and so on.
For each process there is also an array of sigaction structures, one for each signal.
The structure is defined in Fig. 4-41. Each element of the sigaction structure con-
tains a variable to hold the address of a custom handler for that signal and an addi-
tional sigset� t variable to map signals to be blocked while that handler is execut-
ing. The field used for the address of the handler can instead hold special values
signifying that the signal is to be ignored or is to be handled in the default way
defined for that signal.

struct sigaction {
� �sighandler�t sa�handler; /* SIG�DFL, SIG�IGN, SIG�MESS,

or pointer to function */
sigset�t sa�mask; /* signals to be blocked during handler */
int sa�flags; /* special flags */

}

Figure 4-41. The sigaction structure.

This is a good place to mention that a system process, such as the process
manager itself, cannot catch signals. System processes use a a new handler type
SIG�MESS that tells PM to forward a signal by means of a SYS�SIG notification
message. No cleanup is needed for SIG�MESS-type signals.

When a signal is generated, multiple parts of the MINIX 3 system may become
involved. The response begins in the PM, which figures out which processes
should get the signal using the data structures just mentioned. If the signal is to be
caught, it must be delivered to the target process. This requires saving informa-
tion about the state of the process, so normal execution can be resumed. The
information is stored on the stack of the signaled process, and a check must be
made to determine that there is sufficient stack space. The PM does this check-
ing, since this is within its realm, and then calls the system task in the kernel to
put the information on the stack. The system task also manipulates the program
counter of the process, so the process can execute the handler code. When the
handler terminates, a sigreturn system call is made. Through this call, both the
PM and the kernel participate in restoring the signal context and registers of the
signaled process so it can resume normal execution. If the signal is not caught,
the default action is taken, which may involve calling the file system to produce a
core dump (writing the memory image of the process to a file that may be exam-
ined with a debugger), as well as killing the process, which involves all of the
PM, file system, and kernel. The PM may direct one or more repetitions of these
actions, since a single signal may need to be delivered to a group of processes.
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The signals known to MINIX 3 are defined in include/signal.h, a file required
by the POSIX standard. They are listed in Fig. 4-42. All of the mandatory POSIX
signals are defined in MINIX 3, but not all the optional ones are. For instance,
POSIX requires several signals related to job control, the ability to put a running
program into the background and bring it back. MINIX 3 does not support job
control, but programs that might generate these signals can be ported to MINIX 3.
These signals will be ignored if generated. Job control has not been implemented
because it was intended to provide a way to start a program running, then detach
from it to allow the user to do something else. With MINIX 3, after starting a pro-
gram, a user can just hit ALT+F2 to switch to a new virtual terminal to do some-
thing else while the program runs. Virtual terminals are a kind of poor man’s
windowing system, but eliminate the need for job control and its signals, at least if
you are working on the local console. MINIX 3 also defines some non-POSIX sig-
nals for internal use and some synonyms for POSIX names for compatibility with
older source code.

In a traditional UNIX system, signals can be generated in two ways: by the kill
system call, and by the kernel. Some user-space processes in MINIX 3 do things
that would be done by the kernel in a traditional system. Fig. 4-42 shows all sig-
nals known to MINIX 3 and their origins. Sigint, sigquit, and sigkill can be initiated
by pressing special key combinations on the keyboard. Sigalrm is managed by the
process manager. Sigpipe is generated by the file system. The kill program can
be used to cause any signal to be sent to any process. Some kernel signals depend
upon hardware support. For instance, the 8086 and 8088 processors do not sup-
port detection of illegal instruction operation codes, but this capability is available
on the 286 and above, which trap on an attempt to execute an illegal opcode. This
service is provided by the hardware. The implementer of the operating system
must provide code to generate a signal in response to the trap. We saw in Chap. 2
that kernel/exception.c contains code to do just this for a number of different con-
ditions. Thus a sigill signal will be generated in response to an illegal instruction
when MINIX 3 runs on a 286 or higher processor; on the original 8088 it was
never seen.

Just because the hardware can trap on a certain condition does not mean the
capability can be used fully by the operating system implementer. For instance,
several kinds of violations of memory integrity result in exceptions on all Intel
processors beginning with the 286. Code in kernel/exception.c translates these
exceptions into sigsegv signals. Separate exceptions are generated for violations
of the limits of the hardware-defined stack segment and for other segments, since
these might need to be treated differently. However, because of the way MINIX 3
uses memory, the hardware cannot detect all the errors that might occur. The
hardware defines a base and a limit for each segment. The stack and data seg-
ments are combined in a single harware segment. The hardware-defined data seg-
ment base is the same as the MINIX 3 data segment base, but the hardware-defined
data segment limit is higher than the limit that MINIX 3 enforces in software. In
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������������������������������������������������������������������
Signal Description Generated by������������������������������������������������������������������

SIGHUP Hangup KILL system call������������������������������������������������������������������
SIGINT Interrupt TTY������������������������������������������������������������������
SIGQUIT Quit TTY������������������������������������������������������������������
SIGILL Illegal instruction Kernel (*)������������������������������������������������������������������
SIGTRAP Trace trap Kernel (M)������������������������������������������������������������������
SIGABRT Abnormal termination TTY������������������������������������������������������������������
SIGFPE Floating point exception Kernel (*)������������������������������������������������������������������
SIGKILL Kill (cannot be caught or ignored) KILL system call������������������������������������������������������������������
SIGUSR1 User-defined signal # 1 Not supported������������������������������������������������������������������
SIGSEGV Segmentation violation Kernel (*)������������������������������������������������������������������
SIGUSR2 User defined signal # 2 Not supported������������������������������������������������������������������
SIGPIPE Write on a pipe with no one to read it FS������������������������������������������������������������������
SIGALRM Alarm clock, timeout PM������������������������������������������������������������������
SIGTERM Software termination signal from kill KILL system call������������������������������������������������������������������
SIGCHLD Child process terminated or stopped PM������������������������������������������������������������������
SIGCONT Continue if stopped Not supported������������������������������������������������������������������
SIGSTOP Stop signal Not supported������������������������������������������������������������������
SIGTSTP Interactive stop signal Not supported������������������������������������������������������������������
SIGTTIN Background process wants to read Not supported������������������������������������������������������������������
SIGTTOU Background process wants to write Not supported������������������������������������������������������������������
SIGKMESS Kernel message Kernel������������������������������������������������������������������
SIGKSIG Kernel signal pending Kernel������������������������������������������������������������������
SIGKSTOP Kernel shutting down Kernel�������������������������������������������������������������������
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Figure 4-42. Signals defined by POSIX and MINIX 3. Signals indicated by (*)
depend upon hardware support. Signals marked (M) are not defined by POSIX,
but are defined by MINIX 3 for compatibility with older programs. Kernel sig-
nals are MINIX 3 specific signals generated by the kernel, and used to inform
system processes about system events. Several obsolete names and synonyms
are not listed here.

other words, the hardware defines the data segment as the maximum amount of
memory that MINIX 3 could possibly use for data, if somehow the stack could
shrink to nothing. Similarly, the hardware defines the stack as the maximum
amount of memory the MINIX 3 stack could use if the data area could shrink to
nothing. Although certain violations can be detected by the hardware, the
hardware cannot detect the most probable stack violation, growth of the stack into
the data area, since as far as the hardware registers and descriptor tables are con-
cerned the data area and the stack area overlap.
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Conceivably some code could be added to the kernel that would check the
register contents of a process after each time the process gets a chance to run and
generate a sigsegv signal upon detection of a violation of the integrity of the
MINIX 3-defined data or stack areas. Whether this would be worthwhile is un-
clear; hardware traps can catch a violation immediately. A software check might
not get a chance to do its work until many thousands of additional instructions had
been executed, and at that point there might be very little a signal handler could
do to try to recover.

Whatever their origin, the PM processes all signals the same way. For each
process to be signaled, a variety of checks are made to see if the signal is feasible.
One process can signal another if the signaler is the superuser or if the real or
effective UID of the signaler is equal to either the real or effective UID of the sig-
naled process. But there are several conditions that can prevent a signal being
sent. Zombies cannot be signaled, for example. A process cannot be signaled if it
has explicitly called sigaction to ignore the signal or sigprocmask to block it.
Blocking a signal is distinct from ignoring it; receipt of a blocked signal is
remembered, and it is delivered when and if the signaled process removes the
block. Finally, if its stack space is not adequate the signaled process is killed.

If all the conditions are met, the signal can be sent. If the process has not
arranged for the signal to be caught, no information needs to be passed to the
process. In this case the PM executes the default action for the signal, which is
usually to kill the process, possibly also producing a core dump. For a few signals
the default action is to ignore the signal. The signals marked ‘‘Not supported’’ in
Fig. 4-42 are required to be defined by POSIX but are ignored by MINIX 3, as per-
mitted by the standard.

Catching a signal means executing custom signal-handling code, the address
of which is stored in a sigaction structure in the process table. In Chap. 2 we saw
how the stackframe within its process table entry receives the information needed
to restart a process when it is interrupted. By modifying the stackframe of a proc-
ess to be signaled, it can be arranged that when the process next is allowed to exe-
cute the signal handler will run. By modifying the stack of the process in user
space, it can be arranged that when the signal handler terminates the sigreturn sys-
tem call will be made. This system call is never invoked by user-written code. It
is executed after the kernel puts its address on the stack in such a way that its
address becomes the return address popped from the stack when a signal handler
terminates. Sigreturn restores the original stackframe of the signaled process, so
it can resume execution at the point where it was interrupted by the signal.

Although the final stage of sending a signal is done by the system task, this is
a good place to summarize how it is done, since the data used are passed to the
kernel from the PM. Catching a signal requires something much like the context
switch that occurs when one process is taken out of execution and another process
is put into execution, since when the handler terminates the process ought to be
able to continue as if nothing had happened. However, there is only room in the
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process table to store one copy of the contents of all the CPU registers that are
needed to restore the process to its original state. The solution to this problem is
shown in Fig. 4-43. Part (a) of the figure is a simplified view of the stack of a
process and part of its process table entry just after it has been taken out of execu-
tion following an interrupt. At the time of suspension the contents of all of the
CPU registers are copied into the stackframe structure in the process table entry
for the suspended process in the kernel part of the process table. This will be the
situation at the moment a signal is generated. A signal is generated by a process
or task different from the intended recipient, so the recipient cannot be running at
that time.

(b) (c) (d)(a)

Stackframe
(CPU regs)
(original)

Ret addr

Local vars
(process)

Ret addr

Ret addr 2

Ret addr 1

Sigframe
structure

Local vars
(process)

Local vars
(handler)

Ret addr

Local vars
(process)

Ret addr

Stack

Process
table

Local vars
(process)

Before

Stackframe
(CPU regs)
(modified,

ip = handler)

Stackframe
(CPU regs)
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(CPU regs)
(original)

Ret addr 2

Local vars
(Sigreturn)

Stackframe
(CPU regs)
(original)

Handler
executing

Sigreturn
executing

Stackframe
(CPU regs)
(original)

Back to normal

Figure 4-43. The stack of a process (above) and its stackframe in the process
table (below) corresponding to phases in handling a signal. (a) State as process
is taken out of execution. (b) State as handler begins execution. (c) State while
sigreturn is executing. (d) State after sigreturn completes execution.

In preparation for handling the signal, the stackframe from the process table is
copied onto the stack of the receiving process as a sigcontext structure, thus
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preserving it. Then a sigframe structure is placed on the stack. This structure
contains information to be used by sigreturn after the handler finishes. It also
contains the address of the library procedure that invokes sigreturn itself, ret
addr1, and another return address, ret addr2, which is the address where execu-
tion of the interrupted program will resume. As will be seen, however, the latter
address is not used during normal execution.

Although the handler is written as an ordinary procedure by the programmer,
it is not called by a call instruction. The instruction pointer (program counter)
field in the stackframe in the process table is altered to cause the signal handler to
begin executing when restart puts the signaled process back into execution. Fig-
ure 4-43(b) shows the situation after this preparation has been completed and as
the signal handler executes. Recall that the signal handler is an ordinary pro-
cedure, so when it terminates, ret addr1 is popped and sigreturn executes.

Part (c) shows the situation while sigreturn is executing. The rest of the sig-
frame structure is now sigreturn’s local variables. Part of sigreturn’s action is to
adjust its own stack pointer so that if it were to terminate like an ordinary func-
tion, it would use ret addr2 as its return address. However, sigreturn does not ac-
tually terminate this way. It terminates like other system calls, allowing the
scheduler in the kernel to decide which process to restart. Eventually, the sig-
naled process will be rescheduled and will restart at this address, because the
address is also in the process’ original stackframe. The reason this address is on
the stack is that a user might want to trace a program using a debugger, and this
fools the debugger into a reasonable interpretation of the stack while a signal
handler is being traced. In each phase the stack looks like that of an ordinary
process, with local variables on top of a return address.

The real work of sigreturn is to restore things to the state they were in before
the signal was received, and to clean up. Most importantly, the stackframe in the
process table is restored to its original state, using the copy that was saved on the
signaled process’ stack. When sigreturn terminates, the situation will be as in
Fig. 4-43(d), which shows the process waiting to be put back into execution in the
same state it was in when interrupted.

For most signals the default action is to kill the signaled process. The PM
takes care of this for any signal that is not ignored by default, and which the reci-
pient process has not been enabled to handle, block, or ignore. If the parent is
waiting for it, the killed process is cleaned up and removed from the process table.
If the parent is not waiting, it becomes a zombie. For certain signals (e.g.,
SIGQUIT), the PM also writes a core dump of the process to the current directory.

It can easily happen that a signal is sent to a process that is currently blocked
waiting for a read on a terminal for which no input is available. If the process has
not specified that the signal is to be caught, it is just killed in the usual way. If,
however, the signal is caught, the issue arises of what to do after the signal inter-
rupt has been processed. Should the process go back to waiting, or should it con-
tinue with the next statement? Decisions, decisions.
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What MINIX 3 does is this: the system call is terminated in such a way as to
return the error code EINTR, so the process can see that the call was broken off by
a signal. Determining that a signaled process was blocked on a system call is not
entirely trivial. The PM must ask the file system to check for it.

This behavior is suggested, but not required, by POSIX, which also allows a
read to return the number of bytes read so far at the time of receipt of the signal.
Returning EINTR makes it possible to set an alarm and to catch sigalrm. This is
an easy way to implement a timeout, for instance to terminate login and hang up a
modem line if a user does not respond within a certain period.

User-Space Timers

Generating an alarm to wake up a process after a preset period of time is one
of the most common uses of signals. In a conventional operating system, alarms
would be managed entirely by the kernel, or a clock driver running in kernel
space. In MINIX 3 responsibility for alarms to user processes is delegated to the
process manager. The idea is to lighten the kernel’s load, and simplify the code
that runs in kernel space. If it is true that some number b of bugs are inevitable
per some number l of lines of code, it is reasonable to expect that a smaller kernel
will mean fewer bugs in the kernel. Even if the total number of bugs remains the
same, their effects should be less serious if they occur in user-space operating sys-
tem components rather than in the kernel itself.

Can we handle alarms without depending upon kernel-space code at all? In
MINIX 3, at least, the answer is no, of course not. Alarms are managed in the first
place by the kernel-space clock task, which maintains a linked list, or queue, of
timers, as schematized in Fig. 2-49. On every interrupt from the clock chip the
expiration time of the timer at the head of the queue is compared to the current
time, and if it has expired the clock task main loop is activated. The clock task
then causes a notification to be sent to the process that requested the alarm.

The innovation in MINIX 3 is that timers in kernel space are maintained only
for system processes. The process manager maintains another queue of timers on
behalf of user processes that have requested alarms. The process manager
requests an alarm from the clock only for the timer at the head of its queue. If a
new request is not added to the head of the queue no request to the clock is neces-
sary at the time it is added. (Actually, of course, an alarm request is made
through the system task, since the clock task does not communicate directly with
any other process.) When expiration of an alarm is detected after a clock interrupt
a notification comes to the process manager. The PM then does all the work of
checking its own timer queue, signaling user processes, and possibly requesting
another alarm if there is still an active alarm request at the head of its list.

So far this does not sound as if it saves much effort at the kernel level, but
there are several other considerations. First there is the possibility that more than
one timer may be found to have expired on a particular clock tick. It may seem



446 MEMORY MANAGEMENT CHAP. 4

improbable that two processes would request alarms at the same time. However,
although the clock checks for timer expirations on every interrupt from the clock
chip, interrupts are sometimes disabled, as we have seen. A call to the PC BIOS
can cause enough interrupts to be missed that special provision is made to catch
up. This means the time maintained by the clock task can jump by multiple ticks,
making it possible that multiple timeouts may need to be handled at once. If these
are handled by the process manager the kernel-space code does not have to
traverse its own linked list, cleaning it up and generating multiple notifications.

Second, alarms can be cancelled. A user process may terminate before a
timer set on its behalf expires. Or a timer may have been set as a backup to pre-
vent a process from waiting forever for an event that might never occur. When
the event does occur the alarm can be cancelled. Clearly, it eases the load on the
kernel-space code if cancellation of timers is done on a queue maintained by the
process manager, and not in the kernel. The kernel-space queue only needs atten-
tion when the timer at its head expires or when the process manager makes a
change to the head of its queue.

The implementation of timers will be easier to understand if we take a quick
tour of the functions used in handling an alarm now. Many functions in the proc-
ess manager and in the kernel are involved, and it is hard to see the whole picture
when looking at details, one function at a time.

When the PM sets an alarm on behalf of a user process a timer is initialized
by set�alarm. The timer structure has fields for the expiration time, the process
on behalf of which the alarm is set, and a pointer to a function to execute. For
alarms that function is always cause�sigalarm. Then the system task is asked to
set a kernel-space alarm. When this timer expires the watchdog process in the
kernel, cause�alarm, is executed and sends a notification to the process manager.
Several functions and macros are involved in this, but eventually this notification
is received by the PM’s get�work function, and detected as a message of type
SYN�ALARM in the PM’s main loop, which calls the PM’s pm�expire�timers
function. Now several more functions in the process manager’s space are used.
A library function, tmrs�exptimers causes the watchdog cause�sigalrm to be exe-
cuted, which calls checksig, which calls sig�proc. Next, sig�proc decides
whether to kill the process or send it the SIGALRM. Finally, sending the signal
requires asking the system task in kernel space for help, of course, since data in
the process table and in the stack space of the signaled process are manipulated,
as was described in Fig. 4-43.

4.7.8 Other System Calls

The PM also handles a few more simple system calls. Time and stime deal
with the real time clock. The times call gets process accounting times. They are
handled here largely because the PM is a convenient place to put them. (We will
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discuss another time-related call, utime, when we come to file systems in Chap. 5,
since it stores file modification times in i-nodes.)

The library functions getuid and geteuid both invoke the getuid system call,
which returns both values in its return message. Similarly, the getgid system call
also returns real and effective values for use by the getgid and getegid functions.
getpid works the same way to return both the process ID and the ID of the parent
process, and setuid and setgid can each set both real and effective values in one
call. Two additional system calls exist in this group, getpgrp and setsid. The
former returns the process group ID, and the latter sets it to the current PID value.
These seven calls are the simplest MINIX 3 system calls.

The ptrace and reboot system calls are also handled by the PM. The former
supports debugging of programs. The latter affects many aspects of the system. It
is appropriate to place it in the PM because its first action is to send signals to kill
all processes except init. After that, it calls upon the file system and the system
task to complete its work.

4.8 IMPLEMENTATION OF THE MINIX 3 PROCESS MANAGER

Armed with a general overview of how the PM works, let us now turn to the
code itself. The PM is written entirely in C, is straightforward, and contains a
substantial amount of commentary in the code itself, so our treatment of most
parts need not be long or involved. We will first look briefly at the header files,
then the main program, and finally the files for the various system call groups dis-
cussed previously.

4.8.1 The Header Files and Data Structures

Several header files in the PM source directory have the same names as files
in the kernel directory; these names will be seen again in the file system. These
files have similar functions in their own contexts. The parallel structure is
designed to make it easier to understand the organization of the whole MINIX 3
system. The PM also has a number of headers with unique names. As in other
parts of the system, storage for global variables is reserved when the PM’s version
of table.c is compiled. In this section we will look at all of the header files, as
well as table.c.

As with the other major parts of MINIX 3, the PM has a master header file,
pm.h (line 17000). It is included in every compilation, and it in turn includes all
the system-wide header files from /usr/include and its subdirectories that are
needed by every object module. Most of the files that are included in
kernel/kernel.h are also included here. The PM also needs some definitions in
include/fcntl.h and include/unistd.h. The PM’s own versions of const.h, type.h,
proto.h, and glo.h also are included. We saw a similar structure with the kernel.
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Const.h (line 17100) defines some constants used by the PM.
Type.h is currently unused and exists in skeletal form just so the PM files will

have the same organization as the other parts of MINIX 3. Proto.h (line 17300)
collects in one place function prototypes needed throughout the PM. Dummy
definitions of some functions needed when swapping is compiled into MINIX 3 are
found on lines 17313 and 17314. Putting these macros here simplifies compiling
a version without swapping; otherwise many other source files would have to be
modified to remove calls to these functions.

The PM’s global variables are declared in glo.h (line 17500). The same trick
used in the kernel with EXTERN is used here, namely, EXTERN is normally a
macro that expands to extern, except in the file table.c. There it becomes the null
string so storage can be reserved for the variables declared as EXTERN.

The first of these variables, mp, is a pointer to an mproc structure, the PM part
of the process table for the process whose system call is being processed. The
second variable, procs�in�use, keeps track of how many process slots are cur-
rently in use, making it easy to see if a fork call is feasible.

The message buffer m� in is for the request messages. Who is the index of the
current process; it is related to mp by

mp = &mproc[who];

When a message comes in, the system call number is extracted from it and put in
call�nr.

MINIX 3 writes an image of a process to a core file when a process terminates
abnormally. Core�name defines the name this file will have, core�sset is a bit-
map which defines which signals should produce core dumps, and ign�sset is a
bitmap telling which signals should be ignored. Note that core�name is defined
extern, not EXTERN. The array call�vec is also declared as extern. The reason
for making both of these declarations this way will be explained when we discuss
table.c.

The PM’s part of the process table is in the next file, mproc.h (line 17600).
Most of the fields are adequately described by their comments. Several fields
deal with signal handling. Mp�ignore, mp�catch, mp�sig2mess, mp�sigmask,
mp�sigmask2, and mp�sigpending are bitmaps, in which each bit represents one
of the signals that can be sent to a process. The type sigset�t is a 32-bit integer,
so MINIX 3 could support up to 32 signals. Currently 22 signals are defined,
although some are not supported, as permitted by the POSIX standard. Signal 1 is
the least significant (rightmost) bit. In any case, POSIX requires standard func-
tions to add or delete members of the signal sets represented by these bitmaps, so
all necessary manipulations can be done without the programmer being aware of
these details. The array mp�sigact is important for handling signals. An element
is provided for each signal type, and each element is a sigaction structure (defined
in the file include/signal.h). Each sigaction structure consists of three fields:



SEC. 4.8 IMPLEMENTATION OF THE MINIX 3 PROCESS MANAGER 449

1. The sa�handler field defines whether the signal is to be handled in
the default way, ignored, or handled by a special handler.

2. The sa�mask field is a sigset�t that defines which signals are to be
blocked when the signal is being handled by a custom handler.

3. The sa�flags field is a set of flags that apply to the signal.

This array makes possible a great deal of flexibility in handling signals.
The mp�flags field is used to hold a miscellaneous collection of bits, as indi-

cated at the end of the file. This field is an unsigned integer, 16 bits on low-end
CPUs or 32 bits on a 386 and up.

The next field in the process table is mp�procargs. When a new process is
started, a stack like the one shown in Fig. 4-38 is built, and a pointer to the start of
the new process’ argv array is stored here. This is used by the ps command. For
instance, for the example of Fig. 4-38, the value 8164 would be stored here, mak-
ing it possible for ps to display the command line,

ls –l f.c g.c

if executed while the ls command is active.
The mp�swapq field is not used in MINIX 3 as described here. It is used when

swapping is enabled, and points to a queue of processes waiting to be swapped.
The mp�reply field is where a reply message is built. In earlier versions of
MINIX, one such field was provided, defined in glo.h and thus compiled when
table.c was compiled. In MINIX 3, a space for building a reply message is pro-
vided for every process. Providing a place for a reply in each process table slot
allows the PM to go on to handle another incoming message if a reply cannot be
sent immediately upon completion of building the reply. The PM cannot handle
two requests at once, but it can postpone replies if necessary, and catch up by try-
ing to send all pending replies each time it completes a request.

The last two items in the process table might be regarded as frills. Mp�nice
provides a place for each process to be assigned a nice value, so users can lower
the priority of their processes, for example, to allow one running process to defer
to another, more important, one. However, MINIX 3 uses this field internally to
provide system processes (servers and drivers) with different priorities, depending
upon their needs. The mp�name field is convenient for debugging, to help the
programmer identify a process table slot in a memory dump. A system call is
available to search the process table for a process name and return a process ID.

Finally, note that the process manager’s part of the process table is declared
as an array of size NR�PROCS (line 17655). Recall that the kernel’s part of the
process table was declared as an array of size NR�TASKS + NR�PROCS in
kernel/proc.h (line 5593). As mentioned previously, processes compiled into the
kernel are not known to user space components of the operating system such as
the process manager. They are not really first-class processes.
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The next file is param.h (line 17700), which contains macros for many of the
system call parameters contained in the request message. It also contains twelve
macros for fields in the reply message, and three macros used only in messages to
the file system. For example, if the statement

k = m�in.pid;

appears in any file in which param.h is included, the C preprocessor converts it to

k = m� in.m1� i1;

before feeding it to the compiler proper (line 17707).
Before we continue with the executable code, let us look at table.c (line

17800). Compilation of this file reserves storage for the various EXTERN vari-
ables and structures we have seen in glo.h and mproc.h. The statement

#define �TABLE

causes EXTERN to become the null string. This is the same mechanism that we
saw in the kernel code. As we mentioned earlier, core�name was declared as
extern, not EXTERN in glo.h. Now we can see why. Here core�name is declared
with an initialization string. Initialization is not possible within an extern defini-
tion.

The other major feature of table.c is the array call�vec (line 17815). It is also
an initialized array, and thus could not be declared as EXTERN in glo.h. When a
request message arrives, the system call number is extracted from it and used as
an index into call�vec to locate the procedure that carries out that system call.
System call numbers that are not valid calls all invoke no�sys, which just returns
an error code. Note that although the �PROTOTYPE macro is used in defining
call�vec, this is not a declaration of a prototype; it is the definition of an initial-
ized array. However, it is an array of functions, and use of �PROTOTYPE is the
easiest way to do this that is compatible with both classic (Kernighan & Ritchie)
C and Standard C.

A final note on header files: because MINIX 3 is still being actively
developed, there are still some rough edges. One of these is that some source files
in pm/ include header files from the kernel directory. It may be hard to find some
important definitions if you are not aware of this. Arguably definitions used by
more than one major component of MINIX 3 should be consolidated into header
files in the include/ directory.

4.8.2 The Main Program

The PM is compiled and linked independently from the kernel and the file
system. Consequently, it has its own main program, which is started up after the
kernel has finished initializing itself. The entry point is at line 18041 in main.c.
After doing its own initialization by calling pm�init, the PM enters its loop on
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line 18051. In this loop, it calls get�work to wait for an incoming request mes-
sage. Then it calls one of its do�XXX procedures via the call�vec table to carry
out the request. Finally, it sends a reply, if needed. This construction should be
familiar by now: it is the same one used by the I/O tasks.

The preceding description is slightly simplified. As mentioned in Chap. 2,
notification messages can be sent to any process. These are identified by special
values in the call�nr field. In lines 18055 to 18062 a test is made for the two
types of notification messages the PM can receive, and special action is taken in
these cases. Also, a test is made for a valid call�nr on line 18064 before an
attempt is made to carry out a request (on line 18067). Although an invalid
request is unlikely, the test is cheap and the consequences of an invalid request
would be serious.

Another point worth noting is the call to swap�in at line 18073. As we men-
tioned in the context of proto.h, in MINIX 3 as configured for description in this
text this is a dummy call. But if the system is compiled with the full set of source
code with swapping enabled, this is where a test is made to see if a process could
be swapped in.

Finally, although the comment on line 18070 indicates this is where a reply is
sent back, that is also a simplification. The call to setreply constructs a reply in
the space we mentioned earlier, in the process table entry for the current process.
Then in lines 18078 to 18091 of the loop, all entries in the process table are
checked and all pending replies that can be sent are sent, skipping over any that
cannot be sent at this time.

The procedures get�work (line 18099) and setreply (line 18116) handle the
actual receiving and sending, respectively. The former does a little trick to make
it look like a message from the kernel was actually from the PM itself, since the
kernel does not have a process table slot of its own. The latter function does not
really send the reply, it sets it up to be sent later, as mentioned above.

Initialization of the Process Manager

The longest procedure in main.c is pm�init, which initializes the PM. It is not
used after the system has started running. Even though drivers and servers are
compiled separately and run as separate processes, some of them are loaded as
part of the boot image by the boot monitor. It is hard to see how any operating
system could be started without a PM and a file system, so these components
probably will always need to be loaded into memory by the boot monitor. Some
device drivers are also loaded as part of the image. Although it is a goal to make
as many MINIX 3 drivers as possible independently loadable, it is hard to see, for
instance, how to avoid loading some disk driver early in the game.

Most of the work of pm�init is to initialize the PM’s tables so all of the
preloaded processes can run. As noted earlier the PM maintains two important
data structures, the hole table (or free memory table) and a part of the process
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table. We will consider the hole table first. Initialization of memory is compli-
cated. It will be easier to understand the description that follows if we first show
how memory is organized when the PM is activated. MINIX 3 provides all the
information we need for this.

Before the MINIX 3 boot image itself is loaded into memory, the boot monitor
determines the layout of available memory. From the boot menu, you can press
the ESC key to see the boot parameters. One line in the display shows blocks of
unused memory, and looks like this:

memory = 800:923e0,100000:3df0000

(After MINIX 3 starts you can also see this information using the sysenv command
or the F5 key. The exact numbers you see may be different, of course.)

This shows two blocks of free memory. In addition, there are two blocks of
used memory. Memory below 0x800 is used for BIOS data and by the master
boot record and the bootblock. It really does not matter how it is used, it is not
available by the time the boot monitor starts up. The free memory beginning at
0x800 is the ‘‘base memory’’ of IBM-compatible computers. In this example,
starting at address 0x800 (2048) there are 0x923e0 (599008) bytes available.
Above this is the 640 KB to 1 MB ‘‘upper memory area’’ which is off limits to
ordinary programs—it is reserved for ROM and dedicated RAM on I/O adapters.
Finally, at address 0x100000 (1 MB) there are 0x3df0000 bytes free. This range
is commonly referred to as ‘‘extended memory.’’ This example indicates the com-
puter has a total of 64 MB of RAM installed.

If you have been keeping track of these numbers you will have noticed that
the amount of free base memory is less than the 638 KB you might have expected.
The MINIX 3 boot monitor loads itself as high as possible in this range, and in this
case requires about 52 KB. In this example about 584 KB is really free. This is a
good place to note that memory use could be more complicated than is in this ex-
ample. For instance, one method of running MINIX, not yet ported to MINIX 3 at
the time this is being written, uses an MS-DOS file to simulate a MINIX disk. The
technique requires loading some components of MS-DOS before starting the
MINIX 3 boot monitor. If these are not loaded adjacent to memory regions
already in use more than two regions of free memory will be reported by the boot
monitor.

When the boot monitor loads the boot image into memory information about
the image components is displayed on the console screen. Fig. 4-44 shows part of
such a display. In this example (typical but possibly not identical to what you will
see as this was from a pre-release version of MINIX 3), the boot monitor loaded
the kernel into the free memory at address 0x800. The PM, file system, reincarna-
tion server, and other components not shown in the figure are installed in the
block of free memory that starts at 1 MB. This was an arbitrary design choice;
enough memory remains below the 588 KB limit for some of these components.
However, when MINIX 3 is compiled with a large block cache, as is true in this
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example, the file system cannot fit into the space just above the kernel. It was
easier, but by no means essential, just to load everything in the higher region of
memory. Nothing is lost by this, the memory manager can make use of the hole
in memory below 588 KB once the system is running and user processes are
started.

��������������������������������������������������������������
cs ds text data bss stack

0000800 0005800 19552 3140 30076 0 kernel
0100000 0104c00 19456 2356 48612 1024 pm
0111800 011c400 43216 5912 6224364 2048 fs
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Figure 4-44. Boot monitor display of memory usage of the first few boot image
components.

Initialization of the PM starts by looping through the process table to disable
the timer for each slot so no spurious alarms can occur. Then global variables that
define the default sets of signals that will be ignored or that will cause core dumps
are initialized. Next the information we have seen about memory use is pro-
cessed. On line 18182 the system task retrieves the boot monitor’s memory string
that we saw above. In our example there are two base:size pairs showing blocks
of free memory. The call to get�mem�chunks (line 18184) converts the data in
the ASCII string into binary, and enters the base and size values into the array
mem�chunks (line 18192) the elements of which are defined as

struct memory {phys�clicks base; phys�clicks size;};

Mem�chunks is not the hole list yet, it is just a small array in which this informa-
tion is collected prior to initializing the hole list.

After querying the kernel and converting information about kernel memory
use into units of clicks, patch�mem�chunks is called to subtract the kernel usage
from mem�chunks array. Now memory that was in use before MINIX 3 started is
accounted for, as is memory used by the kernel. Mem�chunks is not complete,
but memory used by normal processes in the boot image will be accounted for
within the loop on lines 18201 to 18239 which initializes process table entries.

Information about attributes of all processes that are part of the boot image
are in the image table that was declared in kernel/table.c (lines 6095 to 6109).
Before entering the main loop the sys�getimage kernel call on line 18197 pro-
vides the process manager with a copy of the image table. (Strictly speaking, this
is not exactly a kernel call; it is one of more than a dozen macros defined in
include/minix/syslib.h that provide easily-used interfaces to the sys�getinfo kernel
call.) Kernel processes are not known in user space and the PM (and FS) parts of
the process table do not need initialization for kernel processes. In fact, space is
not reserved for kernel process slots. These each have a negative process number
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(process table index), and they are ignored by the test on line 18202. Also, it is
not necessary to call patch�mem�chunks for kernel processes; the allowance
made for the kernel’s memory use also takes care of the tasks that are compiled
into the kernel.

System processes and user processes need to be added to the process table, al-
though they get slightly different treatments (lines 18210 to 18219). The only
user process loaded in the boot image is init, thus a test is made for
INIT�PROC�NR (line 18210). All of the other processes in the boot image are
system processes. System processes are special—they cannot be swapped, they
each have a dedicated slot in the priv table in the kernel, and they have special
privileges as indicated by their flags. For each process, the proper defaults are set
for signal processing (with some differences between the defaults for system
processes and init). Then the memory map of each process is obtained from the
kernel, using get�mem�map, which ultimately invokes the sys�getinfo kernel
call, and patch�mem�chunks is called to adjust the mem�chunks array (lines
18225 to 18230) accordingly.

Finally, a message is sent to the file system so an entry for each process can
be initialized in the FS part of the process table (lines 18233 to 18236). The mes-
sage contains only the process number and the PID; this is sufficient to initialize
the FS process table slot, as all the processes in the system boot image belong to
the superuser and can be given the same default values. Each message is
dispatched with a send operation, so no reply is expected. After sending the mes-
sage the name of the process is displayed on the console (line 18237):

Building process table: pm fs rs tty memory log driver init

In this display driver is a stand-in for the default disk driver; multiple disk drivers
may be compiled into the boot image, with one selected as the default by a label=
assignment in the boot parameters.

The PM’s own process table entry is a special case. After the main loop is
complete the PM makes some changes to its own entry and then sends a final
message to the file system with a symbolic value of NONE as the process number.
This message is sent with a sendrec call, and the process manager blocks expect-
ing a response. While the PM has been looping through the initialization code the
file system has been executing a receive loop (on lines 24189 to 24202, if you
want to peek at code to be described in the next chapter). Receiving the message
with process number NONE tells the FS that all system processes have been ini-
tialized, so it can exit its loop and send a synchronization message to unblock the
PM.

Now the FS is free to continue its own initialization, and here in the PM ini-
tialization is also almost complete. On line 18253, mem�init is called. This func-
tion takes the information that has been collected in the mem�chunks array and
initializes the linked list of free memory regions and related variables that will be
used for memory management once the system is running. Normal memory man-
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agement begins after printing a message on the console listing total memory,
memory in use by MINIX 3, and available memory:

Physical memory: total 63996 KB, system 12834 KB, free 51162 KB.

The next function is get�nice�value (line 18263). It is called to determine
the ‘‘nice level’’ of each process in the boot image. The image table provides a
queue value for each boot image process which defines on which priority queue
the process will be scheduled. These range from 0 for high priority processes like
CLOCK to 15 for IDLE. But the traditional meaning of ‘‘nice level’’ in UNIX sys-
tems is a value that can be either positive or negative. Thus get�nice�value
scales the kernel priority values on a scale centered on zero for user processes.
This is done using constants defined as macros in include/sys/resource.h (not
listed), PRIO�MIN and PRIO�MAX, with values of -20 and +20. These are
scaled between MIN�USER�Q and MAX�USER�Q, defined in kernel/proc.h, so
if a decision is made to provide fewer or more scheduling queues the nice com-
mand will still work. Init, the root process in the user process tree, is scheduled in
priority queue 7 and receives a ‘‘nice’’ value of 0, which is inherited by a child
after a fork.

The last two functions contained in main.c have already been mentioned in
passing. Get�mem�chunks (line 18280) is called only once. It takes the memory
information returned by the boot monitor as an ASCII string of hexadecimal
base:size pairs, converts the information into units of clicks, and stores the infor-
mation in the mem�chunks array. Patch�mem�chunks (line 18333) continues
building the free memory list, and is called several times, once for the kernel itself
and once for init and each of the system processes initialized during the main loop
of pm�init. It corrects the raw boot monitor information. Its job is easier because
it gets its data in click units. For each process, pm�init is passed the base and size
of the text and data allocations for that process. For each process, the base of the
last element in the array of free blocks is increased by the sum of the lengths of
the text and data segments. Then the size of that block is decreased by the same
amount to mark the memory for that process as in use.

4.8.3 Implementation of FORK, EXIT, and WAIT

The fork, exit, and wait system calls are implemented by the procedures
do�fork, do�pm�exit, and do�waitpid in the file forkexit.c. The procedure
do�fork (line 18430) follows the steps shown in Fig. 4-36. Notice that the second
call to procs� in�use (line 18445) reserves the last few process table slots for the
superuser. In computing how much memory the child needs, the gap between the
data and stack segments is included, but the text segment is not. Either the
parent’s text is shared, or, if the process has common I and D space, its text seg-
ment is of zero length. After doing the computation, a call is made to alloc�mem
to get the memory. If this is successful, the base addresses of child and parent are
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converted from clicks into absolute bytes, and sys�copy is called to send a mes-
sage to the system task to get the copying done.

Now a slot is found in the process table. The test involving procs� in�use
earlier guarantees that one will exist. After the slot has been found, it is filled in,
first by copying the parent’s slot there, and then updating the fields mp�parent,
mp�flags, mp�child�utime, mp�child�stime, mp�seg, mp�exitstatus, and
mp�sigstatus. Some of these fields need special handling. Only certain bits in
the mp�flags field are inherited. The mp�seg field is an array containing ele-
ments for the text, data, and stack segments, and the text portion is left pointing to
the parent’s text segment if the flags indicate this is a separate I and D program
that can share text.

The next step is assigning a PID to the child. The call to get� free�pid does
what its name indicates. This is not as simple as one might think, and we will de-
scribe the function further on.

Sys�fork and tell�fs inform the kernel and file system, respectively, that a
new process has been created, so they can update their process tables. (All the
procedures beginning with sys� are library routines that send a message to the
system task in the kernel to request one of the services of Fig. 2-45.) Process
creation and destruction are always initiated by the PM and then propagated to the
kernel and file system when completed.

The reply message to the child is sent explicitly at the end of do�fork. The
reply to the parent, containing the child’s PID, is sent by the loop in main, as the
normal reply to a request.

The next system call handled by the PM is exit. The procedure do�pm�exit
(line 18509) accepts the call, but most of the work is done by the call to pm�exit,
a few lines further down. The reason for this division of labor is that pm�exit is
also called to take care of processes terminated by a signal. The work is the same,
but the parameters are different, so it is convenient to split things up this way.

The first thing pm�exit does is to stop the timer, if the process has one run-
ning. Then the time used by the child is added to the parent’s account. Next, the
kernel and file system are notified that the process is no longer runnable (lines
18550 and 18551). The sys�exit kernel call sends a message to the system task
telling it to clear the slot used by this process in the kernel’s process table. Next
the memory is released. A call to find�share determines whether the text seg-
ment is being shared by another process, and if not the text segment is released by
a call to free�mem. This is followed by another call to the same procedure to
release the data and stack. It is not worth the trouble to decide whether all the
memory could be released in one call to free�mem. If the parent is waiting,
cleanup is called to release the process table slot. If the parent is not waiting, the
process becomes a zombie, indicated by the ZOMBIE bit in the mp� flags word,
and the parent is sent a SIGCHILD signal.

Whether the process is completely eliminated or made into a zombie, the final
action of pm�exit is to loop through the process table and look for children of the
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process it has just terminated (lines 18582 to 18589). If any are found, they are
disinherited and become children of init. If init is waiting and a child is hanging,
cleanup is then called for that child. This deals with situations such as the one
shown in Fig. 4-45(a). In this figure we see that process 12 is about to exit, and
that its parent, 7, is waiting for it. Cleanup will be called to get rid of 12, so 52
and 53 are turned into children of init, as shown in Fig. 4-45(b). Now we have the
situation that 53, which has already exited, is the child of a process doing a wait.
Consequently, it can also be cleaned up.

(b)(a)

INIT

6 7

INIT

876
12

52 53

8

Waiting

Waiting

Exiting

Zombie

52 53

Figure 4-45. (a) The situation as process 12 is about to exit. (b) The situation
after it has exited.

When the parent process does a wait or a waitpid, control comes to procedure
do�waitpid on line 18598. The parameters supplied by the two calls are different,
and the actions expected are also different, but the setup done in lines 18613 to
18615 prepares internal variables so do�waitpid can perform the actions of either
call. The loop on lines 18623 to 18642 scans the entire process table to see if the
process has any children at all, and if so, checks to see if any are zombies that can
now be cleaned up. If a zombie is found (line 18630), it is cleaned up and
do�waitpid returns the SUSPEND return code. If a traced child is found, the
reply message being constructed is modified to indicate the process is stopped,
and do�waitpid returns.

If the process doing the wait has no children, it simply receives an error return
(line 18653). If it has children, but none are zombies or are being traced, a test is
made to see if do�waitpid was called with a bit set indicating the parent did not
want to wait. If not (the usual case), then a bit is set on line 18648 to indicate that
it is waiting, and the parent is suspended until a child terminates.

When a process has exited and its parent is waiting for it, in whichever order
these events occur, the procedure cleanup (line 18660) is called to perform the
last rites. Not much remains to be done by this point. The parent is awakened
from its wait or waitpid call and is given the PID of the terminated child, as well as
its exit and signal status. The file system has already released the child’s mem-
ory, and the kernel has already suspended scheduling and freed up the child’s slot
in the process table. At this point, the child process is gone forever.
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4.8.4 Implementation of EXEC

The code for exec follows the outline of Fig. 4-40. It is contained in the pro-
cedure do�exec (line 18747) in exec.c. After making a few validity checks, the
PM fetches the name of the file to be executed from user space (lines 18773 to
18776). Recall that the library procedures which implement exec build a stack
within the old core image, as we saw in Fig. 4-38. This stack is fetched into the
PM’s memory space next (line 18782).

The next few steps are written as a loop (lines 18789 to 18801). However, for
ordinary binary executables only one pass through the loop takes place. We will
first describe this case. On line 18791 a message to the file system switches to the
user’s directory so the path to the file will be interpreted relative to the user’s,
rather than to PM’s, working directory. Then allowed is called—if execution is
allowed it opens the file. If the test fails a negative number is returned instead of
a valid file descriptor, and do�exit terminates indicating failure. If the file is
present and executable, the PM calls read�header and gets the segment sizes.
For an ordinary binary the return code from read�header will cause an exit from
the loop at line 18800.

Now we will look at what happens if the executable is a script. MINIX 3, like
most UNIX-like operating systems, supports executable scripts. Read�header
tests the first two bytes of the file for the magic shebang (#!) sequence and
returns a special code if this is found, indicating a script. The first line of a script
marked this way specifies the interpreter for the script, and possibly also specifies
flags and options for the interpreter. For instance, a script can be written with a
first line like

#! /bin/sh

to show it is to be interpreted by the Bourne shell, or

#! /usr/local/bin/perl –wT

to be interpreted with Perl with flags set to warn of possible problems. This com-
plicates the job of exec, however. When a script is to be run, the file that
do�exec must load into memory is not the script itself. Instead the binary for the
interpreter must be loaded. When a script is identified patch�stack is called on
line 18801 at the bottom of the loop.

What patch�stack does can be illustrated by an example. Suppose that a Perl
script is called with a few arguments on the command line, like this:

perl�prog.pl file1 file2

If the perl script was written with a shebang line similar to the one we saw above
patch�stack creates a stack to execute the perl binary as if the command line
were:

/usr/local/bin/perl -wT perl�prog.pl file1 file2
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If it is successful in this, the first part of this line, that is, the path to the binary
executable of the interpreter, is returned. Then the body of the loop is executed
once more, this time reading the file header and getting the segment sizes of the
file to be executed. It is not permitted for the first line of a script to point to
another script as its interpreter. That is why the variable r is used. It can only be
incremented once, allowing only one chance to call patch�stack. If on the second
time through the loop the code indicating a script is encountered, the test on line
18800 will break the loop. The code for a script, represented symbolically as
ESCRIPT, is a negative number (defined on line 18741). In this case the test on
line 18803 will cause do�exit to return with an error code telling whether the
problem is a file that canot be executed or a command line that is too long.

Some work remains to be done to complete the exec operation. Find�share
checks to see if the new process can share text with a process that is already run-
ning (line 18809), and new�mem allocates memory for the new image and
releases the old memory. Both the image in memory and the process table need to
be made ready before the exec-ed program can run. On lines 18819 to 18821 the
executable file’s i-node, filesystem, and modification time are saved in the proc-
ess table. Then the stack is fixed up as in Fig. 4-38(c) and copied to the new im-
age in memory. Next the text (if not already sharing text) and data segments are
copied from the disk to the memory image by calling rw�seg (lines 18834 to
18841). If the setuid or setgid bits are set the file system needs to be notified to
put the effective id information into the FS part of process table entry (lines 18845
to 18852). In the PM’s part of the file table a pointer to the arguments to the new
program is saved so the ps command will be able to show the command line, sig-
nal bitmasks are initialized, the FS is notified to close any file descriptors that
should be closed after an exec, and the name of the command is saved for display
by ps or during debugging (lines 18856 to 18877). Usually, the last step is to tell
the kernel, but if tracing is enabled a signal must be sent (lines 18878 to 18881).

In describing the work of do�exec we mentioned a number of supporting
functions provided in exec.c. Read�header (line 18889) not only reads the header
and returns the segment sizes, it also verifies that the file is a valid MINIX 3 exe-
cutable for the same CPU type as the operating system is compiled for. The con-
stant value A�I80386 on line 18944 is determined by a #ifdef ... #endif sequence
at compile time. Binary executable programs for 32-bit MINIX 3 on Intel plat-
forms must have this constant in their headers to be acceptable. If MINIX 3 were
to be compiled to run in 16-bit mode the value here would be A�I8086. If you are
curious, you can see values defined for other CPUs in include/a.out.h.

Procedure new�mem (line 18980) checks to see if sufficient memory is avail-
able for the new memory image. It searches for a hole big enough for just the
data and stack if the text is being shared; otherwise it searches for a single hole
big enough for the combined text, data, and stack. A possible improvement here
would be to search for two separate holes. In earlier versions of MINIX it was
required that the text and data/stack segments be contiguous, but this is not
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necessary in MINIX 3. If sufficient memory is found, the old memory is released
and the new memory is acquired. If insufficient memory is available, the exec
call fails. After the new memory is allocated, new�mem updates the memory
map (in mp�seg) and reports it to the kernel with the sys�newmap kernel call.

The final job of new�mem is to zero the bss segment, gap, and stack segment.
(The bss segment is that part of the data segment that contains all the uninitialized
global variables.) The work is done by the system task, called by sys�memset at
line 19064. Many compilers generate explicit code to zero the bss segment, but
doing it here allows MINIX 3 to work even with compilers that do not. The gap
between data and stack segments is also zeroed, so that when the data segment is
extended by brk, the newly acquired memory will contain zeroes. This is not only
a convenience for the programmer, who can count on new variables having an ini-
tial value of zero, it is also a security feature on a multiuser operating system,
where a process previously using this memory may have been using data that
should not be seen by other processes.

The next procedure, patch�ptr (line 19074), relocates pointers like those of
Fig. 4-38(b) to the form of Fig. 4-38(c). The work is simple: examine the stack to
find all the pointers and add the base address to each one.

The next two functions work together. We described their purpose earlier.
When a script is exec-ed the binary for the interpreter of the script is the execut-
able that must be run. Insert�arg (line 19106) inserts strings into the PM copy of
the stack. This is directed by patch�stack (line 19162), which finds all of the
strings on the shebang line of the script, and calls insert�arg. The pointers have
to be corrected, too, of course. Insert�arg’s job is straightforward, but there are a
number of things that can go wrong and must be tested. This is a good place to
mention that checking for problems when dealing with scripts is particularly
important. Scripts, after all, can be written by users, and all computer profession-
als recognize that users are often the major cause of problems. But, seriously, a
major difference between a script and a compiled binary is that you can generally
trust the compiler to have refused to produce output for a wide range of errors in
the source code. A script is not validated this way.

Fig. 4-46 shows how this would work for a call to a shell script, s.sh, which
operates on a file f1. The command line looks like this:

s.sh f1

and the shebang line of the script indicates it is to be interpreted by the Bourne
shell:

#! /bin/sh

In part (a) of the figure is the stack copied from the caller’s space. Part (b) shows
how this is transformed by patch�stack and insert�arg. Both of these diagrams
correspond to Fig.4-38(b).

The next function defined in exec.c is rw�seg (line 19208). Is called once or
twice per exec, possibly to load the text segment and always to load the data
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Figure 4-46. a. Arrays passed to execve and the stack created when a script is
executed. b. After processing by patch�stack, the arrays and the stack look like
this. The script name is passed to the program which interprets the script.

segment. Rather than just reading the file block by block and then copying the
blocks to the user, a trick is used to allow the file system to load the entire seg-
ment directly to the user space. In effect, the call is decoded by the file system in
a slightly special way so that it appears to be a read of the entire segment by the
user process itself. Only a few lines at the beginning of the file system’s read rou-
tine know that some monkey business is going on here. Loading is appreciably
speeded up by this maneuver.

The final procedure in exec.c is find�share (line 19256). It searches for a
process that can share text by comparing the i-node, device, and modification
times of the file to be executed with those of existing processes. This is just a
straightforward search of the appropriate fields in mproc. Of course, it must
ignore the process on behalf of which the search is being made.

4.8.5 Implementation of BRK

As we have just seen, the basic memory model used by MINIX 3 is quite sim-
ple: each process is given a single contiguous allocation for its data and stack
when it is created. It is never moved around in memory, it never grows, and it
never shrinks. All that can happen is that the data segment can eat away at the
gap from the low end, and the stack can eat away at it from the high end. Under
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these circumstances, the implementation of the brk call in break.c is especially
easy. It consists of verifying that the new sizes are feasible and then updating the
tables to reflect them.

The top-level procedure is do�brk (line 19328), but most of the work is done
in adjust (line 19361). The latter checks to see if the stack and data segments
have collided. If they have, the brk call cannot be carried out, but the process is
not killed immediately. A safety factor, SAFETY�BYTES, is added to the top of
the data segment before making the test, so (hopefully) the decision that the stack
has grown too far can be made while there is still enough room on the stack for
the process to continue for a short while. It gets control back (with an error mes-
sage), so it can print appropriate messages and shut down gracefully.

Note that SAFETY�BYTES and SAFETY�CLICKS are defined using #define
statements in the middle of the procedure (line 19393). This use is rather unusual;
normally such definitions appear at the beginning of files, or in separate header
files. The associated comment reveals that the programmer found deciding upon
the size of the safety factor to be difficult. No doubt this definition was done in
this way to attract attention and, perhaps, to stimulate additional experimentation.

The base of the data segment is constant, so if adjust has to adjust the data
segment, all it does is update the length field. The stack grows downward from a
fixed end point, so if adjust also notices that the stack pointer, which is given to it
as a parameter, has grown beyond the stack segment (to a lower address), both the
origin and length are updated.

4.8.6 Implementation of Signal Handling

Eight POSIX system calls are related to signals. These calls are summarized
in Fig. 4-47. These system calls, as well as the signals themselves, are processed
in the file signal.c.
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Figure 4-47. System calls relating to signals.

The sigaction system call supports the sigaction and signal functions, which
allow a process to alter how it will respond to signals. Sigaction is required by
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POSIX and is the preferred call for most purposes, but the signal library function
is required by Standard C, and programs that must be portable to non-POSIX sys-
tems should be written using it. The code for do�sigaction (line 19544) begins
with checks for a valid signal number and verification that the call is not an
attempt to change the response to a sigkill signal (lines 19550 and 19551). (It is
not permitted to ignore, catch, or block sigkill. Sigkill is the ultimate means by
which a user can control his processes and a system manager can control his
users.) Sigaction is called with pointers to a sigaction structure, sig�osa, which
receives the old signal attributes that were in effect before the call, and another
such structure, sig�nsa, containing a new set of attributes.

The first step is to call the system task to copy the current attributes into the
structure pointed to by sig�osa. Sigaction can be called with a NULL pointer in
sig�nsa to examine the old signal attributes without changing them. In this case
do�sigaction returns immediately (line 19560). If sig�nsa is not NULL, the struc-
ture defining the new signal action is copied to the PM’s space.

The code in lines 19567 to 19585 modifies the mp�catch, mp�ignore, and
mp�sigpending bitmaps according to whether the new action is to be to ignore the
signal, to use the default handler, or to catch the signal. The sa�handler field of
the sigaction structure is used to pass a pointer to the procedure to the function to
be executed if a signal is to be caught, or one of the special codes SIG�IGN or
SIG�DFL, whose meanings should be clear if you understand the POSIX stan-
dards for signal handling discussed earlier. A special MINIX 3-specific code,
SIG�MESS is also possible; this will be explained below.

The library functions sigaddset and sigdelset are used, to modify the signal
bitmaps, although the actions are straightforward bit manipulation operations that
could have been implemented with simple macros. However, these functions are
required by the POSIX standard in order to make programs that use them easily
portable, even to systems in which the number of signals exceeds the number of
bits available in an integer. Using the library functions helps to make MINIX 3
itself easily portable to different architectures.

We mentioned a special case above. The SIG�MESS code detected on line
19576 is available only for privileged (system) processes. Such processes are nor-
mally blocked, waiting for request messages. Thus the ordinary method of receiv-
ing a signal, in which the PM asks the kernel to put a signal frame on the reci-
pients stack, will be delayed until a message wakes up the recipient. A
SIG�MESS code tells the PM to deliver a notification message, which has higher
priority than normal messages. A notification message contains the set of pending
signals as an argument, allowing multiple signals to be passed in one message.

Finally, the other signal-related fields in the PM’s part of the process table are
filled in. For each potential signal there is a bitmap, the sa�mask, which defines
which signals are to be blocked while a handler for that signal is executing. For
each signal there is also a pointer, sa�handler. It can contain a pointer to the
handler function, or special values to indicate the signal is to be ignored, handled
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in the default way, or used to generate a message. The address of the library rou-
tine that invokes sigreturn when the handler terminates is stored in mp�sigreturn.
This address is one of the fields in the message received by the PM.

POSIX allows a process to manipulate its own signal handling, even while
within a signal handler. This can be used to change signal response to subsequent
signals while a signal is being processed, and then to restore the normal set of
responses. The next group of system calls support these signal-manipulation
features. Sigpending is handled by do�sigpending (line 19597), which returns the
mp�sigpending bitmap, so a process can determine if it has pending signals. Sig-
procmask, handled by do�sigprocmask, returns the set of signals that are cur-
rently blocked, and can also be used to change the state of a single signal in the
set, or to replace the entire set with a new one. The moment that a signal is
unblocked is an appropriate time to check for pending signals, and this is done by
calls to check�pending on line 19635 and line 19641. Do�sigsuspend (line
19657) carries out the sigsuspend system call. This call suspends a process until
a signal is received. Like the other functions we have discussed here, it manipu-
lates bitmaps. It also sets the sigsuspended bit in mp�flags, which is all it takes
to prevent execution of the process. Again, this is a good time to make a call to
check�pending. Finally, do�sigreturn handles sigreturn, which is used to return
from a custom handler. It restores the signal context that existed when the handler
was entered, and it also calls check�pending on line 19682.

When a user process, such as the kill command, invokes the kill system call,
the PM’s do�kill function (line 19689) is invoked. A single call to kill may
require delivery of signals to a group of several processes, and do�kill just calls
check�sig, which checks the entire process table for eligible recipients.

Some signals, such as sigint, originate in the kernel itself. Ksig�pending (line
19699) is activated when a message from the kernel about pending signals is sent
to the PM. There may be more than one process with pending signals, so the loop
on lines 19714 to 19722 repeatedly asks the system task for a pending signal,
passes it on to handle�sig, and then tells the system task it is done, until there are
no more processes with signals pending. The messages come with a bitmap, al-
lowing the kernel to generate multiple signals with one message. The next func-
tion, handle�sig, processes the bitmap one bit at a time on lines 19750 to 19763.
Some kernel signals need special attention: the process ID is changed in some
cases to cause the signal to be delivered to a group of processes (lines 19753 to
19757). Otherwise, each set bit results in a call to check�sig, just as in do�kill.

Alarms and Timers

The alarm system call is handled by do�alarm (line 19769). It calls the next
function, set�alarm, which is a separate function because it is also used to turn off
a timer when a process exits with a timer still on. This is done by calling
set�alarm with an alarm time of zero. Set�alarm does its work with timers
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maintained within the process manager. It first determines if a timer is already set
on behalf of the requesting process, and if so, whether it has expired, so the sys-
tem call can return the time in seconds remaining on a previous alarm, or zero if
no timer was set. A comment within the code explains some problems with deal-
ing with long times. Some rather ugly code on line 19918 multiplies the argument
to the call, a time in seconds, by the constant HZ, the number of clock ticks per
second, to get a time in tick units. Three casts are needed to make the result the
correct clock�t data type. Then on the next line the calculation is reversed with
ticks cast from clock�t to unsigned long. The result is compared with a cast of the
original alarm time argument cast to unsigned long. If they are not equal it means
the requested time resulted in a number that was out of range of one of the data
types used, and a value which means ‘‘never’’ is substituted. Finally, either
pm�set�timer or pm�cancel�timer is called to add or remove a timer from the
process manager’s timer queue. The key argument to the former call is
cause�sigalarm, the watchdog function to be executed when the timer expires.

Any interaction with the timer maintained in kernel space is hidden in the
calls to the pm�XXX�timer routines. Every request for an alarm that eventually
culminates in an alarm will normally result in a request to set a timer in kernel
space. The only exception would be if more than one request for a timeout at the
exact same time were to occur. However, processes may cancel their alarms or
terminate before their alarms expire. A kernel call to request setting a timer in
kernel space only needs to be made when there is a change to the timer at the head
of the process manager’s timer queue.

Upon expiration of a timer in the kernel-space timer queue that was set on
behalf of the PM, the system task announces the fact by sending the PM a notifi-
cation message, detected as type SYN�ALARM by the main loop of the PM. This
results in a call to pm�expire� timers, which ultimately results in execution of the
next function, cause�sigalrm.

Cause�sigalarm (line 19935) is the watchdog, mentioned above. It gets the
process number of the process to be signaled, checks some flags, resets the
ALARM�ON flag, and calls check�sig to send the SIGALRM signal.

The default action of the SIGALRM signal is to kill the process if it is not
caught. If the SIGALRM is to be caught, a handler must be installed by sigaction.
Fig. 4-48 shows the complete sequence of events for a SIGALRM signal with a
custom handler. The figure shows that three sequences of messages occur. First,
in message (1) the user does an alarm call via a message to the PM. At this point
the process manager sets up a timer in the queue of timers it maintains for user
processes, and acknowledges with message (2). Nothing more may happen for a
while. When the timer for this request reaches the head of the PM’s timer queue,
because timers ahead of it have expired or have been cancelled, message (3) is
sent to the system task to have it set up a new kernel-space timer for the process
manager, and is acknowledged by message (4). Again, some time will pass be-
fore anything more happens. But after this timer reaches the head of the kernel-
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space timer queue the clock interrupt handler will find it has expired. The
remaining messages in the sequence will follow quickly. The clock interupt
handler sends a HARD�INT message (5) to the clock task, which causes it to run
and update its timers. The timer watchdog function, cause�alarm, initiates mes-
sage (6), a notification to the PM. The PM now updates its timers, and after
determining from its part of the process table that a handler is installed for
SIGALRM in the target process, sends message (7) to the system task to have it do
the stack manipulations needed to send the signal to the user process. This is
acknowledged by message (8). The user process will be scheduled and will exe-
cute the handler, and then will make a sigreturn call (9) to the process manager.
The process manager then sends message (10) to the system task to complete the
cleanup, and this is acknowledged by message (11). Not shown in this diagram is
another pair of messages from the PM to the system task to get the uptime, made
before message (3).
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Figure 4-48. Messages for an alarm. The most important are: (1) User does
alarm. (3) PM asks system task to set timer. (6) Clock tells PM time has ex-
pired. (7) PM requests signal to user. (9) Handler terminates with call to sig-
return. See text for details.

The next function, do�pause, takes care of the pause system call (line
19853). It isn’t really related to alarms and timers, although it can be used in a
program to suspend execution until an alarm (or some other signal) is received.
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All that is necessary is to set a bit and return the SUSPEND code, which causes
the main loop of the PM to refrain from replying, thus keeping the caller blocked.
The kernel need not even be informed, since it knows that the caller is blocked.

Support Functions for Signals

Several support functions in signal.c have been mentioned in passing. We
will now look at them in more detail. By far the most important is sig�proc (line
19864), which actually sends a signal. First a number of tests are made. Attempts
to send to dead or zombie processes are serious problems that cause a system pan-
ic (lines 19889 to 19893). A process that is currently being traced is stopped
when signaled (lines 19894 to 19899). If the signal is to be ignored, sig�proc’s
work is complete on line 19902. This is the default action for some signals, for
instance, those signals that are required to be there by POSIX but do not have to
(and are not) supported by MINIX 3. If the signal is blocked, the only action that
needs to be taken is to set a bit in that process’ mp�sigpending bitmap. The key
test (line 19910) is to distinguish processes that have been enabled to catch signals
from those that have not. With the exception of signals that are converted into
messages to be sent to system services all other special considerations have been
eliminated by this point and a process that cannot catch the signal must be ter-
minated.

First we will look at the processing of signals that are eligible to be caught
(lines 19911 to 19950). A message is constructed to be sent to the kernel, some
parts of which are copies of information in the PM’s part of the process table. If
the process to be signaled was previously suspended by sigsuspend, the signal
mask that was saved at the time of suspension is included in the message; other-
wise the current signal mask is included (line 19914). Other items included in the
message are several addresses in the space of the signaled process space: the sig-
nal handler, the address of the sigreturn library routine to be called on completion
of the handler, and the current stack pointer.

Next, space is allocated on the process’ stack. Figure 4-49 shows the struc-
ture that is put on the stack. The sigcontext portion is put on the stack to preserve
it for later restoration, since the corresponding structure in the process table itself
is altered in preparation for execution of the signal handler. The sigframe part
provides a return address for the signal handler and data needed by sigreturn to
complete restoration of the process’ state when the handler is done. The return
address and frame pointer are not actually used by any part of MINIX 3. They are
there to fool a debugger if anyone should ever try to trace execution of a signal
handler.

The structure to be put on the signaled process’ stack is fairly large. The code
in lines 19923 and 19924 reserves space for it, following which a call to adjust
tests to see whether there is enough room on the process’ stack. If there is not
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Figure 4-49. The sigcontext and sigframe structures pushed on the stack to
prepare for a signal handler. The processor registers are a copy of the stack-
frame used during a context switch.

enough stack space, the process is killed by jumping to the label doterminate
using the seldom-used C goto (lines 19926 and 19927).

The call to adjust has a potential problem. Recall from our discussion of the
implementation of brk that adjust returns an error if the stack is within
SAFETY�BYTES of running into the data segment. The extra margin of error is
provided because the validity of the stack can only be checked occasionally by
software. This margin of error is probably excessive in the present instance, since
it is known exactly how much space is needed on the stack for the signal, and
additional space is needed only for the signal handler, presumably a relatively
simple function. It is possible that some processes may be terminated unneces-
sarily because the call to adjust fails. This is certainly better than having pro-
grams fail mysteriously at other times, but finer tuning of these tests may be pos-
sible at some time in the future.
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If there is enough room on the stack for the struct, two more flags are
checked. The SA�NODEFER flag indicates if the signaled process is to block
further signals of the same type while handling a signal. The SA�RESETHAND
flag tells if the signal handler is to be reset upon receiving this signal. (This pro-
vides faithful emulation of the old signal call. Although this ‘‘feature’’ is often
considered a fault in the old call, support of old features requires supporting their
faults as well.) The kernel is then notified, using the sys�sigsend kernel call (line
19940) to put the sigframe on the stack. Finally, the bit indicating that a signal is
pending is cleared, and unpause is called to terminate any system call on which
the process may be hanging. When the signaled process next executes, the signal
handler will run. If for some reason all of the tests above failed, the PM panics
(line 19949).

The exception mentioned above—signals converted into messages for system
services—is tested for on line 19951, and carried out by the sys�kill kernel call
that follows. This causes the system task to send a notification message to the
signaled process. Recall that, unlike most other notifications, a notification from
the system task carries a payload in addition to the basic information about its ori-
gin and a timestamp. It also transmits a bitmap of signals, so the signaled system
process learns of all pending signals. If the sys�kill call fails, the PM panics. If it
succeeds sig�proc returns (line 19954). If the test on line 19951 failed, execution
falls through to the doterminate label.

Now let us look at the termination code marked by the label doterminate (line
19957). The label and a goto are the easiest way to handle the possible failure of
the call to adjust. Here signals are processed that for one reason or another cannot
or should not be caught. It is possible that the signal was one to be ignored, in
which case sig�proc just returns. Otherwise the process must be terminated. The
only question is whether a core dump is also needed. Finally, the process is ter-
minated as if it had exited, through a call to pm�exit (line 19967).

Check�sig (line 19973) is where the PM checks to see if a signal can be sent.
The call

kill(0, sig);

causes the indicated signal to be sent to all the processes in the caller’s group (i.e.,
all the processes started from the same terminal). Signals originating in the kernel
and the reboot system call also may affect multiple processes. For this reason,
check�sig loops on lines 19996 to 20026 to scan through the process table to find
all the processes to which a signal should be sent. The loop contains a large
number of tests. Only if all of them are passed is the signal sent, by calling
sig�proc on line 20023.

Check�pending (line 20036) is another important function called several
times in the code we have just reviewed. It loops through all the bits in the
mp�sigpending bitmap for the process referred to by do�sigmask, do�sigreturn,
or do�sigsuspend, to see if any blocked signal has become unblocked. It calls
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sig�proc to send the first unblocked pending signal it finds. Since all signal
handlers eventually cause execution of do�sigreturn, this code suffices eventually
to deliver all pending unmasked signals.

The procedure unpause (line 20065) has to do with signals that are sent to
processes suspended on pause, wait, read, write, or sigsuspend calls. Pause, wait,
and sigsuspend can be checked by consulting the PM’s part of the process table,
but if none of these are found, the file system must be asked to use its own
do�unpause function to check for a possible hangup on read or write. In every
case the action is the same: an error reply is sent to the waiting call and the flag
bit that corresponds to the cause of the wait is reset so the process may resume
execution and process the signal.

The final procedure in this file is dump�core (line 20093), which writes core
dumps to the disk. A core dump consists of a header with information about the
size of the segments occupied by a process, a copy of all the process’ state infor-
mation, obtained by copying the kernel process table information for the process,
and the memory image of each of the segments. A debugger can interpret this
information to help the programmer determine what went wrong during execution
of the process.

The code to write the file is straightforward. The potential problem men-
tioned in the previous section again raises its head, but in a somewhat different
form. To be sure the stack segment to be recorded in the core dump is up to date,
adjust is called on line 20120. This call may fail because of the safety margin
built into it. The success of the call is not checked by dump�core, so the core
dump will be written in any case, but within the file the information about the
stack may be incorrect.

Support Functions for Timers

The MINIX 3 process manager handles requests for alarms from user
processes, which are not allowed to contact the kernel or the system task directly
themselves. All details of scheduling an alarm at the clock task are hidden behind
this interface. Only system processes are allowed to set an alarm timer at the ker-
nel. Support for this is provided in the file timers.c (line 20200).

The process manager maintains a list of requests for alarms, and asks the sys-
tem task to notify it when it is time for an alarm. When an alarm comes from the
kernel the process manager passes it on to the process that should receive it.

Three functions are provided here to support timers. Pm�set�timer sets a ti-
mer and adds it to the PM’s list of timers, pm�expire�timer checks for expired
timers and pm�cancel�timer removes a timer from the PM’s list. All three of
these take advantage of functions in the timers library, declared in include/-
timers.h. The function Pm�set�timer calls tmrs�settimer, pm�expire� timer calls
tmrs�exptimers, and pm�cancel�timer calls tmrs�clrtimers. These all manage
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the business of traversing a linked list and inserting or removing an item, as
required. Only when an item is inserted at or removed from the head of the queue
does it become necessary to involve the system task in order to adjust the kernel-
space timer queue. In such cases each of the pm�XXX�timer functions uses a
sys�setalarm kernel call to request help at the kernel level.

4.8.7 Implementation of Other System Calls

The process manager handles three system calls that involve time in time.c:
time, stime, and times. They are summarized in Fig. 4-50.

�������������������������������������������������
Call Function�������������������������������������������������
time Get current real time and uptime in seconds�������������������������������������������������
stime Set the real time clock�������������������������������������������������
times Get the process accounting times���������������������������������������������������
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Figure 4-50. Three system calls involving time.

The real time is maintained by the clock task within the kernel, but the clock
task itself does not exchange messages with any process except the system task.
As a consequence, the only way to get or set the real time is to send a message to
the system task. This is, in fact, what do� time (line 20320) and do�stime (line
20341) both do. The real time is measured in seconds since Jan 1, 1970.

Accounting information is also maintained by the kernel for each process. At
each clock tick it charges one tick to some process. The kernel doesn’t know
about parent-child relationships, so it falls to the process manager to accumulate
time information for the children of a process. When a child exits, its times are
accumulated in the parent’s slot in the PM’s part of the process table. Do� times
(line 20366) retrieves the time usage of a parent process from the system task with
a sys�times kernel call, then fills in a reply message with user and system time
charged to children.

The file getset.c contains one procedure, do�getset (line 20415), which car-
ries out seven POSIX-required PM system calls. They are shown in Fig. 4-51.
They are all so simple that they are not worth an entire procedure each. The
getuid and getgid calls both return the real and effective UID or GID.

Setting the uid or gid is slightly more complex than just reading it. A check
has to be made to see if the caller is authorized to set the uid or gid. If the caller
passes the test, the file system must be informed of the new uid or gid, since file
protection depends on it. The setsid call creates a new session, and a process
which is already a process group leader is not allowed to do this. The test on line
20463 checks this. The file system completes the job of making a process into a
session leader with no controlling terminal.

In contrast to the system calls considered so far in this chapter, the calls in
misc.c are not required by POSIX. These calls are necessary because the user-
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��������������������������������������������������
System Call Description��������������������������������������������������
getuid Return real and effective UID��������������������������������������������������
getgid Return real and effective GID��������������������������������������������������
getpid Return PIDs of process and its parent��������������������������������������������������
setuid Set caller’s real and effective UID��������������������������������������������������
setgid Set caller’s real and effective GID��������������������������������������������������
setsid Create new session, return PID��������������������������������������������������
getpgrp Return ID of process group����������������������������������������������������
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Figure 4-51. The system calls supported in servers/pm/getset.c .

space device drivers and servers of MINIX 3 need support for communication with
the kernel that is not necessary in monolithic operating systems. Fig. 4-52 shows
these calls and their purposes.

��������������������������������������������������������
System Call Description��������������������������������������������������������

do�allocmem Allocate a chunk of memory��������������������������������������������������������
do�freemem Deallocate a chunk of memory��������������������������������������������������������
do�getsysinfo Get info about PM from kernel��������������������������������������������������������
do�getprocnr Get index to proc table from PID or name��������������������������������������������������������
do�reboot Kill all processes, tell FS and kernel��������������������������������������������������������
do�getsetpriority Get or set system priority��������������������������������������������������������
do�svrctrl Make a process into a server����������������������������������������������������������
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Figure 4-52. Special-purpose MINIX 3 system calls in servers/pm/misc.c .

The first two are handled entirely by the PM. do�allocmem reads the request
from a received message, converts it into click units, and calls alloc�mem. This
is used, for example, by the memory driver to allocate memory for the RAM disk.
Do�freemem is similar, but calls free�mem.

The next calls usually need help from other parts of the system. They may be
thought of as interfaces to the system task. Do�getsysinfo (line 20554) can do
several things, depending on the request in the message received. It can call the
system task to get information about the kernel contained in the kinfo structure
(defined in the file include/minix/type.h). It can also be used to provide the
address of the PM’s own part of the process table or a copy of the entire process
table to another process upon request. The final action is carried out by a call to
sys�datacopy (line 20582). Do�getprocnr can find an index into the process
table in its own section if given PID, and calls the system task for help if all it has
to work with is the name of the target process.



SEC. 4.8 IMPLEMENTATION OF THE MINIX 3 PROCESS MANAGER 473

The next two calls, although not required by POSIX, will probably be found in
some form in most UNIX-like systems. Do�reboot sends a KILL signal to all
processes, and tells the file system to get ready for a reboot. Only after the file
system has been synched is the kernel notified with a sys�abort call (line 20667).
A reboot may be the result of a panic, or a request from the superuser to halt or
restart, and the kernel needs to know which case applies. Do�getsetpriority, sup-
ports the famous UNIX nice utility, which allows a user to reduce the priority of a
process in order to be a good neighbor to other processes (possibly his own).
More importantly, this call is used by the MINIX 3 system to provide fine-grained
control of relative priorities of system components. A network or disk device that
must handle a rapid stream of data can be given priority over one that receives
data more slowly, such as a keyboard. Also, a high-priority process that is stuck
in a loop and preventing other processes from running may have its priority
lowered temporarily. Changing priority is done by scheduling the process on a
lower (or higher) priority queue, as described in the discussion of implementation
of scheduling in Chap. 2. When this is initiated by the scheduler in the kernel
there is no need to involve the PM, of course, but an ordinary process must use a
system call. At the level of the PM it is just a matter of reading the current value
returned in a message or generating a message with a new value. A kernel call,
sys�nice sends the new value to the system task.

The last function in misc.c is do�svrctl. It is currently used to enable and dis-
able swapping. Other functions once served by this call are expected to be imple-
mented in the reincarnation server.

The last system call we will consider in this chapter is ptrace, handled by
trace.c. This file is not listed in Appendix B, but may be found on the CD-ROM
and the MINIX 3 Web site. Ptrace is used by debugging programs. The parameter
to this call can be one of eleven commands. These are shown in Fig. 4-53. In the
PM do�trace processes four of them: T�OK, T�RESUME, I T�EXIT , T�STEP.
Requests to enable and exit tracing are completed here. All other commands are
passed on to the system task, which has access to the kernel’s part of the process
table. This is done by calling the sys�trace library function. Two support func-
tions for tracing are provided. Find�proc searches the process table for the proc-
ess to be traced, and stop�proc stops a traced process when it is signaled.

4.8.8 Memory Management Utilities

We will end this chapter by describing briefly two more files which provide
support functions for the process manager. These are alloc.c and utility.c.
Because internal details of these files are not discussed here, they are not printed
in Appendix B (to keep this already fat book from becoming even fatter). How-
ever, they are available on the CD-ROM and the MINIX 3 Web site.

Alloc.c is where the system keeps track of which parts of memory are in use
and which are free. It has three entry points:
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�������������������������������������������������������
Command Description�������������������������������������������������������

T�STOP Stop the process�������������������������������������������������������
T�OK Enable tracing by parent for this process�������������������������������������������������������
T�GETINS Return value from text (instruction) space�������������������������������������������������������
T�GETDATA Return value from data space�������������������������������������������������������
T�GETUSER Return value from user process table�������������������������������������������������������
T�SETINS Set value in instruction space�������������������������������������������������������
T�SETDATA Set value in data space�������������������������������������������������������
T�SETUSER Set value in user process table�������������������������������������������������������
T�RESUME Resume execution�������������������������������������������������������
T�EXIT Exit�������������������������������������������������������
T�STEP Set trace bit��������������������������������������������������������
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Figure 4-53. Debugging commands supported by servers/pm/trace.c .

1. alloc�mem – request a block of memory of a given size.

2. free�mem – return memory that is no longer needed.

3. mem� init – initialize the free list when the PM starts running.

As we have said before, alloc�mem uses first fit on a list of holes sorted by
memory address. If it finds a piece that is too big, it takes what it needs and
leaves the rest on the free list, but reduced in size by the amount taken. If an
entire hole is needed, del�slot is called to remove the entry from the free list.

Free�mem’s job is to check if a newly released piece of memory can be
merged with holes on either side. If it can, merge is called to join the holes and
update the lists.

Mem�init builds the initial free list, consisting of all available memory.
The last file to be described is utility.c, which holds a few miscellaneous pro-

cedures used in various places in the PM. As with alloc.c, utility.c is not listed in
Appendix B.

Get�free�pid finds a free PID for a child process. It avoids a problem that
conceivably could occur. The maximum PID value is 30,000. It ought to be the
maximum value that can be in PID�t, but this value was chosen to avoid prob-
lems with some older programs that use a smaller type. After assigning, say, PID
20 to a very long-lived process, 30,000 more processes might be created and des-
troyed, and simply incrementing a variable each time a new PID is needed and
wrapping around to zero when the limit is reached could bring us back to 20
again. Assigning a PID that was still in use would be a disaster (suppose someone
later tried to signal process 20). A variable holding the last PID assigned is incre-
mented and if it exceeds a fixed maximum value, a fresh start is made with PID 2
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(because init always has PID 1). Then the whole process table is searched to
make sure that the PID to be assigned is not already in use. If it is in use the pro-
cedure is repeated until a free PID is found.

The procedure allowed checks to see if a given access is allowed to a file. For
example, do�exec needs to know if a file is executable.

The procedure no�sys should never be called. It is provided just in case a
user ever calls the PM with an invalid system call number.

Panic is called only when the PM has detected an error from which it cannot
recover. It reports the error to the system task, which then brings MINIX 3 to a
screeching halt. It is not called lightly.

The next function in utility.c is tell�fs, which constructs a message and sends
it to the file system when the latter needs to be informed of events handled by the
PM.

Find�param is used to parse the monitor parameters. Its current use is to
extract information about memory use before MINIX 3 is loaded into memory, but
it could be used to find other information if there were a need.

The next two functions in this file provide interfaces to the library function
sys�getproc, which calls the system task to get information from the kernel’s part
of the process table. Sys�getproc, in turn, is actually a macro defined in
include/minix/syslib.h which passes parameters to the sys�getinfo kernel call.
Get�mem�map gets the memory map of a process. Get�stack�ptr gets the stack
pointer. Both of these need a process number, that is, an index into the process
table, which is not the same as a PID. The last function in utility.c is
proc�from�pid which provides this support—it is called with a PID and returns
an index to the process table.

4.9 SUMMARY

In this chapter we have examined memory management, both in general and
in MINIX 3. We saw that the simplest systems do not swap or page at all. Once a
program is loaded into memory, it remains there until it finishes. Embedded sys-
tems usually work like this, possibly with the code even in ROM. Some operating
systems allow only one process at a time in memory, while others support mul-
tiprogramming.

The next step up is swapping. When swapping is used, the system can handle
more processes than it has room for in memory. Processes for which there is no
room are swapped out to the disk. Free space in memory and on disk can be kept
track of with a bitmap or a hole list.

More advanced computers often have some form of virtual memory. In the
simplest form, each process’ address space is divided up into uniformly sized
blocks called pages, which can be placed into any available page frame in
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memory. Many page replacement algorithms have been proposed. Two of the
better known ones are second chance and aging. To make paging systems work
well, choosing an algorithm is not enough; attention to issues such as determining
the working set, memory allocation policy, and page size are required.

Segmentation helps in handling data structures that change size during execu-
tion and simplifies linking and sharing. It also facilitates providing different pro-
tection for different segments. Sometimes segmentation and paging are combined
to provide a two-dimensional virtual memory. The Intel Pentium supports seg-
mentation and paging.

Memory management in MINIX 3 is simple. Memory is allocated when a
process executes a fork or exec system call. The memory so allocated is never
increased or decreased as long as the process lives. On Intel processors there are
two memory models used by MINIX 3. Small programs can have instructions and
data in the same memory segment. Larger programs use separate instruction and
data space (separate I and D). Processes with separate I and D space can share
the text portion of their memory, so only data and stack memory must be allocated
during a fork. This may also be true during an exec if another process already is
using the text needed by the new program.

Most of the work of the PM is concerned not with keeping track of free mem-
ory, which it does using a hole list and the first fit algorithm, but rather with carry-
ing out the system calls relating to process management. A number of system
calls support POSIX-style signals, and since the default action of most signals is to
terminate the signaled process, it is appropriate to handle them in the PM, which
initiates termination of all processes. Several system calls not directly related to
memory are also handled by the PM, mainly because it is smaller than the file sys-
tem, and thus it was most convenient to put them here.

PROBLEMS

1. A computer system has enough room to hold four programs in its main memory.
These programs are each idle half the time waiting for I/O. What fraction of the CPU
time is wasted?

2. Consider a swapping system in which memory consists of the following hole sizes in
memory order: 10 KB, 4 KB, 20 KB, 18 KB, 7 KB, 9 KB, 12 KB, and 15 KB. Which
hole is taken for successive segment requests of

(a) 12 KB
(b) 10 KB
(c) 9 KB

for first fit? Now repeat the question for best fit, worst fit, and next fit.



CHAP. 4 PROBLEMS 477

3. A computer has 1 GB of RAM allocated in units of 64 KB. How many KB are needed
if a bitmap is used to keep track of free memory?

4. Now revisit the previous question using a hole list. How much memory is needed for
the list in the best case and in the worst case? Assume the operating system occupies
the bottom 512 KB of memory.

5. What is the difference between a physical address and a virtual address?

6. Using the page mapping of Fig. 4-8, give the physical address corresponding to each
of the following virtual addresses:

(a) 20
(b) 4100
(c) 8300

7. In Fig. 4-9, the page field of the virtual address is 4 bits and the page field of the phy-
sical address is 3 bits. In general, is it permitted for the number of page bits of the vir-
tual address to be smaller, equal to, or larger than the number of page bits of the physi-
cal address? Discuss your answer.

8. The Intel 8086 processor does not support virtual memory. Nevertheless, some com-
panies previously sold systems that contained an unmodified 8086 CPU and do pag-
ing. Make an educated guess as to how they did it. (Hint: think about the logical loca-
tion of the MMU.)

9. If an instruction takes 1 nsec and a page fault takes an additional n nsec, give a for-
mula for the effective instruction time if page faults occur every k instructions.

10. A machine has a 32-bit address space and an 8 KB page. The page table is entirely in
hardware, with one 32-bit word per entry. When a process starts, the page table is
copied to the hardware from memory, at one word every 100 nsec. If each process
runs for 100 msec (including the time to load the page table), what fraction of the CPU
time is devoted to loading the page tables?

11. A computer with a 32-bit address uses a two-level page table. Virtual addresses are
split into a 9-bit top-level page table field, an 11-bit second-level page table field, and
an offset. How large are the pages and how many are there in the address space?

12. Below is the listing of a short assembly language program for a computer with 512-
byte pages. The program is located at address 1020, and its stack pointer is at 8192
(the stack grows toward 0). Give the page reference string generated by this program.
Each instruction occupies 4 bytes (1 word), and both instruction and data references
count in the reference string.

Load word 6144 into register 0
Push register 0 onto the stack
Call a procedure at 5120, stacking the return address
Subtract the immediate constant 16 from the stack pointer
Compare the actual parameter to the immediate constant 4
Jump if equal to 5152

13. Suppose that a 32-bit virtual address is broken up into four fields, a, b, c, and d. The
first three are used for a three-level page table system. The fourth field, d, is the
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offset. Does the number of pages depend on the sizes of all four fields? If not, which
ones matter and which ones do not?

14. A computer whose processes have 1024 pages in their address spaces keeps its page
tables in memory. The overhead required for reading a word from the page table is
500 nsec. To reduce this overhead, the computer has a TLB, which holds 32 (virtual
page, physical page frame) pairs, and can do a look up in 100 nsec. What hit rate is
needed to reduce the mean overhead to 200 nsec?

15. The TLB on the VAX did not contain an R bit. Was this omission just an artifact of its
era (1980s) or is there some other reason for its absence?

16. A machine has 48-bit virtual addresses and 32-bit physical addresses. Pages are 8 KB.
How many entries are needed for the page table?

17. A RISC CPU with 64-bit virtual addresses and 8 GB of RAM uses an inverted page
table with 8-KB pages. What is the minimum size of the TLB?

18. A computer has four page frames. The time of loading, time of last access, and the R
and M bits for each page are as shown below (the times are in clock ticks):

Page Loaded Last ref. R M
0 126 279 0 0
1 230 260 1 0
2 120 272 1 1
3 160 280 1 1

(a) Which page will NRU replace?
(b) Which page will FIFO replace?
(c) Which page will LRU replace?
(d) Which page will second chance replace?

19. If FIFO page replacement is used with four page frames and eight pages, how many
page faults will occur with the reference string 0172327103 if the four frames are ini-
tially empty? Now repeat this problem for LRU.

20. A small computer has 8 page frames, each containing a page. The page frames con-
tain virtual pages A, C, G, H, B, L, N, D, and F in that order. Their respective load
times were 18, 23, 5, 7, 32, 19, 3, and 8. Their reference bits are 1, 0, 1, 1, 0, 1, 1, and
0 and their modified bits are 1, 1, 1, 0, 0, 0, 1, and 1, respectively. What is the order
that second chance considers pages and which one is selected?

21. Are there any circumstances in which clock and second chance choose different pages
to replace? If so, what are they?

22. Suppose that a computer uses the PFF page replacement algorithm but there is suffi-
cient memory to hold all the processes without page faults. What happens?

23. A small computer has four page frames. At the first clock tick, the R bits are 0111
(page 0 is 0, the rest are 1). At subsequent clock ticks, the values are 1011, 1010,
1101, 0010, 1010, 1100, and 0001. If the aging algorithm is used with an 8-bit
counter, give the values of the four counters after the last tick.
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24. How long does it take to load a 64-KB program from a disk whose average seek time
is 10 msec, whose rotation time is 8 msec, and whose tracks hold 1 MB

(a) for a 2-KB page size?
(b) for a 4-KB page size?
(c) for a 64-KB page size

The pages are spread randomly around the disk.

25. Given the results of the previous problem, why are pages so small? Name two disad-
vantages of 64-KB pages with respect to 4-KB pages.

26. One of the first timesharing machines, the PDP-1, had a memory of 4-KB 18-bit
words. It held one process at a time in memory. When the scheduler decided to run
another process, the process in memory was written to a paging drum, with 4K 18-bit
words around the circumference of the drum. The drum could start writing (or read-
ing) at any word, rather than only at word 0. Why do you suppose this drum was
chosen?

27. An embedded computer provides each process with 65,536 bytes of address space
divided into pages of 4096 bytes. A particular program has a text size of 32,768 bytes,
a data size of 16,386 bytes, and a stack size of 15,870 bytes. Will this program fit in
the address space? If the page size were 512 bytes, would it fit? Remember that a
page may not contain parts of two different segments.

28. It has been observed that the number of instructions executed between page faults is
directly proportional to the number of page frames allocated to a program. If the
available memory is doubled, the mean interval between page faults is also doubled.
Suppose that a normal instruction takes 1 microsec, but if a page fault occurs, it takes
2001 microsec (i.e., 2 msec) to handle the fault. If a program takes 60 sec to run, dur-
ing which time it gets 15,000 page faults, how long would it take to run if twice as
much memory were available?

29. A group of operating system designers for the Frugal Computer Company are thinking
about ways of reducing the amount of backing store needed in their new operating sys-
tem. The head guru has just suggested not bothering to save the program text in the
swap area at all, but just page it in directly from the binary file whenever it is needed.
Are there any problems with this approach?

30. Explain the difference between internal fragmentation and external fragmentation.
Which one occurs in paging systems? Which one occurs in systems using pure seg-
mentation?

31. When segmentation and paging are both being used, as in the Pentium, first the seg-
ment descriptor must be looked up, then the page descriptor. Does the TLB also work
this way, with two levels of lookup?

32. Why does the MINIX 3 memory management scheme make it necessary to have a pro-
gram like chmem?

33. Figure 4-44 shows the initial memory usage of the first four components of a MINIX 3
system. What will be the cs value for the next component loaded after rs?
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34. IBM-compatible computers have ROM and I/O device memory not available for pro-
gram use in the range from 640 KB to 1 MB, and after the MINIX 3 boot monitor relo-
cates itself below the 640-KB limit the memory available for program use is further
reduced. In Fig. 4-44, how much memory is available for loading a program in the
region between the kernel and the unavailable region if the boot monitor has 52256
bytes allocated to it?

35. In the previous problem does it matter whether the boot monitor takes exactly as much
memory as it needs or if it is rounded up to units of clicks?

36. In Sec. 4.7.5, it was pointed out that on an exec call, by testing for an adequate hole
before releasing the current process’ memory, a suboptimal implementation is
achieved. Reprogram this algorithm to do better.

37. In Sec. 4.8.4, it was pointed out that it would be better to search for holes for the text
and data segments separately. Implement this improvement.

38. Redesign adjust to avoid the problem of signaled processes being killed unnecessarily
because of a too-strict test for stack space.

39. To tell the current memory allocation of a MINIX 3 process you can use the command

chmem +0 a.out

but this has the annoying side effect of rewriting the file, and thus changing its date
and time information. Modify chmem to make a new command showmem, which sim-
ply displays the current memory allocation of its argument.



5
FILE SYSTEMS

All computer applications need to store and retrieve information. While a
process is running, it can store a limited amount of information within its own
address space. However, the storage capacity is restricted to the size of the virtual
address space. For some applications this size is adequate, but for others, such as
airline reservations, banking, or corporate record keeping, it is far too small.

A second problem with keeping information within a process’ address space
is that when the process terminates, the information is lost. For many applica-
tions, (e.g., for databases), the information must be retained for weeks, months, or
even forever. Having it vanish when the process using it terminates is unaccept-
able. Furthermore, it must not go away when a computer crash kills the process.

A third problem is that it is frequently necessary for multiple processes to
access (parts of) the information at the same time. If we have an online telephone
directory stored inside the address space of a single process, only that process can
access it. The way to solve this problem is to make the information itself in-
dependent of any one process.

Thus we have three essential requirements for long-term information storage:

1. It must be possible to store a very large amount of information.

2. The information must survive the termination of the process using it.

3. Multiple processes must be able to access the information concurrently.

481
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The usual solution to all these problems is to store information on disks and other
external media in units called files. Processes can then read them and write new
ones if need be. Information stored in files must be persistent, that is, not be af-
fected by process creation and termination. A file should only disappear when its
owner explicitly removes it.

Files are managed by the operating system. How they are structured, named,
accessed, used, protected, and implemented are major topics in operating system
design. As a whole, that part of the operating system dealing with files is known
as the file system and is the subject of this chapter.

From the users’ standpoint, the most important aspect of a file system is how
it appears to them, that is, what constitutes a file, how files are named and pro-
tected, what operations are allowed on files, and so on. The details of whether
linked lists or bitmaps are used to keep track of free storage and how many sectors
there are in a logical block are of less interest, although they are of great impor-
tance to the designers of the file system. For this reason, we have structured the
chapter as several sections. The first two are concerned with the user interface to
files and directories, respectively. Then comes a discussion of alternative ways a
file system can be implemented. Following a discussion of security and protec-
tion mechanisms, we conclude with a description of the MINIX 3 file system.

5.1 FILES

In the following pages we will look at files from the user’s point of view, that
is, how they are used and what properties they have.

5.1.1 File Naming

Files are an abstraction mechanism. They provide a way to store information
on the disk and read it back later. This must be done in such a way as to shield
the user from the details of how and where the information is stored, and how the
disks actually work.

Probably the most important characteristic of any abstraction mechanism is
the way the objects being managed are named, so we will start our examination of
file systems with the subject of file naming. When a process creates a file, it
gives the file a name. When the process terminates, the file continues to exist and
can be accessed by other processes using its name.

The exact rules for file naming vary somewhat from system to system, but all
current operating systems allow strings of one to eight letters as legal file names.
Thus andrea, bruce, and cathy are possible file names. Frequently digits and spe-
cial characters are also permitted, so names like 2, urgent!, and Fig.2-14 are often
valid as well. Many file systems support names as long as 255 characters.
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Some file systems distinguish between upper- and lower-case letters, whereas
others do not. UNIX (including all its variants) falls in the first category; MS-DOS
falls in the second. Thus a UNIX system can have all of the following as three dis-
tinct files: maria, Maria, and MARIA. In MS-DOS, all these names refer to the
same file.

Windows falls in between these extremes. The Windows 95 and Windows 98
file systems are both based upon the MS-DOS file system, and thus inherit many of
its properties, such as how file names are constructed. With each new version im-
provements were added but the features we will discuss are mostly common to
MS-DOS and ‘‘classic’’ Windows versions. In addition, Windows NT, Windows
2000, and Windows XP support the MS-DOS file system. However, the latter sys-
tems also have a native file system (NTFS) that has different properties (such as
file names in Unicode). This file system also has seen changes in successive ver-
sions. In this chapter, we will refer to the older systems as the Windows 98 file
system. If a feature does not apply to the MS-DOS or Windows 95 versions we
will say so. Likewise, we will refer to the newer system as either NTFS or the
Windows XP file system, and we will point it out if an aspect under discussion
does not also apply to the file systems of Windows NT or Windows 2000. When
we say just Windows, we mean all Windows file systems since Windows 95.

Many operating systems support two-part file names, with the two parts
separated by a period, as in prog.c. The part following the period is called the file
extension and usually indicates something about the file, in this example that it is
a C programming language source file. In MS-DOS, for example, file names are 1
to 8 characters, plus an optional extension of 1 to 3 characters. In UNIX, the size
of the extension, if any, is up to the user, and a file may even have two or more
extensions, as in prog.c.bz2, where .bz2 is commonly used to indicate that the file
(prog.c) has been compressed using the bzip2 compression algorithm. Some of
the more common file extensions and their meanings are shown in Fig. 5-1.

In some systems (e.g., UNIX), file extensions are just conventions and are not
enforced by the operating system. A file named file.txt might be some kind of text
file, but that name is more to remind the owner than to convey any actual infor-
mation to the computer. On the other hand, a C compiler may actually insist that
files it is to compile end in .c, and it may refuse to compile them if they do not.

Conventions like this are especially useful when the same program can handle
several different kinds of files. The C compiler, for example, can be given a list
of files to compile and link together, some of them C files (e.g., foo.c), some of
them assembly language files (e.g., bar.s), and some of them object files (e.g.,
other.o). The extension then becomes essential for the compiler to tell which are
C files, which are assembly files, and which are object files.

In contrast, Windows is very much aware of the extensions and assigns mean-
ing to them. Users (or processes) can register extensions with the operating sys-
tem and specify which program ‘‘owns’’ which one. When a user double clicks
on a file name, the program assigned to its file extension is launched and given
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������������������������������������������������������������������
Extension Meaning������������������������������������������������������������������
file.bak Backup file������������������������������������������������������������������
file.c C source program������������������������������������������������������������������
file.gif Graphical Interchange Format image������������������������������������������������������������������
file.html World Wide Web HyperText Markup Language document������������������������������������������������������������������
file.iso ISO image of a CD-ROM (for burning to CD)������������������������������������������������������������������
file.jpg Still picture encoded with the JPEG standard������������������������������������������������������������������
file.mp3 Music encoded in MPEG layer 3 audio format������������������������������������������������������������������
file.mpg Movie encoded with the MPEG standard������������������������������������������������������������������
file.o Object file (compiler output, not yet linked)������������������������������������������������������������������
file.pdf Portable Document Format file������������������������������������������������������������������
file.ps PostScript file������������������������������������������������������������������
file.tex Input for the TEX formatting program������������������������������������������������������������������
file.txt General text file������������������������������������������������������������������
file.zip Compressed archive��������������������������������������������������������������������
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Figure 5-1. Some typical file extensions.

the name of the file as parameter. For example, double clicking on file.doc starts
Microsoft Word with file.doc as the initial file to edit.

Some might think it odd that Microsoft chose to make common extensions in-
visible by default since they are so important. Fortunately most of the ‘‘wrong by
default’’ settings of Windows can be changed by a sophisticated user who knows
where to look.

5.1.2 File Structure

Files can be structured in any one of several ways. Three common possibili-
ties are depicted in Fig. 5-2. The file in Fig. 5-2(a) is just an unstructured
sequence of bytes. In effect, the operating system does not know or care what is
in the file. All it sees are bytes. Any meaning must be imposed by user-level pro-
grams. Both UNIX and Windows 98 use this approach.

Having the operating system regard files as nothing more than byte sequences
provides the maximum flexibility. User programs can put anything they want in
their files and name them any way that is convenient. The operating system does
not help, but it also does not get in the way. For users who want to do unusual
things, the latter can be very important.

The first step up in structure is shown in Fig. 5-2(b). In this model, a file is a
sequence of fixed-length records, each with some internal structure. Central to
the idea of a file being a sequence of records is the idea that the read operation
returns one record and the write operation overwrites or appends one record. As a
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(a) (b) (c)

1 Record

Ant Fox Pig

Cat Cow Dog Goat Lion Owl Pony Rat Worm

Hen Ibis Lamb

1 Byte

Figure 5-2. Three kinds of files. (a) Byte sequence. (b) Record sequence.
(c) Tree.

historical note, when the 80-column punched card was king many (mainframe)
operating systems based their file systems on files consisting of 80-character rec-
ords, in effect, card images. These systems also supported files of 132-character
records, which were intended for the line printer (which in those days were big
chain printers having 132 columns). Programs read input in units of 80 characters
and wrote it in units of 132 characters, although the final 52 could be spaces, of
course. No current general-purpose system works this way.

The third kind of file structure is shown in Fig. 5-2(c). In this organization, a
file consists of a tree of records, not necessarily all the same length, each contain-
ing a key field in a fixed position in the record. The tree is sorted on the key field,
to allow rapid searching for a particular key.

The basic operation here is not to get the ‘‘next’’ record, although that is also
possible, but to get the record with a specific key. For the zoo file of Fig. 5-2(c),
one could ask the system to get the record whose key is pony, for example,
without worrying about its exact position in the file. Furthermore, new records
can be added to the file, with the operating system, and not the user, deciding
where to place them. This type of file is clearly quite different from the unstruc-
tured byte streams used in UNIX and Windows 98 but is widely used on the large
mainframe computers still used in some commercial data processing.

5.1.3 File Types

Many operating systems support several types of files. UNIX and Windows,
for example, have regular files and directories. UNIX also has character and block
special files. Windows XP also uses metadata files, which we will mention later.
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Regular files are the ones that contain user information. All the files of Fig. 5-2
are regular files. Directories are system files for maintaining the structure of the
file system. We will study directories below. Character special files are related
to input/output and used to model serial I/O devices such as terminals, printers,
and networks. Block special files are used to model disks. In this chapter we will
be primarily interested in regular files.

Regular files are generally either ASCII files or binary files. ASCII files con-
sist of lines of text. In some systems each line is terminated by a carriage return
character. In others, the line feed character is used. Some systems (e.g., Win-
dows) use both. Lines need not all be of the same length.

The great advantage of ASCII files is that they can be displayed and printed
as is, and they can be edited with any text editor. Furthermore, if large numbers
of programs use ASCII files for input and output, it is easy to connect the output
of one program to the input of another, as in shell pipelines. (The interprocess
plumbing is not any easier, but interpreting the information certainly is if a stan-
dard convention, such as ASCII, is used for expressing it.)

Other files are binary files, which just means that they are not ASCII files.
Listing them on the printer gives an incomprehensible listing full of what is
apparently random junk. Usually, they have some internal structure known to
programs that use them.

For example, in Fig. 5-3(a) we see a simple executable binary file taken from
an early version of UNIX. Although technically the file is just a sequence of
bytes, the operating system will only execute a file if it has the proper format. It
has five sections: header, text, data, relocation bits, and symbol table. The header
starts with a so-called magic number, identifying the file as an executable file (to
prevent the accidental execution of a file not in this format). Then come the sizes
of the various pieces of the file, the address at which execution starts, and some
flag bits. Following the header are the text and data of the program itself. These
are loaded into memory and relocated using the relocation bits. The symbol table
is used for debugging.

Our second example of a binary file is an archive, also from UNIX. It consists
of a collection of library procedures (modules) compiled but not linked. Each one
is prefaced by a header telling its name, creation date, owner, protection code, and
size. Just as with the executable file, the module headers are full of binary
numbers. Copying them to the printer would produce complete gibberish.

Every operating system must recognize at least one file type: its own execut-
able file, but some operating systems recognize more. The old TOPS-20 system
(for the DECsystem 20) went so far as to examine the creation time of any file to
be executed. Then it located the source file and saw if the source had been modi-
fied since the binary was made. If it had been, it automatically recompiled the
source. In UNIX terms, the make program had been built into the shell. The file
extensions were mandatory so the operating system could tell which binary pro-
gram was derived from which source.
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Figure 5-3. (a) An executable file. (b) An archive.

Having strongly typed files like this causes problems whenever the user does
anything that the system designers did not expect. Consider, as an example, a sys-
tem in which program output files have extension .dat (data files). If a user writes
a program formatter that reads a .c file (C program), transforms it (e.g., by con-
verting it to a standard indentation layout), and then writes the transformed file as
output, the output file will be of type .dat. If the user tries to offer this to the C
compiler to compile it, the system will refuse because it has the wrong extension.
Attempts to copy file.dat to file.c will be rejected by the system as invalid (to pro-
tect the user against mistakes).

While this kind of ‘‘user friendliness’’ may help novices, it drives experienced
users up the wall since they have to devote considerable effort to circumventing
the operating system’s idea of what is reasonable and what is not.
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5.1.4 File Access

Early operating systems provided only a single kind of file access: sequential
access. In these systems, a process could read all the bytes or records in a file in
order, starting at the beginning, but could not skip around and read them out of
order. Sequential files could be rewound, however, so they could be read as often
as needed. Sequential files were convenient when the storage medium was mag-
netic tape, rather than disk.

When disks came into use for storing files, it became possible to read the
bytes or records of a file out of order, or to access records by key, rather than by
position. Files whose bytes or records can be read in any order are called random
access files. They are required by many applications.

Random access files are essential for many applications, for example, data-
base systems. If an airline customer calls up and wants to reserve a seat on a par-
ticular flight, the reservation program must be able to access the record for that
flight without having to read the records for thousands of other flights first.

Two methods are used for specifying where to start reading. In the first one,
every read operation gives the position in the file to start reading at. In the second
one, a special operation, seek, is provided to set the current position. After a
seek, the file can be read sequentially from the now-current position.

In some older mainframe operating systems, files are classified as being either
sequential or random access at the time they are created. This allows the system
to use different storage techniques for the two classes. Modern operating systems
do not make this distinction. All their files are automatically random access.

5.1.5 File Attributes

Every file has a name and its data. In addition, all operating systems associate
other information with each file, for example, the date and time the file was
created and the file’s size. We will call these extra items the file’s attributes al-
though some people called them metadata. The list of attributes varies consider-
ably from system to system. The table of Fig. 5-4 shows some of the possibilities,
but others also exist. No existing system has all of these, but each is present in
some system.

The first four attributes relate to the file’s protection and tell who may access
it and who may not. All kinds of schemes are possible, some of which we will
study later. In some systems the user must present a password to access a file, in
which case the password must be one of the attributes.

The flags are bits or short fields that control or enable some specific property.
Hidden files, for example, do not appear in listings of the files. The archive flag
is a bit that keeps track of whether the file has been backed up. The backup pro-
gram clears it, and the operating system sets it whenever a file is changed. In this



SEC. 5.1 FILES 489

������������������������������������������������������������������������
Attribute Meaning������������������������������������������������������������������������

Protection Who can access the file and in what way������������������������������������������������������������������������
Password Password needed to access the file������������������������������������������������������������������������
Creator ID of the person who created the file������������������������������������������������������������������������
Owner Current owner������������������������������������������������������������������������
Read-only flag 0 for read/write; 1 for read only������������������������������������������������������������������������
Hidden flag 0 for normal; 1 for do not display in listings������������������������������������������������������������������������
System flag 0 for normal files; 1 for system file������������������������������������������������������������������������
Archive flag 0 for has been backed up; 1 for needs to be backed up������������������������������������������������������������������������
ASCII/binary flag 0 for ASCII file; 1 for binary file������������������������������������������������������������������������
Random access flag 0 for sequential access only; 1 for random access������������������������������������������������������������������������
Temporary flag 0 for normal; 1 for delete file on process exit������������������������������������������������������������������������
Lock flags 0 for unlocked; nonzero for locked������������������������������������������������������������������������
Record length Number of bytes in a record������������������������������������������������������������������������
Key position Offset of the key within each record������������������������������������������������������������������������
Key length Number of bytes in the key field������������������������������������������������������������������������
Creation time Date and time the file was created������������������������������������������������������������������������
Time of last access Date and time the file was last accessed������������������������������������������������������������������������
Time of last change Date and time the file has last changed������������������������������������������������������������������������
Current size Number of bytes in the file������������������������������������������������������������������������
Maximum size Number of bytes the file may grow to��������������������������������������������������������������������������
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Figure 5-4. Some possible file attributes.

way, the backup program can tell which files need backing up. The temporary
flag allows a file to be marked for automatic deletion when the process that
created it terminates.

The record length, key position, and key length fields are only present in files
whose records can be looked up using a key. They provide the information re-
quired to find the keys.

The various times keep track of when the file was created, most recently
accessed and most recently modified. These are useful for a variety of purposes.
For example, a source file that has been modified after the creation of the
corresponding object file needs to be recompiled. These fields provide the neces-
sary information.

The current size tells how big the file is at present.Some old mainframe oper-
ating systems require the maximum size to be specified when the file is created, in
order to let the operating system reserve the maximum amount of storage in ad-
vance. Modern operating systems are clever enough to do without this feature.
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5.1.6 File Operations

Files exist to store information and allow it to be retrieved later. Different
systems provide different operations to allow storage and retrieval. Below is a
discussion of the most common system calls relating to files.

1. Create. The file is created with no data. The purpose of the call is to
announce that the file is coming and to set some of the attributes.

2. Delete. When the file is no longer needed, it has to be deleted to free
up disk space. A system call for this purpose is always provided.

3. Open. Before using a file, a process must open it. The purpose of
the open call is to allow the system to fetch the attributes and list of
disk addresses into main memory for rapid access on later calls.

4. Close. When all the accesses are finished, the attributes and disk ad-
dresses are no longer needed, so the file should be closed to free up
some internal table space. Many systems encourage this by impos-
ing a maximum number of open files on processes. A disk is written
in blocks, and closing a file forces writing of the file’s last block,
even though that block may not be entirely full yet.

5. Read. Data are read from file. Usually, the bytes come from the cur-
rent position. The caller must specify how much data are needed and
must also provide a buffer to put them in.

6. Write. Data are written to the file, again, usually at the current posi-
tion. If the current position is the end of the file, the file’s size in-
creases. If the current position is in the middle of the file, existing
data are overwritten and lost forever.

7. Append. This call is a restricted form of write. It can only add data
to the end of the file. Systems that provide a minimal set of system
calls do not generally have append, but many systems provide multi-
ple ways of doing the same thing, and these systems sometimes have
append.

8. Seek. For random access files, a method is needed to specify from
where to take the data. One common approach is a system call,
seek, that repositions the file pointer to a specific place in the file.
After this call has completed, data can be read from, or written to,
that position.

9. Get attributes. Processes often need to read file attributes to do their
work. For example, the UNIX make program is commonly used to
manage software development projects consisting of many source
files. When make is called, it examines the modification times of all
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the source and object files and arranges for the minimum number of
compilations required to bring everything up to date. To do its job, it
must look at the attributes, namely, the modification times.

10. Set attributes. Some of the attributes are user settable and can be
changed after the file has been created. This system call makes that
possible. The protection mode information is an obvious example.
Most of the flags also fall in this category.

11. Rename. It frequently happens that a user needs to change the name
of an existing file. This system call makes that possible. It is not
always strictly necessary, because the file can usually be copied to a
new file with the new name, and the old file then deleted.

12. Lock. Locking a file or a part of a file prevents multiple simultane-
ous access by different process. For an airline reservation system, for
instance, locking the database while making a reservation prevents
reservation of a seat for two different travelers.

5.2 DIRECTORIES

To keep track of files, file systems normally have directories or folders,
which, in many systems, are themselves files. In this section we will discuss
directories, their organization, their properties, and the operations that can be per-
formed on them.

5.2.1 Simple Directories

A directory typically contains a number of entries, one per file. One possibil-
ity is shown in Fig. 5-5(a), in which each entry contains the file name, the file
attributes, and the disk addresses where the data are stored. Another possibility is
shown in Fig. 5-5(b). Here a directory entry holds the file name and a pointer to
another data structure where the attributes and disk addresses are found. Both of
these systems are commonly used.

When a file is opened, the operating system searches its directory until it finds
the name of the file to be opened. It then extracts the attributes and disk addres-
ses, either directly from the directory entry or from the data structure pointed to,
and puts them in a table in main memory. All subsequent references to the file
use the information in main memory.

The number of directories varies from system to system. The simplest form
of directory system is a single directory containing all files for all users, as illus-
trated in Fig. 5-6(a). On early personal computers, this single-directory system
was common, in part because there was only one user.
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Figure 5-5. (a) Attributes in the directory entry. (b) Attributes elsewhere.

The problem with having only one directory in a system with multiple users is
that different users may accidentally use the same names for their files. For ex-
ample, if user A creates a file called mailbox, and then later user B also creates a
file called mailbox, B’s file will overwrite A’s file. Consequently, this scheme is
not used on multiuser systems any more, but could be used on a small embedded
system, for example, a handheld personal digital assistant or a cellular telephone.

To avoid conflicts caused by different users choosing the same file name for
their own files, the next step up is giving each user a private directory. In that
way, names chosen by one user do not interfere with names chosen by a different
user and there is no problem caused by the same name occurring in two or more
directories. This design leads to the system of Fig. 5-6(b). This design could be
used, for example, on a multiuser computer or on a simple network of personal
computers that shared a common file server over a local area network.

Implicit in this design is that when a user tries to open a file, the operating
system knows which user it is in order to know which directory to search. As a
consequence, some kind of login procedure is needed, in which the user specifies
a login name or identification, something not required with a single-level direc-
tory system.

When this system is implemented in its most basic form, users can only
access files in their own directories.

5.2.2 Hierarchical Directory Systems

The two-level hierarchy eliminates file name conflicts between users. But
another problem is that users with many files may want to group them in smaller
subgroups, for instance a professor might want to separate handouts for a class
from drafts of chapters of a new textbook. What is needed is a general hierarchy
(i.e., a tree of directories). With this approach, each user can have as many direc-
tories as are needed so that files can be grouped together in natural ways. This
approach is shown in Fig. 5-6(c). Here, the directories A, B, and C contained in
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Figure 5-6. Three file system designs. (a) Single directory shared by all users.
(b) One directory per user. (c) Arbitrary tree per user. The letters indicate the
directory or file’s owner.

the root directory each belong to a different user, two of whom have created sub-
directories for projects they are working on.

The ability to create an arbitrary number of subdirectories provides a powerful
structuring tool for users to organize their work. For this reason nearly all modern
PC and server file systems are organized this way.

However, as we have pointed out before, history often repeats itself with new
technologies. Digital cameras have to record their images somewhere, usually on
a flash memory card. The very first digital cameras had a single directory and
named the files DSC0001.JPG, DSC0002.JPG, etc. However, it did not take very
long for camera manufacturers to build file systems with multiple directories, as
in Fig. 5-6(b). What difference does it make that none of the camera owners
understand how to use multiple directories, and probably could not conceive of
any use for this feature even if they did understand it? It is only (embedded)
software, after all, and thus costs the camera manufacturer next to nothing to pro-
vide. Can digital cameras with full-blown hierarchical file systems, multiple login
names, and 255-character file names be far behind?

5.2.3 Path Names

When the file system is organized as a directory tree, some way is needed for
specifying file names. Two different methods are commonly used. In the first
method, each file is given an absolute path name consisting of the path from the
root directory to the file. As an example, the path /usr/ast/mailbox means that the
root directory contains a subdirectory usr/, which in turn contains a subdirectory
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ast/, which contains the file mailbox. Absolute path names always start at the root
directory and are unique. In UNIX the components of the path are separated by /.
In Windows the separator is \ . Thus the same path name would be written as fol-
lows in these two systems:

Windows \usr\ast\mailbox
UNIX /usr/ast/mailbox

No matter which character is used, if the first character of the path name is the
separator, then the path is absolute.

The other kind of name is the relative path name. This is used in conjunc-
tion with the concept of the working directory (also called the current direc-
tory). A user can designate one directory as the current working directory, in
which case all path names not beginning at the root directory are taken relative to
the working directory. For example, if the current working directory is /usr/ast,
then the file whose absolute path is /usr/ast/mailbox can be referenced simply as
mailbox. In other words, the UNIX command

cp /usr/ast/mailbox /usr/ast/mailbox.bak

and the command

cp mailbox mailbox.bak

do exactly the same thing if the working directory is /usr/ast/. The relative form
is often more convenient, but it does the same thing as the absolute form.

Some programs need to access a specific file without regard to what the work-
ing directory is. In that case, they should always use absolute path names. For
example, a spelling checker might need to read /usr/lib/dictionary to do its work.
It should use the full, absolute path name in this case because it does not know
what the working directory will be when it is called. The absolute path name will
always work, no matter what the working directory is.

Of course, if the spelling checker needs a large number of files from /usr/lib/,
an alternative approach is for it to issue a system call to change its working direc-
tory to /usr/lib/, and then use just dictionary as the first parameter to open. By
explicitly changing the working directory, it knows for sure where it is in the
directory tree, so it can then use relative paths.

Each process has its own working directory, so when a process changes its
working directory and later exits, no other processes are affected and no traces of
the change are left behind in the file system. In this way it is always perfectly
safe for a process to change its working directory whenever that is convenient.
On the other hand, if a library procedure changes the working directory and does
not change back to where it was when it is finished, the rest of the program may
not work since its assumption about where it is may now suddenly be invalid. For
this reason, library procedures rarely change the working directory, and when they
must, they always change it back again before returning.



SEC. 5.2 DIRECTORIES 495

Most operating systems that support a hierarchical directory system have two
special entries in every directory, ‘‘.’’ and ‘‘..’’, generally pronounced ‘‘dot’’ and
‘‘dotdot.’’ Dot refers to the current directory; dotdot refers to its parent. To see
how these are used, consider the UNIX file tree of Fig. 5-7. A certain process has
/usr/ast/ as its working directory. It can use .. to go up the tree. For example, it
can copy the file /usr/lib/dictionary to its own directory using the command

cp ../lib/dictionary .

The first path instructs the system to go upward (to the usr directory), then to go
down to the directory lib/ to find the file dictionary.

Root directory

bin etc lib usr

ast

jim

tmp

jim

bin

etc

lib

usr

tmp

/

ast
/usr/jim

lib

lib

dict.

Figure 5-7. A UNIX directory tree.

The second argument (dot) names the current directory. When the cp com-
mand gets a directory name (including dot) as its last argument, it copies all the
files there. Of course, a more normal way to do the copy would be to type

cp /usr/lib/dictionary .

Here the use of dot saves the user the trouble of typing dictionary a second time.
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Nevertheless, typing

cp /usr/lib/dictionary dictionary

also works fine, as does

cp /usr/lib/dictionary /usr/ast/dictionary

All of these do exactly the same thing.

5.2.4 Directory Operations

The system calls for managing directories exhibit more variation from system
to system than system calls for files. To give an impression of what they are and
how they work, we will give a sample (taken from UNIX).

1. Create. A directory is created. It is empty except for dot and dotdot,
which are put there automatically by the system (or in a few cases,
by the mkdir program).

2. Delete. A directory is deleted. Only an empty directory can be de-
leted. A directory containing only dot and dotdot is considered em-
pty as these cannot usually be deleted.

3. Opendir. Directories can be read. For example, to list all the files in
a directory, a listing program opens the directory to read out the
names of all the files it contains. Before a directory can be read, it
must be opened, analogous to opening and reading a file.

4. Closedir. When a directory has been read, it should be closed to free
up internal table space.

5. Readdir. This call returns the next entry in an open directory. Form-
erly, it was possible to read directories using the usual read system
call, but that approach has the disadvantage of forcing the program-
mer to know and deal with the internal structure of directories. In
contrast, readdir always returns one entry in a standard format, no
matter which of the possible directory structures is being used.

6. Rename. In many respects, directories are just like files and can be
renamed the same way files can be.

7. Link. Linking is a technique that allows a file to appear in more than
one directory. This system call specifies an existing file and a path
name, and creates a link from the existing file to the name specified
by the path. In this way, the same file may appear in multiple direc-
tories. A link of this kind, which increments the counter in the file’s
i-node (to keep track of the number of directory entries containing
the file), is sometimes called a hard link.
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8. Unlink. A directory entry is removed. If the file being unlinked is
only present in one directory (the normal case), it is removed from
the file system. If it is present in multiple directories, only the path
name specified is removed. The others remain. In UNIX, the system
call for deleting files (discussed earlier) is, in fact, unlink.

The above list gives the most important calls, but there are a few others as well,
for example, for managing the protection information associated with a directory.

5.3 FILE SYSTEM IMPLEMENTATION

Now it is time to turn from the user’s view of the file system to the im-
plementer’s view. Users are concerned with how files are named, what operations
are allowed on them, what the directory tree looks like, and similar interface
issues. Implementers are interested in how files and directories are stored, how
disk space is managed, and how to make everything work efficiently and reliably.
In the following sections we will examine a number of these areas to see what the
issues and trade-offs are.

5.3.1 File System Layout

File systems usually are stored on disks. We looked at basic disk layout in
Chap. 2, in the section on bootstrapping MINIX 3. To review this material briefly,
most disks can be divided up into partitions, with independent file systems on
each partition. Sector 0 of the disk is called the MBR (Master Boot Record) and
is used to boot the computer. The end of the MBR contains the partition table.
This table gives the starting and ending addresses of each partition. One of the
partitions in the table may be marked as active. When the computer is booted, the
BIOS reads in and executes the code in the MBR. The first thing the MBR pro-
gram does is locate the active partition, read in its first block, called the boot
block, and execute it. The program in the boot block loads the operating system
contained in that partition. For uniformity, every partition starts with a boot
block, even if it does not contain a bootable operating system. Besides, it might
contain one in the some time in the future, so reserving a boot block is a good idea
anyway.

The above description must be true, regardless of the operating system in use,
for any hardware platform on which the BIOS is to be able to start more than one
operating system. The terminology may differ with different operating systems.
For instance the master boot record may sometimes be called the IPL (Initial
Program Loader), Volume Boot Code, or simply masterboot. Some operating
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systems do not require a partition to be marked active to be booted, and provide a
menu for the user to choose a partition to boot, perhaps with a timeout after which
a default choice is automatically taken. Once the BIOS has loaded an MBR or
boot sector the actions may vary. For instance, more than one block of a partition
may be used to contain the program that loads the operating system. The BIOS
can be counted on only to load the first block, but that block may then load addi-
tional blocks if the implementer of the operating system writes the boot block that
way. An implementer can also supply a custom MBR, but it must work with a
standard partition table if multiple operating systems are to be supported.

On PC-compatible systems there can be no more than four primary parti-
tions because there is only room for a four-element array of partition descriptors
between the master boot record and the end of the first 512-byte sector. Some
operating systems allow one entry in the partition table to be an extended parti-
tion which points to a linked list of logical partitions. This makes it possible to
have any number of additional partitions. The BIOS cannot start an operating sys-
tem from a logical partition, so initial startup from a primary partition is required
to load code that can manage logical partitions.

An alternative to extended partitions is used by MINIX 3, which allows a parti-
tion to contain a subpartition table. An advantage of this is that the same code
that manages a primary partition table can manage a subpartition table, which has
the same structure. Potential uses for subpartitions are to have different ones for
the root device, swapping, the system binaries, and the users’ files. In this way,
problems in one subpartition cannot propagate to another one, and a new version
of the operating system can be easily installed by replacing the contents of some
of the subpartitions but not all.

Not all disks are partitioned. Floppy disks usually start with a boot block in
the first sector. The BIOS reads the first sector of a disk and looks for a magic
number which identifies it as valid executable code, to prevent an attempt to exe-
cute the first sector of an unformatted or corrupted disk. A master boot record and
a boot block use the same magic number, so the executable code may be either
one. Also, what we say here is not limited to electromechanical disk devices. A
device such as a camera or personal digital assistant that uses nonvolatile (e.g.,
flash) memory typically has part of the memory organized to simulate a disk.

Other than starting with a boot block, the layout of a disk partition varies con-
siderably from file system to file system. A UNIX-like file system will contain
some of the items shown in Fig. 5-8. The first one is the superblock. It contains
all the key parameters about the file system and is read into memory when the
computer is booted or the file system is first touched.

Next might come information about free blocks in the file system. This might
be followed by the i-nodes, an array of data structures, one per file, telling all
about the file and where its blocks are located. After that might come the root
directory, which contains the top of the file system tree. Finally, the remainder of
the disk typically contains all the other directories and files.
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Figure 5-8. A possible file system layout.

5.3.2 Implementing Files

Probably the most important issue in implementing file storage is keeping
track of which disk blocks go with which file. Various methods are used in dif-
ferent operating systems. In this section, we will examine a few of them.

Contiguous Allocation

The simplest allocation scheme is to store each file as a contiguous run of disk
blocks. Thus on a disk with 1-KB blocks, a 50-KB file would be allocated 50
consecutive blocks. Contiguous disk space allocation has two significant advan-
tages. First, it is simple to implement because keeping track of where a file’s
blocks are is reduced to remembering two numbers: the disk address of the first
block and the number of blocks in the file. Given the number of the first block,
the number of any other block can be found by a simple addition.

Second, the read performance is excellent because the entire file can be read
from the disk in a single operation. Only one seek is needed (to the first block).
After that, no more seeks or rotational delays are needed so data come in at the
full bandwidth of the disk. Thus contiguous allocation is simple to implement and
has high performance.

Unfortunately, contiguous allocation also has a major drawback: in time, the
disk becomes fragmented, consisting of files and holes. Initially, this fragmenta-
tion is not a problem since each new file can be written at the end of disk, follow-
ing the previous one. However, eventually the disk will fill up and it will become
necessary to either compact the disk, which is prohibitively expensive, or to reuse
the free space in the holes. Reusing the space requires maintaining a list of holes,
which is doable. However, when a new file is to be created, it is necessary to
know its final size in order to choose a hole of the correct size to place it in.



500 FILE SYSTEMS CHAP. 5

As we mentioned in Chap. 1, history may repeat itself in computer science as
new generations of technology occur. Contiguous allocation was actually used on
magnetic disk file systems years ago due to its simplicity and high performance
(user friendliness did not count for much then). Then the idea was dropped due to
the nuisance of having to specify final file size at file creation time. But with the
advent of CD-ROMs, DVDs, and other write-once optical media, suddenly con-
tiguous files are a good idea again. For such media, contiguous allocation is
feasible and, in fact, widely used. Here all the file sizes are known in advance
and will never change during subsequent use of the CD-ROM file system. It is
thus important to study old systems and ideas that were conceptually clean and
simple because they may be applicable to future systems in surprising ways.

Linked List Allocation

The second method for storing files is to keep each one as a linked list of disk
blocks, as shown in Fig. 5-9. The first word of each block is used as a pointer to
the next one. The rest of the block is for data.
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Figure 5-9. Storing a file as a linked list of disk blocks.

Unlike contiguous allocation, every disk block can be used in this method.
No space is lost to disk fragmentation (except for internal fragmentation in the last
block of each file). Also, it is sufficient for the directory entry to merely store the
disk address of the first block. The rest can be found starting there.

On the other hand, although reading a file sequentially is straightforward, ran-
dom access is extremely slow. To get to block n, the operating system has to start
at the beginning and read the n − 1 blocks prior to it, one at a time. Clearly, doing
so many reads will be painfully slow.
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Also, the amount of data storage in a block is no longer a power of two be-
cause the pointer takes up a few bytes. While not fatal, having a peculiar size is
less efficient because many programs read and write in blocks whose size is a
power of two. With the first few bytes of each block occupied to a pointer to the
next block, reads of the full block size require acquiring and concatenating infor-
mation from two disk blocks, which generates extra overhead due to the copying.

Linked List Allocation Using a Table in Memory

Both disadvantages of the linked list allocation can be eliminated by taking
the pointer word from each disk block and putting it in a table in memory. Figure
5-10 shows what the table looks like for the example of Fig. 5-9. In both figures,
we have two files. File A uses disk blocks 4, 7, 2, 10, and 12, in that order, and
file B uses disk blocks 6, 3, 11, and 14, in that order. Using the table of Fig. 5-10,
we can start with block 4 and follow the chain all the way to the end. The same
can be done starting with block 6. Both chains are terminated with a special
marker (e.g., −1) that is not a valid block number. Such a table in main memory
is called a FAT (File Allocation Table).
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Figure 5-10. Linked list allocation using a file allocation table in main memory.

Using this organization, the entire block is available for data. Furthermore,
random access is much easier. Although the chain must still be followed to find a
given offset within the file, the chain is entirely in memory, so it can be followed
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without making any disk references. Like the previous method, it is sufficient for
the directory entry to keep a single integer (the starting block number) and still be
able to locate all the blocks, no matter how large the file is.

The primary disadvantage of this method is that the entire table must be in
memory all the time. With a 20-GB disk and a 1-KB block size, the table needs
20 million entries, one for each of the 20 million disk blocks. Each entry has to
be a minimum of 3 bytes. For speed in lookup, they should be 4 bytes. Thus the
table will take up 60 MB or 80 MB of main memory all the time, depending on
whether the system is optimized for space or time. Conceivably the table could be
put in pageable memory, but it would still occupy a great deal of virtual memory
and disk space as well as generating paging traffic. MS-DOS and Windows 98 use
only FAT file systems and later versions of Windows also support it.

I-Nodes

Our last method for keeping track of which blocks belong to which file is to
associate with each file a data structure called an i-node (index-node), which lists
the attributes and disk addresses of the file’s blocks. A simple example is dep-
icted in Fig. 5-11. Given the i-node, it is then possible to find all the blocks of the
file. The big advantage of this scheme over linked files using an in-memory table
is that the i-node need only be in memory when the corresponding file is open. If
each i-node occupies n bytes and a maximum of k files may be open at once, the
total memory occupied by the array holding the i-nodes for the open files is only
kn bytes. Only this much space need be reserved in advance.

This array is usually far smaller than the space occupied by the file table de-
scribed in the previous section. The reason is simple. The table for holding the
linked list of all disk blocks is proportional in size to the disk itself. If the disk
has n blocks, the table needs n entries. As disks grow larger, this table grows
linearly with them. In contrast, the i-node scheme requires an array in memory
whose size is proportional to the maximum number of files that may be open at
once. It does not matter if the disk is 1 GB or 10 GB or 100 GB.

One problem with i-nodes is that if each one has room for a fixed number of
disk addresses, what happens when a file grows beyond this limit? One solution
is to reserve the last disk address not for a data block, but instead for the address
of an indirect block containing more disk block addresses. This idea can be
extended to use double indirect blocks and triple indirect blocks, as shown in
Fig. 5-11.

5.3.3 Implementing Directories

Before a file can be read, it must be opened. When a file is opened, the
operating system uses the path name supplied by the user to locate the directory
entry. Finding a directory entry means, of course, that the root directory must be
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Figure 5-11. An i-node with three levels of indirect blocks.

located first. The root directory may be in a fixed location relative to the start of a
partition. Alternatively, its position may be determined from other information,
for instance, in a classic UNIX file system the superblock contains information
about the size of the file system data structures that precede the data area. From
the superblock the location of the i-nodes can be found. The first i-node will point
to the root directory, which is created when a UNIX file system is made. In Win-
dows XP, information in the boot sector (which is really much bigger than one
sector) locates the MFT (Master File Table), which is used to locate other parts
of the file system.

Once the root directory is located a search through the directory tree finds the
desired directory entry. The directory entry provides the information needed to
find the disk blocks. Depending on the system, this information may be the disk
address of the entire file (contiguous allocation), the number of the first block
(both linked list schemes), or the number of the i-node. In all cases, the main
function of the directory system is to map the ASCII name of the file onto the
information needed to locate the data.

A closely related issue is where the attributes should be stored. Every file
system maintains file attributes, such as each file’s owner and creation time, and
they must be stored somewhere. One obvious possibility is to store them directly
in the directory entry. In its simplest form, a directory consists of a list of fixed-
size entries, one per file, containing a (fixed-length) file name, a structure of the
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file attributes, and one or more disk addresses (up to some maximum) telling
where the disk blocks are, as we saw in Fig. 5-5(a).

For systems that use i-nodes, another possibility for storing the attributes is in
the i-nodes, rather than in the directory entries, as in Fig. 5-5(b). In this case, the
directory entry can be shorter: just a file name and an i-node number.

Shared Files

In Chap. 1 we briefly mentioned links between files, which make it easy for
several users working together on a project to share files. Figure 5-12 shows the
file system of Fig. 5-6(c) again, only with one of C’s files now present in one of
B’s directories as well.

Root directory

B

B B C

C C

CA

B C

B

? C C C

A

Shared file

Figure 5-12. File system containing a shared file.

In UNIX the use of i-nodes for storing file attributes makes sharing easy; any
number of directory entries can point to a single i-node. The i-node contains a
field which is incremented when a new link is added, and which is decremented
when a link is deleted. Only when the link count reaches zero are the actual data
and the i-node itself deleted.

This kind of link is sometimes called a hard link. Sharing files using hard
links is not always possible. A major limitation is that directories and i-nodes are
data structures of a single file system (partition), so a directory in one file system
cannot point to an i-node on another file system. Also, a file can have only one
owner and one set of permissions. If the owner of a shared file deletes his own
directory entry for that file, another user could be stuck with a file in his directory
that he cannot delete if the permissions do not allow it.
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An alternative way to share files is to create a new kind of file whose data is
the path to another file. This kind of link will work across mounted file systems.
In fact, if a means is provided for path names to include network addresses, such a
link can refer to a file on a different computer. This second kind of link is called
a symbolic link in UNIX-like systems, a shortcut in Windows, and an alias in
Apple’s Mac OS. Symbolic links can be used on systems where attributes are
stored within directory entries. A little thought should convince you that multiple
directory entries containing file attributes would be difficult to synchronize. Any
change to a file would have to affect every directory entry for that file. But the
extra directory entries for symbolic links do not contain the attributes of the file to
which they point. A disadvantage of symbolic links is that when a file is deleted,
or even just renamed, a link becomes an orphan.

Directories in Windows 98

The file system of the original release of Windows 95 was identical to the
MS-DOS file system, but a second release added support for longer file names and
bigger files. We will refer to this as the Windows 98 file system, even though it is
found on some Windows 95 systems. Two types of directory entry exist in Win-
dows 98. We will call the first one, shown in Fig. 5-13, a base entry.

8 1 13 41 2 2

Base name

4 2 4Bytes

Ext File sizeN
T

Creation
date/time

Last write
date/time

Last
access

Attributes
Sec Upper 16 bits

of starting
block

Lower 16 bits
of starting

block

Figure 5-13. A Windows 98 base directory entry.

The base directory entry has all the information that was in the directory en-
tries of older Windows versions, and more. The 10 bytes starting with the NT
field are additions to the older Windows 95 structure, which fortunately (or more
likely deliberately, with later improvement in mind) were not previously used.
The most important upgrade is the field that increases the number of bits available
for pointing to the starting block from 16 to 32. This increases the maximum
potential size of the file system from 216 blocks to 232 blocks.

This structure provides only for the old-style 8 + 3 character filenames inher-
ited from MS-DOS (and CP/M). How about long file names? The answer to the
problem of providing long file names while retaining compatibility with the older
systems was to use additional directory entries. Fig. 5-14 shows an alternative
form of directory entry that can contain up to 13 characters of a long file name.
For files with long names a shortened form of the name is generated automatically
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Figure 5-14. An entry for (part of) a long file name in Windows 98.

and placed in the Base name and Ext fields of an Fig. 5-13-style base directory
entry. As many entries like that of Fig. 5-14 as are needed to contain the long file
name are placed before the base entry, in reverse order. The Attributes field of
each long name entry contains the value 0x0F, which is an impossible value for
older (MS-DOS and Windows 95) files systems, so these entries will be ignored if
the directory is read by an older system (on a floppy disk, for instance). A bit in
the Sequence field tells the system which is the last entry.

If this seems rather complex, well, it is. Providing backward compatibility so
an earlier simpler system can continue to function while providing additional fea-
tures for a newer system is likely to be messy. A purist might decide not to go to
so much trouble. However, a purist would probably not become rich selling new
versions of operating systems.

Directories in UNIX

The traditional UNIX directory structure is extremely simple, as shown in
Fig. 5-15. Each entry contains just a file name and its i-node number. All the
information about the type, size, times, ownership, and disk blocks is contained in
the i-node. Some UNIX systems have a different layout, but in all cases, a direc-
tory entry ultimately contains only an ASCII string and an i-node number.

Bytes 2 14

File name

I-node
number

Figure 5-15. A Version 7 UNIX directory entry.

When a file is opened, the file system must take the file name supplied and
locate its disk blocks. Let us consider how the path name /usr/ast/mbox is looked
up. We will use UNIX as an example, but the algorithm is basically the same for
all hierarchical directory systems. First the system locates the root directory. The
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i-nodes form a simple array which is located using information in the superblock.
The first entry in this array is the i-node of the root directory.

The file system looks up the first component of the path, usr, in the root direc-
tory to find the i-node number of the file /usr/. Locating an i-node from its
number is straightforward, since each one has a fixed location relative to the first
one. From this i-node, the system locates the directory for /usr/ and looks up the
next component, ast, in it. When it has found the entry for ast, it has the i-node
for the directory /usr/ast/. From this i-node it can find the directory itself and look
up mbox. The i-node for this file is then read into memory and kept there until the
file is closed. The lookup process is illustrated in Fig. 5-16.
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Figure 5-16. The steps in looking up /usr/ast/mbox.

Relative path names are looked up the same way as absolute ones, only start-
ing from the working directory instead of starting from the root directory. Every
directory has entries for . and .. which are put there when the directory is created.
The entry . has the i-node number for the current directory, and the entry for ..
has the i-node number for the parent directory. Thus, a procedure looking up
../dick/prog.c simply looks up .. in the working directory, finds the i-node number
for the parent directory, and searches that directory for dick. No special mechan-
ism is needed to handle these names. As far as the directory system is concerned,
they are just ordinary ASCII strings, just the same as any other names.

Directories in NTFS

Microsoft’s NTFS (New Technology File System) is the default file system.
We do not have space for a detailed description of NTFS, but will just briefly look
at some of the problems NTFS deals with and the solutions used.
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One problem is long file and path names. NTFS allows long file names (up to
255 characters) and path names (up to 32,767 characters). But since older ver-
sions of Windows cannot read NTFS file systems, a complicated backward-
compatible directory structure is not needed, and filename fields are variable
length. Provision is made to have a second 8 + 3 character name so an older sys-
tem can access NTFS files over a network.

NTFS provides for multiple character sets by using Unicode for filenames.
Unicode uses 16 bits for each character, enough to represent multiple languages
with very large symbol sets (e.g., Japanese). But using multiple languages raises
problems in addition to representation of different character sets. Even among
Latin-derived languages there are subtleties. For instance, in Spanish some com-
binations of two characters count as single characters when sorting. Words begin-
ning with ‘‘ch’’ or ‘‘ll’’ should appear in sorted lists after words that begin with
‘‘cz’’ or ‘‘lz’’, respectively. The problem of case mapping is more complex. If
the default is to make filenames case sensitive, there may still be a need to do
case-insensitive searches. For Latin-based languages it is obvious how to do that,
at least to native users of these languages. In general, if only one language is in
use, users will probably know the rules. However, Unicode allows a mixture of
languages: Greek, Russian, and Japanese filenames could all appear in a single
directory at an international organization. The NTFS solution is an attribute for
each file that defines the case conventions for the language of the filename.

More attributes is the NTFS solution to many problems. In UNIX, a file is a
sequence of bytes. In NTFS a file is a collection of attributes, and each attribute
is a stream of bytes. The basic NTFS data structure is the MFT (Master File
Table) that provides for 16 attributes, each of which can have a length of up to 1
KB within the MFT. If that is not enough, an attribute within the MFT can be a
header that points to an additional file with an extension of the attribute values.
This is known as a nonresident attribute. The MFT itself is a file, and it has an
entry for every file and directory in the file system. Since it can grow very large,
when an NTFS file system is created about 12.5% of the space on the partition is
reserved for growth of the MFT. Thus it can grow without becoming fragmented,
at least until the initial reserved space is used, after which another large chunk of
space will be reserved. So if the MFT becomes fragmented it will consists of a
small number of very large fragments.

What about data in NTFS? Data is just another attribute. In fact an NTFS file
may have more than one data stream. This feature was originally provided to
allow Windows servers to serve files to Apple MacIntosh clients. In the original
MacIntosh operating system (through Mac OS 9) all files had two data streams,
called the resource fork and the data fork. Multiple data streams have other uses,
for instance a large graphic image may have a smaller thumbnail image associated
with it. A stream can contain up to 264 bytes. At the other extreme, NTFS can
handle small files by putting a few hundred bytes in the attribute header. This is
called an immediate file (Mullender and Tanenbaum, 1984).
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We have only touched upon a few ways that NTFS deals with issues not
addressed by older and simpler file systems. NTFS also provides features such as
a sophisticated protection system, encryption, and data compression. Describing
all these features and their implementation would require much more space than
we can spare here. For a more throrough look at NTFS see Tanenbaum (2001) or
look on the World Wide Web for more information.

5.3.4 Disk Space Management

Files are normally stored on disk, so management of disk space is a major
concern to file system designers. Two general strategies are possible for storing
an n byte file: n consecutive bytes of disk space are allocated, or the file is split up
into a number of (not necessarily) contiguous blocks. The same trade-off is
present in memory management systems between pure segmentation and paging.

As we have seen, storing a file as a contiguous sequence of bytes has the ob-
vious problem that if a file grows, it will probably have to be moved on the disk.
The same problem holds for segments in memory, except that moving a segment
in memory is a relatively fast operation compared to moving a file from one disk
position to another. For this reason, nearly all file systems chop files up into
fixed-size blocks that need not be adjacent.

Block Size

Once it has been decided to store files in fixed-size blocks, the question arises
of how big the blocks should be. Given the way disks are organized, the sector,
the track and the cylinder are obvious candidates for the unit of allocation
(although these are all device dependent, which is a minus). In a paging system,
the page size is also a major contender. However, having a large allocation unit,
such as a cylinder, means that every file, even a 1-byte file, ties up an entire cyl-
inder.

On the other hand, using a small allocation unit means that each file will con-
sist of many blocks. Reading each block normally requires a seek and a rotational
delay, so reading a file consisting of many small blocks will be slow.

As an example, consider a disk with 131,072 bytes/track, a rotation time of
8.33 msec, and an average seek time of 10 msec. The time in milliseconds to read
a block of k bytes is then the sum of the seek, rotational delay, and transfer times:

10 + 4.165 + (k /131072) × 8.33

The solid curve of Fig. 5-17 shows the data rate for such a disk as a function of
block size.

To compute the space efficiency, we need to make an assumption about the
mean file size. An early study showed that the mean file size in UNIX environ-
ments is about 1 KB (Mullender and Tanenbaum, 1984). A measurement made in
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2005 at the department of one of the authors (AST), which has 1000 users and
over 1 million UNIX disk files, gives a median size of 2475 bytes, meaning that
half the files are smaller than 2475 bytes and half are larger. As an aside, the
median is a better metric than the mean because a very small number of files can
influence the mean enormously, but not the median. A few 100-MB hardware
manuals or a promotional videos or to can greatly skew the mean but have little
effect on the median.

In an experiment to see if Windows NT file usage was appreciably different
from UNIX file usage, Vogels (1999) made measurements on files at Cornell
University. He observed that NT file usage is more complicated than on UNIX.
He wrote:

When we type a few characters in the notepad text editor, saving this to a
file will trigger 26 system calls, including 3 failed open attempts, 1 file
overwrite and 4 additional open and close sequences.

Nevertheless, he observed a median size (weighted by usage) of files just read at 1
KB, files just written as 2.3 KB and files read and written as 4.2 KB. Given the
fact that Cornell has considerable large-scale scientific computing and the differ-
ence in measurement technique (static versus dynamic), the results are reasonably
consistent with a median file size of around 2 KB.

For simplicity, let us assume all files are 2 KB, which leads to the dashed
curve in Fig. 5-17 for the disk space efficiency.
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Figure 5-17. The solid curve (left-hand scale) gives the data rate of a disk. The
dashed curve (right-hand scale) gives the disk space efficiency. All files are 2
KB.

The two curves can be understood as follows. The access time for a block is
completely dominated by the seek time and rotational delay, so given that it is
going to cost 14 msec to access a block, the more data that are fetched, the better.
Hence the data rate goes up with block size (until the transfers take so long that
the transfer time begins to dominate). With small blocks that are powers of two
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and 2-KB files, no space is wasted in a block. However, with 2-KB files and 4
KB or larger blocks, some disk space is wasted. In reality, few files are a multiple
of the disk block size, so some space is always wasted in the last block of a file.

What the curves show, however, is that performance and space utilization are
inherently in conflict. Small blocks are bad for performance but good for disk
space utilization. A compromise size is needed. For this data, 4 KB might be a
good choice, but some operating systems made their choices a long time ago,
when the disk parameters and file sizes were different. For UNIX, 1 KB is com-
monly used. For MS-DOS the block size can be any power of two from 512 bytes
to 32 KB, but is determined by the disk size and for reasons unrelated to these
arguments (the maximum number of blocks on a disk partition is 216, which
forces large blocks on large disks).

Keeping Track of Free Blocks

Once a block size has been chosen, the next issue is how to keep track of free
blocks. Two methods are widely used, as shown in Fig. 5-18. The first one con-
sists of using a linked list of disk blocks, with each block holding as many free
disk block numbers as will fit. With a 1-KB block and a 32-bit disk block
number, each block on the free list holds the numbers of 255 free blocks. (One
slot is needed for the pointer to the next block). A 256-GB disk needs a free list
of maximum 1,052,689 blocks to hold all 228 disk block numbers. Often free
blocks are used to hold the free list.

(a) (b)
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Figure 5-18. (a) Storing the free list on a linked list. (b) A bitmap.
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The other free space management technique is the bitmap. A disk with n
blocks requires a bitmap with n bits. Free blocks are represented by 1s in the
map, allocated blocks by 0s (or vice versa). A 256-GB disk has 228 1-KB blocks
and thus requires 228 bits for the map, which requires 32,768 blocks. It is not
surprising that the bitmap requires less space, since it uses 1 bit per block, versus
32 bits in the linked list model. Only if the disk is nearly full (i.e., has few free
blocks) will the linked list scheme require fewer blocks than the bitmap. On the
other hand, if there are many blocks free, some of them can be borrowed to hold
the free list without any loss of disk capacity.

When the free list method is used, only one block of pointers need be kept in
main memory. When a file is created, the needed blocks are taken from the block
of pointers. When it runs out, a new block of pointers is read in from the disk.
Similarly, when a file is deleted, its blocks are freed and added to the block of
pointers in main memory. When this block fills up, it is written to disk.

5.3.5 File System Reliability

Destruction of a file system is often a far greater disaster than destruction of a
computer. If a computer is destroyed by fire, lightning surges, or a cup of coffee
poured onto the keyboard, it is annoying and will cost money, but generally a
replacement can be purchased with a minimum of fuss. Inexpensive personal
computers can even be replaced within an hour by just going to the dealer (except
at universities, where issuing a purchase order takes three committees, five signa-
tures, and 90 days).

If a computer’s file system is irrevocably lost, whether due to hardware, soft-
ware, or rats gnawing on the backup tapes, restoring all the information will be
difficult and time consuming at best, and in many cases will be impossible. For
the people whose programs, documents, customer files, tax records, databases,
marketing plans, or other data are gone forever, the consequences can be catas-
trophic. While the file system cannot offer any protection against physical des-
truction of the equipment and media, it can help protect the information. In this
section we will look at some of the issues involved in safeguarding the file sys-
tem.

Floppy disks are generally perfect when they leave the factory, but they can
develop bad blocks during use. It is arguable that this is more likely now than it
was in the days when floppy disks were more widely used. Networks and large
capacity removable devices such as writeable CDs have led to floppy disks being
used infrequently. Cooling fans draw air and airborne dust in through floppy disk
drives, and a drive that has not been used for a long time may be so dirty that it
ruins the next disk that is inserted. A floppy drive that is used frequently is less
likely to damage a disk.

Hard disks frequently have bad blocks right from the start: it is just too expen-
sive to manufacture them completely free of all defects. As we saw in Chap. 3,
bad blocks on hard disks are generally handled by the controller by replacing bad
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sectors with spares provided for that purpose. On these disks, tracks are at least
one sector bigger than needed, so that at least one bad spot can be skipped by
leaving it in a gap between two consecutive sectors. A few spare sectors are pro-
vided on each cylinder so the controller can do automatic sector remapping if it
notices that a sector needs more than a certain number of retries to be read or writ-
ten. Thus the user is usually unaware of bad blocks or their management. Never-
theless, when a modern IDE or SCSI disk fails, it will usually fail horribly,
because it has run out of spare sectors. SCSI disks provide a ‘‘recovered error’’
when they remap a block. If the driver notes this and displays a message on the
monitor the user will know it is time to buy a new disk when these messages
begin to appear frequently.

A simple software solution to the bad block problem exists, suitable for use on
older disks. This approach requires the user or file system to carefully construct a
file containing all the bad blocks. This technique removes them from the free list,
so they will never occur in data files. As long as the bad block file is never read
or written, no problems will arise. Care has to be taken during disk backups to
avoid reading this file and trying to back it up.

Backups

Most people do not think making backups of their files is worth the time and
effort—until one fine day their disk abruptly dies, at which time most of them
undergo a deathbed conversion. Companies, however, (usually) well understand
the value of their data and generally do a backup at least once a day, usually to
tape. Modern tapes hold tens or sometimes even hundreds of gigabytes and cost
pennies per gigabyte. Nevertheless, making backups is not quite as trivial as it
sounds, so we will examine some of the related issues below.

Backups to tape are generally made to handle one of two potential problems:

1. Recover from disaster.

2. Recover from stupidity.

The first one covers getting the computer running again after a disk crash, fire,
flood, or other natural catastrophe. In practice, these things do not happen very
often, which is why many people do not bother with backups. These people also
tend not to have fire insurance on their houses for the same reason.

The second reason is that users often accidentally remove files that they later
need again. This problem occurs so often that when a file is ‘‘removed’’ in Win-
dows, it is not deleted at all, but just moved to a special directory, the recycle bin,
so it can be fished out and restored easily later. Backups take this principle
further and allow files that were removed days, even weeks ago, to be restored
from old backup tapes.

Making a backup takes a long time and occupies a large amount of space, so
doing it efficiently and conveniently is important. These considerations raise the
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following issues. First, should the entire file system be backed up or only part of
it? At many installations, the executable (binary) programs are kept in a limited
part of the file system tree. It is not necessary to back up these files if they can all
be reinstalled from the manufacturers’ CD-ROMs. Also, most systems have a
directory for temporary files. There is usually no reason to back it up either. In
UNIX, all the special files (I/O devices) are kept in a directory /dev/. Not only is
backing up this directory not necessary, it is downright dangerous because the
backup program would hang forever if it tried to read each of these to completion.
In short, it is usually desirable to back up only specific directories and everything
in them rather than the entire file system.

Second, it is wasteful to back up files that have not changed since the last
backup, which leads to the idea of incremental dumps. The simplest form of
incremental dumping is to make a complete dump (backup) periodically, say
weekly or monthly, and to make a daily dump of only those files that have been
modified since the last full dump. Even better is to dump only those files that
have changed since they were last dumped. While this scheme minimizes dump-
ing time, it makes recovery more complicated because first the most recent full
dump has to be restored, followed by all the incremental dumps in reverse order,
oldest one first. To ease recovery, more sophisticated incremental dumping
schemes are often used.

Third, since immense amounts of data are typically dumped, it may be desir-
able to compress the data before writing them to tape. However, with many com-
pression algorithms, a single bad spot on the backup tape can foil the decompres-
sion algorithm and make an entire file or even an entire tape unreadable. Thus the
decision to compress the backup stream must be carefully considered.

Fourth, it is difficult to perform a backup on an active file system. If files and
directories are being added, deleted, and modified during the dumping process,
the resulting dump may be inconsistent. However, since making a dump may take
hours, it may be necessary to take the system offline for much of the night to
make the backup, something that is not always acceptable. For this reason, algo-
rithms have been devised for making rapid snapshots of the file system state by
copying critical data structures, and then requiring future changes to files and
directories to copy the blocks instead of updating them in place (Hutchinson et al.,
1999). In this way, the file system is effectively frozen at the moment of the
snapshot, so it can be backed up at leisure afterward.

Fifth and last, making backups introduces many nontechnical problems into
an organization. The best online security system in the world may be useless if
the system administrator keeps all the backup tapes in his office and leaves it open
and unguarded whenever he walks down the hall to get output from the printer.
All a spy has to do is pop in for a second, put one tiny tape in his pocket, and
saunter off jauntily. Goodbye security. Also, making a daily backup has little use
if the fire that burns down the computers also burns up all the backup tapes. For
this reason, backup tapes should be kept off-site, but that introduces more security
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risks. For a thorough discussion of these and other practical administration issues,
see Nemeth et al. (2001). Below we will discuss only the technical issues
involved in making file system backups.

Two strategies can be used for dumping a disk to tape: a physical dump or a
logical dump. A physical dump starts at block 0 of the disk, writes all the disk
blocks onto the output tape in order, and stops when it has copied the last one.
Such a program is so simple that it can probably be made 100% bug free, some-
thing that can probably not be said about any other useful program.

Nevertheless, it is worth making several comments about physical dumping.
For one thing, there is no value in backing up unused disk blocks. If the dumping
program can get access to the free block data structure, it can avoid dumping
unused blocks. However, skipping unused blocks requires writing the number of
each block in front of the block (or the equivalent), since it is no longer true that
block k on the tape was block k on the disk.

A second concern is dumping bad blocks. If all bad blocks are remapped by
the disk controller and hidden from the operating system as we described in Sec.
5.4.4, physical dumping works fine. On the other hand, if they are visible to the
operating system and maintained in one or more ‘‘bad block files’’ or bitmaps, it is
absolutely essential that the physical dumping program get access to this informa-
tion and avoid dumping them to prevent endless disk read errors during the dump-
ing process.

The main advantages of physical dumping are simplicity and great speed
(basically, it can run at the speed of the disk). The main disadvantages are the
inability to skip selected directories, make incremental dumps, and restore indivi-
dual files upon request. For these reasons, most installations make logical dumps.

A logical dump starts at one or more specified directories and recursively
dumps all files and directories found there that have changed since some given
base date (e.g., the last backup for an incremental dump or system installation for
a full dump). Thus in a logical dump, the dump tape gets a series of carefully
identified directories and files, which makes it easy to restore a specific file or
directory upon request.

In order to be able to properly restore even a single file correctly, all informa-
tion needed to recreate the path to that file must be saved to the backup medium.
Thus the first step in doing a logical dump is doing an analysis of the directory
tree. Obviously, we need to save any file or directory that has been modified. But
for proper restoration, all directories, even unmodified ones, that lie on the path to
a modified file or directory must be saved. This means saving not just the data
(file names and pointers to i-nodes), all the attributes of the directories must be
saved, so they can be restored with the original permissions. The directories and
their attributes are written to the tape first, and then modified files (with their
attributes) are saved. This makes it possible to restore the dumped files and direc-
tories to a fresh file system on a different computer. In this way, the dump and
restore programs can be used to transport entire file systems between computers.
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A second reason for dumping unmodified directories above modified files is
to make it possible to incrementally restore a single file (possibly to handle
recovery from accidental deletion). Suppose that a full file system dump is done
Sunday evening and an incremental dump is done on Monday evening. On Tues-
day the directory /usr/jhs/proj/nr3/ is removed, along with all the directories and
files under it. On Wednesday morning bright and early, a user wants to restore
the file /usr/jhs/proj/nr3/plans/summary However, is not possible to just restore
the file summary because there is no place to put it. The directories nr3/ and
plans/ must be restored first. To get their owners, modes, times, etc., correct,
these directories must be present on the dump tape even though they themselves
were not modified since the previous full dump.

Restoring a file system from the dump tapes is straightforward. To start with,
an empty file system is created on the disk. Then the most recent full dump is
restored. Since the directories appear first on the tape, they are all restored first,
giving a skeleton of the file system. Then the files themselves are restored. This
process is then repeated with the first incremental dump made after the full dump,
then the next one, and so on.

Although logical dumping is straightforward, there are a few tricky issues.
For one, since the free block list is not a file, it is not dumped and hence it must be
reconstructed from scratch after all the dumps have been restored. Doing so is
always possible since the set of free blocks is just the complement of the set of
blocks contained in all the files combined.

Another issue is links. If a file is linked to two or more directories, it is im-
portant that the file is restored only one time and that all the directories that are
supposed to point to it do so.

Still another issue is the fact that UNIX files may contain holes. It is legal to
open a file, write a few bytes, then seek to a distant file offset and write a few
more bytes. The blocks in between are not part of the file and should not be
dumped and not be restored. Core dump files often have a large hole between the
data segment and the stack. If not handled properly, each restored core file will
fill this area with zeros and thus be the same size as the virtual address space (e.g.,
232 bytes, or worse yet, 264 bytes).

Finally, special files, named pipes, and the like should never be dumped, no
matter in which directory they may occur (they need not be confined to /dev/).
For more information about file system backups, see Chervenak et al. (1998) and
Zwicky (1991).

File System Consistency

Another area where reliability is an issue is file system consistency. Many
file systems read blocks, modify them, and write them out later. If the system
crashes before all the modified blocks have been written out, the file system can
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be left in an inconsistent state. This problem is especially critical if some of the
blocks that have not been written out are i-node blocks, directory blocks, or
blocks containing the free list.

To deal with the problem of inconsistent file systems, most computers have a
utility program that checks file system consistency. For example, UNIX has fsck
and Windows has chkdsk (or scandisk in earlier versions). This utility can be run
whenever the system is booted, especially after a crash. The description below
tells how fsck works. Chkdsk is somewhat different because it works on a dif-
ferent file system, but the general principle of using the file system’s inherent
redundancy to repair it is still valid. All file system checkers verify each file sys-
tem (disk partition) independently of the other ones.

Two kinds of consistency checks can be made: blocks and files. To check for
block consistency, the program builds two tables, each one containing a counter
for each block, initially set to 0. The counters in the first table keep track of how
many times each block is present in a file; the counters in the second table record
how often each block is present in the free list (or the bitmap of free blocks).

The program then reads all the i-nodes. Starting from an i-node, it is possible
to build a list of all the block numbers used in the corresponding file. As each
block number is read, its counter in the first table is incremented. The program
then examines the free list or bitmap, to find all the blocks that are not in use.
Each occurrence of a block in the free list results in its counter in the second table
being incremented.

If the file system is consistent, each block will have a 1 either in the first table
or in the second table, as illustrated in Fig. 5-19(a). However, as a result of a
crash, the tables might look like Fig. 5-19(b), in which block 2 does not occur in
either table. It will be reported as being a missing block. While missing blocks
do no real harm, they do waste space and thus reduce the capacity of the disk.
The solution to missing blocks is straightforward: the file system checker just
adds them to the free list.

Another situation that might occur is that of Fig. 5-19(c). Here we see a
block, number 4, that occurs twice in the free list. (Duplicates can occur only if
the free list is really a list; with a bitmap it is impossible.) The solution here is
also simple: rebuild the free list.

The worst thing that can happen is that the same data block is present in two
or more files, as shown in Fig. 5-19(d) with block 5. If either of these files is
removed, block 5 will be put on the free list, leading to a situation in which the
same block is both in use and free at the same time. If both files are removed, the
block will be put onto the free list twice.

The appropriate action for the file system checker to take is to allocate a free
block, copy the contents of block 5 into it, and insert the copy into one of the files.
In this way, the information content of the files is unchanged (although almost
assuredly one is garbled), but the file system structure is at least made consistent.
The error should be reported, to allow the user to inspect the damage.
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Figure 5-19. File system states. (a) Consistent. (b) Missing block. (c) Dupli-
cate block in free list. (d) Duplicate data block.

In addition to checking to see that each block is properly accounted for, the
file system checker also checks the directory system. It, too, uses a table of
counters, but these are per file, rather than per block. It starts at the root directory
and recursively descends the tree, inspecting each directory in the file system.
For every file in every directory, it increments a counter for that file’s usage
count. Remember that due to hard links, a file may appear in two or more direc-
tories. Symbolic links do not count and do not cause the counter for the target file
to be incremented.

When it is all done, it has a list, indexed by i-node number, telling how many
directories contain each file. It then compares these numbers with the link counts
stored in the i-nodes themselves. These counts start at 1 when a file is created and
are incremented each time a (hard) link is made to the file. In a consistent file
system, both counts will agree. However, two kinds of errors can occur: the link
count in the i-node can be too high or it can be too low.

If the link count is higher than the number of directory entries, then even if all
the files are removed from the directories, the count will still be nonzero and the
i-node will not be removed. This error is not serious, but it wastes space on the
disk with files that are not in any directory. It should be fixed by setting the link
count in the i-node to the correct value.

The other error is potentially catastrophic. If two directory entries are linked
to a file, but the i-node says that there is only one, when either directory entry is
removed, the i-node count will go to zero. When an i-node count goes to zero, the
file system marks it as unused and releases all of its blocks. This action will re-
sult in one of the directories now pointing to an unused i-node, whose blocks may
soon be assigned to other files. Again, the solution is just to force the link count
in the i-node to the actual number of directory entries.
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These two operations, checking blocks and checking directories, are often in-
tegrated for efficiency reasons (i.e., only one pass over the i-nodes is required).
Other checks are also possible. For example, directories have a definite format,
with i-node numbers and ASCII names. If an i-node number is larger than the
number of i-nodes on the disk, the directory has been damaged.

Furthermore, each i-node has a mode, some of which are legal but strange,
such as 0007, which allows the owner and his group no access at all, but allows
outsiders to read, write, and execute the file. It might be useful to at least report
files that give outsiders more rights than the owner. Directories with more than,
say, 1000 entries are also suspicious. Files located in user directories, but which
are owned by the superuser and have the SETUID bit on, are potential security
problems because such files acquire the powers of the superuser when executed
by any user. With a little effort, one can put together a fairly long list of techni-
cally legal but still peculiar situations that might be worth reporting.

The previous paragraphs have discussed the problem of protecting the user
against crashes. Some file systems also worry about protecting the user against
himself. If the user intends to type

rm *.o

to remove all the files ending with .o (compiler generated object files), but
accidentally types

rm * .o

(note the space after the asterisk), rm will remove all the files in the current direc-
tory and then complain that it cannot find .o. In some systems, when a file is
removed, all that happens is that a bit is set in the directory or i-node marking the
file as removed. No disk blocks are returned to the free list until they are actually
needed. Thus, if the user discovers the error immediately, it is possible to run a
special utility program that ‘‘unremoves’’ (i.e., restores) the removed files. In
Windows, files that are removed are placed in the recycle bin, from which they
can later be retrieved if need be. Of course, no storage is reclaimed until they are
actually deleted from this directory.

Mechanisms like this are insecure. A secure system would actually overwrite
the data blocks with zeros or random bits when a disk is deleted, so another user
could not retrieve it. Many users are unaware how long data can live. Confiden-
tial or sensitive data can often be recovered from disks that have been discarded
(Garfinkel and Shelat, 2003).

5.3.6 File System Performance

Access to disk is much slower than access to memory. Reading a memory
word might take 10 nsec. Reading from a hard disk might proceed at 10 MB/sec,
which is forty times slower per 32-bit word, and to this must be added 5–10 msec
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to seek to the track and then wait for the desired sector to arrive under the read
head. If only a single word is needed, the memory access is on the order of a mil-
lion times as fast as disk access. As a result of this difference in access time,
many file systems have been designed with various optimizations to improve per-
formance. In this section we will cover three of them.

Caching

The most common technique used to reduce disk accesses is the block cache
or buffer cache. (Cache ispronounced ‘‘cash’’ and is derived from the French ca-
cher, meaning to hide.) In this context, a cache is a collection of blocks that log-
ically belong on the disk but are being kept in memory for performance reasons.

Various algorithms can be used to manage the cache, but a common one is to
check all read requests to see if the needed block is in the cache. If it is, the read
request can be satisfied without a disk access. If the block is not in the cache, it is
first read into the cache, and then copied to wherever it is needed. Subsequent
requests for the same block can be satisfied from the cache.

Operation of the cache is illustrated in Fig. 5-20. Since there are many (often
thousands of) blocks in the cache, some way is needed to determine quickly if a
given block is present. The usual way is to hash the device and disk address and
look up the result in a hash table. All the blocks with the same hash value are
chained together on a linked list so the collision chain can be followed.

Rear (MRU)Hash table Front (LRU)

Figure 5-20. The buffer cache data structures.

When a block has to be loaded into a full cache, some block has to be re-
moved (and rewritten to the disk if it has been modified since being brought in).
This situation is very much like paging, and all the usual page replacement algo-
rithms described in Chap. 4, such as FIFO, second chance, and LRU, are applica-
ble. One pleasant difference between paging and caching is that cache references
are relatively infrequent, so that it is feasible to keep all the blocks in exact LRU
order with linked lists.

In Fig. 5-20, we see that in addition to the collision chains starting at the hash
table, there is also a bidirectional list running through all the blocks in the order of
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usage, with the least recently used block on the front of this list and the most
recently used block at the end of this list. When a block is referenced, it can be
removed from its position on the bidirectional list and put at the end. In this way,
exact LRU order can be maintained.

Unfortunately, there is a catch. Now that we have a situation in which exact
LRU is possible, it turns out that LRU is undesirable. The problem has to do with
the crashes and file system consistency discussed in the previous section. If a crit-
ical block, such as an i-node block, is read into the cache and modified, but not
rewritten to the disk, a crash will leave the file system in an inconsistent state. If
the i-node block is put at the end of the LRU chain, it may be quite a while before
it reaches the front and is rewritten to the disk.

Furthermore, some blocks, such as i-node blocks, are rarely referenced twice
within a short interval. These considerations lead to a modified LRU scheme, tak-
ing two factors into account:

1. Is the block likely to be needed again soon?

2. Is the block essential to the consistency of the file system?

For both questions, blocks can be divided into categories such as i-node blocks,
indirect blocks, directory blocks, full data blocks, and partially full data blocks.
Blocks that will probably not be needed again soon go on the front, rather than the
rear of the LRU list, so their buffers will be reused quickly. Blocks that might be
needed again soon, such as a partly full block that is being written, go on the end
of the list, so they will stay around for a long time.

The second question is independent of the first one. If the block is essential to
the file system consistency (basically, everything except data blocks), and it has
been modified, it should be written to disk immediately, regardless of which end
of the LRU list it is put on. By writing critical blocks quickly, we greatly reduce
the probability that a crash will wreck the file system. While a user may be un-
happy if one of his files is ruined in a crash, he is likely to be far more unhappy if
the whole file system is lost.

Even with this measure to keep the file system integrity intact, it is undesir-
able to keep data blocks in the cache too long before writing them out. Consider
the plight of someone who is using a personal computer to write a book. Even if
our writer periodically tells the editor to write the file being edited to the disk,
there is a good chance that everything will still be in the cache and nothing on the
disk. If the system crashes, the file system structure will not be corrupted, but a
whole day’s work will be lost.

This situation need not happen very often before we have a fairly unhappy
user. Systems take two approaches to dealing with it. The UNIX way is to have a
system call, sync, which forces all the modified blocks out onto the disk immedi-
ately. When the system is started up, a program, usually called update, is started
up in the background to sit in an endless loop issuing sync calls, sleeping for 30
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sec between calls. As a result, no more than 30 seconds of work is lost due to a
system crash, a comforting thought for many people.

The Windows way is to write every modified block to disk as soon as it has
been written. Caches in which all modified blocks are written back to the disk
immediately are called write-through caches. They require more disk I/O than
nonwrite-through caches. The difference between these two approaches can be
seen when a program writes a 1-KB block full, one character at a time. UNIX will
collect all the characters in the cache and write the block out once every 30
seconds, or whenever the block is removed from the cache. Windows will make a
disk access for every character written. Of course, most programs do internal buf-
fering, so they normally write not a character, but a line or a larger unit on each
write system call.

A consequence of this difference in caching strategy is that just removing a
(floppy) disk from a UNIX system without doing a sync will almost always result
in lost data, and frequently in a corrupted file system as well. With Windows, no
problem arises. These differing strategies were chosen because UNIX was de-
veloped in an environment in which all disks were hard disks and not removable,
whereas Windows started out in the floppy disk world. As hard disks became the
norm, the UNIX approach, with its better efficiency, became the norm, and is also
used now on Windows for hard disks.

Block Read Ahead

A second technique for improving perceived file system performance is to try
to get blocks into the cache before they are needed to increase the hit rate. In par-
ticular, many files are read sequentially. When the file system is asked to produce
block k in a file, it does that, but when it is finished, it makes a sneaky check in
the cache to see if block k + 1 is already there. If it is not, it schedules a read for
block k + 1 in the hope that when it is needed, it will have already arrived in the
cache. At the very least, it will be on the way.

Of course, this read ahead strategy only works for files that are being read se-
quentially. If a file is being randomly accessed, read ahead does not help. In fact,
it hurts by tying up disk bandwidth reading in useless blocks and removing poten-
tially useful blocks from the cache (and possibly tying up more disk bandwidth
writing them back to disk if they are dirty). To see whether read ahead is worth
doing, the file system can keep track of the access patterns to each open file. For
example, a bit associated with each file can keep track of whether the file is in
‘‘sequential access mode’’ or ‘‘random access mode.’’ Initially, the file is given
the benefit of the doubt and put in sequential access mode. However, whenever a
seek is done, the bit is cleared. If sequential reads start happening again, the bit is
set once again. In this way, the file system can make a reasonable guess about
whether it should read ahead or not. If it gets it wrong once it a while, it is not a
disaster, just a little bit of wasted disk bandwidth.
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Reducing Disk Arm Motion

Caching and read ahead are not the only ways to increase file system perfor-
mance. Another important technique is to reduce the amount of disk arm motion
by putting blocks that are likely to be accessed in sequence close to each other,
preferably in the same cylinder. When an output file is written, the file system
has to allocate the blocks one at a time, as they are needed. If the free blocks are
recorded in a bitmap, and the whole bitmap is in main memory, it is easy enough
to choose a free block as close as possible to the previous block. With a free list,
part of which is on disk, it is much harder to allocate blocks close together.

However, even with a free list, some block clustering can be done. The trick
is to keep track of disk storage not in blocks, but in groups of consecutive blocks.
If sectors consist of 512 bytes, the system could use 1-KB blocks (2 sectors) but
allocate disk storage in units of 2 blocks (4 sectors). This is not the same as hav-
ing a 2-KB disk blocks, since the cache would still use 1-KB blocks and disk
transfers would still be 1 KB but reading a file sequentially on an otherwise idle
system would reduce the number of seeks by a factor of two, considerably im-
proving performance. A variation on the same theme is to take account of rota-
tional positioning. When allocating blocks, the system attempts to place consecu-
tive blocks in a file in the same cylinder.

Another performance bottleneck in systems that use i-nodes or anything
equivalent to i-nodes is that reading even a short file requires two disk accesses:
one for the i-node and one for the block. The usual i-node placement is shown in
Fig. 5-21(a). Here all the i-nodes are near the beginning of the disk, so the aver-
age distance between an i-node and its blocks will be about half the number of
cylinders, requiring long seeks.

I-nodes are
located near
the start
of the disk

Disk is divided into
cylinder groups, each
with its own i-nodes

(a) (b)

Cylinder group

Figure 5-21. (a) I-nodes placed at the start of the disk. (b) Disk divided into
cylinder groups, each with its own blocks and i-nodes.

One easy performance improvement is to put the i-nodes in the middle of the
disk, rather than at the start, thus reducing the average seek between the i-node
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and the first block by a factor of two. Another idea, shown in Fig. 5-21(b), is to
divide the disk into cylinder groups, each with its own i-nodes, blocks, and free
list (McKusick et al., 1984). When creating a new file, any i-node can be chosen,
but an attempt is made to find a block in the same cylinder group as the i-node. If
none is available, then a block in a nearby cylinder group is used.

5.3.7 Log-Structured File Systems

Changes in technology are putting pressure on current file systems. In partic-
ular, CPUs keep getting faster, disks are becoming much bigger and cheaper (but
not much faster), and memories are growing exponentially in size. The one
parameter that is not improving by leaps and bounds is disk seek time. The com-
bination of these factors means that a performance bottleneck is arising in many
file systems. Research done at Berkeley attempted to alleviate this problem by
designing a completely new kind of file system, LFS (the Log-structured File
System). In this section we will briefly describe how LFS works. For a more
complete treatment, see Rosenblum and Ousterhout (1991).

The idea that drove the LFS design is that as CPUs get faster and RAM mem-
ories get larger, disk caches are also increasing rapidly. Consequently, it is now
possible to satisfy a very substantial fraction of all read requests directly from the
file system cache, with no disk access needed. It follows from this observation,
that in the future, most disk accesses will be writes, so the read-ahead mechanism
used in some file systems to fetch blocks before they are needed no longer gains
much performance.

To make matters worse, in most file systems, writes are done in very small
chunks. Small writes are highly inefficient, since a 50-µsec disk write is often
preceded by a 10-msec seek and a 4-msec rotational delay. With these parame-
ters, disk efficiency drops to a fraction of 1 percent.

To see where all the small writes come from, consider creating a new file on a
UNIX system. To write this file, the i-node for the directory, the directory block,
the i-node for the file, and the file itself must all be written. While these writes
can be delayed, doing so exposes the file system to serious consistency problems
if a crash occurs before the writes are done. For this reason, the i-node writes are
generally done immediately.

From this reasoning, the LFS designers decided to re-implement the UNIX file
system in such a way as to achieve the full bandwidth of the disk, even in the face
of a workload consisting in large part of small random writes. The basic idea is to
structure the entire disk as a log. Periodically, and also when there is a special
need for it, all the pending writes being buffered in memory are collected into a
single segment and written to the disk as a single contiguous segment at the end of
the log. A single segment may thus contain i-nodes, directory blocks, data blocks,
and other kinds of blocks all mixed together. At the start of each segment is a
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segment summary, telling what can be found in the segment. If the average seg-
ment can be made to be about 1 MB, almost the full bandwidth of the disk can be
utilized.

In this design, i-nodes still exist and have the same structure as in UNIX, but
they are now scattered all over the log, instead of being at a fixed position on the
disk. Nevertheless, when an i-node is located, locating the blocks is done in the
usual way. Of course, finding an i-node is now much harder, since its address
cannot simply be calculated from its i-node number, as in UNIX. To make it pos-
sible to find i-nodes, an i-node map, indexed by i-node number, is maintained.
Entry i in this map points to i-node i on the disk. The map is kept on disk, but it is
also cached, so the most heavily used parts will be in memory most of the time in
order to improve performance.

To summarize what we have said so far, all writes are initially buffered in
memory, and periodically all the buffered writes are written to the disk in a single
segment, at the end of the log. Opening a file now consists of using the map to
locate the i-node for the file. Once the i-node has been located, the addresses of
the blocks can be found from it. All of the blocks will themselves be in segments,
somewhere in the log.

If disks were infinitely large, the above description would be the entire story.
However, real disks are finite, so eventually the log will occupy the entire disk, at
which time no new segments can be written to the log. Fortunately, many existing
segments may have blocks that are no longer needed, for example, if a file is
overwritten, its i-node will now point to the new blocks, but the old ones will still
be occupying space in previously written segments.

To deal with this problem, LFS has a cleaner thread that spends its time scan-
ning the log circularly to compact it. It starts out by reading the summary of the
first segment in the log to see which i-nodes and files are there. It then checks the
current i-node map to see if the i-nodes are still current and file blocks are still in
use. If not, that information is discarded. The i-nodes and blocks that are still in
use go into memory to be written out in the next segment. The original segment is
then marked as free, so the log can use it for new data. In this manner, the cleaner
moves along the log, removing old segments from the back and putting any live
data into memory for rewriting in the next segment. Consequently, the disk is a
big circular buffer, with the writer thread adding new segments to the front and
the cleaner thread removing old ones from the back.

The bookkeeping here is nontrivial, since when a file block is written back to
a new segment, the i-node of the file (somewhere in the log) must be located,
updated, and put into memory to be written out in the next segment. The i-node
map must then be updated to point to the new copy. Nevertheless, it is possible to
do the administration, and the performance results show that all this complexity is
worthwhile. Measurements given in the papers cited above show that LFS outper-
forms UNIX by an order of magnitude on small writes, while having a perfor-
mance that is as good as or better than UNIX for reads and large writes.
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5.4 SECURITY

File systems generally contain information that is highly valuable to their
users. Protecting this information against unauthorized usage is therefore a major
concern of all file systems. In the following sections we will look at a variety of
issues concerned with security and protection. These issues apply equally well to
timesharing systems as to networks of personal computers connected to shared
servers via local area networks.

5.4.1 The Security Environment

People frequently use the terms ‘‘security’’ and ‘‘protection’’ interchangeably.
Nevertheless, it is frequently useful to make a distinction between the general
problems involved in making sure that files are not read or modified by unauthor-
ized persons, which include technical, administrative, legal, and political issues on
the one hand, and the specific operating system mechanisms used to provide secu-
rity, on the other. To avoid confusion, we will use the term security to refer to
the overall problem, and the term protection mechanisms to refer to the specific
operating system mechanisms used to safeguard information in the computer. The
boundary between them is not well defined, however. First we will look at secu-
rity to see what the nature of the problem is. Later on in the chapter we will look
at the protection mechanisms and models available to help achieve security.

Security has many facets. Three of the more important ones are the nature of
the threats, the nature of intruders, and accidental data loss. We will now look at
these in turn.

Threats

From a security perspective, computer systems have three general goals, with
corresponding threats to them, as listed in Fig. 5-22. The first one, data confi-
dentiality, is concerned with having secret data remain secret. More specifically,
if the owner of some data has decided that these data are only to be made avail-
able to certain people and no others, the system should guarantee that release of
the data to unauthorized people does not occur. As a bare minimum, the owner
should be able to specify who can see what, and the system should enforce these
specifications.

The second goal, data integrity, means that unauthorized users should not be
able to modify any data without the owner’s permission. Data modification in this
context includes not only changing the data, but also removing data and adding
false data as well. If a system cannot guarantee that data deposited in it remain
unchanged until the owner decides to change them, it is not worth much as an in-
formation system. Integrity is usually more important than confidentiality.
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Figure 5-22. Security goals and threats.

The third goal, system availability, means that nobody can disturb the system
to make it unusable. Such denial of service attacks are increasingly common.
For example, if a computer is an Internet server, sending a flood of requests to it
may cripple it by eating up all of its CPU time just examining and discarding in-
coming requests. If it takes, say, 100 µsec to process an incoming request to read
a Web page, then anyone who manages to send 10,000 requests/sec can wipe it
out. Reasonable models and technology for dealing with attacks on confidential-
ity and integrity are available; foiling denial-of-services attacks is much harder.

Another aspect of the security problem is privacy: protecting individuals from
misuse of information about them. This quickly gets into many legal and moral
issues. Should the government compile dossiers on everyone in order to catch X-
cheaters, where X is ‘‘welfare’’ or ‘‘tax,’’ depending on your politics? Should the
police be able to look up anything on anyone in order to stop organized crime?
Do employers and insurance companies have rights? What happens when these
rights conflict with individual rights? All of these issues are extremely important
but are beyond the scope of this book.

Intruders

Most people are pretty nice and obey the law, so why worry about security?
Because there are unfortunately a few people around who are not so nice and want
to cause trouble (possibly for their own commercial gain). In the security litera-
ture, people who are nosing around places where they have no business being are
called intruders or sometimes adversaries. Intruders act in two different ways.
Passive intruders just want to read files they are not authorized to read. Active
intruders are more malicious; they want to make unauthorized changes. When
designing a system to be secure against intruders, it is important to keep in mind
the kind of intruder one is trying to protect against. Some common categories are

1. Casual prying by nontechnical users. Many people have personal
computers on their desks that are connected to a shared file server,
and human nature being what it is, some of them will read other
people’s electronic mail and other files if no barriers are placed in
the way. Most UNIX systems, for example, have the default that all
newly created files are publicly readable.
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2. Snooping by insiders. Students, system programmers, operators, and
other technical personnel often consider it to be a personal challenge
to break the security of the local computer system. They often are
highly skilled and are willing to devote a substantial amount of time
to the effort.

3. Determined attempts to make money. Some bank programmers have
attempted to steal from the bank they were working for. Schemes
have varied from changing the software to truncate rather than round
interest, keeping the fraction of a cent for themselves, to siphoning
off accounts not used in years, to blackmail (‘‘Pay me or I will des-
troy all the bank’s records.’’).

4. Commercial or military espionage. Espionage refers to a serious and
well-funded attempt by a competitor or a foreign country to steal
programs, trade secrets, patentable ideas, technology, circuit designs,
business plans, and so forth. Often this attempt will involve wiretap-
ping or even erecting antennas directed at the computer to pick up its
electromagnetic radiation.

It should be clear that trying to keep a hostile foreign government from stealing
military secrets is quite a different matter from trying to keep students from insert-
ing a funny message-of-the-day into the system. The amount of effort needed for
security and protection clearly depends on who the enemy is thought to be.

Malicious Programs

Another category of security pest is malicious programs, sometimes called
malware. In a sense, a writer of malware is also an intruder, often with high
technical skills. The difference between a conventional intruder and malware is
that the former refers to a person who is personally trying to break into a system
to cause damage whereas the latter is a program written by such a person and then
released into the world. Some malware seems to have been written just to cause
damage, but some is targeted more specifically. It is becoming a huge problem
and a great deal has been written about it (Aycock and Barker, 2005; Cerf, 2005;
Ledin, 2005; McHugh and Deek, 2005; Treese, 2004; and Weiss, 2005)

The most well known kind of malware is the virus. Basically a virus is a
piece of code that can reproduce itself by attaching a copy of itself to another pro-
gram, analogous to how biological viruses reproduce. The virus can do other
things in addition to reproducing itself. For example, it can type a message, dis-
play an image on the screen, play music, or something else harmless. Unfortun-
ately, it can also modify, destroy, or steal files (by e-mailing them somewhere).

Another thing a virus can do is to render the computer unusable as long as the
virus is running. This is called a DOS (Denial Of Service) attack. The usual ap-
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proach is to consume resources wildly, such as the CPU, or filling up the disk
with junk. Viruses (and the other forms of malware to be described) can also be
used to cause a DDOS (Distributed Denial Of Service) attack. In this case the
virus does not do anything immediately upon infecting a computer. At a predeter-
mined date and time thousands of copies of the virus on computers all over the
world start requesting web pages or other network services from their target, for
instance the Web site of a political party or a corporation. This can overload the
targeted server and the networks that service it.

Malware is frequently created for profit. Much (if not most) unwanted junk
e-mail (‘‘spam’’) is relayed to its final destinations by networks of computers that
have been infected by viruses or other forms of malware. A computer infected by
such a rogue program becomes a slave, and reports its status to its master, some-
where on the Internet. The master then sends spam to be relayed to all the e-mail
addresses that can be gleaned from e-mail address books and other files on the
slave. Another kind of malware for profit scheme installs a key logger on an
infected computer. A key logger records everything typed at the keyboard. It is
not too difficult to filter this data and extract information such as username—
password combinations or credit card numbers and expiration dates. This infor-
mation is then sent back to a master where it can be used or sold for criminal use.

Related to the virus is the worm. Whereas a virus is spread by attaching itself
to another program, and is executed when its host program is executed, a worm is
a free-standing program. Worms spread by using networks to transmit copies of
themselves to other computers. Windows systems always have a Startup direc-
tory for each user; any program in that folder will be executed when the user logs
in. So all the worm has to do is arrange to put itself (or a shortcut to itself) in the
Startup directory on a remote system. Other ways exist, some much more diffi-
cult to detect, to cause a remote computer to execute a program file that has been
copied to its file system. The effects of a worm can be the same as those of a
virus. Indeed, the distinction between a virus and a worm is not always clear;
some malware uses both methods to spread.

Another category of malware is the Trojan horse. This is a program that
apparently performs a valid function—perhaps it is a game or a supposedly
‘‘improved’’ version of a useful utility. But when the Trojan horse is executed
some other function is performed, perhaps launching a worm or virus or perform-
ing one of the nasty things that malware does. The effects of a Trojan horse are
likely to be subtle and stealthy. Unlike worms and viruses, Trojan horses are vol-
untarily downloaded by users, and as soon as they are recognized for what they
are and the word gets out, a Trojan horse will be deleted from reputable download
sites.

Another kind of malware is the logic bomb. This device is a piece of code
written by one of a company’s (currently employed) programmers and secretly
inserted into the production operating system. As long as the programmer feeds it
its daily password, it does nothing. However, if the programmer is suddenly fired
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and physically removed from the premises without warning, the next day the logic
bomb does not get its password, so it goes off.

Going off might involve clearing the disk, erasing files at random, carefully
making hard-to-detect changes to key programs, or encrypting essential files. In
the latter case, the company has a tough choice about whether to call the police
(which may or may not result in a conviction many months later) or to give in to
this blackmail and to rehire the ex-programmer as a ‘‘consultant’’ for an astro-
nomical sum to fix the problem (and hope that he does not plant new logic bombs
while doing so).

Yet another form of malware is spyware. This is usually obtained by visiting
a Web site. In its simplest form spyware may be nothing more than a cookie.
Cookies are small files exchanged between web browsers and web servers. They
have a legitimate purpose. A cookie contains some information that will allow
the Web site to identify you. It is like the ticket you get when you leave a bicycle
to be repaired. When you return to the shop, your half of the ticket gets matched
with your bicycle (and its repair bill). Web connections are not persistent, so, for
example, if you indicate an interest in buying this book when visiting an online
bookstore, the bookstore asks your browser to accept a cookie. When you have
finished browsing and perhaps have selected other books to buy, you click on the
page where your order is finalized. At that point the web server asks your
browser to return the cookies it has stored from the current session, It can use the
information in these to generate the list of items you have said you want to buy.

Normally, cookies used for a purpose like this expire quickly. They are quite
useful, and e-commerce depends upon them. But some Web sites use cookies for
purposes that are not so benign. For instance, advertisements on Web sites are
often furnished by companies other than the information provider. Advertisers
pay Web site owners for this privilege. If a cookie is placed when you visit a
page with information about, say, bicycle equipment, and you then go to another
Web site that sells clothing, the same advertising company may provide ads on
this page, and may collect cookies you obtained elsewhere. Thus you may sud-
denly find yourself viewing ads for special gloves or jackets especially made for
cyclists. Advertisers can collect a lot of information about your interests this way;
you may not want to share so much information about yourself.

What is worse, there are various ways a Web site may be able to download
executable program code to your computer. Most browsers accept plug-ins to
add additional function, such as displaying new kinds of files. Users often accept
offers for new plugins without knowing much about what the plugin does. Or a
user may willingly accept an offer to be provided with a new cursor for the desk-
top that looks like a dancing kitten. And a bug in a web browser may allow a re-
mote site to install an unwanted program, perhaps after luring the user to a page
that has been carefully constructed to take advantage of the vulnerability. Any
time a program is accepted from another source, voluntarily or not, there is a risk
it could contain code that does you harm.
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Accidental Data Loss

In addition to threats caused by malicious intruders, valuable data can be lost
by accident. Some of the common causes of accidental data loss are

1. Acts of God: fires, floods, earthquakes, wars, riots, or rats gnawing
tapes or floppy disks.

2. Hardware or software errors: CPU malfunctions, unreadable disks or
tapes, telecommunication errors, program bugs.

3. Human errors: incorrect data entry, wrong tape or disk mounted,
wrong program run, lost disk or tape, or some other mistake.

Most of these can be dealt with by maintaining adequate backups, preferably far
away from the original data. While protecting data against accidental loss may
seem mundane compared to protecting against clever intruders, in practice, prob-
ably more damage is caused by the former than the latter.

5.4.2 Generic Security Attacks

Finding security flaws is not easy. The usual way to test a system’s security
is to hire a group of experts, known as tiger teams or penetration teams, to see if
they can break in. Hebbard et al. (1980) tried the same thing with graduate stu-
dents. In the course of the years, these penetration teams have discovered a
number of areas in which systems are likely to be weak. Below we have listed
some of the more common attacks that are often successful. When designing a
system, be sure it can withstand attacks like these.

1. Request memory pages, disk space, or tapes and just read them.
Many systems do not erase them before allocating them, and they
may be full of interesting information written by the previous owner.

2. Try illegal system calls, or legal system calls with illegal parameters,
or even legal system calls with legal but unreasonable parameters.
Many systems can easily be confused.

3. Start logging in and then hit DEL, RUBOUT or BREAK halfway
through the login sequence. In some systems, the password checking
program will be killed and the login considered successful.

4. Try modifying complex operating system structures kept in user
space (if any). In some systems (especially on mainframes), to open
a file, the program builds a large data structure containing the file
name and many other parameters and passes it to the system. As the
file is read and written, the system sometimes updates the structure
itself. Changing these fields can wreak havoc with the security.



532 FILE SYSTEMS CHAP. 5

5. Spoof the user by writing a program that types ‘‘login:’’ on the
screen and go away. Many users will walk up to the terminal and
willingly tell it their login name and password, which the program
carefully records for its evil master.

6. Look for manuals that say ‘‘Do not do X.’’ Try as many variations of
X as possible.

7. Convince a system programmer to change the system to skip certain
vital security checks for any user with your login name. This attack
is known as a trapdoor.

8. All else failing, the penetrator might find the computer center
director’s secretary and offer a large bribe. The secretary probably
has easy access to all kinds of wonderful information, and is usually
poorly paid. Do not underestimate problems caused by personnel.

These and other attacks are discussed by Linde (1975). Many other sources of
information on security and testing security can be found, especially on the Web.
A recent Windows-oriented work is Johansson and Riley (2005).

5.4.3 Design Principles for Security

Saltzer and Schroeder (1975) have identified several general principles that
can be used as a guide to designing secure systems. A brief summary of their
ideas (based on experience with MULTICS) is given below.

First, the system design should be public. Assuming that the intruder will not
know how the system works serves only to delude the designers.

Second, the default should be no access. Errors in which legitimate access is
refused will be reported much faster than errors in which unauthorized access is
allowed.

Third, check for current authority. The system should not check for permis-
sion, determine that access is permitted, and then squirrel away this information
for subsequent use. Many systems check for permission when a file is opened,
and not afterward. This means that a user who opens a file, and keeps it open for
weeks, will continue to have access, even if the owner has long since changed the
file protection.

Fourth, give each process the least privilege possible. If an editor has only the
authority to access the file to be edited (specified when the editor is invoked), edi-
tors with Trojan horses will not be able to do much damage. This principle im-
plies a fine-grained protection scheme. We will discuss such schemes later in this
chapter.

Fifth, the protection mechanism should be simple, uniform, and built into the
lowest layers of the system. Trying to retrofit security to an existing insecure sys-
tem is nearly impossible. Security, like correctness, is not an add-on feature.
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Sixth, the scheme chosen must be psychologically acceptable. If users feel
that protecting their files is too much work, they just will not do it. Nevertheless,
they will complain loudly if something goes wrong. Replies of the form ‘‘It is
your own fault’’ will generally not be well received.

5.4.4 User Authentication

Many protection schemes are based on the assumption that the system knows
the identity of each user. The problem of identifying users when they log in is
called user authentication. Most authentication methods are based on identify-
ing something the user knows, something the user has, or something the user is.

Passwords

The most widely used form of authentication is to require the user to type a
password. Password protection is easy to understand and easy to implement. In
UNIX it works like this: The login program asks the user to type his name and
password. The password is immediately encrypted. The login program then reads
the password file, which is a series of ASCII lines, one per user, until it finds the
line containing the user’s login name. If the (encrypted) password contained in
this line matches the encrypted password just computed, the login is permitted,
otherwise it is refused.

Password authentication is easy to defeat. One frequently reads about groups
of high school, or even junior high school students who, with the aid of their
trusty home computers, have broken into some top secret system owned by a large
corporation or government agency. Virtually all the time the break-in consists of
guessing a user name and password combination.

Although more recent studies have been made (e.g., Klein, 1990) the classic
work on password security remains the one done by Morris and Thompson (1979)
on UNIX systems. They compiled a list of likely passwords: first and last names,
street names, city names, words from a moderate-sized dictionary (also words
spelled backward), license plate numbers, and short strings of random characters.

They then encrypted each of these using the known password encryption algo-
rithm and checked to see if any of the encrypted passwords matched entries in
their list. Over 86 percent of all passwords turned up in their list.

If all passwords consisted of 7 characters chosen at random from the 95 print-
able ASCII characters, the search space becomes 957, which is about 7 × 1013 .
At 1000 encryptions per second, it would take 2000 years to build the list to check
the password file against. Furthermore, the list would fill 20 million magnetic
tapes. Even requiring passwords to contain at least one lowercase character, one
uppercase character, and one special character, and be at least seven characters
long would be a major improvement over unrestricted user-chosen passwords.
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Even if it is considered politically impossible to require users to pick reason-
able passwords, Morris and Thompson have described a technique that renders
their own attack (encrypting a large number of passwords in advance) almost use-
less. Their idea is to associate an n-bit random number with each password. The
random number is changed whenever the password is changed. The random
number is stored in the password file in unencrypted form, so that everyone can
read it. Instead of just storing the encrypted password in the password file, the
password and the random number are first concatenated and then encrypted
together. This encrypted result is stored in the password file.

Now consider the implications for an intruder who wants to build up a list of
likely passwords, encrypt them, and save the results in a sorted file, f, so that any
encrypted password can be looked up easily. If an intruder suspects that Marilyn
might be a password, it is no longer sufficient just to encrypt Marilyn and put the
result in f. He has to encrypt 2n strings, such as Marilyn0000, Marilyn0001, Mari-
lyn0002, and so forth and enter all of them in f. This technique increases the size
of f by 2n. UNIX uses this method with n = 12. It is known as salting the pass-
word file. Some versions of UNIX make the password file itself unreadable but
provide a program to look up entries upon request, adding just enough delay to
greatly slow down any attacker.

Although this method offers protection against intruders who try to precom-
pute a large list of encrypted passwords, it does little to protect a user David
whose password is also David. One way to encourage people to pick better pass-
words is to have the computer offer advice. Some computers have a program that
generates random easy-to-pronounce nonsense words, such as fotally, garbungy,
or bipitty that can be used as passwords (preferably with some upper case and spe-
cial characters thrown in).

Other computers require users to change their passwords regularly, to limit
the damage done if a password leaks out. The most extreme form of this approach
is the one-time password. When one-time passwords are used, the user gets a
book containing a list of passwords. Each login uses the next password in the list.
If an intruder ever discovers a password, it will not do him any good, since next
time a different password must be used. It is suggested that the user try to avoid
losing the password book.

It goes almost without saying that while a password is being typed in, the
computer should not display the typed characters, to keep them from prying eyes
near the terminal. What is less obvious is that passwords should never be stored
in the computer in unencrypted form. Furthermore, not even the computer center
management should have unencrypted copies. Keeping unencrypted passwords
anywhere is looking for trouble.

A variation on the password idea is to have each new user provide a long list
of questions and answers that are then stored in the computer in encrypted form.
The questions should be chosen so that the user does not need to write them down.
In other words, they should be things no one forgets. Typical questions are:
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1. Who is Marjolein’s sister?

2. On what street was your elementary school?

3. What did Mrs. Woroboff teach?

At login, the computer asks one of them at random and checks the answer.
Another variation is challenge-response . When this is used, the user picks an

algorithm when signing up as a user, for example x 2 . When the user logs in, the
computer types an argument, say 7, in which case the user types 49. The algo-
rithm can be different in the morning and afternoon, on different days of the week,
from different terminals, and so on.

Physical Identification

A completely different approach to authorization is to check to see if the user
has some item, normally a plastic card with a magnetic stripe on it. The card is
inserted into the terminal, which then checks to see whose card it is. This method
can be combined with a password, so a user can only log in if he (1) has the card
and (2) knows the password. Automated cash-dispensing machines usually work
this way.

Yet another approach is to measure physical characteristics that are hard to
forge. For example, a fingerprint or a voiceprint reader in the terminal could ver-
ify the user’s identity. (It makes the search go faster if the user tells the computer
who he is, rather than making the computer compare the given fingerprint to the
entire data base.) Direct visual recognition is not yet feasible but may be one day.

Another technique is signature analysis. The user signs his name with a spe-
cial pen connected to the terminal, and the computer compares it to a known
specimen stored on line. Even better is not to compare the signature, but compare
the pen motions made while writing it. A good forger may be able to copy the
signature, but will not have a clue as to the exact order in which the strokes were
made.

Finger length analysis is surprisingly practical. When this is used, each termi-
nal has a device like the one of Fig. 5-23. The user inserts his hand into it, and the
length of each of his fingers is measured and checked against the data base.

We could go on and on with more examples, but two more will help make an
important point. Cats and other animals mark off their territory by urinating
around its perimeter. Apparently cats can identify each other this way. Suppose
that someone comes up with a tiny device capable of doing an instant urinalysis,
thereby providing a foolproof identification. Each terminal could be equipped
with one of these devices, along with a discreet sign reading: ‘‘For login, please
deposit sample here.’’ This might be an absolutely unbreakable system, but it
would probably have a fairly serious user acceptance problem.
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Spring

Pressure plate

Figure 5-23. A device for measuring finger length.

The same could be said of a system consisting of a thumbtack and a small
spectrograph. The user would be requested to jab his thumb against the
thumbtack, thus extracting a drop of blood for spectrographic analysis. The point
is that any authentication scheme must be psychologically acceptable to the user
community. Finger-length measurements probably will not cause any problem,
but even something as nonintrusive as storing fingerprints on line may be unac-
ceptable to many people.

Countermeasures

Computer installations that are really serious about security—and few are
until the day after an intruder has broken in and done major damage—often take
steps to make unauthorized entry much harder. For example, each user could be
allowed to log in only from a specific terminal, and only during certain days of the
week and hours of the day.

Dial-up telephone lines could be made to work as follows. Anyone can dial
up and log in, but after a successful login, the system immediately breaks the con-
nection and calls the user back at an agreed upon number. This measure means
than an intruder cannot just try breaking in from any phone line; only the user’s
(home) phone will do. In any event, with or without call back, the system should
take at least 10 seconds to check any password typed in on a dial-up line, and
should increase this time after several consecutive unsuccessful login attempts, in
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order to reduce the rate at which intruders can try. After three failed login at-
tempts, the line should be disconnected for 10 minutes and security personnel
notified.

All logins should be recorded. When a user logs in, the system should report
the time and terminal of the previous login, so he can detect possible break ins.

The next step up is laying baited traps to catch intruders. A simple scheme is
to have one special login name with an easy password (e.g., login name: guest,
password: guest). Whenever anyone logs in using this name, the system security
specialists are immediately notified. Other traps can be easy-to-find bugs in the
operating system and similar things, designed for the purpose of catching
intruders in the act. Stoll (1989) has written an entertaining account of the traps
he set to track down a spy who broke into a university computer in search of mili-
tary secrets.

5.5 PROTECTION MECHANISMS

In the previous sections we have looked at many potential problems, some of
them technical, some of them not. In the following sections we will concentrate
on some of the detailed technical ways that are used in operating systems to pro-
tect files and other things. All of these techniques make a clear distinction
between policy (whose data are to be protected from whom) and mechanism (how
the system enforces the policy). The separation of policy and mechanism is dis-
cussed by Sandhu (1993). Our emphasis will be on mechanisms, not policies.

In some systems, protection is enforced by a program called a reference
monitor. Every time an access to a potentially protected resource is attempted,
the system first asks the reference monitor to check its legality. The reference
monitor then looks at its policy tables and makes a decision. Below we will
describe the environment in which a reference monitor operates.

5.5.1 Protection Domains

A computer system contains many ‘‘objects’’ that need to be protected. These
objects can be hardware (e.g., CPUs, memory segments, disk drives, or printers),
or they can be software (e.g., processes, files, databases, or semaphores).

Each object has a unique name by which it is referenced, and a finite set of
operations that processes are allowed to carry out on it. The read and write opera-
tions are appropriate to a file; up and down make sense on a semaphore.

It is obvious that a way is needed to prohibit processes from accessing objects
that they are not authorized to access. Furthermore, this mechanism must also
make it possible to restrict processes to a subset of the legal operations when that
is needed. For example, process A may be entitled to read, but not write, file F.
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In order to discuss different protection mechanisms, it is useful to introduce
the concept of a domain. A domain is a set of (object, rights) pairs. Each pair
specifies an object and some subset of the operations that can be performed on it.
A right in this context means permission to perform one of the operations. Often
a domain corresponds to a single user, telling what the user can do and not do, but
a domain can also be more general than just one user.

Figure 5-24 shows three domains, showing the objects in each domain and the
rights [Read, Write, eXecute] available on each object. Note that Printer1 is in
two domains at the same time. Although not shown in this example, it is possible
for the same object to be in multiple domains, with different rights in each one.

Domain 1 Domain 2 Domain 3

File1[R]

File2[RW]

File3[R]
File4[RWX]
File5[RW]

Printer1[W]
File6[RWX]

Plotter2[W]

Figure 5-24. Three protection domains.

At every instant of time, each process runs in some protection domain. In
other words, there is some collection of objects it can access, and for each object
it has some set of rights. Processes can also switch from domain to domain during
execution. The rules for domain switching are highly system dependent.

To make the idea of a protection domain more concrete, let us look at UNIX.
In UNIX, the domain of a process is defined by its UID and GID. Given any
(UID, GID) combination, it is possible to make a complete list of all objects (files,
including I/O devices represented by special files, etc.) that can be accessed, and
whether they can be accessed for reading, writing, or executing. Two processes
with the same (UID, GID) combination will have access to exactly the same set of
objects. Processes with different (UID, GID) values will have access to a dif-
ferent set of files, although there may be considerable overlap in most cases.

Furthermore, each process in UNIX has two halves: the user part and the ker-
nel part. When the process does a system call, it switches from the user part to
the kernel part. The kernel part has access to a different set of objects from the
user part. For example, the kernel can access all the pages in physical memory,
the entire disk, and all the other protected resources. Thus, a system call causes a
domain switch.

When a process does an exec on a file with the SETUID or SETGID bit on, it
acquires a new effective UID or GID. With a different (UID, GID) combination,
it has a different set of files and operations available. Running a program with
SETUID or SETGID is also a domain switch, since the rights available change.

An important question is how the system keeps track of which object belongs
to which domain. Conceptually, at least, one can envision a large matrix, with the
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rows being domains and the columns being objects. Each box lists the rights, if
any, that the domain contains for the object. The matrix for Fig. 5-24 is shown in
Fig. 5-25. Given this matrix and the current domain number, the system can tell if
an access to a given object in a particular way from a specified domain is allowed.

Printer1 Plotter2
Domain

1

2

3

File1 File2 File3 File4 File5 File6
Object

Read

Read

Read
Write

Read
Write

Read
Write

Execute

Read
Write

Execute
Write

Write Write

Figure 5-25. A protection matrix.

Domain switching itself can be easily included in the matrix model by realiz-
ing that a domain is itself an object, with the operation enter. Figure 5-26 shows
the matrix of Fig. 5-25 again, only now with the three domains as objects them-
selves. Processes in domain 1 can switch to domain 2, but once there, they cannot
go back. This situation models executing a SETUID program in UNIX. No other
domain switches are permitted in this example.

Object

Domain2 Domain3Domain1

Enter

Printer1 Plotter2
Domain

1

2

3

File1 File2 File3 File4 File5 File6

Read

Read

Read
Write

Read
Write

Read
Write

Execute

Read
Write

Execute
Write

Write Write

Figure 5-26. A protection matrix with domains as objects.

5.5.2 Access Control Lists

In practice, actually storing the matrix of Fig. 5-26 is rarely done because it is
large and sparse. Most domains have no access at all to most objects, so storing a
very large, mostly empty, matrix is a waste of disk space. Two methods that are
practical, however, are storing the matrix by rows or by columns, and then storing
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only the nonempty elements. The two approaches are surprisingly different. In
this section we will look at storing it by column; in the next one we will study
storing it by row.

The first technique consists of associating with each object an (ordered) list
containing all the domains that may access the object, and how. This list is called
the Access Control List or ACL and is illustrated in Fig. 5-27. Here we see three
processes, each belonging to a different domain. A, B, and C, and three files F1,
F2, and F3. For simplicity, we will assume that each domain corresponds to
exactly one user, in this case, users A, B, and C. Often in the security literature,
the users are called subjects or principals, to contrast them with the things
owned, the objects, such as files.

A B C

Process
Owner

F1 A: RW;   B: A

F2 A: R;   B:RW;   C:R

F3 B:RWX;   C: RX

File

User
space

Kernel
space

ACL

Figure 5-27. Use of access control lists to manage file access.

Each file has an ACL associated with it. File F1 has two entries in its ACL
(separated by a semicolon). The first entry says that any process owned by user A
may read and write the file. The second entry says that any process owned by
user B may read the file. All other accesses by these users and all accesses by
other users are forbidden. Note that the rights are granted by user, not by process.
As far as the protection system goes, any process owned by user A can read and
write file F1. It does not matter if there is one such process or 100 of them. It is
the owner, not the process ID, that matters.

File F2 has three entries in its ACL: A, B, and C can all read the file, and in
addition B can also write it. No other accesses are allowed. File F3 is apparently
an executable program, since B and C can both read and execute it. B can also
write it.

This example illustrates the most basic form of protection with ACLs. More
sophisticated systems are often used in practice. To start with, we have only
shown three rights so far: read, write, and execute. There may be additional rights
as well. Some of these may be generic, that is, apply to all objects, and some may
be object specific. Examples of generic rights are destroy object and copy object.
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These could hold for any object, no matter what type it is. Object-specific rights
might include append message for a mailbox object and sort alphabetically for a
directory object.

So far, our ACL entries have been for individual users. Many systems sup-
port the concept of a group of users. Groups have names and can be included in
ACLs. Two variations on the semantics of groups are possible. In some systems,
each process has a user ID (UID) and group ID (GID). In such systems, an ACL
entry contains entries of the form

UID1, GID1: rights1; UID2, GID2: rights2; ...

Under these conditions, when a request is made to access an object, a check is
made using the caller’s UID and GID. If they are present in the ACL, the rights
listed are available. If the (UID, GID) combination is not in the list, the access is
not permitted.

Using groups this way effectively introduces the concept of a role. Consider
an installation in which Tana is system administrator, and thus in the group
sysadm. However, suppose that the company also has some clubs for employees
and Tana is a member of the pigeon fanciers club. Club members belong to the
group pigfan and have access to the company’s computers for managing their
pigeon database. A portion of the ACL might be as shown in Fig. 5-28.

���������������������������������������������������
File Access control list���������������������������������������������������
Password tana, sysadm: RW���������������������������������������������������
Pigeon�data bill, pigfan: RW; tana, pigfan: RW; ...�����������������������������������������������������

�
�
�

��
�
�
�

��
�
�
�

Figure 5-28. Two access control lists.

If Tana tries to access one of these files, the result depends on which group
she is currently logged in as. When she logs in, the system may ask her to choose
which of her groups she is currently using, or there might even be different login
names and/or passwords to keep them separate. The point of this scheme is to
prevent Tana from accessing the password file when she currently has her pigeon
fancier’s hat on. She can only do that when logged in as the system administrator.

In some cases, a user may have access to certain files independent of which
group she is currently logged in as. That case can be handled by introducing
wildcards, which mean everyone. For example, the entry

tana, *: RW

for the password file would give Tana access no matter which group she was
currently in as.

Yet another possibility is that if a user belongs to any of the groups that have
certain access rights, the access is permitted. In this case, a user belonging to
multiple groups does not have to specify which group to use at login time. All of
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them count all of the time. A disadvantage of this approach is that it provides less
encapsulation: Tana can edit the password file during a pigeon club meeting.

The use of groups and wildcards introduces the possibility of selectively
blocking a specific user from accessing a file. For example, the entry

virgil, *: (none); *, *: RW

gives the entire world except for Virgil read and write access to the file. This
works because the entries are scanned in order, and the first one that applies is
taken; subsequent entries are not even examined. A match is found for Virgil on
the first entry and the access rights, in this case, (none) are found and applied.
The search is terminated at that point. The fact that the rest of the world has ac-
cess is never even seen.

The other way of dealing with groups is not to have ACL entries consist of
(UID, GID) pairs, but to have each entry be a UID or a GID. For example, an
entry for the file pigeon�data could be

debbie: RW; phil: RW; pigfan: RW

meaning that Debbie and Phil, and all members of the pigfan group have read and
write access to the file.

It sometimes occurs that a user or a group has certain permissions with respect
to a file that the file owner later wishes to revoke. With access control lists, it is
relatively straightforward to revoke a previously granted access. All that has to be
done is edit the ACL to make the change. However, if the ACL is checked only
when a file is opened, most likely the change will only take effect on future calls
to open. Any file that is already open will continue to have the rights it had when
it was opened, even if the user is no longer authorized to access the file at all.

5.5.3 Capabilities

The other way of slicing up the matrix of Fig. 5-26 is by rows. When this
method is used, associated with each process is a list of objects that may be
accessed, along with an indication of which operations are permitted on each, in
other words, its domain. This list is called a capability list or C-list and the indi-
vidual items on it are called capabilities (Dennis and Van Horn, 1966; Fabry,
1974). A set of three processes and their capability lists is shown in Fig. 5-29.

Each capability grants the owner certain rights on a certain object. In Fig. 5-
29, the process owned by user A can read files F1 and F2, for example. Usually, a
capability consists of a file (or more generally, an object) identifier and a bitmap
for the various rights. In a UNIX-like system, the file identifier would probably be
the i-node number. Capability lists are themselves objects and may be pointed to
from other capability lists, thus facilitating sharing of subdomains.

It is fairly obvious that capability lists must be protected from user tampering.
Three methods of protecting them are known. The first way requires a tagged
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A B C

Process
Owner

F1 F1:R

F2:R

F1:R

F2:RW

F3:RWX

F2:R

F3:RXF2

F3

User
space

Kernel
space

C-list

Figure 5-29. When capabilities are used, each process has a capability list.

architecture , a hardware design in which each memory word has an extra (or tag)
bit that tells whether the word contains a capability or not. The tag bit is not used
by arithmetic, comparison, or similar ordinary instructions, and it can be modified
only by programs running in kernel mode (i.e., the operating system). Tagged-
architecture machines have been built and can be made to work well (Feustal,
1972). The IBM AS/400 is a popular example.

The second way is to keep the C-list inside the operating system. Capabilities
are then referred to by their position in the capability list. A process might say:
‘‘Read 1 KB from the file pointed to by capability 2.’’ This form of addressing is
similar to using file descriptors in UNIX. Hydra worked this way (Wulf et al., 1974).

The third way is to keep the C-list in user space, but manage the capabilities
cryptographically so that users cannot tamper with them. This approach is partic-
ularly suited to distributed systems and works as follows. When a client process
sends a message to a remote server, for example, a file server, to create an object
for it, the server creates the object and generates a long random number, the check
field, to go with it. A slot in the server’s file table is reserved for the object and
the check field is stored there along with the addresses of the disk blocks, etc. In
UNIX terms, the check field is stored on the server in the i-node. It is not sent
back to the user and never put on the network. The server then generates and
returns a capability to the user of the form shown in Fig. 5-30.

Server Object Rights f(Objects,Rights,Check)

Figure 5-30. A cryptographically-protected capability.

The capability returned to the user contains the server’s identifier, the object
number (the index into the server’s tables, essentially, the i-node number), and the
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rights, stored as a bitmap. For a newly created object, all the rights bits are turned
on. The last field consists of the concatenation of the object, rights, and check
field run through a cryptographically-secure one-way function, f, of the kind we
discussed earlier.

When the user wishes to access the object, it sends the capability to the server
as part of the request. The server then extracts the object number to index into its
tables to find the object. It then computes f(Object, Rights, Check) taking the
first two parameters from the capability itself and the third one from its own
tables. If the result agrees with the fourth field in the capability, the request is
honored; otherwise, it is rejected. If a user tries to access someone else’s object,
he will not be able to fabricate the fourth field correctly since he does not know
the check field, and the request will be rejected.

A user can ask the server to produce and return a weaker capability, for exam-
ple, for read-only access. First the server verifies that the capability is valid. If
so, if computes f (Object,New�rights,Check) and generates a new capability put-
ting this value in the fourth field. Note that the original Check value is used
because other outstanding capabilities depend on it.

This new capability is sent back to the requesting process. The user can now
give this to a friend by just sending it in a message. If the friend turns on rights
bits that should be off, the server will detect this when the capability is used since
the f value will not correspond to the false rights field. Since the friend does not
know the true check field, he cannot fabricate a capability that corresponds to the
false rights bits. This scheme was developed for the Amoeba system and used
extensively there (Tanenbaum et al., 1990).

In addition to the specific object-dependent rights, such as read and execute,
capabilities (both kernel and cryptographically-protected) usually have generic
rights which are applicable to all objects. Examples of generic rights are

1. Copy capability: create a new capability for the same object.

2. Copy object: create a duplicate object with a new capability.

3. Remove capability: delete an entry from the C-list; object unaffected.

4. Destroy object: permanently remove an object and a capability.

A last remark worth making about capability systems is that revoking access
to an object is quite difficult in the kernel-managed version. It is hard for the sys-
tem to find all the outstanding capabilities for any object to take them back, since
they may be stored in C-lists all over the disk. One approach is to have each
capability point to an indirect object, rather than to the object itself. By having
the indirect object point to the real object, the system can always break that con-
nection, thus invalidating the capabilities. (When a capability to the indirect
object is later presented to the system, the user will discover that the indirect
object is now pointing to a null object.)
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In the Amoeba scheme, revocation is easy. All that needs to be done is
change the check field stored with the object. In one blow, all existing capabili-
ties are invalidated. However, neither scheme allows selective revocation, that is,
taking back, say, John’s permission, but nobody else’s. This defect is generally
recognized to be a problem with all capability systems.

Another general problem is making sure the owner of a valid capability does
not give a copy to 1000 of his best friends. Having the kernel manage capabili-
ties, as in Hydra, solves this problem, but this solution does not work well in a dis-
tributed system such as Amoeba.

On the other hand, capabilities solve the problem of sandboxing mobile code
very elegantly. When a foreign program is started, it is given a capability list con-
taining only those capabilities that the machine owner wants to give it, such as the
ability to write on the screen and the ability to read and write files in one scratch
directory just created for it. If the mobile code is put into its own process with
only these limited capabilities, it will not be able to access any other system
resources and thus be effectively confined to a sandbox without the need to
modify its code or run it interpretively. Running code with as few access rights as
possible is known as the principle of least privilege and is a powerful guideline
for producing secure systems.

Briefly summarized, ACLs and capabilities have somewhat complementary
properties. Capabilities are very efficient because if a process says ‘‘Open the file
pointed to by capability 3,’’ no checking is needed. With ACLs, a (potentially
long) search of the ACL may be needed. If groups are not supported, then grant-
ing everyone read access to a file requires enumerating all users in the ACL.
Capabilities also allow a process to be encapsulated easily, whereas ACLs do not.
On the other hand, ACLs allow selective revocation of rights, which capabilities
do not. Finally, if an object is removed and the capabilities are not or the capabil-
ities are removed and an object is not, problems arise. ACLs do not suffer from
this problem.

5.5.4 Covert Channels

Even with access control lists and capabilities, security leaks can still occur.
In this section we discuss how information can still leak out even when it has been
rigorously proven that such leakage is mathematically impossible. These ideas
are due to Lampson (1973).

Lampson’s model was originally formulated in terms of a single timesharing
system, but the same ideas can be adapted to LANs and other multiuser environ-
ments. In the purest form, it involves three processes on some protected machine.
The first process is the client, which wants some work performed by the second
one, the server. The client and the server do not entirely trust each other. For
example, the server’s job is to help clients with filling out their tax forms. The
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clients are worried that the server will secretly record their financial data, for
example, maintaining a secret list of who earns how much, and then selling the
list. The server is worried that the clients will try to steal the valuable tax pro-
gram.

The third process is the collaborator, which is conspiring with the server to
indeed steal the client’s confidential data. The collaborator and server are typi-
cally owned by the same person. These three processes are shown in Fig. 5-31.
The object of this exercise is to design a system in which it is impossible for the
server process to leak to the collaborator process the information that it has legiti-
mately received from the client process. Lampson called this the confinement
problem.

(a) (b)

Client Server Collaborator

Kernel Kernel

Encapsulated server

Covert
channel

Figure 5-31. (a) The client, server, and collaborator processes. (b) The encap-
sulated server can still leak to the collaborator via covert channels.

From the system designer’s point of view, the goal is to encapsulate or con-
fine the server in such a way that it cannot pass information to the collaborator.
Using a protection matrix scheme we can easily guarantee that the server cannot
communicate with the collaborator by writing a file to which the collaborator has
read access. We can probably also ensure that the server cannot communicate
with the collaborator using the system’s normal interprocess communication
mechanism.

Unfortunately, more subtle communication channels may be available. For
example, the server can try to communicate a binary bit stream as follows: To
send a 1 bit, it computes as hard as it can for a fixed interval of time. To send a 0
bit, it goes to sleep for the same length of time.

The collaborator can try to detect the bit stream by carefully monitoring its
response time. In general, it will get better response when the server is sending a
0 than when the server is sending a 1. This communication channel is known as a
covert channel, and is illustrated in Fig. 5-31(b).

Of course, the covert channel is a noisy channel, containing a lot of extrane-
ous information, but information can be reliably sent over a noisy channel by
using an error-correcting code (e.g., a Hamming code, or even something more
sophisticated). The use of an error-correcting code reduces the already low band-
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width of the covert channel even more, but it still may be enough to leak substan-
tial information. It is fairly obvious that no protection model based on a matrix of
objects and domains is going to prevent this kind of leakage.

Modulating the CPU usage is not the only covert channel. The paging rate
can also be modulated (many page faults for a 1, no page faults for a 0). In fact,
almost any way of degrading system performance in a clocked way is a candidate.
If the system provides a way of locking files, then the server can lock some file to
indicate a 1, and unlock it to indicate a 0. On some systems, it may be possible
for a process to detect the status of a lock even on a file that it cannot access.
This covert channel is illustrated in Fig. 5-32, with the file locked or unlocked for
some fixed time interval known to both the server and collaborator. In this exam-
ple, the secret bit stream 11010100 is being transmitted.

1 1 0 1 0 1 0 0

Server

Server locks
file to send 1

Time

Collaborator

Server unlocks
file to send 0

Bit stream sent

Figure 5-32. A covert channel using file locking.

Locking and unlocking a prearranged file, S is not an especially noisy chan-
nel, but it does require fairly accurate timing unless the bit rate is very low. The
reliability and performance can be increased even more using an acknowledge-
ment protocol. This protocol uses two more files, F1 and F2, locked by the server
and collaborator, respectively to keep the two processes synchronized. After the
server locks or unlocks S, it flips the lock status of F1 to indicate that a bit has
been sent. As soon as the collaborator has read out the bit, it flips F2’s lock status
to tell the server it is ready for another bit and waits until F1 is flipped again to
indicate that another bit is present in S. Since timing is no longer involved, this
protocol is fully reliable, even in a busy system and can proceed as fast as the two
processes can get scheduled. To get higher bandwidth, why not use two files per
bit time, or make it a byte-wide channel with eight signaling files, S0 through S7.

Acquiring and releasing dedicated resources (tape drives, plotters, etc.) can
also be used for signaling. The server acquires the resource to send a 1 and
releases it to send a 0. In UNIX, the server could create a file to indicate a 1 and
remove it to indicate a 0; the collaborator could use the access system call to see
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if the file exists. This call works even though the collaborator has no permission
to use the file. Unfortunately, many other covert channels exist.

Lampson also mentioned a way of leaking information to the (human) owner
of the server process. Presumably the server process will be entitled to tell its
owner how much work it did on behalf of the client, so the client can be billed. If
the actual computing bill is, say, $100 and the client’s income is $53,000 dollars,
the server could report the bill as $100.53 to its owner.

Just finding all the covert channels, let alone blocking them, is extremely dif-
ficult. In practice, there is little that can be done. Introducing a process that
causes page faults at random, or otherwise spends its time degrading system per-
formance in order to reduce the bandwidth of the covert channels is not an attrac-
tive proposition.

5.6 OVERVIEW OF THE MINIX 3 FILE SYSTEM

Like any file system, the MINIX 3 file system must deal with all the issues we
have just studied. It must allocate and deallocate space for files, keep track of
disk blocks and free space, provide some way to protect files against unauthorized
usage, and so on. In the remainder of this chapter we will look closely at MINIX 3
to see how it accomplishes these goals.

In the first part of this chapter, we have repeatedly referred to UNIX rather
than to MINIX 3 for the sake of generality, although the external interfaces of the
two is virtually identical. Now we will concentrate on the internal design of
MINIX 3. For information about the UNIX internals, see Thompson (1978), Bach
(1987), Lions (1996), and Vahalia (1996).

The MINIX 3 file system is just a big C program that runs in user space (see
Fig. 2-29). To read and write files, user processes send messages to the file sys-
tem telling what they want done. The file system does the work and then sends
back a reply. The file system is, in fact, a network file server that happens to be
running on the same machine as the caller.

This design has some important implications. For one thing, the file system
can be modified, experimented with, and tested almost completely independently
of the rest of MINIX 3. For another, it is very easy to move the file system to any
computer that has a C compiler, compile it there, and use it as a free-standing
UNIX-like remote file server. The only changes that need to be made are in the
area of how messages are sent and received, which differs from system to system.

In the following sections, we will present an overview of many of the key
areas of the file system design. Specifically, we will look at messages, the file
system layout, the bitmaps, i-nodes, the block cache, directories and paths, file
descriptors, file locking, and special files (plus pipes). After studying these
topics, we will show a simple example of how the pieces fit together by tracing
what happens when a user process executes the read system call.
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���������������������������������������������������������������������������������������
Messages from users Input parameters Reply value���������������������������������������������������������������������������������������
access File name, access mode Status���������������������������������������������������������������������������������������
chdir Name of new working directory Status���������������������������������������������������������������������������������������
chmod File name, new mode Status���������������������������������������������������������������������������������������
chown File name, new owner, group Status���������������������������������������������������������������������������������������
chroot Name of new root directory Status���������������������������������������������������������������������������������������
close File descriptor of file to close Status���������������������������������������������������������������������������������������
creat Name of file to be created, mode File descriptor���������������������������������������������������������������������������������������
dup File descriptor (for dup2, two fds) New file descriptor���������������������������������������������������������������������������������������
fcntl File descriptor, function code, arg Depends on function���������������������������������������������������������������������������������������
fstat Name of file, buffer Status���������������������������������������������������������������������������������������
ioctl File descriptor, function code, arg Status���������������������������������������������������������������������������������������
link Name of file to link to, name of link Status���������������������������������������������������������������������������������������
lseek File descriptor, offset, whence New position���������������������������������������������������������������������������������������
mkdir File name, mode Status���������������������������������������������������������������������������������������
mknod Name of dir or special, mode, address Status���������������������������������������������������������������������������������������
mount Special file, where to mount, ro flag Status���������������������������������������������������������������������������������������
open Name of file to open, r/w flag File descriptor���������������������������������������������������������������������������������������
pipe Pointer to 2 file descriptors (modified) Status���������������������������������������������������������������������������������������
read File descriptor, buffer, how many bytes # Bytes read���������������������������������������������������������������������������������������
rename File name, file name Status���������������������������������������������������������������������������������������
rmdir File name Status���������������������������������������������������������������������������������������
stat File name, status buffer Status���������������������������������������������������������������������������������������
stime Pointer to current time Status���������������������������������������������������������������������������������������
sync (None) Always OK���������������������������������������������������������������������������������������
time Pointer to place where current time goes Status���������������������������������������������������������������������������������������
times Pointer to buffer for process and child times Status���������������������������������������������������������������������������������������
umask Complement of mode mask Always OK���������������������������������������������������������������������������������������
umount Name of special file to unmount Status���������������������������������������������������������������������������������������
unlink Name of file to unlink Status���������������������������������������������������������������������������������������
utime File name, file times Always OK���������������������������������������������������������������������������������������
write File descriptor, buffer, how many bytes # Bytes written���������������������������������������������������������������������������������������
Messages from PM Input parameters Reply value���������������������������������������������������������������������������������������
exec Pid Status���������������������������������������������������������������������������������������
exit Pid Status���������������������������������������������������������������������������������������
fork Parent pid, child pid Status���������������������������������������������������������������������������������������
setgid Pid, real and effective gid Status���������������������������������������������������������������������������������������
setsid Pid Status���������������������������������������������������������������������������������������
setuid Pid, real and effective uid Status���������������������������������������������������������������������������������������
Other messages Input parameters Reply value���������������������������������������������������������������������������������������
revive Process to revive (No reply)���������������������������������������������������������������������������������������
unpause Process to check (See text)����������������������������������������������������������������������������������������
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Figure 5-33. File system messages. File name parameters are always pointers
to the name. The code status as reply value means OK or ERROR.
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5.6.1 Messages

The file system accepts 39 types of messages requesting work. All but two
are for MINIX 3 system calls. The two exceptions are messages generated by oth-
er parts of MINIX 3. Of the system calls, 31 are accepted from user processes.
Six system call messages are for system calls which are handled first by the pro-
cess manager, which then calls the file system to do a part of the work. Two other
messages are also handled by the file system. The messages are shown in Fig. 5-33.

The structure of the file system is basically the same as that of the process
manager and all the I/O device drivers. It has a main loop that waits for a mes-
sage to arrive. When a message arrives, its type is extracted and used as an index
into a table containing pointers to the procedures within the file system that han-
dle all the types. Then the appropriate procedure is called, it does its work and
returns a status value. The file system then sends a reply back to the caller and
goes back to the top of the loop to wait for the next message.

5.6.2 File System Layout

A MINIX 3 file system is a logical, self-contained entity with i-nodes, direc-
tories, and data blocks. It can be stored on any block device, such as a floppy disk
or a hard disk partition. In all cases, the layout of the file system has the same
structure. Figure 5-34 shows this layout for a floppy disk or a small hard disk par-
tition with 64 i-nodes and a 1-KB block size. In this simple example, the zone bit-
map is just one 1-KB block, so it can keep track of no more than 8192 1-KB zones
(blocks), thus limiting the file system to 8 MB. Even for a floppy disk, only 64 i-
nodes puts a severe limit on the number of files, so rather than the four blocks
reserved for i-nodes in the figure, more would probably be used. Reserving eight
blocks for i-nodes would be more practical but our diagram would not look as
nice. For a modern hard disk, both the i-node and zone bitmaps will be much
larger than 1 block, of course. The relative size of the various components in
Fig. 5-34 may vary from file system to file system, depending on their sizes, how
many files are allowed maximum, and so on. But all the components are always
present and in the same order.

Each file system begins with a boot block. This contains executable code.
The size of a boot block is always 1024 bytes (two disk sectors), even though
MINIX 3 may (and by default does) use a larger block size elsewhere. When the
computer is turned on, the hardware reads the boot block from the boot device
into memory, jumps to it, and begins executing its code. The boot block code
begins the process of loading the operating system itself. Once the system has
been booted, the boot block is not used any more. Not every disk drive can be
used as a boot device, but to keep the structure uniform, every block device has a
block reserved for boot block code. At worst this strategy wastes one block.To
prevent the hardware from trying to boot an unbootable device, a magic number
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Boot
block

Super
block

I-nodes

I-nodes
bit map

Zone
bit map

One disk block

Data

Figure 5-34. Disk layout for a floppy disk or small hard disk partition, with 64
i-nodes and a 1-KB block size (i.e., two consecutive 512-byte sectors are treated
as a single block).

is placed at a known location in the boot block when and only when the execut-
able code is written to the device. When booting from a device, the hardware
(actually, the BIOS code) will refuse to attempt to load from a device lacking the
magic number. Doing this prevents inadvertently using garbage as a boot pro-
gram.

The superblock contains information describing the layout of the file system.
Like the boot block, the superblock is always 1024 bytes, regardless of the block
size used for the rest of the file system. It is illustrated in Fig. 5-35.

The main function of the superblock is to tell the file system how big the vari-
ous pieces of the file system are. Given the block size and the number of i-nodes,
it is easy to calculate the size of the i-node bitmap and the number of blocks of i-
nodes. For example, for a 1-KB block, each block of the bitmap has 1024 bytes
(8192 bits), and thus can keep track of the status of up to 8192 i-nodes. (Actually
the first block can handle only up to 8191 i-nodes, since there is no 0th i-node, but
it is given a bit in the bitmap, anyway). For 10,000 i-nodes, two bitmap blocks
are needed. Since i-nodes each occupy 64 bytes, a 1-KB block holds up to 16 i-
nodes. With 64 i-nodes, four disk blocks are needed to contain them all.

We will explain the difference between zones and blocks in detail later, but
for the time being it is sufficient to say that disk storage can be allocated in units
(zones) of 1, 2, 4, 8, or in general 2n blocks. The zone bitmap keeps track of free
storage in zones, not blocks. For all standard disks used by MINIX 3 the zone and
block sizes are the same (4 KB by default), so to a first approximation a zone is
the same as a block on these devices. Until we come to the details of storage allo-
cation later in the chapter, it is adequate to think ‘‘block’’ whenever you see
‘‘zone.’’

Note that the number of blocks per zone is not stored in the superblock, as it is
never needed. All that is needed is the base 2 logarithm of the zone to block ratio,
which is used as the shift count to convert zones to blocks and vice versa. For
example, with 8 blocks per zone, log28 = 3, so to find the zone containing block
128 we shift 128 right 3 bits to get zone 16.
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Number of i-nodes

(unused)
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Figure 5-35. The MINIX 3 superblock.

The zone bitmap includes only the data zones (i.e., the blocks used for the bit-
maps and i-nodes are not in the map), with the first data zone designated zone 1 in
the bitmap. As with the i-node bitmap, bit 0 in the map is unused, so the first
block in the zone bitmap can map 8191 zones and subsequent blocks can map
8192 zones each. If you examine the bitmaps on a newly formatted disk, you will
find that both the i-node and zone bitmaps have 2 bits set to 1. One is for the
nonexistent 0th i-node or zone; the other is for the i-node and zone used by the
root directory on the device, which is placed there when the file system is created.

The information in the superblock is redundant because sometimes it is
needed in one form and sometimes in another. With 1 KB devoted to the super-
block, it makes sense to compute this information in all the forms it is needed,
rather than having to recompute it frequently during execution. The zone number
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of the first data zone on the disk, for example, can be calculated from the block
size, zone size, number of i-nodes, and number of zones, but it is faster just to
keep it in the superblock. The rest of the superblock is wasted anyhow, so using
up another word of it costs nothing.

When MINIX 3 is booted, the superblock for the root device is read into a
table in memory. Similarly, as other file systems are mounted, their superblocks
are also brought into memory. The superblock table holds a number of fields not
present on the disk. These include flags that allow a device to be specified as
read-only or as following a byte-order convention opposite to the standard, and
fields to speed access by indicating points in the bitmaps below which all bits are
marked used. In addition, there is a field describing the device from which the
superblock came.

Before a disk can be used as a MINIX 3 file system, it must be given the struc-
ture of Fig. 5-34. The utility program mkfs has been provided to build file sys-
tems. This program can be called either by a command like

mkfs /dev/fd1 1440

to build an empty 1440 block file system on the floppy disk in drive 1, or it can be
given a prototype file listing directories and files to include in the new file system.
This command also puts a magic number in the superblock to identify the file sys-
tem as a valid MINIX file system. The MINIX file system has evolved, and some
aspects of the file system (for instance, the size of i-nodes) were different previ-
ously. The magic number identifies the version of mkfs that created the file sys-
tem, so differences can be accommodated. Attempts to mount a file system not in
MINIX 3 format, such as an MS-DOS diskette, will be rejected by the mount system
call, which checks the superblock for a valid magic number and other things.

5.6.3 Bitmaps

MINIX 3 keeps tracks of which i-nodes and zones are free by using two bit-
maps. When a file is removed, it is then a simple matter to calculate which block
of the bitmap contains the bit for the i-node being freed and to find it using the
normal cache mechanism. Once the block is found, the bit corresponding to the
freed i-node is set to 0. Zones are released from the zone bitmap in the same way.

Logically, when a file is to be created, the file system must search through the
bit-map blocks one at a time for the first free i-node. This i-node is then allocated
for the new file. In fact, the in-memory copy of the superblock has a field which
points to the first free i-node, so no search is necessary until after a node is used,
when the pointer must be updated to point to the new next free i-node, which will
often turn out to be the next one, or a close one. Similarly, when an i-node is
freed, a check is made to see if the free i-node comes before the currently-
pointed-to one, and the pointer is updated if necessary. If every i-node slot on the
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disk is full, the search routine returns a 0, which is why i-node 0 is not used (i.e.,
so it can be used to indicate the search failed). (When mkfs creates a new file sys-
tem, it zeroes i-node 0 and sets the lowest bit in the bitmap to 1, so the file system
will never attempt to allocate it.) Everything that has been said here about the i-
node bitmaps also applies to the zone bitmap; logically it is searched for the first
free zone when space is needed, but a pointer to the first free zone is maintained
to eliminate most of the need for sequential searches through the bitmap.

With this background, we can now explain the difference between zones and
blocks. The idea behind zones is to help ensure that disk blocks that belong to the
same file are located on the same cylinder, to improve performance when the file
is read sequentially. The approach chosen is to make it possible to allocate sev-
eral blocks at a time. If, for example, the block size is 1 KB and the zone size is 4
KB, the zone bitmap keeps track of zones, not blocks. A 20-MB disk has 5K
zones of 4 KB, hence 5K bits in its zone map.

Most of the file system works with blocks. Disk transfers are always a block
at a time, and the buffer cache also works with individual blocks. Only a few
parts of the system that keep track of physical disk addresses (e.g., the zone bit-
map and the i-nodes) know about zones.

Some design decisions had to be made in developing the MINIX 3 file system.
In 1985, when MINIX was conceived, disk capacities were small, and it was
expected that many users would have only floppy disks. A decision was made to
restrict disk addresses to 16 bits in the V1 file system, primarily to be able to store
many of them in the indirect blocks. With a 16-bit zone number and a 1-KB zone,
only 64-KB zones can be addressed, limiting disks to 64 MB. This was an enor-
mous amount of storage in those days, and it was thought that as disks got larger,
it would be easy to switch to 2-KB or 4-KB zones, without changing the block
size. The 16-bit zone numbers also made it easy to keep the i-node size to 32
bytes.

As MINIX developed, and larger disks became much more common, it was
obvious that changes were desirable. Many files are smaller than 1 KB, so
increasing the block size would mean wasting disk bandwidth, reading and writ-
ing mostly empty blocks and wasting precious main memory storing them in the
buffer cache. The zone size could have been increased, but a larger zone size
means more wasted disk space, and it was still desirable to retain efficient opera-
tion on small disks. Another reasonable alternative would have been to have dif-
ferent zone sizes on large and small devices.

In the end it was decided to increase the size of disk pointers to 32 bits. This
made it possible for the MINIX V2 file system to deal with device sizes up to 4
terabytes with 1-KB blocks and zones and 16 TB with 4-KB blocks and zones (the
default value now). However, other factors restrict this size (e.g., with 32-bit
pointers, raw devices are limited to 4 GB). Increasing the size of disk pointers
required an increase in the size of i-nodes. This is not necessarily a bad thing—it
means the MINIX V2 (and now, V3) i-node is compatible with standard UNIX i-



SEC. 5.6 OVERVIEW OF THE MINIX 3 FILE SYSTEM 555

nodes, with room for three time values, more indirect and double indirect zones,
and room for later expansion with triple indirect zones.

Zones also introduce an unexpected problem, best illustrated by a simple
example, again with 4-KB zones and 1-KB blocks. Suppose that a file is of length
1-KB, meaning that one zone has been allocated for it. The three blocks between
offsets 1024 and 4095 contain garbage (residue from the previous owner), but no
structural harm is done to the file system because the file size is clearly marked in
the i-node as 1 KB In fact, the blocks containing garbage will not be read into the
block cache, since reads are done by blocks, not by zones. Reads beyond the end
of a file always return a count of 0 and no data.

Now someone seeks to 32,768 and writes 1 byte. The file size is now set to
32,769. Subsequent seeks to byte 1024 followed by attempts to read the data will
now be able to read the previous contents of the block, a major security breach.

The solution is to check for this situation when a write is done beyond the end
of a file, and explicitly zero all the not-yet-allocated blocks in the zone that was
previously the last one. Although this situation rarely occurs, the code has to deal
with it, making the system slightly more complex.

5.6.4 I-Nodes

The layout of the MINIX 3 i-node is given in Fig. 5-36. It is almost the same
as a standard UNIX i-node. The disk zone pointers are 32-bit pointers, and there
are only 9 pointers, 7 direct and 2 indirect. The MINIX 3 i-nodes occupy 64 bytes,
the same as standard UNIX i-nodes, and there is space available for a 10th (triple
indirect) pointer, although its use is not supported by the standard version of the
FS. The MINIX 3 i-node access, modification time and i-node change times are
standard, as in UNIX. The last of these is updated for almost every file operation
except a read of the file.

When a file is opened, its i-node is located and brought into the inode table in
memory, where it remains until the file is closed. The inode table has a few addi-
tional fields not present on the disk, such as the i-node’s device and number, so
the file system knows where to rewrite the i-node if it is modified while in
memory. It also has a counter per i-node. If the same file is opened more than
once, only one copy of the i-node is kept in memory, but the counter is incre-
mented each time the file is opened and decremented each time the file is closed.
Only when the counter finally reaches zero is the i-node removed from the table.
If it has been modified since being loaded into memory, it is also rewritten to the
disk.

The main function of a file’s i-node is to tell where the data blocks are. The
first seven zone numbers are given right in the i-node itself. For the standard dis-
tribution, with zones and blocks both 1 KB, files up to 7 KB do not need indirect
blocks. Beyond 7 KB, indirect zones are needed, using the scheme of Fig. 5-10,
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Figure 5-36. The MINIX i-node.

except that only the single and double indirect blocks are used. With 1-KB blocks
and zones and 32-bit zone numbers, a single indirect block holds 256 entries,
representing a quarter megabyte of storage. The double indirect block points to
256 single indirect blocks, giving access to up to 64 megabytes. With 4-KB
blocks, the double indirect block leads to 1024 × 1024 blocks, which is over a mil-
lion 4-KB blocks, making the maximum file zie over 4 GB. In practice the use of
32-bit numbers as file offsets limits the maximum file size to 232 − 1 bytes. As a
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consequence of these numbers, when 4-KB disk blocks are used MINIX 3 has no
need for triple indirect blocks; the maximum file size is limited by the pointer
size, not the ability to keep track of enough blocks.

The i-node also holds the mode information, which tells what kind of a file it
is (regular, directory, block special, character special, or pipe), and gives the pro-
tection and SETUID and SETGID bits. The link field in the i-node records how
many directory entries point to the i-node, so the file system knows when to re-
lease the file’s storage. This field should not be confused with the counter
(present only in the inode table in memory, not on the disk) that tells how many
times the file is currently open, typically by different processes.

As a final note on i-nodes, we mention that the structure of Fig. 5-36 may be
modified for special purposes. An example used in MINIX 3 is the i-nodes for
block and character device special files. These do not need zone pointers,
because they don’t have to reference data areas on the disk. The major and minor
device numbers are stored in the Zone-0 space in Fig. 5-36. Another way an i-
node could be used, although not implemented in MINIX 3, is as an immediate file
with a small amount of data stored in the i-node itself.

5.6.5 The Block Cache

MINIX 3 uses a block cache to improve file system performance. The cache is
implemented as a fixed array of buffers, each consisting of a header containing
pointers, counters, and flags, and a body with room for one disk block. All the
buffers that are not in use are chained together in a double-linked list, from most
recently used (MRU) to least recently used (LRU) as illustrated in Fig. 5-37.

Rear (MRU)Hash table Front (LRU)

Figure 5-37. The linked lists used by the block cache.

In addition, to be able to quickly determine if a given block is in the cache or
not, a hash table is used. All the buffers containing a block that has hash code k
are linked together on a single-linked list pointed to by entry k in the hash table.
The hash function just extracts the low-order n bits from the block number, so
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blocks from different devices appear on the same hash chain. Every buffer is on
one of these chains. When the file system is initialized after MINIX 3 is booted,
all buffers are unused, of course, and all are in a single chain pointed to by the 0th
hash table entry. At that time all the other hash table entries contain a null
pointer, but once the system starts, buffers will be removed from the 0th chain and
other chains will be built.

When the file system needs to acquire a block, it calls a procedure, get�block,
which computes the hash code for that block and searches the appropriate list.
Get�block is called with a device number as well as a block number, and the
search compares both numbers with the corresponding fields in the buffer chain.
If a buffer containing the block is found, a counter in the buffer header is incre-
mented to show that the block is in use, and a pointer to it is returned. If a block
is not found on the hash list, the first buffer on the LRU list can be used; it is
guaranteed not to be still in use, and the block it contains may be evicted to free
up the buffer.

Once a block has been chosen for eviction from the block cache, another flag
in its header is checked to see if the block has been modified since being read in.
If so, it is rewritten to the disk. At this point the block needed is read in by send-
ing a message to the disk driver. The file system is suspended until the block
arrives, at which time it continues and a pointer to the block is returned to the
caller.

When the procedure that requested the block has completed its job, it calls
another procedure, put�block, to free the block. Normally, a block will be used
immediately and then released, but since it is possible that additional requests for
a block will be made before it has been released, put�block decrements the use
counter and puts the buffer back onto the LRU list only when the use counter has
gone back to zero. While the counter is nonzero, the block remains in limbo.

One of the parameters to put�block tells what class of block (e.g., i-nodes,
directory, data) is being freed. Depending on the class, two key decisions are
made:

1. Whether to put the block on the front or rear of the LRU list.

2. Whether to write the block (if modified) to disk immediately or not.

Almost all blocks go on the rear of the list in true LRU fashion. The exception is
blocks from the RAM disk; since they are already in memory there is little advan-
tage to keeping them in the block cache.

A modified block is not rewritten until either one of two events occurs:

1. It reaches the front of the LRU chain and is evicted.

2. A sync system call is executed.

Sync does not traverse the LRU chain but instead indexes through the array of
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buffers in the cache. Even if a buffer has not been released yet, if it has been
modified, sync will find it and ensure that the copy on disk is updated.

Policies like this invite tinkering. In an older version of MINIX a superblock
was modified when a file system was mounted, and was always rewritten immedi-
ately to reduce the chance of corrupting the file system in the event of a crash.
Superblocks are modified only if the size of a RAM disk must be adjusted at
startup time because the RAM disk was created bigger than the RAM image
device. However, the superblock is not read or written as a normal block, because
it is always 1024 bytes in size, like the boot block, regardless of the block size
used for blocks handled by the cache. Another abandoned experiment is that in
older versions of MINIX there was a ROBUST macro definable in the system con-
figuration file, include/minix/config.h , which, if defined, caused the file system to
mark i-node, directory, indirect, and bit-map blocks to be written immediately
upon release. This was intended to make the file system more robust; the price
paid was slower operation. It turned out this was not effective. A power failure
occurring when all blocks have not been yet been written is going to cause a
headache whether it is an i-node or a data block that is lost.

Note that the header flag indicating that a block has been modified is set by
the procedure within the file system that requested and used the block. The pro-
cedures get�block and put�block are concerned just with manipulating the linked
lists. They have no idea which file system procedure wants which block or why.

5.6.6 Directories and Paths

Another important subsystem within the file system manages directories and
path names. Many system calls, such as open, have a file name as a parameter.
What is really needed is the i-node for that file, so it is up to the file system to
look up the file in the directory tree and locate its i-node.

A MINIX directory is a file that in previous versions contained 16-byte entries,
2 bytes for an i-node number and 14 bytes for the file name. This design limited
disk partitions to 64-KB files and file names to 14 characters, the same as V7
UNIX. As disks have grown file names have also grown. In MINIX 3 the V3 file
system provides 64 bytes directory entries, with 4 bytes for the i-node number and
60 bytes for the file name. Having up to 4 billion files per disk partition is effec-
tively infinite and any programmer choosing a file name longer than 60 characters
should be sent back to programming school.

Note that paths such as

/usr/ast/course�material�for�this�year/operating�systems/examination-1.ps

are not limited to 60 characters—just the individual component names. The use
of fixed-length directory entries, in this case, 64 bytes, is an example of a trade-
off involving simplicity, speed, and storage. Other operating systems typically
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organize directories as a heap, with a fixed header for each file pointing to a name
on the heap at the end of the directory. The MINIX 3 scheme is very simple and
required practically no code changes from V2. It is also very fast for both looking
up names and storing new ones, since no heap management is ever required. The
price paid is wasted disk storage, because most files are much shorter than 60
characters.

It is our firm belief that optimizing to save disk storage (and some RAM
storage since directories are occasionally in memory) is the wrong choice. Code
simplicity and correctness should come first and speed should come second. With
modern disks usually exceeding 100 GB, saving a small amount of disk space at
the price of more complicated and slower code is generally not a good idea.
Unfortunately, many programmers grew up in an era of tiny disks and even tinier
RAMs, and were trained from day 1 to resolve all trade-offs between code com-
plexity, speed, and space in favor of minimizing space requirements. This impli-
cit assumption really has to be reexamined in light of current realities.

Now let us see how the path /usr/ast/mbox/ is looked up. The system first
looks up usr in the root directory, then it looks up ast in /usr/, and finally it looks
up mbox in /usr/ast/. The actual lookup proceeds one path component at a time,
as illustrated in Fig. 5-16.

The only complication is what happens when a mounted file system is en-
countered. The usual configuration for MINIX 3 and many other UNIX-like sys-
tems is to have a small root file system containing the files needed to start the sys-
tem and to do basic system maintenance, and to have the majority of the files,
including users’ directories, on a separate device mounted on /usr. This is a good
time to look at how mounting is done. When the user types the command

mount /dev/c0d1p2 /usr

on the terminal, the file system contained on hard disk 1, partition 2 is mounted on
top of /usr/ in the root file system. The file systems before and after mounting are
shown in Fig. 5-38.

The key to the whole mount business is a flag set in the memory copy of the
i-node of /usr after a successful mount. This flag indicates that the i-node is
mounted on. The mount call also loads the superblock for the newly mounted file
system into the super�block table and sets two pointers in it. Furthermore, it puts
the root i-node of the mounted file system in the inode table.

In Fig. 5-35 we see that superblocks in memory contain two fields related to
mounted file systems. The first of these, the i-node-for-root-of-mounted-file-
system, is set to point to the root i-node of the newly mounted file system. The
second, the i-node-mounted-upon, is set to point to the i-node mounted on, in this
case, the i-node for /usr. These two pointers serve to connect the mounted file
system to the root and represent the ‘‘glue’’ that holds the mounted file system to
the root [shown as the dots in Fig. 5-38(c)]. This glue is what makes mounted file
systems work.
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Figure 5-38. (a) Root file system. (b) An unmounted file system. (c) The
result of mounting the file system of (b) on /usr/.

When a path such as /usr/ast/f2 is being looked up, the file system will see a
flag in the i-node for /usr/ and realize that it must continue searching at the root i-
node of the file system mounted on /usr/. The question is: ‘‘How does it find this
root i-node?’’

The answer is straightforward. The system searches all the superblocks in
memory until it finds the one whose i-node mounted on field points to /usr/. This
must be the superblock for the file system mounted on /usr/. Once it has the
superblock, it is easy to follow the other pointer to find the root i-node for the
mounted file system. Now the file system can continue searching. In this exam-
ple, it looks for ast in the root directory of hard disk partition 2.

5.6.7 File Descriptors

Once a file has been opened, a file descriptor is returned to the user process
for use in subsequent read and write calls. In this section we will look at how file
descriptors are managed within the file system.

Like the kernel and the process manager, the file system maintains part of the
process table within its address space. Three of its fields are of particular interest.
The first two are pointers to the i-nodes for the root directory and the working
directory. Path searches, such as that of Fig. 5-16, always begin at one or the
other, depending on whether the path is absolute or relative. These pointers are
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changed by the chroot and chdir system calls to point to the new root or new
working directory, respectively.

The third interesting field in the process table is an array indexed by file de-
scripttor number. It is used to locate the proper file when a file descriptor is
presented. At first glance, it might seem sufficient to have the k-th entry in this
array just point to the i-node for the file belonging to file descriptor k. After all,
the i-node is fetched into memory when the file is opened and kept there until it is
closed, so it is sure to be available.

Unfortunately, this simple plan fails because files can be shared in subtle
ways in MINIX 3 (as well as in UNIX). The trouble arises because associated with
each file is a 32-bit number that indicates the next byte to be read or written. It is
this number, called the file position, that is changed by the lseek system call. The
problem can be stated easily: ‘‘Where should the file pointer be stored?’’

The first possibility is to put it in the i-node. Unfortunately, if two or more
processes have the same file open at the same time, they must all have their own
file pointers, since it would hardly do to have an lseek by one process affect the
next read of a different process. Conclusion: the file position cannot go in the i-
node.

What about putting it in the process table? Why not have a second array,
paralleling the file descriptor array, giving the current position of each file? This
idea does not work either, but the reasoning is more subtle. Basically, the trouble
comes from the semantics of the fork system call. When a process forks, both the
parent and the child are required to share a single pointer giving the current posi-
tion of each open file.

To better understand the problem, consider the case of a shell script whose
output has been redirected to a file. When the shell forks off the first program, its
file position for standard output is 0. This position is then inherited by the child,
which writes, say, 1 KB of output. When the child terminates, the shared file
position must now be 1024.

Now the shell reads some more of the shell script and forks off another child.
It is essential that the second child inherit a file position of 1024 from the shell, so
it will begin writing at the place where the first program left off. If the shell did
not share the file position with its children, the second program would overwrite
the output from the first one, instead of appending to it.

As a result, it is not possible to put the file position in the process table. It
really must be shared. The solution used in UNIX and MINIX 3 is to introduce a
new, shared table, filp, which contains all the file positions. Its use is illustrated
in Fig. 5-39. By having the file position truly shared, the semantics of fork can be
implemented correctly, and shell scripts work properly.

Although the only thing that the filp table really must contain is the shared file
position, it is convenient to put the i-node pointer there, too. In this way, all that
the file descriptor array in the process table contains is a pointer to a filp entry.
The filp entry also contains the file mode (permission bits), some flags indicating
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Figure 5-39. How file positions are shared between a parent and a child.

whether the file was opened in a special mode, and a count of the number of proc-
esses using it, so the file system can tell when the last process using the entry has
terminated, in order to reclaim the slot.

5.6.8 File Locking

Yet another aspect of file system management requires a special table. This is
file locking. MINIX 3 supports the POSIX interprocess communication mechanism
of advisory file locking. This permits any part, or multiple parts, of a file to be
marked as locked. The operating system does not enforce locking, but processes
are expected to be well behaved and to look for locks on a file before doing any-
thing that would conflict with another process.

The reasons for providing a separate table for locks are similar to the justifica-
tions for the filp table discussed in the previous section. A single process can
have more than one lock active, and different parts of a file may be locked by
more than one process (although, of course, the locks cannot overlap), so neither
the process table nor the filp table is a good place to record locks. Since a file
may have more than one lock placed upon it, the i-node is not a good place either.

MINIX 3 uses another table, the file�lock table, to record all locks. Each slot
in this table has space for a lock type, indicating if the file is locked for reading or
writing, the process ID holding the lock, a pointer to the i-node of the locked file,
and the offsets of the first and last bytes of the locked region.

5.6.9 Pipes and Special Files

Pipes and special files differ from ordinary files in an important way. When a
process tries to read or write a block of data from a disk file, it is almost certain
that the operation will complete within a few hundred milliseconds at most. In the
worst case, two or three disk accesses might be needed, not more. When reading
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from a pipe, the situation is different: if the pipe is empty, the reader will have to
wait until some other process puts data in the pipe, which might take hours. Simi-
larly, when reading from a terminal, a process will have to wait until somebody
types something.

As a consequence, the file system’s normal rule of handling a request until it
is finished does not work. It is necessary to suspend these requests and restart
them later. When a process tries to read or write from a pipe, the file system can
check the state of the pipe immediately to see if the operation can be completed.
If it can be, it is, but if it cannot be, the file system records the parameters of the
system call in the process table, so it can restart the process when the time comes.

Note that the file system need not take any action to have the caller
suspended. All it has to do is refrain from sending a reply, leaving the caller
blocked waiting for the reply. Thus, after suspending a process, the file system
goes back to its main loop to wait for the next system call. As soon as another
process modifies the pipe’s state so that the suspended process can complete, the
file system sets a flag so that next time through the main loop it extracts the
suspended process’ parameters from the process table and executes the call.

The situation with terminals and other character special files is slightly dif-
ferent. The i-node for each special file contains two numbers, the major device
and the minor device. The major device number indicates the device class (e.g.,
RAM disk, floppy disk, hard disk, terminal). It is used as an index into a file sys-
tem table that maps it onto the number of the corresponding I/O device driver. In
effect, the major device determines which I/O driver to call. The minor device
number is passed to the driver as a parameter. It specifies which device is to be
used, for example, terminal 2 or drive 1.

In some cases, most notably terminal devices, the minor device number en-
codes some information about a category of devices handled by a driver. For in-
stance, the primary MINIX 3 console, /dev/console, is device 4, 0 (major, minor).
Virtual consoles are handled by the same part of the driver software. These are
devices /dev/ttyc1 (4,1), /dev/ttyc2 (4,2), and so on. Serial line terminals need dif-
ferent low-level software, and these devices, /dev/tty00, and /dev/tty01 are
assigned device numbers 4, 16 and 4, 17. Similarly, network terminals use
pseudo-terminal drivers, and these also need different low-level software. In
MINIX 3 these devices, ttyp0, ttyp1, etc., are assigned device numbers such as 4,
128 and 4, 129. These pseudo devices each have an associated device, ptyp0,
ptyp1, etc. The major, minor device number pairs for these are 4,192 and 4,193,
etc. These numbers are chosen to make it easy for the device driver to call the
low-level functions required for each group of devices. It is not expected that
anyone is going to equip a MINIX 3 system with 192 or more terminals.

When a process reads from a special file, the file system extracts the major
and minor device numbers from the file’s i-node, and uses the major device
number as an index into a file system table to map it onto the process number of
the corresponding device driver. Once it has identified the driver, the file system
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sends it a message, including as parameters the minor device, the operation to be
performed, the caller’s process number and buffer address, and the number of
bytes to be transferred. The format is the same as in Fig. 3-15, except that POSI-
TION is not used.

If the driver is able to carry out the work immediately (e.g., a line of input has
already been typed on the terminal), it copies the data from its own internal
buffers to the user and sends the file system a reply message saying that the work
is done. The file system then sends a reply message to the user, and the call is fin-
ished. Note that the driver does not copy the data to the file system. Data from
block devices go through the block cache, but data from character special files do
not.

On the other hand, if the driver is not able to carry out the work, it records the
message parameters in its internal tables, and immediately sends a reply to the file
system saying that the call could not be completed. At this point, the file system
is in the same situation as having discovered that someone is trying to read from
an empty pipe. It records the fact that the process is suspended and waits for the
next message.

When the driver has acquired enough data to complete the call, it transfers
them to the buffer of the still-blocked user and then sends the file system a mes-
sage reporting what it has done. All the file system has to do is send a reply mes-
sage to the user to unblock it and report the number of bytes transferred.

5.6.10 An Example: The READ System Call

As we shall see shortly, most of the code of the file system is devoted to car-
rying out system calls. Therefore, it is appropriate that we conclude this overview
with a brief sketch of how the most important call, read, works.

When a user program executes the statement

n = read(fd, buffer, nbytes);

to read an ordinary file, the library procedure read is called with three parameters.
It builds a message containing these parameters, along with the code for read as
the message type, sends the message to the file system, and blocks waiting for the
reply. When the message arrives, the file system uses the message type as an
index into its tables to call the procedure that handles reading.

This procedure extracts the file descriptor from the message and uses it to
locate the filp entry and then the i-node for the file to be read (see Fig. 5-39). The
request is then broken up into pieces such that each piece fits within a block. For
example, if the current file position is 600 and 1024 bytes have been requested,
the request is split into two parts, for 600 to 1023, and for 1024 to 1623 (assuming
1-KB blocks).

For each of these pieces in turn, a check is made to see if the relevant block is
in the cache. If the block is not present, the file system picks the least recently
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used buffer not currently in use and claims it, sending a message to the disk
device driver to rewrite it if it is dirty. Then the disk driver is asked to fetch the
block to be read.

Once the block is in the cache, the file system sends a message to the system
task asking it to copy the data to the appropriate place in the user’s buffer (i.e.,
bytes 600 to 1023 to the start of the buffer, and bytes 1024 to 1623 to offset 424
within the buffer). After the copy has been done, the file system sends a reply
message to the user specifying how many bytes have been copied.

When the reply comes back to the user, the library function read extracts the
reply code and returns it as the function value to the caller.

One extra step is not really part of the read call itself. After the file system
completes a read and sends a reply, it initiates reading additional blocks, provided
that the read is from a block device and certain other conditions are met. Since
sequential file reads are common, it is reasonable to expect that the next blocks in
a file will be requested in the next read request, and this makes it likely that the
desired block will already be in the cache when it is needed. The number of
blocks requested depends upon the size of the block cache; as many as 32 addi-
tional blocks may be requested. The device driver does not necessarily return this
many blocks, and if at least one block is returned a request is considered success-
ful.

5.7 IMPLEMENTATION OF THE MINIX 3 FILE SYSTEM

The MINIX 3 file system is relatively large (more than 100 pages of C) but
quite straightforward. Requests to carry out system calls come in, are carried out,
and replies are sent. In the following sections we will go through it a file at a
time, pointing out the highlights. The code itself contains many comments to aid
the reader.

In looking at the code for other parts of MINIX 3 we have generally looked at
the main loop of a process first and then looked at the routines that handle the dif-
ferent message types. We will organize our approach to the file system differ-
ently. First we will go through the major subsystems (cache management, i-node
management, etc.). Then we will look at the main loop and the system calls that
operate upon files. Next we will look at systems call that operate upon direc-
tories, and then, we will discuss the remaining system calls that fall into neither
category. Finally we will see how device special files are handled.

5.7.1 Header Files and Global Data Structures

Like the kernel and process manager, various data structures and tables used
in the file system are defined in header files. Some of these data structures are
placed in system-wide header files in include/ and its subdirectories. For instance,
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include/sys/stat.h defines the format by which system calls can provide i-node
information to other programs and the structure of a directory entry is defined in
include/sys/dir.h. Both of these files are required by POSIX. The file system is
affected by a number of definitions contained in the global configuration file
include/minix/config.h , such as NR�BUFS and NR�BUF�HASH, which control
the size of the block cache.

File System Headers

The file system’s own header files are in the file system source directory
src/fs/. Many file names will be familiar from studying other parts of the MINIX 3
system. The FS master header file, fs.h (line 20900), is quite analogous to
src/kernel/kernel.h and src/pm/pm.h. It includes other header files needed by all
the C source files in the file system. As in the other parts of MINIX 3, the file sys-
tem master header includes the file system’s own const.h, type.h, proto.h, and
glo.h. We will look at these next.

Const.h (line 21000) defines some constants, such as table sizes and flags, that
are used throughout the file system. MINIX 3 already has a history. Earlier ver-
sions of MINIX had different file systems. Although MINIX 3 does not support the
old V1 and V2 file systems, some definitions have been retained, both for refer-
ence and in expectation that someone will add support for these later. Support for
older versions is useful not only for accessing files on older MINIX file systems, it
may also be useful for exchanging files.

Other operating systems may use older MINIX file systems—for instance,
Linux originally used and still supports MINIX file systems. (It is perhaps some-
what ironic that Linux still supports the original MINIX file system but MINIX 3
does not.) Some utilities are available for MS-DOS and Windows to access older
MINIX directories and files. The superblock of a file system contains a magic
number to allow the operating system to identify the file system’s type; the con-
stants SUPER�MAGIC, SUPER�V2, and SUPER�V3 define these numbers for
the three versions of the MINIX file system. There are also �REV-suffixed ver-
sions of these for V1 and V2, in which the bytes of the magic number are
reversed. These were used with ports of older MINIX versions to systems with a
different byte order (little-endian rather than big-endian) so a removable disk writ-
ten on a machine with a different byte order could be identified as such. As of the
release of MINIX 3.1.0 defining a SUPER�V3�REV magic number has not been
necessary, but it is likely this definition will be added in the future.

Type.h (line 21100) defines both the old V1 and new V2 i-node structures as
they are laid out on the disk. The i-node is one structure that did not change in
MINIX 3, so the V2 i-node is used with the V-3 file system. The V2 i-node is
twice as big as the old one, which was designed for compactness on systems with
no hard drive and 360-KB diskettes. The new version provides space for the three
time fields which UNIX systems provide. In the V1 i-node there was only one
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time field, but a stat or fstat would ‘‘fake it’’ and return a stat structure containing
all three fields. There is a minor difficulty in providing support for the two file
system versions. This is flagged by the comment on line 21116. Older MINIX 3
software expected the gid�t type to be an 8-bit quantity, so d2�gid must be
declared as type u16�t.

Proto.h (line 21200) provides function prototypes in forms acceptable to
either old K&R or newer ANSI Standard C compilers. It is a long file, but not of
great interest. However, there is one point to note: because there are so many dif-
ferent system calls handled by the file system, and because of the way the file sys-
tem is organized, the various do�XXX functions are scattered through a number of
files. Proto.h is organized by file and is a handy way to find the file to consult
when you want to see the code that handles a particular system call.

Finally, glo.h (line 21400) defines global variables. The message buffers for
the incoming and reply messages are also here. The now-familiar trick with the
EXTERN macro is used, so these variables can be accessed by all parts of the file
system. As in the other parts of MINIX 3, the storage space will be reserved when
table.c is compiled.

The file system’s part of the process table is contained in fproc.h (line 21500).
The fproc array is declared with the EXTERN macro. It holds the mode mask,
pointers to the i-nodes for the current root directory and working directory, the file
descriptor array, uid, gid, and terminal number for each process. The process id
and the process group id are also found here. The process id is duplicated in the
part of the process table located in the process manager.

Several fields are used to store the parameters of those system calls that may
be suspended part way through, such as reads from an empty pipe. The fields
fp�suspended and fp�revived actually require only single bits, but nearly all com-
pilers generate better code for characters than bit fields. There is also a field for
the FD�CLOEXEC bits called for by the POSIX standard. These are used to indi-
cate that a file should be closed when an exec call is made.

Now we come to files that define other tables maintained by the file system.
The first, buf.h (line 21600), defines the block cache. The structures here are all
declared with EXTERN. The array buf holds all the buffers, each of which con-
tains a data part, b, and a header full of pointers, flags, and counters. The data
part is declared as a union of five types (lines 21618 to 21632) because sometimes
it is convenient to refer to the block as a character array, sometimes as a directory,
etc.

The truly proper way to refer to the data part of buffer 3 as a character array is
buf[3].b.b� �data because buf[3].b refers to the union as a whole, from which the
b� �data field is selected. Although this syntax is correct, it is cumbersome, so
on line 21649 we define a macro b�data, which allows us to write buf[3].b�data
instead. Note that b� �data (the field of the union) contains two underscores,
whereas b�data (the macro) contains just one, to distinguish them. Macros for
other ways of accessing the block are defined on lines 21650 to 21655.
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The buffer hash table, buf�hash, is defined on line 21657. Each entry points
to a list of buffers. Originally all the lists are empty. Macros at the end of buf.h
define different block types. The WRITE�IMMED bit signals that a block must
be rewritten to the disk immediately if it is changed, and the ONE�SHOT bit is
used to indicate a block is unlikely to be needed soon. Neither of these is used
currently but they remain available for anyone who has a bright idea about
improving performance or reliability by modifying the way blocks in the cache
are queued.

Finally, in the last line HASH�MASK is defined, based upon the value of
NR�BUF�HASH configured in include/minix/config.h . HASH�MASK is ANDed
with a block number to determine which entry in buf�hash to use as the starting
point in a search for a block buffer.

File.h (line 21700) contains the intermediate table filp (declared as EXTERN),
used to hold the current file position and i-node pointer (see Fig. 5-39). It also
tells whether the file was opened for reading, writing, or both, and how many file
descriptors are currently pointing to the entry.

The file locking table, file�lock (declared as EXTERN), is in lock.h (line
21800). The size of the array is determined by NR�LOCKS, which is defined as 8
in const.h. This number should be increased if it is desired to implement a multi-
user data base on a MINIX 3 system.

In inode.h (line 21900) the i-node table inode is declared (using EXTERN). It
holds i-nodes that are currently in use. As we said earlier, when a file is opened
its i-node is read into memory and kept there until the file is closed. The inode
structure definition provides for information that is kept in memory, but is not
written to the disk i-node. Notice that there is only one version, and nothing is
version-specific here. When the i-node is read in from the disk, differences
between V1 and V2/V3 file systems are handled. The rest of the file system does
not need to know about the file system format on the disk, at least until the time
comes to write back modified information.

Most of the fields should be self-explanatory at this point. However, i�seek
deserves some comment. It was mentioned earlier that, as an optimization, when
the file system notices that a file is being read sequentially, it tries to read blocks
into the cache even before they are asked for. For randomly accessed files there
is no read ahead. When an lseek call is made, the field i�seek is set to inhibit
read ahead.

The file param.h (line 22000) is analogous to the file of the same name in the
process manager. It defines names for message fields containing parameters, so
the code can refer to, for example, m�in.buffer, instead of m�in.m1�p1, which
selects one of the fields of the message buffer m�in.

In super.h (line 22100), we have the declaration of the superblock table.
When the system is booted, the superblock for the root device is loaded here. As
file systems are mounted, their superblocks go here as well. As with other tables,
super�block is declared as EXTERN.
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File System Storage Allocation

The last file we will discuss in this section is not a header. However, just as
we did when discussing the process manager, it seems appropriate to discuss
table.c immediately after reviewing the header files, since they are all included
when table.c (line 22200) is compiled. Most of the data structures we have
mentioned—the block cache, the filp table, and so on—are defined with the
EXTERN macro, as are also the file system’s global variables and the file system’s
part of the process table. In the same way we have seen in other parts of the
MINIX 3 system, the storage is actually reserved when table.c is compiled. This
file also contains one major initialized array. Call�vector contains the pointer
array used in the main loop for determining which procedure handles which sys-
tem call number. We saw a similar table inside the process manager.

5.7.2 Table Management

Associated with each of the main tables—blocks, i-nodes, superblocks, and so
forth—is a file that contains procedures that manage the table. These procedures
are heavily used by the rest of the file system and form the principal interface
between tables and the file system. For this reason, it is appropriate to begin our
study of the file system code with them.

Block Management

The block cache is managed by the procedures in the file cache.c. This file
contains the nine procedures listed in Fig. 5-40. The first one, get�block (line
22426), is the standard way the file system gets data blocks. When a file system
procedure needs to read a user data block, a directory block, a superblock, or any
other kind of block, it calls get�block, specifying the device and block number.

When get�block is called, it first examines the block cache to see if the re-
quested block is there. If so, it returns a pointer to it. Otherwise, it has to read the
block in. The blocks in the cache are linked together on NR�BUF�HASH linked
lists. NR�BUF�HASH is a tunable parameter, along with NR�BUFS, the size of
the block cache. Both of these are set in include/minix/config.h . At the end of
this section we will say a few words about optimizing the size of the block cache
and the hash table. The HASH�MASK is NR�BUF�HASH − 1. With 256 hash
lists, the mask is 255, so all the blocks on each list have block numbers that end
with the same string of 8 bits, that is 00000000, 00000001, ..., or 11111111.

The first step is usually to search a hash chain for a block, although there is a
special case, when a hole in a sparse file is being read, where this search is
skipped. This is the reason for the test on line 22454. Otherwise, the next two
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���������������������������������������������������������������
Procedure Function���������������������������������������������������������������

get�block Fetch a block for reading or writing���������������������������������������������������������������
put�block Return a block previously requested with get�block���������������������������������������������������������������
alloc�zone Allocate a new zone (to make a file longer)���������������������������������������������������������������
free�zone Release a zone (when a file is removed)���������������������������������������������������������������
rw�block Transfer a block between disk and cache���������������������������������������������������������������
invalidate Purge all the cache blocks for some device���������������������������������������������������������������
flushall Flush all dirty blocks for one device���������������������������������������������������������������
rw�scattered Read or write scattered data from or to a device���������������������������������������������������������������
rm� lru Remove a block from its LRU chain����������������������������������������������������������������
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Figure 5-40. Procedures used for block management.

lines set bp to point to the start of the list on which the requested block would be,
if it were in the cache, applying HASH�MASK to the block number. The loop on
the next line searches this list to see if the block can be found. If it is found and is
not in use, it is removed from the LRU list. If it is already in use, it is not on the
LRU list anyway. The pointer to the found block is returned to the caller on line
22463.

If the block is not on the hash list, it is not in the cache, so the least recently
used block from the LRU list is taken. The buffer chosen is removed from its
hash chain, since it is about to acquire a new block number and hence belongs on
a different hash chain. If it is dirty, it is rewritten to the disk on line 22495. Do-
ing this with a call to flushall rewrites any other dirty blocks for the same device.
This call is is the way most blocks get written. Blocks that are currently in use are
never chosen for eviction, since they are not on the LRU chain. Blocks will
hardly ever be found to be in use, however; normally a block is released by
put�block immediately upon being used.

As soon as the buffer is available, all of the fields, including b�dev, are up-
dated with the new parameters (lines 22499 to 22504), and the block may be read
in from the disk. However, there are two occasions when it may not be necessary
to read the block from the disk. Get�block is called with a parameter
only�search. This may indicate that this is a prefetch. During a prefetch an
available buffer is found, writing the old contents to the disk if necessary, and a
new block number is assigned to the buffer, but the b�dev field is set to NO�DEV
to signal there are as yet no valid data in this block. We will see how this is used
when we discuss the rw�scattered function. Only�search can also be used to sig-
nal that the file system needs a block just to rewrite all of it. In this case it is
wasteful to first read the old version in. In either of these cases the parameters are
updated, but the actual disk read is omitted (lines 22507 to 22513). When the new
block has been read in, get�block returns to its caller with a pointer to it.
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Suppose that the file system needs a directory block temporarily, to look up a
file name. It calls get�block to acquire the directory block. When it has looked
up its file name, it calls put�block (line 22520) to return the block to the cache,
thus making the buffer available in case it is needed later for a different block.

Put�block takes care of putting the newly returned block on the LRU list, and
in some cases, rewriting it to the disk. At line 22544 a decision is made to put it
on the front or rear of the LRU list. Blocks on a RAM disk are always put on the
front of the queue. The block cache does not really do very much for a RAM
disk, since its data are already in memory and accessible without actual I/O. The
ONE�SHOT flag is tested to see if the block has been marked as one not likely to
be needed again soon, and such blocks are put on the front, where they will be
reused quickly. However, this is used rarely, if at all. Almost all blocks except
those from the RAM disk are put on the rear, in case they are needed again soon.

After the block has been repositioned on the LRU list, another check is made
to see if the block should be rewritten to disk immediately. Like the previous test,
the test for WRITE�IMMED is a vestige of an abandoned experiment; currently
no blocks are marked for immediate writing.

As a file grows, from time to time a new zone must be allocated to hold the
new data. The procedure alloc�zone (line 22580) takes care of allocating new
zones. It does this by finding a free zone in the zone bitmap. There is no need to
search through the bitmap if this is to be the first zone in a file; the s�zsearch
field in the superblock, which always points to the first available zone on the
device, is consulted. Otherwise an attempt is made to find a zone close to the last
existing zone of the current file, in order to keep the zones of a file together. This
is done by starting the search of the bitmap at this last zone (line 22603). The
mapping between the bit number in the bitmap and the zone number is handled on
line 22615, with bit 1 corresponding to the first data zone.

When a file is removed, its zones must be returned to the bitmap. Free�zone
(line 22621) is responsible for returning these zones. All it does is call free�bit,
passing the zone map and the bit number as parameters. Free�bit is also used to
return free i-nodes, but then with the i-node map as the first parameter, of course.

Managing the cache requires reading and writing blocks. To provide a simple
disk interface, the procedure rw�block (line 22641) has been provided. It reads or
writes one block. Analogously, rw�inode exists to read and write i-nodes.

The next procedure in the file is invalidate (line 22680). It is called when a
disk is unmounted, for example, to remove from the cache all the blocks belong-
ing to the file system just unmounted. If this were not done, then when the device
were reused (with a different floppy disk), the file system might find the old
blocks instead of the new ones.

We mentioned earlier that flushall (line 22694), called from get�block when-
ever a dirty block is removed from the LRU list, is the function responsible for
writing most data. It is also called by the sync system call to flush to disk all dirty
buffers belonging to a specific device. Sync is activated periodically by the
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update daemon, and calls flushall once for each mounted device. Flushall treats
the buffer cache as a linear array, so all dirty buffers are found, even ones that are
currently in use and are not in the LRU list. All buffers in the cache are scanned,
and those that belong to the device to be flushed and that need to be written are
added to an array of pointers, dirty. This array is declared as static to keep it off
the stack. It is then passed to rw�scattered.

In MINIX 3 scheduling of disk writing has been removed from the disk device
drivers and made the sole responsibility of rw�scattered (line 22711). This func-
tion receives a device identifier, a pointer to an array of pointers to buffers, the
size of the array, and a flag indicating whether to read or write. The first thing it
does is sort the array it receives on the block numbers, so the actual read or write
operation will be performed in an efficient order. It then constructs vectors of
contiguous blocks to send to the the device driver with a call to dev�io. The
driver does not have to do any additional scheduling. It is likely with a modern
disk that the drive electronics will further optimize the order of requests, but this
is not visible to MINIX 3. Rw�scattered is called with the WRITING flag only
from the flushall function described above. In this case the origin of these block
numbers is easy to understand. They are buffers which contain data from blocks
previously read but now modified. The only call to rw�scattered for a read
operation is from rahead in read.c. At this point, we just need to know that before
calling rw�scattered, get�block has been called repeatedly in prefetch mode, thus
reserving a group of buffers. These buffers contain block numbers, but no valid
device parameter. This is not a problem, since rw�scattered is called with a
device parameter as one of its arguments.

There is an important difference in the way a device driver may respond to a
read (as opposed to a write) request, from rw�scattered. A request to write a
number of blocks must be honored completely, but a request to read a number of
blocks may be handled differently by different drivers, depending upon what is
most efficient for the particular driver. Rahead often calls rw�scattered with a
request for a list of blocks that may not actually be needed, so the best response is
to get as many blocks as can be gotten easily, but not to go wildly seeking all over
a device that may have a substantial seek time. For instance, the floppy driver
may stop at a track boundary, and many other drivers will read only consecutive
blocks. When the read is complete, rw�scattered marks the blocks read by filling
in the device number field in their block buffers.

The last function in Fig. 5-40 is rm�lru (line 22809). This function is used to
remove a block from the LRU list. It is used only by get�block in this file, so it is
declared PRIVATE instead of PUBLIC to hide it from procedures outside the file.

Before we leave the block cache, let us say a few words about fine-tuning it.
NR�BUF�HASH must be a power of 2. If it is larger than NR�BUFS, the aver-
age length of a hash chain will be less than one. If there is enough memory for a
large number of buffers, there is space for a large number of hash chains, so the
usual choice is to make NR�BUF�HASH the next power of 2 greater than
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NR�BUFS. The listing in the text shows settings of 128 blocks and 128 hash lists.
The optimal size depends upon how the system is used, since that determines how
much must be buffered. The full source code used to compile the standard MINIX
3 binaries that are installed from the CD-ROM that accommpanies this text has
settings of 1280 buffers and 2048 hash chains. Empirically it was found that
increasing the number of buffers beyond this did not improve performance when
recompiling the MINIX 3 system, so apparently this is large enough to hold the
binaries for all compiler passes. For some other kind of work a smaller size might
be adequate or a larger size might improve performance.

The buffers for the standard MINIX 3 system on the CD-ROM occupy more
than 5 MB of RAM. An additional binary, designated image�small is provided
that was compiled with just 128 buffers in the block cache, and the buffers for this
system need only a little more than 0.5 MB. This one can be installed on a system
with only 8 MB of RAM. The standard version requires 16 MB of RAM. With
some tweaking, it could no doubt be shoehorned into a memory of 4 MB or
smaller.

I-Node Management

The block cache is not the only file system table that needs support pro-
cedures. The i-node table does, too. Many of the procedures are similar in func-
tion to the block management procedures. They are listed in Fig. 5-41.

��������������������������������������������������������������
Procedure Function��������������������������������������������������������������

get� inode Fetch an i-node into memory��������������������������������������������������������������
put� inode Return an i-node that is no longer needed��������������������������������������������������������������
alloc� inode Allocate a new i-node (for a new file)��������������������������������������������������������������
wipe� inode Clear some fields in an i-node��������������������������������������������������������������
free� inode Release an i-node (when a file is removed)��������������������������������������������������������������
update�times Update time fields in an i-node��������������������������������������������������������������
rw� inode Transfer an i-node between memory and disk��������������������������������������������������������������
old� icopy Convert i-node contents to write to V1 disk i-node��������������������������������������������������������������
new� icopy Convert data read from V1 file system disk i-node��������������������������������������������������������������
dup� inode Indicate that someone else is using an i-node����������������������������������������������������������������
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Figure 5-41. Procedures used for i-node management.

The procedure get�inode (line 22933) is analogous to get�block. When any
part of the file system needs an i-node, it calls get�inode to acquire it. Get�inode
first searches the inode table to see if the i-node is already present. If so, it incre-
ments the usage counter and returns a pointer to it. This search is contained on
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lines 22945 to 22955. If the i-node is not present in memory, the i-node is loaded
by calling rw� inode.

When the procedure that needed the i-node is finished with it, the i-node is
returned by calling the procedure put�inode (line 22976), which decrements the
usage count i�count. If the count is then zero, the file is no longer in use, and the
i-node can be removed from the table. If it is dirty, it is rewritten to disk.

If the i�link field is zero, no directory entry is pointing to the file, so all its
zones can be freed. Note that the usage count going to zero and the number of
links going to zero are different events, with different causes and different conse-
quences. If the i-node is for a pipe, all the zones must be released, even though
the number of links may not be zero. This happens when a process reading from a
pipe releases the pipe. There is no sense in having a pipe for one process.

When a new file is created, an i-node must be allocated by alloc�inode (line
23003). MINIX 3 allows mounting of devices in read-only mode, so the super-
block is checked to make sure the device is writable. Unlike zones, where an
attempt is made to keep the zones of a file close together, any i-node will do. In
order to save the time of searching the i-node bitmap, advantage is taken of the
field in the superblock where the first unused i-node is recorded.

After the i-node has been acquired, get� inode is called to fetch the i-node into
the table in memory. Then its fields are initialized, partly in-line (lines 23038 to
23044) and partly using the procedure wipe�inode (line 23060). This particular
division of labor has been chosen because wipe�inode is also needed elsewhere in
the file system to clear certain i-node fields (but not all of them).

When a file is removed, its i-node is freed by calling free�inode (line 23079).
All that happens here is that the corresponding bit in the i-node bitmap is set to 0
and the superblock’s record of the first unused i-node is updated.

The next function, update� times (line 23099), is called to get the time from
the system clock and change the time fields that require updating. Update� times
is also called by the stat and fstat system calls, so it is declared PUBLIC.

The procedure rw� inode (line 23125) is analogous to rw�block. Its job is to
fetch an i-node from the disk. It does its work by carrying out the following steps:

1. Calculate which block contains the required i-node.

2. Read in the block by calling get�block.

3. Extract the i-node and copy it to the inode table.

4. Return the block by calling put�block.

Rw� inode is a bit more complex than the basic outline given above, so some
additional functions are needed. First, because getting the current time requires a
kernel call, any need for a change to the time fields in the i-node is only marked
by setting bits in the i-node’s i�update field while the i-node is in memory. If this
field is nonzero when an i-node must be written, update� times is called.
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Second, the history of MINIX adds a complication: in the old V1 file system
the i-nodes on the disk have a different structure from V2. Two functions,
old�icopy (line 23168) and new�icopy (line 23214) are provided to take care of
the conversions. The first converts between i-node information in memory and
the format used by the V1 filesystem. The second does the same conversion for
V2 and V3 filesystem disks. Both of these functions are called only from within
this file, so they are declared PRIVATE. Each function handles conversions in
both directions (disk to memory or memory to disk).

Older versions of MINIX were ported to systems which used a different byte
order from Intel processors and MINIX 3 is also likely to be ported to such archi-
tectures in the future. Every implementation uses the native byte order on its disk;
the sp−>native field in the superblock identifies which order is used. Both
old�icopy and new�icopy call functions conv2 and conv4 to swap byte orders, if
necessary. Of course, much of what we have just described is not used by MINIX
3, since it does not support the V1 filesystem to the extent that V1 disks can be
used. And as of this writing nobody has ported MINIX 3 to a platform that uses a
different byte order. But these bits and pieces remain in place for the day when
someone decides to make MINIX 3 more versatile.

The procedure dup�inode (line 23257) just increments the usage count of the
i-node. It is called when an open file is opened again. On the second open, the i-
node need not be fetched from disk again.

Superblock Management

The file super.c contains procedures that manage the superblock and the bit-
maps. Six procedures are defined in this file, listed in Fig. 5-42.

�����������������������������������������������������������������������������
Procedure Function�����������������������������������������������������������������������������

alloc�bit Allocate a bit from the zone or i-node map�����������������������������������������������������������������������������
free�bit Free a bit in the zone or i-node map�����������������������������������������������������������������������������
get�super Search the superblock table for a device�����������������������������������������������������������������������������
get�block�size Find block size to use�����������������������������������������������������������������������������
mounted Report whether given i-node is on a mounted (or root) file system�����������������������������������������������������������������������������
read�super Read a superblock�������������������������������������������������������������������������������
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Figure 5-42. Procedures used to manage the superblock and bitmaps.

When an i-node or zone is needed, alloc�inode or alloc�zone is called, as we
have seen above. Both of these call alloc�bit (line 23324) to actually search the
relevant bitmap. The search involves three nested loops, as follows:
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1. The outer one loops on all the blocks of a bitmap.

2. The middle one loops on all the words of a block.

3. The inner one loops on all the bits of a word.

The middle loop works by seeing if the current word is equal to the one’s comple-
ment of zero, that is, a complete word full of 1s. If so, it has no free i-nodes or
zones, so the next word is tried. When a word with a different value is found, it
must have at least one 0 bit in it, so the inner loop is entered to find the free (i.e.,
0) bit. If all the blocks have been tried without success, there are no free i-nodes
or zones, so the code NO�BIT (0) is returned. Searches like this can consume a
lot of processor time, but the use of the superblock fields that point to the first
unused i-node and zone, passed to alloc�bit in origin, helps to keep these
searches short.

Freeing a bit is simpler than allocating one, because no search is required.
Free�bit (line 23400) calculates which bitmap block contains the bit to free and
sets the proper bit to 0 by calling get�block, zeroing the bit in memory and then
calling put�block.

The next procedure, get�super (line 23445), is used to search the superblock
table for a specific device. For example, when a file system is to be mounted, it is
necessary to check that it is not already mounted. This check can be performed
by asking get�super to find the file system’s device. If it does not find the device,
then the file system is not mounted.

In MINIX 3 the file system server is capable of handling file systems with dif-
ferent block sizes, although within a given disk partition only a single block size
can be used. The get�block�size function (line 23467) is meant to determine the
block size of a file system. It searches the superblock table for the given device
and returns the block size of the device if it is mounted. Otherwise the minimum
block size, MIN�BLOCK�SIZE is returned.

The next function, mounted (line 23489), is called only when a block device is
closed. Normally, all cached data for a device are discarded when it is closed.
But, if the device happens to be mounted, this is not desirable. Mounted is called
with a pointer to the i-node for a device. It just returns TRUE if the device is the
root device, or if it is a mounted device.

Finally, we have read�super (line 23509). This is partially analogous to
rw�block and rw�inode, but it is called only to read. The superblock is not read
into the block cache at all, a request is made directly to the device for 1024 bytes
starting at an offset of the same amount from the beginning of the device. Writing
a superblock is not necessary in the normal operation of the system. Read�super
checks the version of the file system from which it has just read and performs
conversions, if necessary, so the copy of the superblock in memory will have the
standard structure even when read from a disk with a different superblock struc-
ture or byte order.
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Even though it is not currently used in MINIX 3, the method of determining
whether a disk was written on a system with a different byte order is clever and
worth noting. The magic number of a superblock is written with the native byte
order of the system upon which the file system was created, and when a super-
block is read a test for reversed-byte-order superblocks is made.

File Descriptor Management

MINIX 3 contains special procedures to manage file descriptors and the filp
table (see Fig. 5-39). They are contained in the file filedes.c. When a file is
created or opened, a free file descriptor and a free filp slot are needed. The pro-
cedure get�fd (line 23716) is used to find them. They are not marked as in use,
however, because many checks must first be made before it is known for sure that
the creat or open will succeed.

Get�filp (line 23761) is used to see if a file descriptor is in range, and if so,
returns its filp pointer.

The last procedure in this file is find� filp (line 23774). It is needed to find out
when a process is writing on a broken pipe (i.e., a pipe not open for reading by
any other process). It locates potential readers by a brute force search of the filp
table. If it cannot find one, the pipe is broken and the write fails.

File Locking

The POSIX record locking functions are shown in Fig. 5-43. A part of a file
can be locked for reading and writing, or for writing only, by an fcntl call specify-
ing a F�SETLK or F�SETLKW request. Whether a lock exists over a part of a
file can be determined using the F�GETLK request.

����������������������������������������������������
Operation Meaning����������������������������������������������������

F�SETLK Lock region for both reading and writing����������������������������������������������������
F�SETLKW Lock region for writing����������������������������������������������������
F�GETLK Report if region is locked������������������������������������������������������
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Figure 5-43. The POSIX advisory record locking operations. These operations
are requested by using an FCNTL system call.

The file lock.c contains only two functions. Lock�op (line 23820) is called by
the fcntl system call with a code for one of the operations shown in Fig. 5-43. It
does some error checking to be sure the region specified is valid. When a lock is
being set, it must not conflict with an existing lock, and when a lock is being
cleared, an existing lock must not be split in two. When any lock is cleared, the
other function in this file, lock�revive (line 23964), is called. It wakes up all the
processes that are blocked waiting for locks.
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This strategy is a compromise; it would take extra code to figure out exactly
which processes were waiting for a particular lock to be released. Those
processes that are still waiting for a locked file will block again when they start.
This strategy is based on an assumption that locking will be used infrequently. If
a major multiuser data base were to be built upon a MINIX 3 system, it might be
desirable to reimplement this.

Lock�revive is also called when a locked file is closed, as might happen, for
instance, if a process is killed before it finishes using a locked file.

5.7.3 The Main Program

The main loop of the file system is contained in file main.c, (line 24040).
After a call to fs�init for initialization, the main loop is entered. Structurally, this
is very similar to the main loop of the process manager and the I/O device drivers.
The call to get�work waits for the next request message to arrive (unless a pro-
cess previously suspended on a pipe or terminal can now be handled). It also sets
a global variable, who, to the caller’s process table slot number and another global
variable, call�nr, to the number of the system call to be carried out.

Once back in the main loop the variable fp is pointed to the caller’s process
table slot, and the super�user flag tells whether the caller is the superuser or not.
Notification messages are high priority, and a SYS�SIG message is checked for
first, to see if the system is shutting down. The second highest priority is a
SYN�ALARM, which means that a timer set by the file system has expired. A
NOTIFY�MESSAGE means a device driver is ready for attention, and is
dispatched to dev�status. Then comes the main attraction—the call to the pro-
cedure that carries out the system call. The procedure to call is selected by using
call�nr as an index into the array of procedure pointers, call�vecs.

When control comes back to the main loop, if dont�reply has been set, the
reply is inhibited (e.g., a process has blocked trying to read from an empty pipe).
Otherwise a reply is sent by calling reply (line 24087). The final statement in the
main loop has been designed to detect that a file is being read sequentially and to
load the next block into the cache before it is actually requested, to improve per-
formance.

Two other functions in this file are intimately involved with the file system’s
main loop. Get�work (line 24099) checks to see if any previously blocked pro-
cedures have now been revived. If so, these have priority over new messages.
When there is no internal work to do the file system calls the kernel to get a mes-
sage, on line 24124. Skipping ahead a few lines, we find reply (line 24159) which
is called after a system call has been completed, successfully or otherwise. It
sends a reply back to the caller. The process may have been killed by a signal, so
the status code returned by the kernel is ignored. In this case there is nothing to
be done anyway.
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Initialization of the File System

The functions that remain to be discussed in main.c are used at system startup.
The major player is fs�init, which is called by the file system before it enters its
main loop during startup of the entire system. In the context of discussing process
scheduling in Chapter 2 we showed in Fig. 2-43 the initial queueing of processes
as the MINIX 3 system starts up. The file system is scheduled on a queue with
lower priority than the process manager, so we can be sure that at startup time the
process manager will get a chance to run before the file system. In Chapter 4 we
examined the initialization of the process manager. As the PM builds its part of
the process table, adding entries for itself and all other processes in the boot
image, it sends a message to the file system for each one so the FS can initialize
the corresponding entry in the FS part of the file system. Now we can see the
other half of this interaction.

When the file system starts it immediately enters a loop of its own in fs�init,
on lines 24189 to 24202. The first statement in the loop is a call to receive, to get
a message sent at line 18235 in the PM’s pm�init initialization function. Each
message contains a process number and a PID. The first is used as an index into
the file system’s process table and the second is saved in the fp�pid field of each
selected slot. Following this the real and effective uid and gid for the superuser
and a ~0 (all bits set) umask is set up for each selected slot. When a message with
the symbolic value NONE in the process number field is received the loop ter-
minates and a message is sent back to the process manager to tell it all is OK.

Next, the file system’s own initialization is completed. First important con-
stants are tested for valid values. Then several other functions are invoked to ini-
tialize the block cache and the device table, to load the RAM disk if necessary,
and to load the root device superblock. At this point the root device can be
accessed, and another loop is made through the FS part of the process table, so
each process loaded from the boot image will recognize the root directory and use
the root directory as its working directory (lines 24228 to 24235).

The first function called by fs�init after it finshes its interaction with the pro-
cess manager is buf�pool, which begins on line 24132. It builds the linked lists
used by the block cache. Figure 5-37 shows the normal state of the block cache,
in which all blocks are linked on both the LRU chain and a hash chain. It may be
helpful to see how the situation of Fig. 5-37 comes about. Immediately after the
cache is initialized by buf�pool, all the buffers will be on the LRU chain, and all
will be linked into the 0th hash chain, as in Fig. 5-44(a). When a buffer is
requested, and while it is in use, we have the situation of Fig. 5-44(b), in which
we see that a block has been removed from the LRU chain and is now on a dif-
ferent hash chain.

Normally, blocks are released and returned to the LRU chain immediately.
Figure 5-44(c) shows the situation after the block has been returned to the LRU
chain. Although it is no longer in use, it can be accessed again to provide the
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same data, if need be, and so it is retained on the hash chain. After the system has
been in operation for awhile, almost all of the blocks can be expected to have
been used and to be distributed among the different hash chains at random. Then
the LRU chain will look like Fig. 5-37.
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Figure 5-44. Block cache initialization. (a) Before any buffers have been used.
(b) After one block has been requested. (c) After the block has been released.

The next thing called after buf�pool is build�dmap, which we will describe
later, along with other functions dealing with device files. After that, load�ram is
called, which uses the next function we will examine, igetenv (line 2641). This
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function retrieves a numeric device identifier from the kernel, using the name of a
boot parameter as a key. If you have used the sysenv command to to look at the
boot parameters on a working MINIX 3 system, you have seen that sysenv reports
devices numerically, displaying strings like

rootdev=912

The file system uses numbers like this to identify devices. The number is simply
256 x major + minor, where major and minor are the major and minor device
numbers. In this example, the major, minor pair is 3, 144, which corresponds to
/dev/c0d1p0s0, a typical place to install MINIX 3 on a system with two disk drives.

Load�ram (line 24260) allocates space for a RAM disk, and loads the root
file system on it, if required by the boot parameters. It uses igetenv to get the
rootdev, ramimagedev, and ramsize parameters set in the boot environment (lines
24278 to 24280). If the boot parameters specify

rootdev = ram

the root file system is copied from the device named by ramimagedev to the RAM
disk block by block, starting with the boot block, with no interpretation of the
various file system data structures. If the ramsize boot parameter is smaller than
the size of ramimagedev, the RAM disk is made large enough to hold it. If ram-
size specifies a size larger than the boot device file system the requested size is
allocated and the RAM disk file system is adjusted to use the full size specified
(lines 24404 to 24420). This is the only time that the file system ever writes a
superblock, but, just as with reading a superblock, the block cache is not used and
the data is written directly to the device using dev�io.

Two items merit note at this point. The first is the code on lines 24291 to
24307 which deals with the case of booting from a CD-ROM. The cdprobe func-
tion, not discussed in this text, is used. Interested readers are referred to the code
in fs/cdprobe.c, which can be found on the CD-ROM or the Web site. Second,
regardless of the disk block size used by MINIX 3 for ordinary disk access, the
boot block is always a 1 KB block and the superblock is loaded from the second 1
KB of the disk device. Anything else would be complicated, since the block size
cannot be known until the superblock has been loaded.

Load�ram allocates space for an empty RAM disk if a nonzero ramsize is
specified without a request to use the RAM disk as the root file system. In this
case, since no file system structures are copied, the RAM device cannot be used
as a file system until it has been initialized by the mkfs command. Alternatively,
such a RAM disk can be used for a secondary cache if support for this is compiled
into the file system.

The last function in main.c is load�super (line 24426). It initializes the
superblock table and reads in the superblock of the root device.
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5.7.4 Operations on Individual Files

In this section we will look at the system calls that operate on individual files
one at a time (as opposed to, say, operations on directories). We will start with
how files are created, opened, and closed. After that we will examine in some
detail the mechanism by which files are read and written. Then that we will look
at pipes and how operations on them differ from those on files.

Creating, Opening, and Closing Files

The file open.c contains the code for six system calls: creat, open, mknod,
mkdir, close, and lseek. We will examine creat and open together, and then look
at each of the others.

In older versions of UNIX, the creat and open calls had distinct purposes.
Trying to open a file that did not exist was an error, and a new file had to be
created with creat, which could also be used to truncate an existing file to zero
length. The need for two distinct calls is no longer present in a POSIX system,
however. Under POSIX, the open call now allows creating a new file or truncat-
ing an old file, so the creat call now represents a subset of the possible uses of the
open call and is really only necessary for compatibility with older programs. The
procedures that handle creat and open are do�creat (line 24537) and do�open
(line 24550). (As in the process manager, the convention is used in the file sys-
tem that system call XXX is performed by procedure do�XXX.) Opening or creat-
ing a file involves three steps:

1. Finding the i-node (allocating and initializing if the file is new).

2. Finding or creating the directory entry.

3. Setting up and returning a file descriptor for the file.

Both the creat and the open calls do two things: they fetch the name of a file
and then they call common�open which takes care of tasks common to both calls.

Common�open (line 24573) starts by making sure that free file descriptor and
filp table slots are available. If the calling function specified creation of a new
file (by calling with the O�CREAT bit set), new�node is called on line 24594.
New�node returns a pointer to an existing i-node if the directory entry already ex-
ists; otherwise it will create both a new directory entry and i-node. If the i-node
cannot be created, new�node sets the global variable err�code. An error code
does not always mean an error. If new�node finds an existing file, the error code
returned will indicate that the file exists, but in this case that error is acceptable
(line 24597). If the O�CREAT bit is not set, a search is made for the i-node using
an alternative method, the eat�path function in path.c, which we will discuss
further on. At this point, the important thing to understand is that if an i-node is
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not found or successfully created, common�open will terminate with an error
before line 24606 is reached. Otherwise, execution continues here with assign-
ment of a file descriptor and claiming of a slot in the filp table, Following this, if a
new file has just been created, lines 24612 to 24680 are skipped.

If the file is not new, then the file system must test to see what kind of a file it
is, what its mode is, and so on, to determine whether it can be opened. The call to
forbidden on line 24614 first makes a general check of the rwx bits. If the file is a
regular file and common�open was called with the O�TRUNC bit set, it is trun-
cated to length zero and forbidden is called again (line 24620), this time to be sure
the file may be written. If the permissions allow, wipe� inode and rw�inode are
called to re-initialize the i-node and write it to the disk. Other file types (direc-
tories, special files, and named pipes) are subjected to appropriate tests. In the
case of a device, a call is made on line 24640 (using the dmap structure) to the
appropriate routine to open the device. In the case of a named pipe, a call is made
to pipe�open (line 24646), and various tests relevant to pipes are made.

The code of common�open, as well as many other file system procedures,
contains a large amount of code that checks for various errors and illegal combi-
nations. While not glamorous, this code is essential to having an error-free, robust
file system. If something is wrong, the file descriptor and filp slot previously allo-
cated are deallocated and the i-node is released (lines 24683 to 24689). In this
case the value returned by common�open will be a negative number, indicating an
error. If there are no problems the file descriptor, a positive value, is returned.

This is a good place to discuss in more detail the operation of new�node (line
24697), which does the allocation of the i-node and the entering of the path name
into the file system for creat and open calls. It is also used for the mknod and
mkdir calls, yet to be discussed. The statement on line 24711 parses the path
name (i.e., looks it up component by component) as far as the final directory; the
call to advance three lines later tries to see if the final component can be opened.

For example, on the call

fd = creat(′′/usr/ast/foobar′′, 0755);

last�dir tries to load the i-node for /usr/ast/ into the tables and return a pointer to
it. If the file does not exist, we will need this i-node shortly in order to add foobar
to the directory. All the other system calls that add or delete files also use
last�dir to first open the final directory in the path.

If new�node discovers that the file does not exist, it calls alloc�inode on line
24717 to allocate and load a new i-node, returning a pointer to it. If no free i-
nodes are left, new�node fails and returns NIL�INODE.

If an i-node can be allocated, the operation continues at line 24727, filling in
some of the fields, writing it back to the disk, and entering the file name in the
final directory (on line 24732). Again we see that the file system must constantly
check for errors, and upon encountering one, carefully release all the resources,
such as i-nodes and blocks that it is holding. If we were prepared to just let
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MINIX 3 panic when we ran out of, say, i-nodes, rather than undoing all the effects
of the current call and returning an error code to the caller, the file system would
be appreciably simpler.

As mentioned above, pipes require special treatment. If there is not at least
one reader/writer pair for a pipe, pipe�open (line 24758) suspends the caller.
Otherwise, it calls release, which looks through the process table for processes
that are blocked on the pipe. If it is successful, the processes are revived.

The mknod call is handled by do�mknod (line 24785). This procedure is
similar to do�creat, except that it just creates the i-node and makes a directory
entry for it. In fact, most of the work is done by the call to new�node on line
24797. If the i-node already exists, an error code will be returned. This is the
same error code that was an acceptable result from new�node when it was called
by common�open; in this case, however, the error code is passed back to the
caller, which presumably will act accordingly. The case-by-case analysis we saw
in common�open is not needed here.

The mkdir call is handled by the function do�mkdir (line 24805). As with the
other system calls we have discussed here, new�node plays an important part.
Directories, unlike files, always have links and are never completely empty be-
cause every directory must contain two entries from the time of its creation: the
‘‘.’’ and ‘‘..’’ entries that refer to the directory itself and to its parent directory.
The number of links a file may have is limited, it is LINK�MAX (defined in
include/limits.h as SHRT�MAX, 32767 for MINIX 3 on a standard 32-bit Intel sys-
tem). Since the reference to a parent directory in a child is a link to the parent, the
first thing do�mkdir does is to see if it is possible to make another link in the
parent directory (lines 24819 and 24820). Once this test has been passed,
new�node is called. If new�node succeeds, then the directory entries for ‘‘.’’ and
‘‘..’’ are made (lines 24841 and 24842). All of this is straightforward, but there
could be failures (for instance, if the disk is full), so to avoid making a mess of
things provision is made for undoing the initial stages of the process if it can not
be completed.

Closing a file is easier than opening one. The work is done by do�close (line
24865). Pipes and special files need some attention, but for regular files, almost
all that needs to be done is to decrement the filp counter and check to see if it is
zero, in which case the i-node is returned with put�inode. The final step is to
remove any locks and to revive any process that may have been suspended wait-
ing for a lock on the file to be released.

Note that returning an i-node means that its counter in the inode table is dec-
remented, so it can be removed from the table eventually. This operation has
nothing to do with freeing the i-node (i.e., setting a bit in the bitmap saying that it
is available). The i-node is only freed when the file has been removed from all
directories.

The final procedure in open.c is do� lseek (line 24939). When a seek is done,
this procedure is called to set the file position to a new value. On line 24968
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reading ahead is inhibited; an explicit attempt to seek to a position in a file is
incompatible with sequential access.

Reading a File

Once a file has been opened, it can be read or written. Many functions are
used during both reading and writing. These are found in the file read.c. We will
discuss these first and then proceed to the following file, write.c, to look at code
specifically used for writing. Reading and writing differ in a number of ways, but
they have enough similarities that all that is required of do�read (line 25030) is to
call the common procedure read�write with a flag set to READING. We will see
in the next section that do�write is equally simple.

Read�write begins on line 25038. Some special code on lines 25063 to 25066
is used by the process manager to have the file system load entire segments in
user space for it. Normal calls are processed starting on line 25068. Some vali-
dity checks follow (e.g., reading from a file opened only for writing) and some
variables are initialized. Reads from character special files do not go through the
block cache, so they are filtered out on line 25122.

The tests on lines 25132 to 25145 apply only to writes and have to do with
files that may get bigger than the device can hold, or writes that will create a hole
in the file by writing beyond the end-of-file. As we discussed in the MINIX 3
overview, the presence of multiple blocks per zone causes problems that must be
dealt with explicitly. Pipes are also special and are checked for.

The heart of the read mechanism, at least for ordinary files, is the loop starting
on line 25157. This loop breaks the request up into chunks, each of which fits in a
single disk block. A chunk begins at the current position and extends until one of
the following conditions is met:

1. All the bytes have been read.

2. A block boundary is encountered.

3. The end-of-file is hit.

These rules mean that a chunk never requires two disk blocks to satisfy it. Figure
5-45 shows three examples of how the chunk size is determined, for chunk sizes
of 6, 2, and 1 bytes, respectively. The actual calculation is done on lines 25159 to
25169.

The actual reading of the chunk is done by rw�chunk. When control returns,
various counters and pointers are incremented, and the next iteration begins.
When the loop terminates, the file position and other variables may be updated
(e.g., pipe pointers).

Finally, if read ahead is called for, the i-node to read from and the position to
read from are stored in global variables, so that after the reply message is sent to
the user, the file system can start getting the next block. In many cases the file
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�Figure 5-45. Three examples of how the first chunk size is determined for a
10-byte file. The block size is 8 bytes, and the number of bytes requested is 6.
The chunk is shown shaded.

system will block, waiting for the next disk block, during which time the user pro-
cess will be able to work on the data it just received. This arrangement overlaps
processing and I/O and can improve performance substantially.

The procedure rw�chunk (line 25251) is concerned with taking an i-node and
a file position, converting them into a physical disk block number, and requesting
the transfer of that block (or a portion of it) to the user space. The mapping of the
relative file position to the physical disk address is done by read�map, which
understands about i-nodes and indirect blocks. For an ordinary file, the variables
b and dev on line 25280 and line 25281 contain the physical block number and
device number, respectively. The call to get�block on line 25303 is where the
cache handler is asked to find the block, reading it in if need be. Calling rahead
on line 25295 then ensures that the block is read into the cache.

Once we have a pointer to the block, the sys�vircopy kernel call on line
25317 takes care of transferring the required portion of it to the user space. The
block is then released by put�block, so that it can be evicted from the cache later.
(After being acquired by get�block, it will not be in the LRU queue and it will not
be returned there while the counter in the block’s header shows that it is in use, so
it will be exempt from eviction; put�block decrements the counter and returns the
block to the LRU queue when the counter reaches zero.) The code on line 25327
indicates whether a write operation filled the block. However, the value passed to
put�block in n does not affect how the block is placed on the queue; all blocks are
now placed on the rear of the LRU chain.

Read�map (line 25337) converts a logical file position to the physical block
number by inspecting the i-node. For blocks close enough to the beginning of the
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file that they fall within one of the first seven zones (the ones right in the i-node),
a simple calculation is sufficient to determine which zone is needed, and then
which block. For blocks further into the file, one or more indirect blocks may
have to be read.

Rd�indir (line 25400) is called to read an indirect block. The comments for
this function are a bit out of date; code to support the 68000 processor has been
removed and the support for the MINIX V1 file system is not used and could also
be dropped. However, it is worth noting that if someone wanted to add support
for other file system versions or other platforms where data might have a different
format on the disk, problems of different data types and byte orders could be
relegated to this file. If messy conversions were necessary, doing them here
would let the rest of the file system see data in only one form.

Read�ahead (line 25432) converts the logical position to a physical block
number, calls get�block to make sure the block is in the cache (or bring it in), and
then returns the block immediately. It cannot do anything with the block, after all.
It just wants to improve the chance that the block is around if it is needed soon,

Note that read�ahead is called only from the main loop in main. It is not
called as part of the processing of the read system call. It is important to realize
that the call to read�ahead is performed after the reply is sent, so that the user
will be able to continue running even if the file system has to wait for a disk block
while reading ahead.

Read�ahead by itself is designed to ask for just one more block. It calls the
last function in read.c, rahead, to actually get the job done. Rahead (line 25451)
works according to the theory that if a little more is good, a lot more is better.
Since disks and other storage devices often take a relatively long time to locate
the first block requested but then can relatively quickly read in a number of adja-
cent blocks, it may be possible to get many more blocks read with little additional
effort. A prefetch request is made to get�block, which prepares the block cache
to receive a number of blocks at once. Then rw�scattered is called with a list of
blocks. We have previously discussed this; recall that when the device drivers are
actually called by rw�scattered, each one is free to answer only as much of the
request as it can efficiently handle. This all sounds fairly complicated, but the
complications make possible a significant speedup of applications which read
large amounts of data from the disk.

Figure 5-46 shows the relations between some of the major procedures in-
volved in reading a file–in particular, who calls whom.

Writing a File

The code for writing to files is in write.c. Writing a file is similar to reading
one, and do�write (line 25625) just calls read�write with the WRITING flag. A
major difference between reading and writing is that writing requires allocating
new disk blocks. Write�map (line 25635) is analogous to read�map, only instead
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Figure 5-46. Some of the procedures involved in reading a file.

of looking up physical block numbers in the i-node and its indirect blocks, it
enters new ones there (to be precise, it enters zone numbers, not block numbers).

The code of write�map is long and detailed because it must deal with several
cases. If the zone to be inserted is close to the beginning of the file, it is just
inserted into the i-node on (line 25658).

The worst case is when a file exceeds the size that can be handled by a
single-indirect block, so a double-indirect block is now required. Next, a single-
indirect block must be allocated and its address put into the double-indirect block.
As with reading, a separate procedure, wr�indir, is called. If the double-indirect
block is acquired correctly, but the disk is full so the single-indirect block cannot
be allocated, then the double one must be returned to avoid corrupting the bitmap.

Again, if we could just toss in the sponge and panic at this point, the code
would be much simpler. However, from the user’s point of view it is much nicer
that running out of disk space just returns an error from write, rather than crashing
the computer with a corrupted file system.
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Wr�indir (line 25726) calls the conversion routines, conv4 to do any neces-
sary data conversion and puts a new zone number into an indirect block. (Again,
there is leftover code here to handle the old V1 filesystem, but only the V2 code is
currently used.) Keep in mind that the name of this function, like the names of
many other functions that involve reading and writing, is not literally true. The
actual writing to the disk is handled by the functions that maintain the block
cache.

The next procedure in write.c is clear�zone (line 25747), which takes care of
the problem of erasing blocks that are suddenly in the middle of a file. This hap-
pens when a seek is done beyond the end of a file, followed by a write of some
data. Fortunately, this situation does not occur very often.

New�block (line 25787) is called by rw�chunk whenever a new block is
needed. Figure 5-47 shows six successive stages of the growth of a sequential
file. The block size is 1-KB and the zone size is 2-KB in this example.

(f)

Block number

24 Free zones: 12 20 31 36…

24 25

24 25 40

24 25 40 41

24 25 40 41 62

24 25 40 41 62

63

(e)

(d)

(c)

(b)

(a)

Figure 5-47. (a) – (f) The successive allocation of 1-KB blocks with a 2-KB
zone.

The first time new�block is called, it allocates zone 12 (blocks 24 and 25).
The next time it uses block 25, which has already been allocated but is not yet in
use. On the third call, zone 20 (blocks 40 and 41) is allocated, and so on.
Zero�block (line 25839) clears a block, erasing its previous contents. This
description is considerably longer than the actual code.

Pipes

Pipes are similar to ordinary files in many respects. In this section we will
focus on the differences. The code we will discuss is all in pipe.c.

First of all, pipes are created differently, by the pipe call, rather than the creat
call. The pipe call is handled by do�pipe (line 25933). All do�pipe really does is
allocate an i-node for the pipe and return two file descriptors for it. Pipes are
owned by the system, not by the user, and are located on the designated pipe de-
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vice (configured in include/minix/config.h), which could very well be a RAM
disk, since pipe data do not have to be preserved permanently.

Reading and writing a pipe is slightly different from reading and writing a
file, because a pipe has a finite capacity. An attempt to write to a pipe that is
already full will cause the writer to be suspended. Similarly, reading from an
empty pipe will suspend the reader. In effect, a pipe has two pointers, the current
position (used by readers) and the size (used by writers), to determine where data
come from or go to.

The various checks to see if an operation on a pipe is possible are carried out
by pipe�check (line 25986). In addition to the above tests, which may lead to the
caller being suspended, pipe�check calls release to see if a process previously
suspended due to no data or too much data can now be revived. These revivals
are done on line 26017 and line 26052, for sleeping writers and readers, respec-
tively. Writing on a broken pipe (no readers) is also detected here.

The act of suspending a process is done by suspend (line 26073). All it does
is save the parameters of the call in the process table and set the flag dont�reply
to TRUE, to inhibit the file system’s reply message.

The procedure release (line 26099) is called to check if a process that was
suspended on a pipe can now be allowed to continue. If it finds one, it calls revive
to set a flag so that the main loop will notice it later. This function is not a system
call, but is listed in Fig. 5-33(c) because it uses the message-passing mechanism.

The last procedure in pipe.c is do�unpause (line 26189). When the process
manager is trying to signal a process, it must find out if that process is hanging on
a pipe or special file (in which case it must be awakened with an EINTR error).
Since the process manager knows nothing about pipes or special files, it sends a
message to the file system to ask. That message is processed by do�unpause,
which revives the process, if it is blocked. Like revive, do�unpause has some
similarity to a system call, although it is not one.

The last two functions in pipe.c, select�request�pipe (line 26247) and
select�match�pipe (line 26278), support the select call, which is not discussed
here.

5.7.5 Directories and Paths

We have now finished looking at how files are read and written. Our next
task is to see how path names and directories are handled.

Converting a Path to an I-Node

Many system calls (e.g., open, unlink, and mount) have path names (i.e., file
names) as a parameter. Most of these calls must fetch the i-node for the named
file before they can start working on the call itself. How a path name is converted
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to an i-node is a subject we will now look at in detail. We already saw the general
outline in Fig. 5-16.

The parsing of path names is done in the file path.c. The first procedure,
eat�path (line 26327), accepts a pointer to a path name, parses it, arranges for its
i-node to be loaded into memory, and returns a pointer to the i-node. It does its
work by calling last�dir to get the i-node to the final directory and then calling
advance to get the final component of the path. If the search fails, for example,
because one of the directories along the path does not exist, or exists but is pro-
tected against being searched, NIL�INODE is returned instead of a pointer to the
i-node.

Path names may be absolute or relative and may have arbitrarily many com-
ponents, separated by slashes. These issues are dealt with by last�dir, which
begins by examining the first character of the path name to see if it is an absolute
path or a relative one (line 26371). For absolute paths, rip is set to point to the
root i-node; for relative ones, it is set to point to the i-node for the current working
directory.

At this point, last�dir has the path name and a pointer to the i-node of the
directory to look up the first component in. It enters a loop on line 26382 now,
parsing the path name, component by component. When it gets to the end, it
returns a pointer to the final directory.

Get�name (line 26413) is a utility procedure that extracts components from
strings. More interesting is advance (line 26454), which takes as parameters a
directory pointer and a string, and looks up the string in the directory. If it finds
the string, advance returns a pointer to its i-node. The details of transferring
across mounted file systems are handled here.

Although advance controls the string lookup, the actual comparison of the
string against the directory entries is done in search�dir (line 26535), which is the
only place in the file system where directory files are actually examined. It con-
tains two nested loops, one to loop over the blocks in a directory, and one to loop
over the entries in a block. Search�dir is also used to enter and delete names
from directories. Figure 5-48 shows the relationships between some of the major
procedures used in looking up path names.

Mounting File Systems

Two system calls that affect the file system as a whole are mount and umount.
They allow independent file systems on different minor devices to be ‘‘glued’’
together to form a single, seamless naming tree. Mounting, as we saw in Fig. 5-
38, is effectively achieved by reading in the root i-node and superblock of the file
system to be mounted and setting two pointers in its superblock. One of them
points to the i-node mounted on, and the other points to the root i-node of the
mounted file system. These pointers hook the file systems together.
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Figure 5-48. Some of the procedures used in looking up path names.

The setting of these pointers is done in the file mount.c by do�mount on lines
26819 and 26820. The two pages of code that precede setting the pointers are
almost entirely concerned with checking for all the errors that can occur while
mounting a file system, among them:

1. The special file given is not a block device.

2. The special file is a block device but is already mounted.

3. The file system to be mounted has a rotten magic number.

4. The file system to be mounted is invalid (e.g., no i-nodes).

5. The file to be mounted on does not exist or is a special file.

6. There is no room for the mounted file system’s bitmaps.

7. There is no room for the mounted file system’s superblock.

8. There is no room for the mounted file system’s root i-node.

Perhaps it seems inappropriate to keep harping on this point, but the reality of any
practical operating system is that a substantial fraction of the code is devoted to
doing minor chores that are not intellectually very exciting but are crucial to mak-
ing a system usable. If a user attempts to mount the wrong floppy disk by
accident, say, once a month, and this leads to a crash and a corrupted file system,
the user will perceive the system as being unreliable and blame the designer, not
himself.

The famous inventor Thomas Edison once made a remark that is relevant
here. He said that ‘‘genius’’ is 1 percent inspiration and 99 percent perspiration.
The difference between a good system and a mediocre one is not the brilliance of
the former’s scheduling algorithm, but its attention to getting all the details right.
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Unmounting a file system is easier than mounting one—there are fewer things
that can go wrong. Do�umount (line 26828) is called to start the job, which is
divided into two parts. Do�umount itself checks that the call was made by the
superuser, converts the name into a device number, and then calls unmount (line
26846), which completes the operation. The only real issue is making sure that no
process has any open files or working directories on the file system to be
removed. This check is straightforward: just scan the whole i-node table to see if
any i-nodes in memory belong to the file system to be removed (other than the
root i-node). If so, the umount call fails.

The last procedure in mount.c is name�to�dev (line 26893), which takes a
special file pathname, gets its i-node, and extracts its major and minor device
numbers. These are stored in the i-node itself, in the place where the first zone
would normally go. This slot is available because special files do not have zones.

Linking and Unlinking Files

The next file to consider is link.c, which deals with linking and unlinking
files. The procedure do�link (line 27034) is very much like do�mount in that
nearly all of the code is concerned with error checking. Some of the possible
errors that can occur in the call

link(file�name, link�name);

are listed below:

1. File�name does not exist or cannot be accessed.

2. File�name already has the maximum number of links.

3. File�name is a directory (only superuser can link to it).

4. Link�name already exists.

5. File�name and link�name are on different devices.

If no errors are present, a new directory entry is made with the string link�name
and the i-node number of file�name. In the code, name1 corresponds to
file�name and name2 corresponds to link�name. The actual entry is made by
search�dir, called from do�link on line 27086.

Files and directories are removed by unlinking them. The work of both the
unlink and rmdir system calls is done by do�unlink (line 27104). Again, a variety
of checks must be made; testing that a file exists and that a directory is not a
mount point are done by the common code in do�unlink, and then either
remove�dir or unlink�file is called, depending upon the system call being sup-
ported. We will discuss these shortly.

The other system call supported in link.c is rename. UNIX users are familiar
with the mv shell command which ultimately uses this call; its name reflects
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another aspect of the call. Not only can it change the name of a file within a
directory, it can also effectively move the file from one directory to another, and it
can do this atomically, which prevents certain race conditions. The work is done
by do�rename (line 27162). Many conditions must be tested before this com-
mand can be completed. Among these are:

1. The original file must exist (line 27177).

2. The old pathname must not be a directory above the new pathname
in the directory tree (lines 27195 to 27212).

3. Neither . nor .. is acceptable as an old or new name (lines 27217
and 27218).

4. Both parent directories must be on the same device (line 27221).

5. Both parent directories must be writable, searchable, and on a writ-
able device (lines 27224 and 27225).

6. Neither the old nor the new name may be a directory with a file sys-
tem mounted upon it.

Some other conditions must be checked if the new name already exists. Most
importantly it must be possible to remove an existing file with the new name.

In the code for do�rename there are a few examples of design decisions that
were taken to minimize the possibility of certain problems. Renaming a file to a
name that already exists could fail on a full disk, even though in the end no addi-
tional space is used, if the old file were not removed first, and this is what is done
at lines 27260 to 27266. The same logic is used at line 27280, removing the old
file name before creating a new name in the same directory, to avoid the possibil-
ity that the directory might need to acquire an additional block. However, if the
new file and the old file are to be in different directories, that concern is not
relevant, and at line 27285 a new file name is created (in a different directory)
before the old one is removed, because from a system integrity standpoint a crash
that left two filenames pointing to an i-node would be much less serious than a
crash that left an i-node not pointed to by any directory entry. The probability of
running out of space during a rename operation is low, and that of a system crash
even lower, but in these cases it costs nothing more to be prepared for the worst
case.

The remaining functions in link.c support the ones that we have already dis-
cussed. In addition, the first of them, truncate (line 27316), is called from several
other places in the file system. It steps through an i-node one zone at a time, free-
ing all the zones it finds, as well as the indirect blocks. Remove�dir (line 27375)
carries out a number of additional tests to be sure the directory can be removed,
and then it in turn calls unlink� file (line 27415). If no errors are found, the direc-
tory entry is cleared and the link count in the i-node is reduced by one.
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5.7.6 Other System Calls

The last group of system calls is a mixed bag of things involving status, direc-
tories, protection, time, and other services.

Changing Directories and File Status

The file stadir.c contains the code for six system calls: chdir, fchdir, chroot,
stat, fstat, and fstatfs. In studying last�dir we saw how path searches start out by
looking at the first character of the path, to see if it is a slash or not. Depending
on the result, a pointer is then set to the working directory or the root directory.

Changing from one working directory (or root directory) to another is just a
matter of changing these two pointers within the caller’s process table. These
changes are made by do�chdir (line 27542) and do�chroot (line 27580). Both of
them do the necessary checking and then call change (line 27594), which does
some more tests, then calls change�into (line 27611) to open the new directory
and replace the old one.

Do�fchdir (line 27529) supports fchdir, which is an alternate way of effecting
the same operation as chdir, with the calling argument a file descriptor rather than
a path. It tests for a valid descriptor, and if the descriptor is valid it calls
change�into to do the job.

In do�chdir the code on lines 27552 to 27570 is not executed on chdir calls
made by user processes. It is specifically for calls made by the process manager,
to change to a user’s directory for the purpose of handling exec calls. When a
user tries to execute a file, say, a.out in his working directory, it is easier for the
process manager to change to that directory than to try to figure out where it is.

The two system calls stat and fstat are basically the same, except for how the
file is specified. The former gives a path name, whereas the latter provides the
file descriptor of an open file, similar to what we saw for chdir and fchdir. The
top-level procedures, do�stat (line 27638) and do�fstat (line 27658), both call
stat� inode to do the work. Before calling stat�inode, do�stat opens the file to
get its i-node. In this way, both do�stat and do� fstat pass an i-node pointer to
stat� inode.

All stat�inode (line 27673) does is to extract information from the i-node and
copy it into a buffer. The buffer must be explicitly copied to user space by a
sys�datacopy kernel call on lines 27713 and 27714 because it is too large to fit in
a message.

Finally, we come to do�fstatfs (line 27721). Fstatfs is not a POSIX call,
although POSIX defines a similar fstatvfs call which returns a much bigger data
structure. The MINIX 3 fstatfs returns only one piece of information, the block
size of a file system. The prototype for the call is

�PROTOTYPE( int fstatfs, (int fd, struct statfs *st) );
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The statfs structure it uses is simple, and can be displayed on a single line:

struct statfs { off�t f�bsize; /* file system block size */ };

These definitions are in include/sys/statfs.h, which is not listed in Appendix B.

Protection

The MINIX 3 protection mechanism uses the rwx bits. Three sets of bits are
present for each file: for the owner, for his group, and for others. The bits are set
by the chmod system call, which is carried out by do�chmod, in file protect.c
(line 27824). After making a series of validity checks, the mode is changed on
line 27850.

The chown system call is similar to chmod in that both of them change an
internal i-node field in some file. The implementation is also similar although
do�chown (line 27862) can be used to change the owner only by the superuser.
Ordinary users can use this call to change the group of their own files.

The umask system call allows the user to set a mask (stored in the process
table), which then masks out bits in subsequent creat system calls. The complete
implementation would be only one statement, line 27907, except that the call must
return the old mask value as its result. This additional burden triples the number
of lines of code required (lines 27906 to 27908).

The access system call makes it possible for a process to find out if it can
access a file in a specified way (e.g., for reading). It is implemented by
do�access (line 27914), which fetches the file’s i-node and calls the internal pro-
cedure, forbidden (line 27938), to see if the access is forbidden. Forbidden
checks the uid and gid, as well as the information in the i-node. Depending on
what it finds, it selects one of the three rwx groups and checks to see if the access
is permitted or forbidden.

Read�only (line 27999) is a little internal procedure that tells whether the file
system on which its i-node parameter is located is mounted read only or read-
write. It is needed to prevent writes on file systems mounted read only.

5.7.7 The I/O Device Interface

As we have mentioned more than once, a design goal was to make MINIX 3 a
more robust operating system by having all device drivers run as user-space
processes without direct access to kernel data structures or kernel code. The pri-
mary advantage of this approach is that a faulty device driver will not cause the
entire system to crash, but there are some other implications of this approach.
One is that device drivers not needed immediately upon startup can be started at
any time after startup is complete. This also implies that a device driver can be
stopped, restarted, or replaced by a different driver for the same device at any
time while the system is running. This flexibility is subject, of course to some
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restrictions—you cannot start multiple drivers for the same device. However, if
the hard disk driver crashes, it can be restarted from a copy on the RAM disk.

MINIX 3 device drivers are accessed from the file system. In response to user
requests for I/O the file system sends messages to the user-space device drivers.
The dmap table has an entry for every possible major device type. It provides the
mapping between the major device number and the corresponding device driver.
The next two files we will consider deal with the dmap table. The table itself is
declared in dmap.c. This file also supports initialization of the table and a new
system call, devctl, which is intended to support starting, stopping, and restarting
of device drivers. After that we will look at device.c which supports normal run-
time operations on devices, such as open, close, read, write, and ioctl.

When a device is opened, closed, read, or written, dmap provides the name of
the procedure to call to handle the operation. All of these procedures are located
in the file system’s address space. Many of these procedures do nothing, but
some call a device driver to request actual I/O. The process number correspond-
ing to each major device is also provided by the table.

Whenever a new major device is added to MINIX 3, a line must be added to
this table telling what action, if any, is to be taken when the device is opened,
closed, read, or written. As a simple example, if a tape drive is added to MINIX 3,
when its special file is opened, the procedure in the table could check to see if the
tape drive is already in use.

Dmap.c begins with a macro definition, DT (lines 28115 to 28117), which is
used to initialize the dmap table. This macro makes it easier to add a new device
driver when reconfiguring MINIX 3. Elements of the dmap table are defined in
include/minix/dmap.h; each element consists of a pointer to a function to be called
on an open or close, another pointer to a function to be called on a read or write, a
process number (index into process table, not a PID), and a set of flags. The
actual table is an array of such elements, declared on line 28132. This table is
globally available within the file server. The size of the table is NR�DEVICES,
which is 32 in the version of MINIX 3 described here, and almost twice as big as
needed for the number of devices currently supported. Fortunately, the C
language behavior of setting all uninitialized variables to zero will ensure that no
spurious information appears in unused slots.

Following the declaration of dmap is a PRIVATE declaration of init�dmap. It
is defined by an array of DT macros, one for each possible major device. Each of
these macros expands to initialize an entry in the global array at compile time. A
look at a few of the macros will help with understanding how they are used.
Init�dmap[1] defines the entry for the memory driver, which is major device 1.
The macro looks like this:

DT(1, gen�opcl, gen� io, MEM�PROC�NR, 0)

The memory driver is always present and is loaded with the system boot image.
The ‘‘1’’ as first parameter means that this driver must be present. In this case, a
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pointer to gen�opcl will be entered as the function to call to open or close, and a
pointer to gen� io will be entered to specify the function to call for reading or
writing, MEM�PROC�NR tells which slot in the process table the memory driver
uses, and ‘‘0’’ means no flags are set. Now look at the next entry, init�dmap[2].
This is the entry for the floppy disk driver, and it looks like this:

DT(0, no�dev, 0, 0, DMAP�MUTABLE)

The first ‘‘0’’ indicates this entry is for a driver not required to be in the boot
image. The default for the first pointer field specifies a call to no�dev on an
attempt to open the device. This function returns an ENODEV ‘‘no such device’’
error to the caller. The next two zeros are also defaults: since the device cannot
be opened there is no need to specify a function to call to do I/O, and a zero in the
process table slot is interpreted as no process specified. The meaning of the flag
DMAP�MUTABLE is that changes to this entry are permitted. (Note that the
absence of this flag for the memory driver entry means its entry cannot be
changed after initialization.) MINIX 3 can be configured with or without a floppy
disk driver in the boot image. If the floppy disk driver is in the boot image and it
is specified by a label=FLOPPY boot parameter to be the default disk device, this
entry will be changed when the file system starts. If the floppy driver is not in the
boot image, or if it is in the image but is not specified to be the default disk
device, this field will not be changed when FS starts. However, it is still possible
for the floppy driver to be activated later. Typically this is done by the /etc/rc
script run when init is run.

Do�devctl (line 28157) is the first function executed to service a devctl call.
The current version is very simple, it recognizes two requests, DEV�MAP and
DEV�UNMAP, and the latter returns a ENOSYS error, which means ‘‘function not
implemented.’’ Obviously, this is a stopgap. In the case of DEV�MAP the next
function, map�driver is called.

It might be helpful to describe how the devctl call is used, and plans for its use
in the future. A server process, the reincarnation server (RS) is used in MINIX 3
to support starting user-space servers and drivers after the operating system is up
and running. The interface to the reincarnation server is the service utility, and
examples of its use can be seen in /etc/rc. An example is

service up /sbin/floppy –dev /dev/fd0

This action results in the reincarnation server making a devctl call to start the
binary /sbin/floppy as the device driver for the device special file /dev/fd0. To do
this, RS execs the specified binary, but sets a flag that inhibits it from running
until it has been transformed into a system process. Once the process is in mem-
ory and its slot number in the process table is known, the major device number for
the specified device is determined. This information is then included in a mes-
sage to the file server that requested the devctl DEV�MAP operation. This is the
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most important part of the reincarnation server’s job from the point of view of ini-
tializing the I/O interface. For the sake of completeness we will also mention that
to complete initialization of the device driver, RS also makes a sys�privctl call to
have the system task initialize the driver process’s priv table entry and allow it to
execute. Recall from Chapter 2 that a dedicated priv table slot is what makes an
otherwise ordinary user-space process into a system process.

The reincarnation server is new, and in the release of MINIX 3 described here
it is still rudimentary. Plans for future releases of MINIX 3 include a more power-
ful reincarnation server that will be able to stop and restart drivers in addition to
starting them. It will also be able to monitor drivers and restart them automati-
cally if problems develop. Check the Web site (www.minix3.org) and the news-
group (comp.os.minix) for the current status.

Continuing with dmap.c, the function map�driver begins on line 28178. Its
operation is straightforward. If the DMAP�MUTABLE flag is set for the entry in
the dmap table, appropriate values are written into each entry. Three different
variants of the function for handling opening and closing of the device are avail-
able; one is selected by a style parameter passed in the message from RS to the
file system (lines 28204 to 28206). Notice that dmap�flags is not altered. If the
entry was marked DMAP�MUTABLE originally it retains this status after the
devctl call .

The third function in dmap.c is build�map. This is called by fs� init when the
file system is first started, before it enters its main loop. The first thing done is to
loop over all of the entries in the local init�dmap table and copy the expanded
macros to the global dmap table for each entry that does not have no�dev speci-
fied as the dmap�opcl member. This correctly initializes these entries. Other-
wise the default values for an uninitialized driver are set in place in dmap. The
rest of build�map is more interesting. A boot image can be built with multiple
disk device drivers. By default at�wini, bios�wini, and floppy drivers are added to
the boot image by the Makefile in the src/tools/. A label is added to each of these,
and a label= item in the boot parameters determines which one will actually be
loaded in the image and activated as the default disk driver. The env�get�param
calls on line 28248 and line 28250 use library routines that ultimately use the
sys�getinfo kernel call to get the label and controller boot parameter strings.
Finally, build�map is called on line 28267 to modify the entry in dmap that
corresponds to the boot device. The key thing here is setting the process number
to DRVR�PROC�NR, which happens to be slot 6 in the process table. This slot is
magic; the driver in this slot is the default driver.

Now we come to the file device.c, which contains the procedures needed for
device I/O at run time.

The first one is dev�open (line 28334). It is called by other parts of the file
system, most often from common�open in main.c when a open operation is deter-
mined to be accessing a device special file, but also from load�ram and
do�mount. Its operation is typical of several procedures we will see here. It de-

www.minix3.org
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termines the major device number, verifies that it is valid, and then uses it to set a
pointer to an entry in the dmap table, and then makes a call to the function pointed
to in that entry, at line 28349:

r = (*dp->dmap�opcl)(DEV�OPEN, dev, proc, flags)

In the case of a disk drive, the function called will be gen�opcl, in the case of a
terminal device it will be tty�opcl. If a SUSPEND return code is received there is
a serious problem; an open call should not fail this way.

The next call, dev�close (line 28357) is simpler. It is not expected that a call
will be made to an invalid device, and no harm is done if a close operation fails,
so the code is shorter than this text describing it, just one line that will end up cal-
ling the same *�opcl procedure as dev�open called when the device was opened.

When the file system receives a notification message from a device driver
dev�status (line 28366) is called. A notification means an event has occurred,
and this function is responsible for finding out what kind of event and initiating
appropriate action. The origin of the notification is specified as a process number,
so the first step is to search through the dmap table to find an entry that cor-
responds to the notifying process (lines 18371 to 18373). It is possible the notifi-
cation could have been bogus, so it is not an error if no corresponding entry is
found and dev�status returns without finding a match. If a match is found, the
loop on lines 28378 to 28398 is entered. On each iteration a message is sent to the
driver process requesting its status. Three possible reply types are expected. A
DEV�REVIVE message may be received if the process that originally requested
I/O was previously suspended. In this case revive (in pipe.c, line 26146) is called.
A DEV�IO�READY message may be received if a select call has been made on
the device. Finally, a DEV�NO�STATUS message may be received, and is, in
fact expected, but possibly not until one or both of the first two message types are
received. For this reason, the get�more variable is used to cause the loop to
repeat until the DEV�NO�STATUS message is received.

When actual device I/O is needed, dev� io (line 28406) is called from
read�write (line 25124) to handle character special files, and from rw�block (line
22661) to handle block special files. It builds a standard message (see Fig. 3-17)
and sends it to the specified device driver by calling either gen� io or ctty� io as
specified in the dp->dmap�driver field of the dmaptable. While dev�io is wait-
ing for a reply from the driver, the file system waits. It has no internal multipro-
gramming. Usually, these waits are quite short though (e.g., 50 msec). But it is
possible no data will be available—this is especially likely if the data was
requested from a terminal device. In that case the reply message may indicate
SUSPEND, to temporarily suspend the calling application but let the file system
continue.

The procedure gen�opcl (line 28455) is called for disk devices, whether
floppy disks, hard disks, or memory-based devices. A message is constructed,
and, as with reading and writing, the dmap table is used to determine whether



602 FILE SYSTEMS CHAP. 5

gen� io or ctty�io will be used to send the message to the driver process for the
device. Gen�opcl is also used to close the same devices.

To open a terminal device tty�opcl (line 28482) is called. It calls gen�opcl
after possibly modifying the flags, and if the call made the tty the controlling tty
for the active process this is recorded in the process table fp�tty entry for that pro-
cess.

The device /dev/tty is a fiction which does not correspond to any particular
device. This is a magic designation that an interactive user can use to refer to his
own terminal, no matter which physical terminal is actually in use. To open or
close /dev/tty, a call is made to ctty�opcl (line 28518). It determines whether the
fp�tty process table entry for the current process has indeed been modified by a
previous ctty�opcl call to indicate a controlling tty.

The setsid system call requires some work by the file system, and this is per-
formed by do�setsid (line 28534). It modifies the process table entry for the
current process to record that the process is a session leader and has no controlling
process.

One system call, ioctl, is handled primarily in device.c. This call has been put
here because it is closely tied to the device driver interface. When an ioctl is
done, do�ioctl (line 28554) is called to build a message and send it to the proper
device driver.

To control terminal devices one of the functions declared in include/termios.h
should be used in programs written to be POSIX compliant. The C library will
translate such functions into ioctl calls. For devices other than terminals ioctl is
used for many operations, many of which were described in Chap. 3.

The next function, gen�io (line 28575), is the real workhorse of this file.
Whether the operation on a device is an open or a close, a read or a write, or an
ioctl this function is called to complete the work. Since /dev/tty is not a physical
device, when a message that refers to it must be sent, the next function, ctty�io
(line 28652), finds the correct major and minor device and substitutes them into
the message before passing the message on. The call is made using the dmap
entry for the physical device that is actually in use. As MINIX 3 is currently con-
figured a call to gen�io will result.

The function no�dev (line 28677), is called from slots in the table for which a
device does not exist, for example when a network device is referenced on a
machine with no network support. It returns an ENODEV status. It prevents
crashes when nonexistent devices are accessed.

The last function in device.c is clone�opcl (line 28691). Some devices need
special processing upon open. Such a device is ‘‘cloned,’’ that is, on a successful
open it is replaced by a new device with a new unique minor device number. In
MINIX 3 as described here this capability is not used. However, it is used when
networking is enabled. A device that needs this will, of course, have an entry in
the dmap table that specifies clone�opcl in the dmap�opcl field. This is accom-
plished by a call from the reincarnation server that specifies STYLE�CLONE.
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When clone�opcl opens a device the operation starts in exactly the same way as
gen�opcl, but on the return a new minor device number may be returned in the
REP�STATUS field of the reply message. If so, a temporary file is created if it is
possible to allocate a new i-node. A visible directory entry is not created. That is
not necessary, since the file is already open.

Time

Associated with each file are three 32-bit numbers relating to time. Two of
these record the times when the file was last accessed and last modified. The
third records when the status of the i-node itself was last changed. This time will
change for almost every access to a file except a read or exec. These times are
kept in the i-node. With the utime system call, the access and modification times
can be set by the owner of the file or the superuser. The procedure do�utime (line
28818) in file time.c performs the system call by fetching the i-node and storing
the time in it. At line 28848 the flags that indicate a time update is required are
reset, so the system will not make an expensive and redundant call to clock�time.

As we saw in the previous chapter, the real time is determined by adding the
time since the system was started (maintained by the clock task) to the real time
when startup occurred. The stime system call returns the real time. Most of its
work is done by the process manager, but the file system also maintains a record
of the startup time in a global variable, boottime. The process manager sends a
message to the file system whenever a stime call is made. The file system’s
do�stime (line 28859) updates boottime from this message.

5.7.8 Additional System Call Support

There are a number of files that are not listed in Appendix B, but which are
required to compile a working system. In this section we will review some files
that support additional system calls. In the next section we will mention files and
functions that provide more general support for the file system.

The file misc.c contains procedures for a few system and kernel calls that do
not fit in anywhere else.

Do�getsysinfo is an interface to the sys�datacopy kernel call. It is meant to
support the information server (IS) for debugging purposes. It allows IS to
request a copy of file system data structures so it can display them to the user.

The dup system call duplicates a file descriptor. In other words, it creates a
new file descriptor that points to the same file as its argument. The call has a
variant dup2. Both versions of the call are handled by do�dup This function is
included in MINIX 3 to support old binary programs. Both of these calls are
obsolete. The current version of the MINIX 3 C library will invoke the fcntl sys-
tem call when either of these are encountered in a C source file.
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Operation Meaning����������������������������������������

F�DUPFD Duplicate a file descriptor����������������������������������������
F�GETFD Get the close-on-exec flag����������������������������������������
F�SETFD Set the close-on-exec flag����������������������������������������
F�GETFL Get file status flags����������������������������������������
F�SETFL Set file status flags����������������������������������������
F�GETLK Get lock status of a file����������������������������������������
F�SETLK Set read/write lock on a file����������������������������������������
F�SETLKW Set write lock on a file������������������������������������������
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Figure 5-49. The POSIX request parameters for the FCNTL system call.

Fcntl, handled by do�fcntl is the preferred way to request operations on an
open file. Services are requested using POSIX-defined flags described in Fig. 5-
49. The call is invoked with a file descriptor, a request code, and additional argu-
ments as necessary for the particular request. For instance, the equivalent of the
old call

dup2(fd, fd2);

would be

fcntl(fd, F�DUPFD, fd2);

Several of these requests set or read a flag; the code consists of just a few lines.
For instance, the F�SETFD request sets a bit that forces closing of a file when its
owner process does an exec. The F�GETFD request is used to determine
whether a file must be closed when an exec call is made. The F�SETFL and
F�GETFL requests permit setting flags to indicate a particular file is available in
nonblocking mode or for append operations.

Do�fcntl handles file locking, also. A call with the F�GETLK, F�SETLK, or
F�SETLKW command specified is translated into a call to lock�op, discussed in
an earlier section.

The next system call is sync, which copies all blocks and i-nodes that have
been modified since being loaded back to the disk. The call is processed by
do�sync. It simply searches through all the tables looking for dirty entries. The
i-nodes must be processed first, since rw�inode leaves its results in the block
cache. After all dirty i-nodes are written to the block cache, then all dirty blocks
are written to the disk.

The system calls fork, exec, exit, and set are really process manager calls, but
the results have to be posted here as well. When a process forks, it is essential
that the kernel, process manager, and file system all know about it. These ‘‘sys-
tem calls’’ do not come from user processes, but from the process manager.
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Do�fork, do�exit, and do�set record the relevant information in the file system’s
part of the process table. Do�exec searches for and closes (using do�close) any
files marked to be closed-on-exec.

The last function in misc.c is not really a system call but is handled like one.
Do�revive is called when a device driver that was previously unable to complete
work that the file system had requested, such as providing input data for a user
process, has now completed the work. The file system then revives the process
and sends it the reply message.

One system call merits a header file as well as a C source file to support it.
Select.h and select.c provide support for the select system call. Select is used
when a single process has to do deal with multiple I/O streams, as, for instance, a
communications or network program. Describing it in detail is beyond the scope
of this book.

5.7.9 File System Utilities

The file system contains a few general purpose utility procedures that are used
in various places. They are collected together in the file utility.c.

Clock�time sends messages to the system task to find out what the current
real time is.

Fetch�name is needed because many system calls have a file name as param-
eter. If the file name is short, it is included in the message from the user to the
file system. If it is long, a pointer to the name in user space is put in the message.
Fetch�name checks for both cases, and either way, gets the name.

Two functions here handle general classes of errors. No�sys is the error
handler that is called when the file system receives a system call that is not one of
its calls. Panic prints a message and tells the kernel to throw in the towel when
something catastrophic happens. Similar functions can be found in pm/utility.c in
the process manager’s source directory.

The last two functions, conv2 and conv4, exist to help MINIX 3 deal with the
problem of differences in byte order between different CPU families. These rou-
tines are called when reading from or writing to a disk data structure, such as an
i-node or bitmap. The byte order in the system that created the disk is recorded in
the superblock. If it is different from the order used by the local processor the
order will be swapped. The rest of the file system does not need to know anything
about the byte order on the disk.

Finally, there are two other files that provide specialized utility services to the
file manager. The file system can ask the system task to set an alarm for it, but if
it needs more than one timer it can maintain its own linked list of timers, similar
to what we saw for the process manager in the previous chapter. The file timers.c
provides this support for the file system. Finally, MINIX 3 implements a unique
way of using a CD-ROM that hides a simulated MINIX 3 disk with several parti-
tions on a CD-ROM, and allows booting a live MINIX 3 system from the CD-
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ROM. The MINIX 3 files are not visible to operating systems that support only
standard CD-ROM file formats. The file cdprobe.c is used at boot time to locate
a CD-ROM device and the files on it needed to start MINIX 3.

5.7.10 Other MINIX 3 Components

The process manager discussed in the previous chapter and the file system
discussed in this chapter are user-space servers which provide support that would
be integrated into a monolithic kernel in an operating system of conventional
design. These are not the only server processes in a MINIX 3 system, however.
There are other user-space processes that have system privileges and should be
considered part of the operating system. We do not have enough space in this
book to discuss their internals, but we should at least mention them here.

One we have already mentioned in this chapter. This is the reincarnation
server, RS, which can start an ordinary process and turn it into a system process.
It is used in the current version of MINIX 3 to launch device drivers that are not
part of the system boot image. In future releases it will also be able to stop and
restart drivers, and, indeed, to monitor drivers and stop and restart them automati-
cally if they seem to be malfunctioning. The source code for the reincarnation
server is in the src/servers/rs/ directory.

Another server that has been mentioned in passing is the information server,
IS. It is used to generate the debugging dumps that can be triggered by pressing
the function keys on a PC-style keyboard. The source code for the information
server is in the src/servers/is/ directory.

The information server and the reincarnation servers are relatively small pro-
grams. There is a third, optional, server, the network server, or INET. It is quite
large. The INET program image on disk is comparable in size to the MINIX 3
boot image. It is started by the reincarnation server in much the same way that
device drivers are started. The inet source code is in the src/servers/inet/ direc-
tory.

Finally, we will mention one other system component which is considered a
device driver, not a server. This is the log driver. With so many different com-
ponents of the operating system running as independent processes, it is desirable
to provide a standardized way of handling diagnostic, warning, and error mes-
sages. The MINIX 3 solution is to have a device driver for a pseudo-device known
as /dev/klog which can receive messages and handle writing them to a file. The
source code for the log driver is in the src/drivers/log/ directory.

5.8 SUMMARY

When seen from the outside, a file system is a collection of files and direc-
tories, plus operations on them. Files can be read and written, directories can be
created and destroyed, and files can be moved from directory to directory. Most
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modern file systems support a hierarchical directory system, in which directories
may have subdirectories ad infinitum.

When seen from the inside, a file system looks quite different. The file sys-
tem designers have to be concerned with how storage is allocated, and how the
system keeps track of which block goes with which file. We have also seen how
different systems have different directory structures. File system reliability and
performance are also important issues.

Security and protection are of vital concern to both the system users and sys-
tem designers. We discussed some security flaws in older systems, and generic
problems that many systems have. We also looked at authentication, with and
without passwords, access control lists, and capabilities, as well as a matrix model
for thinking about protection.

Finally, we studied the MINIX 3 file system in detail. It is large but not very
complicated. It accepts requests for work from user processes, indexes into a
table of procedure pointers, and calls that procedure to carry out the requested
system call. Due to its modular structure and position outside the kernel, it can be
removed from MINIX 3 and used as a free-standing network file server with only
minor modifications.

Internally, MINIX 3 buffers data in a block cache and attempts to read ahead
when making sequential access to file. If the cache is made large enough, most
program text will be found to be already in memory during operations that repeat-
edly access a particular set of programs, such as a compilation.

PROBLEMS

1. NTFS uses Unicode for naming files. Unicode supports 16-bit characters. Give an
advantage of Unicode file naming over ASCII file naming.

2. Some files begin with a magic number. Of what use is this?

3. Fig. 5-4 lists some file attributes. Not listed in this table is parity. Would that be a use-
ful file attribute? If so, how might it be used?

4. Give 5 different path names for the file /etc/passwd. (Hint: think about the directory
entries ‘‘.’’ and ‘‘..’’.)

5. Systems that support sequential files always have an operation to rewind files. Do
systems that support random access files need this too?

6. Some operating systems provide a system call rename to give a file a new name. Is
there any difference at all between using this call to rename a file, and just copying the
file to a new file with the new name, followed by deleting the old one?

7. Consider the directory tree of Fig. 5-7. If /usr/jim/ is the working directory, what is
the absolute path name for the file whose relative path name is ../ast/x?



608 FILE SYSTEMS CHAP. 5

8. Consider the following proposal. Instead of having a single root for the file system,
give each user a personal root. Does that make the system more flexible? Why or why
not?

9. The UNIX file system has a call chroot that changes the root to a given directory.
Does this have any security implications? If so, what are they?

10. The UNIX system has a call to read a directory entry. Since directories are just files,
why is it necessary to have a special call? Can users not just read the raw directories
themselves?

11. A standard PC can hold only four operating systems at once. Is there any way to
increase this limit? What consequences would your proposal have?

12. Contiguous allocation of files leads to disk fragmentation, as mentioned in the text. Is
this internal fragmentation or external fragmentation? Make an analogy with some-
thing discussed in the previous chapter.

13. Figure 5-10 shows the structure of the original FAT file system used on MS-DOS. Ori-
ginally this file system had only 4096 blocks, so a table with 4096 (12-bit) entries was
enough. If that scheme were to be directly extended to file systems with 232 blocks,
how much space would the FAT occupy?

14. An operating system only supports a single directory but allows that directory to have
arbitrarily many files with arbitrarily long file names. Can something approximating a
hierarchical file system be simulated? How?

15. Free disk space can be kept track of using a free list or a bitmap. Disk addresses
require D bits. For a disk with B blocks, F of which are free, state the condition under
which the free list uses less space than the bitmap. For D having the value 16 bits,
express your answer as a percentage of the disk space that must be free.

16. It has been suggested that the first part of each UNIX file be kept in the same disk
block as its i-node. What good would this do?

17. The performance of a file system depends upon the cache hit rate (fraction of blocks
found in the cache). If it takes 1 msec to satisfy a request from the cache, but 40 msec
to satisfy a request if a disk read is needed, give a formula for the mean time required
to satisfy a request if the hit rate is h. Plot this function for values of h from 0 to 1.0.

18. What is the difference between a hard link and a symbolic link? Give an advantage of
each one.

19. Name three pitfalls to watch out for when backing up a file system.

20. A disk has 4000 cylinders, each with 8 tracks of 512 blocks. A seek takes 1 msec per
cylinder moved. If no attempt is made to put the blocks of a file close to each other,
two blocks that are logically consecutive (i.e., follow one another in the file) will
require an average seek, which takes 5 msec. If, however, the operating system makes
an attempt to cluster related blocks, the mean interblock distance can be reduced to 2
cylinders and the seek time reduced to 100 microsec. How long does it take to read a
100 block file in both cases, if the rotational latency is 10 msec and the transfer time is
20 microsec per block?
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21. Would compacting disk storage periodically be of any conceivable value? Explain.

22. What is the difference between a virus and a worm? How do they each reproduce?

23. After getting your degree, you apply for a job as director of a large university com-
puter center that has just put its ancient operating system out to pasture and switched
over to UNIX. You get the job. Fifteen minutes after starting work, your assistant
bursts into your office screaming: ‘‘Some students discovered the algorithm we use for
encrypting passwords and posted it on the Internet.’’ What should you do?

24. Two computer science students, Carolyn and Elinor, are having a discussion about i-
nodes. Carolyn maintains that memories have gotten so large and so cheap that when
a file is opened, it is simpler and faster just to fetch a new copy of the i-node into the
i-node table, rather than search the entire table to see if it is already there. Elinor
disagrees. Who is right?

25. The Morris-Thompson protection scheme with the n-bit random numbers was
designed to make it difficult for an intruder to discover a large number of passwords
by encrypting common strings in advance. Does the scheme also offer protection
against a student user who is trying to guess the superuser password on his machine?

26. A computer science department has a large collection of UNIX machines on its local
network. Users on any machine can issue a command of the form

machine4 who

and have it executed on machine4, without having the user log in on the remote
machine. This feature is implemented by having the user’s kernel send the command
and his uid to the remote machine. Is this scheme secure if the kernels are all
trustworthy (e.g., large timeshared minicomputers with protection hardware)? What if
some of the machines are students’ personal computers, with no protection hardware?

27. When a file is removed, its blocks are generally put back on the free list, but they are
not erased. Do you think it would be a good idea to have the operating system erase
each block before releasing it? Consider both security and performance factors in
your answer, and explain the effect of each.

28. Three different protection mechanisms that we have discussed are capabilities, access
control lists, and the UNIX rwx bits. For each of the following protection problems,
tell which of these mechanisms can be used.

(a) Ken wants his files readable by everyone except his office mate.
(b) Mitch and Steve want to share some secret files.
(c) Linda wants some of her files to be public.

For UNIX, assume that groups are categories such as faculty, students, secretaries, etc.

29. Can the Trojan horse attack work in a system protected by capabilities?

30. The size of the filp table is currently defined as a constant, NR�FILPS, in fs/const.h.
In order to accommodate more users on a networked system you want to increase
NR�PROCS in include/minix/config.h. How should NR�FILPS be defined as a func-
tion of NR�PROCS?

31. Suppose that a technological breakthrough occurs, and that nonvolatile RAM, which



610 FILE SYSTEMS CHAP. 5

retains its contents reliably following a power failure, becomes available with no price
or performance disadvantage over conventional RAM. What aspects of file system
design would be affected by this development?

32. Symbolic links are files that point to other files or directories indirectly. Unlike ordi-
nary links such as those currently implemented in MINIX 3, a symbolic link has its
own i-node, which points to a data block. The data block contains the path to the file
being linked to, and the i-node makes it possible for the link to have different owner-
ship and permissions from the file linked to. A symbolic link and the file or directory
to which it points can be located on different devices. Symbolic links are not part of
MINIX 3. Implement symbolic links for MINIX 3.

33. Although the current limit to a MINIX 3 file size is determined by the 32-file pointer,
in the future, with 64-bit file pointers, files larger than 232 − 1 bytes may be allowed,
in which case triple indirect blocks may be needed. Modify FS to add triple indirect
blocks.

34. Show if setting the (now-unused) ROBUST flag might make the file system more or
less robust in the face of a crash. Whether this is the case in the current version of
MINIX 3 has not been researched, so it may be either way. Take a good look at what
happens when a modified block is evicted from the cache. Take into account that a
modified data block may be accompanied by a modified i-node and bitmap.

35. Design a mechanism to add support for a ‘‘foreign’’ file system, so that one could, for
instance, mount an MS-DOS file system on a directory in the MINIX 3 file system.

36. Write a pair of programs, in C or as shell scripts, to send and receive a message by a
covert channel on a MINIX 3 system. Hint: A permission bit can be seen even when a
file is otherwise inaccessible, and the sleep command or system call is guaranteed to
delay for a fixed time, set by its argument. Measure the data rate on an idle system.
Then create an artificially heavy load by starting up numerous different background
processes and measure the data rate again.

37. Implement immediate files in MINIX 3, that is small files actually stored in the i-node
itself, thus saving a disk access to retrieve them.



6
READING LIST AND BIBLIOGRAPHY

In the previous five chapters we have touched upon a variety of topics. This
chapter is intended as an aid to readers interested in pursuing their study of
operating systems further. Section 6.1 is a list of suggested readings. Section 6.2
is an alphabetical bibliography of all books and articles cited in this book.

In addition to the references given below, the Proceedings of the n-th ACM
Symposium on Operating Systems Principles (ACM) held every other year and the
Proceedings of the n-th International Conference on Distributed Computing Sys-
tems (IEEE) held every year are good places to look for recent papers on operat-
ing systems. So is the USENIX Symposium on Operating Systems Design and Im-
plementation. Furthermore, ACM Transactions on Computer Systems and Op-
erating Systems Review are two journals that often have relevant articles.

6.1 SUGGESTIONS FOR FURTHER READING

Below is a list of suggested readings keyed by chapter.

6.1.1 Introduction and General Works

Bovet and Cesati, Understanding the Linux Kernel, 3rd Ed.
For anyone wishing to understand how the Linux kernel works internally, this

book is probably your best bet.
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Brinch Hansen, Classic Operating Systems
Operating system have been around long enough now that some of them can

be considered classic: systems that changed how the world looked at computers.
This book is a collection of 24 papers about seminal operating systems, categor-
ized as open shop, batch, multiprogramming, timesharing, personal computer, and
distributed operating systems. Anyone interested in the history of operating sys-
tems should read this book.

Brooks, The Mythical Man-Month: Essays on Software Engineering
A witty, amusing, and informative book on how not to write an operating sys-

tem by someone who learned the hard way. Full of good advice.

Corbató, ‘‘On Building Systems That Will Fail’’
In his Turing Award lecture, the father of timesharing addresses many of the

same concerns that Brooks does in the Mythical Man-Month. His conclusion is
that all complex systems will ultimately fail, and that to have any chance for suc-
cess at all, it is absolutely essential to avoid complexity and strive for simplicity
and elegance in design.

Deitel et al, Operating Systems, 3rd Ed.
A general textbook on operating systems. In addition to the standard material,

it contains detailed case studies of Linux and Windows XP.

Dijkstra, ‘‘My Recollections of Operating System Design’’
Reminiscences by one of the pioneers of operating system design, starting

back in the days when the term ‘‘operating system’’ was not yet known.

IEEE, Information Technology—Portable Operating System Interface (POSIX),
Part 1: System Application Program Interface (API) [C Language]

This is the standard. Some parts are actually quite readable, especially Annex
B, ‘‘Rationale and Notes,’’ which sheds light on why things are done as they are.
One advantage of referring to the standard document is that, by definition, there
are no errors. If a typographical error in a macro name makes it through the edit-
ing process it is no longer an error, it is official.

Lampson, ‘‘Hints for Computer System Design’’
Butler Lampson, one of the world’s leading designers of innovative operating

systems, has collected many hints, suggestions, and guidelines from his years of
experience and put them together in this entertaining and informative article.
Like Brooks’ book, this is required reading for every aspiring operating system
designer.
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Lewine, POSIX Programmer’s Guide
This book describes the POSIX standard in a much more readable way than

the standards document itself, and includes discussions on how to convert older
programs to POSIX and how to develop new programs for the POSIX environment.
There are numerous examples of code, including several complete programs. All
POSIX-required library functions and header files are described.

McKusick and Neville-Neil, The Design and Implementation of the FreeBSD
Operating System

For a thorough explanation of how a modern version of UNIX, in this case
FreeBSD, works inside, this is the place to look. It covers processes, I/O, memory
management, networking, and just about everything else.

Milojicic, ‘‘Operating Systems: Now and in the Future,’’
Suppose you were to ask six of the world’s leading experts in operating sys-

tems a series of questions about the field and where it was going. Would you get
the same answers? Hint: No. Find out what they said here.

Ray and Ray, Visual Quickstart Guide: UNIX, 2nd Ed.
It will help you understand examples in this book if you are comfortable as a

UNIX user. This is just one of a number of available beginners’ guides to working
with the UNIX operating system. Although implemented differently, MINIX looks
like UNIX to a user, and this or a similar book will also be helpful in your work
with MINIX.

Russinovich and Solomon, Microsoft Windows Internals, 4th Ed.
Ever wondered how Windows works inside? Wonder no more. This book

tells you everything you conceivably wanted to know about processes, memory
management, I/O, networking, security, and a great deal more.

Silberschatz et al, Operating System Concepts, 7th Ed.
Another textbook on operating systems. It covers processes, storage manage-

ment, files, and distributed systems. Two case studies are given: Linux and Win-
dows XP.

Stallings, Operating Systems, 5th Ed.
Still another textbook on operating systems. It covers all the usual topics, and

also includes a small amount of material on distributed systems, plus an appendix
on queueing theory.

Stevens and Rago, Advanced Programming in the UNIX Environment, 2nd Ed.
This book tells how to write C programs that use the UNIX system call inter-

face and the standard C library. Examples have been tested on FreeBSD 5.2.1,
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Linux 2.4.22 kernel; Solaris 9; and Darwin 7.4.0, and the FreeBSD/Mach base of
Mac OS X 10.3. The relationship of these implementations to POSIX is described
in detail.

6.1.2 Processes

Andrews and Schneider, ‘‘Concepts and Notations for Concurrent Programming’’
A tutorial and survey of processes and interprocess communication, including

busy waiting, semaphores, monitors, message passing, and other techniques. The
article also shows how these concepts are embedded in various programming
languages.

Ben-Ari, Principles of Concurrent and Distributed Programming
This book consists of three parts; the first has chapters on mutual exclusion,

semaphores, monitors, and the dining philosophers problem, among others. The
second part discusses distributed programming and languages useful for distri-
buted programming. The third part is on principles of implementation of con-
currency.

Bic and Shaw, Operating System Principles
This operating systems textbook has four chapters on processes, including not

only the usual principles, but also quite a bit of material on implementation.

Milo et al., ‘‘Process Migration’’
As clusters of PCs gradually replace supercomputers, the issue of moving

processes from one machine to another (e.g., for load balancing) is becoming
more relevant. In this survey, the authors discuss how process migration works,
along with its benefits and pitfalls.

Silberschatz et al, Operating System Concepts, 7th Ed.
Chapters 3 through 7 cover processes and interprocess communication, in-

cluding scheduling, critical sections, semaphores, monitors, and classical interpro-
cess communication problems.

6.1.3 Input/Output

Chen et al., ‘‘RAID: High Performance Reliable Secondary Storage’’
The use of multiple disk drives in parallel for fast I/O is a trend in high end

systems. The authors discuss this idea and examine different organizations in
terms of performance, cost, and reliability.

Coffman et al., ‘‘System Deadlocks’’
A short introduction to deadlocks, what causes them, and how they can be

prevented or detected.
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Corbet et al., Linux Device Drivers, 3rd Ed.
If you really really really want to know how I/O works, try writing a device

driver. This book tells you how to do it for Linux.

Geist and Daniel, ‘‘A Continuum of Disk Scheduling Algorithms’’
A generalized disk arm scheduling algorithm is presented. Extensive simula-

tion and experimental results are given.

Holt, ‘‘Some Deadlock Properties of Computer Systems’’
A discussion of deadlocks. Holt introduces a directed graph model that can

be used to analyze some deadlock situations.

IEEE Computer Magazine, March 1994
This issue of Computer contains eight articles on advanced I/O, and covers

simulation, high performance storage, caching, I/O for parallel computers, and
multimedia.

Levine, ‘‘Defining Deadlocks’’
In this short article, Levine raises interesting questions about conventional

definitions and examples of deadlock.

Swift et al., ‘‘Recovering Device Drivers’’
Device drivers have an error rate an order of magnitude higher than other

operating system code. Is there anything that can be done to improve reliability
then? This paper describes how shadow drivers can be used to achieve this goal.

Tsegaye and Foss, ‘‘A Comparison of the Linux and Windows Device Driver
Architecture’’

Linux and Windows have quite different architectures for their device drivers.
This papers discusses both of them and shows how they are similar and how they
are different.

Wilkes et al., ‘‘The HP AutoRAID Hierarchical Storage System’’
An important new development in high-performance disk systems is RAID

(Redundant Array of Inexpensive Disks), in which an array of small disks work
together to produce a high-bandwidth system. In this paper, the authors describe
in some detail the system they built at HP Labs.

6.1.4 Memory Management

Bic and Shaw, Operating System Principles
Three chapters of this book are devoted to memory management, physical

memory, virtual memory, and shared memory.
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Denning, ‘‘Virtual Memory’’
A classic paper on many aspects of virtual memory. Denning was one of the

pioneers in this field, and was the inventor of the working set concept.

Denning, ‘‘Working Sets Past and Present’’
A good overview of numerous memory management and paging algorithms.

A comprehensive bibliography is included.

Denning, ‘‘The Locality Principle’’
A recent look back at the history of the locality principle and a discussion of

its applicability to a number of problems beyond memory paging issues.

Halpern, ‘‘VIM: Taming Software with Hardware’’
In this provocative article, Halpern argues that a tremendous amount of

money is being spent to produce, debug, and maintain software that deals with
memory optimization, not only in operating systems, but also in compilers and
other software. He argues that seen macro-economically, it would be better to
spend this money just buying more memory and having simple straightforward,
more reliable software.

Knuth, The Art of Computer Programming, Vol. 1
First fit, best fit, and other memory management algorithms are discussed and

compared in this book.

Silberschatz et al, Operating System Concepts, 7th Ed.
Chapters 8 and 9 deal with memory management, including swapping, paging,

and segmentation. A variety of paging algorithms are mentioned.

6.1.5 File Systems

Denning, ‘‘The United States vs. Craig Neidorf’’
When a young hacker discovered and published information about how the

telephone system works, he was indicted for computer fraud. This article de-
scribes the case, which involved many fundamental issues, including freedom of
speech. The article is followed by some dissenting views and a rebuttal by Den-
ning.

Ghemawat et al., ‘‘The Google File System’’
Suppose you decided you wanted to store the entire Internet at home so you

could find things really quickly. How would you go about it? Step 1 would be to
buy, say, 200,000 PCs. Ordinary garden-variety PCs will do. Nothing fancy
needed. Step 2 would be to read this paper to find out how Google does it.
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Hafner and Markoff, Cyberpunk: Outlaws and Hackers on the Computer Frontier
Three compelling tales of young hackers breaking into computers around the

world are told here by the New York Times computer reporter who broke the
Internet worm story and his coauthor.

Harbron, File Systems: Structures and Algorithms
A book on file system design, applications, and performance. Both structure

and algorithms are covered.

Harris et al., Gray Hat Hacking: The Ethical Hacker’s Handbook
This book discusses legal and ethical aspects of testing computer systems for

vulnerabilities, as well as providing technical information about how they are
created and how they can be detected.

McKusick et al., ‘‘A Fast File System for UNIX’’
The UNIX file system was completely reimplemented for 4.2 BSD. This

paper describes the design of the new file system, and discusses its performance.

Satyanarayanan, ‘‘The Evolution of Coda’’
As mobile computing becomes more common, the need to integrate and syn-

chronize mobile and fixed file systems becomes more urgent. Coda was a pioneer
in this area. Its evolution and operation is described in this paper.

Silberschatz et al Operating System Concepts, 7th Ed.
Chapters 10 and 11 are about file systems. They cover file operations, access

methods, consistency semantics, directories, and protection, and implementation,
among other topics.

Stallings, Operating Systems, 5th Ed.
Chapter 16 contains a fair amount of material about the security environment

especially about hackers, viruses and other threats.

Uppuluri et al., ‘‘Preventing Race Condition Attacks on File Systems’’
Situations exist in which a process assumes that two operations will be per-

formed atomically, with no intervening operations. If another process manages to
sneak in and perform an operation between them, security may be breached. This
paper discusses the problem and proposes a solution.

Yang et al., ‘‘Using Model Checking to Find Serious File System Errors’’
File system errors can lead to lost data, so getting them debugged is very

important. This paper describes a formal technique that helps detect file system
errors before they can do any damage. The results of using the model checker on
actual file system code is presented.
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A
INSTALLING MINIX 3

This appendix explains how to install MINIX 3. A complete MINIX 3 instal-
lation requires a Pentium (or compatible) with at least 16-MB of RAM, 1 GB of
free disk space, an IDE CD-ROM and an IDE hard disk. A minimal installation
(without the commands sources) requires 8 MB RAM and 50 MB of disk space.
Serial ATA, USB, and SCSI disks are not supported at present. For USB CD-
ROMS, see the Website: www.minix3.org.

A.1 PREPARATION

If you already have the CD-ROM (e.g., from the book), you can skip steps 1
and 2, but it is wise to check www.minix3.org to see if a newer version is avail-
able. If you want to run MINIX 3 on a simulator instead of native, see Part V first.
If you do not have an IDE CD-ROM, either get the special USB CD-ROM boot
image or use a simulator.

1. Download the MINIX 3 CD-ROM image
Download the MINIX 3 CD-ROM image from the MINIX 3 Website at

www.minix3.org.

2. Create a bootable MINIX 3 CD-ROM
Decompress the downloaded file. You will get a CD-ROM image file with

extension .iso and this manual. The .iso file is a bit-for-bit CD-ROM image.
Burn it to a CD-ROM to make a bootable CD-ROM.

629
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If you are using Easy CD Creator 5, select ‘‘Record CD from CD image’’
from the File menu and change the file type from .cif to .iso in the dialog box that
appears. Select the image file and click ‘‘Open.’’ Then click ‘‘Start Recording.’’

If you are using Nero Express 5, choose ‘‘Disc Image or Saved Project’’ and
change the type to ‘‘Image Files,’’ select the image file and click ‘‘Open.’’ Select
your CD recorder and click on ‘‘Next.’’

If you are running Windows XP and do not have a CD-ROM burning pro-
gram, take a look at alexfeinman.brinkster.net/isorecorder.htm for a free one and
use it to create a CD image.

3. Determine which Ethernet Chip you have
MINIX 3 supports several Ethernet chips for networking over LAN, ADSL,

and cable. These include Intel Pro/100, RealTek 8029 and 8139, AMD LANCE,
and several 3Com chips. During setup you will be asked which Ethernet chip you
have, if any. Determine that now by looking at your documentation. Alternatively,
if you are using Windows, go to the device manager as follows:

Windows 2000:Start > Settings > Control Panel > System > Hardware > Device Manager
Windows XP: Start > Control Panel > System > Hardware > Device Manager

System requires double clicking; the rest are single. Expand the + next to ‘‘Net-
work adapters’’ to see what you have. Write it down. If you do not have a sup-
ported chip, you can still run MINIX 3, but without Ethernet.

4. Partition your hard disk
You can boot the computer from your CD-ROM if you like and MINIX 3 will

start, but to do anything useful, you have to create a partition for it on your hard
disk. But before partitioning, be sure to back up your data to an external med-
ium like CD-ROM or DVD as a safety precaution, just in case something goes
wrong. Your files are valuable; protect them.

Unless you are sure you are an expert on disk partitioning with much experi-
ence, it is strongly suggested that you read the online tutorial on disk partitioning
at www.minix3.org/doc/partitions.html. If you already know how to manage par-
titions, create a contiguous chunk of free disk space of at least 50 MB, or, if you
want all the commands sources, 1 GB. If you do not know how to manage parti-
tions but have a partitioning program like Partition Magic, use it to create a
region of free disk space. Also make sure there is at least one primary partition
(i.e., Master Boot Record slot) free. The MINIX 3 setup script will guide you
through creating a MINIX partition in the free space, which can be on either the
first or second IDE disk.

If you are running Windows 95, 98, ME, or 2000 and your disk consists of a
single FAT partition, you can use the presz134.exe program on the CD-ROM
(also available at zeleps.com) to reduce its size to leave room for MINIX. In all
other cases, please read the online tutorial cited above.

www.minix3.org/doc/partitions.html
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If your disk is larger than 128 GB, the MINIX 3 partition must fall entirely in
the first 128 GB (due to the way disk blocks are addressed).

WARNING: If you make a mistake during disk partitioning, you can lose
all the data on the disk, so be sure to back it up to CD-ROM or DVD before
starting. Disk partitioning requires great care, so proceed with caution.

A.2 BOOTING

By now you should have allocated some free space on your disk. If you have
not done so yet, please do it now unless there is an existing partition you are wil-
ling to convert to MINIX 3.

1. Boot from the CD-ROM
Insert the CD-ROM into your CD-ROM drive and boot the computer from it.

If you have 16 MB of RAM or more, choose ‘‘Regular;’’ if you have only 8 MB
choose ‘‘small.’’ If the computer boots from the hard disk instead of the CD-
ROM, boot again and enter the BIOS setup program to change the order of boot
devices, putting the CD-ROM before the hard disk.

2. Login as root
When the login prompt appears, login as root. After a successful login as

root, you will see the shell prompt (#). At this point you are running fully-
operational MINIX 3. If you type:

ls /usr/bin | more

you can see what software is available. Hit space to scroll the list. To see what
program foo does, type:

man foo

The manual pages are also available at www.minix3.org/manpages.

3. Start the setup script
To start the installation of MINIX 3 on the hard disk, type

setup

After this and all other commands, be sure to type ENTER (RETURN). When the
installation script ends a screen with a colon, hit ENTER to continue. If the screen
suddenly goes blank, press CTRL-F3 to select software scrolling (should only be
needed on very old computers). Note that CTRL-key means depress the CTRL
key and while holding it down, press ‘‘key.’’

www.minix3.org/manpages
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A.3 INSTALLING TO THE HARD DISK

These steps correspond to the steps on the screen.

1. Select keyboard type
When you are asked to select your national keyboard, do so. This and other

steps have a default choice, in square brackets. If you agree with it, just hit
ENTER. In most steps, the default is generally a good choice for beginners. The
us-swap keyboard interchanges the CAPS LOCK and CTRL keys, as is conven-
tional on UNIX systems.

2. Select your Ethernet chip
You will now be asked which of the available Ethernet drivers you want in-

stalled (or none). Please choose one of the options.

3. Basic minimal or full distribution?
If you are tight on disk space, select M for a minimal installation which

includes all the binaries but only the system sources installed. The minimal
option does not install the sources of the commands. 50 MB is enough for a
bare-bones system. If you have 1 GB or more, choose F for a full installation.

4. Create or select a partition for MINIX 3
You will first be asked if you are an expert in MINIX 3 disk partitioning. If so,

you will be placed in the part program to give you full power to edit the Master
Boot Record (and enough rope to hang yourself). If you are not an expert, press
ENTER for the default action, which is an automated step-by-step guide to for-
matting a disk partition for MINIX 3.

Substep 4.1: Select a disk to install MINIX 3
An IDE controller may have up to four disks. The setup script will now look

for each one. Just ignore any error messages. When the drives are listed, select
one. and confirm your choice. If you have two hard disks and you decide to
install MINIX 3 to the second one and have trouble booting from it, please see
www.minix3.org/doc/using2disks.html for the solution.

Substep 4.2: Select a disk region
Now choose a region to install MINIX 3 into. You have three choices:

(1) Select a free region
(2) Select a partition to overwrite
(3) Delete a partition to free up space and merge with adjacent free space

For choices (1) and (2), type the region number. For (3) type

delete

www.minix3.org/doc/using2disks.html
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then give the region number when asked. This region will be overwritten and its
previous contents lost forever.

Substep 4.3: Confirm your choices
You have now reached the point of no return. You will be asked if you want

to continue. If you do, the data in the selected region will be lost forever. If
you are sure, type:

yes

and then ENTER. To exit the setup script without changing the partition table, hit
CTRL-C.

5. Reinstall choice
If you chose an existing MINIX 3 partition, in this step you will be offered a

choice between a Full install, which erases everything in the partition, and a Rein-
stall, which does not affect your existing /home partition. This design means that
you can put your personal files on /home and reinstall a newer version of MINIX 3
when it is available without losing your personal files.

6. Select the size of /home
The selected partition will be divided into three subpartitions: root, /usr, and

/home. The latter is for your own personal files. Specify how much of the partition
should be set aside for your files. You will be asked to confirm your choice.

7. Select a block size
Disk block sizes of 1-KB, 2-KB, 4-KB, and 8-KB are supported, but to use a

size larger than 4-KB you have to change a constant and recompile the system. If
your memory is 16 MB or more, use the default (4 KB); otherwise, use 1 KB.

8. Wait for bad block detection
The setup script will now scan each partition for bad disk blocks. This will

take several minutes, possibly 10 minutes or more on a large partition. Please be
patient. If you are absolutely certain there are no bad blocks, you can kill each
scan by hitting CTRL-C.

9. Wait for files to be copied
When the scan finishes, files will be automatically copied from the CD-ROM

to the hard disk. Every file will be announced as it is copied. When the copying is
complete, MINIX 3 is installed. Shut the system down by typing

shutdown

Always stop MINIX 3 this way to avoid data loss as MINIX 3 keeps some files on
the RAM disk and only copies them back to the hard disk at shutdown time.
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A.4 TESTING

This section tells you how to test your installation, rebuild the system after
modifying it, and boot it later. To start, boot your new MINIX 3 system. For
example, if you used controller 0, disk 0, partition 3, type

boot c0d0p3

and log in as root. Under very rare conditions the drive number seen by the BIOS
(and used by the boot monitor) may not agree with the one used by MINIX 3. Try
the one announced by the setup script first. This is a good time to create a root
password. See man passwd for help.

1. Compile the test suite
To test MINIX 3, at the command prompt (#) type

cd /usr/src/test
make

and wait until it completes all 40 compilations. Log out by typing CTRL-D,

2. Run the test suite
To test the system, log in as bin (required) and type

cd /usr/src/test
./run

to run the test programs. They should all run correctly but they can take 20 min on
a fast machine and over an hour on a slow one. Note: It is necessary to compile
the test suite when running as root but execute it as bin in order to see if the setuid
bit works correctly.

3. Rebuild the entire operating system
If all the tests work correctly, you can now rebuild the system. Doing so is

not necessary since it comes prebuilt, but if you plan to modify the system, you
will need to know how to rebuild it. Besides, rebuilding the system is a good test
to see if it works. Type:

cd /usr/src/tools
make

to see the various options available. Now make a new bootable image by typing

su
make clean
time make image

You just rebuilt the operating system, including all the kernel and user-mode
parts. That did not take very long, did it? If you have a legacy floppy disk drive,
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you can make a bootable floppy for use later by inserting a formatted floppy and
typing

make fdboot

When you are asked to complete the path, type:

fd0

This approach does not currently work with USB floppies since there is no MINIX
3 USB floppy disk driver yet. To update the boot image currently installed on the
hard disk, type

make hdboot

4. Shut down and reboot the new system

To boot the new system, first shut down by typing:

shutdown

This command saves certain files and returns you to the MINIX 3 boot monitor.
To get a summary of what the boot monitor can do, while in it, type:

help

For more details, see www.minix3.org/manpages/man8/boot.8.html. You can now
remove any CD-ROM or floppy disk and turn off the computer.

5. Booting Tomorrow

If you have a legacy floppy disk drive, the simplest way to boot MINIX 3 is by
inserting your new boot floppy and turning on the power. It takes only a few
seconds. Alternatively, boot from the MINIX 3 CD-ROM, login as bin and type:

shutdown

to get back to the MINIX 3 boot monitor. Now type:

boot c0d0p0

to boot from the operating system image file on controller 0, driver 0, partition 0.
Of course, if you put MINIX 3 on drive 0 partition 1, use:

boot c0d0p1

and so on.
A third possibility for booting is to make the MINIX 3 partition the active one,

and use the MINIX 3 boot monitor to start MINIX 3 or any other operating system.
For details see www.minix3.org/manpages/man8/boot.8.html.

www.minix3.org/manpages/man8/boot.8.html
www.minix3.org/manpages/man8/boot.8.html
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Finally, a fourth option is for you to install a multiboot loader such as LILO or
GRUB (www.gnu.org/software/grub). Then you can boot any of your operating
systems easily. Discussion of multiboot loaders is beyond the scope of this guide,
but there is some information on the subject at www.minix3.org/doc.

A.5 USING A SIMULATOR

A completely different approach to running MINIX 3 is to run it on top of
another operating system instead of native on the bare metal. Various virtual
machines, simulators, and emulators are available for this purpose. Some of the
most popular ones are:

d VMware (www.vmware.com)
d Bochs (www.bochs.org)
d QEMU (www.qemu.org)

See the documentation for each of them. Running a program on a simulator is
similar to running it on the actual machine, so you should go back to Part I and
acquire the latest CD-ROM and continue from there.

www.gnu.org/software/grub
www.minix3.org/doc
www.vmware.com
www.bochs.org
www.qemu.org
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++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
include/ansi.h

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

00000 /* The <ansi.h> header attempts to decide whether the compiler has enough
00001 * conformance to Standard C for Minix to take advantage of. If so, the
00002 * symbol _ANSI is defined (as 31459). Otherwise _ANSI is not defined
00003 * here, but it may be defined by applications that want to bend the rules.
00004 * The magic number in the definition is to inhibit unnecessary bending
00005 * of the rules. (For consistency with the new ’#ifdef _ANSI" tests in
00006 * the headers, _ANSI should really be defined as nothing, but that would
00007 * break many library routines that use "#if _ANSI".)
00008
00009 * If _ANSI ends up being defined, a macro
00010 *
00011 * _PROTOTYPE(function, params)
00012 *
00013 * is defined. This macro expands in different ways, generating either
00014 * ANSI Standard C prototypes or old-style K&R (Kernighan & Ritchie)
00015 * prototypes, as needed. Finally, some programs use _CONST, _VOIDSTAR etc
00016 * in such a way that they are portable over both ANSI and K&R compilers.
00017 * The appropriate macros are defined here.
00018 */
00019
00020 #ifndef _ANSI_H
00021 #define _ANSI_H
00022
00023 #if __STDC__ == 1
00024 #define _ANSI 31459 /* compiler claims full ANSI conformance */
00025 #endif
00026
00027 #ifdef __GNUC__
00028 #define _ANSI 31459 /* gcc conforms enough even in non-ANSI mode */
00029 #endif
00030
00031 #ifdef _ANSI
00032
00033 /* Keep everything for ANSI prototypes. */
00034 #define _PROTOTYPE(function, params) function params
00035 #define _ARGS(params) params
00036
00037 #define _VOIDSTAR void *
00038 #define _VOID void
00039 #define _CONST const
00040 #define _VOLATILE volatile
00041 #define _SIZET size_t
00042
00043 #else
00044
00045 /* Throw away the parameters for K&R prototypes. */
00046 #define _PROTOTYPE(function, params) function()
00047 #define _ARGS(params) ()
00048
00049 #define _VOIDSTAR void *
00050 #define _VOID void
00051 #define _CONST
00052 #define _VOLATILE
00053 #define _SIZET int
00054
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00055 #endif /* _ANSI */
00056
00057 /* This should be defined as restrict when a C99 compiler is used. */
00058 #define _RESTRICT
00059
00060 /* Setting any of _MINIX, _POSIX_C_SOURCE or _POSIX2_SOURCE implies
00061 * _POSIX_SOURCE. (Seems wrong to put this here in ANSI space.)
00062 */
00063 #if defined(_MINIX) || _POSIX_C_SOURCE > 0 || defined(_POSIX2_SOURCE)
00064 #undef _POSIX_SOURCE
00065 #define _POSIX_SOURCE 1
00066 #endif
00067
00068 #endif /* ANSI_H */

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
include/limits.h

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

00100 /* The <limits.h> header defines some basic sizes, both of the language types
00101 * (e.g., the number of bits in an integer), and of the operating system (e.g.
00102 * the number of characters in a file name.
00103 */
00104
00105 #ifndef _LIMITS_H
00106 #define _LIMITS_H
00107
00108 /* Definitions about chars (8 bits in MINIX, and signed). */
00109 #define CHAR_BIT 8 /* # bits in a char */
00110 #define CHAR_MIN -128 /* minimum value of a char */
00111 #define CHAR_MAX 127 /* maximum value of a char */
00112 #define SCHAR_MIN -128 /* minimum value of a signed char */
00113 #define SCHAR_MAX 127 /* maximum value of a signed char */
00114 #define UCHAR_MAX 255 /* maximum value of an unsigned char */
00115 #define MB_LEN_MAX 1 /* maximum length of a multibyte char */
00116
00117 /* Definitions about shorts (16 bits in MINIX). */
00118 #define SHRT_MIN (-32767-1) /* minimum value of a short */
00119 #define SHRT_MAX 32767 /* maximum value of a short */
00120 #define USHRT_MAX 0xFFFF /* maximum value of unsigned short */
00121
00122 /* _EM_WSIZE is a compiler-generated symbol giving the word size in bytes. */
00123 #define INT_MIN (-2147483647-1) /* minimum value of a 32-bit int */
00124 #define INT_MAX 2147483647 /* maximum value of a 32-bit int */
00125 #define UINT_MAX 0xFFFFFFFF /* maximum value of an unsigned 32-bit int */
00126
00127 /*Definitions about longs (32 bits in MINIX). */
00128 #define LONG_MIN (-2147483647L-1)/* minimum value of a long */
00129 #define LONG_MAX 2147483647L /* maximum value of a long */
00130 #define ULONG_MAX 0xFFFFFFFFL /* maximum value of an unsigned long */
00131
00132 #include <sys/dir.h>
00133
00134 /* Minimum sizes required by the POSIX P1003.1 standard (Table 2-3). */
00135 #ifdef _POSIX_SOURCE /* these are only visible for POSIX */
00136 #define _POSIX_ARG_MAX 4096 /* exec() may have 4K worth of args */
00137 #define _POSIX_CHILD_MAX 6 /* a process may have 6 children */
00138 #define _POSIX_LINK_MAX 8 /* a file may have 8 links */
00139 #define _POSIX_MAX_CANON 255 /* size of the canonical input queue */
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00140 #define _POSIX_MAX_INPUT 255 /* you can type 255 chars ahead */
00141 #define _POSIX_NAME_MAX DIRSIZ /* a file name may have 14 chars */
00142 #define _POSIX_NGROUPS_MAX 0 /* supplementary group IDs are optional */
00143 #define _POSIX_OPEN_MAX 16 /* a process may have 16 files open */
00144 #define _POSIX_PATH_MAX 255 /* a pathname may contain 255 chars */
00145 #define _POSIX_PIPE_BUF 512 /* pipes writes of 512 bytes must be atomic */
00146 #define _POSIX_STREAM_MAX 8 /* at least 8 FILEs can be open at once */
00147 #define _POSIX_TZNAME_MAX 3 /* time zone names can be at least 3 chars */
00148 #define _POSIX_SSIZE_MAX 32767 /* read() must support 32767 byte reads */
00149
00150 /* Values actually implemented by MINIX (Tables 2-4, 2-5, 2-6, and 2-7). */
00151 /* Some of these old names had better be defined when not POSIX. */
00152 #define _NO_LIMIT 100 /* arbitrary number; limit not enforced */
00153
00154 #define NGROUPS_MAX 0 /* supplemental group IDs not available */
00155 #define ARG_MAX 16384 /* # bytes of args + environ for exec() */
00156 #define CHILD_MAX _NO_LIMIT /* MINIX does not limit children */
00157 #define OPEN_MAX 20 /* # open files a process may have */
00158 #define LINK_MAX SHRT_MAX /* # links a file may have */
00159 #define MAX_CANON 255 /* size of the canonical input queue */
00160 #define MAX_INPUT 255 /* size of the type-ahead buffer */
00161 #define NAME_MAX DIRSIZ /* # chars in a file name */
00162 #define PATH_MAX 255 /* # chars in a path name */
00163 #define PIPE_BUF 7168 /* # bytes in atomic write to a pipe */
00164 #define STREAM_MAX 20 /* must be the same as FOPEN_MAX in stdio.h */
00165 #define TZNAME_MAX 3 /* maximum bytes in a time zone name is 3 */
00166 #define SSIZE_MAX 32767 /* max defined byte count for read() */
00167
00168 #endif /* _POSIX_SOURCE */
00169
00170 #endif /* _LIMITS_H */

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
include/errno.h

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

00200 /* The <errno.h> header defines the numbers of the various errors that can
00201 * occur during program execution. They are visible to user programs and
00202 * should be small positive integers. However, they are also used within
00203 * MINIX, where they must be negative. For example, the READ system call is
00204 * executed internally by calling do_read(). This function returns either a
00205 * (negative) error number or a (positive) number of bytes actually read.
00206 *
00207 * To solve the problem of having the error numbers be negative inside the
00208 * the system and positive outside, the following mechanism is used. All the
00209 * definitions are are the form:
00210 *
00211 * #define EPERM (_SIGN 1)
00212 *
00213 * If the macro _SYSTEM is defined, then _SIGN is set to "-", otherwise it is
00214 * set to "". Thus when compiling the operating system, the macro _SYSTEM
00215 * will be defined, setting EPERM to (- 1), whereas when when this
00216 * file is included in an ordinary user program, EPERM has the value ( 1).
00217 */
00218
00219 #ifndef _ERRNO_H /* check if <errno.h> is already included */
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00220 #define _ERRNO_H /* it is not included; note that fact */
00221
00222 /* Now define _SIGN as "" or "-" depending on _SYSTEM. */
00223 #ifdef _SYSTEM
00224 # define _SIGN -
00225 # define OK 0
00226 #else
00227 # define _SIGN
00228 #endif
00229
00230 extern int errno; /* place where the error numbers go */
00231
00232 /* Here are the numerical values of the error numbers. */
00233 #define _NERROR 70 /* number of errors */
00234
00235 #define EGENERIC (_SIGN 99) /* generic error */
00236 #define EPERM (_SIGN 1) /* operation not permitted */
00237 #define ENOENT (_SIGN 2) /* no such file or directory */
00238 #define ESRCH (_SIGN 3) /* no such process */
00239 #define EINTR (_SIGN 4) /* interrupted function call */
00240 #define EIO (_SIGN 5) /* input/output error */
00241 #define ENXIO (_SIGN 6) /* no such device or address */
00242 #define E2BIG (_SIGN 7) /* arg list too long */
00243 #define ENOEXEC (_SIGN 8) /* exec format error */
00244 #define EBADF (_SIGN 9) /* bad file descriptor */
00245 #define ECHILD (_SIGN 10) /* no child process */
00246 #define EAGAIN (_SIGN 11) /* resource temporarily unavailable */
00247 #define ENOMEM (_SIGN 12) /* not enough space */
00248 #define EACCES (_SIGN 13) /* permission denied */
00249 #define EFAULT (_SIGN 14) /* bad address */
00250 #define ENOTBLK (_SIGN 15) /* Extension: not a block special file */
00251 #define EBUSY (_SIGN 16) /* resource busy */
00252 #define EEXIST (_SIGN 17) /* file exists */
00253 #define EXDEV (_SIGN 18) /* improper link */
00254 #define ENODEV (_SIGN 19) /* no such device */
00255 #define ENOTDIR (_SIGN 20) /* not a directory */
00256 #define EISDIR (_SIGN 21) /* is a directory */
00257 #define EINVAL (_SIGN 22) /* invalid argument */
00258 #define ENFILE (_SIGN 23) /* too many open files in system */
00259 #define EMFILE (_SIGN 24) /* too many open files */
00260 #define ENOTTY (_SIGN 25) /* inappropriate I/O control operation */
00261 #define ETXTBSY (_SIGN 26) /* no longer used */
00262 #define EFBIG (_SIGN 27) /* file too large */
00263 #define ENOSPC (_SIGN 28) /* no space left on device */
00264 #define ESPIPE (_SIGN 29) /* invalid seek */
00265 #define EROFS (_SIGN 30) /* read-only file system */
00266 #define EMLINK (_SIGN 31) /* too many links */
00267 #define EPIPE (_SIGN 32) /* broken pipe */
00268 #define EDOM (_SIGN 33) /* domain error (from ANSI C std) */
00269 #define ERANGE (_SIGN 34) /* result too large (from ANSI C std) */
00270 #define EDEADLK (_SIGN 35) /* resource deadlock avoided */
00271 #define ENAMETOOLONG (_SIGN 36) /* file name too long */
00272 #define ENOLCK (_SIGN 37) /* no locks available */
00273 #define ENOSYS (_SIGN 38) /* function not implemented */
00274 #define ENOTEMPTY (_SIGN 39) /* directory not empty */
00275
00276 /* The following errors relate to networking. */
00277 #define EPACKSIZE (_SIGN 50) /* invalid packet size for some protocol */
00278 #define EOUTOFBUFS (_SIGN 51) /* not enough buffers left */
00279 #define EBADIOCTL (_SIGN 52) /* illegal ioctl for device */
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00280 #define EBADMODE (_SIGN 53) /* badmode in ioctl */
00281 #define EWOULDBLOCK (_SIGN 54)
00282 #define EBADDEST (_SIGN 55) /* not a valid destination address */
00283 #define EDSTNOTRCH (_SIGN 56) /* destination not reachable */
00284 #define EISCONN (_SIGN 57) /* all ready connected */
00285 #define EADDRINUSE (_SIGN 58) /* address in use */
00286 #define ECONNREFUSED (_SIGN 59) /* connection refused */
00287 #define ECONNRESET (_SIGN 60) /* connection reset */
00288 #define ETIMEDOUT (_SIGN 61) /* connection timed out */
00289 #define EURG (_SIGN 62) /* urgent data present */
00290 #define ENOURG (_SIGN 63) /* no urgent data present */
00291 #define ENOTCONN (_SIGN 64) /* no connection (yet or anymore) */
00292 #define ESHUTDOWN (_SIGN 65) /* a write call to a shutdown connection */
00293 #define ENOCONN (_SIGN 66) /* no such connection */
00294 #define EAFNOSUPPORT (_SIGN 67) /* address family not supported */
00295 #define EPROTONOSUPPORT (_SIGN 68) /* protocol not supported by AF */
00296 #define EPROTOTYPE (_SIGN 69) /* Protocol wrong type for socket */
00297 #define EINPROGRESS (_SIGN 70) /* Operation now in progress */
00298 #define EADDRNOTAVAIL (_SIGN 71) /* Can’t assign requested address */
00299 #define EALREADY (_SIGN 72) /* Connection already in progress */
00300 #define EMSGSIZE (_SIGN 73) /* Message too long */
00301
00302 /* The following are not POSIX errors, but they can still happen.
00303 * All of these are generated by the kernel and relate to message passing.
00304 */
00305 #define ELOCKED (_SIGN 101) /* can’t send message due to deadlock */
00306 #define EBADCALL (_SIGN 102) /* illegal system call number */
00307 #define EBADSRCDST (_SIGN 103) /* bad source or destination process */
00308 #define ECALLDENIED (_SIGN 104) /* no permission for system call */
00309 #define EDEADDST (_SIGN 105) /* send destination is not alive */
00310 #define ENOTREADY (_SIGN 106) /* source or destination is not ready */
00311 #define EBADREQUEST (_SIGN 107) /* destination cannot handle request */
00312 #define EDONTREPLY (_SIGN 201) /* pseudo-code: don’t send a reply */
00313
00314 #endif /* _ERRNO_H */

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
include/unistd.h

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

00400 /* The <unistd.h> header contains a few miscellaneous manifest constants. */
00401
00402 #ifndef _UNISTD_H
00403 #define _UNISTD_H
00404
00405 #ifndef _TYPES_H
00406 #include <sys/types.h>
00407 #endif
00408
00409 /* Values used by access(). POSIX Table 2-8. */
00410 #define F_OK 0 /* test if file exists */
00411 #define X_OK 1 /* test if file is executable */
00412 #define W_OK 2 /* test if file is writable */
00413 #define R_OK 4 /* test if file is readable */
00414
00415 /* Values used for whence in lseek(fd, offset, whence). POSIX Table 2-9. */
00416 #define SEEK_SET 0 /* offset is absolute */
00417 #define SEEK_CUR 1 /* offset is relative to current position */
00418 #define SEEK_END 2 /* offset is relative to end of file */
00419
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00420 /* This value is required by POSIX Table 2-10. */
00421 #define _POSIX_VERSION 199009L /* which standard is being conformed to */
00422
00423 /* These three definitions are required by POSIX Sec. 8.2.1.2. */
00424 #define STDIN_FILENO 0 /* file descriptor for stdin */
00425 #define STDOUT_FILENO 1 /* file descriptor for stdout */
00426 #define STDERR_FILENO 2 /* file descriptor for stderr */
00427
00428 #ifdef _MINIX
00429 /* How to exit the system or stop a server process. */
00430 #define RBT_HALT 0
00431 #define RBT_REBOOT 1
00432 #define RBT_PANIC 2 /* a server panics */
00433 #define RBT_MONITOR 3 /* let the monitor do this */
00434 #define RBT_RESET 4 /* hard reset the system */
00435 #endif
00436
00437 /* What system info to retrieve with sysgetinfo(). */
00438 #define SI_KINFO 0 /* get kernel info via PM */
00439 #define SI_PROC_ADDR 1 /* address of process table */
00440 #define SI_PROC_TAB 2 /* copy of entire process table */
00441 #define SI_DMAP_TAB 3 /* get device <-> driver mappings */
00442
00443 /* NULL must be defined in <unistd.h> according to POSIX Sec. 2.7.1. */
00444 #define NULL ((void *)0)
00445
00446 /* The following relate to configurable system variables. POSIX Table 4-2. */
00447 #define _SC_ARG_MAX 1
00448 #define _SC_CHILD_MAX 2
00449 #define _SC_CLOCKS_PER_SEC 3
00450 #define _SC_CLK_TCK 3
00451 #define _SC_NGROUPS_MAX 4
00452 #define _SC_OPEN_MAX 5
00453 #define _SC_JOB_CONTROL 6
00454 #define _SC_SAVED_IDS 7
00455 #define _SC_VERSION 8
00456 #define _SC_STREAM_MAX 9
00457 #define _SC_TZNAME_MAX 10
00458
00459 /* The following relate to configurable pathname variables. POSIX Table 5-2. */
00460 #define _PC_LINK_MAX 1 /* link count */
00461 #define _PC_MAX_CANON 2 /* size of the canonical input queue */
00462 #define _PC_MAX_INPUT 3 /* type-ahead buffer size */
00463 #define _PC_NAME_MAX 4 /* file name size */
00464 #define _PC_PATH_MAX 5 /* pathname size */
00465 #define _PC_PIPE_BUF 6 /* pipe size */
00466 #define _PC_NO_TRUNC 7 /* treatment of long name components */
00467 #define _PC_VDISABLE 8 /* tty disable */
00468 #define _PC_CHOWN_RESTRICTED 9 /* chown restricted or not */
00469
00470 /* POSIX defines several options that may be implemented or not, at the
00471 * implementer’s whim. This implementer has made the following choices:
00472 *
00473 * _POSIX_JOB_CONTROL not defined: no job control
00474 * _POSIX_SAVED_IDS not defined: no saved uid/gid
00475 * _POSIX_NO_TRUNC defined as -1: long path names are truncated
00476 * _POSIX_CHOWN_RESTRICTED defined: you can’t give away files
00477 * _POSIX_VDISABLE defined: tty functions can be disabled
00478 */
00479 #define _POSIX_NO_TRUNC (-1)
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00480 #define _POSIX_CHOWN_RESTRICTED 1
00481
00482 /* Function Prototypes. */
00483 _PROTOTYPE( void _exit, (int _status) );
00484 _PROTOTYPE( int access, (const char *_path, int _amode) );
00485 _PROTOTYPE( unsigned int alarm, (unsigned int _seconds) );
00486 _PROTOTYPE( int chdir, (const char *_path) );
00487 _PROTOTYPE( int fchdir, (int fd) );
00488 _PROTOTYPE( int chown, (const char *_path, _mnx_Uid_t _owner, _mnx_Gid_t _group) );
00489 _PROTOTYPE( int close, (int _fd) );
00490 _PROTOTYPE( char *ctermid, (char *_s) );
00491 _PROTOTYPE( char *cuserid, (char *_s) );
00492 _PROTOTYPE( int dup, (int _fd) );
00493 _PROTOTYPE( int dup2, (int _fd, int _fd2) );
00494 _PROTOTYPE( int execl, (const char *_path, const char *_arg, ...) );
00495 _PROTOTYPE( int execle, (const char *_path, const char *_arg, ...) );
00496 _PROTOTYPE( int execlp, (const char *_file, const char *arg, ...) );
00497 _PROTOTYPE( int execv, (const char *_path, char *const _argv[]) );
00498 _PROTOTYPE( int execve, (const char *_path, char *const _argv[],
00499 char *const _envp[]) );
00500 _PROTOTYPE( int execvp, (const char *_file, char *const _argv[]) );
00501 _PROTOTYPE( pid_t fork, (void) );
00502 _PROTOTYPE( long fpathconf, (int _fd, int _name) );
00503 _PROTOTYPE( char *getcwd, (char *_buf, size_t _size) );
00504 _PROTOTYPE( gid_t getegid, (void) );
00505 _PROTOTYPE( uid_t geteuid, (void) );
00506 _PROTOTYPE( gid_t getgid, (void) );
00507 _PROTOTYPE( int getgroups, (int _gidsetsize, gid_t _grouplist[]) );
00508 _PROTOTYPE( char *getlogin, (void) );
00509 _PROTOTYPE( pid_t getpgrp, (void) );
00510 _PROTOTYPE( pid_t getpid, (void) );
00511 _PROTOTYPE( pid_t getppid, (void) );
00512 _PROTOTYPE( uid_t getuid, (void) );
00513 _PROTOTYPE( int isatty, (int _fd) );
00514 _PROTOTYPE( int link, (const char *_existing, const char *_new) );
00515 _PROTOTYPE( off_t lseek, (int _fd, off_t _offset, int _whence) );
00516 _PROTOTYPE( long pathconf, (const char *_path, int _name) );
00517 _PROTOTYPE( int pause, (void) );
00518 _PROTOTYPE( int pipe, (int _fildes[2]) );
00519 _PROTOTYPE( ssize_t read, (int _fd, void *_buf, size_t _n) );
00520 _PROTOTYPE( int rmdir, (const char *_path) );
00521 _PROTOTYPE( int setgid, (_mnx_Gid_t _gid) );
00522 _PROTOTYPE( int setpgid, (pid_t _pid, pid_t _pgid) );
00523 _PROTOTYPE( pid_t setsid, (void) );
00524 _PROTOTYPE( int setuid, (_mnx_Uid_t _uid) );
00525 _PROTOTYPE( unsigned int sleep, (unsigned int _seconds) );
00526 _PROTOTYPE( long sysconf, (int _name) );
00527 _PROTOTYPE( pid_t tcgetpgrp, (int _fd) );
00528 _PROTOTYPE( int tcsetpgrp, (int _fd, pid_t _pgrp_id) );
00529 _PROTOTYPE( char *ttyname, (int _fd) );
00530 _PROTOTYPE( int unlink, (const char *_path) );
00531 _PROTOTYPE( ssize_t write, (int _fd, const void *_buf, size_t _n) );
00532
00533 /* Open Group Base Specifications Issue 6 (not complete) */
00534 _PROTOTYPE( int symlink, (const char *path1, const char *path2) );
00535 _PROTOTYPE( int getopt, (int _argc, char **_argv, char *_opts) );
00536 extern char *optarg;
00537 extern int optind, opterr, optopt;
00538 _PROTOTYPE( int usleep, (useconds_t _useconds) );
00539
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00540 #ifdef _MINIX
00541 #ifndef _TYPE_H
00542 #include <minix/type.h>
00543 #endif
00544 _PROTOTYPE( int brk, (char *_addr) );
00545 _PROTOTYPE( int chroot, (const char *_name) );
00546 _PROTOTYPE( int mknod, (const char *_name, _mnx_Mode_t _mode, Dev_t _addr) );
00547 _PROTOTYPE( int mknod4, (const char *_name, _mnx_Mode_t _mode, Dev_t _addr,
00548 long _size) );
00549 _PROTOTYPE( char *mktemp, (char *_template) );
00550 _PROTOTYPE( int mount, (char *_spec, char *_name, int _flag) );
00551 _PROTOTYPE( long ptrace, (int _req, pid_t _pid, long _addr, long _data) );
00552 _PROTOTYPE( char *sbrk, (int _incr) );
00553 _PROTOTYPE( int sync, (void) );
00554 _PROTOTYPE( int fsync, (int fd) );
00555 _PROTOTYPE( int umount, (const char *_name) );
00556 _PROTOTYPE( int reboot, (int _how, ...) );
00557 _PROTOTYPE( int gethostname, (char *_hostname, size_t _len) );
00558 _PROTOTYPE( int getdomainname, (char *_domain, size_t _len) );
00559 _PROTOTYPE( int ttyslot, (void) );
00560 _PROTOTYPE( int fttyslot, (int _fd) );
00561 _PROTOTYPE( char *crypt, (const char *_key, const char *_salt) );
00562 _PROTOTYPE( int getsysinfo, (int who, int what, void *where) );
00563 _PROTOTYPE( int getprocnr, (void) );
00564 _PROTOTYPE( int findproc, (char *proc_name, int *proc_nr) );
00565 _PROTOTYPE( int allocmem, (phys_bytes size, phys_bytes *base) );
00566 _PROTOTYPE( int freemem, (phys_bytes size, phys_bytes base) );
00567 #define DEV_MAP 1
00568 #define DEV_UNMAP 2
00569 #define mapdriver(driver, device, style) devctl(DEV_MAP, driver, device, style)
00570 #define unmapdriver(device) devctl(DEV_UNMAP, 0, device, 0)
00571 _PROTOTYPE( int devctl, (int ctl_req, int driver, int device, int style));
00572
00573 /* For compatibility with other Unix systems */
00574 _PROTOTYPE( int getpagesize, (void) );
00575 _PROTOTYPE( int setgroups, (int ngroups, const gid_t *gidset) );
00576
00577 #endif
00578
00579 _PROTOTYPE( int readlink, (const char *, char *, int));
00580 _PROTOTYPE( int getopt, (int, char **, char *));
00581 extern int optind, opterr, optopt;
00582
00583 #endif /* _UNISTD_H */

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
include/string.h

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

00600 /* The <string.h> header contains prototypes for the string handling
00601 * functions.
00602 */
00603
00604 #ifndef _STRING_H
00605 #define _STRING_H
00606
00607 #define NULL ((void *)0)
00608
00609 #ifndef _SIZE_T
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00610 #define _SIZE_T
00611 typedef unsigned int size_t; /* type returned by sizeof */
00612 #endif /*_SIZE_T */
00613
00614 /* Function Prototypes. */
00615 #ifndef _ANSI_H
00616 #include <ansi.h>
00617 #endif
00618
00619 _PROTOTYPE( void *memchr, (const void *_s, int _c, size_t _n) );
00620 _PROTOTYPE( int memcmp, (const void *_s1, const void *_s2, size_t _n) );
00621 _PROTOTYPE( void *memcpy, (void *_s1, const void *_s2, size_t _n) );
00622 _PROTOTYPE( void *memmove, (void *_s1, const void *_s2, size_t _n) );
00623 _PROTOTYPE( void *memset, (void *_s, int _c, size_t _n) );
00624 _PROTOTYPE( char *strcat, (char *_s1, const char *_s2) );
00625 _PROTOTYPE( char *strchr, (const char *_s, int _c) );
00626 _PROTOTYPE( int strncmp, (const char *_s1, const char *_s2, size_t _n) );
00627 _PROTOTYPE( int strcmp, (const char *_s1, const char *_s2) );
00628 _PROTOTYPE( int strcoll, (const char *_s1, const char *_s2) );
00629 _PROTOTYPE( char *strcpy, (char *_s1, const char *_s2) );
00630 _PROTOTYPE( size_t strcspn, (const char *_s1, const char *_s2) );
00631 _PROTOTYPE( char *strerror, (int _errnum) );
00632 _PROTOTYPE( size_t strlen, (const char *_s) );
00633 _PROTOTYPE( char *strncat, (char *_s1, const char *_s2, size_t _n) );
00634 _PROTOTYPE( char *strncpy, (char *_s1, const char *_s2, size_t _n) );
00635 _PROTOTYPE( char *strpbrk, (const char *_s1, const char *_s2) );
00636 _PROTOTYPE( char *strrchr, (const char *_s, int _c) );
00637 _PROTOTYPE( size_t strspn, (const char *_s1, const char *_s2) );
00638 _PROTOTYPE( char *strstr, (const char *_s1, const char *_s2) );
00639 _PROTOTYPE( char *strtok, (char *_s1, const char *_s2) );
00640 _PROTOTYPE( size_t strxfrm, (char *_s1, const char *_s2, size_t _n) );
00641
00642 #ifdef _POSIX_SOURCE
00643 /* Open Group Base Specifications Issue 6 (not complete) */
00644 char *strdup(const char *_s1);
00645 #endif
00646
00647 #ifdef _MINIX
00648 /* For backward compatibility. */
00649 _PROTOTYPE( char *index, (const char *_s, int _charwanted) );
00650 _PROTOTYPE( char *rindex, (const char *_s, int _charwanted) );
00651 _PROTOTYPE( void bcopy, (const void *_src, void *_dst, size_t _length) );
00652 _PROTOTYPE( int bcmp, (const void *_s1, const void *_s2, size_t _length));
00653 _PROTOTYPE( void bzero, (void *_dst, size_t _length) );
00654 _PROTOTYPE( void *memccpy, (char *_dst, const char *_src, int _ucharstop,
00655 size_t _size) );
00656
00657 /* Misc. extra functions */
00658 _PROTOTYPE( int strcasecmp, (const char *_s1, const char *_s2) );
00659 _PROTOTYPE( int strncasecmp, (const char *_s1, const char *_s2,
00660 size_t _len) );
00661 _PROTOTYPE( size_t strnlen, (const char *_s, size_t _n) );
00662 #endif
00663
00664 #endif /* _STRING_H */
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++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
include/signal.h

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

00700 /* The <signal.h> header defines all the ANSI and POSIX signals.
00701 * MINIX supports all the signals required by POSIX. They are defined below.
00702 * Some additional signals are also supported.
00703 */
00704
00705 #ifndef _SIGNAL_H
00706 #define _SIGNAL_H
00707
00708 #ifndef _ANSI_H
00709 #include <ansi.h>
00710 #endif
00711 #ifdef _POSIX_SOURCE
00712 #ifndef _TYPES_H
00713 #include <sys/types.h>
00714 #endif
00715 #endif
00716
00717 /* Here are types that are closely associated with signal handling. */
00718 typedef int sig_atomic_t;
00719
00720 #ifdef _POSIX_SOURCE
00721 #ifndef _SIGSET_T
00722 #define _SIGSET_T
00723 typedef unsigned long sigset_t;
00724 #endif
00725 #endif
00726
00727 #define _NSIG 20 /* number of signals used */
00728
00729 #define SIGHUP 1 /* hangup */
00730 #define SIGINT 2 /* interrupt (DEL) */
00731 #define SIGQUIT 3 /* quit (ASCII FS) */
00732 #define SIGILL 4 /* illegal instruction */
00733 #define SIGTRAP 5 /* trace trap (not reset when caught) */
00734 #define SIGABRT 6 /* IOT instruction */
00735 #define SIGIOT 6 /* SIGABRT for people who speak PDP-11 */
00736 #define SIGUNUSED 7 /* spare code */
00737 #define SIGFPE 8 /* floating point exception */
00738 #define SIGKILL 9 /* kill (cannot be caught or ignored) */
00739 #define SIGUSR1 10 /* user defined signal # 1 */
00740 #define SIGSEGV 11 /* segmentation violation */
00741 #define SIGUSR2 12 /* user defined signal # 2 */
00742 #define SIGPIPE 13 /* write on a pipe with no one to read it */
00743 #define SIGALRM 14 /* alarm clock */
00744 #define SIGTERM 15 /* software termination signal from kill */
00745 #define SIGCHLD 17 /* child process terminated or stopped */
00746
00747 #define SIGEMT 7 /* obsolete */
00748 #define SIGBUS 10 /* obsolete */
00749
00750 /* MINIX specific signals. These signals are not used by user proceses,
00751 * but meant to inform system processes, like the PM, about system events.
00752 */
00753 #define SIGKMESS 18 /* new kernel message */
00754 #define SIGKSIG 19 /* kernel signal pending */
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00755 #define SIGKSTOP 20 /* kernel shutting down */
00756
00757 /* POSIX requires the following signals to be defined, even if they are
00758 * not supported. Here are the definitions, but they are not supported.
00759 */
00760 #define SIGCONT 18 /* continue if stopped */
00761 #define SIGSTOP 19 /* stop signal */
00762 #define SIGTSTP 20 /* interactive stop signal */
00763 #define SIGTTIN 21 /* background process wants to read */
00764 #define SIGTTOU 22 /* background process wants to write */
00765
00766 /* The sighandler_t type is not allowed unless _POSIX_SOURCE is defined. */
00767 typedef void _PROTOTYPE( (*__sighandler_t), (int) );
00768
00769 /* Macros used as function pointers. */
00770 #define SIG_ERR ((__sighandler_t) -1) /* error return */
00771 #define SIG_DFL ((__sighandler_t) 0) /* default signal handling */
00772 #define SIG_IGN ((__sighandler_t) 1) /* ignore signal */
00773 #define SIG_HOLD ((__sighandler_t) 2) /* block signal */
00774 #define SIG_CATCH ((__sighandler_t) 3) /* catch signal */
00775 #define SIG_MESS ((__sighandler_t) 4) /* pass as message (MINIX) */
00776
00777 #ifdef _POSIX_SOURCE
00778 struct sigaction {
00779 __sighandler_t sa_handler; /* SIG_DFL, SIG_IGN, or pointer to function */
00780 sigset_t sa_mask; /* signals to be blocked during handler */
00781 int sa_flags; /* special flags */
00782 };
00783
00784 /* Fields for sa_flags. */
00785 #define SA_ONSTACK 0x0001 /* deliver signal on alternate stack */
00786 #define SA_RESETHAND 0x0002 /* reset signal handler when signal caught */
00787 #define SA_NODEFER 0x0004 /* don’t block signal while catching it */
00788 #define SA_RESTART 0x0008 /* automatic system call restart */
00789 #define SA_SIGINFO 0x0010 /* extended signal handling */
00790 #define SA_NOCLDWAIT 0x0020 /* don’t create zombies */
00791 #define SA_NOCLDSTOP 0x0040 /* don’t receive SIGCHLD when child stops */
00792
00793 /* POSIX requires these values for use with sigprocmask(2). */
00794 #define SIG_BLOCK 0 /* for blocking signals */
00795 #define SIG_UNBLOCK 1 /* for unblocking signals */
00796 #define SIG_SETMASK 2 /* for setting the signal mask */
00797 #define SIG_INQUIRE 4 /* for internal use only */
00798 #endif /* _POSIX_SOURCE */
00799
00800 /* POSIX and ANSI function prototypes. */
00801 _PROTOTYPE( int raise, (int _sig) );
00802 _PROTOTYPE( __sighandler_t signal, (int _sig, __sighandler_t _func) );
00803
00804 #ifdef _POSIX_SOURCE
00805 _PROTOTYPE( int kill, (pid_t _pid, int _sig) );
00806 _PROTOTYPE( int sigaction,
00807 (int _sig, const struct sigaction *_act, struct sigaction *_oact) );
00808 _PROTOTYPE( int sigaddset, (sigset_t *_set, int _sig) );
00809 _PROTOTYPE( int sigdelset, (sigset_t *_set, int _sig) );
00810 _PROTOTYPE( int sigemptyset, (sigset_t *_set) );
00811 _PROTOTYPE( int sigfillset, (sigset_t *_set) );
00812 _PROTOTYPE( int sigismember, (const sigset_t *_set, int _sig) );
00813 _PROTOTYPE( int sigpending, (sigset_t *_set) );
00814 _PROTOTYPE( int sigprocmask,
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00815 (int _how, const sigset_t *_set, sigset_t *_oset) );
00816 _PROTOTYPE( int sigsuspend, (const sigset_t *_sigmask) );
00817 #endif
00818
00819 #endif /* _SIGNAL_H */

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
include/fcntl.h

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

00900 /* The <fcntl.h> header is needed by the open() and fcntl() system calls,
00901 * which have a variety of parameters and flags. They are described here.
00902 * The formats of the calls to each of these are:
00903 *
00904 * open(path, oflag [,mode]) open a file
00905 * fcntl(fd, cmd [,arg]) get or set file attributes
00906 *
00907 */
00908
00909 #ifndef _FCNTL_H
00910 #define _FCNTL_H
00911
00912 #ifndef _TYPES_H
00913 #include <sys/types.h>
00914 #endif
00915
00916 /* These values are used for cmd in fcntl(). POSIX Table 6-1. */
00917 #define F_DUPFD 0 /* duplicate file descriptor */
00918 #define F_GETFD 1 /* get file descriptor flags */
00919 #define F_SETFD 2 /* set file descriptor flags */
00920 #define F_GETFL 3 /* get file status flags */
00921 #define F_SETFL 4 /* set file status flags */
00922 #define F_GETLK 5 /* get record locking information */
00923 #define F_SETLK 6 /* set record locking information */
00924 #define F_SETLKW 7 /* set record locking info; wait if blocked */
00925
00926 /* File descriptor flags used for fcntl(). POSIX Table 6-2. */
00927 #define FD_CLOEXEC 1 /* close on exec flag for third arg of fcntl */
00928
00929 /* L_type values for record locking with fcntl(). POSIX Table 6-3. */
00930 #define F_RDLCK 1 /* shared or read lock */
00931 #define F_WRLCK 2 /* exclusive or write lock */
00932 #define F_UNLCK 3 /* unlock */
00933
00934 /* Oflag values for open(). POSIX Table 6-4. */
00935 #define O_CREAT 00100 /* creat file if it doesn’t exist */
00936 #define O_EXCL 00200 /* exclusive use flag */
00937 #define O_NOCTTY 00400 /* do not assign a controlling terminal */
00938 #define O_TRUNC 01000 /* truncate flag */
00939
00940 /* File status flags for open() and fcntl(). POSIX Table 6-5. */
00941 #define O_APPEND 02000 /* set append mode */
00942 #define O_NONBLOCK 04000 /* no delay */
00943
00944 /* File access modes for open() and fcntl(). POSIX Table 6-6. */
00945 #define O_RDONLY 0 /* open(name, O_RDONLY) opens read only */
00946 #define O_WRONLY 1 /* open(name, O_WRONLY) opens write only */
00947 #define O_RDWR 2 /* open(name, O_RDWR) opens read/write */
00948
00949 /* Mask for use with file access modes. POSIX Table 6-7. */
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00950 #define O_ACCMODE 03 /* mask for file access modes */
00951
00952 /* Struct used for locking. POSIX Table 6-8. */
00953 struct flock {
00954 short l_type; /* type: F_RDLCK, F_WRLCK, or F_UNLCK */
00955 short l_whence; /* flag for starting offset */
00956 off_t l_start; /* relative offset in bytes */
00957 off_t l_len; /* size; if 0, then until EOF */
00958 pid_t l_pid; /* process id of the locks’ owner */
00959 };
00960
00961 /* Function Prototypes. */
00962 _PROTOTYPE( int creat, (const char *_path, _mnx_Mode_t _mode) );
00963 _PROTOTYPE( int fcntl, (int _filedes, int _cmd, ...) );
00964 _PROTOTYPE( int open, (const char *_path, int _oflag, ...) );
00965
00966 #endif /* _FCNTL_H */

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
include/termios.h

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

01000 /* The <termios.h> header is used for controlling tty modes. */
01001
01002 #ifndef _TERMIOS_H
01003 #define _TERMIOS_H
01004
01005 typedef unsigned short tcflag_t;
01006 typedef unsigned char cc_t;
01007 typedef unsigned int speed_t;
01008
01009 #define NCCS 20 /* size of cc_c array, some extra space
01010 * for extensions. */
01011
01012 /* Primary terminal control structure. POSIX Table 7-1. */
01013 struct termios {
01014 tcflag_t c_iflag; /* input modes */
01015 tcflag_t c_oflag; /* output modes */
01016 tcflag_t c_cflag; /* control modes */
01017 tcflag_t c_lflag; /* local modes */
01018 speed_t c_ispeed; /* input speed */
01019 speed_t c_ospeed; /* output speed */
01020 cc_t c_cc[NCCS]; /* control characters */
01021 };
01022
01023 /* Values for termios c_iflag bit map. POSIX Table 7-2. */
01024 #define BRKINT 0x0001 /* signal interrupt on break */
01025 #define ICRNL 0x0002 /* map CR to NL on input */
01026 #define IGNBRK 0x0004 /* ignore break */
01027 #define IGNCR 0x0008 /* ignore CR */
01028 #define IGNPAR 0x0010 /* ignore characters with parity errors */
01029 #define INLCR 0x0020 /* map NL to CR on input */
01030 #define INPCK 0x0040 /* enable input parity check */
01031 #define ISTRIP 0x0080 /* mask off 8th bit */
01032 #define IXOFF 0x0100 /* enable start/stop input control */
01033 #define IXON 0x0200 /* enable start/stop output control */
01034 #define PARMRK 0x0400 /* mark parity errors in the input queue */
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01035
01036 /* Values for termios c_oflag bit map. POSIX Sec. 7.1.2.3. */
01037 #define OPOST 0x0001 /* perform output processing */
01038
01039 /* Values for termios c_cflag bit map. POSIX Table 7-3. */
01040 #define CLOCAL 0x0001 /* ignore modem status lines */
01041 #define CREAD 0x0002 /* enable receiver */
01042 #define CSIZE 0x000C /* number of bits per character */
01043 #define CS5 0x0000 /* if CSIZE is CS5, characters are 5 bits */
01044 #define CS6 0x0004 /* if CSIZE is CS6, characters are 6 bits */
01045 #define CS7 0x0008 /* if CSIZE is CS7, characters are 7 bits */
01046 #define CS8 0x000C /* if CSIZE is CS8, characters are 8 bits */
01047 #define CSTOPB 0x0010 /* send 2 stop bits if set, else 1 */
01048 #define HUPCL 0x0020 /* hang up on last close */
01049 #define PARENB 0x0040 /* enable parity on output */
01050 #define PARODD 0x0080 /* use odd parity if set, else even */
01051
01052 /* Values for termios c_lflag bit map. POSIX Table 7-4. */
01053 #define ECHO 0x0001 /* enable echoing of input characters */
01054 #define ECHOE 0x0002 /* echo ERASE as backspace */
01055 #define ECHOK 0x0004 /* echo KILL */
01056 #define ECHONL 0x0008 /* echo NL */
01057 #define ICANON 0x0010 /* canonical input (erase and kill enabled) */
01058 #define IEXTEN 0x0020 /* enable extended functions */
01059 #define ISIG 0x0040 /* enable signals */
01060 #define NOFLSH 0x0080 /* disable flush after interrupt or quit */
01061 #define TOSTOP 0x0100 /* send SIGTTOU (job control, not implemented*/
01062
01063 /* Indices into c_cc array. Default values in parentheses. POSIX Table 7-5. */
01064 #define VEOF 0 /* cc_c[VEOF] = EOF char (ˆD) */
01065 #define VEOL 1 /* cc_c[VEOL] = EOL char (undef) */
01066 #define VERASE 2 /* cc_c[VERASE] = ERASE char (ˆH) */
01067 #define VINTR 3 /* cc_c[VINTR] = INTR char (DEL) */
01068 #define VKILL 4 /* cc_c[VKILL] = KILL char (ˆU) */
01069 #define VMIN 5 /* cc_c[VMIN] = MIN value for timer */
01070 #define VQUIT 6 /* cc_c[VQUIT] = QUIT char (ˆ\) */
01071 #define VTIME 7 /* cc_c[VTIME] = TIME value for timer */
01072 #define VSUSP 8 /* cc_c[VSUSP] = SUSP (ˆZ, ignored) */
01073 #define VSTART 9 /* cc_c[VSTART] = START char (ˆS) */
01074 #define VSTOP 10 /* cc_c[VSTOP] = STOP char (ˆQ) */
01075
01076 #define _POSIX_VDISABLE (cc_t)0xFF /* You can’t even generate this
01077 * character with ’normal’ keyboards.
01078 * But some language specific keyboards
01079 * can generate 0xFF. It seems that all
01080 * 256 are used, so cc_t should be a
01081 * short...
01082 */
01083
01084 /* Values for the baud rate settings. POSIX Table 7-6. */
01085 #define B0 0x0000 /* hang up the line */
01086 #define B50 0x1000 /* 50 baud */
01087 #define B75 0x2000 /* 75 baud */
01088 #define B110 0x3000 /* 110 baud */
01089 #define B134 0x4000 /* 134.5 baud */
01090 #define B150 0x5000 /* 150 baud */
01091 #define B200 0x6000 /* 200 baud */
01092 #define B300 0x7000 /* 300 baud */
01093 #define B600 0x8000 /* 600 baud */
01094 #define B1200 0x9000 /* 1200 baud */
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01095 #define B1800 0xA000 /* 1800 baud */
01096 #define B2400 0xB000 /* 2400 baud */
01097 #define B4800 0xC000 /* 4800 baud */
01098 #define B9600 0xD000 /* 9600 baud */
01099 #define B19200 0xE000 /* 19200 baud */
01100 #define B38400 0xF000 /* 38400 baud */
01101
01102 /* Optional actions for tcsetattr(). POSIX Sec. 7.2.1.2. */
01103 #define TCSANOW 1 /* changes take effect immediately */
01104 #define TCSADRAIN 2 /* changes take effect after output is done */
01105 #define TCSAFLUSH 3 /* wait for output to finish and flush input */
01106
01107 /* Queue_selector values for tcflush(). POSIX Sec. 7.2.2.2. */
01108 #define TCIFLUSH 1 /* flush accumulated input data */
01109 #define TCOFLUSH 2 /* flush accumulated output data */
01110 #define TCIOFLUSH 3 /* flush accumulated input and output data */
01111
01112 /* Action values for tcflow(). POSIX Sec. 7.2.2.2. */
01113 #define TCOOFF 1 /* suspend output */
01114 #define TCOON 2 /* restart suspended output */
01115 #define TCIOFF 3 /* transmit a STOP character on the line */
01116 #define TCION 4 /* transmit a START character on the line */
01117
01118 /* Function Prototypes. */
01119 #ifndef _ANSI_H
01120 #include <ansi.h>
01121 #endif
01122
01123 _PROTOTYPE( int tcsendbreak, (int _fildes, int _duration) );
01124 _PROTOTYPE( int tcdrain, (int _filedes) );
01125 _PROTOTYPE( int tcflush, (int _filedes, int _queue_selector) );
01126 _PROTOTYPE( int tcflow, (int _filedes, int _action) );
01127 _PROTOTYPE( speed_t cfgetispeed, (const struct termios *_termios_p) );
01128 _PROTOTYPE( speed_t cfgetospeed, (const struct termios *_termios_p) );
01129 _PROTOTYPE( int cfsetispeed, (struct termios *_termios_p, speed_t _speed) );
01130 _PROTOTYPE( int cfsetospeed, (struct termios *_termios_p, speed_t _speed) );
01131 _PROTOTYPE( int tcgetattr, (int _filedes, struct termios *_termios_p) );
01132 _PROTOTYPE( int tcsetattr, \
01133 (int _filedes, int _opt_actions, const struct termios *_termios_p) );
01134
01135 #define cfgetispeed(termios_p) ((termios_p)->c_ispeed)
01136 #define cfgetospeed(termios_p) ((termios_p)->c_ospeed)
01137 #define cfsetispeed(termios_p, speed) ((termios_p)->c_ispeed = (speed), 0)
01138 #define cfsetospeed(termios_p, speed) ((termios_p)->c_ospeed = (speed), 0)
01139
01140 #ifdef _MINIX
01141 /* Here are the local extensions to the POSIX standard for Minix. Posix
01142 * conforming programs are not able to access these, and therefore they are
01143 * only defined when a Minix program is compiled.
01144 */
01145
01146 /* Extensions to the termios c_iflag bit map. */
01147 #define IXANY 0x0800 /* allow any key to continue ouptut */
01148
01149 /* Extensions to the termios c_oflag bit map. They are only active iff
01150 * OPOST is enabled. */
01151 #define ONLCR 0x0002 /* Map NL to CR-NL on output */
01152 #define XTABS 0x0004 /* Expand tabs to spaces */
01153 #define ONOEOT 0x0008 /* discard EOT’s (ˆD) on output) */
01154
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01155 /* Extensions to the termios c_lflag bit map. */
01156 #define LFLUSHO 0x0200 /* Flush output. */
01157
01158 /* Extensions to the c_cc array. */
01159 #define VREPRINT 11 /* cc_c[VREPRINT] (ˆR) */
01160 #define VLNEXT 12 /* cc_c[VLNEXT] (ˆV) */
01161 #define VDISCARD 13 /* cc_c[VDISCARD] (ˆO) */
01162
01163 /* Extensions to baud rate settings. */
01164 #define B57600 0x0100 /* 57600 baud */
01165 #define B115200 0x0200 /* 115200 baud */
01166
01167 /* These are the default settings used by the kernel and by ’stty sane’ */
01168
01169 #define TCTRL_DEF (CREAD | CS8 | HUPCL)
01170 #define TINPUT_DEF (BRKINT | ICRNL | IXON | IXANY)
01171 #define TOUTPUT_DEF (OPOST | ONLCR)
01172 #define TLOCAL_DEF (ISIG | IEXTEN | ICANON | ECHO | ECHOE)
01173 #define TSPEED_DEF B9600
01174
01175 #define TEOF_DEF ’\4’ /* ˆD */
01176 #define TEOL_DEF _POSIX_VDISABLE
01177 #define TERASE_DEF ’\10’ /* ˆH */
01178 #define TINTR_DEF ’\3’ /* ˆC */
01179 #define TKILL_DEF ’\25’ /* ˆU */
01180 #define TMIN_DEF 1
01181 #define TQUIT_DEF ’\34’ /* ˆ\ */
01182 #define TSTART_DEF ’\21’ /* ˆQ */
01183 #define TSTOP_DEF ’\23’ /* ˆS */
01184 #define TSUSP_DEF ’\32’ /* ˆZ */
01185 #define TTIME_DEF 0
01186 #define TREPRINT_DEF ’\22’ /* ˆR */
01187 #define TLNEXT_DEF ’\26’ /* ˆV */
01188 #define TDISCARD_DEF ’\17’ /* ˆO */
01189
01190 /* Window size. This information is stored in the TTY driver but not used.
01191 * This can be used for screen based applications in a window environment.
01192 * The ioctls TIOCGWINSZ and TIOCSWINSZ can be used to get and set this
01193 * information.
01194 */
01195
01196 struct winsize
01197 {
01198 unsigned short ws_row; /* rows, in characters */
01199 unsigned short ws_col; /* columns, in characters */
01200 unsigned short ws_xpixel; /* horizontal size, pixels */
01201 unsigned short ws_ypixel; /* vertical size, pixels */
01202 };
01203 #endif /* _MINIX */
01204
01205 #endif /* _TERMIOS_H */
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++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
include/timers.h

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

01300 /* This library provides generic watchdog timer management functionality.
01301 * The functions operate on a timer queue provided by the caller. Note that
01302 * the timers must use absolute time to allow sorting. The library provides:
01303 *
01304 * tmrs_settimer: (re)set a new watchdog timer in the timers queue
01305 * tmrs_clrtimer: remove a timer from both the timers queue
01306 * tmrs_exptimers: check for expired timers and run watchdog functions
01307 *
01308 * Author:
01309 * Jorrit N. Herder <jnherder@cs.vu.nl>
01310 * Adapted from tmr_settimer and tmr_clrtimer in src/kernel/clock.c.
01311 * Last modified: September 30, 2004.
01312 */
01313
01314 #ifndef _TIMERS_H
01315 #define _TIMERS_H
01316
01317 #include <limits.h>
01318 #include <sys/types.h>
01319
01320 struct timer;
01321 typedef void (*tmr_func_t)(struct timer *tp);
01322 typedef union { int ta_int; long ta_long; void *ta_ptr; } tmr_arg_t;
01323
01324 /* A timer_t variable must be declare for each distinct timer to be used.
01325 * The timers watchdog function and expiration time are automatically set
01326 * by the library function tmrs_settimer, but its argument is not.
01327 */
01328 typedef struct timer
01329 {
01330 struct timer *tmr_next; /* next in a timer chain */
01331 clock_t tmr_exp_time; /* expiration time */
01332 tmr_func_t tmr_func; /* function to call when expired */
01333 tmr_arg_t tmr_arg; /* random argument */
01334 } timer_t;
01335
01336 /* Used when the timer is not active. */
01337 #define TMR_NEVER ((clock_t) -1 < 0) ? ((clock_t) LONG_MAX) : ((clock_t) -1)
01338 #undef TMR_NEVER
01339 #define TMR_NEVER ((clock_t) LONG_MAX)
01340
01341 /* These definitions can be used to set or get data from a timer variable. */
01342 #define tmr_arg(tp) (&(tp)->tmr_arg)
01343 #define tmr_exp_time(tp) (&(tp)->tmr_exp_time)
01344
01345 /* Timers should be initialized once before they are being used. Be careful
01346 * not to reinitialize a timer that is in a list of timers, or the chain
01347 * will be broken.
01348 */
01349 #define tmr_inittimer(tp) (void)((tp)->tmr_exp_time = TMR_NEVER, \
01350 (tp)->tmr_next = NULL)
01351
01352 /* The following generic timer management functions are available. They
01353 * can be used to operate on the lists of timers. Adding a timer to a list
01354 * automatically takes care of removing it.
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01355 */
01356 _PROTOTYPE( clock_t tmrs_clrtimer, (timer_t **tmrs, timer_t *tp, clock_t *new_head)
01357 _PROTOTYPE( void tmrs_exptimers, (timer_t **tmrs, clock_t now, clock_t *new_head)
01358 _PROTOTYPE( clock_t tmrs_settimer, (timer_t **tmrs, timer_t *tp,
01359 clock_t exp_time, tmr_func_t watchdog, clock_t *new_head)
01360
01361 #endif /* _TIMERS_H */
01362

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
include/sys/types.h

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

01400 /* The <sys/types.h> header contains important data type definitions.
01401 * It is considered good programming practice to use these definitions,
01402 * instead of the underlying base type. By convention, all type names end
01403 * with _t.
01404 */
01405
01406 #ifndef _TYPES_H
01407 #define _TYPES_H
01408
01409 #ifndef _ANSI_H
01410 #include <ansi.h>
01411 #endif
01412
01413 /* The type size_t holds all results of the sizeof operator. At first glance,
01414 * it seems obvious that it should be an unsigned int, but this is not always
01415 * the case. For example, MINIX-ST (68000) has 32-bit pointers and 16-bit
01416 * integers. When one asks for the size of a 70K struct or array, the result
01417 * requires 17 bits to express, so size_t must be a long type. The type
01418 * ssize_t is the signed version of size_t.
01419 */
01420 #ifndef _SIZE_T
01421 #define _SIZE_T
01422 typedef unsigned int size_t;
01423 #endif
01424
01425 #ifndef _SSIZE_T
01426 #define _SSIZE_T
01427 typedef int ssize_t;
01428 #endif
01429
01430 #ifndef _TIME_T
01431 #define _TIME_T
01432 typedef long time_t; /* time in sec since 1 Jan 1970 0000 GMT */
01433 #endif
01434
01435 #ifndef _CLOCK_T
01436 #define _CLOCK_T
01437 typedef long clock_t; /* unit for system accounting */
01438 #endif
01439
01440 #ifndef _SIGSET_T
01441 #define _SIGSET_T
01442 typedef unsigned long sigset_t;
01443 #endif
01444
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01445 /* Open Group Base Specifications Issue 6 (not complete) */
01446 typedef long useconds_t; /* Time in microseconds */
01447
01448 /* Types used in disk, inode, etc. data structures. */
01449 typedef short dev_t; /* holds (major|minor) device pair */
01450 typedef char gid_t; /* group id */
01451 typedef unsigned long ino_t; /* i-node number (V3 filesystem) */
01452 typedef unsigned short mode_t; /* file type and permissions bits */
01453 typedef short nlink_t; /* number of links to a file */
01454 typedef unsigned long off_t; /* offset within a file */
01455 typedef int pid_t; /* process id (must be signed) */
01456 typedef short uid_t; /* user id */
01457 typedef unsigned long zone_t; /* zone number */
01458 typedef unsigned long block_t; /* block number */
01459 typedef unsigned long bit_t; /* bit number in a bit map */
01460 typedef unsigned short zone1_t; /* zone number for V1 file systems */
01461 typedef unsigned short bitchunk_t; /* collection of bits in a bitmap */
01462
01463 typedef unsigned char u8_t; /* 8 bit type */
01464 typedef unsigned short u16_t; /* 16 bit type */
01465 typedef unsigned long u32_t; /* 32 bit type */
01466
01467 typedef char i8_t; /* 8 bit signed type */
01468 typedef short i16_t; /* 16 bit signed type */
01469 typedef long i32_t; /* 32 bit signed type */
01470
01471 typedef struct { u32_t _[2]; } u64_t;
01472
01473 /* The following types are needed because MINIX uses K&R style function
01474 * definitions (for maximum portability). When a short, such as dev_t, is
01475 * passed to a function with a K&R definition, the compiler automatically
01476 * promotes it to an int. The prototype must contain an int as the parameter,
01477 * not a short, because an int is what an old-style function definition
01478 * expects. Thus using dev_t in a prototype would be incorrect. It would be
01479 * sufficient to just use int instead of dev_t in the prototypes, but Dev_t
01480 * is clearer.
01481 */
01482 typedef int Dev_t;
01483 typedef int _mnx_Gid_t;
01484 typedef int Nlink_t;
01485 typedef int _mnx_Uid_t;
01486 typedef int U8_t;
01487 typedef unsigned long U32_t;
01488 typedef int I8_t;
01489 typedef int I16_t;
01490 typedef long I32_t;
01491
01492 /* ANSI C makes writing down the promotion of unsigned types very messy. When
01493 * sizeof(short) == sizeof(int), there is no promotion, so the type stays
01494 * unsigned. When the compiler is not ANSI, there is usually no loss of
01495 * unsignedness, and there are usually no prototypes so the promoted type
01496 * doesn’t matter. The use of types like Ino_t is an attempt to use ints
01497 * (which are not promoted) while providing information to the reader.
01498 */
01499
01500 typedef unsigned long Ino_t;
01501
01502 #if _EM_WSIZE == 2
01503 /*typedef unsigned int Ino_t; Ino_t is now 32 bits */
01504 typedef unsigned int Zone1_t;
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01505 typedef unsigned int Bitchunk_t;
01506 typedef unsigned int U16_t;
01507 typedef unsigned int _mnx_Mode_t;
01508
01509 #else /* _EM_WSIZE == 4, or _EM_WSIZE undefined */
01510 /*typedef int Ino_t; Ino_t is now 32 bits */
01511 typedef int Zone1_t;
01512 typedef int Bitchunk_t;
01513 typedef int U16_t;
01514 typedef int _mnx_Mode_t;
01515
01516 #endif /* _EM_WSIZE == 2, etc */
01517
01518 /* Signal handler type, e.g. SIG_IGN */
01519 typedef void _PROTOTYPE( (*sighandler_t), (int) );
01520
01521 /* Compatibility with other systems */
01522 typedef unsigned char u_char;
01523 typedef unsigned short u_short;
01524 typedef unsigned int u_int;
01525 typedef unsigned long u_long;
01526 typedef char *caddr_t;
01527
01528 #endif /* _TYPES_H */

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
include/sys/sigcontext.h

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

01600 #ifndef _SIGCONTEXT_H
01601 #define _SIGCONTEXT_H
01602
01603 /* The sigcontext structure is used by the sigreturn(2) system call.
01604 * sigreturn() is seldom called by user programs, but it is used internally
01605 * by the signal catching mechanism.
01606 */
01607
01608 #ifndef _ANSI_H
01609 #include <ansi.h>
01610 #endif
01611
01612 #ifndef _MINIX_SYS_CONFIG_H
01613 #include <minix/sys_config.h>
01614 #endif
01615
01616 #if !defined(_MINIX_CHIP)
01617 #include "error, configuration is not known"
01618 #endif
01619
01620 /* The following structure should match the stackframe_s structure used
01621 * by the kernel’s context switching code. Floating point registers should
01622 * be added in a different struct.
01623 */
01624 struct sigregs {
01625 short sr_gs;
01626 short sr_fs;
01627 short sr_es;
01628 short sr_ds;
01629 int sr_di;
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01630 int sr_si;
01631 int sr_bp;
01632 int sr_st; /* stack top -- used in kernel */
01633 int sr_bx;
01634 int sr_dx;
01635 int sr_cx;
01636 int sr_retreg;
01637 int sr_retadr; /* return address to caller of save -- used
01638 * in kernel */
01639 int sr_pc;
01640 int sr_cs;
01641 int sr_psw;
01642 int sr_sp;
01643 int sr_ss;
01644 };
01645
01646 struct sigframe { /* stack frame created for signalled process */
01647 _PROTOTYPE( void (*sf_retadr), (void) );
01648 int sf_signo;
01649 int sf_code;
01650 struct sigcontext *sf_scp;
01651 int sf_fp;
01652 _PROTOTYPE( void (*sf_retadr2), (void) );
01653 struct sigcontext *sf_scpcopy;
01654 };
01655
01656 struct sigcontext {
01657 int sc_flags; /* sigstack state to restore */
01658 long sc_mask; /* signal mask to restore */
01659 struct sigregs sc_regs; /* register set to restore */
01660 };
01661
01662 #define sc_gs sc_regs.sr_gs
01663 #define sc_fs sc_regs.sr_fs
01664 #define sc_es sc_regs.sr_es
01665 #define sc_ds sc_regs.sr_ds
01666 #define sc_di sc_regs.sr_di
01667 #define sc_si sc_regs.sr_si
01668 #define sc_fp sc_regs.sr_bp
01669 #define sc_st sc_regs.sr_st /* stack top -- used in kernel */
01670 #define sc_bx sc_regs.sr_bx
01671 #define sc_dx sc_regs.sr_dx
01672 #define sc_cx sc_regs.sr_cx
01673 #define sc_retreg sc_regs.sr_retreg
01674 #define sc_retadr sc_regs.sr_retadr /* return address to caller of
01675 save -- used in kernel */
01676 #define sc_pc sc_regs.sr_pc
01677 #define sc_cs sc_regs.sr_cs
01678 #define sc_psw sc_regs.sr_psw
01679 #define sc_sp sc_regs.sr_sp
01680 #define sc_ss sc_regs.sr_ss
01681
01682 /* Values for sc_flags. Must agree with <minix/jmp_buf.h>. */
01683 #define SC_SIGCONTEXT 2 /* nonzero when signal context is included */
01684 #define SC_NOREGLOCALS 4 /* nonzero when registers are not to be
01685 saved and restored */
01686
01687 _PROTOTYPE( int sigreturn, (struct sigcontext *_scp) );
01688
01689 #endif /* _SIGCONTEXT_H */
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++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
include/sys/stat.h

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

01700 /* The <sys/stat.h> header defines a struct that is used in the stat() and
01701 * fstat functions. The information in this struct comes from the i-node of
01702 * some file. These calls are the only approved way to inspect i-nodes.
01703 */
01704
01705 #ifndef _STAT_H
01706 #define _STAT_H
01707
01708 #ifndef _TYPES_H
01709 #include <sys/types.h>
01710 #endif
01711
01712 struct stat {
01713 dev_t st_dev; /* major/minor device number */
01714 ino_t st_ino; /* i-node number */
01715 mode_t st_mode; /* file mode, protection bits, etc. */
01716 short int st_nlink; /* # links; TEMPORARY HACK: should be nlink_t*/
01717 uid_t st_uid; /* uid of the file’s owner */
01718 short int st_gid; /* gid; TEMPORARY HACK: should be gid_t */
01719 dev_t st_rdev;
01720 off_t st_size; /* file size */
01721 time_t st_atime; /* time of last access */
01722 time_t st_mtime; /* time of last data modification */
01723 time_t st_ctime; /* time of last file status change */
01724 };
01725
01726 /* Traditional mask definitions for st_mode. */
01727 /* The ugly casts on only some of the definitions are to avoid suprising sign
01728 * extensions such as S_IFREG != (mode_t) S_IFREG when ints are 32 bits.
01729 */
01730 #define S_IFMT ((mode_t) 0170000) /* type of file */
01731 #define S_IFLNK ((mode_t) 0120000) /* symbolic link, not implemented */
01732 #define S_IFREG ((mode_t) 0100000) /* regular */
01733 #define S_IFBLK 0060000 /* block special */
01734 #define S_IFDIR 0040000 /* directory */
01735 #define S_IFCHR 0020000 /* character special */
01736 #define S_IFIFO 0010000 /* this is a FIFO */
01737 #define S_ISUID 0004000 /* set user id on execution */
01738 #define S_ISGID 0002000 /* set group id on execution */
01739 /* next is reserved for future use */
01740 #define S_ISVTX 01000 /* save swapped text even after use */
01741
01742 /* POSIX masks for st_mode. */
01743 #define S_IRWXU 00700 /* owner: rwx------ */
01744 #define S_IRUSR 00400 /* owner: r-------- */
01745 #define S_IWUSR 00200 /* owner: -w------- */
01746 #define S_IXUSR 00100 /* owner: --x------ */
01747
01748 #define S_IRWXG 00070 /* group: ---rwx--- */
01749 #define S_IRGRP 00040 /* group: ---r----- */
01750 #define S_IWGRP 00020 /* group: ----w---- */
01751 #define S_IXGRP 00010 /* group: -----x--- */
01752
01753 #define S_IRWXO 00007 /* others: ------rwx */
01754 #define S_IROTH 00004 /* others: ------r-- */
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01755 #define S_IWOTH 00002 /* others: -------w- */
01756 #define S_IXOTH 00001 /* others: --------x */
01757
01758 /* The following macros test st_mode (from POSIX Sec. 5.6.1.1). */
01759 #define S_ISREG(m) (((m) & S_IFMT) == S_IFREG) /* is a reg file */
01760 #define S_ISDIR(m) (((m) & S_IFMT) == S_IFDIR) /* is a directory */
01761 #define S_ISCHR(m) (((m) & S_IFMT) == S_IFCHR) /* is a char spec */
01762 #define S_ISBLK(m) (((m) & S_IFMT) == S_IFBLK) /* is a block spec */
01763 #define S_ISFIFO(m) (((m) & S_IFMT) == S_IFIFO) /* is a pipe/FIFO */
01764 #define S_ISLNK(m) (((m) & S_IFMT) == S_IFLNK) /* is a sym link */
01765
01766 /* Function Prototypes. */
01767 _PROTOTYPE( int chmod, (const char *_path, _mnx_Mode_t _mode) );
01768 _PROTOTYPE( int fstat, (int _fildes, struct stat *_buf) );
01769 _PROTOTYPE( int mkdir, (const char *_path, _mnx_Mode_t _mode) );
01770 _PROTOTYPE( int mkfifo, (const char *_path, _mnx_Mode_t _mode) );
01771 _PROTOTYPE( int stat, (const char *_path, struct stat *_buf) );
01772 _PROTOTYPE( mode_t umask, (_mnx_Mode_t _cmask) );
01773
01774 /* Open Group Base Specifications Issue 6 (not complete) */
01775 _PROTOTYPE( int lstat, (const char *_path, struct stat *_buf) );
01776
01777 #endif /* _STAT_H */

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
include/sys/dir.h

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

01800 /* The <dir.h> header gives the layout of a directory. */
01801
01802 #ifndef _DIR_H
01803 #define _DIR_H
01804
01805 #include <sys/types.h>
01806
01807 #define DIRBLKSIZ 512 /* size of directory block */
01808
01809 #ifndef DIRSIZ
01810 #define DIRSIZ 60
01811 #endif
01812
01813 struct direct {
01814 ino_t d_ino;
01815 char d_name[DIRSIZ];
01816 };
01817
01818 #endif /* _DIR_H */

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
include/sys/wait.h

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

01900 /* The <sys/wait.h> header contains macros related to wait(). The value
01901 * returned by wait() and waitpid() depends on whether the process
01902 * terminated by an exit() call, was killed by a signal, or was stopped
01903 * due to job control, as follows:
01904 *
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01905 * High byte Low byte
01906 * +---------------------+
01907 * exit(status) | status | 0 |
01908 * +---------------------+
01909 * killed by signal | 0 | signal |
01910 * +---------------------+
01911 * stopped (job control) | signal | 0177 |
01912 * +---------------------+
01913 */
01914
01915 #ifndef _WAIT_H
01916 #define _WAIT_H
01917
01918 #ifndef _TYPES_H
01919 #include <sys/types.h>
01920 #endif
01921
01922 #define _LOW(v) ( (v) & 0377)
01923 #define _HIGH(v) ( ((v) >> 8) & 0377)
01924
01925 #define WNOHANG 1 /* do not wait for child to exit */
01926 #define WUNTRACED 2 /* for job control; not implemented */
01927
01928 #define WIFEXITED(s) (_LOW(s) == 0) /* normal exit */
01929 #define WEXITSTATUS(s) (_HIGH(s)) /* exit status */
01930 #define WTERMSIG(s) (_LOW(s) & 0177) /* sig value */
01931 #define WIFSIGNALED(s) (((unsigned int)(s)-1 & 0xFFFF) < 0xFF) /* signaled */
01932 #define WIFSTOPPED(s) (_LOW(s) == 0177) /* stopped */
01933 #define WSTOPSIG(s) (_HIGH(s) & 0377) /* stop signal */
01934
01935 /* Function Prototypes. */
01936 _PROTOTYPE( pid_t wait, (int *_stat_loc) );
01937 _PROTOTYPE( pid_t waitpid, (pid_t _pid, int *_stat_loc, int _options) );
01938
01939 #endif /* _WAIT_H */

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
include/sys/ioctl.h

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

02000 /* sys/ioctl.h - All ioctl() command codes. Author: Kees J. Bot
02001 * 23 Nov 2002
02002 *
02003 * This header file includes all other ioctl command code headers.
02004 */
02005
02006 #ifndef _S_IOCTL_H
02007 #define _S_IOCTL_H
02008
02009 /* A driver that uses ioctls claims a character for its series of commands.
02010 * For instance: #define TCGETS _IOR(’T’, 8, struct termios)
02011 * This is a terminal ioctl that uses the character ’T’. The character(s)
02012 * used in each header file are shown in the comment following.
02013 */
02014
02015 #include <sys/ioc_tty.h> /* ’T’ ’t’ ’k’ */
02016 #include <sys/ioc_disk.h> /* ’d’ */
02017 #include <sys/ioc_memory.h> /* ’m’ */
02018 #include <sys/ioc_cmos.h> /* ’c’ */
02019
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02020 #endif /* _S_IOCTL_H */

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
include/sys/ioc_disk.h

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

02100 /* sys/ioc_disk.h - Disk ioctl() command codes. Author: Kees J. Bot
02101 * 23 Nov 2002
02102 *
02103 */
02104
02105 #ifndef _S_I_DISK_H
02106 #define _S_I_DISK_H
02107
02108 #include <minix/ioctl.h>
02109
02110 #define DIOCSETP _IOW(’d’, 3, struct partition)
02111 #define DIOCGETP _IOR(’d’, 4, struct partition)
02112 #define DIOCEJECT _IO (’d’, 5)
02113 #define DIOCTIMEOUT _IOW(’d’, 6, int)
02114 #define DIOCOPENCT _IOR(’d’, 7, int)
02115
02116 #endif /* _S_I_DISK_H */

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
include/minix/ioctl.h

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

02200 /* minix/ioctl.h - Ioctl helper definitions. Author: Kees J. Bot
02201 * 23 Nov 2002
02202 *
02203 * This file is included by every header file that defines ioctl codes.
02204 */
02205
02206 #ifndef _M_IOCTL_H
02207 #define _M_IOCTL_H
02208
02209 #ifndef _TYPES_H
02210 #include <sys/types.h>
02211 #endif
02212
02213 #if _EM_WSIZE >= 4
02214 /* Ioctls have the command encoded in the low-order word, and the size
02215 * of the parameter in the high-order word. The 3 high bits of the high-
02216 * order word are used to encode the in/out/void status of the parameter.
02217 */
02218 #define _IOCPARM_MASK 0x1FFF
02219 #define _IOC_VOID 0x20000000
02220 #define _IOCTYPE_MASK 0xFFFF
02221 #define _IOC_IN 0x40000000
02222 #define _IOC_OUT 0x80000000
02223 #define _IOC_INOUT (_IOC_IN | _IOC_OUT)
02224
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02225 #define _IO(x,y) ((x << 8) | y | _IOC_VOID)
02226 #define _IOR(x,y,t) ((x << 8) | y | ((sizeof(t) & _IOCPARM_MASK) << 16) |\
02227 _IOC_OUT)
02228 #define _IOW(x,y,t) ((x << 8) | y | ((sizeof(t) & _IOCPARM_MASK) << 16) |\
02229 _IOC_IN)
02230 #define _IORW(x,y,t) ((x << 8) | y | ((sizeof(t) & _IOCPARM_MASK) << 16) |\
02231 _IOC_INOUT)
02232 #else
02233 /* No fancy encoding on a 16-bit machine. */
02234
02235 #define _IO(x,y) ((x << 8) | y)
02236 #define _IOR(x,y,t) _IO(x,y)
02237 #define _IOW(x,y,t) _IO(x,y)
02238 #define _IORW(x,y,t) _IO(x,y)
02239 #endif
02240
02241 int ioctl(int _fd, int _request, void *_data);
02242
02243 #endif /* _M_IOCTL_H */

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
include/minix/config.h

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

02300 #ifndef _CONFIG_H
02301 #define _CONFIG_H
02302
02303 /* Minix release and version numbers. */
02304 #define OS_RELEASE "3"
02305 #define OS_VERSION "1.0"
02306
02307 /* This file sets configuration parameters for the MINIX kernel, FS, and PM.
02308 * It is divided up into two main sections. The first section contains
02309 * user-settable parameters. In the second section, various internal system
02310 * parameters are set based on the user-settable parameters.
02311 *
02312 * Parts of config.h have been moved to sys_config.h, which can be included
02313 * by other include files that wish to get at the configuration data, but
02314 * don’t want to pollute the users namespace. Some editable values have
02315 * gone there.
02316 *
02317 * This is a modified version of config.h for compiling a small Minix system
02318 * with only the options described in the text, Operating Systems Design and
02319 * Implementation, 3rd edition. See the version of config.h in the full
02320 * source code directory for information on alternatives omitted here.
02321 */
02322
02323 /* The MACHINE (called _MINIX_MACHINE) setting can be done
02324 * in <minix/machine.h>.
02325 */
02326 #include <minix/sys_config.h>
02327
02328 #define MACHINE _MINIX_MACHINE
02329
02330 #define IBM_PC _MACHINE_IBM_PC
02331 #define SUN_4 _MACHINE_SUN_4
02332 #define SUN_4_60 _MACHINE_SUN_4_60
02333 #define ATARI _MACHINE_ATARI
02334 #define MACINTOSH _MACHINE_MACINTOSH
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02335
02336 /* Number of slots in the process table for non-kernel processes. The number
02337 * of system processes defines how many processes with special privileges
02338 * there can be. User processes share the same properties and count for one.
02339 *
02340 * These can be changed in sys_config.h.
02341 */
02342 #define NR_PROCS _NR_PROCS
02343 #define NR_SYS_PROCS _NR_SYS_PROCS
02344
02345 #define NR_BUFS 128
02346 #define NR_BUF_HASH 128
02347
02348 /* Number of controller tasks (/dev/cN device classes). */
02349 #define NR_CTRLRS 2
02350
02351 /* Enable or disable the second level file system cache on the RAM disk. */
02352 #define ENABLE_CACHE2 0
02353
02354 /* Enable or disable swapping processes to disk. */
02355 #define ENABLE_SWAP 0
02356
02357 /* Include or exclude an image of /dev/boot in the boot image.
02358 * Please update the makefile in /usr/src/tools/ as well.
02359 */
02360 #define ENABLE_BOOTDEV 0 /* load image of /dev/boot at boot time */
02361
02362 /* DMA_SECTORS may be increased to speed up DMA based drivers. */
02363 #define DMA_SECTORS 1 /* DMA buffer size (must be >= 1) */
02364
02365 /* Include or exclude backwards compatibility code. */
02366 #define ENABLE_BINCOMPAT 0 /* for binaries using obsolete calls */
02367 #define ENABLE_SRCCOMPAT 0 /* for sources using obsolete calls */
02368
02369 /* Which process should receive diagnostics from the kernel and system?
02370 * Directly sending it to TTY only displays the output. Sending it to the
02371 * log driver will cause the diagnostics to be buffered and displayed.
02372 */
02373 #define OUTPUT_PROC_NR LOG_PROC_NR /* TTY_PROC_NR or LOG_PROC_NR */
02374
02375 /* NR_CONS, NR_RS_LINES, and NR_PTYS determine the number of terminals the
02376 * system can handle.
02377 */
02378 #define NR_CONS 4 /* # system consoles (1 to 8) */
02379 #define NR_RS_LINES 0 /* # rs232 terminals (0 to 4) */
02380 #define NR_PTYS 0 /* # pseudo terminals (0 to 64) */
02381
02382 /*===========================================================================*
02383 * There are no user-settable parameters after this line *
02384 *===========================================================================*/
02385 /* Set the CHIP type based on the machine selected. The symbol CHIP is actually
02386 * indicative of more than just the CPU. For example, machines for which
02387 * CHIP == INTEL are expected to have 8259A interrrupt controllers and the
02388 * other properties of IBM PC/XT/AT/386 types machines in general. */
02389 #define INTEL _CHIP_INTEL /* CHIP type for PC, XT, AT, 386 and clones */
02390 #define M68000 _CHIP_M68000 /* CHIP type for Atari, Amiga, Macintosh */
02391 #define SPARC _CHIP_SPARC /* CHIP type for SUN-4 (e.g. SPARCstation) */
02392
02393 /* Set the FP_FORMAT type based on the machine selected, either hw or sw */
02394 #define FP_NONE _FP_NONE /* no floating point support */



666 File: include/minix/config.h MINIX SOURCE CODE

02395 #define FP_IEEE _FP_IEEE /* conform IEEE floating point standard */
02396
02397 /* _MINIX_CHIP is defined in sys_config.h. */
02398 #define CHIP _MINIX_CHIP
02399
02400 /* _MINIX_FP_FORMAT is defined in sys_config.h. */
02401 #define FP_FORMAT _MINIX_FP_FORMAT
02402
02403 /* _ASKDEV and _FASTLOAD are defined in sys_config.h. */
02404 #define ASKDEV _ASKDEV
02405 #define FASTLOAD _FASTLOAD
02406
02407 #endif /* _CONFIG_H */

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
include/minix/sys_config.h

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

02500 #ifndef _MINIX_SYS_CONFIG_H
02501 #define _MINIX_SYS_CONFIG_H 1
02502
02503 /* This is a modified sys_config.h for compiling a small Minix system
02504 * with only the options described in the text, Operating Systems Design and
02505 * Implementation, 3rd edition. See the sys_config.h in the full
02506 * source code directory for information on alternatives omitted here.
02507 */
02508
02509 /*===========================================================================*
02510 * This section contains user-settable parameters *
02511 *===========================================================================*/
02512 #define _MINIX_MACHINE _MACHINE_IBM_PC
02513
02514 #define _MACHINE_IBM_PC 1 /* any 8088 or 80x86-based system */
02515
02516 /* Word size in bytes (a constant equal to sizeof(int)). */
02517 #if __ACK__ || __GNUC__
02518 #define _WORD_SIZE _EM_WSIZE
02519 #define _PTR_SIZE _EM_WSIZE
02520 #endif
02521
02522 #define _NR_PROCS 64
02523 #define _NR_SYS_PROCS 32
02524
02525 /* Set the CHIP type based on the machine selected. The symbol CHIP is actually
02526 * indicative of more than just the CPU. For example, machines for which
02527 * CHIP == INTEL are expected to have 8259A interrrupt controllers and the
02528 * other properties of IBM PC/XT/AT/386 types machines in general. */
02529 #define _CHIP_INTEL 1 /* CHIP type for PC, XT, AT, 386 and clones */
02530
02531 /* Set the FP_FORMAT type based on the machine selected, either hw or sw */
02532 #define _FP_NONE 0 /* no floating point support */
02533 #define _FP_IEEE 1 /* conform IEEE floating point standard */
02534
02535 #define _MINIX_CHIP _CHIP_INTEL
02536
02537 #define _MINIX_FP_FORMAT _FP_NONE
02538
02539 #ifndef _MINIX_MACHINE
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02540 error "In <minix/sys_config.h> please define _MINIX_MACHINE"
02541 #endif
02542
02543 #ifndef _MINIX_CHIP
02544 error "In <minix/sys_config.h> please define _MINIX_MACHINE to have a legal value"
02545 #endif
02546
02547 #if (_MINIX_MACHINE == 0)
02548 error "_MINIX_MACHINE has incorrect value (0)"
02549 #endif
02550
02551 #endif /* _MINIX_SYS_CONFIG_H */
02552
02553

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
include/minix/const.h

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

02600 /* Copyright (C) 2001 by Prentice-Hall, Inc. See the copyright notice in
02601 * the file /usr/src/LICENSE.
02602 */
02603
02604 #ifndef CHIP
02605 #error CHIP is not defined
02606 #endif
02607
02608 #define EXTERN extern /* used in *.h files */
02609 #define PRIVATE static /* PRIVATE x limits the scope of x */
02610 #define PUBLIC /* PUBLIC is the opposite of PRIVATE */
02611 #define FORWARD static /* some compilers require this to be ’static’*/
02612
02613 #define TRUE 1 /* used for turning integers into Booleans */
02614 #define FALSE 0 /* used for turning integers into Booleans */
02615
02616 #define HZ 60 /* clock freq (software settable on IBM-PC) */
02617
02618 #define SUPER_USER (uid_t) 0 /* uid_t of superuser */
02619
02620 /* Devices. */
02621 #define MAJOR 8 /* major device = (dev>>MAJOR) & 0377 */
02622 #define MINOR 0 /* minor device = (dev>>MINOR) & 0377 */
02623
02624 #define NULL ((void *)0) /* null pointer */
02625 #define CPVEC_NR 16 /* max # of entries in a SYS_VCOPY request */
02626 #define CPVVEC_NR 64 /* max # of entries in a SYS_VCOPY request */
02627 #define NR_IOREQS MIN(NR_BUFS, 64)
02628 /* maximum number of entries in an iorequest */
02629
02630 /* Message passing constants. */
02631 #define MESS_SIZE (sizeof(message)) /* might need usizeof from FS here */
02632 #define NIL_MESS ((message *) 0) /* null pointer */
02633
02634 /* Memory related constants. */
02635 #define SEGMENT_TYPE 0xFF00 /* bit mask to get segment type */
02636 #define SEGMENT_INDEX 0x00FF /* bit mask to get segment index */
02637
02638 #define LOCAL_SEG 0x0000 /* flags indicating local memory segment */
02639 #define NR_LOCAL_SEGS 3 /* # local segments per process (fixed) */



668 File: include/minix/const.h MINIX SOURCE CODE

02640 #define T 0 /* proc[i].mem_map[T] is for text */
02641 #define D 1 /* proc[i].mem_map[D] is for data */
02642 #define S 2 /* proc[i].mem_map[S] is for stack */
02643
02644 #define REMOTE_SEG 0x0100 /* flags indicating remote memory segment */
02645 #define NR_REMOTE_SEGS 3 /* # remote memory regions (variable) */
02646
02647 #define BIOS_SEG 0x0200 /* flags indicating BIOS memory segment */
02648 #define NR_BIOS_SEGS 3 /* # BIOS memory regions (variable) */
02649
02650 #define PHYS_SEG 0x0400 /* flag indicating entire physical memory */
02651
02652 /* Labels used to disable code sections for different reasons. */
02653 #define DEAD_CODE 0 /* unused code in normal configuration */
02654 #define FUTURE_CODE 0 /* new code to be activated + tested later */
02655 #define TEMP_CODE 1 /* active code to be removed later */
02656
02657 /* Process name length in the PM process table, including ’\0’. */
02658 #define PROC_NAME_LEN 16
02659
02660 /* Miscellaneous */
02661 #define BYTE 0377 /* mask for 8 bits */
02662 #define READING 0 /* copy data to user */
02663 #define WRITING 1 /* copy data from user */
02664 #define NO_NUM 0x8000 /* used as numerical argument to panic() */
02665 #define NIL_PTR (char *) 0 /* generally useful expression */
02666 #define HAVE_SCATTERED_IO 1 /* scattered I/O is now standard */
02667
02668 /* Macros. */
02669 #define MAX(a, b) ((a) > (b) ? (a) : (b))
02670 #define MIN(a, b) ((a) < (b) ? (a) : (b))
02671
02672 /* Memory is allocated in clicks. */
02673 #if (CHIP == INTEL)
02674 #define CLICK_SIZE 1024 /* unit in which memory is allocated */
02675 #define CLICK_SHIFT 10 /* log2 of CLICK_SIZE */
02676 #endif
02677
02678 #if (CHIP == SPARC) || (CHIP == M68000)
02679 #define CLICK_SIZE 4096 /* unit in which memory is allocated */
02680 #define CLICK_SHIFT 12 /* log2 of CLICK_SIZE */
02681 #endif
02682
02683 /* Click to byte conversions (and vice versa). */
02684 #define HCLICK_SHIFT 4 /* log2 of HCLICK_SIZE */
02685 #define HCLICK_SIZE 16 /* hardware segment conversion magic */
02686 #if CLICK_SIZE >= HCLICK_SIZE
02687 #define click_to_hclick(n) ((n) << (CLICK_SHIFT - HCLICK_SHIFT))
02688 #else
02689 #define click_to_hclick(n) ((n) >> (HCLICK_SHIFT - CLICK_SHIFT))
02690 #endif
02691 #define hclick_to_physb(n) ((phys_bytes) (n) << HCLICK_SHIFT)
02692 #define physb_to_hclick(n) ((n) >> HCLICK_SHIFT)
02693
02694 #define ABS -999 /* this process means absolute memory */
02695
02696 /* Flag bits for i_mode in the inode. */
02697 #define I_TYPE 0170000 /* this field gives inode type */
02698 #define I_REGULAR 0100000 /* regular file, not dir or special */
02699 #define I_BLOCK_SPECIAL 0060000 /* block special file */
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02700 #define I_DIRECTORY 0040000 /* file is a directory */
02701 #define I_CHAR_SPECIAL 0020000 /* character special file */
02702 #define I_NAMED_PIPE 0010000 /* named pipe (FIFO) */
02703 #define I_SET_UID_BIT 0004000 /* set effective uid_t on exec */
02704 #define I_SET_GID_BIT 0002000 /* set effective gid_t on exec */
02705 #define ALL_MODES 0006777 /* all bits for user, group and others */
02706 #define RWX_MODES 0000777 /* mode bits for RWX only */
02707 #define R_BIT 0000004 /* Rwx protection bit */
02708 #define W_BIT 0000002 /* rWx protection bit */
02709 #define X_BIT 0000001 /* rwX protection bit */
02710 #define I_NOT_ALLOC 0000000 /* this inode is free */
02711
02712 /* Flag used only in flags argument of dev_open. */
02713 #define RO_BIT 0200000 /* Open device readonly; fail if writable. */
02714
02715 /* Some limits. */
02716 #define MAX_BLOCK_NR ((block_t) 077777777) /* largest block number */
02717 #define HIGHEST_ZONE ((zone_t) 077777777) /* largest zone number */
02718 #define MAX_INODE_NR ((ino_t) 037777777777) /* largest inode number */
02719 #define MAX_FILE_POS ((off_t) 037777777777) /* largest legal file offset */
02720
02721 #define NO_BLOCK ((block_t) 0) /* absence of a block number */
02722 #define NO_ENTRY ((ino_t) 0) /* absence of a dir entry */
02723 #define NO_ZONE ((zone_t) 0) /* absence of a zone number */
02724 #define NO_DEV ((dev_t) 0) /* absence of a device numb */

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
include/minix/type.h

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

02800 #ifndef _TYPE_H
02801 #define _TYPE_H
02802
02803 #ifndef _MINIX_SYS_CONFIG_H
02804 #include <minix/sys_config.h>
02805 #endif
02806
02807 #ifndef _TYPES_H
02808 #include <sys/types.h>
02809 #endif
02810
02811 /* Type definitions. */
02812 typedef unsigned int vir_clicks; /* virtual addr/length in clicks */
02813 typedef unsigned long phys_bytes; /* physical addr/length in bytes */
02814 typedef unsigned int phys_clicks; /* physical addr/length in clicks */
02815
02816 #if (_MINIX_CHIP == _CHIP_INTEL)
02817 typedef unsigned int vir_bytes; /* virtual addresses and lengths in bytes */
02818 #endif
02819
02820 #if (_MINIX_CHIP == _CHIP_M68000)
02821 typedef unsigned long vir_bytes;/* virtual addresses and lengths in bytes */
02822 #endif
02823
02824 #if (_MINIX_CHIP == _CHIP_SPARC)
02825 typedef unsigned long vir_bytes;/* virtual addresses and lengths in bytes */
02826 #endif
02827
02828 /* Memory map for local text, stack, data segments. */
02829 struct mem_map {
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02830 vir_clicks mem_vir; /* virtual address */
02831 phys_clicks mem_phys; /* physical address */
02832 vir_clicks mem_len; /* length */
02833 };
02834
02835 /* Memory map for remote memory areas, e.g., for the RAM disk. */
02836 struct far_mem {
02837 int in_use; /* entry in use, unless zero */
02838 phys_clicks mem_phys; /* physical address */
02839 vir_clicks mem_len; /* length */
02840 };
02841
02842 /* Structure for virtual copying by means of a vector with requests. */
02843 struct vir_addr {
02844 int proc_nr;
02845 int segment;
02846 vir_bytes offset;
02847 };
02848
02849 #define phys_cp_req vir_cp_req
02850 struct vir_cp_req {
02851 struct vir_addr src;
02852 struct vir_addr dst;
02853 phys_bytes count;
02854 };
02855
02856 typedef struct {
02857 vir_bytes iov_addr; /* address of an I/O buffer */
02858 vir_bytes iov_size; /* sizeof an I/O buffer */
02859 } iovec_t;
02860
02861 /* PM passes the address of a structure of this type to KERNEL when
02862 * sys_sendsig() is invoked as part of the signal catching mechanism.
02863 * The structure contain all the information that KERNEL needs to build
02864 * the signal stack.
02865 */
02866 struct sigmsg {
02867 int sm_signo; /* signal number being caught */
02868 unsigned long sm_mask; /* mask to restore when handler returns */
02869 vir_bytes sm_sighandler; /* address of handler */
02870 vir_bytes sm_sigreturn; /* address of _sigreturn in C library */
02871 vir_bytes sm_stkptr; /* user stack pointer */
02872 };
02873
02874 /* This is used to obtain system information through SYS_GETINFO. */
02875 struct kinfo {
02876 phys_bytes code_base; /* base of kernel code */
02877 phys_bytes code_size;
02878 phys_bytes data_base; /* base of kernel data */
02879 phys_bytes data_size;
02880 vir_bytes proc_addr; /* virtual address of process table */
02881 phys_bytes kmem_base; /* kernel memory layout (/dev/kmem) */
02882 phys_bytes kmem_size;
02883 phys_bytes bootdev_base; /* boot device from boot image (/dev/boot) */
02884 phys_bytes bootdev_size;
02885 phys_bytes bootdev_mem;
02886 phys_bytes params_base; /* parameters passed by boot monitor */
02887 phys_bytes params_size;
02888 int nr_procs; /* number of user processes */
02889 int nr_tasks; /* number of kernel tasks */
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02890 char release[6]; /* kernel release number */
02891 char version[6]; /* kernel version number */
02892 int relocking; /* relocking check (for debugging) */
02893 };
02894
02895 struct machine {
02896 int pc_at;
02897 int ps_mca;
02898 int processor;
02899 int protected;
02900 int vdu_ega;
02901 int vdu_vga;
02902 };
02903
02904 #endif /* _TYPE_H */

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
include/minix/ipc.h

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

03000 #ifndef _IPC_H
03001 #define _IPC_H
03002
03003 /*==========================================================================*
03004 * Types relating to messages. *
03005 *==========================================================================*/
03006
03007 #define M1 1
03008 #define M3 3
03009 #define M4 4
03010 #define M3_STRING 14
03011
03012 typedef struct {int m1i1, m1i2, m1i3; char *m1p1, *m1p2, *m1p3;} mess_1;
03013 typedef struct {int m2i1, m2i2, m2i3; long m2l1, m2l2; char *m2p1;} mess_2;
03014 typedef struct {int m3i1, m3i2; char *m3p1; char m3ca1[M3_STRING];} mess_3;
03015 typedef struct {long m4l1, m4l2, m4l3, m4l4, m4l5;} mess_4;
03016 typedef struct {short m5c1, m5c2; int m5i1, m5i2; long m5l1, m5l2, m5l3;}mess_5;
03017 typedef struct {int m7i1, m7i2, m7i3, m7i4; char *m7p1, *m7p2;} mess_7;
03018 typedef struct {int m8i1, m8i2; char *m8p1, *m8p2, *m8p3, *m8p4;} mess_8;
03019
03020 typedef struct {
03021 int m_source; /* who sent the message */
03022 int m_type; /* what kind of message is it */
03023 union {
03024 mess_1 m_m1;
03025 mess_2 m_m2;
03026 mess_3 m_m3;
03027 mess_4 m_m4;
03028 mess_5 m_m5;
03029 mess_7 m_m7;
03030 mess_8 m_m8;
03031 } m_u;
03032 } message;
03033
03034 /* The following defines provide names for useful members. */
03035 #define m1_i1 m_u.m_m1.m1i1
03036 #define m1_i2 m_u.m_m1.m1i2
03037 #define m1_i3 m_u.m_m1.m1i3
03038 #define m1_p1 m_u.m_m1.m1p1
03039 #define m1_p2 m_u.m_m1.m1p2
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03040 #define m1_p3 m_u.m_m1.m1p3
03041
03042 #define m2_i1 m_u.m_m2.m2i1
03043 #define m2_i2 m_u.m_m2.m2i2
03044 #define m2_i3 m_u.m_m2.m2i3
03045 #define m2_l1 m_u.m_m2.m2l1
03046 #define m2_l2 m_u.m_m2.m2l2
03047 #define m2_p1 m_u.m_m2.m2p1
03048
03049 #define m3_i1 m_u.m_m3.m3i1
03050 #define m3_i2 m_u.m_m3.m3i2
03051 #define m3_p1 m_u.m_m3.m3p1
03052 #define m3_ca1 m_u.m_m3.m3ca1
03053
03054 #define m4_l1 m_u.m_m4.m4l1
03055 #define m4_l2 m_u.m_m4.m4l2
03056 #define m4_l3 m_u.m_m4.m4l3
03057 #define m4_l4 m_u.m_m4.m4l4
03058 #define m4_l5 m_u.m_m4.m4l5
03059
03060 #define m5_c1 m_u.m_m5.m5c1
03061 #define m5_c2 m_u.m_m5.m5c2
03062 #define m5_i1 m_u.m_m5.m5i1
03063 #define m5_i2 m_u.m_m5.m5i2
03064 #define m5_l1 m_u.m_m5.m5l1
03065 #define m5_l2 m_u.m_m5.m5l2
03066 #define m5_l3 m_u.m_m5.m5l3
03067
03068 #define m7_i1 m_u.m_m7.m7i1
03069 #define m7_i2 m_u.m_m7.m7i2
03070 #define m7_i3 m_u.m_m7.m7i3
03071 #define m7_i4 m_u.m_m7.m7i4
03072 #define m7_p1 m_u.m_m7.m7p1
03073 #define m7_p2 m_u.m_m7.m7p2
03074
03075 #define m8_i1 m_u.m_m8.m8i1
03076 #define m8_i2 m_u.m_m8.m8i2
03077 #define m8_p1 m_u.m_m8.m8p1
03078 #define m8_p2 m_u.m_m8.m8p2
03079 #define m8_p3 m_u.m_m8.m8p3
03080 #define m8_p4 m_u.m_m8.m8p4
03081
03082 /*==========================================================================*
03083 * Minix run-time system (IPC). *
03084 *==========================================================================*/
03085
03086 /* Hide names to avoid name space pollution. */
03087 #define echo _echo
03088 #define notify _notify
03089 #define sendrec _sendrec
03090 #define receive _receive
03091 #define send _send
03092 #define nb_receive _nb_receive
03093 #define nb_send _nb_send
03094
03095 _PROTOTYPE( int echo, (message *m_ptr) );
03096 _PROTOTYPE( int notify, (int dest) );
03097 _PROTOTYPE( int sendrec, (int src_dest, message *m_ptr) );
03098 _PROTOTYPE( int receive, (int src, message *m_ptr) );
03099 _PROTOTYPE( int send, (int dest, message *m_ptr) );
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03100 _PROTOTYPE( int nb_receive, (int src, message *m_ptr) );
03101 _PROTOTYPE( int nb_send, (int dest, message *m_ptr) );
03102
03103 #endif /* _IPC_H */

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
include/minix/syslib.h

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

03200 /* Prototypes for system library functions. */
03201
03202 #ifndef _SYSLIB_H
03203 #define _SYSLIB_H
03204
03205 #ifndef _TYPES_H
03206 #include <sys/types.h>
03207 #endif
03208
03209 #ifndef _IPC_H
03210 #include <minix/ipc.h>
03211 #endif
03212
03213 #ifndef _DEVIO_H
03214 #include <minix/devio.h>
03215 #endif
03216
03217 /* Forward declaration */
03218 struct reg86u;
03219
03220 #define SYSTASK SYSTEM
03221
03222 /*==========================================================================*
03223 * Minix system library. *
03224 *==========================================================================*/
03225 _PROTOTYPE( int _taskcall, (int who, int syscallnr, message *msgptr));
03226
03227 _PROTOTYPE( int sys_abort, (int how, ...));
03228 _PROTOTYPE( int sys_exec, (int proc, char *ptr,
03229 char *aout, vir_bytes initpc));
03230 _PROTOTYPE( int sys_fork, (int parent, int child));
03231 _PROTOTYPE( int sys_newmap, (int proc, struct mem_map *ptr));
03232 _PROTOTYPE( int sys_exit, (int proc));
03233 _PROTOTYPE( int sys_trace, (int req, int proc, long addr, long *data_p));
03234
03235 _PROTOTYPE( int sys_svrctl, (int proc, int req, int priv,vir_bytes argp));
03236 _PROTOTYPE( int sys_nice, (int proc, int priority));
03237
03238 _PROTOTYPE( int sys_int86, (struct reg86u *reg86p));
03239
03240 /* Shorthands for sys_sdevio() system call. */
03241 #define sys_insb(port, proc_nr, buffer, count) \
03242 sys_sdevio(DIO_INPUT, port, DIO_BYTE, proc_nr, buffer, count)
03243 #define sys_insw(port, proc_nr, buffer, count) \
03244 sys_sdevio(DIO_INPUT, port, DIO_WORD, proc_nr, buffer, count)
03245 #define sys_outsb(port, proc_nr, buffer, count) \
03246 sys_sdevio(DIO_OUTPUT, port, DIO_BYTE, proc_nr, buffer, count)
03247 #define sys_outsw(port, proc_nr, buffer, count) \
03248 sys_sdevio(DIO_OUTPUT, port, DIO_WORD, proc_nr, buffer, count)
03249 _PROTOTYPE( int sys_sdevio, (int req, long port, int type, int proc_nr,
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03250 void *buffer, int count));
03251
03252 /* Clock functionality: get system times or (un)schedule an alarm call. */
03253 _PROTOTYPE( int sys_times, (int proc_nr, clock_t *ptr));
03254 _PROTOTYPE(int sys_setalarm, (clock_t exp_time, int abs_time));
03255
03256 /* Shorthands for sys_irqctl() system call. */
03257 #define sys_irqdisable(hook_id) \
03258 sys_irqctl(IRQ_DISABLE, 0, 0, hook_id)
03259 #define sys_irqenable(hook_id) \
03260 sys_irqctl(IRQ_ENABLE, 0, 0, hook_id)
03261 #define sys_irqsetpolicy(irq_vec, policy, hook_id) \
03262 sys_irqctl(IRQ_SETPOLICY, irq_vec, policy, hook_id)
03263 #define sys_irqrmpolicy(irq_vec, hook_id) \
03264 sys_irqctl(IRQ_RMPOLICY, irq_vec, 0, hook_id)
03265 _PROTOTYPE ( int sys_irqctl, (int request, int irq_vec, int policy,
03266 int *irq_hook_id) );
03267
03268 /* Shorthands for sys_vircopy() and sys_physcopy() system calls. */
03269 #define sys_biosin(bios_vir, dst_vir, bytes) \
03270 sys_vircopy(SELF, BIOS_SEG, bios_vir, SELF, D, dst_vir, bytes)
03271 #define sys_biosout(src_vir, bios_vir, bytes) \
03272 sys_vircopy(SELF, D, src_vir, SELF, BIOS_SEG, bios_vir, bytes)
03273 #define sys_datacopy(src_proc, src_vir, dst_proc, dst_vir, bytes) \
03274 sys_vircopy(src_proc, D, src_vir, dst_proc, D, dst_vir, bytes)
03275 #define sys_textcopy(src_proc, src_vir, dst_proc, dst_vir, bytes) \
03276 sys_vircopy(src_proc, T, src_vir, dst_proc, T, dst_vir, bytes)
03277 #define sys_stackcopy(src_proc, src_vir, dst_proc, dst_vir, bytes) \
03278 sys_vircopy(src_proc, S, src_vir, dst_proc, S, dst_vir, bytes)
03279 _PROTOTYPE(int sys_vircopy, (int src_proc, int src_seg, vir_bytes src_vir,
03280 int dst_proc, int dst_seg, vir_bytes dst_vir, phys_bytes bytes));
03281
03282 #define sys_abscopy(src_phys, dst_phys, bytes) \
03283 sys_physcopy(NONE, PHYS_SEG, src_phys, NONE, PHYS_SEG, dst_phys, bytes)
03284 _PROTOTYPE(int sys_physcopy, (int src_proc, int src_seg, vir_bytes src_vir,
03285 int dst_proc, int dst_seg, vir_bytes dst_vir, phys_bytes bytes));
03286 _PROTOTYPE(int sys_memset, (unsigned long pattern,
03287 phys_bytes base, phys_bytes bytes));
03288
03289 /* Vectored virtual / physical copy calls. */
03290 #if DEAD_CODE /* library part not yet implemented */
03291 _PROTOTYPE(int sys_virvcopy, (phys_cp_req *vec_ptr,int vec_size,int *nr_ok));
03292 _PROTOTYPE(int sys_physvcopy, (phys_cp_req *vec_ptr,int vec_size,int *nr_ok));
03293 #endif
03294
03295 _PROTOTYPE(int sys_umap, (int proc_nr, int seg, vir_bytes vir_addr,
03296 vir_bytes bytes, phys_bytes *phys_addr));
03297 _PROTOTYPE(int sys_segctl, (int *index, u16_t *seg, vir_bytes *off,
03298 phys_bytes phys, vir_bytes size));
03299
03300 /* Shorthands for sys_getinfo() system call. */
03301 #define sys_getkmessages(dst) sys_getinfo(GET_KMESSAGES, dst, 0,0,0)
03302 #define sys_getkinfo(dst) sys_getinfo(GET_KINFO, dst, 0,0,0)
03303 #define sys_getmachine(dst) sys_getinfo(GET_MACHINE, dst, 0,0,0)
03304 #define sys_getproctab(dst) sys_getinfo(GET_PROCTAB, dst, 0,0,0)
03305 #define sys_getprivtab(dst) sys_getinfo(GET_PRIVTAB, dst, 0,0,0)
03306 #define sys_getproc(dst,nr) sys_getinfo(GET_PROC, dst, 0,0, nr)
03307 #define sys_getrandomness(dst) sys_getinfo(GET_RANDOMNESS, dst, 0,0,0)
03308 #define sys_getimage(dst) sys_getinfo(GET_IMAGE, dst, 0,0,0)
03309 #define sys_getirqhooks(dst) sys_getinfo(GET_IRQHOOKS, dst, 0,0,0)
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03310 #define sys_getmonparams(v,vl) sys_getinfo(GET_MONPARAMS, v,vl, 0,0)
03311 #define sys_getschedinfo(v1,v2) sys_getinfo(GET_SCHEDINFO, v1,0, v2,0)
03312 #define sys_getlocktimings(dst) sys_getinfo(GET_LOCKTIMING, dst, 0,0,0)
03313 #define sys_getbiosbuffer(virp, sizep) sys_getinfo(GET_BIOSBUFFER, virp, \
03314 sizeof(*virp), sizep, sizeof(*sizep))
03315 _PROTOTYPE(int sys_getinfo, (int request, void *val_ptr, int val_len,
03316 void *val_ptr2, int val_len2) );
03317
03318 /* Signal control. */
03319 _PROTOTYPE(int sys_kill, (int proc, int sig) );
03320 _PROTOTYPE(int sys_sigsend, (int proc_nr, struct sigmsg *sig_ctxt) );
03321 _PROTOTYPE(int sys_sigreturn, (int proc_nr, struct sigmsg *sig_ctxt) );
03322 _PROTOTYPE(int sys_getksig, (int *k_proc_nr, sigset_t *k_sig_map) );
03323 _PROTOTYPE(int sys_endksig, (int proc_nr) );
03324
03325 /* NOTE: two different approaches were used to distinguish the device I/O
03326 * types ’byte’, ’word’, ’long’: the latter uses #define and results in a
03327 * smaller implementation, but looses the static type checking.
03328 */
03329 _PROTOTYPE(int sys_voutb, (pvb_pair_t *pvb_pairs, int nr_ports) );
03330 _PROTOTYPE(int sys_voutw, (pvw_pair_t *pvw_pairs, int nr_ports) );
03331 _PROTOTYPE(int sys_voutl, (pvl_pair_t *pvl_pairs, int nr_ports) );
03332 _PROTOTYPE(int sys_vinb, (pvb_pair_t *pvb_pairs, int nr_ports) );
03333 _PROTOTYPE(int sys_vinw, (pvw_pair_t *pvw_pairs, int nr_ports) );
03334 _PROTOTYPE(int sys_vinl, (pvl_pair_t *pvl_pairs, int nr_ports) );
03335
03336 /* Shorthands for sys_out() system call. */
03337 #define sys_outb(p,v) sys_out((p), (unsigned long) (v), DIO_BYTE)
03338 #define sys_outw(p,v) sys_out((p), (unsigned long) (v), DIO_WORD)
03339 #define sys_outl(p,v) sys_out((p), (unsigned long) (v), DIO_LONG)
03340 _PROTOTYPE(int sys_out, (int port, unsigned long value, int type) );
03341
03342 /* Shorthands for sys_in() system call. */
03343 #define sys_inb(p,v) sys_in((p), (unsigned long*) (v), DIO_BYTE)
03344 #define sys_inw(p,v) sys_in((p), (unsigned long*) (v), DIO_WORD)
03345 #define sys_inl(p,v) sys_in((p), (unsigned long*) (v), DIO_LONG)
03346 _PROTOTYPE(int sys_in, (int port, unsigned long *value, int type) );
03347
03348 #endif /* _SYSLIB_H */
03349

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
include/minix/sysutil.h

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

03400 #ifndef _EXTRALIB_H
03401 #define _EXTRALIB_H
03402
03403 /* Extra system library definitions to support device drivers and servers.
03404 *
03405 * Created:
03406 * Mar 15, 2004 by Jorrit N. Herder
03407 *
03408 * Changes:
03409 * May 31, 2005: added printf, kputc (relocated from syslib)
03410 * May 31, 2005: added getuptime
03411 * Mar 18, 2005: added tickdelay
03412 * Oct 01, 2004: added env_parse, env_prefix, env_panic
03413 * Jul 13, 2004: added fkey_ctl
03414 * Apr 28, 2004: added report, panic
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03415 * Mar 31, 2004: setup like other libraries, such as syslib
03416 */
03417
03418 /*==========================================================================*
03419 * Miscellaneous helper functions.
03420 *==========================================================================*/
03421
03422 /* Environment parsing return values. */
03423 #define EP_BUF_SIZE 128 /* local buffer for env value */
03424 #define EP_UNSET 0 /* variable not set */
03425 #define EP_OFF 1 /* var = off */
03426 #define EP_ON 2 /* var = on (or field left blank) */
03427 #define EP_SET 3 /* var = 1:2:3 (nonblank field) */
03428 #define EP_EGETKENV 4 /* sys_getkenv() failed ... */
03429
03430 _PROTOTYPE( void env_setargs, (int argc, char *argv[]) );
03431 _PROTOTYPE( int env_get_param, (char *key, char *value, int max_size) );
03432 _PROTOTYPE( int env_prefix, (char *env, char *prefix) );
03433 _PROTOTYPE( void env_panic, (char *key) );
03434 _PROTOTYPE( int env_parse, (char *env, char *fmt, int field, long *param,
03435 long min, long max) );
03436
03437 #define fkey_map(fkeys, sfkeys) fkey_ctl(FKEY_MAP, (fkeys), (sfkeys))
03438 #define fkey_unmap(fkeys, sfkeys) fkey_ctl(FKEY_UNMAP, (fkeys), (sfkeys))
03439 #define fkey_events(fkeys, sfkeys) fkey_ctl(FKEY_EVENTS, (fkeys), (sfkeys))
03440 _PROTOTYPE( int fkey_ctl, (int req, int *fkeys, int *sfkeys) );
03441
03442 _PROTOTYPE( int printf, (const char *fmt, ...));
03443 _PROTOTYPE( void kputc, (int c));
03444 _PROTOTYPE( void report, (char *who, char *mess, int num));
03445 _PROTOTYPE( void panic, (char *who, char *mess, int num));
03446 _PROTOTYPE( int getuptime, (clock_t *ticks));
03447 _PROTOTYPE( int tickdelay, (clock_t ticks));
03448
03449 #endif /* _EXTRALIB_H */
03450

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
include/minix/callnr.h

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

03500 #define NCALLS 91 /* number of system calls allowed */
03501
03502 #define EXIT 1
03503 #define FORK 2
03504 #define READ 3
03505 #define WRITE 4
03506 #define OPEN 5
03507 #define CLOSE 6
03508 #define WAIT 7
03509 #define CREAT 8
03510 #define LINK 9
03511 #define UNLINK 10
03512 #define WAITPID 11
03513 #define CHDIR 12
03514 #define TIME 13
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03515 #define MKNOD 14
03516 #define CHMOD 15
03517 #define CHOWN 16
03518 #define BRK 17
03519 #define STAT 18
03520 #define LSEEK 19
03521 #define GETPID 20
03522 #define MOUNT 21
03523 #define UMOUNT 22
03524 #define SETUID 23
03525 #define GETUID 24
03526 #define STIME 25
03527 #define PTRACE 26
03528 #define ALARM 27
03529 #define FSTAT 28
03530 #define PAUSE 29
03531 #define UTIME 30
03532 #define ACCESS 33
03533 #define SYNC 36
03534 #define KILL 37
03535 #define RENAME 38
03536 #define MKDIR 39
03537 #define RMDIR 40
03538 #define DUP 41
03539 #define PIPE 42
03540 #define TIMES 43
03541 #define SETGID 46
03542 #define GETGID 47
03543 #define SIGNAL 48
03544 #define IOCTL 54
03545 #define FCNTL 55
03546 #define EXEC 59
03547 #define UMASK 60
03548 #define CHROOT 61
03549 #define SETSID 62
03550 #define GETPGRP 63
03551
03552 /* The following are not system calls, but are processed like them. */
03553 #define UNPAUSE 65 /* to MM or FS: check for EINTR */
03554 #define REVIVE 67 /* to FS: revive a sleeping process */
03555 #define TASK_REPLY 68 /* to FS: reply code from tty task */
03556
03557 /* Posix signal handling. */
03558 #define SIGACTION 71
03559 #define SIGSUSPEND 72
03560 #define SIGPENDING 73
03561 #define SIGPROCMASK 74
03562 #define SIGRETURN 75
03563
03564 #define REBOOT 76 /* to PM */
03565
03566 /* MINIX specific calls, e.g., to support system services. */
03567 #define SVRCTL 77
03568 /* unused */
03569 #define GETSYSINFO 79 /* to PM or FS */
03570 #define GETPROCNR 80 /* to PM */
03571 #define DEVCTL 81 /* to FS */
03572 #define FSTATFS 82 /* to FS */
03573 #define ALLOCMEM 83 /* to PM */
03574 #define FREEMEM 84 /* to PM */
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03575 #define SELECT 85 /* to FS */
03576 #define FCHDIR 86 /* to FS */
03577 #define FSYNC 87 /* to FS */
03578 #define GETPRIORITY 88 /* to PM */
03579 #define SETPRIORITY 89 /* to PM */
03580 #define GETTIMEOFDAY 90 /* to PM */

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
include/minix/com.h

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

03600 #ifndef _MINIX_COM_H
03601 #define _MINIX_COM_H
03602
03603 /*===========================================================================*
03604 * Magic process numbers *
03605 *===========================================================================*/
03606
03607 #define ANY 0x7ace /* used to indicate ’any process’ */
03608 #define NONE 0x6ace /* used to indicate ’no process at all’ */
03609 #define SELF 0x8ace /* used to indicate ’own process’ */
03610
03611 /*===========================================================================*
03612 * Process numbers of processes in the system image *
03613 *===========================================================================*/
03614
03615 /* The values of several task numbers depend on whether they or other tasks
03616 * are enabled. They are defined as (PREVIOUS_TASK - ENABLE_TASK) in general.
03617 * ENABLE_TASK is either 0 or 1, so a task either gets a new number, or gets
03618 * the same number as the previous task and is further unused. Note that the
03619 * order should correspond to the order in the task table defined in table.c.
03620 */
03621
03622 /* Kernel tasks. These all run in the same address space. */
03623 #define IDLE -4 /* runs when no one else can run */
03624 #define CLOCK -3 /* alarms and other clock functions */
03625 #define SYSTEM -2 /* request system functionality */
03626 #define KERNEL -1 /* pseudo-process for IPC and scheduling */
03627 #define HARDWARE KERNEL /* for hardware interrupt handlers */
03628
03629 /* Number of tasks. Note that NR_PROCS is defined in <minix/config.h>. */
03630 #define NR_TASKS 4
03631
03632 /* User-space processes, that is, device drivers, servers, and INIT. */
03633 #define PM_PROC_NR 0 /* process manager */
03634 #define FS_PROC_NR 1 /* file system */
03635 #define RS_PROC_NR 2 /* reincarnation server */
03636 #define MEM_PROC_NR 3 /* memory driver (RAM disk, null, etc.) */
03637 #define LOG_PROC_NR 4 /* log device driver */
03638 #define TTY_PROC_NR 5 /* terminal (TTY) driver */
03639 #define DRVR_PROC_NR 6 /* device driver for boot medium */
03640 #define INIT_PROC_NR 7 /* init -- goes multiuser */
03641
03642 /* Number of processes contained in the system image. */
03643 #define NR_BOOT_PROCS (NR_TASKS + INIT_PROC_NR + 1)
03644
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03645 /*===========================================================================*
03646 * Kernel notification types *
03647 *===========================================================================*/
03648
03649 /* Kernel notification types. In principle, these can be sent to any process,
03650 * so make sure that these types do not interfere with other message types.
03651 * Notifications are prioritized because of the way they are unhold() and
03652 * blocking notifications are delivered. The lowest numbers go first. The
03653 * offset are used for the per-process notification bit maps.
03654 */
03655 #define NOTIFY_MESSAGE 0x1000
03656 #define NOTIFY_FROM(p_nr) (NOTIFY_MESSAGE | ((p_nr) + NR_TASKS))
03657 # define SYN_ALARM NOTIFY_FROM(CLOCK) /* synchronous alarm */
03658 # define SYS_SIG NOTIFY_FROM(SYSTEM) /* system signal */
03659 # define HARD_INT NOTIFY_FROM(HARDWARE) /* hardware interrupt */
03660 # define NEW_KSIG NOTIFY_FROM(HARDWARE) /* new kernel signal */
03661 # define FKEY_PRESSED NOTIFY_FROM(TTY_PROC_NR)/* function key press */
03662
03663 /* Shorthands for message parameters passed with notifications. */
03664 #define NOTIFY_SOURCE m_source
03665 #define NOTIFY_TYPE m_type
03666 #define NOTIFY_ARG m2_l1
03667 #define NOTIFY_TIMESTAMP m2_l2
03668 #define NOTIFY_FLAGS m2_i1
03669
03670 /*===========================================================================*
03671 * Messages for BLOCK and CHARACTER device drivers *
03672 *===========================================================================*/
03673
03674 /* Message types for device drivers. */
03675 #define DEV_RQ_BASE 0x400 /* base for device request types */
03676 #define DEV_RS_BASE 0x500 /* base for device response types */
03677
03678 #define CANCEL (DEV_RQ_BASE + 0) /* general req to force a task to cancel */
03679 #define DEV_READ (DEV_RQ_BASE + 3) /* read from minor device */
03680 #define DEV_WRITE (DEV_RQ_BASE + 4) /* write to minor device */
03681 #define DEV_IOCTL (DEV_RQ_BASE + 5) /* I/O control code */
03682 #define DEV_OPEN (DEV_RQ_BASE + 6) /* open a minor device */
03683 #define DEV_CLOSE (DEV_RQ_BASE + 7) /* close a minor device */
03684 #define DEV_SCATTER (DEV_RQ_BASE + 8) /* write from a vector */
03685 #define DEV_GATHER (DEV_RQ_BASE + 9) /* read into a vector */
03686 #define TTY_SETPGRP (DEV_RQ_BASE + 10) /* set process group */
03687 #define TTY_EXIT (DEV_RQ_BASE + 11) /* process group leader exited */
03688 #define DEV_SELECT (DEV_RQ_BASE + 12) /* request select() attention */
03689 #define DEV_STATUS (DEV_RQ_BASE + 13) /* request driver status */
03690
03691 #define DEV_REPLY (DEV_RS_BASE + 0) /* general task reply */
03692 #define DEV_CLONED (DEV_RS_BASE + 1) /* return cloned minor */
03693 #define DEV_REVIVE (DEV_RS_BASE + 2) /* driver revives process */
03694 #define DEV_IO_READY (DEV_RS_BASE + 3) /* selected device ready */
03695 #define DEV_NO_STATUS (DEV_RS_BASE + 4) /* empty status reply */
03696
03697 /* Field names for messages to block and character device drivers. */
03698 #define DEVICE m2_i1 /* major-minor device */
03699 #define PROC_NR m2_i2 /* which (proc) wants I/O? */
03700 #define COUNT m2_i3 /* how many bytes to transfer */
03701 #define REQUEST m2_i3 /* ioctl request code */
03702 #define POSITION m2_l1 /* file offset */
03703 #define ADDRESS m2_p1 /* core buffer address */
03704
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03705 /* Field names for DEV_SELECT messages to device drivers. */
03706 #define DEV_MINOR m2_i1 /* minor device */
03707 #define DEV_SEL_OPS m2_i2 /* which select operations are requested */
03708 #define DEV_SEL_WATCH m2_i3 /* request notify if no operations are ready */
03709
03710 /* Field names used in reply messages from tasks. */
03711 #define REP_PROC_NR m2_i1 /* # of proc on whose behalf I/O was done */
03712 #define REP_STATUS m2_i2 /* bytes transferred or error number */
03713 # define SUSPEND -998 /* status to suspend caller, reply later */
03714
03715 /* Field names for messages to TTY driver. */
03716 #define TTY_LINE DEVICE /* message parameter: terminal line */
03717 #define TTY_REQUEST COUNT /* message parameter: ioctl request code */
03718 #define TTY_SPEK POSITION/* message parameter: ioctl speed, erasing */
03719 #define TTY_FLAGS m2_l2 /* message parameter: ioctl tty mode */
03720 #define TTY_PGRP m2_i3 /* message parameter: process group */
03721
03722 /* Field names for the QIC 02 status reply from tape driver */
03723 #define TAPE_STAT0 m2_l1
03724 #define TAPE_STAT1 m2_l2
03725
03726 /*===========================================================================*
03727 * Messages for networking layer *
03728 *===========================================================================*/
03729
03730 /* Message types for network layer requests. This layer acts like a driver. */
03731 #define NW_OPEN DEV_OPEN
03732 #define NW_CLOSE DEV_CLOSE
03733 #define NW_READ DEV_READ
03734 #define NW_WRITE DEV_WRITE
03735 #define NW_IOCTL DEV_IOCTL
03736 #define NW_CANCEL CANCEL
03737
03738 /* Base type for data link layer requests and responses. */
03739 #define DL_RQ_BASE 0x800
03740 #define DL_RS_BASE 0x900
03741
03742 /* Message types for data link layer requests. */
03743 #define DL_WRITE (DL_RQ_BASE + 3)
03744 #define DL_WRITEV (DL_RQ_BASE + 4)
03745 #define DL_READ (DL_RQ_BASE + 5)
03746 #define DL_READV (DL_RQ_BASE + 6)
03747 #define DL_INIT (DL_RQ_BASE + 7)
03748 #define DL_STOP (DL_RQ_BASE + 8)
03749 #define DL_GETSTAT (DL_RQ_BASE + 9)
03750
03751 /* Message type for data link layer replies. */
03752 #define DL_INIT_REPLY (DL_RS_BASE + 20)
03753 #define DL_TASK_REPLY (DL_RS_BASE + 21)
03754
03755 /* Field names for data link layer messages. */
03756 #define DL_PORT m2_i1
03757 #define DL_PROC m2_i2
03758 #define DL_COUNT m2_i3
03759 #define DL_MODE m2_l1
03760 #define DL_CLCK m2_l2
03761 #define DL_ADDR m2_p1
03762 #define DL_STAT m2_l1
03763
03764 /* Bits in ’DL_STAT’ field of DL replies. */
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03765 # define DL_PACK_SEND 0x01
03766 # define DL_PACK_RECV 0x02
03767 # define DL_READ_IP 0x04
03768
03769 /* Bits in ’DL_MODE’ field of DL requests. */
03770 # define DL_NOMODE 0x0
03771 # define DL_PROMISC_REQ 0x2
03772 # define DL_MULTI_REQ 0x4
03773 # define DL_BROAD_REQ 0x8
03774
03775 /*===========================================================================*
03776 * SYSTASK request types and field names *
03777 *===========================================================================*/
03778
03779 /* System library calls are dispatched via a call vector, so be careful when
03780 * modifying the system call numbers. The numbers here determine which call
03781 * is made from the call vector.
03782 */
03783 #define KERNEL_CALL 0x600 /* base for kernel calls to SYSTEM */
03784
03785 # define SYS_FORK (KERNEL_CALL + 0) /* sys_fork() */
03786 # define SYS_EXEC (KERNEL_CALL + 1) /* sys_exec() */
03787 # define SYS_EXIT (KERNEL_CALL + 2) /* sys_exit() */
03788 # define SYS_NICE (KERNEL_CALL + 3) /* sys_nice() */
03789 # define SYS_PRIVCTL (KERNEL_CALL + 4) /* sys_privctl() */
03790 # define SYS_TRACE (KERNEL_CALL + 5) /* sys_trace() */
03791 # define SYS_KILL (KERNEL_CALL + 6) /* sys_kill() */
03792
03793 # define SYS_GETKSIG (KERNEL_CALL + 7) /* sys_getsig() */
03794 # define SYS_ENDKSIG (KERNEL_CALL + 8) /* sys_endsig() */
03795 # define SYS_SIGSEND (KERNEL_CALL + 9) /* sys_sigsend() */
03796 # define SYS_SIGRETURN (KERNEL_CALL + 10) /* sys_sigreturn() */
03797
03798 # define SYS_NEWMAP (KERNEL_CALL + 11) /* sys_newmap() */
03799 # define SYS_SEGCTL (KERNEL_CALL + 12) /* sys_segctl() */
03800 # define SYS_MEMSET (KERNEL_CALL + 13) /* sys_memset() */
03801
03802 # define SYS_UMAP (KERNEL_CALL + 14) /* sys_umap() */
03803 # define SYS_VIRCOPY (KERNEL_CALL + 15) /* sys_vircopy() */
03804 # define SYS_PHYSCOPY (KERNEL_CALL + 16) /* sys_physcopy() */
03805 # define SYS_VIRVCOPY (KERNEL_CALL + 17) /* sys_virvcopy() */
03806 # define SYS_PHYSVCOPY (KERNEL_CALL + 18) /* sys_physvcopy() */
03807
03808 # define SYS_IRQCTL (KERNEL_CALL + 19) /* sys_irqctl() */
03809 # define SYS_INT86 (KERNEL_CALL + 20) /* sys_int86() */
03810 # define SYS_DEVIO (KERNEL_CALL + 21) /* sys_devio() */
03811 # define SYS_SDEVIO (KERNEL_CALL + 22) /* sys_sdevio() */
03812 # define SYS_VDEVIO (KERNEL_CALL + 23) /* sys_vdevio() */
03813
03814 # define SYS_SETALARM (KERNEL_CALL + 24) /* sys_setalarm() */
03815 # define SYS_TIMES (KERNEL_CALL + 25) /* sys_times() */
03816 # define SYS_GETINFO (KERNEL_CALL + 26) /* sys_getinfo() */
03817 # define SYS_ABORT (KERNEL_CALL + 27) /* sys_abort() */
03818
03819 #define NR_SYS_CALLS 28 /* number of system calls */
03820
03821 /* Field names for SYS_MEMSET, SYS_SEGCTL. */
03822 #define MEM_PTR m2_p1 /* base */
03823 #define MEM_COUNT m2_l1 /* count */
03824 #define MEM_PATTERN m2_l2 /* pattern to write */
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03825 #define MEM_CHUNK_BASE m4_l1 /* physical base address */
03826 #define MEM_CHUNK_SIZE m4_l2 /* size of mem chunk */
03827 #define MEM_TOT_SIZE m4_l3 /* total memory size */
03828 #define MEM_CHUNK_TAG m4_l4 /* tag to identify chunk of mem */
03829
03830 /* Field names for SYS_DEVIO, SYS_VDEVIO, SYS_SDEVIO. */
03831 #define DIO_REQUEST m2_i3 /* device in or output */
03832 # define DIO_INPUT 0 /* input */
03833 # define DIO_OUTPUT 1 /* output */
03834 #define DIO_TYPE m2_i1 /* flag indicating byte, word, or long */
03835 # define DIO_BYTE ’b’ /* byte type values */
03836 # define DIO_WORD ’w’ /* word type values */
03837 # define DIO_LONG ’l’ /* long type values */
03838 #define DIO_PORT m2_l1 /* single port address */
03839 #define DIO_VALUE m2_l2 /* single I/O value */
03840 #define DIO_VEC_ADDR m2_p1 /* address of buffer or (p,v)-pairs */
03841 #define DIO_VEC_SIZE m2_l2 /* number of elements in vector */
03842 #define DIO_VEC_PROC m2_i2 /* number of process where vector is */
03843
03844 /* Field names for SYS_SIGNARLM, SYS_FLAGARLM, SYS_SYNCALRM. */
03845 #define ALRM_EXP_TIME m2_l1 /* expire time for the alarm call */
03846 #define ALRM_ABS_TIME m2_i2 /* set to 1 to use absolute alarm time */
03847 #define ALRM_TIME_LEFT m2_l1 /* how many ticks were remaining */
03848 #define ALRM_PROC_NR m2_i1 /* which process wants the alarm? */
03849 #define ALRM_FLAG_PTR m2_p1 /* virtual address of timeout flag */
03850
03851 /* Field names for SYS_IRQCTL. */
03852 #define IRQ_REQUEST m5_c1 /* what to do? */
03853 # define IRQ_SETPOLICY 1 /* manage a slot of the IRQ table */
03854 # define IRQ_RMPOLICY 2 /* remove a slot of the IRQ table */
03855 # define IRQ_ENABLE 3 /* enable interrupts */
03856 # define IRQ_DISABLE 4 /* disable interrupts */
03857 #define IRQ_VECTOR m5_c2 /* irq vector */
03858 #define IRQ_POLICY m5_i1 /* options for IRQCTL request */
03859 # define IRQ_REENABLE 0x001 /* reenable IRQ line after interrupt */
03860 # define IRQ_BYTE 0x100 /* byte values */
03861 # define IRQ_WORD 0x200 /* word values */
03862 # define IRQ_LONG 0x400 /* long values */
03863 #define IRQ_PROC_NR m5_i2 /* process number, SELF, NONE */
03864 #define IRQ_HOOK_ID m5_l3 /* id of irq hook at kernel */
03865
03866 /* Field names for SYS_SEGCTL. */
03867 #define SEG_SELECT m4_l1 /* segment selector returned */
03868 #define SEG_OFFSET m4_l2 /* offset in segment returned */
03869 #define SEG_PHYS m4_l3 /* physical address of segment */
03870 #define SEG_SIZE m4_l4 /* segment size */
03871 #define SEG_INDEX m4_l5 /* segment index in remote map */
03872
03873 /* Field names for SYS_VIDCOPY. */
03874 #define VID_REQUEST m4_l1 /* what to do? */
03875 # define VID_VID_COPY 1 /* request vid_vid_copy() */
03876 # define MEM_VID_COPY 2 /* request mem_vid_copy() */
03877 #define VID_SRC_ADDR m4_l2 /* virtual address in memory */
03878 #define VID_SRC_OFFSET m4_l3 /* offset in video memory */
03879 #define VID_DST_OFFSET m4_l4 /* offset in video memory */
03880 #define VID_CP_COUNT m4_l5 /* number of words to be copied */
03881
03882 /* Field names for SYS_ABORT. */
03883 #define ABRT_HOW m1_i1 /* RBT_REBOOT, RBT_HALT, etc. */
03884 #define ABRT_MON_PROC m1_i2 /* process where monitor params are */
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03885 #define ABRT_MON_LEN m1_i3 /* length of monitor params */
03886 #define ABRT_MON_ADDR m1_p1 /* virtual address of monitor params */
03887
03888 /* Field names for _UMAP, _VIRCOPY, _PHYSCOPY. */
03889 #define CP_SRC_SPACE m5_c1 /* T or D space (stack is also D) */
03890 #define CP_SRC_PROC_NR m5_i1 /* process to copy from */
03891 #define CP_SRC_ADDR m5_l1 /* address where data come from */
03892 #define CP_DST_SPACE m5_c2 /* T or D space (stack is also D) */
03893 #define CP_DST_PROC_NR m5_i2 /* process to copy to */
03894 #define CP_DST_ADDR m5_l2 /* address where data go to */
03895 #define CP_NR_BYTES m5_l3 /* number of bytes to copy */
03896
03897 /* Field names for SYS_VCOPY and SYS_VVIRCOPY. */
03898 #define VCP_NR_OK m1_i2 /* number of successfull copies */
03899 #define VCP_VEC_SIZE m1_i3 /* size of copy vector */
03900 #define VCP_VEC_ADDR m1_p1 /* pointer to copy vector */
03901
03902 /* Field names for SYS_GETINFO. */
03903 #define I_REQUEST m7_i3 /* what info to get */
03904 # define GET_KINFO 0 /* get kernel information structure */
03905 # define GET_IMAGE 1 /* get system image table */
03906 # define GET_PROCTAB 2 /* get kernel process table */
03907 # define GET_RANDOMNESS 3 /* get randomness buffer */
03908 # define GET_MONPARAMS 4 /* get monitor parameters */
03909 # define GET_KENV 5 /* get kernel environment string */
03910 # define GET_IRQHOOKS 6 /* get the IRQ table */
03911 # define GET_KMESSAGES 7 /* get kernel messages */
03912 # define GET_PRIVTAB 8 /* get kernel privileges table */
03913 # define GET_KADDRESSES 9 /* get various kernel addresses */
03914 # define GET_SCHEDINFO 10 /* get scheduling queues */
03915 # define GET_PROC 11 /* get process slot if given process */
03916 # define GET_MACHINE 12 /* get machine information */
03917 # define GET_LOCKTIMING 13 /* get lock()/unlock() latency timing */
03918 # define GET_BIOSBUFFER 14 /* get a buffer for BIOS calls */
03919 #define I_PROC_NR m7_i4 /* calling process */
03920 #define I_VAL_PTR m7_p1 /* virtual address at caller */
03921 #define I_VAL_LEN m7_i1 /* max length of value */
03922 #define I_VAL_PTR2 m7_p2 /* second virtual address */
03923 #define I_VAL_LEN2 m7_i2 /* second length, or proc nr */
03924
03925 /* Field names for SYS_TIMES. */
03926 #define T_PROC_NR m4_l1 /* process to request time info for */
03927 #define T_USER_TIME m4_l1 /* user time consumed by process */
03928 #define T_SYSTEM_TIME m4_l2 /* system time consumed by process */
03929 #define T_CHILD_UTIME m4_l3 /* user time consumed by process’ children */
03930 #define T_CHILD_STIME m4_l4 /* sys time consumed by process’ children */
03931 #define T_BOOT_TICKS m4_l5 /* number of clock ticks since boot time */
03932
03933 /* Field names for SYS_TRACE, SYS_SVRCTL. */
03934 #define CTL_PROC_NR m2_i1 /* process number of the caller */
03935 #define CTL_REQUEST m2_i2 /* server control request */
03936 #define CTL_MM_PRIV m2_i3 /* privilege as seen by PM */
03937 #define CTL_ARG_PTR m2_p1 /* pointer to argument */
03938 #define CTL_ADDRESS m2_l1 /* address at traced process’ space */
03939 #define CTL_DATA m2_l2 /* data field for tracing */
03940
03941 /* Field names for SYS_KILL, SYS_SIGCTL */
03942 #define SIG_REQUEST m2_l2 /* PM signal control request */
03943 #define S_GETSIG 0 /* get pending kernel signal */
03944 #define S_ENDSIG 1 /* finish a kernel signal */
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03945 #define S_SENDSIG 2 /* POSIX style signal handling */
03946 #define S_SIGRETURN 3 /* return from POSIX handling */
03947 #define S_KILL 4 /* servers kills process with signal */
03948 #define SIG_PROC m2_i1 /* process number for inform */
03949 #define SIG_NUMBER m2_i2 /* signal number to send */
03950 #define SIG_FLAGS m2_i3 /* signal flags field */
03951 #define SIG_MAP m2_l1 /* used by kernel to pass signal bit map */
03952 #define SIG_CTXT_PTR m2_p1 /* pointer to info to restore signal context */
03953
03954 /* Field names for SYS_FORK, _EXEC, _EXIT, _NEWMAP. */
03955 #define PR_PROC_NR m1_i1 /* indicates a (child) process */
03956 #define PR_PRIORITY m1_i2 /* process priority */
03957 #define PR_PPROC_NR m1_i2 /* indicates a (parent) process */
03958 #define PR_PID m1_i3 /* process id at process manager */
03959 #define PR_STACK_PTR m1_p1 /* used for stack ptr in sys_exec, sys_getsp */
03960 #define PR_TRACING m1_i3 /* flag to indicate tracing is on/ off */
03961 #define PR_NAME_PTR m1_p2 /* tells where program name is for dmp */
03962 #define PR_IP_PTR m1_p3 /* initial value for ip after exec */
03963 #define PR_MEM_PTR m1_p1 /* tells where memory map is for sys_newmap */
03964
03965 /* Field names for SYS_INT86 */
03966 #define INT86_REG86 m1_p1 /* pointer to registers */
03967
03968 /* Field names for SELECT (FS). */
03969 #define SEL_NFDS m8_i1
03970 #define SEL_READFDS m8_p1
03971 #define SEL_WRITEFDS m8_p2
03972 #define SEL_ERRORFDS m8_p3
03973 #define SEL_TIMEOUT m8_p4
03974
03975 /*===========================================================================*
03976 * Messages for system management server *
03977 *===========================================================================*/
03978
03979 #define SRV_RQ_BASE 0x700
03980
03981 #define SRV_UP (SRV_RQ_BASE + 0) /* start system service */
03982 #define SRV_DOWN (SRV_RQ_BASE + 1) /* stop system service */
03983 #define SRV_STATUS (SRV_RQ_BASE + 2) /* get service status */
03984
03985 # define SRV_PATH_ADDR m1_p1 /* path of binary */
03986 # define SRV_PATH_LEN m1_i1 /* length of binary */
03987 # define SRV_ARGS_ADDR m1_p2 /* arguments to be passed */
03988 # define SRV_ARGS_LEN m1_i2 /* length of arguments */
03989 # define SRV_DEV_MAJOR m1_i3 /* major device number */
03990 # define SRV_PRIV_ADDR m1_p3 /* privileges string */
03991 # define SRV_PRIV_LEN m1_i3 /* length of privileges */
03992
03993 /*===========================================================================*
03994 * Miscellaneous messages used by TTY *
03995 *===========================================================================*/
03996
03997 /* Miscellaneous request types and field names, e.g. used by IS server. */
03998 #define PANIC_DUMPS 97 /* debug dumps at the TTY on RBT_PANIC */
03999 #define FKEY_CONTROL 98 /* control a function key at the TTY */
04000 # define FKEY_REQUEST m2_i1 /* request to perform at TTY */
04001 # define FKEY_MAP 10 /* observe function key */
04002 # define FKEY_UNMAP 11 /* stop observing function key */
04003 # define FKEY_EVENTS 12 /* request open key presses */
04004 # define FKEY_FKEYS m2_l1 /* F1-F12 keys pressed */
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04005 # define FKEY_SFKEYS m2_l2 /* Shift-F1-F12 keys pressed */
04006 #define DIAGNOSTICS 100 /* output a string without FS in between */
04007 # define DIAG_PRINT_BUF m1_p1
04008 # define DIAG_BUF_COUNT m1_i1
04009 # define DIAG_PROC_NR m1_i2
04010
04011 #endif /* _MINIX_COM_H */

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
include/minix/devio.h

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

04100 /* This file provides basic types and some constants for the
04101 * SYS_DEVIO and SYS_VDEVIO system calls, which allow user-level
04102 * processes to perform device I/O.
04103 *
04104 * Created:
04105 * Apr 08, 2004 by Jorrit N. Herder
04106 */
04107
04108 #ifndef _DEVIO_H
04109 #define _DEVIO_H
04110
04111 #include <minix/sys_config.h> /* needed to include <minix/type.h> */
04112 #include <sys/types.h> /* u8_t, u16_t, u32_t needed */
04113
04114 typedef u16_t port_t;
04115 typedef U16_t Port_t;
04116
04117 /* We have different granularities of port I/O: 8, 16, 32 bits.
04118 * Also see <ibm/portio.h>, which has functions for bytes, words,
04119 * and longs. Hence, we need different (port,value)-pair types.
04120 */
04121 typedef struct { u16_t port; u8_t value; } pvb_pair_t;
04122 typedef struct { u16_t port; u16_t value; } pvw_pair_t;
04123 typedef struct { u16_t port; u32_t value; } pvl_pair_t;
04124
04125 /* Macro shorthand to set (port,value)-pair. */
04126 #define pv_set(pv, p, v) ((pv).port = (p), (pv).value = (v))
04127 #define pv_ptr_set(pv_ptr, p, v) ((pv_ptr)->port = (p), (pv_ptr)->value = (v))
04128
04129 #endif /* _DEVIO_H */

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
include/minix/dmap.h

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

04200 #ifndef _DMAP_H
04201 #define _DMAP_H
04202
04203 #include <minix/sys_config.h>
04204 #include <minix/ipc.h>
04205
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04206 /*===========================================================================*
04207 * Device <-> Driver Table *
04208 *===========================================================================*/
04209
04210 /* Device table. This table is indexed by major device number. It provides
04211 * the link between major device numbers and the routines that process them.
04212 * The table can be update dynamically. The field ’dmap_flags’ describe an
04213 * entry’s current status and determines what control options are possible.
04214 */
04215 #define DMAP_MUTABLE 0x01 /* mapping can be overtaken */
04216 #define DMAP_BUSY 0x02 /* driver busy with request */
04217
04218 enum dev_style { STYLE_DEV, STYLE_NDEV, STYLE_TTY, STYLE_CLONE };
04219
04220 extern struct dmap {
04221 int _PROTOTYPE ((*dmap_opcl), (int, Dev_t, int, int) );
04222 void _PROTOTYPE ((*dmap_io), (int, message *) );
04223 int dmap_driver;
04224 int dmap_flags;
04225 } dmap[];
04226
04227 /*===========================================================================*
04228 * Major and minor device numbers *
04229 *===========================================================================*/
04230
04231 /* Total number of different devices. */
04232 #define NR_DEVICES 32 /* number of (major) devices */
04233
04234 /* Major and minor device numbers for MEMORY driver. */
04235 #define MEMORY_MAJOR 1 /* major device for memory devices */
04236 # define RAM_DEV 0 /* minor device for /dev/ram */
04237 # define MEM_DEV 1 /* minor device for /dev/mem */
04238 # define KMEM_DEV 2 /* minor device for /dev/kmem */
04239 # define NULL_DEV 3 /* minor device for /dev/null */
04240 # define BOOT_DEV 4 /* minor device for /dev/boot */
04241 # define ZERO_DEV 5 /* minor device for /dev/zero */
04242
04243 #define CTRLR(n) ((n)==0 ? 3 : (8 + 2*((n)-1))) /* magic formula */
04244
04245 /* Full device numbers that are special to the boot monitor and FS. */
04246 # define DEV_RAM 0x0100 /* device number of /dev/ram */
04247 # define DEV_BOOT 0x0104 /* device number of /dev/boot */
04248
04249 #define FLOPPY_MAJOR 2 /* major device for floppy disks */
04250 #define TTY_MAJOR 4 /* major device for ttys */
04251 #define CTTY_MAJOR 5 /* major device for /dev/tty */
04252
04253 #define INET_MAJOR 7 /* major device for inet */
04254
04255 #define LOG_MAJOR 15 /* major device for log driver */
04256 # define IS_KLOG_DEV 0 /* minor device for /dev/klog */
04257
04258 #endif /* _DMAP_H */
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++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
include/ibm/portio.h

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

04300 /*
04301 ibm/portio.h
04302
04303 Created: Jan 15, 1992 by Philip Homburg
04304 */
04305
04306 #ifndef _PORTIO_H_
04307 #define _PORTIO_H_
04308
04309 #ifndef _TYPES_H
04310 #include <sys/types.h>
04311 #endif
04312
04313 unsigned inb(U16_t _port);
04314 unsigned inw(U16_t _port);
04315 unsigned inl(U32_t _port);
04316 void outb(U16_t _port, U8_t _value);
04317 void outw(U16_t _port, U16_t _value);
04318 void outl(U16_t _port, U32_t _value);
04319 void insb(U16_t _port, void *_buf, size_t _count);
04320 void insw(U16_t _port, void *_buf, size_t _count);
04321 void insl(U16_t _port, void *_buf, size_t _count);
04322 void outsb(U16_t _port, void *_buf, size_t _count);
04323 void outsw(U16_t _port, void *_buf, size_t _count);
04324 void outsl(U16_t _port, void *_buf, size_t _count);
04325 void intr_disable(void);
04326 void intr_enable(void);
04327
04328 #endif /* _PORTIO_H_ */

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
include/ibm/interrupt.h

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

04400 /* Interrupt numbers and hardware vectors. */
04401
04402 #ifndef _INTERRUPT_H
04403 #define _INTERRUPT_H
04404
04405 #if (CHIP == INTEL)
04406
04407 /* 8259A interrupt controller ports. */
04408 #define INT_CTL 0x20 /* I/O port for interrupt controller */
04409 #define INT_CTLMASK 0x21 /* setting bits in this port disables ints */
04410 #define INT2_CTL 0xA0 /* I/O port for second interrupt controller */
04411 #define INT2_CTLMASK 0xA1 /* setting bits in this port disables ints */
04412
04413 /* Magic numbers for interrupt controller. */
04414 #define END_OF_INT 0x20 /* code used to re-enable after an interrupt */
04415
04416 /* Interrupt vectors defined/reserved by processor. */
04417 #define DIVIDE_VECTOR 0 /* divide error */
04418 #define DEBUG_VECTOR 1 /* single step (trace) */
04419 #define NMI_VECTOR 2 /* non-maskable interrupt */
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04420 #define BREAKPOINT_VECTOR 3 /* software breakpoint */
04421 #define OVERFLOW_VECTOR 4 /* from INTO */
04422
04423 /* Fixed system call vector. */
04424 #define SYS_VECTOR 32 /* system calls are made with int SYSVEC */
04425 #define SYS386_VECTOR 33 /* except 386 system calls use this */
04426 #define LEVEL0_VECTOR 34 /* for execution of a function at level 0 */
04427
04428 /* Suitable irq bases for hardware interrupts. Reprogram the 8259(s) from
04429 * the PC BIOS defaults since the BIOS doesn’t respect all the processor’s
04430 * reserved vectors (0 to 31).
04431 */
04432 #define BIOS_IRQ0_VEC 0x08 /* base of IRQ0-7 vectors used by BIOS */
04433 #define BIOS_IRQ8_VEC 0x70 /* base of IRQ8-15 vectors used by BIOS */
04434 #define IRQ0_VECTOR 0x50 /* nice vectors to relocate IRQ0-7 to */
04435 #define IRQ8_VECTOR 0x70 /* no need to move IRQ8-15 */
04436
04437 /* Hardware interrupt numbers. */
04438 #define NR_IRQ_VECTORS 16
04439 #define CLOCK_IRQ 0
04440 #define KEYBOARD_IRQ 1
04441 #define CASCADE_IRQ 2 /* cascade enable for 2nd AT controller */
04442 #define ETHER_IRQ 3 /* default ethernet interrupt vector */
04443 #define SECONDARY_IRQ 3 /* RS232 interrupt vector for port 2 */
04444 #define RS232_IRQ 4 /* RS232 interrupt vector for port 1 */
04445 #define XT_WINI_IRQ 5 /* xt winchester */
04446 #define FLOPPY_IRQ 6 /* floppy disk */
04447 #define PRINTER_IRQ 7
04448 #define AT_WINI_0_IRQ 14 /* at winchester controller 0 */
04449 #define AT_WINI_1_IRQ 15 /* at winchester controller 1 */
04450
04451 /* Interrupt number to hardware vector. */
04452 #define BIOS_VECTOR(irq) \
04453 (((irq) < 8 ? BIOS_IRQ0_VEC : BIOS_IRQ8_VEC) + ((irq) & 0x07))
04454 #define VECTOR(irq) \
04455 (((irq) < 8 ? IRQ0_VECTOR : IRQ8_VECTOR) + ((irq) & 0x07))
04456
04457 #endif /* (CHIP == INTEL) */
04458
04459 #endif /* _INTERRUPT_H */

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
include/ibm/ports.h

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

04500 /* Addresses and magic numbers for miscellaneous ports. */
04501
04502 #ifndef _PORTS_H
04503 #define _PORTS_H
04504
04505 #if (CHIP == INTEL)
04506
04507 /* Miscellaneous ports. */
04508 #define PCR 0x65 /* Planar Control Register */
04509 #define PORT_B 0x61 /* I/O port for 8255 port B (kbd, beeper...) */
04510 #define TIMER0 0x40 /* I/O port for timer channel 0 */
04511 #define TIMER2 0x42 /* I/O port for timer channel 2 */
04512 #define TIMER_MODE 0x43 /* I/O port for timer mode control */
04513
04514 #endif /* (CHIP == INTEL) */
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04515
04516 #endif /* _PORTS_H */

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
kernel/kernel.h

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

04600 #ifndef KERNEL_H
04601 #define KERNEL_H
04602
04603 /* This is the master header for the kernel. It includes some other files
04604 * and defines the principal constants.
04605 */
04606 #define _POSIX_SOURCE 1 /* tell headers to include POSIX stuff */
04607 #define _MINIX 1 /* tell headers to include MINIX stuff */
04608 #define _SYSTEM 1 /* tell headers that this is the kernel */
04609
04610 /* The following are so basic, all the *.c files get them automatically. */
04611 #include <minix/config.h> /* global configuration, MUST be first */
04612 #include <ansi.h> /* C style: ANSI or K&R, MUST be second */
04613 #include <sys/types.h> /* general system types */
04614 #include <minix/const.h> /* MINIX specific constants */
04615 #include <minix/type.h> /* MINIX specific types, e.g. message */
04616 #include <minix/ipc.h> /* MINIX run-time system */
04617 #include <timers.h> /* watchdog timer management */
04618 #include <errno.h> /* return codes and error numbers */
04619 #include <ibm/portio.h> /* device I/O and toggle interrupts */
04620
04621 /* Important kernel header files. */
04622 #include "config.h" /* configuration, MUST be first */
04623 #include "const.h" /* constants, MUST be second */
04624 #include "type.h" /* type definitions, MUST be third */
04625 #include "proto.h" /* function prototypes */
04626 #include "glo.h" /* global variables */
04627 #include "ipc.h" /* IPC constants */
04628 /* #include "debug.h" */ /* debugging, MUST be last kernel header */
04629
04630 #endif /* KERNEL_H */
04631

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
kernel/config.h

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

04700 #ifndef CONFIG_H
04701 #define CONFIG_H
04702
04703 /* This file defines the kernel configuration. It allows to set sizes of some
04704 * kernel buffers and to enable or disable debugging code, timing features,
04705 * and individual kernel calls.
04706 *
04707 * Changes:
04708 * Jul 11, 2005 Created. (Jorrit N. Herder)
04709 */
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04710
04711 /* In embedded and sensor applications, not all the kernel calls may be
04712 * needed. In this section you can specify which kernel calls are needed
04713 * and which are not. The code for unneeded kernel calls is not included in
04714 * the system binary, making it smaller. If you are not sure, it is best
04715 * to keep all kernel calls enabled.
04716 */
04717 #define USE_FORK 1 /* fork a new process */
04718 #define USE_NEWMAP 1 /* set a new memory map */
04719 #define USE_EXEC 1 /* update process after execute */
04720 #define USE_EXIT 1 /* clean up after process exit */
04721 #define USE_TRACE 1 /* process information and tracing */
04722 #define USE_GETKSIG 1 /* retrieve pending kernel signals */
04723 #define USE_ENDKSIG 1 /* finish pending kernel signals */
04724 #define USE_KILL 1 /* send a signal to a process */
04725 #define USE_SIGSEND 1 /* send POSIX-style signal */
04726 #define USE_SIGRETURN 1 /* sys_sigreturn(proc_nr, ctxt_ptr, flags) */
04727 #define USE_ABORT 1 /* shut down MINIX */
04728 #define USE_GETINFO 1 /* retrieve a copy of kernel data */
04729 #define USE_TIMES 1 /* get process and system time info */
04730 #define USE_SETALARM 1 /* schedule a synchronous alarm */
04731 #define USE_DEVIO 1 /* read or write a single I/O port */
04732 #define USE_VDEVIO 1 /* process vector with I/O requests */
04733 #define USE_SDEVIO 1 /* perform I/O request on a buffer */
04734 #define USE_IRQCTL 1 /* set an interrupt policy */
04735 #define USE_SEGCTL 1 /* set up a remote segment */
04736 #define USE_PRIVCTL 1 /* system privileges control */
04737 #define USE_NICE 1 /* change scheduling priority */
04738 #define USE_UMAP 1 /* map virtual to physical address */
04739 #define USE_VIRCOPY 1 /* copy using virtual addressing */
04740 #define USE_VIRVCOPY 1 /* vector with virtual copy requests */
04741 #define USE_PHYSCOPY 1 /* copy using physical addressing */
04742 #define USE_PHYSVCOPY 1 /* vector with physical copy requests */
04743 #define USE_MEMSET 1 /* write char to a given memory area */
04744
04745 /* Length of program names stored in the process table. This is only used
04746 * for the debugging dumps that can be generated with the IS server. The PM
04747 * server keeps its own copy of the program name.
04748 */
04749 #define P_NAME_LEN 8
04750
04751 /* Kernel diagnostics are written to a circular buffer. After each message,
04752 * a system server is notified and a copy of the buffer can be retrieved to
04753 * display the message. The buffers size can safely be reduced.
04754 */
04755 #define KMESS_BUF_SIZE 256
04756
04757 /* Buffer to gather randomness. This is used to generate a random stream by
04758 * the MEMORY driver when reading from /dev/random.
04759 */
04760 #define RANDOM_ELEMENTS 32
04761
04762 /* This section contains defines for valuable system resources that are used
04763 * by device drivers. The number of elements of the vectors is determined by
04764 * the maximum needed by any given driver. The number of interrupt hooks may
04765 * be incremented on systems with many device drivers.
04766 */
04767 #define NR_IRQ_HOOKS 16 /* number of interrupt hooks */
04768 #define VDEVIO_BUF_SIZE 64 /* max elements per VDEVIO request */
04769 #define VCOPY_VEC_SIZE 16 /* max elements per VCOPY request */
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04770
04771 /* How many bytes for the kernel stack. Space allocated in mpx.s. */
04772 #define K_STACK_BYTES 1024
04773
04774 /* This section allows to enable kernel debugging and timing functionality.
04775 * For normal operation all options should be disabled.
04776 */
04777 #define DEBUG_SCHED_CHECK 0 /* sanity check of scheduling queues */
04778 #define DEBUG_LOCK_CHECK 0 /* kernel lock() sanity check */
04779 #define DEBUG_TIME_LOCKS 0 /* measure time spent in locks */
04780
04781 #endif /* CONFIG_H */
04782

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
kernel/const.h

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

04800 /* General macros and constants used by the kernel. */
04801 #ifndef CONST_H
04802 #define CONST_H
04803
04804 #include <ibm/interrupt.h> /* interrupt numbers and hardware vectors */
04805 #include <ibm/ports.h> /* port addresses and magic numbers */
04806 #include <ibm/bios.h> /* BIOS addresses, sizes and magic numbers */
04807 #include <ibm/cpu.h> /* BIOS addresses, sizes and magic numbers */
04808 #include <minix/config.h>
04809 #include "config.h"
04810
04811 /* To translate an address in kernel space to a physical address. This is
04812 * the same as umap_local(proc_ptr, D, vir, sizeof(*vir)), but less costly.
04813 */
04814 #define vir2phys(vir) (kinfo.data_base + (vir_bytes) (vir))
04815
04816 /* Map a process number to a privilege structure id. */
04817 #define s_nr_to_id(n) (NR_TASKS + (n) + 1)
04818
04819 /* Translate a pointer to a field in a structure to a pointer to the structure
04820 * itself. So it translates ’&struct_ptr->field’ back to ’struct_ptr’.
04821 */
04822 #define structof(type, field, ptr) \
04823 ((type *) (((char *) (ptr)) - offsetof(type, field)))
04824
04825 /* Constants used in virtual_copy(). Values must be 0 and 1, respectively. */
04826 #define _SRC_ 0
04827 #define _DST_ 1
04828
04829 /* Number of random sources */
04830 #define RANDOM_SOURCES 16
04831
04832 /* Constants and macros for bit map manipulation. */
04833 #define BITCHUNK_BITS (sizeof(bitchunk_t) * CHAR_BIT)
04834 #define BITMAP_CHUNKS(nr_bits) (((nr_bits)+BITCHUNK_BITS-1)/BITCHUNK_BITS)
04835 #define MAP_CHUNK(map,bit) (map)[((bit)/BITCHUNK_BITS)]
04836 #define CHUNK_OFFSET(bit) ((bit)%BITCHUNK_BITS))
04837 #define GET_BIT(map,bit) ( MAP_CHUNK(map,bit) & (1 << CHUNK_OFFSET(bit) )
04838 #define SET_BIT(map,bit) ( MAP_CHUNK(map,bit) |= (1 << CHUNK_OFFSET(bit) )
04839 #define UNSET_BIT(map,bit) ( MAP_CHUNK(map,bit) &= ˜(1 << CHUNK_OFFSET(bit) )
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04840
04841 #define get_sys_bit(map,bit) \
04842 ( MAP_CHUNK(map.chunk,bit) & (1 << CHUNK_OFFSET(bit) )
04843 #define set_sys_bit(map,bit) \
04844 ( MAP_CHUNK(map.chunk,bit) |= (1 << CHUNK_OFFSET(bit) )
04845 #define unset_sys_bit(map,bit) \
04846 ( MAP_CHUNK(map.chunk,bit) &= ˜(1 << CHUNK_OFFSET(bit) )
04847 #define NR_SYS_CHUNKS BITMAP_CHUNKS(NR_SYS_PROCS)
04848
04849 /* Program stack words and masks. */
04850 #define INIT_PSW 0x0200 /* initial psw */
04851 #define INIT_TASK_PSW 0x1200 /* initial psw for tasks (with IOPL 1) */
04852 #define TRACEBIT 0x0100 /* OR this with psw in proc[] for tracing */
04853 #define SETPSW(rp, new) /* permits only certain bits to be set */ \
04854 ((rp)->p_reg.psw = (rp)->p_reg.psw & ˜0xCD5 | (new) & 0xCD5)
04855 #define IF_MASK 0x00000200
04856 #define IOPL_MASK 0x003000
04857
04858 /* Disable/ enable hardware interrupts. The parameters of lock() and unlock()
04859 * are used when debugging is enabled. See debug.h for more information.
04860 */
04861 #define lock(c, v) intr_disable();
04862 #define unlock(c) intr_enable();
04863
04864 /* Sizes of memory tables. The boot monitor distinguishes three memory areas,
04865 * namely low mem below 1M, 1M-16M, and mem after 16M. More chunks are needed
04866 * for DOS MINIX.
04867 */
04868 #define NR_MEMS 8
04869
04870 #endif /* CONST_H */
04871
04872
04873
04874
04875

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
kernel/type.h

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

04900 #ifndef TYPE_H
04901 #define TYPE_H
04902
04903 typedef _PROTOTYPE( void task_t, (void) );
04904
04905 /* Process table and system property related types. */
04906 typedef int proc_nr_t; /* process table entry number */
04907 typedef short sys_id_t; /* system process index */
04908 typedef struct { /* bitmap for system indexes */
04909 bitchunk_t chunk[BITMAP_CHUNKS(NR_SYS_PROCS)];
04910 } sys_map_t;
04911
04912 struct boot_image {
04913 proc_nr_t proc_nr; /* process number to use */
04914 task_t *initial_pc; /* start function for tasks */
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04915 int flags; /* process flags */
04916 unsigned char quantum; /* quantum (tick count) */
04917 int priority; /* scheduling priority */
04918 int stksize; /* stack size for tasks */
04919 short trap_mask; /* allowed system call traps */
04920 bitchunk_t ipc_to; /* send mask protection */
04921 long call_mask; /* system call protection */
04922 char proc_name[P_NAME_LEN]; /* name in process table */
04923 };
04924
04925 struct memory {
04926 phys_clicks base; /* start address of chunk */
04927 phys_clicks size; /* size of memory chunk */
04928 };
04929
04930 /* The kernel outputs diagnostic messages in a circular buffer. */
04931 struct kmessages {
04932 int km_next; /* next index to write */
04933 int km_size; /* current size in buffer */
04934 char km_buf[KMESS_BUF_SIZE]; /* buffer for messages */
04935 };
04936
04937 struct randomness {
04938 struct {
04939 int r_next; /* next index to write */
04940 int r_size; /* number of random elements */
04941 unsigned short r_buf[RANDOM_ELEMENTS]; /* buffer for random info */
04942 } bin[RANDOM_SOURCES];
04943 };
04944
04945 #if (CHIP == INTEL)
04946 typedef unsigned reg_t; /* machine register */
04947
04948 /* The stack frame layout is determined by the software, but for efficiency
04949 * it is laid out so the assembly code to use it is as simple as possible.
04950 * 80286 protected mode and all real modes use the same frame, built with
04951 * 16-bit registers. Real mode lacks an automatic stack switch, so little
04952 * is lost by using the 286 frame for it. The 386 frame differs only in
04953 * having 32-bit registers and more segment registers. The same names are
04954 * used for the larger registers to avoid differences in the code.
04955 */
04956 struct stackframe_s { /* proc_ptr points here */
04957 #if _WORD_SIZE == 4
04958 u16_t gs; /* last item pushed by save */
04959 u16_t fs; /* ˆ */
04960 #endif
04961 u16_t es; /* | */
04962 u16_t ds; /* | */
04963 reg_t di; /* di through cx are not accessed in C */
04964 reg_t si; /* order is to match pusha/popa */
04965 reg_t fp; /* bp */
04966 reg_t st; /* hole for another copy of sp */
04967 reg_t bx; /* | */
04968 reg_t dx; /* | */
04969 reg_t cx; /* | */
04970 reg_t retreg; /* ax and above are all pushed by save */
04971 reg_t retadr; /* return address for assembly code save() */
04972 reg_t pc; /* ˆ last item pushed by interrupt */
04973 reg_t cs; /* | */
04974 reg_t psw; /* | */
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04975 reg_t sp; /* | */
04976 reg_t ss; /* these are pushed by CPU during interrupt */
04977 };
04978
04979 struct segdesc_s { /* segment descriptor for protected mode */
04980 u16_t limit_low;
04981 u16_t base_low;
04982 u8_t base_middle;
04983 u8_t access; /* |P|DL|1|X|E|R|A| */
04984 u8_t granularity; /* |G|X|0|A|LIMT| */
04985 u8_t base_high;
04986 };
04987
04988 typedef unsigned long irq_policy_t;
04989 typedef unsigned long irq_id_t;
04990
04991 typedef struct irq_hook {
04992 struct irq_hook *next; /* next hook in chain */
04993 int (*handler)(struct irq_hook *); /* interrupt handler */
04994 int irq; /* IRQ vector number */
04995 int id; /* id of this hook */
04996 int proc_nr; /* NONE if not in use */
04997 irq_id_t notify_id; /* id to return on interrupt */
04998 irq_policy_t policy; /* bit mask for policy */
04999 } irq_hook_t;
05000
05001 typedef int (*irq_handler_t)(struct irq_hook *);
05002
05003 #endif /* (CHIP == INTEL) */
05004
05005 #if (CHIP == M68000)
05006 /* M68000 specific types go here. */
05007 #endif /* (CHIP == M68000) */
05008
05009 #endif /* TYPE_H */

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
kernel/proto.h

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

05100 /* Function prototypes. */
05101
05102 #ifndef PROTO_H
05103 #define PROTO_H
05104
05105 /* Struct declarations. */
05106 struct proc;
05107 struct timer;
05108
05109 /* clock.c */
05110 _PROTOTYPE( void clock_task, (void) );
05111 _PROTOTYPE( void clock_stop, (void) );
05112 _PROTOTYPE( clock_t get_uptime, (void) );
05113 _PROTOTYPE( unsigned long read_clock, (void) );
05114 _PROTOTYPE( void set_timer, (struct timer *tp, clock_t t, tmr_func_t f) );
05115 _PROTOTYPE( void reset_timer, (struct timer *tp) );
05116
05117 /* main.c */
05118 _PROTOTYPE( void main, (void) );
05119 _PROTOTYPE( void prepare_shutdown, (int how) );
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05120
05121 /* utility.c */
05122 _PROTOTYPE( void kprintf, (const char *fmt, ...) );
05123 _PROTOTYPE( void panic, (_CONST char *s, int n) );
05124
05125 /* proc.c */
05126 _PROTOTYPE( int sys_call, (int function, int src_dest, message *m_ptr) );
05127 _PROTOTYPE( int lock_notify, (int src, int dst) );
05128 _PROTOTYPE( int lock_send, (int dst, message *m_ptr) );
05129 _PROTOTYPE( void lock_enqueue, (struct proc *rp) );
05130 _PROTOTYPE( void lock_dequeue, (struct proc *rp) );
05131
05132 /* start.c */
05133 _PROTOTYPE( void cstart, (U16_t cs, U16_t ds, U16_t mds,
05134 U16_t parmoff, U16_t parmsize) );
05135
05136 /* system.c */
05137 _PROTOTYPE( int get_priv, (register struct proc *rc, int proc_type) );
05138 _PROTOTYPE( void send_sig, (int proc_nr, int sig_nr) );
05139 _PROTOTYPE( void cause_sig, (int proc_nr, int sig_nr) );
05140 _PROTOTYPE( void sys_task, (void) );
05141 _PROTOTYPE( void get_randomness, (int source) );
05142 _PROTOTYPE( int virtual_copy, (struct vir_addr *src, struct vir_addr *dst,
05143 vir_bytes bytes) );
05144 #define numap_local(proc_nr, vir_addr, bytes) \
05145 umap_local(proc_addr(proc_nr), D, (vir_addr), (bytes))
05146 _PROTOTYPE( phys_bytes umap_local, (struct proc *rp, int seg,
05147 vir_bytes vir_addr, vir_bytes bytes) );
05148 _PROTOTYPE( phys_bytes umap_remote, (struct proc *rp, int seg,
05149 vir_bytes vir_addr, vir_bytes bytes) );
05150 _PROTOTYPE( phys_bytes umap_bios, (struct proc *rp, vir_bytes vir_addr,
05151 vir_bytes bytes) );
05152
05153 /* exception.c */
05154 _PROTOTYPE( void exception, (unsigned vec_nr) );
05155
05156 /* i8259.c */
05157 _PROTOTYPE( void intr_init, (int mine) );
05158 _PROTOTYPE( void intr_handle, (irq_hook_t *hook) );
05159 _PROTOTYPE( void put_irq_handler, (irq_hook_t *hook, int irq,
05160 irq_handler_t handler) );
05161 _PROTOTYPE( void rm_irq_handler, (irq_hook_t *hook) );
05162
05163 /* klib*.s */
05164 _PROTOTYPE( void int86, (void) );
05165 _PROTOTYPE( void cp_mess, (int src,phys_clicks src_clicks,vir_bytes src_offset,
05166 phys_clicks dst_clicks, vir_bytes dst_offset) );
05167 _PROTOTYPE( void enable_irq, (irq_hook_t *hook) );
05168 _PROTOTYPE( int disable_irq, (irq_hook_t *hook) );
05169 _PROTOTYPE( u16_t mem_rdw, (U16_t segm, vir_bytes offset) );
05170 _PROTOTYPE( void phys_copy, (phys_bytes source, phys_bytes dest,
05171 phys_bytes count) );
05172 _PROTOTYPE( void phys_memset, (phys_bytes source, unsigned long pattern,
05173 phys_bytes count) );
05174 _PROTOTYPE( void phys_insb, (U16_t port, phys_bytes buf, size_t count) );
05175 _PROTOTYPE( void phys_insw, (U16_t port, phys_bytes buf, size_t count) );
05176 _PROTOTYPE( void phys_outsb, (U16_t port, phys_bytes buf, size_t count) );
05177 _PROTOTYPE( void phys_outsw, (U16_t port, phys_bytes buf, size_t count) );
05178 _PROTOTYPE( void reset, (void) );
05179 _PROTOTYPE( void level0, (void (*func)(void)) );
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05180 _PROTOTYPE( void monitor, (void) );
05181 _PROTOTYPE( void read_tsc, (unsigned long *high, unsigned long *low) );
05182 _PROTOTYPE( unsigned long read_cpu_flags, (void) );
05183
05184 /* mpx*.s */
05185 _PROTOTYPE( void idle_task, (void) );
05186 _PROTOTYPE( void restart, (void) );
05187
05188 /* The following are never called from C (pure asm procs). */
05189
05190 /* Exception handlers (real or protected mode), in numerical order. */
05191 void _PROTOTYPE( int00, (void) ), _PROTOTYPE( divide_error, (void) );
05192 void _PROTOTYPE( int01, (void) ), _PROTOTYPE( single_step_exception, (void) );
05193 void _PROTOTYPE( int02, (void) ), _PROTOTYPE( nmi, (void) );
05194 void _PROTOTYPE( int03, (void) ), _PROTOTYPE( breakpoint_exception, (void) );
05195 void _PROTOTYPE( int04, (void) ), _PROTOTYPE( overflow, (void) );
05196 void _PROTOTYPE( int05, (void) ), _PROTOTYPE( bounds_check, (void) );
05197 void _PROTOTYPE( int06, (void) ), _PROTOTYPE( inval_opcode, (void) );
05198 void _PROTOTYPE( int07, (void) ), _PROTOTYPE( copr_not_available, (void) );
05199 void _PROTOTYPE( double_fault, (void) );
05200 void _PROTOTYPE( copr_seg_overrun, (void) );
05201 void _PROTOTYPE( inval_tss, (void) );
05202 void _PROTOTYPE( segment_not_present, (void) );
05203 void _PROTOTYPE( stack_exception, (void) );
05204 void _PROTOTYPE( general_protection, (void) );
05205 void _PROTOTYPE( page_fault, (void) );
05206 void _PROTOTYPE( copr_error, (void) );
05207
05208 /* Hardware interrupt handlers. */
05209 _PROTOTYPE( void hwint00, (void) );
05210 _PROTOTYPE( void hwint01, (void) );
05211 _PROTOTYPE( void hwint02, (void) );
05212 _PROTOTYPE( void hwint03, (void) );
05213 _PROTOTYPE( void hwint04, (void) );
05214 _PROTOTYPE( void hwint05, (void) );
05215 _PROTOTYPE( void hwint06, (void) );
05216 _PROTOTYPE( void hwint07, (void) );
05217 _PROTOTYPE( void hwint08, (void) );
05218 _PROTOTYPE( void hwint09, (void) );
05219 _PROTOTYPE( void hwint10, (void) );
05220 _PROTOTYPE( void hwint11, (void) );
05221 _PROTOTYPE( void hwint12, (void) );
05222 _PROTOTYPE( void hwint13, (void) );
05223 _PROTOTYPE( void hwint14, (void) );
05224 _PROTOTYPE( void hwint15, (void) );
05225
05226 /* Software interrupt handlers, in numerical order. */
05227 _PROTOTYPE( void trp, (void) );
05228 _PROTOTYPE( void s_call, (void) ), _PROTOTYPE( p_s_call, (void) );
05229 _PROTOTYPE( void level0_call, (void) );
05230
05231 /* protect.c */
05232 _PROTOTYPE( void prot_init, (void) );
05233 _PROTOTYPE( void init_codeseg, (struct segdesc_s *segdp, phys_bytes base,
05234 vir_bytes size, int privilege) );
05235 _PROTOTYPE( void init_dataseg, (struct segdesc_s *segdp, phys_bytes base,
05236 vir_bytes size, int privilege) );
05237 _PROTOTYPE( phys_bytes seg2phys, (U16_t seg) );
05238 _PROTOTYPE( void phys2seg, (u16_t *seg, vir_bytes *off, phys_bytes phys));
05239 _PROTOTYPE( void enable_iop, (struct proc *pp) );
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05240 _PROTOTYPE( void alloc_segments, (struct proc *rp) );
05241
05242 #endif /* PROTO_H */
05243
05244

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
kernel/glo.h

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

05300 #ifndef GLO_H
05301 #define GLO_H
05302
05303 /* Global variables used in the kernel. This file contains the declarations;
05304 * storage space for the variables is allocated in table.c, because EXTERN is
05305 * defined as extern unless the _TABLE definition is seen. We rely on the
05306 * compiler’s default initialization (0) for several global variables.
05307 */
05308 #ifdef _TABLE
05309 #undef EXTERN
05310 #define EXTERN
05311 #endif
05312
05313 #include <minix/config.h>
05314 #include "config.h"
05315
05316 /* Variables relating to shutting down MINIX. */
05317 EXTERN char kernel_exception; /* TRUE after system exceptions */
05318 EXTERN char shutdown_started; /* TRUE after shutdowns / reboots */
05319
05320 /* Kernel information structures. This groups vital kernel information. */
05321 EXTERN phys_bytes aout; /* address of a.out headers */
05322 EXTERN struct kinfo kinfo; /* kernel information for users */
05323 EXTERN struct machine machine; /* machine information for users */
05324 EXTERN struct kmessages kmess; /* diagnostic messages in kernel */
05325 EXTERN struct randomness krandom; /* gather kernel random information */
05326
05327 /* Process scheduling information and the kernel reentry count. */
05328 EXTERN struct proc *prev_ptr; /* previously running process */
05329 EXTERN struct proc *proc_ptr; /* pointer to currently running process */
05330 EXTERN struct proc *next_ptr; /* next process to run after restart() */
05331 EXTERN struct proc *bill_ptr; /* process to bill for clock ticks */
05332 EXTERN char k_reenter; /* kernel reentry count (entry count less 1) */
05333 EXTERN unsigned lost_ticks; /* clock ticks counted outside clock task */
05334
05335 /* Interrupt related variables. */
05336 EXTERN irq_hook_t irq_hooks[NR_IRQ_HOOKS]; /* hooks for general use */
05337 EXTERN irq_hook_t *irq_handlers[NR_IRQ_VECTORS];/* list of IRQ handlers */
05338 EXTERN int irq_actids[NR_IRQ_VECTORS]; /* IRQ ID bits active */
05339 EXTERN int irq_use; /* map of all in-use irq’s */
05340
05341 /* Miscellaneous. */
05342 EXTERN reg_t mon_ss, mon_sp; /* boot monitor stack */
05343 EXTERN int mon_return; /* true if we can return to monitor */
05344
05345 /* Variables that are initialized elsewhere are just extern here. */
05346 extern struct boot_image image[]; /* system image processes */
05347 extern char *t_stack[]; /* task stack space */
05348 extern struct segdesc_s gdt[]; /* global descriptor table */
05349
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05350 EXTERN _PROTOTYPE( void (*level0_func), (void) );
05351
05352 #endif /* GLO_H */
05353
05354
05355
05356
05357

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
kernel/ipc.h

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

05400 #ifndef IPC_H
05401 #define IPC_H
05402
05403 /* This header file defines constants for MINIX inter-process communication.
05404 * These definitions are used in the file proc.c.
05405 */
05406 #include <minix/com.h>
05407
05408 /* Masks and flags for system calls. */
05409 #define SYSCALL_FUNC 0x0F /* mask for system call function */
05410 #define SYSCALL_FLAGS 0xF0 /* mask for system call flags */
05411 #define NON_BLOCKING 0x10 /* prevent blocking, return error */
05412
05413 /* System call numbers that are passed when trapping to the kernel. The
05414 * numbers are carefully defined so that it can easily be seen (based on
05415 * the bits that are on) which checks should be done in sys_call().
05416 */
05417 #define SEND 1 /* 0 0 0 1 : blocking send */
05418 #define RECEIVE 2 /* 0 0 1 0 : blocking receive */
05419 #define SENDREC 3 /* 0 0 1 1 : SEND + RECEIVE */
05420 #define NOTIFY 4 /* 0 1 0 0 : nonblocking notify */
05421 #define ECHO 8 /* 1 0 0 0 : echo a message */
05422
05423 /* The following bit masks determine what checks that should be done. */
05424 #define CHECK_PTR 0x0B /* 1 0 1 1 : validate message buffer */
05425 #define CHECK_DST 0x05 /* 0 1 0 1 : validate message destination */
05426 #define CHECK_SRC 0x02 /* 0 0 1 0 : validate message source */
05427
05428 #endif /* IPC_H */

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
kernel/proc.h

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

05500 #ifndef PROC_H
05501 #define PROC_H
05502
05503 /* Here is the declaration of the process table. It contains all process
05504 * data, including registers, flags, scheduling priority, memory map,
05505 * accounting, message passing (IPC) information, and so on.
05506 *
05507 * Many assembly code routines reference fields in it. The offsets to these
05508 * fields are defined in the assembler include file sconst.h. When changing
05509 * struct proc, be sure to change sconst.h to match.
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05510 */
05511 #include <minix/com.h>
05512 #include "protect.h"
05513 #include "const.h"
05514 #include "priv.h"
05515
05516 struct proc {
05517 struct stackframe_s p_reg; /* process’ registers saved in stack frame */
05518 reg_t p_ldt_sel; /* selector in gdt with ldt base and limit */
05519 struct segdesc_s p_ldt[2+NR_REMOTE_SEGS]; /* CS, DS and remote segments */
05520
05521 proc_nr_t p_nr; /* number of this process (for fast access) */
05522 struct priv *p_priv; /* system privileges structure */
05523 char p_rts_flags; /* SENDING, RECEIVING, etc. */
05524
05525 char p_priority; /* current scheduling priority */
05526 char p_max_priority; /* maximum scheduling priority */
05527 char p_ticks_left; /* number of scheduling ticks left */
05528 char p_quantum_size; /* quantum size in ticks */
05529
05530 struct mem_map p_memmap[NR_LOCAL_SEGS]; /* memory map (T, D, S) */
05531
05532 clock_t p_user_time; /* user time in ticks */
05533 clock_t p_sys_time; /* sys time in ticks */
05534
05535 struct proc *p_nextready; /* pointer to next ready process */
05536 struct proc *p_caller_q; /* head of list of procs wishing to send */
05537 struct proc *p_q_link; /* link to next proc wishing to send */
05538 message *p_messbuf; /* pointer to passed message buffer */
05539 proc_nr_t p_getfrom; /* from whom does process want to receive? */
05540 proc_nr_t p_sendto; /* to whom does process want to send? */
05541
05542 sigset_t p_pending; /* bit map for pending kernel signals */
05543
05544 char p_name[P_NAME_LEN]; /* name of the process, including \0 */
05545 };
05546
05547 /* Bits for the runtime flags. A process is runnable iff p_rts_flags == 0. */
05548 #define SLOT_FREE 0x01 /* process slot is free */
05549 #define NO_MAP 0x02 /* keeps unmapped forked child from running */
05550 #define SENDING 0x04 /* process blocked trying to SEND */
05551 #define RECEIVING 0x08 /* process blocked trying to RECEIVE */
05552 #define SIGNALED 0x10 /* set when new kernel signal arrives */
05553 #define SIG_PENDING 0x20 /* unready while signal being processed */
05554 #define P_STOP 0x40 /* set when process is being traced */
05555 #define NO_PRIV 0x80 /* keep forked system process from running */
05556
05557 /* Scheduling priorities for p_priority. Values must start at zero (highest
05558 * priority) and increment. Priorities of the processes in the boot image
05559 * can be set in table.c. IDLE must have a queue for itself, to prevent low
05560 * priority user processes to run round-robin with IDLE.
05561 */
05562 #define NR_SCHED_QUEUES 16 /* MUST equal minimum priority + 1 */
05563 #define TASK_Q 0 /* highest, used for kernel tasks */
05564 #define MAX_USER_Q 0 /* highest priority for user processes */
05565 #define USER_Q 7 /* default (should correspond to nice 0) */
05566 #define MIN_USER_Q 14 /* minimum priority for user processes */
05567 #define IDLE_Q 15 /* lowest, only IDLE process goes here */
05568
05569 /* Magic process table addresses. */
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05570 #define BEG_PROC_ADDR (&proc[0])
05571 #define BEG_USER_ADDR (&proc[NR_TASKS])
05572 #define END_PROC_ADDR (&proc[NR_TASKS + NR_PROCS])
05573
05574 #define NIL_PROC ((struct proc *) 0)
05575 #define NIL_SYS_PROC ((struct proc *) 1)
05576 #define cproc_addr(n) (&(proc + NR_TASKS)[(n)])
05577 #define proc_addr(n) (pproc_addr + NR_TASKS)[(n)]
05578 #define proc_nr(p) ((p)->p_nr)
05579
05580 #define isokprocn(n) ((unsigned) ((n) + NR_TASKS) < NR_PROCS + NR_TASKS)
05581 #define isemptyn(n) isemptyp(proc_addr(n))
05582 #define isemptyp(p) ((p)->p_rts_flags == SLOT_FREE)
05583 #define iskernelp(p) iskerneln((p)->p_nr)
05584 #define iskerneln(n) ((n) < 0)
05585 #define isuserp(p) isusern((p)->p_nr)
05586 #define isusern(n) ((n) >= 0)
05587
05588 /* The process table and pointers to process table slots. The pointers allow
05589 * faster access because now a process entry can be found by indexing the
05590 * pproc_addr array, while accessing an element i requires a multiplication
05591 * with sizeof(struct proc) to determine the address.
05592 */
05593 EXTERN struct proc proc[NR_TASKS + NR_PROCS]; /* process table */
05594 EXTERN struct proc *pproc_addr[NR_TASKS + NR_PROCS];
05595 EXTERN struct proc *rdy_head[NR_SCHED_QUEUES]; /* ptrs to ready list headers */
05596 EXTERN struct proc *rdy_tail[NR_SCHED_QUEUES]; /* ptrs to ready list tails */
05597
05598 #endif /* PROC_H */

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
kernel/sconst.h

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

05600 ! Miscellaneous constants used in assembler code.
05601 W = _WORD_SIZE ! Machine word size.
05602
05603 ! Offsets in struct proc. They MUST match proc.h.
05604 P_STACKBASE = 0
05605 GSREG = P_STACKBASE
05606 FSREG = GSREG + 2 ! 386 introduces FS and GS segments
05607 ESREG = FSREG + 2
05608 DSREG = ESREG + 2
05609 DIREG = DSREG + 2
05610 SIREG = DIREG + W
05611 BPREG = SIREG + W
05612 STREG = BPREG + W ! hole for another SP
05613 BXREG = STREG + W
05614 DXREG = BXREG + W
05615 CXREG = DXREG + W
05616 AXREG = CXREG + W
05617 RETADR = AXREG + W ! return address for save() call
05618 PCREG = RETADR + W
05619 CSREG = PCREG + W
05620 PSWREG = CSREG + W
05621 SPREG = PSWREG + W
05622 SSREG = SPREG + W
05623 P_STACKTOP = SSREG + W
05624 P_LDT_SEL = P_STACKTOP
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05625 P_LDT = P_LDT_SEL + W
05626
05627 Msize = 9 ! size of a message in 32-bit words

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
kernel/priv.h

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

05700 #ifndef PRIV_H
05701 #define PRIV_H
05702
05703 /* Declaration of the system privileges structure. It defines flags, system
05704 * call masks, an synchronous alarm timer, I/O privileges, pending hardware
05705 * interrupts and notifications, and so on.
05706 * System processes each get their own structure with properties, whereas all
05707 * user processes share one structure. This setup provides a clear separation
05708 * between common and privileged process fields and is very space efficient.
05709 *
05710 * Changes:
05711 * Jul 01, 2005 Created. (Jorrit N. Herder)
05712 */
05713 #include <minix/com.h>
05714 #include "protect.h"
05715 #include "const.h"
05716 #include "type.h"
05717
05718 struct priv {
05719 proc_nr_t s_proc_nr; /* number of associated process */
05720 sys_id_t s_id; /* index of this system structure */
05721 short s_flags; /* PREEMTIBLE, BILLABLE, etc. */
05722
05723 short s_trap_mask; /* allowed system call traps */
05724 sys_map_t s_ipc_from; /* allowed callers to receive from */
05725 sys_map_t s_ipc_to; /* allowed destination processes */
05726 long s_call_mask; /* allowed kernel calls */
05727
05728 sys_map_t s_notify_pending; /* bit map with pending notifications */
05729 irq_id_t s_int_pending; /* pending hardware interrupts */
05730 sigset_t s_sig_pending; /* pending signals */
05731
05732 timer_t s_alarm_timer; /* synchronous alarm timer */
05733 struct far_mem s_farmem[NR_REMOTE_SEGS]; /* remote memory map */
05734 reg_t *s_stack_guard; /* stack guard word for kernel tasks */
05735 };
05736
05737 /* Guard word for task stacks. */
05738 #define STACK_GUARD ((reg_t) (sizeof(reg_t) == 2 ? 0xBEEF : 0xDEADBEEF))
05739
05740 /* Bits for the system property flags. */
05741 #define PREEMPTIBLE 0x01 /* kernel tasks are not preemptible */
05742 #define BILLABLE 0x04 /* some processes are not billable */
05743 #define SYS_PROC 0x10 /* system processes are privileged */
05744 #define SENDREC_BUSY 0x20 /* sendrec() in progress */
05745
05746 /* Magic system structure table addresses. */
05747 #define BEG_PRIV_ADDR (&priv[0])
05748 #define END_PRIV_ADDR (&priv[NR_SYS_PROCS])
05749
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05750 #define priv_addr(i) (ppriv_addr)[(i)]
05751 #define priv_id(rp) ((rp)->p_priv->s_id)
05752 #define priv(rp) ((rp)->p_priv)
05753
05754 #define id_to_nr(id) priv_addr(id)->s_proc_nr
05755 #define nr_to_id(nr) priv(proc_addr(nr))->s_id
05756
05757 /* The system structures table and pointers to individual table slots. The
05758 * pointers allow faster access because now a process entry can be found by
05759 * indexing the psys_addr array, while accessing an element i requires a
05760 * multiplication with sizeof(struct sys) to determine the address.
05761 */
05762 EXTERN struct priv priv[NR_SYS_PROCS]; /* system properties table */
05763 EXTERN struct priv *ppriv_addr[NR_SYS_PROCS]; /* direct slot pointers */
05764
05765 /* Unprivileged user processes all share the same privilege structure.
05766 * This id must be fixed because it is used to check send mask entries.
05767 */
05768 #define USER_PRIV_ID 0
05769
05770 /* Make sure the system can boot. The following sanity check verifies that
05771 * the system privileges table is large enough for the number of processes
05772 * in the boot image.
05773 */
05774 #if (NR_BOOT_PROCS > NR_SYS_PROCS)
05775 #error NR_SYS_PROCS must be larger than NR_BOOT_PROCS
05776 #endif
05777
05778 #endif /* PRIV_H */

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
kernel/protect.h

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

05800 /* Constants for protected mode. */
05801
05802 /* Table sizes. */
05803 #define GDT_SIZE (FIRST_LDT_INDEX + NR_TASKS + NR_PROCS)
05804 /* spec. and LDT’s */
05805 #define IDT_SIZE (IRQ8_VECTOR + 8) /* only up to the highest vector */
05806 #define LDT_SIZE (2 + NR_REMOTE_SEGS) /* CS, DS and remote segments */
05807
05808 /* Fixed global descriptors. 1 to 7 are prescribed by the BIOS. */
05809 #define GDT_INDEX 1 /* GDT descriptor */
05810 #define IDT_INDEX 2 /* IDT descriptor */
05811 #define DS_INDEX 3 /* kernel DS */
05812 #define ES_INDEX 4 /* kernel ES (386: flag 4 Gb at startup) */
05813 #define SS_INDEX 5 /* kernel SS (386: monitor SS at startup) */
05814 #define CS_INDEX 6 /* kernel CS */
05815 #define MON_CS_INDEX 7 /* temp for BIOS (386: monitor CS at startup) */
05816 #define TSS_INDEX 8 /* kernel TSS */
05817 #define DS_286_INDEX 9 /* scratch 16-bit source segment */
05818 #define ES_286_INDEX 10 /* scratch 16-bit destination segment */
05819 #define A_INDEX 11 /* 64K memory segment at A0000 */
05820 #define B_INDEX 12 /* 64K memory segment at B0000 */
05821 #define C_INDEX 13 /* 64K memory segment at C0000 */
05822 #define D_INDEX 14 /* 64K memory segment at D0000 */
05823 #define FIRST_LDT_INDEX 15 /* rest of descriptors are LDT’s */
05824
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05825 #define GDT_SELECTOR 0x08 /* (GDT_INDEX * DESC_SIZE) bad for asld */
05826 #define IDT_SELECTOR 0x10 /* (IDT_INDEX * DESC_SIZE) */
05827 #define DS_SELECTOR 0x18 /* (DS_INDEX * DESC_SIZE) */
05828 #define ES_SELECTOR 0x20 /* (ES_INDEX * DESC_SIZE) */
05829 #define FLAT_DS_SELECTOR 0x21 /* less privileged ES */
05830 #define SS_SELECTOR 0x28 /* (SS_INDEX * DESC_SIZE) */
05831 #define CS_SELECTOR 0x30 /* (CS_INDEX * DESC_SIZE) */
05832 #define MON_CS_SELECTOR 0x38 /* (MON_CS_INDEX * DESC_SIZE) */
05833 #define TSS_SELECTOR 0x40 /* (TSS_INDEX * DESC_SIZE) */
05834 #define DS_286_SELECTOR 0x49 /* (DS_286_INDEX*DESC_SIZE+TASK_PRIVILEGE) */
05835 #define ES_286_SELECTOR 0x51 /* (ES_286_INDEX*DESC_SIZE+TASK_PRIVILEGE) */
05836
05837 /* Fixed local descriptors. */
05838 #define CS_LDT_INDEX 0 /* process CS */
05839 #define DS_LDT_INDEX 1 /* process DS=ES=FS=GS=SS */
05840 #define EXTRA_LDT_INDEX 2 /* first of the extra LDT entries */
05841
05842 /* Privileges. */
05843 #define INTR_PRIVILEGE 0 /* kernel and interrupt handlers */
05844 #define TASK_PRIVILEGE 1 /* kernel tasks */
05845 #define USER_PRIVILEGE 3 /* servers and user processes */
05846
05847 /* 286 hardware constants. */
05848
05849 /* Exception vector numbers. */
05850 #define BOUNDS_VECTOR 5 /* bounds check failed */
05851 #define INVAL_OP_VECTOR 6 /* invalid opcode */
05852 #define COPROC_NOT_VECTOR 7 /* coprocessor not available */
05853 #define DOUBLE_FAULT_VECTOR 8
05854 #define COPROC_SEG_VECTOR 9 /* coprocessor segment overrun */
05855 #define INVAL_TSS_VECTOR 10 /* invalid TSS */
05856 #define SEG_NOT_VECTOR 11 /* segment not present */
05857 #define STACK_FAULT_VECTOR 12 /* stack exception */
05858 #define PROTECTION_VECTOR 13 /* general protection */
05859
05860 /* Selector bits. */
05861 #define TI 0x04 /* table indicator */
05862 #define RPL 0x03 /* requester privilege level */
05863
05864 /* Descriptor structure offsets. */
05865 #define DESC_BASE 2 /* to base_low */
05866 #define DESC_BASE_MIDDLE 4 /* to base_middle */
05867 #define DESC_ACCESS 5 /* to access byte */
05868 #define DESC_SIZE 8 /* sizeof (struct segdesc_s) */
05869
05870 /* Base and limit sizes and shifts. */
05871 #define BASE_MIDDLE_SHIFT 16 /* shift for base --> base_middle */
05872
05873 /* Access-byte and type-byte bits. */
05874 #define PRESENT 0x80 /* set for descriptor present */
05875 #define DPL 0x60 /* descriptor privilege level mask */
05876 #define DPL_SHIFT 5
05877 #define SEGMENT 0x10 /* set for segment-type descriptors */
05878
05879 /* Access-byte bits. */
05880 #define EXECUTABLE 0x08 /* set for executable segment */
05881 #define CONFORMING 0x04 /* set for conforming segment if executable */
05882 #define EXPAND_DOWN 0x04 /* set for expand-down segment if !executable*/
05883 #define READABLE 0x02 /* set for readable segment if executable */
05884 #define WRITEABLE 0x02 /* set for writeable segment if !executable */
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05885 #define TSS_BUSY 0x02 /* set if TSS descriptor is busy */
05886 #define ACCESSED 0x01 /* set if segment accessed */
05887
05888 /* Special descriptor types. */
05889 #define AVL_286_TSS 1 /* available 286 TSS */
05890 #define LDT 2 /* local descriptor table */
05891 #define BUSY_286_TSS 3 /* set transparently to the software */
05892 #define CALL_286_GATE 4 /* not used */
05893 #define TASK_GATE 5 /* only used by debugger */
05894 #define INT_286_GATE 6 /* interrupt gate, used for all vectors */
05895 #define TRAP_286_GATE 7 /* not used */
05896
05897 /* Extra 386 hardware constants. */
05898
05899 /* Exception vector numbers. */
05900 #define PAGE_FAULT_VECTOR 14
05901 #define COPROC_ERR_VECTOR 16 /* coprocessor error */
05902
05903 /* Descriptor structure offsets. */
05904 #define DESC_GRANULARITY 6 /* to granularity byte */
05905 #define DESC_BASE_HIGH 7 /* to base_high */
05906
05907 /* Base and limit sizes and shifts. */
05908 #define BASE_HIGH_SHIFT 24 /* shift for base --> base_high */
05909 #define BYTE_GRAN_MAX 0xFFFFFL /* maximum size for byte granular segment */
05910 #define GRANULARITY_SHIFT 16 /* shift for limit --> granularity */
05911 #define OFFSET_HIGH_SHIFT 16 /* shift for (gate) offset --> offset_high */
05912 #define PAGE_GRAN_SHIFT 12 /* extra shift for page granular limits */
05913
05914 /* Type-byte bits. */
05915 #define DESC_386_BIT 0x08 /* 386 types are obtained by ORing with this */
05916 /* LDT’s and TASK_GATE’s don’t need it */
05917
05918 /* Granularity byte. */
05919 #define GRANULAR 0x80 /* set for 4K granularilty */
05920 #define DEFAULT 0x40 /* set for 32-bit defaults (executable seg) */
05921 #define BIG 0x40 /* set for "BIG" (expand-down seg) */
05922 #define AVL 0x10 /* 0 for available */
05923 #define LIMIT_HIGH 0x0F /* mask for high bits of limit */

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
kernel/table.c

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

06000 /* The object file of "table.c" contains most kernel data. Variables that
06001 * are declared in the *.h files appear with EXTERN in front of them, as in
06002 *
06003 * EXTERN int x;
06004 *
06005 * Normally EXTERN is defined as extern, so when they are included in another
06006 * file, no storage is allocated. If EXTERN were not present, but just say,
06007 *
06008 * int x;
06009 *
06010 * then including this file in several source files would cause ’x’ to be
06011 * declared several times. While some linkers accept this, others do not,
06012 * so they are declared extern when included normally. However, it must be
06013 * declared for real somewhere. That is done here, by redefining EXTERN as
06014 * the null string, so that inclusion of all *.h files in table.c actually
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06015 * generates storage for them.
06016 *
06017 * Various variables could not be declared EXTERN, but are declared PUBLIC
06018 * or PRIVATE. The reason for this is that extern variables cannot have a
06019 * default initialization. If such variables are shared, they must also be
06020 * declared in one of the *.h files without the initialization. Examples
06021 * include ’boot_image’ (this file) and ’idt’ and ’gdt’ (protect.c).
06022 *
06023 * Changes:
06024 * Aug 02, 2005 set privileges and minimal boot image (Jorrit N. Herder)
06025 * Oct 17, 2004 updated above and tasktab comments (Jorrit N. Herder)
06026 * May 01, 2004 changed struct for system image (Jorrit N. Herder)
06027 */
06028 #define _TABLE
06029
06030 #include "kernel.h"
06031 #include "proc.h"
06032 #include "ipc.h"
06033 #include <minix/com.h>
06034 #include <ibm/int86.h>
06035
06036 /* Define stack sizes for the kernel tasks included in the system image. */
06037 #define NO_STACK 0
06038 #define SMALL_STACK (128 * sizeof(char *))
06039 #define IDL_S SMALL_STACK /* 3 intr, 3 temps, 4 db for Intel */
06040 #define HRD_S NO_STACK /* dummy task, uses kernel stack */
06041 #define TSK_S SMALL_STACK /* system and clock task */
06042
06043 /* Stack space for all the task stacks. Declared as (char *) to align it. */
06044 #define TOT_STACK_SPACE (IDL_S + HRD_S + (2 * TSK_S))
06045 PUBLIC char *t_stack[TOT_STACK_SPACE / sizeof(char *)];
06046
06047 /* Define flags for the various process types. */
06048 #define IDL_F (SYS_PROC | PREEMPTIBLE | BILLABLE) /* idle task */
06049 #define TSK_F (SYS_PROC) /* kernel tasks */
06050 #define SRV_F (SYS_PROC | PREEMPTIBLE) /* system services */
06051 #define USR_F (BILLABLE | PREEMPTIBLE) /* user processes */
06052
06053 /* Define system call traps for the various process types. These call masks
06054 * determine what system call traps a process is allowed to make.
06055 */
06056 #define TSK_T (1 << RECEIVE) /* clock and system */
06057 #define SRV_T (˜0) /* system services */
06058 #define USR_T ((1 << SENDREC) | (1 << ECHO)) /* user processes */
06059
06060 /* Send masks determine to whom processes can send messages or notifications.
06061 * The values here are used for the processes in the boot image. We rely on
06062 * the initialization code in main() to match the s_nr_to_id() mapping for the
06063 * processes in the boot image, so that the send mask that is defined here
06064 * can be directly copied onto map[0] of the actual send mask. Privilege
06065 * structure 0 is shared by user processes.
06066 */
06067 #define s(n) (1 << s_nr_to_id(n))
06068 #define SRV_M (˜0)
06069 #define SYS_M (˜0)
06070 #define USR_M (s(PM_PROC_NR) | s(FS_PROC_NR) | s(RS_PROC_NR))
06071 #define DRV_M (USR_M | s(SYSTEM) | s(CLOCK) | s(LOG_PROC_NR) | s(TTY_PROC_NR))
06072
06073 /* Define kernel calls that processes are allowed to make. This is not looking
06074 * very nice, but we need to define the access rights on a per call basis.
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06075 * Note that the reincarnation server has all bits on, because it should
06076 * be allowed to distribute rights to services that it starts.
06077 */
06078 #define c(n) (1 << ((n)-KERNEL_CALL))
06079 #define RS_C ˜0
06080 #define PM_C ˜(c(SYS_DEVIO) | c(SYS_SDEVIO) | c(SYS_VDEVIO) \
06081 | c(SYS_IRQCTL) | c(SYS_INT86))
06082 #define FS_C (c(SYS_KILL) | c(SYS_VIRCOPY) | c(SYS_VIRVCOPY) | c(SYS_UMAP) \
06083 | c(SYS_GETINFO) | c(SYS_EXIT) | c(SYS_TIMES) | c(SYS_SETALARM))
06084 #define DRV_C (FS_C | c(SYS_SEGCTL) | c(SYS_IRQCTL) | c(SYS_INT86) \
06085 | c(SYS_DEVIO) | c(SYS_VDEVIO) | c(SYS_SDEVIO))
06086 #define MEM_C (DRV_C | c(SYS_PHYSCOPY) | c(SYS_PHYSVCOPY))
06087
06088 /* The system image table lists all programs that are part of the boot image.
06089 * The order of the entries here MUST agree with the order of the programs
06090 * in the boot image and all kernel tasks must come first.
06091 * Each entry provides the process number, flags, quantum size (qs), scheduling
06092 * queue, allowed traps, ipc mask, and a name for the process table. The
06093 * initial program counter and stack size is also provided for kernel tasks.
06094 */
06095 PUBLIC struct boot_image image[] = {
06096 /* process nr, pc, flags, qs, queue, stack, traps, ipcto, call, name */
06097 { IDLE, idle_task, IDL_F, 8, IDLE_Q, IDL_S, 0, 0, 0, "IDLE" },
06098 { CLOCK,clock_task, TSK_F, 64, TASK_Q, TSK_S, TSK_T, 0, 0, "CLOCK" },
06099 { SYSTEM, sys_task, TSK_F, 64, TASK_Q, TSK_S, TSK_T, 0, 0, "SYSTEM"},
06100 { HARDWARE, 0, TSK_F, 64, TASK_Q, HRD_S, 0, 0, 0, "KERNEL"},
06101 { PM_PROC_NR, 0, SRV_F, 32, 3, 0, SRV_T, SRV_M, PM_C, "pm" },
06102 { FS_PROC_NR, 0, SRV_F, 32, 4, 0, SRV_T, SRV_M, FS_C, "fs" },
06103 { RS_PROC_NR, 0, SRV_F, 4, 3, 0, SRV_T, SYS_M, RS_C, "rs" },
06104 { TTY_PROC_NR, 0, SRV_F, 4, 1, 0, SRV_T, SYS_M, DRV_C, "tty" },
06105 { MEM_PROC_NR, 0, SRV_F, 4, 2, 0, SRV_T, DRV_M, MEM_C, "memory"},
06106 { LOG_PROC_NR, 0, SRV_F, 4, 2, 0, SRV_T, SYS_M, DRV_C, "log" },
06107 { DRVR_PROC_NR, 0, SRV_F, 4, 2, 0, SRV_T, SYS_M, DRV_C, "driver"},
06108 { INIT_PROC_NR, 0, USR_F, 8, USER_Q, 0, USR_T, USR_M, 0, "init" },
06109 };
06110
06111 /* Verify the size of the system image table at compile time. Also verify that
06112 * the first chunk of the ipc mask has enough bits to accommodate the processes
06113 * in the image.
06114 * If a problem is detected, the size of the ’dummy’ array will be negative,
06115 * causing a compile time error. Note that no space is actually allocated
06116 * because ’dummy’ is declared extern.
06117 */
06118 extern int dummy[(NR_BOOT_PROCS==sizeof(image)/
06119 sizeof(struct boot_image))?1:-1];
06120 extern int dummy[(BITCHUNK_BITS > NR_BOOT_PROCS - 1) ? 1 : -1];
06121

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
kernel/mpx.s

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

06200 #
06201 ! Chooses between the 8086 and 386 versions of the Minix startup code.
06202
06203 #include <minix/config.h>
06204 #if _WORD_SIZE == 2
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06205 #include "mpx88.s"
06206 #else
06207 #include "mpx386.s"
06208 #endif

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
kernel/mpx386.s

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

06300 #
06301 ! This file, mpx386.s, is included by mpx.s when Minix is compiled for
06302 ! 32-bit Intel CPUs. The alternative mpx88.s is compiled for 16-bit CPUs.
06303
06304 ! This file is part of the lowest layer of the MINIX kernel. (The other part
06305 ! is "proc.c".) The lowest layer does process switching and message handling.
06306 ! Furthermore it contains the assembler startup code for Minix and the 32-bit
06307 ! interrupt handlers. It cooperates with the code in "start.c" to set up a
06308 ! good environment for main().
06309
06310 ! Every transition to the kernel goes through this file. Transitions to the
06311 ! kernel may be nested. The initial entry may be with a system call (i.e.,
06312 ! send or receive a message), an exception or a hardware interrupt; kernel
06313 ! reentries may only be made by hardware interrupts. The count of reentries
06314 ! is kept in "k_reenter". It is important for deciding whether to switch to
06315 ! the kernel stack and for protecting the message passing code in "proc.c".
06316
06317 ! For the message passing trap, most of the machine state is saved in the
06318 ! proc table. (Some of the registers need not be saved.) Then the stack is
06319 ! switched to "k_stack", and interrupts are reenabled. Finally, the system
06320 ! call handler (in C) is called. When it returns, interrupts are disabled
06321 ! again and the code falls into the restart routine, to finish off held-up
06322 ! interrupts and run the process or task whose pointer is in "proc_ptr".
06323
06324 ! Hardware interrupt handlers do the same, except (1) The entire state must
06325 ! be saved. (2) There are too many handlers to do this inline, so the save
06326 ! routine is called. A few cycles are saved by pushing the address of the
06327 ! appropiate restart routine for a return later. (3) A stack switch is
06328 ! avoided when the stack is already switched. (4) The (master) 8259 interrupt
06329 ! controller is reenabled centrally in save(). (5) Each interrupt handler
06330 ! masks its interrupt line using the 8259 before enabling (other unmasked)
06331 ! interrupts, and unmasks it after servicing the interrupt. This limits the
06332 ! nest level to the number of lines and protects the handler from itself.
06333
06334 ! For communication with the boot monitor at startup time some constant
06335 ! data are compiled into the beginning of the text segment. This facilitates
06336 ! reading the data at the start of the boot process, since only the first
06337 ! sector of the file needs to be read.
06338
06339 ! Some data storage is also allocated at the end of this file. This data
06340 ! will be at the start of the data segment of the kernel and will be read
06341 ! and modified by the boot monitor before the kernel starts.
06342
06343 ! sections
06344
06345 .sect .text
06346 begtext:
06347 .sect .rom
06348 begrom:
06349 .sect .data
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06350 begdata:
06351 .sect .bss
06352 begbss:
06353
06354 #include <minix/config.h>
06355 #include <minix/const.h>
06356 #include <minix/com.h>
06357 #include <ibm/interrupt.h>
06358 #include "const.h"
06359 #include "protect.h"
06360 #include "sconst.h"
06361
06362 /* Selected 386 tss offsets. */
06363 #define TSS3_S_SP0 4
06364
06365 ! Exported functions
06366 ! Note: in assembly language the .define statement applied to a function name
06367 ! is loosely equivalent to a prototype in C code -- it makes it possible to
06368 ! link to an entity declared in the assembly code but does not create
06369 ! the entity.
06370
06371 .define _restart
06372 .define save
06373
06374 .define _divide_error
06375 .define _single_step_exception
06376 .define _nmi
06377 .define _breakpoint_exception
06378 .define _overflow
06379 .define _bounds_check
06380 .define _inval_opcode
06381 .define _copr_not_available
06382 .define _double_fault
06383 .define _copr_seg_overrun
06384 .define _inval_tss
06385 .define _segment_not_present
06386 .define _stack_exception
06387 .define _general_protection
06388 .define _page_fault
06389 .define _copr_error
06390
06391 .define _hwint00 ! handlers for hardware interrupts
06392 .define _hwint01
06393 .define _hwint02
06394 .define _hwint03
06395 .define _hwint04
06396 .define _hwint05
06397 .define _hwint06
06398 .define _hwint07
06399 .define _hwint08
06400 .define _hwint09
06401 .define _hwint10
06402 .define _hwint11
06403 .define _hwint12
06404 .define _hwint13
06405 .define _hwint14
06406 .define _hwint15
06407
06408 .define _s_call
06409 .define _p_s_call
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06410 .define _level0_call
06411
06412 ! Exported variables.
06413 .define begbss
06414 .define begdata
06415
06416 .sect .text
06417 !*===========================================================================*
06418 !* MINIX *
06419 !*===========================================================================*
06420 MINIX: ! this is the entry point for the MINIX kernel
06421 jmp over_flags ! skip over the next few bytes
06422 .data2 CLICK_SHIFT ! for the monitor: memory granularity
06423 flags:
06424 .data2 0x01FD ! boot monitor flags:
06425 ! call in 386 mode, make bss, make stack,
06426 ! load high, don’t patch, will return,
06427 ! uses generic INT, memory vector,
06428 ! new boot code return
06429 nop ! extra byte to sync up disassembler
06430 over_flags:
06431
06432 ! Set up a C stack frame on the monitor stack. (The monitor sets cs and ds
06433 ! right. The ss descriptor still references the monitor data segment.)
06434 movzx esp, sp ! monitor stack is a 16 bit stack
06435 push ebp
06436 mov ebp, esp
06437 push esi
06438 push edi
06439 cmp 4(ebp), 0 ! monitor return vector is
06440 jz noret ! nonzero if return possible
06441 inc (_mon_return)
06442 noret: mov (_mon_sp), esp ! save stack pointer for later return
06443
06444 ! Copy the monitor global descriptor table to the address space of kernel and
06445 ! switch over to it. Prot_init() can then update it with immediate effect.
06446
06447 sgdt (_gdt+GDT_SELECTOR) ! get the monitor gdtr
06448 mov esi, (_gdt+GDT_SELECTOR+2) ! absolute address of GDT
06449 mov ebx, _gdt ! address of kernel GDT
06450 mov ecx, 8*8 ! copying eight descriptors
06451 copygdt:
06452 eseg movb al, (esi)
06453 movb (ebx), al
06454 inc esi
06455 inc ebx
06456 loop copygdt
06457 mov eax, (_gdt+DS_SELECTOR+2) ! base of kernel data
06458 and eax, 0x00FFFFFF ! only 24 bits
06459 add eax, _gdt ! eax = vir2phys(gdt)
06460 mov (_gdt+GDT_SELECTOR+2), eax ! set base of GDT
06461 lgdt (_gdt+GDT_SELECTOR) ! switch over to kernel GDT
06462
06463 ! Locate boot parameters, set up kernel segment registers and stack.
06464 mov ebx, 8(ebp) ! boot parameters offset
06465 mov edx, 12(ebp) ! boot parameters length
06466 mov eax, 16(ebp) ! address of a.out headers
06467 mov (_aout), eax
06468 mov ax, ds ! kernel data
06469 mov es, ax
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06470 mov fs, ax
06471 mov gs, ax
06472 mov ss, ax
06473 mov esp, k_stktop ! set sp to point to the top of kernel stack
06474
06475 ! Call C startup code to set up a proper environment to run main().
06476 push edx
06477 push ebx
06478 push SS_SELECTOR
06479 push DS_SELECTOR
06480 push CS_SELECTOR
06481 call _cstart ! cstart(cs, ds, mds, parmoff, parmlen)
06482 add esp, 5*4
06483
06484 ! Reload gdtr, idtr and the segment registers to global descriptor table set
06485 ! up by prot_init().
06486
06487 lgdt (_gdt+GDT_SELECTOR)
06488 lidt (_gdt+IDT_SELECTOR)
06489
06490 jmpf CS_SELECTOR:csinit
06491 csinit:
06492 o16 mov ax, DS_SELECTOR
06493 mov ds, ax
06494 mov es, ax
06495 mov fs, ax
06496 mov gs, ax
06497 mov ss, ax
06498 o16 mov ax, TSS_SELECTOR ! no other TSS is used
06499 ltr ax
06500 push 0 ! set flags to known good state
06501 popf ! esp, clear nested task and int enable
06502
06503 jmp _main ! main()
06504
06505
06506 !*===========================================================================*
06507 !* interrupt handlers *
06508 !* interrupt handlers for 386 32-bit protected mode *
06509 !*===========================================================================*
06510
06511 !*===========================================================================*
06512 !* hwint00 - 07 *
06513 !*===========================================================================*
06514 ! Note this is a macro, it just looks like a subroutine.
06515 #define hwint_master(irq) \
06516 call save /* save interrupted process state */;\
06517 push (_irq_handlers+4*irq) /* irq_handlers[irq] */;\
06518 call _intr_handle /* intr_handle(irq_handlers[irq]) */;\
06519 pop ecx ;\
06520 cmp (_irq_actids+4*irq), 0 /* interrupt still active? */;\
06521 jz 0f ;\
06522 inb INT_CTLMASK /* get current mask */ ;\
06523 orb al, [1<<irq] /* mask irq */ ;\
06524 outb INT_CTLMASK /* disable the irq */;\
06525 0: movb al, END_OF_INT ;\
06526 outb INT_CTL /* reenable master 8259 */;\
06527 ret /* restart (another) process */
06528
06529 ! Each of these entry points is an expansion of the hwint_master macro
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06530 .align 16
06531 _hwint00: ! Interrupt routine for irq 0 (the clock).
06532 hwint_master(0)
06533
06534 .align 16
06535 _hwint01: ! Interrupt routine for irq 1 (keyboard)
06536 hwint_master(1)
06537
06538 .align 16
06539 _hwint02: ! Interrupt routine for irq 2 (cascade!)
06540 hwint_master(2)
06541
06542 .align 16
06543 _hwint03: ! Interrupt routine for irq 3 (second serial)
06544 hwint_master(3)
06545
06546 .align 16
06547 _hwint04: ! Interrupt routine for irq 4 (first serial)
06548 hwint_master(4)
06549
06550 .align 16
06551 _hwint05: ! Interrupt routine for irq 5 (XT winchester)
06552 hwint_master(5)
06553
06554 .align 16
06555 _hwint06: ! Interrupt routine for irq 6 (floppy)
06556 hwint_master(6)
06557
06558 .align 16
06559 _hwint07: ! Interrupt routine for irq 7 (printer)
06560 hwint_master(7)
06561
06562 !*===========================================================================*
06563 !* hwint08 - 15 *
06564 !*===========================================================================*
06565 ! Note this is a macro, it just looks like a subroutine.
06566 #define hwint_slave(irq) \
06567 call save /* save interrupted process state */;\
06568 push (_irq_handlers+4*irq) /* irq_handlers[irq] */;\
06569 call _intr_handle /* intr_handle(irq_handlers[irq]) */;\
06570 pop ecx ;\
06571 cmp (_irq_actids+4*irq), 0 /* interrupt still active? */;\
06572 jz 0f ;\
06573 inb INT2_CTLMASK ;\
06574 orb al, [1<<[irq-8]] ;\
06575 outb INT2_CTLMASK /* disable the irq */;\
06576 0: movb al, END_OF_INT ;\
06577 outb INT_CTL /* reenable master 8259 */;\
06578 outb INT2_CTL /* reenable slave 8259 */;\
06579 ret /* restart (another) process */
06580
06581 ! Each of these entry points is an expansion of the hwint_slave macro
06582 .align 16
06583 _hwint08: ! Interrupt routine for irq 8 (realtime clock)
06584 hwint_slave(8)
06585
06586 .align 16
06587 _hwint09: ! Interrupt routine for irq 9 (irq 2 redirected)
06588 hwint_slave(9)
06589
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06590 .align 16
06591 _hwint10: ! Interrupt routine for irq 10
06592 hwint_slave(10)
06593
06594 .align 16
06595 _hwint11: ! Interrupt routine for irq 11
06596 hwint_slave(11)
06597
06598 .align 16
06599 _hwint12: ! Interrupt routine for irq 12
06600 hwint_slave(12)
06601
06602 .align 16
06603 _hwint13: ! Interrupt routine for irq 13 (FPU exception)
06604 hwint_slave(13)
06605
06606 .align 16
06607 _hwint14: ! Interrupt routine for irq 14 (AT winchester)
06608 hwint_slave(14)
06609
06610 .align 16
06611 _hwint15: ! Interrupt routine for irq 15
06612 hwint_slave(15)
06613
06614 !*===========================================================================*
06615 !* save *
06616 !*===========================================================================*
06617 ! Save for protected mode.
06618 ! This is much simpler than for 8086 mode, because the stack already points
06619 ! into the process table, or has already been switched to the kernel stack.
06620
06621 .align 16
06622 save:
06623 cld ! set direction flag to a known value
06624 pushad ! save "general" registers
06625 o16 push ds ! save ds
06626 o16 push es ! save es
06627 o16 push fs ! save fs
06628 o16 push gs ! save gs
06629 mov dx, ss ! ss is kernel data segment
06630 mov ds, dx ! load rest of kernel segments
06631 mov es, dx ! kernel does not use fs, gs
06632 mov eax, esp ! prepare to return
06633 incb (_k_reenter) ! from -1 if not reentering
06634 jnz set_restart1 ! stack is already kernel stack
06635 mov esp, k_stktop
06636 push _restart ! build return address for int handler
06637 xor ebp, ebp ! for stacktrace
06638 jmp RETADR-P_STACKBASE(eax)
06639
06640 .align 4
06641 set_restart1:
06642 push restart1
06643 jmp RETADR-P_STACKBASE(eax)
06644
06645 !*===========================================================================*
06646 !* _s_call *
06647 !*===========================================================================*
06648 .align 16
06649 _s_call:
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06650 _p_s_call:
06651 cld ! set direction flag to a known value
06652 sub esp, 6*4 ! skip RETADR, eax, ecx, edx, ebx, est
06653 push ebp ! stack already points into proc table
06654 push esi
06655 push edi
06656 o16 push ds
06657 o16 push es
06658 o16 push fs
06659 o16 push gs
06660 mov dx, ss
06661 mov ds, dx
06662 mov es, dx
06663 incb (_k_reenter)
06664 mov esi, esp ! assumes P_STACKBASE == 0
06665 mov esp, k_stktop
06666 xor ebp, ebp ! for stacktrace
06667 ! end of inline save
06668 ! now set up parameters for sys_call()
06669 push ebx ! pointer to user message
06670 push eax ! src/dest
06671 push ecx ! SEND/RECEIVE/BOTH
06672 call _sys_call ! sys_call(function, src_dest, m_ptr)
06673 ! caller is now explicitly in proc_ptr
06674 mov AXREG(esi), eax ! sys_call MUST PRESERVE si
06675
06676 ! Fall into code to restart proc/task running.
06677
06678 !*===========================================================================*
06679 !* restart *
06680 !*===========================================================================*
06681 _restart:
06682
06683 ! Restart the current process or the next process if it is set.
06684
06685 cmp (_next_ptr), 0 ! see if another process is scheduled
06686 jz 0f
06687 mov eax, (_next_ptr)
06688 mov (_proc_ptr), eax ! schedule new process
06689 mov (_next_ptr), 0
06690 0: mov esp, (_proc_ptr) ! will assume P_STACKBASE == 0
06691 lldt P_LDT_SEL(esp) ! enable process’ segment descriptors
06692 lea eax, P_STACKTOP(esp) ! arrange for next interrupt
06693 mov (_tss+TSS3_S_SP0), eax ! to save state in process table
06694 restart1:
06695 decb (_k_reenter)
06696 o16 pop gs
06697 o16 pop fs
06698 o16 pop es
06699 o16 pop ds
06700 popad
06701 add esp, 4 ! skip return adr
06702 iretd ! continue process
06703
06704 !*===========================================================================*
06705 !* exception handlers *
06706 !*===========================================================================*
06707 _divide_error:
06708 push DIVIDE_VECTOR
06709 jmp exception
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06710
06711 _single_step_exception:
06712 push DEBUG_VECTOR
06713 jmp exception
06714
06715 _nmi:
06716 push NMI_VECTOR
06717 jmp exception
06718
06719 _breakpoint_exception:
06720 push BREAKPOINT_VECTOR
06721 jmp exception
06722
06723 _overflow:
06724 push OVERFLOW_VECTOR
06725 jmp exception
06726
06727 _bounds_check:
06728 push BOUNDS_VECTOR
06729 jmp exception
06730
06731 _inval_opcode:
06732 push INVAL_OP_VECTOR
06733 jmp exception
06734
06735 _copr_not_available:
06736 push COPROC_NOT_VECTOR
06737 jmp exception
06738
06739 _double_fault:
06740 push DOUBLE_FAULT_VECTOR
06741 jmp errexception
06742
06743 _copr_seg_overrun:
06744 push COPROC_SEG_VECTOR
06745 jmp exception
06746
06747 _inval_tss:
06748 push INVAL_TSS_VECTOR
06749 jmp errexception
06750
06751 _segment_not_present:
06752 push SEG_NOT_VECTOR
06753 jmp errexception
06754
06755 _stack_exception:
06756 push STACK_FAULT_VECTOR
06757 jmp errexception
06758
06759 _general_protection:
06760 push PROTECTION_VECTOR
06761 jmp errexception
06762
06763 _page_fault:
06764 push PAGE_FAULT_VECTOR
06765 jmp errexception
06766
06767 _copr_error:
06768 push COPROC_ERR_VECTOR
06769 jmp exception



MINIX SOURCE CODE File: kernel/mpx386.s 715

06770
06771 !*===========================================================================*
06772 !* exception *
06773 !*===========================================================================*
06774 ! This is called for all exceptions which do not push an error code.
06775
06776 .align 16
06777 exception:
06778 sseg mov (trap_errno), 0 ! clear trap_errno
06779 sseg pop (ex_number)
06780 jmp exception1
06781
06782 !*===========================================================================*
06783 !* errexception *
06784 !*===========================================================================*
06785 ! This is called for all exceptions which push an error code.
06786
06787 .align 16
06788 errexception:
06789 sseg pop (ex_number)
06790 sseg pop (trap_errno)
06791 exception1: ! Common for all exceptions.
06792 push eax ! eax is scratch register
06793 mov eax, 0+4(esp) ! old eip
06794 sseg mov (old_eip), eax
06795 movzx eax, 4+4(esp) ! old cs
06796 sseg mov (old_cs), eax
06797 mov eax, 8+4(esp) ! old eflags
06798 sseg mov (old_eflags), eax
06799 pop eax
06800 call save
06801 push (old_eflags)
06802 push (old_cs)
06803 push (old_eip)
06804 push (trap_errno)
06805 push (ex_number)
06806 call _exception ! (ex_number, trap_errno, old_eip,
06807 ! old_cs, old_eflags)
06808 add esp, 5*4
06809 ret
06810
06811 !*===========================================================================*
06812 !* level0_call *
06813 !*===========================================================================*
06814 _level0_call:
06815 call save
06816 jmp (_level0_func)
06817
06818 !*===========================================================================*
06819 !* data *
06820 !*===========================================================================*
06821
06822 .sect .rom ! Before the string table please
06823 .data2 0x526F ! this must be the first data entry (magic #)
06824
06825 .sect .bss
06826 k_stack:
06827 .space K_STACK_BYTES ! kernel stack
06828 k_stktop: ! top of kernel stack
06829 .comm ex_number, 4
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06830 .comm trap_errno, 4
06831 .comm old_eip, 4
06832 .comm old_cs, 4
06833 .comm old_eflags, 4

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
kernel/start.c

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

06900 /* This file contains the C startup code for Minix on Intel processors.
06901 * It cooperates with mpx.s to set up a good environment for main().
06902 *
06903 * This code runs in real mode for a 16 bit kernel and may have to switch
06904 * to protected mode for a 286.
06905 * For a 32 bit kernel this already runs in protected mode, but the selectors
06906 * are still those given by the BIOS with interrupts disabled, so the
06907 * descriptors need to be reloaded and interrupt descriptors made.
06908 */
06909
06910 #include "kernel.h"
06911 #include "protect.h"
06912 #include "proc.h"
06913 #include <stdlib.h>
06914 #include <string.h>
06915
06916 FORWARD _PROTOTYPE( char *get_value, (_CONST char *params, _CONST char *key));
06917 /*===========================================================================*
06918 * cstart *
06919 *===========================================================================*/
06920 PUBLIC void cstart(cs, ds, mds, parmoff, parmsize)
06921 U16_t cs, ds; /* kernel code and data segment */
06922 U16_t mds; /* monitor data segment */
06923 U16_t parmoff, parmsize; /* boot parameters offset and length */
06924 {
06925 /* Perform system initializations prior to calling main(). Most settings are
06926 * determined with help of the environment strings passed by MINIX’ loader.
06927 */
06928 char params[128*sizeof(char *)]; /* boot monitor parameters */
06929 register char *value; /* value in key=value pair */
06930 extern int etext, end;
06931
06932 /* Decide if mode is protected; 386 or higher implies protected mode.
06933 * This must be done first, because it is needed for, e.g., seg2phys().
06934 * For 286 machines we cannot decide on protected mode, yet. This is
06935 * done below.
06936 */
06937 #if _WORD_SIZE != 2
06938 machine.protected = 1;
06939 #endif
06940
06941 /* Record where the kernel and the monitor are. */
06942 kinfo.code_base = seg2phys(cs);
06943 kinfo.code_size = (phys_bytes) &etext; /* size of code segment */
06944 kinfo.data_base = seg2phys(ds);
06945 kinfo.data_size = (phys_bytes) &end; /* size of data segment */
06946
06947 /* Initialize protected mode descriptors. */
06948 prot_init();
06949
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06950 /* Copy the boot parameters to the local buffer. */
06951 kinfo.params_base = seg2phys(mds) + parmoff;
06952 kinfo.params_size = MIN(parmsize,sizeof(params)-2);
06953 phys_copy(kinfo.params_base, vir2phys(params), kinfo.params_size);
06954
06955 /* Record miscellaneous information for user-space servers. */
06956 kinfo.nr_procs = NR_PROCS;
06957 kinfo.nr_tasks = NR_TASKS;
06958 strncpy(kinfo.release, OS_RELEASE, sizeof(kinfo.release));
06959 kinfo.release[sizeof(kinfo.release)-1] = ’\0’;
06960 strncpy(kinfo.version, OS_VERSION, sizeof(kinfo.version));
06961 kinfo.version[sizeof(kinfo.version)-1] = ’\0’;
06962 kinfo.proc_addr = (vir_bytes) proc;
06963 kinfo.kmem_base = vir2phys(0);
06964 kinfo.kmem_size = (phys_bytes) &end;
06965
06966 /* Processor? 86, 186, 286, 386, ...
06967 * Decide if mode is protected for older machines.
06968 */
06969 machine.processor=atoi(get_value(params, "processor"));
06970 #if _WORD_SIZE == 2
06971 machine.protected = machine.processor >= 286;
06972 #endif
06973 if (! machine.protected) mon_return = 0;
06974
06975 /* XT, AT or MCA bus? */
06976 value = get_value(params, "bus");
06977 if (value == NIL_PTR || strcmp(value, "at") == 0) {
06978 machine.pc_at = TRUE; /* PC-AT compatible hardware */
06979 } else if (strcmp(value, "mca") == 0) {
06980 machine.pc_at = machine.ps_mca = TRUE; /* PS/2 with micro channel */
06981 }
06982
06983 /* Type of VDU: */
06984 value = get_value(params, "video"); /* EGA or VGA video unit */
06985 if (strcmp(value, "ega") == 0) machine.vdu_ega = TRUE;
06986 if (strcmp(value, "vga") == 0) machine.vdu_vga = machine.vdu_ega = TRUE;
06987
06988 /* Return to assembler code to switch to protected mode (if 286),
06989 * reload selectors and call main().
06990 */
06991 }

06993 /*===========================================================================*
06994 * get_value *
06995 *===========================================================================*/
06996
06997 PRIVATE char *get_value(params, name)
06998 _CONST char *params; /* boot monitor parameters */
06999 _CONST char *name; /* key to look up */
07000 {
07001 /* Get environment value - kernel version of getenv to avoid setting up the
07002 * usual environment array.
07003 */
07004 register _CONST char *namep;
07005 register char *envp;
07006
07007 for (envp = (char *) params; *envp != 0;) {
07008 for (namep = name; *namep != 0 && *namep == *envp; namep++, envp++)
07009 ;
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07010 if (*namep == ’\0’ && *envp == ’=’) return(envp + 1);
07011 while (*envp++ != 0)
07012 ;
07013 }
07014 return(NIL_PTR);
07015 }

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
kernel/main.c

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

07100 /* This file contains the main program of MINIX as well as its shutdown code.
07101 * The routine main() initializes the system and starts the ball rolling by
07102 * setting up the process table, interrupt vectors, and scheduling each task
07103 * to run to initialize itself.
07104 * The routine shutdown() does the opposite and brings down MINIX.
07105 *
07106 * The entries into this file are:
07107 * main: MINIX main program
07108 * prepare_shutdown: prepare to take MINIX down
07109 *
07110 * Changes:
07111 * Nov 24, 2004 simplified main() with system image (Jorrit N. Herder)
07112 * Aug 20, 2004 new prepare_shutdown() and shutdown() (Jorrit N. Herder)
07113 */
07114 #include "kernel.h"
07115 #include <signal.h>
07116 #include <string.h>
07117 #include <unistd.h>
07118 #include <a.out.h>
07119 #include <minix/callnr.h>
07120 #include <minix/com.h>
07121 #include "proc.h"
07122
07123 /* Prototype declarations for PRIVATE functions. */
07124 FORWARD _PROTOTYPE( void announce, (void));
07125 FORWARD _PROTOTYPE( void shutdown, (timer_t *tp));
07126
07127 /*===========================================================================*
07128 * main *
07129 *===========================================================================*/
07130 PUBLIC void main()
07131 {
07132 /* Start the ball rolling. */
07133 struct boot_image *ip; /* boot image pointer */
07134 register struct proc *rp; /* process pointer */
07135 register struct priv *sp; /* privilege structure pointer */
07136 register int i, s;
07137 int hdrindex; /* index to array of a.out headers */
07138 phys_clicks text_base;
07139 vir_clicks text_clicks, data_clicks;
07140 reg_t ktsb; /* kernel task stack base */
07141 struct exec e_hdr; /* for a copy of an a.out header */
07142
07143 /* Initialize the interrupt controller. */
07144 intr_init(1);
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07145
07146 /* Clear the process table. Anounce each slot as empty and set up mappings
07147 * for proc_addr() and proc_nr() macros. Do the same for the table with
07148 * privilege structures for the system processes.
07149 */
07150 for (rp = BEG_PROC_ADDR, i = -NR_TASKS; rp < END_PROC_ADDR; ++rp, ++i) {
07151 rp->p_rts_flags = SLOT_FREE; /* initialize free slot */
07152 rp->p_nr = i; /* proc number from ptr */
07153 (pproc_addr + NR_TASKS)[i] = rp; /* proc ptr from number */
07154 }
07155 for (sp = BEG_PRIV_ADDR, i = 0; sp < END_PRIV_ADDR; ++sp, ++i) {
07156 sp->s_proc_nr = NONE; /* initialize as free */
07157 sp->s_id = i; /* priv structure index */
07158 ppriv_addr[i] = sp; /* priv ptr from number */
07159 }
07160
07161 /* Set up proc table entries for tasks and servers. The stacks of the
07162 * kernel tasks are initialized to an array in data space. The stacks
07163 * of the servers have been added to the data segment by the monitor, so
07164 * the stack pointer is set to the end of the data segment. All the
07165 * processes are in low memory on the 8086. On the 386 only the kernel
07166 * is in low memory, the rest is loaded in extended memory.
07167 */
07168
07169 /* Task stacks. */
07170 ktsb = (reg_t) t_stack;
07171
07172 for (i=0; i < NR_BOOT_PROCS; ++i) {
07173 ip = &image[i]; /* process’ attributes */
07174 rp = proc_addr(ip->proc_nr); /* get process pointer */
07175 rp->p_max_priority = ip->priority; /* max scheduling priority */
07176 rp->p_priority = ip->priority; /* current priority */
07177 rp->p_quantum_size = ip->quantum; /* quantum size in ticks */
07178 rp->p_ticks_left = ip->quantum; /* current credit */
07179 strncpy(rp->p_name, ip->proc_name, P_NAME_LEN); /* set process name */
07180 (void) get_priv(rp, (ip->flags & SYS_PROC)); /* assign structure */
07181 priv(rp)->s_flags = ip->flags; /* process flags */
07182 priv(rp)->s_trap_mask = ip->trap_mask; /* allowed traps */
07183 priv(rp)->s_call_mask = ip->call_mask; /* kernel call mask */
07184 priv(rp)->s_ipc_to.chunk[0] = ip->ipc_to; /* restrict targets */
07185 if (iskerneln(proc_nr(rp))) { /* part of the kernel? */
07186 if (ip->stksize > 0) { /* HARDWARE stack size is 0 */
07187 rp->p_priv->s_stack_guard = (reg_t *) ktsb;
07188 *rp->p_priv->s_stack_guard = STACK_GUARD;
07189 }
07190 ktsb += ip->stksize; /* point to high end of stack */
07191 rp->p_reg.sp = ktsb; /* this task’s initial stack ptr */
07192 text_base = kinfo.code_base >> CLICK_SHIFT;
07193 /* processes that are in the kernel */
07194 hdrindex = 0; /* all use the first a.out header */
07195 } else {
07196 hdrindex = 1 + i-NR_TASKS; /* servers, drivers, INIT */
07197 }
07198
07199 /* The bootstrap loader created an array of the a.out headers at
07200 * absolute address ’aout’. Get one element to e_hdr.
07201 */
07202 phys_copy(aout + hdrindex * A_MINHDR, vir2phys(&e_hdr),
07203 (phys_bytes) A_MINHDR);
07204 /* Convert addresses to clicks and build process memory map */
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07205 text_base = e_hdr.a_syms >> CLICK_SHIFT;
07206 text_clicks = (e_hdr.a_text + CLICK_SIZE-1) >> CLICK_SHIFT;
07207 if (!(e_hdr.a_flags & A_SEP)) text_clicks = 0; /* common I&D */
07208 data_clicks = (e_hdr.a_total + CLICK_SIZE-1) >> CLICK_SHIFT;
07209 rp->p_memmap[T].mem_phys = text_base;
07210 rp->p_memmap[T].mem_len = text_clicks;
07211 rp->p_memmap[D].mem_phys = text_base + text_clicks;
07212 rp->p_memmap[D].mem_len = data_clicks;
07213 rp->p_memmap[S].mem_phys = text_base + text_clicks + data_clicks;
07214 rp->p_memmap[S].mem_vir = data_clicks; /* empty - stack is in data */
07215
07216 /* Set initial register values. The processor status word for tasks
07217 * is different from that of other processes because tasks can
07218 * access I/O; this is not allowed to less-privileged processes
07219 */
07220 rp->p_reg.pc = (reg_t) ip->initial_pc;
07221 rp->p_reg.psw = (iskernelp(rp)) ? INIT_TASK_PSW : INIT_PSW;
07222
07223 /* Initialize the server stack pointer. Take it down one word
07224 * to give crtso.s something to use as "argc".
07225 */
07226 if (isusern(proc_nr(rp))) { /* user-space process? */
07227 rp->p_reg.sp = (rp->p_memmap[S].mem_vir +
07228 rp->p_memmap[S].mem_len) << CLICK_SHIFT;
07229 rp->p_reg.sp -= sizeof(reg_t);
07230 }
07231
07232 /* Set ready. The HARDWARE task is never ready. */
07233 if (rp->p_nr != HARDWARE) {
07234 rp->p_rts_flags = 0; /* runnable if no flags */
07235 lock_enqueue(rp); /* add to scheduling queues */
07236 } else {
07237 rp->p_rts_flags = NO_MAP; /* prevent from running */
07238 }
07239
07240 /* Code and data segments must be allocated in protected mode. */
07241 alloc_segments(rp);
07242 }
07243
07244 /* We’re definitely not shutting down. */
07245 shutdown_started = 0;
07246
07247 /* MINIX is now ready. All boot image processes are on the ready queue.
07248 * Return to the assembly code to start running the current process.
07249 */
07250 bill_ptr = proc_addr(IDLE); /* it has to point somewhere */
07251 announce(); /* print MINIX startup banner */
07252 restart();
07253 }

07255 /*===========================================================================*
07256 * announce *
07257 *===========================================================================*/
07258 PRIVATE void announce(void)
07259 {
07260 /* Display the MINIX startup banner. */
07261 kprintf("MINIX %s.%s."
07262 "Copyright 2006, Vrije Universiteit, Amsterdam, The Netherlands\n",
07263 OS_RELEASE, OS_VERSION);
07264
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07265 /* Real mode, or 16/32-bit protected mode? */
07266 kprintf("Executing in %s mode.\n\n",
07267 machine.protected ? "32-bit protected" : "real");
07268 }

07270 /*===========================================================================*
07271 * prepare_shutdown *
07272 *===========================================================================*/
07273 PUBLIC void prepare_shutdown(how)
07274 int how;
07275 {
07276 /* This function prepares to shutdown MINIX. */
07277 static timer_t shutdown_timer;
07278 register struct proc *rp;
07279 message m;
07280
07281 /* Show debugging dumps on panics. Make sure that the TTY task is still
07282 * available to handle them. This is done with help of a non-blocking send.
07283 * We rely on TTY to call sys_abort() when it is done with the dumps.
07284 */
07285 if (how == RBT_PANIC) {
07286 m.m_type = PANIC_DUMPS;
07287 if (nb_send(TTY_PROC_NR,&m)==OK) /* don’t block if TTY isn’t ready */
07288 return; /* await sys_abort() from TTY */
07289 }
07290
07291 /* Send a signal to all system processes that are still alive to inform
07292 * them that the MINIX kernel is shutting down. A proper shutdown sequence
07293 * should be implemented by a user-space server. This mechanism is useful
07294 * as a backup in case of system panics, so that system processes can still
07295 * run their shutdown code, e.g, to synchronize the FS or to let the TTY
07296 * switch to the first console.
07297 */
07298 kprintf("Sending SIGKSTOP to system processes ...\n");
07299 for (rp=BEG_PROC_ADDR; rp<END_PROC_ADDR; rp++) {
07300 if (!isemptyp(rp) && (priv(rp)->s_flags & SYS_PROC) && !iskernelp(rp))
07301 send_sig(proc_nr(rp), SIGKSTOP);
07302 }
07303
07304 /* We’re shutting down. Diagnostics may behave differently now. */
07305 shutdown_started = 1;
07306
07307 /* Notify system processes of the upcoming shutdown and allow them to be
07308 * scheduled by setting a watchog timer that calls shutdown(). The timer
07309 * argument passes the shutdown status.
07310 */
07311 kprintf("MINIX will now be shut down ...\n");
07312 tmr_arg(&shutdown_timer)->ta_int = how;
07313
07314 /* Continue after 1 second, to give processes a chance to get
07315 * scheduled to do shutdown work.
07316 */
07317 set_timer(&shutdown_timer, get_uptime() + HZ, shutdown);
07318 }

07320 /*===========================================================================*
07321 * shutdown *
07322 *===========================================================================*/
07323 PRIVATE void shutdown(tp)
07324 timer_t *tp;
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07325 {
07326 /* This function is called from prepare_shutdown or stop_sequence to bring
07327 * down MINIX. How to shutdown is in the argument: RBT_HALT (return to the
07328 * monitor), RBT_MONITOR (execute given code), RBT_RESET (hard reset).
07329 */
07330 int how = tmr_arg(tp)->ta_int;
07331 u16_t magic;
07332
07333 /* Now mask all interrupts, including the clock, and stop the clock. */
07334 outb(INT_CTLMASK, ˜0);
07335 clock_stop();
07336
07337 if (mon_return && how != RBT_RESET) {
07338 /* Reinitialize the interrupt controllers to the BIOS defaults. */
07339 intr_init(0);
07340 outb(INT_CTLMASK, 0);
07341 outb(INT2_CTLMASK, 0);
07342
07343 /* Return to the boot monitor. Set the program if not already done. */
07344 if (how != RBT_MONITOR) phys_copy(vir2phys(""), kinfo.params_base, 1);
07345 level0(monitor);
07346 }
07347
07348 /* Reset the system by jumping to the reset address (real mode), or by
07349 * forcing a processor shutdown (protected mode). First stop the BIOS
07350 * memory test by setting a soft reset flag.
07351 */
07352 magic = STOP_MEM_CHECK;
07353 phys_copy(vir2phys(&magic), SOFT_RESET_FLAG_ADDR, SOFT_RESET_FLAG_SIZE);
07354 level0(reset);
07355 }

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
kernel/proc.c

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

07400 /* This file contains essentially all of the process and message handling.
07401 * Together with "mpx.s" it forms the lowest layer of the MINIX kernel.
07402 * There is one entry point from the outside:
07403 *
07404 * sys_call: a system call, i.e., the kernel is trapped with an INT
07405 *
07406 * As well as several entry points used from the interrupt and task level:
07407 *
07408 * lock_notify: notify a process of a system event
07409 * lock_send: send a message to a process
07410 * lock_enqueue: put a process on one of the scheduling queues
07411 * lock_dequeue: remove a process from the scheduling queues
07412 *
07413 * Changes:
07414 * Aug 19, 2005 rewrote scheduling code (Jorrit N. Herder)
07415 * Jul 25, 2005 rewrote system call handling (Jorrit N. Herder)
07416 * May 26, 2005 rewrote message passing functions (Jorrit N. Herder)
07417 * May 24, 2005 new notification system call (Jorrit N. Herder)
07418 * Oct 28, 2004 nonblocking send and receive calls (Jorrit N. Herder)
07419 *
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07420 * The code here is critical to make everything work and is important for the
07421 * overall performance of the system. A large fraction of the code deals with
07422 * list manipulation. To make this both easy to understand and fast to execute
07423 * pointer pointers are used throughout the code. Pointer pointers prevent
07424 * exceptions for the head or tail of a linked list.
07425 *
07426 * node_t *queue, *new_node; // assume these as global variables
07427 * node_t **xpp = &queue; // get pointer pointer to head of queue
07428 * while (*xpp != NULL) // find last pointer of the linked list
07429 * xpp = &(*xpp)->next; // get pointer to next pointer
07430 * *xpp = new_node; // now replace the end (the NULL pointer)
07431 * new_node->next = NULL; // and mark the new end of the list
07432 *
07433 * For example, when adding a new node to the end of the list, one normally
07434 * makes an exception for an empty list and looks up the end of the list for
07435 * nonempty lists. As shown above, this is not required with pointer pointers.
07436 */
07437
07438 #include <minix/com.h>
07439 #include <minix/callnr.h>
07440 #include "kernel.h"
07441 #include "proc.h"
07442
07443 /* Scheduling and message passing functions. The functions are available to
07444 * other parts of the kernel through lock_...(). The lock temporarily disables
07445 * interrupts to prevent race conditions.
07446 */
07447 FORWARD _PROTOTYPE( int mini_send, (struct proc *caller_ptr, int dst,
07448 message *m_ptr, unsigned flags) );
07449 FORWARD _PROTOTYPE( int mini_receive, (struct proc *caller_ptr, int src,
07450 message *m_ptr, unsigned flags) );
07451 FORWARD _PROTOTYPE( int mini_notify, (struct proc *caller_ptr, int dst) );
07452
07453 FORWARD _PROTOTYPE( void enqueue, (struct proc *rp) );
07454 FORWARD _PROTOTYPE( void dequeue, (struct proc *rp) );
07455 FORWARD _PROTOTYPE( void sched, (struct proc *rp, int *queue, int *front) );
07456 FORWARD _PROTOTYPE( void pick_proc, (void) );
07457
07458 #define BuildMess(m_ptr, src, dst_ptr) \
07459 (m_ptr)->m_source = (src); \
07460 (m_ptr)->m_type = NOTIFY_FROM(src); \
07461 (m_ptr)->NOTIFY_TIMESTAMP = get_uptime(); \
07462 switch (src) { \
07463 case HARDWARE: \
07464 (m_ptr)->NOTIFY_ARG = priv(dst_ptr)->s_int_pending; \
07465 priv(dst_ptr)->s_int_pending = 0; \
07466 break; \
07467 case SYSTEM: \
07468 (m_ptr)->NOTIFY_ARG = priv(dst_ptr)->s_sig_pending; \
07469 priv(dst_ptr)->s_sig_pending = 0; \
07470 break; \
07471 }
07472
07473 #define CopyMess(s,sp,sm,dp,dm) \
07474 cp_mess(s, (sp)->p_memmap[D].mem_phys, \
07475 (vir_bytes)sm, (dp)->p_memmap[D].mem_phys, (vir_bytes)dm)
07476
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07477 /*===========================================================================*
07478 * sys_call *
07479 *===========================================================================*/
07480 PUBLIC int sys_call(call_nr, src_dst, m_ptr)
07481 int call_nr; /* system call number and flags */
07482 int src_dst; /* src to receive from or dst to send to */
07483 message *m_ptr; /* pointer to message in the caller’s space */
07484 {
07485 /* System calls are done by trapping to the kernel with an INT instruction.
07486 * The trap is caught and sys_call() is called to send or receive a message
07487 * (or both). The caller is always given by ’proc_ptr’.
07488 */
07489 register struct proc *caller_ptr = proc_ptr; /* get pointer to caller */
07490 int function = call_nr & SYSCALL_FUNC; /* get system call function */
07491 unsigned flags = call_nr & SYSCALL_FLAGS; /* get flags */
07492 int mask_entry; /* bit to check in send mask */
07493 int result; /* the system call’s result */
07494 vir_clicks vlo, vhi; /* virtual clicks containing message to send */
07495
07496 /* Check if the process has privileges for the requested call. Calls to the
07497 * kernel may only be SENDREC, because tasks always reply and may not block
07498 * if the caller doesn’t do receive().
07499 */
07500 if (! (priv(caller_ptr)->s_trap_mask & (1 << function)) ||
07501 (iskerneln(src_dst) && function != SENDREC
07502 && function != RECEIVE)) {
07503 kprintf("sys_call: trap %d not allowed, caller %d, src_dst %d\n",
07504 function, proc_nr(caller_ptr), src_dst);
07505 return(ECALLDENIED); /* trap denied by mask or kernel */
07506 }
07507
07508 /* Require a valid source and/ or destination process, unless echoing. */
07509 if (! (isokprocn(src_dst) || src_dst == ANY || function == ECHO)) {
07510 kprintf("sys_call: invalid src_dst, src_dst %d, caller %d\n",
07511 src_dst, proc_nr(caller_ptr));
07512 return(EBADSRCDST); /* invalid process number */
07513 }
07514
07515 /* If the call involves a message buffer, i.e., for SEND, RECEIVE, SENDREC,
07516 * or ECHO, check the message pointer. This check allows a message to be
07517 * anywhere in data or stack or gap. It will have to be made more elaborate
07518 * for machines which don’t have the gap mapped.
07519 */
07520 if (function & CHECK_PTR) {
07521 vlo = (vir_bytes) m_ptr >> CLICK_SHIFT;
07522 vhi = ((vir_bytes) m_ptr + MESS_SIZE - 1) >> CLICK_SHIFT;
07523 if (vlo < caller_ptr->p_memmap[D].mem_vir || vlo > vhi ||
07524 vhi >= caller_ptr->p_memmap[S].mem_vir +
07525 caller_ptr->p_memmap[S].mem_len) {
07526 kprintf("sys_call: invalid message pointer, trap %d, caller %d\n",
07527 function, proc_nr(caller_ptr));
07528 return(EFAULT); /* invalid message pointer */
07529 }
07530 }
07531
07532 /* If the call is to send to a process, i.e., for SEND, SENDREC or NOTIFY,
07533 * verify that the caller is allowed to send to the given destination and
07534 * that the destination is still alive.
07535 */
07536 if (function & CHECK_DST) {
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07537 if (! get_sys_bit(priv(caller_ptr)->s_ipc_to, nr_to_id(src_dst))) {
07538 kprintf("sys_call: ipc mask denied %d sending to %d\n",
07539 proc_nr(caller_ptr), src_dst);
07540 return(ECALLDENIED); /* call denied by ipc mask */
07541 }
07542
07543 if (isemptyn(src_dst) && !shutdown_started) {
07544 kprintf("sys_call: dead dest; %d, %d, %d\n",
07545 function, proc_nr(caller_ptr), src_dst);
07546 return(EDEADDST); /* cannot send to the dead */
07547 }
07548 }
07549
07550 /* Now check if the call is known and try to perform the request. The only
07551 * system calls that exist in MINIX are sending and receiving messages.
07552 * - SENDREC: combines SEND and RECEIVE in a single system call
07553 * - SEND: sender blocks until its message has been delivered
07554 * - RECEIVE: receiver blocks until an acceptable message has arrived
07555 * - NOTIFY: nonblocking call; deliver notification or mark pending
07556 * - ECHO: nonblocking call; directly echo back the message
07557 */
07558 switch(function) {
07559 case SENDREC:
07560 /* A flag is set so that notifications cannot interrupt SENDREC. */
07561 priv(caller_ptr)->s_flags |= SENDREC_BUSY;
07562 /* fall through */
07563 case SEND:
07564 result = mini_send(caller_ptr, src_dst, m_ptr, flags);
07565 if (function == SEND || result != OK) {
07566 break; /* done, or SEND failed */
07567 } /* fall through for SENDREC */
07568 case RECEIVE:
07569 if (function == RECEIVE)
07570 priv(caller_ptr)->s_flags &= ˜SENDREC_BUSY;
07571 result = mini_receive(caller_ptr, src_dst, m_ptr, flags);
07572 break;
07573 case NOTIFY:
07574 result = mini_notify(caller_ptr, src_dst);
07575 break;
07576 case ECHO:
07577 CopyMess(caller_ptr->p_nr, caller_ptr, m_ptr, caller_ptr, m_ptr);
07578 result = OK;
07579 break;
07580 default:
07581 result = EBADCALL; /* illegal system call */
07582 }
07583
07584 /* Now, return the result of the system call to the caller. */
07585 return(result);
07586 }

07588 /*===========================================================================*
07589 * mini_send *
07590 *===========================================================================*/
07591 PRIVATE int mini_send(caller_ptr, dst, m_ptr, flags)
07592 register struct proc *caller_ptr; /* who is trying to send a message? */
07593 int dst; /* to whom is message being sent? */
07594 message *m_ptr; /* pointer to message buffer */
07595 unsigned flags; /* system call flags */
07596 {
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07597 /* Send a message from ’caller_ptr’ to ’dst’. If ’dst’ is blocked waiting
07598 * for this message, copy the message to it and unblock ’dst’. If ’dst’ is
07599 * not waiting at all, or is waiting for another source, queue ’caller_ptr’.
07600 */
07601 register struct proc *dst_ptr = proc_addr(dst);
07602 register struct proc **xpp;
07603 register struct proc *xp;
07604
07605 /* Check for deadlock by ’caller_ptr’ and ’dst’ sending to each other. */
07606 xp = dst_ptr;
07607 while (xp->p_rts_flags & SENDING) { /* check while sending */
07608 xp = proc_addr(xp->p_sendto); /* get xp’s destination */
07609 if (xp == caller_ptr) return(ELOCKED); /* deadlock if cyclic */
07610 }
07611
07612 /* Check if ’dst’ is blocked waiting for this message. The destination’s
07613 * SENDING flag may be set when its SENDREC call blocked while sending.
07614 */
07615 if ( (dst_ptr->p_rts_flags & (RECEIVING | SENDING)) == RECEIVING &&
07616 (dst_ptr->p_getfrom == ANY || dst_ptr->p_getfrom == caller_ptr->p_nr)) {
07617 /* Destination is indeed waiting for this message. */
07618 CopyMess(caller_ptr->p_nr, caller_ptr, m_ptr, dst_ptr,
07619 dst_ptr->p_messbuf);
07620 if ((dst_ptr->p_rts_flags &= ˜RECEIVING) == 0) enqueue(dst_ptr);
07621 } else if ( ! (flags & NON_BLOCKING)) {
07622 /* Destination is not waiting. Block and dequeue caller. */
07623 caller_ptr->p_messbuf = m_ptr;
07624 if (caller_ptr->p_rts_flags == 0) dequeue(caller_ptr);
07625 caller_ptr->p_rts_flags |= SENDING;
07626 caller_ptr->p_sendto = dst;
07627
07628 /* Process is now blocked. Put in on the destination’s queue. */
07629 xpp = &dst_ptr->p_caller_q; /* find end of list */
07630 while (*xpp != NIL_PROC) xpp = &(*xpp)->p_q_link;
07631 *xpp = caller_ptr; /* add caller to end */
07632 caller_ptr->p_q_link = NIL_PROC; /* mark new end of list */
07633 } else {
07634 return(ENOTREADY);
07635 }
07636 return(OK);
07637 }

07639 /*===========================================================================*
07640 * mini_receive *
07641 *===========================================================================*/
07642 PRIVATE int mini_receive(caller_ptr, src, m_ptr, flags)
07643 register struct proc *caller_ptr; /* process trying to get message */
07644 int src; /* which message source is wanted */
07645 message *m_ptr; /* pointer to message buffer */
07646 unsigned flags; /* system call flags */
07647 {
07648 /* A process or task wants to get a message. If a message is already queued,
07649 * acquire it and deblock the sender. If no message from the desired source
07650 * is available block the caller, unless the flags don’t allow blocking.
07651 */
07652 register struct proc **xpp;
07653 register struct notification **ntf_q_pp;
07654 message m;
07655 int bit_nr;
07656 sys_map_t *map;
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07657 bitchunk_t *chunk;
07658 int i, src_id, src_proc_nr;
07659
07660 /* Check to see if a message from desired source is already available.
07661 * The caller’s SENDING flag may be set if SENDREC couldn’t send. If it is
07662 * set, the process should be blocked.
07663 */
07664 if (!(caller_ptr->p_rts_flags & SENDING)) {
07665
07666 /* Check if there are pending notifications, except for SENDREC. */
07667 if (! (priv(caller_ptr)->s_flags & SENDREC_BUSY)) {
07668
07669 map = &priv(caller_ptr)->s_notify_pending;
07670 for (chunk=&map->chunk[0]; chunk<&map->chunk[NR_SYS_CHUNKS]; chunk++) {
07671
07672 /* Find a pending notification from the requested source. */
07673 if (! *chunk) continue; /* no bits in chunk */
07674 for (i=0; ! (*chunk & (1<<i)); ++i) {} /* look up the bit */
07675 src_id = (chunk - &map->chunk[0]) * BITCHUNK_BITS + i;
07676 if (src_id >= NR_SYS_PROCS) break; /* out of range */
07677 src_proc_nr = id_to_nr(src_id); /* get source proc */
07678 if (src!=ANY && src!=src_proc_nr) continue; /* source not ok */
07679 *chunk &= ˜(1 << i); /* no longer pending */
07680
07681 /* Found a suitable source, deliver the notification message. */
07682 BuildMess(&m, src_proc_nr, caller_ptr); /* assemble message */
07683 CopyMess(src_proc_nr, proc_addr(HARDWARE), &m, caller_ptr, m_ptr);
07684 return(OK); /* report success */
07685 }
07686 }
07687
07688 /* Check caller queue. Use pointer pointers to keep code simple. */
07689 xpp = &caller_ptr->p_caller_q;
07690 while (*xpp != NIL_PROC) {
07691 if (src == ANY || src == proc_nr(*xpp)) {
07692 /* Found acceptable message. Copy it and update status. */
07693 CopyMess((*xpp)->p_nr, *xpp, (*xpp)->p_messbuf, caller_ptr, m_ptr);
07694 if (((*xpp)->p_rts_flags &= ˜SENDING) == 0) enqueue(*xpp);
07695 *xpp = (*xpp)->p_q_link; /* remove from queue */
07696 return(OK); /* report success */
07697 }
07698 xpp = &(*xpp)->p_q_link; /* proceed to next */
07699 }
07700 }
07701
07702 /* No suitable message is available or the caller couldn’t send in SENDREC.
07703 * Block the process trying to receive, unless the flags tell otherwise.
07704 */
07705 if ( ! (flags & NON_BLOCKING)) {
07706 caller_ptr->p_getfrom = src;
07707 caller_ptr->p_messbuf = m_ptr;
07708 if (caller_ptr->p_rts_flags == 0) dequeue(caller_ptr);
07709 caller_ptr->p_rts_flags |= RECEIVING;
07710 return(OK);
07711 } else {
07712 return(ENOTREADY);
07713 }
07714 }
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07716 /*===========================================================================*
07717 * mini_notify *
07718 *===========================================================================*/
07719 PRIVATE int mini_notify(caller_ptr, dst)
07720 register struct proc *caller_ptr; /* sender of the notification */
07721 int dst; /* which process to notify */
07722 {
07723 register struct proc *dst_ptr = proc_addr(dst);
07724 int src_id; /* source id for late delivery */
07725 message m; /* the notification message */
07726
07727 /* Check to see if target is blocked waiting for this message. A process
07728 * can be both sending and receiving during a SENDREC system call.
07729 */
07730 if ((dst_ptr->p_rts_flags & (RECEIVING|SENDING)) == RECEIVING &&
07731 ! (priv(dst_ptr)->s_flags & SENDREC_BUSY) &&
07732 (dst_ptr->p_getfrom == ANY || dst_ptr->p_getfrom == caller_ptr->p_nr)) {
07733
07734 /* Destination is indeed waiting for a message. Assemble a notification
07735 * message and deliver it. Copy from pseudo-source HARDWARE, since the
07736 * message is in the kernel’s address space.
07737 */
07738 BuildMess(&m, proc_nr(caller_ptr), dst_ptr);
07739 CopyMess(proc_nr(caller_ptr), proc_addr(HARDWARE), &m,
07740 dst_ptr, dst_ptr->p_messbuf);
07741 dst_ptr->p_rts_flags &= ˜RECEIVING; /* deblock destination */
07742 if (dst_ptr->p_rts_flags == 0) enqueue(dst_ptr);
07743 return(OK);
07744 }
07745
07746 /* Destination is not ready to receive the notification. Add it to the
07747 * bit map with pending notifications. Note the indirectness: the system id
07748 * instead of the process number is used in the pending bit map.
07749 */
07750 src_id = priv(caller_ptr)->s_id;
07751 set_sys_bit(priv(dst_ptr)->s_notify_pending, src_id);
07752 return(OK);
07753 }

07755 /*===========================================================================*
07756 * lock_notify *
07757 *===========================================================================*/
07758 PUBLIC int lock_notify(src, dst)
07759 int src; /* sender of the notification */
07760 int dst; /* who is to be notified */
07761 {
07762 /* Safe gateway to mini_notify() for tasks and interrupt handlers. The sender
07763 * is explicitly given to prevent confusion where the call comes from. MINIX
07764 * kernel is not reentrant, which means to interrupts are disabled after
07765 * the first kernel entry (hardware interrupt, trap, or exception). Locking
07766 * is done by temporarily disabling interrupts.
07767 */
07768 int result;
07769
07770 /* Exception or interrupt occurred, thus already locked. */
07771 if (k_reenter >= 0) {
07772 result = mini_notify(proc_addr(src), dst);
07773 }
07774
07775 /* Call from task level, locking is required. */
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07776 else {
07777 lock(0, "notify");
07778 result = mini_notify(proc_addr(src), dst);
07779 unlock(0);
07780 }
07781 return(result);
07782 }

07784 /*===========================================================================*
07785 * enqueue *
07786 *===========================================================================*/
07787 PRIVATE void enqueue(rp)
07788 register struct proc *rp; /* this process is now runnable */
07789 {
07790 /* Add ’rp’ to one of the queues of runnable processes. This function is
07791 * responsible for inserting a process into one of the scheduling queues.
07792 * The mechanism is implemented here. The actual scheduling policy is
07793 * defined in sched() and pick_proc().
07794 */
07795 int q; /* scheduling queue to use */
07796 int front; /* add to front or back */
07797
07798 /* Determine where to insert to process. */
07799 sched(rp, &q, &front);
07800
07801 /* Now add the process to the queue. */
07802 if (rdy_head[q] == NIL_PROC) { /* add to empty queue */
07803 rdy_head[q] = rdy_tail[q] = rp; /* create a new queue */
07804 rp->p_nextready = NIL_PROC; /* mark new end */
07805 }
07806 else if (front) { /* add to head of queue */
07807 rp->p_nextready = rdy_head[q]; /* chain head of queue */
07808 rdy_head[q] = rp; /* set new queue head */
07809 }
07810 else { /* add to tail of queue */
07811 rdy_tail[q]->p_nextready = rp; /* chain tail of queue */
07812 rdy_tail[q] = rp; /* set new queue tail */
07813 rp->p_nextready = NIL_PROC; /* mark new end */
07814 }
07815
07816 /* Now select the next process to run. */
07817 pick_proc();
07818 }

07820 /*===========================================================================*
07821 * dequeue *
07822 *===========================================================================*/
07823 PRIVATE void dequeue(rp)
07824 register struct proc *rp; /* this process is no longer runnable */
07825 {
07826 /* A process must be removed from the scheduling queues, for example, because
07827 * it has blocked. If the currently active process is removed, a new process
07828 * is picked to run by calling pick_proc().
07829 */
07830 register int q = rp->p_priority; /* queue to use */
07831 register struct proc **xpp; /* iterate over queue */
07832 register struct proc *prev_xp;
07833
07834 /* Side-effect for kernel: check if the task’s stack still is ok? */
07835 if (iskernelp(rp)) {
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07836 if (*priv(rp)->s_stack_guard != STACK_GUARD)
07837 panic("stack overrun by task", proc_nr(rp));
07838 }
07839
07840 /* Now make sure that the process is not in its ready queue. Remove the
07841 * process if it is found. A process can be made unready even if it is not
07842 * running by being sent a signal that kills it.
07843 */
07844 prev_xp = NIL_PROC;
07845 for (xpp = &rdy_head[q]; *xpp != NIL_PROC; xpp = &(*xpp)->p_nextready) {
07846
07847 if (*xpp == rp) { /* found process to remove */
07848 *xpp = (*xpp)->p_nextready; /* replace with next chain */
07849 if (rp == rdy_tail[q]) /* queue tail removed */
07850 rdy_tail[q] = prev_xp; /* set new tail */
07851 if (rp == proc_ptr || rp == next_ptr) /* active process removed */
07852 pick_proc(); /* pick new process to run */
07853 break;
07854 }
07855 prev_xp = *xpp; /* save previous in chain */
07856 }
07857 }

07859 /*===========================================================================*
07860 * sched *
07861 *===========================================================================*/
07862 PRIVATE void sched(rp, queue, front)
07863 register struct proc *rp; /* process to be scheduled */
07864 int *queue; /* return: queue to use */
07865 int *front; /* return: front or back */
07866 {
07867 /* This function determines the scheduling policy. It is called whenever a
07868 * process must be added to one of the scheduling queues to decide where to
07869 * insert it. As a side-effect the process’ priority may be updated.
07870 */
07871 static struct proc *prev_ptr = NIL_PROC; /* previous without time */
07872 int time_left = (rp->p_ticks_left > 0); /* quantum fully consumed */
07873 int penalty = 0; /* change in priority */
07874
07875 /* Check whether the process has time left. Otherwise give a new quantum
07876 * and possibly raise the priority. Processes using multiple quantums
07877 * in a row get a lower priority to catch infinite loops in high priority
07878 * processes (system servers and drivers).
07879 */
07880 if ( ! time_left) { /* quantum consumed ? */
07881 rp->p_ticks_left = rp->p_quantum_size; /* give new quantum */
07882 if (prev_ptr == rp) penalty ++; /* catch infinite loops */
07883 else penalty --; /* give slow way back */
07884 prev_ptr = rp; /* store ptr for next */
07885 }
07886
07887 /* Determine the new priority of this process. The bounds are determined
07888 * by IDLE’s queue and the maximum priority of this process. Kernel tasks
07889 * and the idle process are never changed in priority.
07890 */
07891 if (penalty != 0 && ! iskernelp(rp)) {
07892 rp->p_priority += penalty; /* update with penalty */
07893 if (rp->p_priority < rp->p_max_priority) /* check upper bound */
07894 rp->p_priority=rp->p_max_priority;
07895 else if (rp->p_priority > IDLE_Q-1) /* check lower bound */
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07896 rp->p_priority = IDLE_Q-1;
07897 }
07898
07899 /* If there is time left, the process is added to the front of its queue,
07900 * so that it can immediately run. The queue to use simply is always the
07901 * process’ current priority.
07902 */
07903 *queue = rp->p_priority;
07904 *front = time_left;
07905 }

07907 /*===========================================================================*
07908 * pick_proc *
07909 *===========================================================================*/
07910 PRIVATE void pick_proc()
07911 {
07912 /* Decide who to run now. A new process is selected by setting ’next_ptr’.
07913 * When a billable process is selected, record it in ’bill_ptr’, so that the
07914 * clock task can tell who to bill for system time.
07915 */
07916 register struct proc *rp; /* process to run */
07917 int q; /* iterate over queues */
07918
07919 /* Check each of the scheduling queues for ready processes. The number of
07920 * queues is defined in proc.h, and priorities are set in the image table.
07921 * The lowest queue contains IDLE, which is always ready.
07922 */
07923 for (q=0; q < NR_SCHED_QUEUES; q++) {
07924 if ( (rp = rdy_head[q]) != NIL_PROC) {
07925 next_ptr = rp; /* run process ’rp’ next */
07926 if (priv(rp)->s_flags & BILLABLE)
07927 bill_ptr = rp; /* bill for system time */
07928 return;
07929 }
07930 }
07931 }

07933 /*===========================================================================*
07934 * lock_send *
07935 *===========================================================================*/
07936 PUBLIC int lock_send(dst, m_ptr)
07937 int dst; /* to whom is message being sent? */
07938 message *m_ptr; /* pointer to message buffer */
07939 {
07940 /* Safe gateway to mini_send() for tasks. */
07941 int result;
07942 lock(2, "send");
07943 result = mini_send(proc_ptr, dst, m_ptr, NON_BLOCKING);
07944 unlock(2);
07945 return(result);
07946 }

07948 /*===========================================================================*
07949 * lock_enqueue *
07950 *===========================================================================*/
07951 PUBLIC void lock_enqueue(rp)
07952 struct proc *rp; /* this process is now runnable */
07953 {
07954 /* Safe gateway to enqueue() for tasks. */
07955 lock(3, "enqueue");
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07956 enqueue(rp);
07957 unlock(3);
07958 }

07960 /*===========================================================================*
07961 * lock_dequeue *
07962 *===========================================================================*/
07963 PUBLIC void lock_dequeue(rp)
07964 struct proc *rp; /* this process is no longer runnable */
07965 {
07966 /* Safe gateway to dequeue() for tasks. */
07967 lock(4, "dequeue");
07968 dequeue(rp);
07969 unlock(4);
07970 }

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
kernel/exception.c

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

08000 /* This file contains a simple exception handler. Exceptions in user
08001 * processes are converted to signals. Exceptions in a kernel task cause
08002 * a panic.
08003 */
08004
08005 #include "kernel.h"
08006 #include <signal.h>
08007 #include "proc.h"
08008
08009 /*===========================================================================*
08010 * exception *
08011 *===========================================================================*/
08012 PUBLIC void exception(vec_nr)
08013 unsigned vec_nr;
08014 {
08015 /* An exception or unexpected interrupt has occurred. */
08016
08017 struct ex_s {
08018 char *msg;
08019 int signum;
08020 int minprocessor;
08021 };
08022 static struct ex_s ex_data[] = {
08023 { "Divide error", SIGFPE, 86 },
08024 { "Debug exception", SIGTRAP, 86 },
08025 { "Nonmaskable interrupt", SIGBUS, 86 },
08026 { "Breakpoint", SIGEMT, 86 },
08027 { "Overflow", SIGFPE, 86 },
08028 { "Bounds check", SIGFPE, 186 },
08029 { "Invalid opcode", SIGILL, 186 },
08030 { "Coprocessor not available", SIGFPE, 186 },
08031 { "Double fault", SIGBUS, 286 },
08032 { "Copressor segment overrun", SIGSEGV, 286 },
08033 { "Invalid TSS", SIGSEGV, 286 },
08034 { "Segment not present", SIGSEGV, 286 },
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08035 { "Stack exception", SIGSEGV, 286 }, /* STACK_FAULT already used */
08036 { "General protection", SIGSEGV, 286 },
08037 { "Page fault", SIGSEGV, 386 }, /* not close */
08038 { NIL_PTR, SIGILL, 0 }, /* probably software trap */
08039 { "Coprocessor error", SIGFPE, 386 },
08040 };
08041 register struct ex_s *ep;
08042 struct proc *saved_proc;
08043
08044 /* Save proc_ptr, because it may be changed by debug statements. */
08045 saved_proc = proc_ptr;
08046
08047 ep = &ex_data[vec_nr];
08048
08049 if (vec_nr == 2) { /* spurious NMI on some machines */
08050 kprintf("got spurious NMI\n");
08051 return;
08052 }
08053
08054 /* If an exception occurs while running a process, the k_reenter variable
08055 * will be zero. Exceptions in interrupt handlers or system traps will make
08056 * k_reenter larger than zero.
08057 */
08058 if (k_reenter == 0 && ! iskernelp(saved_proc)) {
08059 cause_sig(proc_nr(saved_proc), ep->signum);
08060 return;
08061 }
08062
08063 /* Exception in system code. This is not supposed to happen. */
08064 if (ep->msg == NIL_PTR || machine.processor < ep->minprocessor)
08065 kprintf("\nIntel-reserved exception %d\n", vec_nr);
08066 else
08067 kprintf("\n%s\n", ep->msg);
08068 kprintf("k_reenter = %d ", k_reenter);
08069 kprintf("process %d (%s), ", proc_nr(saved_proc), saved_proc->p_name);
08070 kprintf("pc = %u:0x%x", (unsigned) saved_proc->p_reg.cs,
08071 (unsigned) saved_proc->p_reg.pc);
08072
08073 panic("exception in a kernel task", NO_NUM);
08074 }

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
kernel/i8259.c

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

08100 /* This file contains routines for initializing the 8259 interrupt controller:
08101 * put_irq_handler: register an interrupt handler
08102 * rm_irq_handler: deregister an interrupt handler
08103 * intr_handle: handle a hardware interrupt
08104 * intr_init: initialize the interrupt controller(s)
08105 */
08106
08107 #include "kernel.h"
08108 #include "proc.h"
08109 #include <minix/com.h>
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08110
08111 #define ICW1_AT 0x11 /* edge triggered, cascade, need ICW4 */
08112 #define ICW1_PC 0x13 /* edge triggered, no cascade, need ICW4 */
08113 #define ICW1_PS 0x19 /* level triggered, cascade, need ICW4 */
08114 #define ICW4_AT_SLAVE 0x01 /* not SFNM, not buffered, normal EOI, 8086 */
08115 #define ICW4_AT_MASTER 0x05 /* not SFNM, not buffered, normal EOI, 8086 */
08116 #define ICW4_PC_SLAVE 0x09 /* not SFNM, buffered, normal EOI, 8086 */
08117 #define ICW4_PC_MASTER 0x0D /* not SFNM, buffered, normal EOI, 8086 */
08118
08119 #define set_vec(nr, addr) ((void)0)
08120
08121 /*===========================================================================*
08122 * intr_init *
08123 *===========================================================================*/
08124 PUBLIC void intr_init(mine)
08125 int mine;
08126 {
08127 /* Initialize the 8259s, finishing with all interrupts disabled. This is
08128 * only done in protected mode, in real mode we don’t touch the 8259s, but
08129 * use the BIOS locations instead. The flag "mine" is set if the 8259s are
08130 * to be programmed for MINIX, or to be reset to what the BIOS expects.
08131 */
08132 int i;
08133
08134 intr_disable();
08135
08136 /* The AT and newer PS/2 have two interrupt controllers, one master,
08137 * one slaved at IRQ 2. (We don’t have to deal with the PC that
08138 * has just one controller, because it must run in real mode.)
08139 */
08140 outb(INT_CTL, machine.ps_mca ? ICW1_PS : ICW1_AT);
08141 outb(INT_CTLMASK, mine ? IRQ0_VECTOR : BIOS_IRQ0_VEC);
08142 /* ICW2 for master */
08143 outb(INT_CTLMASK, (1 << CASCADE_IRQ)); /* ICW3 tells slaves */
08144 outb(INT_CTLMASK, ICW4_AT_MASTER);
08145 outb(INT_CTLMASK, ˜(1 << CASCADE_IRQ)); /* IRQ 0-7 mask */
08146 outb(INT2_CTL, machine.ps_mca ? ICW1_PS : ICW1_AT);
08147 outb(INT2_CTLMASK, mine ? IRQ8_VECTOR : BIOS_IRQ8_VEC);
08148 /* ICW2 for slave */
08149 outb(INT2_CTLMASK, CASCADE_IRQ); /* ICW3 is slave nr */
08150 outb(INT2_CTLMASK, ICW4_AT_SLAVE);
08151 outb(INT2_CTLMASK, ˜0); /* IRQ 8-15 mask */
08152
08153 /* Copy the BIOS vectors from the BIOS to the Minix location, so we
08154 * can still make BIOS calls without reprogramming the i8259s.
08155 */
08156 phys_copy(BIOS_VECTOR(0) * 4L, VECTOR(0) * 4L, 8 * 4L);
08157 }

08159 /*===========================================================================*
08160 * put_irq_handler *
08161 *===========================================================================*/
08162 PUBLIC void put_irq_handler(hook, irq, handler)
08163 irq_hook_t *hook;
08164 int irq;
08165 irq_handler_t handler;
08166 {
08167 /* Register an interrupt handler. */
08168 int id;
08169 irq_hook_t **line;
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08170
08171 if (irq < 0 || irq >= NR_IRQ_VECTORS)
08172 panic("invalid call to put_irq_handler", irq);
08173
08174 line = &irq_handlers[irq];
08175 id = 1;
08176 while (*line != NULL) {
08177 if (hook == *line) return; /* extra initialization */
08178 line = &(*line)->next;
08179 id <<= 1;
08180 }
08181 if (id == 0) panic("Too many handlers for irq", irq);
08182
08183 hook->next = NULL;
08184 hook->handler = handler;
08185 hook->irq = irq;
08186 hook->id = id;
08187 *line = hook;
08188
08189 irq_use |= 1 << irq;
08190 }

08192 /*===========================================================================*
08193 * rm_irq_handler *
08194 *===========================================================================*/
08195 PUBLIC void rm_irq_handler(hook)
08196 irq_hook_t *hook;
08197 {
08198 /* Unregister an interrupt handler. */
08199 int irq = hook->irq;
08200 int id = hook->id;
08201 irq_hook_t **line;
08202
08203 if (irq < 0 || irq >= NR_IRQ_VECTORS)
08204 panic("invalid call to rm_irq_handler", irq);
08205
08206 line = &irq_handlers[irq];
08207 while (*line != NULL) {
08208 if ((*line)->id == id) {
08209 (*line) = (*line)->next;
08210 if (! irq_handlers[irq]) irq_use &= ˜(1 << irq);
08211 return;
08212 }
08213 line = &(*line)->next;
08214 }
08215 /* When the handler is not found, normally return here. */
08216 }

08218 /*===========================================================================*
08219 * intr_handle *
08220 *===========================================================================*/
08221 PUBLIC void intr_handle(hook)
08222 irq_hook_t *hook;
08223 {
08224 /* Call the interrupt handlers for an interrupt with the given hook list.
08225 * The assembly part of the handler has already masked the IRQ, reenabled the
08226 * controller(s) and enabled interrupts.
08227 */
08228
08229 /* Call list of handlers for an IRQ. */
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08230 while (hook != NULL) {
08231 /* For each handler in the list, mark it active by setting its ID bit,
08232 * call the function, and unmark it if the function returns true.
08233 */
08234 irq_actids[hook->irq] |= hook->id;
08235 if ((*hook->handler)(hook)) irq_actids[hook->irq] &= ˜hook->id;
08236 hook = hook->next;
08237 }
08238
08239 /* The assembly code will now disable interrupts, unmask the IRQ if and only
08240 * if all active ID bits are cleared, and restart a process.
08241 */
08242 }

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
kernel/protect.c

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

08300 /* This file contains code for initialization of protected mode, to initialize
08301 * code and data segment descriptors, and to initialize global descriptors
08302 * for local descriptors in the process table.
08303 */
08304
08305 #include "kernel.h"
08306 #include "proc.h"
08307 #include "protect.h"
08308
08309 #define INT_GATE_TYPE (INT_286_GATE | DESC_386_BIT)
08310 #define TSS_TYPE (AVL_286_TSS | DESC_386_BIT)
08311
08312 struct desctableptr_s {
08313 char limit[sizeof(u16_t)];
08314 char base[sizeof(u32_t)]; /* really u24_t + pad for 286 */
08315 };
08316
08317 struct gatedesc_s {
08318 u16_t offset_low;
08319 u16_t selector;
08320 u8_t pad; /* |000|XXXXX| ig & trpg, |XXXXXXXX| task g */
08321 u8_t p_dpl_type; /* |P|DL|0|TYPE| */
08322 u16_t offset_high;
08323 };
08324
08325 struct tss_s {
08326 reg_t backlink;
08327 reg_t sp0; /* stack pointer to use during interrupt */
08328 reg_t ss0; /* " segment " " " " */
08329 reg_t sp1;
08330 reg_t ss1;
08331 reg_t sp2;
08332 reg_t ss2;
08333 reg_t cr3;
08334 reg_t ip;
08335 reg_t flags;
08336 reg_t ax;
08337 reg_t cx;
08338 reg_t dx;
08339 reg_t bx;
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08340 reg_t sp;
08341 reg_t bp;
08342 reg_t si;
08343 reg_t di;
08344 reg_t es;
08345 reg_t cs;
08346 reg_t ss;
08347 reg_t ds;
08348 reg_t fs;
08349 reg_t gs;
08350 reg_t ldt;
08351 u16_t trap;
08352 u16_t iobase;
08353 /* u8_t iomap[0]; */
08354 };
08355
08356 PUBLIC struct segdesc_s gdt[GDT_SIZE]; /* used in klib.s and mpx.s */
08357 PRIVATE struct gatedesc_s idt[IDT_SIZE]; /* zero-init so none present */
08358 PUBLIC struct tss_s tss; /* zero init */
08359
08360 FORWARD _PROTOTYPE( void int_gate, (unsigned vec_nr, vir_bytes offset,
08361 unsigned dpl_type) );
08362 FORWARD _PROTOTYPE( void sdesc, (struct segdesc_s *segdp, phys_bytes base,
08363 vir_bytes size) );
08364
08365 /*===========================================================================*
08366 * prot_init *
08367 *===========================================================================*/
08368 PUBLIC void prot_init()
08369 {
08370 /* Set up tables for protected mode.
08371 * All GDT slots are allocated at compile time.
08372 */
08373 struct gate_table_s *gtp;
08374 struct desctableptr_s *dtp;
08375 unsigned ldt_index;
08376 register struct proc *rp;
08377
08378 static struct gate_table_s {
08379 _PROTOTYPE( void (*gate), (void) );
08380 unsigned char vec_nr;
08381 unsigned char privilege;
08382 }
08383 gate_table[] = {
08384 { divide_error, DIVIDE_VECTOR, INTR_PRIVILEGE },
08385 { single_step_exception, DEBUG_VECTOR, INTR_PRIVILEGE },
08386 { nmi, NMI_VECTOR, INTR_PRIVILEGE },
08387 { breakpoint_exception, BREAKPOINT_VECTOR, USER_PRIVILEGE },
08388 { overflow, OVERFLOW_VECTOR, USER_PRIVILEGE },
08389 { bounds_check, BOUNDS_VECTOR, INTR_PRIVILEGE },
08390 { inval_opcode, INVAL_OP_VECTOR, INTR_PRIVILEGE },
08391 { copr_not_available, COPROC_NOT_VECTOR, INTR_PRIVILEGE },
08392 { double_fault, DOUBLE_FAULT_VECTOR, INTR_PRIVILEGE },
08393 { copr_seg_overrun, COPROC_SEG_VECTOR, INTR_PRIVILEGE },
08394 { inval_tss, INVAL_TSS_VECTOR, INTR_PRIVILEGE },
08395 { segment_not_present, SEG_NOT_VECTOR, INTR_PRIVILEGE },
08396 { stack_exception, STACK_FAULT_VECTOR, INTR_PRIVILEGE },
08397 { general_protection, PROTECTION_VECTOR, INTR_PRIVILEGE },
08398 { page_fault, PAGE_FAULT_VECTOR, INTR_PRIVILEGE },
08399 { copr_error, COPROC_ERR_VECTOR, INTR_PRIVILEGE },
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08400 { hwint00, VECTOR( 0), INTR_PRIVILEGE },
08401 { hwint01, VECTOR( 1), INTR_PRIVILEGE },
08402 { hwint02, VECTOR( 2), INTR_PRIVILEGE },
08403 { hwint03, VECTOR( 3), INTR_PRIVILEGE },
08404 { hwint04, VECTOR( 4), INTR_PRIVILEGE },
08405 { hwint05, VECTOR( 5), INTR_PRIVILEGE },
08406 { hwint06, VECTOR( 6), INTR_PRIVILEGE },
08407 { hwint07, VECTOR( 7), INTR_PRIVILEGE },
08408 { hwint08, VECTOR( 8), INTR_PRIVILEGE },
08409 { hwint09, VECTOR( 9), INTR_PRIVILEGE },
08410 { hwint10, VECTOR(10), INTR_PRIVILEGE },
08411 { hwint11, VECTOR(11), INTR_PRIVILEGE },
08412 { hwint12, VECTOR(12), INTR_PRIVILEGE },
08413 { hwint13, VECTOR(13), INTR_PRIVILEGE },
08414 { hwint14, VECTOR(14), INTR_PRIVILEGE },
08415 { hwint15, VECTOR(15), INTR_PRIVILEGE },
08416 { s_call, SYS386_VECTOR, USER_PRIVILEGE }, /* 386 system call */
08417 { level0_call, LEVEL0_VECTOR, TASK_PRIVILEGE },
08418 };
08419
08420 /* Build gdt and idt pointers in GDT where the BIOS expects them. */
08421 dtp= (struct desctableptr_s *) &gdt[GDT_INDEX];
08422 * (u16_t *) dtp->limit = (sizeof gdt) - 1;
08423 * (u32_t *) dtp->base = vir2phys(gdt);
08424
08425 dtp= (struct desctableptr_s *) &gdt[IDT_INDEX];
08426 * (u16_t *) dtp->limit = (sizeof idt) - 1;
08427 * (u32_t *) dtp->base = vir2phys(idt);
08428
08429 /* Build segment descriptors for tasks and interrupt handlers. */
08430 init_codeseg(&gdt[CS_INDEX],
08431 kinfo.code_base, kinfo.code_size, INTR_PRIVILEGE);
08432 init_dataseg(&gdt[DS_INDEX],
08433 kinfo.data_base, kinfo.data_size, INTR_PRIVILEGE);
08434 init_dataseg(&gdt[ES_INDEX], 0L, 0, TASK_PRIVILEGE);
08435
08436 /* Build scratch descriptors for functions in klib88. */
08437 init_dataseg(&gdt[DS_286_INDEX], 0L, 0, TASK_PRIVILEGE);
08438 init_dataseg(&gdt[ES_286_INDEX], 0L, 0, TASK_PRIVILEGE);
08439
08440 /* Build local descriptors in GDT for LDT’s in process table.
08441 * The LDT’s are allocated at compile time in the process table, and
08442 * initialized whenever a process’ map is initialized or changed.
08443 */
08444 for (rp = BEG_PROC_ADDR, ldt_index = FIRST_LDT_INDEX;
08445 rp < END_PROC_ADDR; ++rp, ldt_index++) {
08446 init_dataseg(&gdt[ldt_index], vir2phys(rp->p_ldt),
08447 sizeof(rp->p_ldt), INTR_PRIVILEGE);
08448 gdt[ldt_index].access = PRESENT | LDT;
08449 rp->p_ldt_sel = ldt_index * DESC_SIZE;
08450 }
08451
08452 /* Build main TSS.
08453 * This is used only to record the stack pointer to be used after an
08454 * interrupt.
08455 * The pointer is set up so that an interrupt automatically saves the
08456 * current process’s registers ip:cs:f:sp:ss in the correct slots in the
08457 * process table.
08458 */
08459 tss.ss0 = DS_SELECTOR;
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08460 init_dataseg(&gdt[TSS_INDEX], vir2phys(&tss), sizeof(tss), INTR_PRIVILEGE);
08461 gdt[TSS_INDEX].access = PRESENT | (INTR_PRIVILEGE << DPL_SHIFT) | TSS_TYPE;
08462
08463 /* Build descriptors for interrupt gates in IDT. */
08464 for (gtp = &gate_table[0];
08465 gtp < &gate_table[sizeof gate_table / sizeof gate_table[0]]; ++gtp) {
08466 int_gate(gtp->vec_nr, (vir_bytes) gtp->gate,
08467 PRESENT | INT_GATE_TYPE | (gtp->privilege << DPL_SHIFT));
08468 }
08469
08470 /* Complete building of main TSS. */
08471 tss.iobase = sizeof tss; /* empty i/o permissions map */
08472 }

08474 /*===========================================================================*
08475 * init_codeseg *
08476 *===========================================================================*/
08477 PUBLIC void init_codeseg(segdp, base, size, privilege)
08478 register struct segdesc_s *segdp;
08479 phys_bytes base;
08480 vir_bytes size;
08481 int privilege;
08482 {
08483 /* Build descriptor for a code segment. */
08484 sdesc(segdp, base, size);
08485 segdp->access = (privilege << DPL_SHIFT)
08486 | (PRESENT | SEGMENT | EXECUTABLE | READABLE);
08487 /* CONFORMING = 0, ACCESSED = 0 */
08488 }

08490 /*===========================================================================*
08491 * init_dataseg *
08492 *===========================================================================*/
08493 PUBLIC void init_dataseg(segdp, base, size, privilege)
08494 register struct segdesc_s *segdp;
08495 phys_bytes base;
08496 vir_bytes size;
08497 int privilege;
08498 {
08499 /* Build descriptor for a data segment. */
08500 sdesc(segdp, base, size);
08501 segdp->access = (privilege << DPL_SHIFT) | (PRESENT | SEGMENT | WRITEABLE);
08502 /* EXECUTABLE = 0, EXPAND_DOWN = 0, ACCESSED = 0 */
08503 }

08505 /*===========================================================================*
08506 * sdesc *
08507 *===========================================================================*/
08508 PRIVATE void sdesc(segdp, base, size)
08509 register struct segdesc_s *segdp;
08510 phys_bytes base;
08511 vir_bytes size;
08512 {
08513 /* Fill in the size fields (base, limit and granularity) of a descriptor. */
08514 segdp->base_low = base;
08515 segdp->base_middle = base >> BASE_MIDDLE_SHIFT;
08516 segdp->base_high = base >> BASE_HIGH_SHIFT;
08517
08518 --size; /* convert to a limit, 0 size means 4G */
08519 if (size > BYTE_GRAN_MAX) {
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08520 segdp->limit_low = size >> PAGE_GRAN_SHIFT;
08521 segdp->granularity = GRANULAR | (size >>
08522 (PAGE_GRAN_SHIFT + GRANULARITY_SHIFT));
08523 } else {
08524 segdp->limit_low = size;
08525 segdp->granularity = size >> GRANULARITY_SHIFT;
08526 }
08527 segdp->granularity |= DEFAULT; /* means BIG for data seg */
08528 }

08530 /*===========================================================================*
08531 * seg2phys *
08532 *===========================================================================*/
08533 PUBLIC phys_bytes seg2phys(seg)
08534 U16_t seg;
08535 {
08536 /* Return the base address of a segment, with seg being either a 8086 segment
08537 * register, or a 286/386 segment selector.
08538 */
08539 phys_bytes base;
08540 struct segdesc_s *segdp;
08541
08542 if (! machine.protected) {
08543 base = hclick_to_physb(seg);
08544 } else {
08545 segdp = &gdt[seg >> 3];
08546 base = ((u32_t) segdp->base_low << 0)
08547 | ((u32_t) segdp->base_middle << 16)
08548 | ((u32_t) segdp->base_high << 24);
08549 }
08550 return base;
08551 }

08553 /*===========================================================================*
08554 * phys2seg *
08555 *===========================================================================*/
08556 PUBLIC void phys2seg(seg, off, phys)
08557 u16_t *seg;
08558 vir_bytes *off;
08559 phys_bytes phys;
08560 {
08561 /* Return a segment selector and offset that can be used to reach a physical
08562 * address, for use by a driver doing memory I/O in the A0000 - DFFFF range.
08563 */
08564 *seg = FLAT_DS_SELECTOR;
08565 *off = phys;
08566 }

08568 /*===========================================================================*
08569 * int_gate *
08570 *===========================================================================*/
08571 PRIVATE void int_gate(vec_nr, offset, dpl_type)
08572 unsigned vec_nr;
08573 vir_bytes offset;
08574 unsigned dpl_type;
08575 {
08576 /* Build descriptor for an interrupt gate. */
08577 register struct gatedesc_s *idp;
08578
08579 idp = &idt[vec_nr];
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08580 idp->offset_low = offset;
08581 idp->selector = CS_SELECTOR;
08582 idp->p_dpl_type = dpl_type;
08583 idp->offset_high = offset >> OFFSET_HIGH_SHIFT;
08584 }

08586 /*===========================================================================*
08587 * enable_iop *
08588 *===========================================================================*/
08589 PUBLIC void enable_iop(pp)
08590 struct proc *pp;
08591 {
08592 /* Allow a user process to use I/O instructions. Change the I/O Permission
08593 * Level bits in the psw. These specify least-privileged Current Permission
08594 * Level allowed to execute I/O instructions. Users and servers have CPL 3.
08595 * You can’t have less privilege than that. Kernel has CPL 0, tasks CPL 1.
08596 */
08597 pp->p_reg.psw |= 0x3000;
08598 }

08600 /*===========================================================================*
08601 * alloc_segments *
08602 *===========================================================================*/
08603 PUBLIC void alloc_segments(rp)
08604 register struct proc *rp;
08605 {
08606 /* This is called at system initialization from main() and by do_newmap().
08607 * The code has a separate function because of all hardware-dependencies.
08608 * Note that IDLE is part of the kernel and gets TASK_PRIVILEGE here.
08609 */
08610 phys_bytes code_bytes;
08611 phys_bytes data_bytes;
08612 int privilege;
08613
08614 if (machine.protected) {
08615 data_bytes = (phys_bytes) (rp->p_memmap[S].mem_vir +
08616 rp->p_memmap[S].mem_len) << CLICK_SHIFT;
08617 if (rp->p_memmap[T].mem_len == 0)
08618 code_bytes = data_bytes; /* common I&D, poor protect */
08619 else
08620 code_bytes = (phys_bytes) rp->p_memmap[T].mem_len << CLICK_SHIFT;
08621 privilege = (iskernelp(rp)) ? TASK_PRIVILEGE : USER_PRIVILEGE;
08622 init_codeseg(&rp->p_ldt[CS_LDT_INDEX],
08623 (phys_bytes) rp->p_memmap[T].mem_phys << CLICK_SHIFT,
08624 code_bytes, privilege);
08625 init_dataseg(&rp->p_ldt[DS_LDT_INDEX],
08626 (phys_bytes) rp->p_memmap[D].mem_phys << CLICK_SHIFT,
08627 data_bytes, privilege);
08628 rp->p_reg.cs = (CS_LDT_INDEX * DESC_SIZE) | TI | privilege;
08629 rp->p_reg.gs =
08630 rp->p_reg.fs =
08631 rp->p_reg.ss =
08632 rp->p_reg.es =
08633 rp->p_reg.ds = (DS_LDT_INDEX*DESC_SIZE) | TI | privilege;
08634 } else {
08635 rp->p_reg.cs = click_to_hclick(rp->p_memmap[T].mem_phys);
08636 rp->p_reg.ss =
08637 rp->p_reg.es =
08638 rp->p_reg.ds = click_to_hclick(rp->p_memmap[D].mem_phys);
08639 }
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08640 }

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
kernel/klib.s

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

08700 #
08701 ! Chooses between the 8086 and 386 versions of the low level kernel code.
08702
08703 #include <minix/config.h>
08704 #if _WORD_SIZE == 2
08705 #include "klib88.s"
08706 #else
08707 #include "klib386.s"
08708 #endif

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
kernel/klib386.s

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

08800 #
08801 ! sections
08802
08803 .sect .text; .sect .rom; .sect .data; .sect .bss
08804
08805 #include <minix/config.h>
08806 #include <minix/const.h>
08807 #include "const.h"
08808 #include "sconst.h"
08809 #include "protect.h"
08810
08811 ! This file contains a number of assembly code utility routines needed by the
08812 ! kernel. They are:
08813
08814 .define _monitor ! exit Minix and return to the monitor
08815 .define _int86 ! let the monitor make an 8086 interrupt call
08816 .define _cp_mess ! copies messages from source to destination
08817 .define _exit ! dummy for library routines
08818 .define __exit ! dummy for library routines
08819 .define ___exit ! dummy for library routines
08820 .define ___main ! dummy for GCC
08821 .define _phys_insw ! transfer data from (disk controller) port to memory
08822 .define _phys_insb ! likewise byte by byte
08823 .define _phys_outsw ! transfer data from memory to (disk controller) port
08824 .define _phys_outsb ! likewise byte by byte
08825 .define _enable_irq ! enable an irq at the 8259 controller
08826 .define _disable_irq ! disable an irq
08827 .define _phys_copy ! copy data from anywhere to anywhere in memory
08828 .define _phys_memset ! write pattern anywhere in memory
08829 .define _mem_rdw ! copy one word from [segment:offset]
08830 .define _reset ! reset the system
08831 .define _idle_task ! task executed when there is no work
08832 .define _level0 ! call a function at level 0
08833 .define _read_tsc ! read the cycle counter (Pentium and up)
08834 .define _read_cpu_flags ! read the cpu flags
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08835
08836 ! The routines only guarantee to preserve the registers the C compiler
08837 ! expects to be preserved (ebx, esi, edi, ebp, esp, segment registers, and
08838 ! direction bit in the flags).
08839
08840 .sect .text
08841 !*===========================================================================*
08842 !* monitor *
08843 !*===========================================================================*
08844 ! PUBLIC void monitor();
08845 ! Return to the monitor.
08846
08847 _monitor:
08848 mov esp, (_mon_sp) ! restore monitor stack pointer
08849 o16 mov dx, SS_SELECTOR ! monitor data segment
08850 mov ds, dx
08851 mov es, dx
08852 mov fs, dx
08853 mov gs, dx
08854 mov ss, dx
08855 pop edi
08856 pop esi
08857 pop ebp
08858 o16 retf ! return to the monitor
08859
08860
08861 !*===========================================================================*
08862 !* int86 *
08863 !*===========================================================================*
08864 ! PUBLIC void int86();
08865 _int86:
08866 cmpb (_mon_return), 0 ! is the monitor there?
08867 jnz 0f
08868 movb ah, 0x01 ! an int 13 error seems appropriate
08869 movb (_reg86+ 0), ah ! reg86.w.f = 1 (set carry flag)
08870 movb (_reg86+13), ah ! reg86.b.ah = 0x01 = "invalid command"
08871 ret
08872 0: push ebp ! save C registers
08873 push esi
08874 push edi
08875 push ebx
08876 pushf ! save flags
08877 cli ! no interruptions
08878
08879 inb INT2_CTLMASK
08880 movb ah, al
08881 inb INT_CTLMASK
08882 push eax ! save interrupt masks
08883 mov eax, (_irq_use) ! map of in-use IRQ’s
08884 and eax, ˜[1<<CLOCK_IRQ] ! keep the clock ticking
08885 outb INT_CTLMASK ! enable all unused IRQ’s and vv.
08886 movb al, ah
08887 outb INT2_CTLMASK
08888
08889 mov eax, SS_SELECTOR ! monitor data segment
08890 mov ss, ax
08891 xchg esp, (_mon_sp) ! switch stacks
08892 push (_reg86+36) ! parameters used in INT call
08893 push (_reg86+32)
08894 push (_reg86+28)
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08895 push (_reg86+24)
08896 push (_reg86+20)
08897 push (_reg86+16)
08898 push (_reg86+12)
08899 push (_reg86+ 8)
08900 push (_reg86+ 4)
08901 push (_reg86+ 0)
08902 mov ds, ax ! remaining data selectors
08903 mov es, ax
08904 mov fs, ax
08905 mov gs, ax
08906 push cs
08907 push return ! kernel return address and selector
08908 o16 jmpf 20+2*4+10*4+2*4(esp) ! make the call
08909 return:
08910 pop (_reg86+ 0)
08911 pop (_reg86+ 4)
08912 pop (_reg86+ 8)
08913 pop (_reg86+12)
08914 pop (_reg86+16)
08915 pop (_reg86+20)
08916 pop (_reg86+24)
08917 pop (_reg86+28)
08918 pop (_reg86+32)
08919 pop (_reg86+36)
08920 lgdt (_gdt+GDT_SELECTOR) ! reload global descriptor table
08921 jmpf CS_SELECTOR:csinit ! restore everything
08922 csinit: mov eax, DS_SELECTOR
08923 mov ds, ax
08924 mov es, ax
08925 mov fs, ax
08926 mov gs, ax
08927 mov ss, ax
08928 xchg esp, (_mon_sp) ! unswitch stacks
08929 lidt (_gdt+IDT_SELECTOR) ! reload interrupt descriptor table
08930 andb (_gdt+TSS_SELECTOR+DESC_ACCESS), ˜0x02 ! clear TSS busy bit
08931 mov eax, TSS_SELECTOR
08932 ltr ax ! set TSS register
08933
08934 pop eax
08935 outb INT_CTLMASK ! restore interrupt masks
08936 movb al, ah
08937 outb INT2_CTLMASK
08938
08939 add (_lost_ticks), ecx ! record lost clock ticks
08940
08941 popf ! restore flags
08942 pop ebx ! restore C registers
08943 pop edi
08944 pop esi
08945 pop ebp
08946 ret
08947
08948
08949 !*===========================================================================*
08950 !* cp_mess *
08951 !*===========================================================================*
08952 ! PUBLIC void cp_mess(int src, phys_clicks src_clicks, vir_bytes src_offset,
08953 ! phys_clicks dst_clicks, vir_bytes dst_offset);
08954 ! This routine makes a fast copy of a message from anywhere in the address
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08955 ! space to anywhere else. It also copies the source address provided as a
08956 ! parameter to the call into the first word of the destination message.
08957 !
08958 ! Note that the message size, "Msize" is in DWORDS (not bytes) and must be set
08959 ! correctly. Changing the definition of message in the type file and not
08960 ! changing it here will lead to total disaster.
08961
08962 CM_ARGS = 4 + 4 + 4 + 4 + 4 ! 4 + 4 + 4 + 4 + 4
08963 ! es ds edi esi eip proc scl sof dcl dof
08964
08965 .align 16
08966 _cp_mess:
08967 cld
08968 push esi
08969 push edi
08970 push ds
08971 push es
08972
08973 mov eax, FLAT_DS_SELECTOR
08974 mov ds, ax
08975 mov es, ax
08976
08977 mov esi, CM_ARGS+4(esp) ! src clicks
08978 shl esi, CLICK_SHIFT
08979 add esi, CM_ARGS+4+4(esp) ! src offset
08980 mov edi, CM_ARGS+4+4+4(esp) ! dst clicks
08981 shl edi, CLICK_SHIFT
08982 add edi, CM_ARGS+4+4+4+4(esp) ! dst offset
08983
08984 mov eax, CM_ARGS(esp) ! process number of sender
08985 stos ! copy number of sender to dest message
08986 add esi, 4 ! do not copy first word
08987 mov ecx, Msize - 1 ! remember, first word does not count
08988 rep
08989 movs ! copy the message
08990
08991 pop es
08992 pop ds
08993 pop edi
08994 pop esi
08995 ret ! that is all folks!
08996
08997
08998 !*===========================================================================*
08999 !* exit *
09000 !*===========================================================================*
09001 ! PUBLIC void exit();
09002 ! Some library routines use exit, so provide a dummy version.
09003 ! Actual calls to exit cannot occur in the kernel.
09004 ! GNU CC likes to call ___main from main() for nonobvious reasons.
09005
09006 _exit:
09007 __exit:
09008 ___exit:
09009 sti
09010 jmp ___exit
09011
09012 ___main:
09013 ret
09014
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09015
09016 !*===========================================================================*
09017 !* phys_insw *
09018 !*===========================================================================*
09019 ! PUBLIC void phys_insw(Port_t port, phys_bytes buf, size_t count);
09020 ! Input an array from an I/O port. Absolute address version of insw().
09021
09022 _phys_insw:
09023 push ebp
09024 mov ebp, esp
09025 cld
09026 push edi
09027 push es
09028 mov ecx, FLAT_DS_SELECTOR
09029 mov es, cx
09030 mov edx, 8(ebp) ! port to read from
09031 mov edi, 12(ebp) ! destination addr
09032 mov ecx, 16(ebp) ! byte count
09033 shr ecx, 1 ! word count
09034 rep o16 ins ! input many words
09035 pop es
09036 pop edi
09037 pop ebp
09038 ret
09039
09040
09041 !*===========================================================================*
09042 !* phys_insb *
09043 !*===========================================================================*
09044 ! PUBLIC void phys_insb(Port_t port, phys_bytes buf, size_t count);
09045 ! Input an array from an I/O port. Absolute address version of insb().
09046
09047 _phys_insb:
09048 push ebp
09049 mov ebp, esp
09050 cld
09051 push edi
09052 push es
09053 mov ecx, FLAT_DS_SELECTOR
09054 mov es, cx
09055 mov edx, 8(ebp) ! port to read from
09056 mov edi, 12(ebp) ! destination addr
09057 mov ecx, 16(ebp) ! byte count
09058 ! shr ecx, 1 ! word count
09059 rep insb ! input many bytes
09060 pop es
09061 pop edi
09062 pop ebp
09063 ret
09064
09065
09066 !*===========================================================================*
09067 !* phys_outsw *
09068 !*===========================================================================*
09069 ! PUBLIC void phys_outsw(Port_t port, phys_bytes buf, size_t count);
09070 ! Output an array to an I/O port. Absolute address version of outsw().
09071
09072 .align 16
09073 _phys_outsw:
09074 push ebp
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09075 mov ebp, esp
09076 cld
09077 push esi
09078 push ds
09079 mov ecx, FLAT_DS_SELECTOR
09080 mov ds, cx
09081 mov edx, 8(ebp) ! port to write to
09082 mov esi, 12(ebp) ! source addr
09083 mov ecx, 16(ebp) ! byte count
09084 shr ecx, 1 ! word count
09085 rep o16 outs ! output many words
09086 pop ds
09087 pop esi
09088 pop ebp
09089 ret
09090
09091
09092 !*===========================================================================*
09093 !* phys_outsb *
09094 !*===========================================================================*
09095 ! PUBLIC void phys_outsb(Port_t port, phys_bytes buf, size_t count);
09096 ! Output an array to an I/O port. Absolute address version of outsb().
09097
09098 .align 16
09099 _phys_outsb:
09100 push ebp
09101 mov ebp, esp
09102 cld
09103 push esi
09104 push ds
09105 mov ecx, FLAT_DS_SELECTOR
09106 mov ds, cx
09107 mov edx, 8(ebp) ! port to write to
09108 mov esi, 12(ebp) ! source addr
09109 mov ecx, 16(ebp) ! byte count
09110 rep outsb ! output many bytes
09111 pop ds
09112 pop esi
09113 pop ebp
09114 ret
09115
09116
09117 !*==========================================================================*
09118 !* enable_irq *
09119 !*==========================================================================*/
09120 ! PUBLIC void enable_irq(irq_hook_t *hook)
09121 ! Enable an interrupt request line by clearing an 8259 bit.
09122 ! Equivalent C code for hook->irq < 8:
09123 ! if ((irq_actids[hook->irq] &= ˜hook->id) == 0)
09124 ! outb(INT_CTLMASK, inb(INT_CTLMASK) & ˜(1 << irq));
09125
09126 .align 16
09127 _enable_irq:
09128 push ebp
09129 mov ebp, esp
09130 pushf
09131 cli
09132 mov eax, 8(ebp) ! hook
09133 mov ecx, 8(eax) ! irq
09134 mov eax, 12(eax) ! id bit
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09135 not eax
09136 and _irq_actids(ecx*4), eax ! clear this id bit
09137 jnz en_done ! still masked by other handlers?
09138 movb ah, ˜1
09139 rolb ah, cl ! ah = ˜(1 << (irq % 8))
09140 mov edx, INT_CTLMASK ! enable irq < 8 at the master 8259
09141 cmpb cl, 8
09142 jb 0f
09143 mov edx, INT2_CTLMASK ! enable irq >= 8 at the slave 8259
09144 0: inb dx
09145 andb al, ah
09146 outb dx ! clear bit at the 8259
09147 en_done:popf
09148 leave
09149 ret
09150
09151
09152 !*==========================================================================*
09153 !* disable_irq *
09154 !*==========================================================================*/
09155 ! PUBLIC int disable_irq(irq_hook_t *hook)
09156 ! Disable an interrupt request line by setting an 8259 bit.
09157 ! Equivalent C code for irq < 8:
09158 ! irq_actids[hook->irq] |= hook->id;
09159 ! outb(INT_CTLMASK, inb(INT_CTLMASK) | (1 << irq));
09160 ! Returns true iff the interrupt was not already disabled.
09161
09162 .align 16
09163 _disable_irq:
09164 push ebp
09165 mov ebp, esp
09166 pushf
09167 cli
09168 mov eax, 8(ebp) ! hook
09169 mov ecx, 8(eax) ! irq
09170 mov eax, 12(eax) ! id bit
09171 or _irq_actids(ecx*4), eax ! set this id bit
09172 movb ah, 1
09173 rolb ah, cl ! ah = (1 << (irq % 8))
09174 mov edx, INT_CTLMASK ! disable irq < 8 at the master 8259
09175 cmpb cl, 8
09176 jb 0f
09177 mov edx, INT2_CTLMASK ! disable irq >= 8 at the slave 8259
09178 0: inb dx
09179 testb al, ah
09180 jnz dis_already ! already disabled?
09181 orb al, ah
09182 outb dx ! set bit at the 8259
09183 mov eax, 1 ! disabled by this function
09184 popf
09185 leave
09186 ret
09187 dis_already:
09188 xor eax, eax ! already disabled
09189 popf
09190 leave
09191 ret
09192
09193
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09194 !*===========================================================================*
09195 !* phys_copy *
09196 !*===========================================================================*
09197 ! PUBLIC void phys_copy(phys_bytes source, phys_bytes destination,
09198 ! phys_bytes bytecount);
09199 ! Copy a block of physical memory.
09200
09201 PC_ARGS = 4 + 4 + 4 + 4 ! 4 + 4 + 4
09202 ! es edi esi eip src dst len
09203
09204 .align 16
09205 _phys_copy:
09206 cld
09207 push esi
09208 push edi
09209 push es
09210
09211 mov eax, FLAT_DS_SELECTOR
09212 mov es, ax
09213
09214 mov esi, PC_ARGS(esp)
09215 mov edi, PC_ARGS+4(esp)
09216 mov eax, PC_ARGS+4+4(esp)
09217
09218 cmp eax, 10 ! avoid align overhead for small counts
09219 jb pc_small
09220 mov ecx, esi ! align source, hope target is too
09221 neg ecx
09222 and ecx, 3 ! count for alignment
09223 sub eax, ecx
09224 rep
09225 eseg movsb
09226 mov ecx, eax
09227 shr ecx, 2 ! count of dwords
09228 rep
09229 eseg movs
09230 and eax, 3
09231 pc_small:
09232 xchg ecx, eax ! remainder
09233 rep
09234 eseg movsb
09235
09236 pop es
09237 pop edi
09238 pop esi
09239 ret
09240
09241 !*===========================================================================*
09242 !* phys_memset *
09243 !*===========================================================================*
09244 ! PUBLIC void phys_memset(phys_bytes source, unsigned long pattern,
09245 ! phys_bytes bytecount);
09246 ! Fill a block of physical memory with pattern.
09247
09248 .align 16
09249 _phys_memset:
09250 push ebp
09251 mov ebp, esp
09252 push esi
09253 push ebx



750 File: kernel/klib386.s MINIX SOURCE CODE

09254 push ds
09255 mov esi, 8(ebp)
09256 mov eax, 16(ebp)
09257 mov ebx, FLAT_DS_SELECTOR
09258 mov ds, bx
09259 mov ebx, 12(ebp)
09260 shr eax, 2
09261 fill_start:
09262 mov (esi), ebx
09263 add esi, 4
09264 dec eax
09265 jnz fill_start
09266 ! Any remaining bytes?
09267 mov eax, 16(ebp)
09268 and eax, 3
09269 remain_fill:
09270 cmp eax, 0
09271 jz fill_done
09272 movb bl, 12(ebp)
09273 movb (esi), bl
09274 add esi, 1
09275 inc ebp
09276 dec eax
09277 jmp remain_fill
09278 fill_done:
09279 pop ds
09280 pop ebx
09281 pop esi
09282 pop ebp
09283 ret
09284
09285 !*===========================================================================*
09286 !* mem_rdw *
09287 !*===========================================================================*
09288 ! PUBLIC u16_t mem_rdw(U16_t segment, u16_t *offset);
09289 ! Load and return word at far pointer segment:offset.
09290
09291 .align 16
09292 _mem_rdw:
09293 mov cx, ds
09294 mov ds, 4(esp) ! segment
09295 mov eax, 4+4(esp) ! offset
09296 movzx eax, (eax) ! word to return
09297 mov ds, cx
09298 ret
09299
09300
09301 !*===========================================================================*
09302 !* reset *
09303 !*===========================================================================*
09304 ! PUBLIC void reset();
09305 ! Reset the system by loading IDT with offset 0 and interrupting.
09306
09307 _reset:
09308 lidt (idt_zero)
09309 int 3 ! anything goes, the 386 will not like it
09310 .sect .data
09311 idt_zero: .data4 0, 0
09312 .sect .text
09313
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09314
09315 !*===========================================================================*
09316 !* idle_task *
09317 !*===========================================================================*
09318 _idle_task:
09319 ! This task is called when the system has nothing else to do. The HLT
09320 ! instruction puts the processor in a state where it draws minimum power.
09321 push halt
09322 call _level0 ! level0(halt)
09323 pop eax
09324 jmp _idle_task
09325 halt:
09326 sti
09327 hlt
09328 cli
09329 ret
09330
09331 !*===========================================================================*
09332 !* level0 *
09333 !*===========================================================================*
09334 ! PUBLIC void level0(void (*func)(void))
09335 ! Call a function at permission level 0. This allows kernel tasks to do
09336 ! things that are only possible at the most privileged CPU level.
09337 !
09338 _level0:
09339 mov eax, 4(esp)
09340 mov (_level0_func), eax
09341 int LEVEL0_VECTOR
09342 ret
09343
09344
09345 !*===========================================================================*
09346 !* read_tsc *
09347 !*===========================================================================*
09348 ! PUBLIC void read_tsc(unsigned long *high, unsigned long *low);
09349 ! Read the cycle counter of the CPU. Pentium and up.
09350 .align 16
09351 _read_tsc:
09352 .data1 0x0f ! this is the RDTSC instruction
09353 .data1 0x31 ! it places the TSC in EDX:EAX
09354 push ebp
09355 mov ebp, 8(esp)
09356 mov (ebp), edx
09357 mov ebp, 12(esp)
09358 mov (ebp), eax
09359 pop ebp
09360 ret
09361
09362 !*===========================================================================*
09363 !* read_flags *
09364 !*===========================================================================*
09365 ! PUBLIC unsigned long read_cpu_flags(void);
09366 ! Read CPU status flags from C.
09367 .align 16
09368 _read_cpu_flags:
09369 pushf
09370 mov eax, (esp)
09371 popf
09372 ret
09373
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++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
kernel/utility.c

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

09400 /* This file contains a collection of miscellaneous procedures:
09401 * panic: abort MINIX due to a fatal error
09402 * kprintf: diagnostic output for the kernel
09403 *
09404 * Changes:
09405 * Dec 10, 2004 kernel printing to circular buffer (Jorrit N. Herder)
09406 *
09407 * This file contains the routines that take care of kernel messages, i.e.,
09408 * diagnostic output within the kernel. Kernel messages are not directly
09409 * displayed on the console, because this must be done by the output driver.
09410 * Instead, the kernel accumulates characters in a buffer and notifies the
09411 * output driver when a new message is ready.
09412 */
09413
09414 #include <minix/com.h>
09415 #include "kernel.h"
09416 #include <stdarg.h>
09417 #include <unistd.h>
09418 #include <stddef.h>
09419 #include <stdlib.h>
09420 #include <signal.h>
09421 #include "proc.h"
09422
09423 #define END_OF_KMESS -1
09424 FORWARD _PROTOTYPE(void kputc, (int c));
09425
09426 /*===========================================================================*
09427 * panic *
09428 *===========================================================================*/
09429 PUBLIC void panic(mess,nr)
09430 _CONST char *mess;
09431 int nr;
09432 {
09433 /* The system has run aground of a fatal kernel error. Terminate execution. */
09434 static int panicking = 0;
09435 if (panicking ++) return; /* prevent recursive panics */
09436
09437 if (mess != NULL) {
09438 kprintf("\nKernel panic: %s", mess);
09439 if (nr != NO_NUM) kprintf(" %d", nr);
09440 kprintf("\n",NO_NUM);
09441 }
09442
09443 /* Abort MINIX. */
09444 prepare_shutdown(RBT_PANIC);
09445 }

09447 /*===========================================================================*
09448 * kprintf *
09449 *===========================================================================*/
09450 PUBLIC void kprintf(const char *fmt, ...) /* format to be printed */
09451 {
09452 int c; /* next character in fmt */
09453 int d;
09454 unsigned long u; /* hold number argument */
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09455 int base; /* base of number arg */
09456 int negative = 0; /* print minus sign */
09457 static char x2c[] = "0123456789ABCDEF"; /* nr conversion table */
09458 char ascii[8 * sizeof(long) / 3 + 2]; /* string for ascii number */
09459 char *s = NULL; /* string to be printed */
09460 va_list argp; /* optional arguments */
09461
09462 va_start(argp, fmt); /* init variable arguments */
09463
09464 while((c=*fmt++) != 0) {
09465
09466 if (c == ’%’) { /* expect format ’%key’ */
09467 switch(c = *fmt++) { /* determine what to do */
09468
09469 /* Known keys are %d, %u, %x, %s, and %%. This is easily extended
09470 * with number types like %b and %o by providing a different base.
09471 * Number type keys don’t set a string to ’s’, but use the general
09472 * conversion after the switch statement.
09473 */
09474 case ’d’: /* output decimal */
09475 d = va_arg(argp, signed int);
09476 if (d < 0) { negative = 1; u = -d; } else { u = d; }
09477 base = 10;
09478 break;
09479 case ’u’: /* output unsigned long */
09480 u = va_arg(argp, unsigned long);
09481 base = 10;
09482 break;
09483 case ’x’: /* output hexadecimal */
09484 u = va_arg(argp, unsigned long);
09485 base = 0x10;
09486 break;
09487 case ’s’: /* output string */
09488 s = va_arg(argp, char *);
09489 if (s == NULL) s = "(null)";
09490 break;
09491 case ’%’: /* output percent */
09492 s = "%";
09493 break;
09494
09495 /* Unrecognized key. */
09496 default: /* echo back %key */
09497 s = "%?";
09498 s[1] = c; /* set unknown key */
09499 }
09500
09501 /* Assume a number if no string is set. Convert to ascii. */
09502 if (s == NULL) {
09503 s = ascii + sizeof(ascii)-1;
09504 *s = 0;
09505 do { *--s = x2c[(u % base)]; } /* work backwards */
09506 while ((u /= base) > 0);
09507 }
09508
09509 /* This is where the actual output for format "%key" is done. */
09510 if (negative) kputc(’-’); /* print sign if negative */
09511 while(*s != 0) { kputc(*s++); } /* print string/ number */
09512 s = NULL; /* reset for next round */
09513 }
09514 else {
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09515 kputc(c); /* print and continue */
09516 }
09517 }
09518 kputc(END_OF_KMESS); /* terminate output */
09519 va_end(argp); /* end variable arguments */
09520 }

09522 /*===========================================================================*
09523 * kputc *
09524 *===========================================================================*/
09525 PRIVATE void kputc(c)
09526 int c; /* character to append */
09527 {
09528 /* Accumulate a single character for a kernel message. Send a notification
09529 * to the output driver if an END_OF_KMESS is encountered.
09530 */
09531 if (c != END_OF_KMESS) {
09532 kmess.km_buf[kmess.km_next] = c; /* put normal char in buffer */
09533 if (kmess.km_size < KMESS_BUF_SIZE)
09534 kmess.km_size += 1;
09535 kmess.km_next = (kmess.km_next + 1) % KMESS_BUF_SIZE;
09536 } else {
09537 send_sig(OUTPUT_PROC_NR, SIGKMESS);
09538 }
09539 }

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
kernel/system.h

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

09600 /* Function prototypes for the system library.
09601 * The implementation is contained in src/kernel/system/.
09602 *
09603 * The system library allows access to system services by doing a kernel call.
09604 * Kernel calls are transformed into request messages to the SYS task that is
09605 * responsible for handling the call. By convention, sys_call() is transformed
09606 * into a message with type SYS_CALL that is handled in a function do_call().
09607 */
09608
09609 #ifndef SYSTEM_H
09610 #define SYSTEM_H
09611
09612 /* Common includes for the system library. */
09613 #include "kernel.h"
09614 #include "proto.h"
09615 #include "proc.h"
09616
09617 /* Default handler for unused kernel calls. */
09618 _PROTOTYPE( int do_unused, (message *m_ptr) );
09619 _PROTOTYPE( int do_exec, (message *m_ptr) );
09620 _PROTOTYPE( int do_fork, (message *m_ptr) );
09621 _PROTOTYPE( int do_newmap, (message *m_ptr) );
09622 _PROTOTYPE( int do_exit, (message *m_ptr) );
09623 _PROTOTYPE( int do_trace, (message *m_ptr) );
09624 _PROTOTYPE( int do_nice, (message *m_ptr) );
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09625 _PROTOTYPE( int do_copy, (message *m_ptr) );
09626 #define do_vircopy do_copy
09627 #define do_physcopy do_copy
09628 _PROTOTYPE( int do_vcopy, (message *m_ptr) );
09629 #define do_virvcopy do_vcopy
09630 #define do_physvcopy do_vcopy
09631 _PROTOTYPE( int do_umap, (message *m_ptr) );
09632 _PROTOTYPE( int do_memset, (message *m_ptr) );
09633 _PROTOTYPE( int do_abort, (message *m_ptr) );
09634 _PROTOTYPE( int do_getinfo, (message *m_ptr) );
09635 _PROTOTYPE( int do_privctl, (message *m_ptr) );
09636 _PROTOTYPE( int do_segctl, (message *m_ptr) );
09637 _PROTOTYPE( int do_irqctl, (message *m_ptr) );
09638 _PROTOTYPE( int do_devio, (message *m_ptr) );
09639 _PROTOTYPE( int do_vdevio, (message *m_ptr) );
09640 _PROTOTYPE( int do_int86, (message *m_ptr) );
09641 _PROTOTYPE( int do_sdevio, (message *m_ptr) );
09642 _PROTOTYPE( int do_kill, (message *m_ptr) );
09643 _PROTOTYPE( int do_getksig, (message *m_ptr) );
09644 _PROTOTYPE( int do_endksig, (message *m_ptr) );
09645 _PROTOTYPE( int do_sigsend, (message *m_ptr) );
09646 _PROTOTYPE( int do_sigreturn, (message *m_ptr) );
09647 _PROTOTYPE( int do_times, (message *m_ptr) );
09648 _PROTOTYPE( int do_setalarm, (message *m_ptr) );
09649
09650 #endif /* SYSTEM_H */
09651
09652
09653

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
kernel/system.c

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

09700 /* This task provides an interface between the kernel and user-space system
09701 * processes. System services can be accessed by doing a kernel call. Kernel
09702 * calls are transformed into request messages, which are handled by this
09703 * task. By convention, a sys_call() is transformed in a SYS_CALL request
09704 * message that is handled in a function named do_call().
09705 *
09706 * A private call vector is used to map all kernel calls to the functions that
09707 * handle them. The actual handler functions are contained in separate files
09708 * to keep this file clean. The call vector is used in the system task’s main
09709 * loop to handle all incoming requests.
09710 *
09711 * In addition to the main sys_task() entry point, which starts the main loop,
09712 * there are several other minor entry points:
09713 * get_priv: assign privilege structure to user or system process
09714 * send_sig: send a signal directly to a system process
09715 * cause_sig: take action to cause a signal to occur via PM
09716 * umap_local: map virtual address in LOCAL_SEG to physical
09717 * umap_remote: map virtual address in REMOTE_SEG to physical
09718 * umap_bios: map virtual address in BIOS_SEG to physical
09719 * virtual_copy: copy bytes from one virtual address to another
09720 * get_randomness: accumulate randomness in a buffer
09721 *
09722 * Changes:
09723 * Aug 04, 2005 check if kernel call is allowed (Jorrit N. Herder)
09724 * Jul 20, 2005 send signal to services with message (Jorrit N. Herder)
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09725 * Jan 15, 2005 new, generalized virtual copy function (Jorrit N. Herder)
09726 * Oct 10, 2004 dispatch system calls from call vector (Jorrit N. Herder)
09727 * Sep 30, 2004 source code documentation updated (Jorrit N. Herder)
09728 */
09729
09730 #include "kernel.h"
09731 #include "system.h"
09732 #include <stdlib.h>
09733 #include <signal.h>
09734 #include <unistd.h>
09735 #include <sys/sigcontext.h>
09736 #include <ibm/memory.h>
09737 #include "protect.h"
09738
09739 /* Declaration of the call vector that defines the mapping of kernel calls
09740 * to handler functions. The vector is initialized in sys_init() with map(),
09741 * which makes sure the kernel call numbers are ok. No space is allocated,
09742 * because the dummy is declared extern. If an illegal call is given, the
09743 * array size will be negative and this won’t compile.
09744 */
09745 PUBLIC int (*call_vec[NR_SYS_CALLS])(message *m_ptr);
09746
09747 #define map(call_nr, handler) \
09748 {extern int dummy[NR_SYS_CALLS>(unsigned)(call_nr-KERNEL_CALL) ? 1:-1];} \
09749 call_vec[(call_nr-KERNEL_CALL)] = (handler)
09750
09751 FORWARD _PROTOTYPE( void initialize, (void));
09752
09753 /*===========================================================================*
09754 * sys_task *
09755 *===========================================================================*/
09756 PUBLIC void sys_task()
09757 {
09758 /* Main entry point of sys_task. Get the message and dispatch on type. */
09759 static message m;
09760 register int result;
09761 register struct proc *caller_ptr;
09762 unsigned int call_nr;
09763 int s;
09764
09765 /* Initialize the system task. */
09766 initialize();
09767
09768 while (TRUE) {
09769 /* Get work. Block and wait until a request message arrives. */
09770 receive(ANY, &m);
09771 call_nr = (unsigned) m.m_type - KERNEL_CALL;
09772 caller_ptr = proc_addr(m.m_source);
09773
09774 /* See if the caller made a valid request and try to handle it. */
09775 if (! (priv(caller_ptr)->s_call_mask & (1<<call_nr))) {
09776 kprintf("SYSTEM: request %d from %d denied.\n", call_nr,m.m_source);
09777 result = ECALLDENIED; /* illegal message type */
09778 } else if (call_nr >= NR_SYS_CALLS) { /* check call number */
09779 kprintf("SYSTEM: illegal request %d from %d.\n", call_nr,m.m_source);
09780 result = EBADREQUEST; /* illegal message type */
09781 }
09782 else {
09783 result = (*call_vec[call_nr])(&m); /* handle the kernel call */
09784 }
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09785
09786 /* Send a reply, unless inhibited by a handler function. Use the kernel
09787 * function lock_send() to prevent a system call trap. The destination
09788 * is known to be blocked waiting for a message.
09789 */
09790 if (result != EDONTREPLY) {
09791 m.m_type = result; /* report status of call */
09792 if (OK != (s=lock_send(m.m_source, &m))) {
09793 kprintf("SYSTEM, reply to %d failed: %d\n", m.m_source, s);
09794 }
09795 }
09796 }
09797 }

09799 /*===========================================================================*
09800 * initialize *
09801 *===========================================================================*/
09802 PRIVATE void initialize(void)
09803 {
09804 register struct priv *sp;
09805 int i;
09806
09807 /* Initialize IRQ handler hooks. Mark all hooks available. */
09808 for (i=0; i<NR_IRQ_HOOKS; i++) {
09809 irq_hooks[i].proc_nr = NONE;
09810 }
09811
09812 /* Initialize all alarm timers for all processes. */
09813 for (sp=BEG_PRIV_ADDR; sp < END_PRIV_ADDR; sp++) {
09814 tmr_inittimer(&(sp->s_alarm_timer));
09815 }
09816
09817 /* Initialize the call vector to a safe default handler. Some kernel calls
09818 * may be disabled or nonexistant. Then explicitly map known calls to their
09819 * handler functions. This is done with a macro that gives a compile error
09820 * if an illegal call number is used. The ordering is not important here.
09821 */
09822 for (i=0; i<NR_SYS_CALLS; i++) {
09823 call_vec[i] = do_unused;
09824 }
09825
09826 /* Process management. */
09827 map(SYS_FORK, do_fork); /* a process forked a new process */
09828 map(SYS_EXEC, do_exec); /* update process after execute */
09829 map(SYS_EXIT, do_exit); /* clean up after process exit */
09830 map(SYS_NICE, do_nice); /* set scheduling priority */
09831 map(SYS_PRIVCTL, do_privctl); /* system privileges control */
09832 map(SYS_TRACE, do_trace); /* request a trace operation */
09833
09834 /* Signal handling. */
09835 map(SYS_KILL, do_kill); /* cause a process to be signaled */
09836 map(SYS_GETKSIG, do_getksig); /* PM checks for pending signals */
09837 map(SYS_ENDKSIG, do_endksig); /* PM finished processing signal */
09838 map(SYS_SIGSEND, do_sigsend); /* start POSIX-style signal */
09839 map(SYS_SIGRETURN, do_sigreturn); /* return from POSIX-style signal */
09840
09841 /* Device I/O. */
09842 map(SYS_IRQCTL, do_irqctl); /* interrupt control operations */
09843 map(SYS_DEVIO, do_devio); /* inb, inw, inl, outb, outw, outl */
09844 map(SYS_SDEVIO, do_sdevio); /* phys_insb, _insw, _outsb, _outsw */
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09845 map(SYS_VDEVIO, do_vdevio); /* vector with devio requests */
09846 map(SYS_INT86, do_int86); /* real-mode BIOS calls */
09847
09848 /* Memory management. */
09849 map(SYS_NEWMAP, do_newmap); /* set up a process memory map */
09850 map(SYS_SEGCTL, do_segctl); /* add segment and get selector */
09851 map(SYS_MEMSET, do_memset); /* write char to memory area */
09852
09853 /* Copying. */
09854 map(SYS_UMAP, do_umap); /* map virtual to physical address */
09855 map(SYS_VIRCOPY, do_vircopy); /* use pure virtual addressing */
09856 map(SYS_PHYSCOPY, do_physcopy); /* use physical addressing */
09857 map(SYS_VIRVCOPY, do_virvcopy); /* vector with copy requests */
09858 map(SYS_PHYSVCOPY, do_physvcopy); /* vector with copy requests */
09859
09860 /* Clock functionality. */
09861 map(SYS_TIMES, do_times); /* get uptime and process times */
09862 map(SYS_SETALARM, do_setalarm); /* schedule a synchronous alarm */
09863
09864 /* System control. */
09865 map(SYS_ABORT, do_abort); /* abort MINIX */
09866 map(SYS_GETINFO, do_getinfo); /* request system information */
09867 }

09869 /*===========================================================================*
09870 * get_priv *
09871 *===========================================================================*/
09872 PUBLIC int get_priv(rc, proc_type)
09873 register struct proc *rc; /* new (child) process pointer */
09874 int proc_type; /* system or user process flag */
09875 {
09876 /* Get a privilege structure. All user processes share the same privilege
09877 * structure. System processes get their own privilege structure.
09878 */
09879 register struct priv *sp; /* privilege structure */
09880
09881 if (proc_type == SYS_PROC) { /* find a new slot */
09882 for (sp = BEG_PRIV_ADDR; sp < END_PRIV_ADDR; ++sp)
09883 if (sp->s_proc_nr == NONE && sp->s_id != USER_PRIV_ID) break;
09884 if (sp->s_proc_nr != NONE) return(ENOSPC);
09885 rc->p_priv = sp; /* assign new slot */
09886 rc->p_priv->s_proc_nr = proc_nr(rc); /* set association */
09887 rc->p_priv->s_flags = SYS_PROC; /* mark as privileged */
09888 } else {
09889 rc->p_priv = &priv[USER_PRIV_ID]; /* use shared slot */
09890 rc->p_priv->s_proc_nr = INIT_PROC_NR; /* set association */
09891 rc->p_priv->s_flags = 0; /* no initial flags */
09892 }
09893 return(OK);
09894 }

09896 /*===========================================================================*
09897 * get_randomness *
09898 *===========================================================================*/
09899 PUBLIC void get_randomness(source)
09900 int source;
09901 {
09902 /* On machines with the RDTSC (cycle counter read instruction - pentium
09903 * and up), use that for high-resolution raw entropy gathering. Otherwise,
09904 * use the realtime clock (tick resolution).
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09905 *
09906 * Unfortunately this test is run-time - we don’t want to bother with
09907 * compiling different kernels for different machines.
09908 *
09909 * On machines without RDTSC, we use read_clock().
09910 */
09911 int r_next;
09912 unsigned long tsc_high, tsc_low;
09913
09914 source %= RANDOM_SOURCES;
09915 r_next= krandom.bin[source].r_next;
09916 if (machine.processor > 486) {
09917 read_tsc(&tsc_high, &tsc_low);
09918 krandom.bin[source].r_buf[r_next] = tsc_low;
09919 } else {
09920 krandom.bin[source].r_buf[r_next] = read_clock();
09921 }
09922 if (krandom.bin[source].r_size < RANDOM_ELEMENTS) {
09923 krandom.bin[source].r_size ++;
09924 }
09925 krandom.bin[source].r_next = (r_next + 1 ) % RANDOM_ELEMENTS;
09926 }

09928 /*===========================================================================*
09929 * send_sig *
09930 *===========================================================================*/
09931 PUBLIC void send_sig(proc_nr, sig_nr)
09932 int proc_nr; /* system process to be signalled */
09933 int sig_nr; /* signal to be sent, 1 to _NSIG */
09934 {
09935 /* Notify a system process about a signal. This is straightforward. Simply
09936 * set the signal that is to be delivered in the pending signals map and
09937 * send a notification with source SYSTEM.
09938 */
09939 register struct proc *rp;
09940
09941 rp = proc_addr(proc_nr);
09942 sigaddset(&priv(rp)->s_sig_pending, sig_nr);
09943 lock_notify(SYSTEM, proc_nr);
09944 }

09946 /*===========================================================================*
09947 * cause_sig *
09948 *===========================================================================*/
09949 PUBLIC void cause_sig(proc_nr, sig_nr)
09950 int proc_nr; /* process to be signalled */
09951 int sig_nr; /* signal to be sent, 1 to _NSIG */
09952 {
09953 /* A system process wants to send a signal to a process. Examples are:
09954 * - HARDWARE wanting to cause a SIGSEGV after a CPU exception
09955 * - TTY wanting to cause SIGINT upon getting a DEL
09956 * - FS wanting to cause SIGPIPE for a broken pipe
09957 * Signals are handled by sending a message to PM. This function handles the
09958 * signals and makes sure the PM gets them by sending a notification. The
09959 * process being signaled is blocked while PM has not finished all signals
09960 * for it.
09961 * Race conditions between calls to this function and the system calls that
09962 * process pending kernel signals cannot exist. Signal related functions are
09963 * only called when a user process causes a CPU exception and from the kernel
09964 * process level, which runs to completion.
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09965 */
09966 register struct proc *rp;
09967
09968 /* Check if the signal is already pending. Process it otherwise. */
09969 rp = proc_addr(proc_nr);
09970 if (! sigismember(&rp->p_pending, sig_nr)) {
09971 sigaddset(&rp->p_pending, sig_nr);
09972 if (! (rp->p_rts_flags & SIGNALED)) { /* other pending */
09973 if (rp->p_rts_flags == 0) lock_dequeue(rp); /* make not ready */
09974 rp->p_rts_flags |= SIGNALED | SIG_PENDING; /* update flags */
09975 send_sig(PM_PROC_NR, SIGKSIG);
09976 }
09977 }
09978 }

09980 /*===========================================================================*
09981 * umap_local *
09982 *===========================================================================*/
09983 PUBLIC phys_bytes umap_local(rp, seg, vir_addr, bytes)
09984 register struct proc *rp; /* pointer to proc table entry for process */
09985 int seg; /* T, D, or S segment */
09986 vir_bytes vir_addr; /* virtual address in bytes within the seg */
09987 vir_bytes bytes; /* # of bytes to be copied */
09988 {
09989 /* Calculate the physical memory address for a given virtual address. */
09990 vir_clicks vc; /* the virtual address in clicks */
09991 phys_bytes pa; /* intermediate variables as phys_bytes */
09992 phys_bytes seg_base;
09993
09994 /* If ’seg’ is D it could really be S and vice versa. T really means T.
09995 * If the virtual address falls in the gap, it causes a problem. On the
09996 * 8088 it is probably a legal stack reference, since "stackfaults" are
09997 * not detected by the hardware. On 8088s, the gap is called S and
09998 * accepted, but on other machines it is called D and rejected.
09999 * The Atari ST behaves like the 8088 in this respect.
10000 */
10001
10002 if (bytes <= 0) return( (phys_bytes) 0);
10003 if (vir_addr + bytes <= vir_addr) return 0; /* overflow */
10004 vc = (vir_addr + bytes - 1) >> CLICK_SHIFT; /* last click of data */
10005
10006 if (seg != T)
10007 seg = (vc < rp->p_memmap[D].mem_vir + rp->p_memmap[D].mem_len ? D : S);
10008
10009 if ((vir_addr>>CLICK_SHIFT) >= rp->p_memmap[seg].mem_vir +
10010 rp->p_memmap[seg].mem_len) return( (phys_bytes) 0 );
10011
10012 if (vc >= rp->p_memmap[seg].mem_vir +
10013 rp->p_memmap[seg].mem_len) return( (phys_bytes) 0 );
10014
10015 seg_base = (phys_bytes) rp->p_memmap[seg].mem_phys;
10016 seg_base = seg_base << CLICK_SHIFT; /* segment origin in bytes */
10017 pa = (phys_bytes) vir_addr;
10018 pa -= rp->p_memmap[seg].mem_vir << CLICK_SHIFT;
10019 return(seg_base + pa);
10020 }
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10022 /*===========================================================================*
10023 * umap_remote *
10024 *===========================================================================*/
10025 PUBLIC phys_bytes umap_remote(rp, seg, vir_addr, bytes)
10026 register struct proc *rp; /* pointer to proc table entry for process */
10027 int seg; /* index of remote segment */
10028 vir_bytes vir_addr; /* virtual address in bytes within the seg */
10029 vir_bytes bytes; /* # of bytes to be copied */
10030 {
10031 /* Calculate the physical memory address for a given virtual address. */
10032 struct far_mem *fm;
10033
10034 if (bytes <= 0) return( (phys_bytes) 0);
10035 if (seg < 0 || seg >= NR_REMOTE_SEGS) return( (phys_bytes) 0);
10036
10037 fm = &rp->p_priv->s_farmem[seg];
10038 if (! fm->in_use) return( (phys_bytes) 0);
10039 if (vir_addr + bytes > fm->mem_len) return( (phys_bytes) 0);
10040
10041 return(fm->mem_phys + (phys_bytes) vir_addr);
10042 }

10044 /*===========================================================================*
10045 * umap_bios *
10046 *===========================================================================*/
10047 PUBLIC phys_bytes umap_bios(rp, vir_addr, bytes)
10048 register struct proc *rp; /* pointer to proc table entry for process */
10049 vir_bytes vir_addr; /* virtual address in BIOS segment */
10050 vir_bytes bytes; /* # of bytes to be copied */
10051 {
10052 /* Calculate the physical memory address at the BIOS. Note: currently, BIOS
10053 * address zero (the first BIOS interrupt vector) is not considered as an
10054 * error here, but since the physical address will be zero as well, the
10055 * calling function will think an error occurred. This is not a problem,
10056 * since no one uses the first BIOS interrupt vector.
10057 */
10058
10059 /* Check all acceptable ranges. */
10060 if (vir_addr >= BIOS_MEM_BEGIN && vir_addr + bytes <= BIOS_MEM_END)
10061 return (phys_bytes) vir_addr;
10062 else if (vir_addr >= BASE_MEM_TOP && vir_addr + bytes <= UPPER_MEM_END)
10063 return (phys_bytes) vir_addr;
10064 kprintf("Warning, error in umap_bios, virtual address 0x%x\n", vir_addr);
10065 return 0;
10066 }

10068 /*===========================================================================*
10069 * virtual_copy *
10070 *===========================================================================*/
10071 PUBLIC int virtual_copy(src_addr, dst_addr, bytes)
10072 struct vir_addr *src_addr; /* source virtual address */
10073 struct vir_addr *dst_addr; /* destination virtual address */
10074 vir_bytes bytes; /* # of bytes to copy */
10075 {
10076 /* Copy bytes from virtual address src_addr to virtual address dst_addr.
10077 * Virtual addresses can be in ABS, LOCAL_SEG, REMOTE_SEG, or BIOS_SEG.
10078 */
10079 struct vir_addr *vir_addr[2]; /* virtual source and destination address */
10080 phys_bytes phys_addr[2]; /* absolute source and destination */
10081 int seg_index;
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10082 int i;
10083
10084 /* Check copy count. */
10085 if (bytes <= 0) return(EDOM);
10086
10087 /* Do some more checks and map virtual addresses to physical addresses. */
10088 vir_addr[_SRC_] = src_addr;
10089 vir_addr[_DST_] = dst_addr;
10090 for (i=_SRC_; i<=_DST_; i++) {
10091
10092 /* Get physical address. */
10093 switch((vir_addr[i]->segment & SEGMENT_TYPE)) {
10094 case LOCAL_SEG:
10095 seg_index = vir_addr[i]->segment & SEGMENT_INDEX;
10096 phys_addr[i] = umap_local( proc_addr(vir_addr[i]->proc_nr),
10097 seg_index, vir_addr[i]->offset, bytes );
10098 break;
10099 case REMOTE_SEG:
10100 seg_index = vir_addr[i]->segment & SEGMENT_INDEX;
10101 phys_addr[i] = umap_remote( proc_addr(vir_addr[i]->proc_nr),
10102 seg_index, vir_addr[i]->offset, bytes );
10103 break;
10104 case BIOS_SEG:
10105 phys_addr[i] = umap_bios( proc_addr(vir_addr[i]->proc_nr),
10106 vir_addr[i]->offset, bytes );
10107 break;
10108 case PHYS_SEG:
10109 phys_addr[i] = vir_addr[i]->offset;
10110 break;
10111 default:
10112 return(EINVAL);
10113 }
10114
10115 /* Check if mapping succeeded. */
10116 if (phys_addr[i] <= 0 && vir_addr[i]->segment != PHYS_SEG)
10117 return(EFAULT);
10118 }
10119
10120 /* Now copy bytes between physical addresseses. */
10121 phys_copy(phys_addr[_SRC_], phys_addr[_DST_], (phys_bytes) bytes);
10122 return(OK);
10123 }

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
kernel/system/do_setalarm.c

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

10200 /* The kernel call implemented in this file:
10201 * m_type: SYS_SETALARM
10202 *
10203 * The parameters for this kernel call are:
10204 * m2_l1: ALRM_EXP_TIME (alarm’s expiration time)
10205 * m2_i2: ALRM_ABS_TIME (expiration time is absolute?)
10206 * m2_l1: ALRM_TIME_LEFT (return seconds left of previous)
10207 */
10208
10209 #include "../system.h"
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10210
10211 #if USE_SETALARM
10212
10213 FORWARD _PROTOTYPE( void cause_alarm, (timer_t *tp) );
10214
10215 /*===========================================================================*
10216 * do_setalarm *
10217 *===========================================================================*/
10218 PUBLIC int do_setalarm(m_ptr)
10219 message *m_ptr; /* pointer to request message */
10220 {
10221 /* A process requests a synchronous alarm, or wants to cancel its alarm. */
10222 register struct proc *rp; /* pointer to requesting process */
10223 int proc_nr; /* which process wants the alarm */
10224 long exp_time; /* expiration time for this alarm */
10225 int use_abs_time; /* use absolute or relative time */
10226 timer_t *tp; /* the process’ timer structure */
10227 clock_t uptime; /* placeholder for current uptime */
10228
10229 /* Extract shared parameters from the request message. */
10230 exp_time = m_ptr->ALRM_EXP_TIME; /* alarm’s expiration time */
10231 use_abs_time = m_ptr->ALRM_ABS_TIME; /* flag for absolute time */
10232 proc_nr = m_ptr->m_source; /* process to interrupt later */
10233 rp = proc_addr(proc_nr);
10234 if (! (priv(rp)->s_flags & SYS_PROC)) return(EPERM);
10235
10236 /* Get the timer structure and set the parameters for this alarm. */
10237 tp = &(priv(rp)->s_alarm_timer);
10238 tmr_arg(tp)->ta_int = proc_nr;
10239 tp->tmr_func = cause_alarm;
10240
10241 /* Return the ticks left on the previous alarm. */
10242 uptime = get_uptime();
10243 if ((tp->tmr_exp_time != TMR_NEVER) && (uptime < tp->tmr_exp_time) ) {
10244 m_ptr->ALRM_TIME_LEFT = (tp->tmr_exp_time - uptime);
10245 } else {
10246 m_ptr->ALRM_TIME_LEFT = 0;
10247 }
10248
10249 /* Finally, (re)set the timer depending on the expiration time. */
10250 if (exp_time == 0) {
10251 reset_timer(tp);
10252 } else {
10253 tp->tmr_exp_time = (use_abs_time) ? exp_time : exp_time + get_uptime();
10254 set_timer(tp, tp->tmr_exp_time, tp->tmr_func);
10255 }
10256 return(OK);
10257 }

10259 /*===========================================================================*
10260 * cause_alarm *
10261 *===========================================================================*/
10262 PRIVATE void cause_alarm(tp)
10263 timer_t *tp;
10264 {
10265 /* Routine called if a timer goes off and the process requested a synchronous
10266 * alarm. The process number is stored in timer argument ’ta_int’. Notify that
10267 * process with a notification message from CLOCK.
10268 */
10269 int proc_nr = tmr_arg(tp)->ta_int; /* get process number */
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10270 lock_notify(CLOCK, proc_nr); /* notify process */
10271 }

10273 #endif /* USE_SETALARM */

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
kernel/system/do_exec.c

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

10300 /* The kernel call implemented in this file:
10301 * m_type: SYS_EXEC
10302 *
10303 * The parameters for this kernel call are:
10304 * m1_i1: PR_PROC_NR (process that did exec call)
10305 * m1_p1: PR_STACK_PTR (new stack pointer)
10306 * m1_p2: PR_NAME_PTR (pointer to program name)
10307 * m1_p3: PR_IP_PTR (new instruction pointer)
10308 */
10309 #include "../system.h"
10310 #include <string.h>
10311 #include <signal.h>
10312
10313 #if USE_EXEC
10314
10315 /*===========================================================================*
10316 * do_exec *
10317 *===========================================================================*/
10318 PUBLIC int do_exec(m_ptr)
10319 register message *m_ptr; /* pointer to request message */
10320 {
10321 /* Handle sys_exec(). A process has done a successful EXEC. Patch it up. */
10322 register struct proc *rp;
10323 reg_t sp; /* new sp */
10324 phys_bytes phys_name;
10325 char *np;
10326
10327 rp = proc_addr(m_ptr->PR_PROC_NR);
10328 sp = (reg_t) m_ptr->PR_STACK_PTR;
10329 rp->p_reg.sp = sp; /* set the stack pointer */
10330 phys_memset(vir2phys(&rp->p_ldt[EXTRA_LDT_INDEX]), 0,
10331 (LDT_SIZE - EXTRA_LDT_INDEX) * sizeof(rp->p_ldt[0]));
10332 rp->p_reg.pc = (reg_t) m_ptr->PR_IP_PTR; /* set pc */
10333 rp->p_rts_flags &= ˜RECEIVING; /* PM does not reply to EXEC call */
10334 if (rp->p_rts_flags == 0) lock_enqueue(rp);
10335
10336 /* Save command name for debugging, ps(1) output, etc. */
10337 phys_name = numap_local(m_ptr->m_source, (vir_bytes) m_ptr->PR_NAME_PTR,
10338 (vir_bytes) P_NAME_LEN - 1);
10339 if (phys_name != 0) {
10340 phys_copy(phys_name, vir2phys(rp->p_name), (phys_bytes) P_NAME_LEN - 1);
10341 for (np = rp->p_name; (*np & BYTE) >= ’ ’; np++) {}
10342 *np = 0; /* mark end */
10343 } else {
10344 strncpy(rp->p_name, "<unset>", P_NAME_LEN);
10345 }
10346 return(OK);
10347 }
10348 #endif /* USE_EXEC */
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++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
kernel/clock.c

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

10400 /* This file contains the clock task, which handles time related functions.
10401 * Important events that are handled by the CLOCK include setting and
10402 * monitoring alarm timers and deciding when to (re)schedule processes.
10403 * The CLOCK offers a direct interface to kernel processes. System services
10404 * can access its services through system calls, such as sys_setalarm(). The
10405 * CLOCK task thus is hidden from the outside world.
10406 *
10407 * Changes:
10408 * Oct 08, 2005 reordering and comment editing (A. S. Woodhull)
10409 * Mar 18, 2004 clock interface moved to SYSTEM task (Jorrit N. Herder)
10410 * Sep 30, 2004 source code documentation updated (Jorrit N. Herder)
10411 * Sep 24, 2004 redesigned alarm timers (Jorrit N. Herder)
10412 *
10413 * The function do_clocktick() is triggered by the clock’s interrupt
10414 * handler when a watchdog timer has expired or a process must be scheduled.
10415 *
10416 * In addition to the main clock_task() entry point, which starts the main
10417 * loop, there are several other minor entry points:
10418 * clock_stop: called just before MINIX shutdown
10419 * get_uptime: get realtime since boot in clock ticks
10420 * set_timer: set a watchdog timer (+)
10421 * reset_timer: reset a watchdog timer (+)
10422 * read_clock: read the counter of channel 0 of the 8253A timer
10423 *
10424 * (+) The CLOCK task keeps tracks of watchdog timers for the entire kernel.
10425 * The watchdog functions of expired timers are executed in do_clocktick().
10426 * It is crucial that watchdog functions not block, or the CLOCK task may
10427 * be blocked. Do not send() a message when the receiver is not expecting it.
10428 * Instead, notify(), which always returns, should be used.
10429 */
10430
10431 #include "kernel.h"
10432 #include "proc.h"
10433 #include <signal.h>
10434 #include <minix/com.h>
10435
10436 /* Function prototype for PRIVATE functions. */
10437 FORWARD _PROTOTYPE( void init_clock, (void) );
10438 FORWARD _PROTOTYPE( int clock_handler, (irq_hook_t *hook) );
10439 FORWARD _PROTOTYPE( int do_clocktick, (message *m_ptr) );
10440
10441 /* Clock parameters. */
10442 #define COUNTER_FREQ (2*TIMER_FREQ) /* counter frequency using square wave */
10443 #define LATCH_COUNT 0x00 /* cc00xxxx, c = channel, x = any */
10444 #define SQUARE_WAVE 0x36 /* ccaammmb, a = access, m = mode, b = BCD */
10445 /* 11x11, 11 = LSB then MSB, x11 = sq wave */
10446 #define TIMER_COUNT ((unsigned) (TIMER_FREQ/HZ)) /* initial value for counter*/
10447 #define TIMER_FREQ 1193182L /* clock frequency for timer in PC and AT */
10448
10449 #define CLOCK_ACK_BIT 0x80 /* PS/2 clock interrupt acknowledge bit */
10450
10451 /* The CLOCK’s timers queue. The functions in <timers.h> operate on this.
10452 * Each system process possesses a single synchronous alarm timer. If other
10453 * kernel parts want to use additional timers, they must declare their own
10454 * persistent (static) timer structure, which can be passed to the clock
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10455 * via (re)set_timer().
10456 * When a timer expires its watchdog function is run by the CLOCK task.
10457 */
10458 PRIVATE timer_t *clock_timers; /* queue of CLOCK timers */
10459 PRIVATE clock_t next_timeout; /* realtime that next timer expires */
10460
10461 /* The time is incremented by the interrupt handler on each clock tick. */
10462 PRIVATE clock_t realtime; /* real time clock */
10463 PRIVATE irq_hook_t clock_hook; /* interrupt handler hook */
10464
10465 /*===========================================================================*
10466 * clock_task *
10467 *===========================================================================*/
10468 PUBLIC void clock_task()
10469 {
10470 /* Main program of clock task. If the call is not HARD_INT it is an error.
10471 */
10472 message m; /* message buffer for both input and output */
10473 int result; /* result returned by the handler */
10474
10475 init_clock(); /* initialize clock task */
10476
10477 /* Main loop of the clock task. Get work, process it. Never reply. */
10478 while (TRUE) {
10479
10480 /* Go get a message. */
10481 receive(ANY, &m);
10482
10483 /* Handle the request. Only clock ticks are expected. */
10484 switch (m.m_type) {
10485 case HARD_INT:
10486 result = do_clocktick(&m); /* handle clock tick */
10487 break;
10488 default: /* illegal request type */
10489 kprintf("CLOCK: illegal request %d from %d.\n", m.m_type,m.m_source);
10490 }
10491 }
10492 }

10494 /*===========================================================================*
10495 * do_clocktick *
10496 *===========================================================================*/
10497 PRIVATE int do_clocktick(m_ptr)
10498 message *m_ptr; /* pointer to request message */
10499 {
10500 /* Despite its name, this routine is not called on every clock tick. It
10501 * is called on those clock ticks when a lot of work needs to be done.
10502 */
10503
10504 /* A process used up a full quantum. The interrupt handler stored this
10505 * process in ’prev_ptr’. First make sure that the process is not on the
10506 * scheduling queues. Then announce the process ready again. Since it has
10507 * no more time left, it gets a new quantum and is inserted at the right
10508 * place in the queues. As a side-effect a new process will be scheduled.
10509 */
10510 if (prev_ptr->p_ticks_left <= 0 && priv(prev_ptr)->s_flags & PREEMPTIBLE) {
10511 lock_dequeue(prev_ptr); /* take it off the queues */
10512 lock_enqueue(prev_ptr); /* and reinsert it again */
10513 }
10514
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10515 /* Check if a clock timer expired and run its watchdog function. */
10516 if (next_timeout <= realtime) {
10517 tmrs_exptimers(&clock_timers, realtime, NULL);
10518 next_timeout = clock_timers == NULL ?
10519 TMR_NEVER : clock_timers->tmr_exp_time;
10520 }
10521
10522 /* Inhibit sending a reply. */
10523 return(EDONTREPLY);
10524 }

10526 /*===========================================================================*
10527 * init_clock *
10528 *===========================================================================*/
10529 PRIVATE void init_clock()
10530 {
10531 /* Initialize the CLOCK’s interrupt hook. */
10532 clock_hook.proc_nr = CLOCK;
10533
10534 /* Initialize channel 0 of the 8253A timer to, e.g., 60 Hz. */
10535 outb(TIMER_MODE, SQUARE_WAVE); /* set timer to run continuously */
10536 outb(TIMER0, TIMER_COUNT); /* load timer low byte */
10537 outb(TIMER0, TIMER_COUNT >> 8); /* load timer high byte */
10538 put_irq_handler(&clock_hook, CLOCK_IRQ, clock_handler);/* register handler */
10539 enable_irq(&clock_hook); /* ready for clock interrupts */
10540 }

10542 /*===========================================================================*
10543 * clock_stop *
10544 *===========================================================================*/
10545 PUBLIC void clock_stop()
10546 {
10547 /* Reset the clock to the BIOS rate. (For rebooting) */
10548 outb(TIMER_MODE, 0x36);
10549 outb(TIMER0, 0);
10550 outb(TIMER0, 0);
10551 }

10553 /*===========================================================================*
10554 * clock_handler *
10555 *===========================================================================*/
10556 PRIVATE int clock_handler(hook)
10557 irq_hook_t *hook;
10558 {
10559 /* This executes on each clock tick (i.e., every time the timer chip generates
10560 * an interrupt). It does a little bit of work so the clock task does not have
10561 * to be called on every tick. The clock task is called when:
10562 *
10563 * (1) the scheduling quantum of the running process has expired, or
10564 * (2) a timer has expired and the watchdog function should be run.
10565 *
10566 * Many global global and static variables are accessed here. The safety of
10567 * this must be justified. All scheduling and message passing code acquires a
10568 * lock by temporarily disabling interrupts, so no conflicts with calls from
10569 * the task level can occur. Furthermore, interrupts are not reentrant, the
10570 * interrupt handler cannot be bothered by other interrupts.
10571 *
10572 * Variables that are updated in the clock’s interrupt handler:
10573 * lost_ticks:
10574 * Clock ticks counted outside the clock task. This for example
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10575 * is used when the boot monitor processes a real mode interrupt.
10576 * realtime:
10577 * The current uptime is incremented with all outstanding ticks.
10578 * proc_ptr, bill_ptr:
10579 * These are used for accounting. It does not matter if proc.c
10580 * is changing them, provided they are always valid pointers,
10581 * since at worst the previous process would be billed.
10582 */
10583 register unsigned ticks;
10584
10585 /* Acknowledge the PS/2 clock interrupt. */
10586 if (machine.ps_mca) outb(PORT_B, inb(PORT_B) | CLOCK_ACK_BIT);
10587
10588 /* Get number of ticks and update realtime. */
10589 ticks = lost_ticks + 1;
10590 lost_ticks = 0;
10591 realtime += ticks;
10592
10593 /* Update user and system accounting times. Charge the current process for
10594 * user time. If the current process is not billable, that is, if a non-user
10595 * process is running, charge the billable process for system time as well.
10596 * Thus the unbillable process’ user time is the billable user’s system time.
10597 */
10598 proc_ptr->p_user_time += ticks;
10599 if (priv(proc_ptr)->s_flags & PREEMPTIBLE) {
10600 proc_ptr->p_ticks_left -= ticks;
10601 }
10602 if (! (priv(proc_ptr)->s_flags & BILLABLE)) {
10603 bill_ptr->p_sys_time += ticks;
10604 bill_ptr->p_ticks_left -= ticks;
10605 }
10606
10607 /* Check if do_clocktick() must be called. Done for alarms and scheduling.
10608 * Some processes, such as the kernel tasks, cannot be preempted.
10609 */
10610 if ((next_timeout <= realtime) || (proc_ptr->p_ticks_left <= 0)) {
10611 prev_ptr = proc_ptr; /* store running process */
10612 lock_notify(HARDWARE, CLOCK); /* send notification */
10613 }
10614 return(1); /* reenable interrupts */
10615 }

10617 /*===========================================================================*
10618 * get_uptime *
10619 *===========================================================================*/
10620 PUBLIC clock_t get_uptime()
10621 {
10622 /* Get and return the current clock uptime in ticks. */
10623 return(realtime);
10624 }

10626 /*===========================================================================*
10627 * set_timer *
10628 *===========================================================================*/
10629 PUBLIC void set_timer(tp, exp_time, watchdog)
10630 struct timer *tp; /* pointer to timer structure */
10631 clock_t exp_time; /* expiration realtime */
10632 tmr_func_t watchdog; /* watchdog to be called */
10633 {
10634 /* Insert the new timer in the active timers list. Always update the
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10635 * next timeout time by setting it to the front of the active list.
10636 */
10637 tmrs_settimer(&clock_timers, tp, exp_time, watchdog, NULL);
10638 next_timeout = clock_timers->tmr_exp_time;
10639 }

10641 /*===========================================================================*
10642 * reset_timer *
10643 *===========================================================================*/
10644 PUBLIC void reset_timer(tp)
10645 struct timer *tp; /* pointer to timer structure */
10646 {
10647 /* The timer pointed to by ’tp’ is no longer needed. Remove it from both the
10648 * active and expired lists. Always update the next timeout time by setting
10649 * it to the front of the active list.
10650 */
10651 tmrs_clrtimer(&clock_timers, tp, NULL);
10652 next_timeout = (clock_timers == NULL) ?
10653 TMR_NEVER : clock_timers->tmr_exp_time;
10654 }

10656 /*===========================================================================*
10657 * read_clock *
10658 *===========================================================================*/
10659 PUBLIC unsigned long read_clock()
10660 {
10661 /* Read the counter of channel 0 of the 8253A timer. This counter counts
10662 * down at a rate of TIMER_FREQ and restarts at TIMER_COUNT-1 when it
10663 * reaches zero. A hardware interrupt (clock tick) occurs when the counter
10664 * gets to zero and restarts its cycle.
10665 */
10666 unsigned count;
10667
10668 outb(TIMER_MODE, LATCH_COUNT);
10669 count = inb(TIMER0);
10670 count |= (inb(TIMER0) << 8);
10671
10672 return count;
10673 }

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
drivers/drivers.h

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

10700 /* This is the master header for all device drivers. It includes some other
10701 * files and defines the principal constants.
10702 */
10703 #define _POSIX_SOURCE 1 /* tell headers to include POSIX stuff */
10704 #define _MINIX 1 /* tell headers to include MINIX stuff */
10705 #define _SYSTEM 1 /* get negative error number in <errno.h> */
10706
10707 /* The following are so basic, all the *.c files get them automatically. */
10708 #include <minix/config.h> /* MUST be first */
10709 #include <ansi.h> /* MUST be second */
10710 #include <minix/type.h>
10711 #include <minix/com.h>
10712 #include <minix/dmap.h>
10713 #include <minix/callnr.h>
10714 #include <sys/types.h>
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10715 #include <minix/const.h>
10716 #include <minix/devio.h>
10717 #include <minix/syslib.h>
10718 #include <minix/sysutil.h>
10719 #include <minix/bitmap.h>
10720
10721 #include <ibm/interrupt.h> /* IRQ vectors and miscellaneous ports */
10722 #include <ibm/bios.h> /* BIOS index numbers */
10723 #include <ibm/ports.h> /* Well-known ports */
10724
10725 #include <string.h>
10726 #include <signal.h>
10727 #include <stdlib.h>
10728 #include <limits.h>
10729 #include <stddef.h>
10730 #include <errno.h>
10731 #include <unistd.h>
10732

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
drivers/libdriver/driver.h

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

10800 /* Types and constants shared between the generic and device dependent
10801 * device driver code.
10802 */
10803
10804 #define _POSIX_SOURCE 1 /* tell headers to include POSIX stuff */
10805 #define _MINIX 1 /* tell headers to include MINIX stuff */
10806 #define _SYSTEM 1 /* get negative error number in <errno.h> */
10807
10808 /* The following are so basic, all the *.c files get them automatically. */
10809 #include <minix/config.h> /* MUST be first */
10810 #include <ansi.h> /* MUST be second */
10811 #include <minix/type.h>
10812 #include <minix/ipc.h>
10813 #include <minix/com.h>
10814 #include <minix/callnr.h>
10815 #include <sys/types.h>
10816 #include <minix/const.h>
10817 #include <minix/syslib.h>
10818 #include <minix/sysutil.h>
10819
10820 #include <string.h>
10821 #include <limits.h>
10822 #include <stddef.h>
10823 #include <errno.h>
10824
10825 #include <minix/partition.h>
10826 #include <minix/u64.h>
10827
10828 /* Info about and entry points into the device dependent code. */
10829 struct driver {
10830 _PROTOTYPE( char *(*dr_name), (void) );
10831 _PROTOTYPE( int (*dr_open), (struct driver *dp, message *m_ptr) );
10832 _PROTOTYPE( int (*dr_close), (struct driver *dp, message *m_ptr) );
10833 _PROTOTYPE( int (*dr_ioctl), (struct driver *dp, message *m_ptr) );
10834 _PROTOTYPE( struct device *(*dr_prepare), (int device) );
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10835 _PROTOTYPE( int (*dr_transfer), (int proc_nr, int opcode, off_t position,
10836 iovec_t *iov, unsigned nr_req) );
10837 _PROTOTYPE( void (*dr_cleanup), (void) );
10838 _PROTOTYPE( void (*dr_geometry), (struct partition *entry) );
10839 _PROTOTYPE( void (*dr_signal), (struct driver *dp, message *m_ptr) );
10840 _PROTOTYPE( void (*dr_alarm), (struct driver *dp, message *m_ptr) );
10841 _PROTOTYPE( int (*dr_cancel), (struct driver *dp, message *m_ptr) );
10842 _PROTOTYPE( int (*dr_select), (struct driver *dp, message *m_ptr) );
10843 _PROTOTYPE( int (*dr_other), (struct driver *dp, message *m_ptr) );
10844 _PROTOTYPE( int (*dr_hw_int), (struct driver *dp, message *m_ptr) );
10845 };
10846
10847 #if (CHIP == INTEL)
10848
10849 /* Number of bytes you can DMA before hitting a 64K boundary: */
10850 #define dma_bytes_left(phys) \
10851 ((unsigned) (sizeof(int) == 2 ? 0 : 0x10000) - (unsigned) ((phys) & 0xFFFF))
10852
10853 #endif /* CHIP == INTEL */
10854
10855 /* Base and size of a partition in bytes. */
10856 struct device {
10857 u64_t dv_base;
10858 u64_t dv_size;
10859 };
10860
10861 #define NIL_DEV ((struct device *) 0)
10862
10863 /* Functions defined by driver.c: */
10864 _PROTOTYPE( void driver_task, (struct driver *dr) );
10865 _PROTOTYPE( char *no_name, (void) );
10866 _PROTOTYPE( int do_nop, (struct driver *dp, message *m_ptr) );
10867 _PROTOTYPE( struct device *nop_prepare, (int device) );
10868 _PROTOTYPE( void nop_cleanup, (void) );
10869 _PROTOTYPE( void nop_task, (void) );
10870 _PROTOTYPE( void nop_signal, (struct driver *dp, message *m_ptr) );
10871 _PROTOTYPE( void nop_alarm, (struct driver *dp, message *m_ptr) );
10872 _PROTOTYPE( int nop_cancel, (struct driver *dp, message *m_ptr) );
10873 _PROTOTYPE( int nop_select, (struct driver *dp, message *m_ptr) );
10874 _PROTOTYPE( int do_diocntl, (struct driver *dp, message *m_ptr) );
10875
10876 /* Parameters for the disk drive. */
10877 #define SECTOR_SIZE 512 /* physical sector size in bytes */
10878 #define SECTOR_SHIFT 9 /* for division */
10879 #define SECTOR_MASK 511 /* and remainder */
10880
10881 /* Size of the DMA buffer buffer in bytes. */
10882 #define USE_EXTRA_DMA_BUF 0 /* usually not needed */
10883 #define DMA_BUF_SIZE (DMA_SECTORS * SECTOR_SIZE)
10884
10885 #if (CHIP == INTEL)
10886 extern u8_t *tmp_buf; /* the DMA buffer */
10887 #else
10888 extern u8_t tmp_buf[]; /* the DMA buffer */
10889 #endif
10890 extern phys_bytes tmp_phys; /* phys address of DMA buffer */



772 File: drivers/libdriver/drvlib.h MINIX SOURCE CODE

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
drivers/libdriver/drvlib.h

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

10900 /* IBM device driver definitions Author: Kees J. Bot
10901 * 7 Dec 1995
10902 */
10903
10904 #include <ibm/partition.h>
10905
10906 _PROTOTYPE( void partition, (struct driver *dr, int device, int style, int atapi) );
10907
10908 /* BIOS parameter table layout. */
10909 #define bp_cylinders(t) (* (u16_t *) (&(t)[0]))
10910 #define bp_heads(t) (* (u8_t *) (&(t)[2]))
10911 #define bp_reduced_wr(t) (* (u16_t *) (&(t)[3]))
10912 #define bp_precomp(t) (* (u16_t *) (&(t)[5]))
10913 #define bp_max_ecc(t) (* (u8_t *) (&(t)[7]))
10914 #define bp_ctlbyte(t) (* (u8_t *) (&(t)[8]))
10915 #define bp_landingzone(t) (* (u16_t *) (&(t)[12]))
10916 #define bp_sectors(t) (* (u8_t *) (&(t)[14]))
10917
10918 /* Miscellaneous. */
10919 #define DEV_PER_DRIVE (1 + NR_PARTITIONS)
10920 #define MINOR_t0 64
10921 #define MINOR_r0 120
10922 #define MINOR_d0p0s0 128
10923 #define MINOR_fd0p0 (28<<2)
10924 #define P_FLOPPY 0
10925 #define P_PRIMARY 1
10926 #define P_SUB 2

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
drivers/libdriver/driver.c

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

11000 /* This file contains device independent device driver interface.
11001 *
11002 * Changes:
11003 * Jul 25, 2005 added SYS_SIG type for signals (Jorrit N. Herder)
11004 * Sep 15, 2004 added SYN_ALARM type for timeouts (Jorrit N. Herder)
11005 * Jul 23, 2004 removed kernel dependencies (Jorrit N. Herder)
11006 * Apr 02, 1992 constructed from AT wini and floppy driver (Kees J. Bot)
11007 *
11008 *
11009 * The drivers support the following operations (using message format m2):
11010 *
11011 * m_type DEVICE PROC_NR COUNT POSITION ADRRESS
11012 * ----------------------------------------------------------------
11013 * | DEV_OPEN | device | proc nr | | | |
11014 * |------------+---------+---------+---------+---------+---------|
11015 * | DEV_CLOSE | device | proc nr | | | |
11016 * |------------+---------+---------+---------+---------+---------|
11017 * | DEV_READ | device | proc nr | bytes | offset | buf ptr |
11018 * |------------+---------+---------+---------+---------+---------|
11019 * | DEV_WRITE | device | proc nr | bytes | offset | buf ptr |
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11020 * |------------+---------+---------+---------+---------+---------|
11021 * | DEV_GATHER | device | proc nr | iov len | offset | iov ptr |
11022 * |------------+---------+---------+---------+---------+---------|
11023 * | DEV_SCATTER| device | proc nr | iov len | offset | iov ptr |
11024 * |------------+---------+---------+---------+---------+---------|
11025 * | DEV_IOCTL | device | proc nr |func code| | buf ptr |
11026 * |------------+---------+---------+---------+---------+---------|
11027 * | CANCEL | device | proc nr | r/w | | |
11028 * |------------+---------+---------+---------+---------+---------|
11029 * | HARD_STOP | | | | | |
11030 * ----------------------------------------------------------------
11031 *
11032 * The file contains one entry point:
11033 *
11034 * driver_task: called by the device dependent task entry
11035 */
11036
11037 #include "../drivers.h"
11038 #include <sys/ioc_disk.h>
11039 #include "driver.h"
11040
11041 #define BUF_EXTRA 0
11042
11043 /* Claim space for variables. */
11044 PRIVATE u8_t buffer[(unsigned) 2 * DMA_BUF_SIZE + BUF_EXTRA];
11045 u8_t *tmp_buf; /* the DMA buffer eventually */
11046 phys_bytes tmp_phys; /* phys address of DMA buffer */
11047
11048 FORWARD _PROTOTYPE( void init_buffer, (void) );
11049 FORWARD _PROTOTYPE( int do_rdwt, (struct driver *dr, message *mp) );
11050 FORWARD _PROTOTYPE( int do_vrdwt, (struct driver *dr, message *mp) );
11051
11052 int device_caller;
11053
11054 /*===========================================================================*
11055 * driver_task *
11056 *===========================================================================*/
11057 PUBLIC void driver_task(dp)
11058 struct driver *dp; /* Device dependent entry points. */
11059 {
11060 /* Main program of any device driver task. */
11061
11062 int r, proc_nr;
11063 message mess;
11064
11065 /* Get a DMA buffer. */
11066 init_buffer();
11067
11068 /* Here is the main loop of the disk task. It waits for a message, carries
11069 * it out, and sends a reply.
11070 */
11071 while (TRUE) {
11072
11073 /* Wait for a request to read or write a disk block. */
11074 if(receive(ANY, &mess) != OK) continue;
11075
11076 device_caller = mess.m_source;
11077 proc_nr = mess.PROC_NR;
11078
11079 /* Now carry out the work. */
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11080 switch(mess.m_type) {
11081 case DEV_OPEN: r = (*dp->dr_open)(dp, &mess); break;
11082 case DEV_CLOSE: r = (*dp->dr_close)(dp, &mess); break;
11083 case DEV_IOCTL: r = (*dp->dr_ioctl)(dp, &mess); break;
11084 case CANCEL: r = (*dp->dr_cancel)(dp, &mess);break;
11085 case DEV_SELECT: r = (*dp->dr_select)(dp, &mess);break;
11086
11087 case DEV_READ:
11088 case DEV_WRITE: r = do_rdwt(dp, &mess); break;
11089 case DEV_GATHER:
11090 case DEV_SCATTER: r = do_vrdwt(dp, &mess); break;
11091
11092 case HARD_INT: /* leftover interrupt or expired timer. */
11093 if(dp->dr_hw_int) {
11094 (*dp->dr_hw_int)(dp, &mess);
11095 }
11096 continue;
11097 case SYS_SIG: (*dp->dr_signal)(dp, &mess);
11098 continue; /* don’t reply */
11099 case SYN_ALARM: (*dp->dr_alarm)(dp, &mess);
11100 continue; /* don’t reply */
11101 default:
11102 if(dp->dr_other)
11103 r = (*dp->dr_other)(dp, &mess);
11104 else
11105 r = EINVAL;
11106 break;
11107 }
11108
11109 /* Clean up leftover state. */
11110 (*dp->dr_cleanup)();
11111
11112 /* Finally, prepare and send the reply message. */
11113 if (r != EDONTREPLY) {
11114 mess.m_type = TASK_REPLY;
11115 mess.REP_PROC_NR = proc_nr;
11116 /* Status is # of bytes transferred or error code. */
11117 mess.REP_STATUS = r;
11118 send(device_caller, &mess);
11119 }
11120 }
11121 }

11123 /*===========================================================================*
11124 * init_buffer *
11125 *===========================================================================*/
11126 PRIVATE void init_buffer()
11127 {
11128 /* Select a buffer that can safely be used for DMA transfers. It may also
11129 * be used to read partition tables and such. Its absolute address is
11130 * ’tmp_phys’, the normal address is ’tmp_buf’.
11131 */
11132
11133 unsigned left;
11134
11135 tmp_buf = buffer;
11136 sys_umap(SELF, D, (vir_bytes)buffer, (phys_bytes)sizeof(buffer), &tmp_phys);
11137
11138 if ((left = dma_bytes_left(tmp_phys)) < DMA_BUF_SIZE) {
11139 /* First half of buffer crosses a 64K boundary, can’t DMA into that */
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11140 tmp_buf += left;
11141 tmp_phys += left;
11142 }
11143 }

11145 /*===========================================================================*
11146 * do_rdwt *
11147 *===========================================================================*/
11148 PRIVATE int do_rdwt(dp, mp)
11149 struct driver *dp; /* device dependent entry points */
11150 message *mp; /* pointer to read or write message */
11151 {
11152 /* Carry out a single read or write request. */
11153 iovec_t iovec1;
11154 int r, opcode;
11155 phys_bytes phys_addr;
11156
11157 /* Disk address? Address and length of the user buffer? */
11158 if (mp->COUNT < 0) return(EINVAL);
11159
11160 /* Check the user buffer. */
11161 sys_umap(mp->PROC_NR, D, (vir_bytes) mp->ADDRESS, mp->COUNT, &phys_addr);
11162 if (phys_addr == 0) return(EFAULT);
11163
11164 /* Prepare for I/O. */
11165 if ((*dp->dr_prepare)(mp->DEVICE) == NIL_DEV) return(ENXIO);
11166
11167 /* Create a one element scatter/gather vector for the buffer. */
11168 opcode = mp->m_type == DEV_READ ? DEV_GATHER : DEV_SCATTER;
11169 iovec1.iov_addr = (vir_bytes) mp->ADDRESS;
11170 iovec1.iov_size = mp->COUNT;
11171
11172 /* Transfer bytes from/to the device. */
11173 r = (*dp->dr_transfer)(mp->PROC_NR, opcode, mp->POSITION, &iovec1, 1);
11174
11175 /* Return the number of bytes transferred or an error code. */
11176 return(r == OK ? (mp->COUNT - iovec1.iov_size) : r);
11177 }

11179 /*==========================================================================*
11180 * do_vrdwt *
11181 *==========================================================================*/
11182 PRIVATE int do_vrdwt(dp, mp)
11183 struct driver *dp; /* device dependent entry points */
11184 message *mp; /* pointer to read or write message */
11185 {
11186 /* Carry out an device read or write to/from a vector of user addresses.
11187 * The "user addresses" are assumed to be safe, i.e. FS transferring to/from
11188 * its own buffers, so they are not checked.
11189 */
11190 static iovec_t iovec[NR_IOREQS];
11191 iovec_t *iov;
11192 phys_bytes iovec_size;
11193 unsigned nr_req;
11194 int r;
11195
11196 nr_req = mp->COUNT; /* Length of I/O vector */
11197
11198 if (mp->m_source < 0) {
11199 /* Called by a task, no need to copy vector. */
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11200 iov = (iovec_t *) mp->ADDRESS;
11201 } else {
11202 /* Copy the vector from the caller to kernel space. */
11203 if (nr_req > NR_IOREQS) nr_req = NR_IOREQS;
11204 iovec_size = (phys_bytes) (nr_req * sizeof(iovec[0]));
11205
11206 if (OK != sys_datacopy(mp->m_source, (vir_bytes) mp->ADDRESS,
11207 SELF, (vir_bytes) iovec, iovec_size))
11208 panic((*dp->dr_name)(),"bad I/O vector by", mp->m_source);
11209 iov = iovec;
11210 }
11211
11212 /* Prepare for I/O. */
11213 if ((*dp->dr_prepare)(mp->DEVICE) == NIL_DEV) return(ENXIO);
11214
11215 /* Transfer bytes from/to the device. */
11216 r = (*dp->dr_transfer)(mp->PROC_NR, mp->m_type, mp->POSITION, iov, nr_req);
11217
11218 /* Copy the I/O vector back to the caller. */
11219 if (mp->m_source >= 0) {
11220 sys_datacopy(SELF, (vir_bytes) iovec,
11221 mp->m_source, (vir_bytes) mp->ADDRESS, iovec_size);
11222 }
11223 return(r);
11224 }

11226 /*===========================================================================*
11227 * no_name *
11228 *===========================================================================*/
11229 PUBLIC char *no_name()
11230 {
11231 /* Use this default name if there is no specific name for the device. This was
11232 * originally done by fetching the name from the task table for this process:
11233 * "return(tasktab[proc_number(proc_ptr) + NR_TASKS].name);", but currently a
11234 * real "noname" is returned. Perhaps, some system information service can be
11235 * queried for a name at a later time.
11236 */
11237 static char name[] = "noname";
11238 return name;
11239 }

11241 /*============================================================================*
11242 * do_nop *
11243 *============================================================================*/
11244 PUBLIC int do_nop(dp, mp)
11245 struct driver *dp;
11246 message *mp;
11247 {
11248 /* Nothing there, or nothing to do. */
11249
11250 switch (mp->m_type) {
11251 case DEV_OPEN: return(ENODEV);
11252 case DEV_CLOSE: return(OK);
11253 case DEV_IOCTL: return(ENOTTY);
11254 default: return(EIO);
11255 }
11256 }
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11258 /*============================================================================*
11259 * nop_signal *
11260 *============================================================================*/
11261 PUBLIC void nop_signal(dp, mp)
11262 struct driver *dp;
11263 message *mp;
11264 {
11265 /* Default action for signal is to ignore. */
11266 }

11268 /*============================================================================*
11269 * nop_alarm *
11270 *============================================================================*/
11271 PUBLIC void nop_alarm(dp, mp)
11272 struct driver *dp;
11273 message *mp;
11274 {
11275 /* Ignore the leftover alarm. */
11276 }

11278 /*===========================================================================*
11279 * nop_prepare *
11280 *===========================================================================*/
11281 PUBLIC struct device *nop_prepare(device)
11282 {
11283 /* Nothing to prepare for. */
11284 return(NIL_DEV);
11285 }

11287 /*===========================================================================*
11288 * nop_cleanup *
11289 *===========================================================================*/
11290 PUBLIC void nop_cleanup()
11291 {
11292 /* Nothing to clean up. */
11293 }

11295 /*===========================================================================*
11296 * nop_cancel *
11297 *===========================================================================*/
11298 PUBLIC int nop_cancel(struct driver *dr, message *m)
11299 {
11300 /* Nothing to do for cancel. */
11301 return(OK);
11302 }

11304 /*===========================================================================*
11305 * nop_select *
11306 *===========================================================================*/
11307 PUBLIC int nop_select(struct driver *dr, message *m)
11308 {
11309 /* Nothing to do for select. */
11310 return(OK);
11311 }

11313 /*============================================================================*
11314 * do_diocntl *
11315 *============================================================================*/
11316 PUBLIC int do_diocntl(dp, mp)
11317 struct driver *dp;
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11318 message *mp; /* pointer to ioctl request */
11319 {
11320 /* Carry out a partition setting/getting request. */
11321 struct device *dv;
11322 struct partition entry;
11323 int s;
11324
11325 if (mp->REQUEST != DIOCSETP && mp->REQUEST != DIOCGETP) {
11326 if(dp->dr_other) {
11327 return dp->dr_other(dp, mp);
11328 } else return(ENOTTY);
11329 }
11330
11331 /* Decode the message parameters. */
11332 if ((dv = (*dp->dr_prepare)(mp->DEVICE)) == NIL_DEV) return(ENXIO);
11333
11334 if (mp->REQUEST == DIOCSETP) {
11335 /* Copy just this one partition table entry. */
11336 if (OK != (s=sys_datacopy(mp->PROC_NR, (vir_bytes) mp->ADDRESS,
11337 SELF, (vir_bytes) &entry, sizeof(entry))))
11338 return s;
11339 dv->dv_base = entry.base;
11340 dv->dv_size = entry.size;
11341 } else {
11342 /* Return a partition table entry and the geometry of the drive. */
11343 entry.base = dv->dv_base;
11344 entry.size = dv->dv_size;
11345 (*dp->dr_geometry)(&entry);
11346 if (OK != (s=sys_datacopy(SELF, (vir_bytes) &entry,
11347 mp->PROC_NR, (vir_bytes) mp->ADDRESS, sizeof(entry))))
11348 return s;
11349 }
11350 return(OK);
11351 }

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
drivers/libdriver/drvlib.c

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

11400 /* IBM device driver utility functions. Author: Kees J. Bot
11401 * 7 Dec 1995
11402 * Entry point:
11403 * partition: partition a disk to the partition table(s) on it.
11404 */
11405
11406 #include "driver.h"
11407 #include "drvlib.h"
11408 #include <unistd.h>
11409
11410 /* Extended partition? */
11411 #define ext_part(s) ((s) == 0x05 || (s) == 0x0F)
11412
11413 FORWARD _PROTOTYPE( void extpartition, (struct driver *dp, int extdev,
11414 unsigned long extbase) );
11415 FORWARD _PROTOTYPE( int get_part_table, (struct driver *dp, int device,
11416 unsigned long offset, struct part_entry *table));
11417 FORWARD _PROTOTYPE( void sort, (struct part_entry *table) );
11418
11419 #ifndef CD_SECTOR_SIZE
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11420 #define CD_SECTOR_SIZE 2048
11421 #endif
11422
11423 /*============================================================================*
11424 * partition *
11425 *============================================================================*/
11426 PUBLIC void partition(dp, device, style, atapi)
11427 struct driver *dp; /* device dependent entry points */
11428 int device; /* device to partition */
11429 int style; /* partitioning style: floppy, primary, sub. */
11430 int atapi; /* atapi device */
11431 {
11432 /* This routine is called on first open to initialize the partition tables
11433 * of a device. It makes sure that each partition falls safely within the
11434 * device’s limits. Depending on the partition style we are either making
11435 * floppy partitions, primary partitions or subpartitions. Only primary
11436 * partitions are sorted, because they are shared with other operating
11437 * systems that expect this.
11438 */
11439 struct part_entry table[NR_PARTITIONS], *pe;
11440 int disk, par;
11441 struct device *dv;
11442 unsigned long base, limit, part_limit;
11443
11444 /* Get the geometry of the device to partition */
11445 if ((dv = (*dp->dr_prepare)(device)) == NIL_DEV
11446 || cmp64u(dv->dv_size, 0) == 0) return;
11447 base = div64u(dv->dv_base, SECTOR_SIZE);
11448 limit = base + div64u(dv->dv_size, SECTOR_SIZE);
11449
11450 /* Read the partition table for the device. */
11451 if(!get_part_table(dp, device, 0L, table)) {
11452 return;
11453 }
11454
11455 /* Compute the device number of the first partition. */
11456 switch (style) {
11457 case P_FLOPPY:
11458 device += MINOR_fd0p0;
11459 break;
11460 case P_PRIMARY:
11461 sort(table); /* sort a primary partition table */
11462 device += 1;
11463 break;
11464 case P_SUB:
11465 disk = device / DEV_PER_DRIVE;
11466 par = device % DEV_PER_DRIVE - 1;
11467 device = MINOR_d0p0s0 + (disk * NR_PARTITIONS + par) * NR_PARTITIONS;
11468 }
11469
11470 /* Find an array of devices. */
11471 if ((dv = (*dp->dr_prepare)(device)) == NIL_DEV) return;
11472
11473 /* Set the geometry of the partitions from the partition table. */
11474 for (par = 0; par < NR_PARTITIONS; par++, dv++) {
11475 /* Shrink the partition to fit within the device. */
11476 pe = &table[par];
11477 part_limit = pe->lowsec + pe->size;
11478 if (part_limit < pe->lowsec) part_limit = limit;
11479 if (part_limit > limit) part_limit = limit;
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11480 if (pe->lowsec < base) pe->lowsec = base;
11481 if (part_limit < pe->lowsec) part_limit = pe->lowsec;
11482
11483 dv->dv_base = mul64u(pe->lowsec, SECTOR_SIZE);
11484 dv->dv_size = mul64u(part_limit - pe->lowsec, SECTOR_SIZE);
11485
11486 if (style == P_PRIMARY) {
11487 /* Each Minix primary partition can be subpartitioned. */
11488 if (pe->sysind == MINIX_PART)
11489 partition(dp, device + par, P_SUB, atapi);
11490
11491 /* An extended partition has logical partitions. */
11492 if (ext_part(pe->sysind))
11493 extpartition(dp, device + par, pe->lowsec);
11494 }
11495 }
11496 }

11498 /*============================================================================*
11499 * extpartition *
11500 *============================================================================*/
11501 PRIVATE void extpartition(dp, extdev, extbase)
11502 struct driver *dp; /* device dependent entry points */
11503 int extdev; /* extended partition to scan */
11504 unsigned long extbase; /* sector offset of the base extended partition */
11505 {
11506 /* Extended partitions cannot be ignored alas, because people like to move
11507 * files to and from DOS partitions. Avoid reading this code, it’s no fun.
11508 */
11509 struct part_entry table[NR_PARTITIONS], *pe;
11510 int subdev, disk, par;
11511 struct device *dv;
11512 unsigned long offset, nextoffset;
11513
11514 disk = extdev / DEV_PER_DRIVE;
11515 par = extdev % DEV_PER_DRIVE - 1;
11516 subdev = MINOR_d0p0s0 + (disk * NR_PARTITIONS + par) * NR_PARTITIONS;
11517
11518 offset = 0;
11519 do {
11520 if (!get_part_table(dp, extdev, offset, table)) return;
11521 sort(table);
11522
11523 /* The table should contain one logical partition and optionally
11524 * another extended partition. (It’s a linked list.)
11525 */
11526 nextoffset = 0;
11527 for (par = 0; par < NR_PARTITIONS; par++) {
11528 pe = &table[par];
11529 if (ext_part(pe->sysind)) {
11530 nextoffset = pe->lowsec;
11531 } else
11532 if (pe->sysind != NO_PART) {
11533 if ((dv = (*dp->dr_prepare)(subdev)) == NIL_DEV) return;
11534
11535 dv->dv_base = mul64u(extbase + offset + pe->lowsec,
11536 SECTOR_SIZE);
11537 dv->dv_size = mul64u(pe->size, SECTOR_SIZE);
11538
11539 /* Out of devices? */
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11540 if (++subdev % NR_PARTITIONS == 0) return;
11541 }
11542 }
11543 } while ((offset = nextoffset) != 0);
11544 }

11546 /*============================================================================*
11547 * get_part_table *
11548 *============================================================================*/
11549 PRIVATE int get_part_table(dp, device, offset, table)
11550 struct driver *dp;
11551 int device;
11552 unsigned long offset; /* sector offset to the table */
11553 struct part_entry *table; /* four entries */
11554 {
11555 /* Read the partition table for the device, return true iff there were no
11556 * errors.
11557 */
11558 iovec_t iovec1;
11559 off_t position;
11560 static unsigned char partbuf[CD_SECTOR_SIZE];
11561
11562 position = offset << SECTOR_SHIFT;
11563 iovec1.iov_addr = (vir_bytes) partbuf;
11564 iovec1.iov_size = CD_SECTOR_SIZE;
11565 if ((*dp->dr_prepare)(device) != NIL_DEV) {
11566 (void) (*dp->dr_transfer)(SELF, DEV_GATHER, position, &iovec1, 1);
11567 }
11568 if (iovec1.iov_size != 0) {
11569 return 0;
11570 }
11571 if (partbuf[510] != 0x55 || partbuf[511] != 0xAA) {
11572 /* Invalid partition table. */
11573 return 0;
11574 }
11575 memcpy(table, (partbuf + PART_TABLE_OFF), NR_PARTITIONS * sizeof(table[0]));
11576 return 1;
11577 }

11579 /*===========================================================================*
11580 * sort *
11581 *===========================================================================*/
11582 PRIVATE void sort(table)
11583 struct part_entry *table;
11584 {
11585 /* Sort a partition table. */
11586 struct part_entry *pe, tmp;
11587 int n = NR_PARTITIONS;
11588
11589 do {
11590 for (pe = table; pe < table + NR_PARTITIONS-1; pe++) {
11591 if (pe[0].sysind == NO_PART
11592 || (pe[0].lowsec > pe[1].lowsec
11593 && pe[1].sysind != NO_PART)) {
11594 tmp = pe[0]; pe[0] = pe[1]; pe[1] = tmp;
11595 }
11596 }
11597 } while (--n > 0);
11598 }
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++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
drivers/memory/memory.c

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

11600 /* This file contains the device dependent part of the drivers for the
11601 * following special files:
11602 * /dev/ram - RAM disk
11603 * /dev/mem - absolute memory
11604 * /dev/kmem - kernel virtual memory
11605 * /dev/null - null device (data sink)
11606 * /dev/boot - boot device loaded from boot image
11607 * /dev/zero - null byte stream generator
11608 *
11609 * Changes:
11610 * Apr 29, 2005 added null byte generator (Jorrit N. Herder)
11611 * Apr 09, 2005 added support for boot device (Jorrit N. Herder)
11612 * Jul 26, 2004 moved RAM driver to user-space (Jorrit N. Herder)
11613 * Apr 20, 1992 device dependent/independent split (Kees J. Bot)
11614 */
11615
11616 #include "../drivers.h"
11617 #include "../libdriver/driver.h"
11618 #include <sys/ioc_memory.h>
11619 #include "../../kernel/const.h"
11620 #include "../../kernel/config.h"
11621 #include "../../kernel/type.h"
11622
11623 #include "assert.h"
11624
11625 #define NR_DEVS 6 /* number of minor devices */
11626
11627 PRIVATE struct device m_geom[NR_DEVS]; /* base and size of each device */
11628 PRIVATE int m_seg[NR_DEVS]; /* segment index of each device */
11629 PRIVATE int m_device; /* current device */
11630 PRIVATE struct kinfo kinfo; /* kernel information */
11631 PRIVATE struct machine machine; /* machine information */
11632
11633 extern int errno; /* error number for PM calls */
11634
11635 FORWARD _PROTOTYPE( char *m_name, (void) );
11636 FORWARD _PROTOTYPE( struct device *m_prepare, (int device) );
11637 FORWARD _PROTOTYPE( int m_transfer, (int proc_nr, int opcode, off_t position,
11638 iovec_t *iov, unsigned nr_req) );
11639 FORWARD _PROTOTYPE( int m_do_open, (struct driver *dp, message *m_ptr) );
11640 FORWARD _PROTOTYPE( void m_init, (void) );
11641 FORWARD _PROTOTYPE( int m_ioctl, (struct driver *dp, message *m_ptr) );
11642 FORWARD _PROTOTYPE( void m_geometry, (struct partition *entry) );
11643
11644 /* Entry points to this driver. */
11645 PRIVATE struct driver m_dtab = {
11646 m_name, /* current device’s name */
11647 m_do_open, /* open or mount */
11648 do_nop, /* nothing on a close */
11649 m_ioctl, /* specify ram disk geometry */
11650 m_prepare, /* prepare for I/O on a given minor device */
11651 m_transfer, /* do the I/O */
11652 nop_cleanup, /* no need to clean up */
11653 m_geometry, /* memory device "geometry" */
11654 nop_signal, /* system signals */



MINIX SOURCE CODE File: drivers/memory/memory.c 783

11655 nop_alarm,
11656 nop_cancel,
11657 nop_select,
11658 NULL,
11659 NULL
11660 };
11661
11662 /* Buffer for the /dev/zero null byte feed. */
11663 #define ZERO_BUF_SIZE 1024
11664 PRIVATE char dev_zero[ZERO_BUF_SIZE];
11665
11666 #define click_to_round_k(n) \
11667 ((unsigned) ((((unsigned long) (n) << CLICK_SHIFT) + 512) / 1024))
11668
11669 /*===========================================================================*
11670 * main *
11671 *===========================================================================*/
11672 PUBLIC int main(void)
11673 {
11674 /* Main program. Initialize the memory driver and start the main loop. */
11675 m_init();
11676 driver_task(&m_dtab);
11677 return(OK);
11678 }

11680 /*===========================================================================*
11681 * m_name *
11682 *===========================================================================*/
11683 PRIVATE char *m_name()
11684 {
11685 /* Return a name for the current device. */
11686 static char name[] = "memory";
11687 return name;
11688 }

11690 /*===========================================================================*
11691 * m_prepare *
11692 *===========================================================================*/
11693 PRIVATE struct device *m_prepare(device)
11694 int device;
11695 {
11696 /* Prepare for I/O on a device: check if the minor device number is ok. */
11697 if (device < 0 || device >= NR_DEVS) return(NIL_DEV);
11698 m_device = device;
11699
11700 return(&m_geom[device]);
11701 }

11703 /*===========================================================================*
11704 * m_transfer *
11705 *===========================================================================*/
11706 PRIVATE int m_transfer(proc_nr, opcode, position, iov, nr_req)
11707 int proc_nr; /* process doing the request */
11708 int opcode; /* DEV_GATHER or DEV_SCATTER */
11709 off_t position; /* offset on device to read or write */
11710 iovec_t *iov; /* pointer to read or write request vector */
11711 unsigned nr_req; /* length of request vector */
11712 {
11713 /* Read or write one the driver’s minor devices. */
11714 phys_bytes mem_phys;
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11715 int seg;
11716 unsigned count, left, chunk;
11717 vir_bytes user_vir;
11718 struct device *dv;
11719 unsigned long dv_size;
11720 int s;
11721
11722 /* Get minor device number and check for /dev/null. */
11723 dv = &m_geom[m_device];
11724 dv_size = cv64ul(dv->dv_size);
11725
11726 while (nr_req > 0) {
11727
11728 /* How much to transfer and where to / from. */
11729 count = iov->iov_size;
11730 user_vir = iov->iov_addr;
11731
11732 switch (m_device) {
11733
11734 /* No copying; ignore request. */
11735 case NULL_DEV:
11736 if (opcode == DEV_GATHER) return(OK); /* always at EOF */
11737 break;
11738
11739 /* Virtual copying. For RAM disk, kernel memory and boot device. */
11740 case RAM_DEV:
11741 case KMEM_DEV:
11742 case BOOT_DEV:
11743 if (position >= dv_size) return(OK); /* check for EOF */
11744 if (position + count > dv_size) count = dv_size - position;
11745 seg = m_seg[m_device];
11746
11747 if (opcode == DEV_GATHER) { /* copy actual data */
11748 sys_vircopy(SELF,seg,position, proc_nr,D,user_vir, count);
11749 } else {
11750 sys_vircopy(proc_nr,D,user_vir, SELF,seg,position, count);
11751 }
11752 break;
11753
11754 /* Physical copying. Only used to access entire memory. */
11755 case MEM_DEV:
11756 if (position >= dv_size) return(OK); /* check for EOF */
11757 if (position + count > dv_size) count = dv_size - position;
11758 mem_phys = cv64ul(dv->dv_base) + position;
11759
11760 if (opcode == DEV_GATHER) { /* copy data */
11761 sys_physcopy(NONE, PHYS_SEG, mem_phys,
11762 proc_nr, D, user_vir, count);
11763 } else {
11764 sys_physcopy(proc_nr, D, user_vir,
11765 NONE, PHYS_SEG, mem_phys, count);
11766 }
11767 break;
11768
11769 /* Null byte stream generator. */
11770 case ZERO_DEV:
11771 if (opcode == DEV_GATHER) {
11772 left = count;
11773 while (left > 0) {
11774 chunk = (left > ZERO_BUF_SIZE) ? ZERO_BUF_SIZE : left;
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11775 if (OK != (s=sys_vircopy(SELF, D, (vir_bytes) dev_zero,
11776 proc_nr, D, user_vir, chunk)))
11777 report("MEM","sys_vircopy failed", s);
11778 left -= chunk;
11779 user_vir += chunk;
11780 }
11781 }
11782 break;
11783
11784 /* Unknown (illegal) minor device. */
11785 default:
11786 return(EINVAL);
11787 }
11788
11789 /* Book the number of bytes transferred. */
11790 position += count;
11791 iov->iov_addr += count;
11792 if ((iov->iov_size -= count) == 0) { iov++; nr_req--; }
11793
11794 }
11795 return(OK);
11796 }

11798 /*===========================================================================*
11799 * m_do_open *
11800 *===========================================================================*/
11801 PRIVATE int m_do_open(dp, m_ptr)
11802 struct driver *dp;
11803 message *m_ptr;
11804 {
11805 /* Check device number on open. (This used to give I/O privileges to a
11806 * process opening /dev/mem or /dev/kmem. This may be needed in case of
11807 * memory mapped I/O. With system calls to do I/O this is no longer needed.)
11808 */
11809 if (m_prepare(m_ptr->DEVICE) == NIL_DEV) return(ENXIO);
11810
11811 return(OK);
11812 }

11814 /*===========================================================================*
11815 * m_init *
11816 *===========================================================================*/
11817 PRIVATE void m_init()
11818 {
11819 /* Initialize this task. All minor devices are initialized one by one. */
11820 int i, s;
11821
11822 if (OK != (s=sys_getkinfo(&kinfo))) {
11823 panic("MEM","Couldn’t get kernel information.",s);
11824 }
11825
11826 /* Install remote segment for /dev/kmem memory. */
11827 m_geom[KMEM_DEV].dv_base = cvul64(kinfo.kmem_base);
11828 m_geom[KMEM_DEV].dv_size = cvul64(kinfo.kmem_size);
11829 if (OK != (s=sys_segctl(&m_seg[KMEM_DEV], (u16_t *) &s, (vir_bytes *) &s,
11830 kinfo.kmem_base, kinfo.kmem_size))) {
11831 panic("MEM","Couldn’t install remote segment.",s);
11832 }
11833
11834 /* Install remote segment for /dev/boot memory, if enabled. */
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11835 m_geom[BOOT_DEV].dv_base = cvul64(kinfo.bootdev_base);
11836 m_geom[BOOT_DEV].dv_size = cvul64(kinfo.bootdev_size);
11837 if (kinfo.bootdev_base > 0) {
11838 if (OK != (s=sys_segctl(&m_seg[BOOT_DEV], (u16_t *) &s, (vir_bytes *) &s,
11839 kinfo.bootdev_base, kinfo.bootdev_size))) {
11840 panic("MEM","Couldn’t install remote segment.",s);
11841 }
11842 }
11843
11844 /* Initialize /dev/zero. Simply write zeros into the buffer. */
11845 for (i=0; i<ZERO_BUF_SIZE; i++) {
11846 dev_zero[i] = ’\0’;
11847 }
11848
11849 /* Set up memory ranges for /dev/mem. */
11850 if (OK != (s=sys_getmachine(&machine))) {
11851 panic("MEM","Couldn’t get machine information.",s);
11852 }
11853 if (! machine.protected) {
11854 m_geom[MEM_DEV].dv_size = cvul64(0x100000); /* 1M for 8086 systems */
11855 } else {
11856 m_geom[MEM_DEV].dv_size = cvul64(0xFFFFFFFF); /* 4G-1 for 386 systems */
11857 }
11858 }

11860 /*===========================================================================*
11861 * m_ioctl *
11862 *===========================================================================*/
11863 PRIVATE int m_ioctl(dp, m_ptr)
11864 struct driver *dp; /* pointer to driver structure */
11865 message *m_ptr; /* pointer to control message */
11866 {
11867 /* I/O controls for the memory driver. Currently there is one I/O control:
11868 * - MIOCRAMSIZE: to set the size of the RAM disk.
11869 */
11870 struct device *dv;
11871 if ((dv = m_prepare(m_ptr->DEVICE)) == NIL_DEV) return(ENXIO);
11872
11873 switch (m_ptr->REQUEST) {
11874 case MIOCRAMSIZE: {
11875 /* FS wants to create a new RAM disk with the given size. */
11876 phys_bytes ramdev_size;
11877 phys_bytes ramdev_base;
11878 int s;
11879
11880 if (m_ptr->PROC_NR != FS_PROC_NR) {
11881 report("MEM", "warning, MIOCRAMSIZE called by", m_ptr->PROC_NR);
11882 return(EPERM);
11883 }
11884
11885 /* Try to allocate a piece of memory for the RAM disk. */
11886 ramdev_size = m_ptr->POSITION;
11887 if (allocmem(ramdev_size, &ramdev_base) < 0) {
11888 report("MEM", "warning, allocmem failed", errno);
11889 return(ENOMEM);
11890 }
11891 dv->dv_base = cvul64(ramdev_base);
11892 dv->dv_size = cvul64(ramdev_size);
11893
11894 if (OK != (s=sys_segctl(&m_seg[RAM_DEV], (u16_t *) &s, (vir_bytes *) &s,
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11895 ramdev_base, ramdev_size))) {
11896 panic("MEM","Couldn’t install remote segment.",s);
11897 }
11898 break;
11899 }
11900
11901 default:
11902 return(do_diocntl(&m_dtab, m_ptr));
11903 }
11904 return(OK);
11905 }

11907 /*===========================================================================*
11908 * m_geometry *
11909 *===========================================================================*/
11910 PRIVATE void m_geometry(entry)
11911 struct partition *entry;
11912 {
11913 /* Memory devices don’t have a geometry, but the outside world insists. */
11914 entry->cylinders = div64u(m_geom[m_device].dv_size, SECTOR_SIZE) / (64 * 32);
11915 entry->heads = 64;
11916 entry->sectors = 32;
11917 }

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
drivers/at_wini/at_wini.h

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

12000 #include "../drivers.h"
12001 #include "../libdriver/driver.h"
12002 #include "../libdriver/drvlib.h"
12003
12004 _PROTOTYPE(int main, (void));
12005
12006 #define VERBOSE 0 /* display identify messages during boot */
12007 #define ENABLE_ATAPI 0 /* add ATAPI cd-rom support to driver */

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
drivers/at_wini/at_wini.c

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

12100 /* This file contains the device dependent part of a driver for the IBM-AT
12101 * winchester controller. Written by Adri Koppes.
12102 *
12103 * The file contains one entry point:
12104 *
12105 * at_winchester_task: main entry when system is brought up
12106 *
12107 * Changes:
12108 * Aug 19, 2005 ata pci support, supports SATA (Ben Gras)
12109 * Nov 18, 2004 moved AT disk driver to user-space (Jorrit N. Herder)
12110 * Aug 20, 2004 watchdogs replaced by sync alarms (Jorrit N. Herder)
12111 * Mar 23, 2000 added ATAPI CDROM support (Michael Temari)
12112 * May 14, 2000 d-d/i rewrite (Kees J. Bot)
12113 * Apr 13, 1992 device dependent/independent split (Kees J. Bot)
12114 */
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12115
12116 #include "at_wini.h"
12117 #include "../libpci/pci.h"
12118
12119 #include <minix/sysutil.h>
12120 #include <minix/keymap.h>
12121 #include <sys/ioc_disk.h>
12122
12123 #define ATAPI_DEBUG 0 /* To debug ATAPI code. */
12124
12125 /* I/O Ports used by winchester disk controllers. */
12126
12127 /* Read and write registers */
12128 #define REG_CMD_BASE0 0x1F0 /* command base register of controller 0 */
12129 #define REG_CMD_BASE1 0x170 /* command base register of controller 1 */
12130 #define REG_CTL_BASE0 0x3F6 /* control base register of controller 0 */
12131 #define REG_CTL_BASE1 0x376 /* control base register of controller 1 */
12132
12133 #define REG_DATA 0 /* data register (offset from the base reg.) */
12134 #define REG_PRECOMP 1 /* start of write precompensation */
12135 #define REG_COUNT 2 /* sectors to transfer */
12136 #define REG_SECTOR 3 /* sector number */
12137 #define REG_CYL_LO 4 /* low byte of cylinder number */
12138 #define REG_CYL_HI 5 /* high byte of cylinder number */
12139 #define REG_LDH 6 /* lba, drive and head */
12140 #define LDH_DEFAULT 0xA0 /* ECC enable, 512 bytes per sector */
12141 #define LDH_LBA 0x40 /* Use LBA addressing */
12142 #define ldh_init(drive) (LDH_DEFAULT | ((drive) << 4))
12143
12144 /* Read only registers */
12145 #define REG_STATUS 7 /* status */
12146 #define STATUS_BSY 0x80 /* controller busy */
12147 #define STATUS_RDY 0x40 /* drive ready */
12148 #define STATUS_WF 0x20 /* write fault */
12149 #define STATUS_SC 0x10 /* seek complete (obsolete) */
12150 #define STATUS_DRQ 0x08 /* data transfer request */
12151 #define STATUS_CRD 0x04 /* corrected data */
12152 #define STATUS_IDX 0x02 /* index pulse */
12153 #define STATUS_ERR 0x01 /* error */
12154 #define STATUS_ADMBSY 0x100 /* administratively busy (software) */
12155 #define REG_ERROR 1 /* error code */
12156 #define ERROR_BB 0x80 /* bad block */
12157 #define ERROR_ECC 0x40 /* bad ecc bytes */
12158 #define ERROR_ID 0x10 /* id not found */
12159 #define ERROR_AC 0x04 /* aborted command */
12160 #define ERROR_TK 0x02 /* track zero error */
12161 #define ERROR_DM 0x01 /* no data address mark */
12162
12163 /* Write only registers */
12164 #define REG_COMMAND 7 /* command */
12165 #define CMD_IDLE 0x00 /* for w_command: drive idle */
12166 #define CMD_RECALIBRATE 0x10 /* recalibrate drive */
12167 #define CMD_READ 0x20 /* read data */
12168 #define CMD_READ_EXT 0x24 /* read data (LBA48 addressed) */
12169 #define CMD_WRITE 0x30 /* write data */
12170 #define CMD_WRITE_EXT 0x34 /* write data (LBA48 addressed) */
12171 #define CMD_READVERIFY 0x40 /* read verify */
12172 #define CMD_FORMAT 0x50 /* format track */
12173 #define CMD_SEEK 0x70 /* seek cylinder */
12174 #define CMD_DIAG 0x90 /* execute device diagnostics */
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12175 #define CMD_SPECIFY 0x91 /* specify parameters */
12176 #define ATA_IDENTIFY 0xEC /* identify drive */
12177 /* #define REG_CTL 0x206 */ /* control register */
12178 #define REG_CTL 0 /* control register */
12179 #define CTL_NORETRY 0x80 /* disable access retry */
12180 #define CTL_NOECC 0x40 /* disable ecc retry */
12181 #define CTL_EIGHTHEADS 0x08 /* more than eight heads */
12182 #define CTL_RESET 0x04 /* reset controller */
12183 #define CTL_INTDISABLE 0x02 /* disable interrupts */
12184
12185 #define REG_STATUS 7 /* status */
12186 #define STATUS_BSY 0x80 /* controller busy */
12187 #define STATUS_DRDY 0x40 /* drive ready */
12188 #define STATUS_DMADF 0x20 /* dma ready/drive fault */
12189 #define STATUS_SRVCDSC 0x10 /* service or dsc */
12190 #define STATUS_DRQ 0x08 /* data transfer request */
12191 #define STATUS_CORR 0x04 /* correctable error occurred */
12192 #define STATUS_CHECK 0x01 /* check error */
12193
12194 /* Interrupt request lines. */
12195 #define NO_IRQ 0 /* no IRQ set yet */
12196
12197 #define ATAPI_PACKETSIZE 12
12198 #define SENSE_PACKETSIZE 18
12199
12200 /* Common command block */
12201 struct command {
12202 u8_t precomp; /* REG_PRECOMP, etc. */
12203 u8_t count;
12204 u8_t sector;
12205 u8_t cyl_lo;
12206 u8_t cyl_hi;
12207 u8_t ldh;
12208 u8_t command;
12209 };
12210
12211 /* Error codes */
12212 #define ERR (-1) /* general error */
12213 #define ERR_BAD_SECTOR (-2) /* block marked bad detected */
12214
12215 /* Some controllers don’t interrupt, the clock will wake us up. */
12216 #define WAKEUP (32*HZ) /* drive may be out for 31 seconds max */
12217
12218 /* Miscellaneous. */
12219 #define MAX_DRIVES 8
12220 #define COMPAT_DRIVES 4
12221 #define MAX_SECS 256 /* controller can transfer this many sectors */
12222 #define MAX_ERRORS 4 /* how often to try rd/wt before quitting */
12223 #define NR_MINORS (MAX_DRIVES * DEV_PER_DRIVE)
12224 #define SUB_PER_DRIVE (NR_PARTITIONS * NR_PARTITIONS)
12225 #define NR_SUBDEVS (MAX_DRIVES * SUB_PER_DRIVE)
12226 #define DELAY_USECS 1000 /* controller timeout in microseconds */
12227 #define DELAY_TICKS 1 /* controller timeout in ticks */
12228 #define DEF_TIMEOUT_TICKS 300 /* controller timeout in ticks */
12229 #define RECOVERY_USECS 500000 /* controller recovery time in microseconds */
12230 #define RECOVERY_TICKS 30 /* controller recovery time in ticks */
12231 #define INITIALIZED 0x01 /* drive is initialized */
12232 #define DEAF 0x02 /* controller must be reset */
12233 #define SMART 0x04 /* drive supports ATA commands */
12234 #define ATAPI 0 /* don’t bother with ATAPI; optimise out */
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12235 #define IDENTIFIED 0x10 /* w_identify done successfully */
12236 #define IGNORING 0x20 /* w_identify failed once */
12237
12238 /* Timeouts and max retries. */
12239 int timeout_ticks = DEF_TIMEOUT_TICKS, max_errors = MAX_ERRORS;
12240 int wakeup_ticks = WAKEUP;
12241 long w_standard_timeouts = 0, w_pci_debug = 0, w_instance = 0,
12242 w_lba48 = 0, atapi_debug = 0;
12243
12244 int w_testing = 0, w_silent = 0;
12245
12246 int w_next_drive = 0;
12247
12248 /* Variables. */
12249
12250 /* wini is indexed by controller first, then drive (0-3).
12251 * controller 0 is always the ’compatability’ ide controller, at
12252 * the fixed locations, whether present or not.
12253 */
12254 PRIVATE struct wini { /* main drive struct, one entry per drive */
12255 unsigned state; /* drive state: deaf, initialized, dead */
12256 unsigned w_status; /* device status register */
12257 unsigned base_cmd; /* command base register */
12258 unsigned base_ctl; /* control base register */
12259 unsigned irq; /* interrupt request line */
12260 unsigned irq_mask; /* 1 << irq */
12261 unsigned irq_need_ack; /* irq needs to be acknowledged */
12262 int irq_hook_id; /* id of irq hook at the kernel */
12263 int lba48; /* supports lba48 */
12264 unsigned lcylinders; /* logical number of cylinders (BIOS) */
12265 unsigned lheads; /* logical number of heads */
12266 unsigned lsectors; /* logical number of sectors per track */
12267 unsigned pcylinders; /* physical number of cylinders (translated) */
12268 unsigned pheads; /* physical number of heads */
12269 unsigned psectors; /* physical number of sectors per track */
12270 unsigned ldhpref; /* top four bytes of the LDH (head) register */
12271 unsigned precomp; /* write precompensation cylinder / 4 */
12272 unsigned max_count; /* max request for this drive */
12273 unsigned open_ct; /* in-use count */
12274 struct device part[DEV_PER_DRIVE]; /* disks and partitions */
12275 struct device subpart[SUB_PER_DRIVE]; /* subpartitions */
12276 } wini[MAX_DRIVES], *w_wn;
12277
12278 PRIVATE int w_device = -1;
12279 PRIVATE int w_controller = -1;
12280 PRIVATE int w_major = -1;
12281 PRIVATE char w_id_string[40];
12282
12283 PRIVATE int win_tasknr; /* my task number */
12284 PRIVATE int w_command; /* current command in execution */
12285 PRIVATE u8_t w_byteval; /* used for SYS_IRQCTL */
12286 PRIVATE int w_drive; /* selected drive */
12287 PRIVATE int w_controller; /* selected controller */
12288 PRIVATE struct device *w_dv; /* device’s base and size */
12289
12290 FORWARD _PROTOTYPE( void init_params, (void) );
12291 FORWARD _PROTOTYPE( void init_drive, (struct wini *, int, int, int, int, int, int));
12292 FORWARD _PROTOTYPE( void init_params_pci, (int) );
12293 FORWARD _PROTOTYPE( int w_do_open, (struct driver *dp, message *m_ptr) );
12294 FORWARD _PROTOTYPE( struct device *w_prepare, (int dev) );
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12295 FORWARD _PROTOTYPE( int w_identify, (void) );
12296 FORWARD _PROTOTYPE( char *w_name, (void) );
12297 FORWARD _PROTOTYPE( int w_specify, (void) );
12298 FORWARD _PROTOTYPE( int w_io_test, (void) );
12299 FORWARD _PROTOTYPE( int w_transfer, (int proc_nr, int opcode, off_t position,
12300 iovec_t *iov, unsigned nr_req) );
12301 FORWARD _PROTOTYPE( int com_out, (struct command *cmd) );
12302 FORWARD _PROTOTYPE( void w_need_reset, (void) );
12303 FORWARD _PROTOTYPE( void ack_irqs, (unsigned int) );
12304 FORWARD _PROTOTYPE( int w_do_close, (struct driver *dp, message *m_ptr) );
12305 FORWARD _PROTOTYPE( int w_other, (struct driver *dp, message *m_ptr) );
12306 FORWARD _PROTOTYPE( int w_hw_int, (struct driver *dp, message *m_ptr) );
12307 FORWARD _PROTOTYPE( int com_simple, (struct command *cmd) );
12308 FORWARD _PROTOTYPE( void w_timeout, (void) );
12309 FORWARD _PROTOTYPE( int w_reset, (void) );
12310 FORWARD _PROTOTYPE( void w_intr_wait, (void) );
12311 FORWARD _PROTOTYPE( int at_intr_wait, (void) );
12312 FORWARD _PROTOTYPE( int w_waitfor, (int mask, int value) );
12313 FORWARD _PROTOTYPE( void w_geometry, (struct partition *entry) );
12314
12315 /* Entry points to this driver. */
12316 PRIVATE struct driver w_dtab = {
12317 w_name, /* current device’s name */
12318 w_do_open, /* open or mount request, initialize device */
12319 w_do_close, /* release device */
12320 do_diocntl, /* get or set a partition’s geometry */
12321 w_prepare, /* prepare for I/O on a given minor device */
12322 w_transfer, /* do the I/O */
12323 nop_cleanup, /* nothing to clean up */
12324 w_geometry, /* tell the geometry of the disk */
12325 nop_signal, /* no cleanup needed on shutdown */
12326 nop_alarm, /* ignore leftover alarms */
12327 nop_cancel, /* ignore CANCELs */
12328 nop_select, /* ignore selects */
12329 w_other, /* catch-all for unrecognized commands and ioctls */
12330 w_hw_int /* leftover hardware interrupts */
12331 };
12332
12333 /*===========================================================================*
12334 * at_winchester_task *
12335 *===========================================================================*/
12336 PUBLIC int main()
12337 {
12338 /* Set special disk parameters then call the generic main loop. */
12339 init_params();
12340 driver_task(&w_dtab);
12341 return(OK);
12342 }

12344 /*===========================================================================*
12345 * init_params *
12346 *===========================================================================*/
12347 PRIVATE void init_params()
12348 {
12349 /* This routine is called at startup to initialize the drive parameters. */
12350
12351 u16_t parv[2];
12352 unsigned int vector, size;
12353 int drive, nr_drives;
12354 struct wini *wn;
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12355 u8_t params[16];
12356 int s;
12357
12358 /* Boot variables. */
12359 env_parse("ata_std_timeout", "d", 0, &w_standard_timeouts, 0, 1);
12360 env_parse("ata_pci_debug", "d", 0, &w_pci_debug, 0, 1);
12361 env_parse("ata_instance", "d", 0, &w_instance, 0, 8);
12362 env_parse("ata_lba48", "d", 0, &w_lba48, 0, 1);
12363 env_parse("atapi_debug", "d", 0, &atapi_debug, 0, 1);
12364
12365 if (w_instance == 0) {
12366 /* Get the number of drives from the BIOS data area */
12367 if ((s=sys_vircopy(SELF, BIOS_SEG, NR_HD_DRIVES_ADDR,
12368 SELF, D, (vir_bytes) params, NR_HD_DRIVES_SIZE)) != OK)
12369 panic(w_name(), "Couldn’t read BIOS", s);
12370 if ((nr_drives = params[0]) > 2) nr_drives = 2;
12371
12372 for (drive = 0, wn = wini; drive < COMPAT_DRIVES; drive++, wn++) {
12373 if (drive < nr_drives) {
12374 /* Copy the BIOS parameter vector */
12375 vector = (drive == 0) ? BIOS_HD0_PARAMS_ADDR:BIOS_HD1_PARAMS_ADDR;
12376 size = (drive == 0) ? BIOS_HD0_PARAMS_SIZE:BIOS_HD1_PARAMS_SIZE;
12377 if ((s=sys_vircopy(SELF, BIOS_SEG, vector,
12378 SELF, D, (vir_bytes) parv, size)) != OK)
12379 panic(w_name(), "Couldn’t read BIOS", s);
12380
12381 /* Calculate the address of the parameters and copy them */
12382 if ((s=sys_vircopy(
12383 SELF, BIOS_SEG, hclick_to_physb(parv[1]) + parv[0],
12384 SELF, D, (phys_bytes) params, 16L))!=OK)
12385 panic(w_name(),"Couldn’t copy parameters", s);
12386
12387 /* Copy the parameters to the structures of the drive */
12388 wn->lcylinders = bp_cylinders(params);
12389 wn->lheads = bp_heads(params);
12390 wn->lsectors = bp_sectors(params);
12391 wn->precomp = bp_precomp(params) >> 2;
12392 }
12393
12394 /* Fill in non-BIOS parameters. */
12395 init_drive(wn,
12396 drive < 2 ? REG_CMD_BASE0 : REG_CMD_BASE1,
12397 drive < 2 ? REG_CTL_BASE0 : REG_CTL_BASE1,
12398 NO_IRQ, 0, 0, drive);
12399 w_next_drive++;
12400 }
12401 }
12402
12403 /* Look for controllers on the pci bus. Skip none the first instance,
12404 * skip one and then 2 for every instance, for every next instance.
12405 */
12406 if (w_instance == 0)
12407 init_params_pci(0);
12408 else
12409 init_params_pci(w_instance*2-1);
12410
12411 }

12413 #define ATA_IF_NOTCOMPAT1 (1L << 0)
12414 #define ATA_IF_NOTCOMPAT2 (1L << 2)
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12415
12416 /*===========================================================================*
12417 * init_drive *
12418 *===========================================================================*/
12419 PRIVATE void init_drive(struct wini *w int base_cmd int base_ctl int irq int ack ...
12420 {
12421 w->state = 0;
12422 w->w_status = 0;
12423 w->base_cmd = base_cmd;
12424 w->base_ctl = base_ctl;
12425 w->irq = irq;
12426 w->irq_mask = 1 << irq;
12427 w->irq_need_ack = ack;
12428 w->irq_hook_id = hook;
12429 w->ldhpref = ldh_init(drive);
12430 w->max_count = MAX_SECS << SECTOR_SHIFT;
12431 w->lba48 = 0;
12432 }

12434 /*===========================================================================*
12435 * init_params_pci *
12436 *===========================================================================*/
12437 PRIVATE void init_params_pci(int skip)
12438 {
12439 int r, devind, drive;
12440 u16_t vid, did;
12441 pci_init();
12442 for(drive = w_next_drive; drive < MAX_DRIVES; drive++)
12443 wini[drive].state = IGNORING;
12444 for(r = pci_first_dev(&devind, &vid, &did);
12445 r!=0&&w_next_drive<MAX_DRIVES; r=pci_next_dev(&devind,&vid, &did)) {
12446 int interface, irq, irq_hook;
12447 /* Base class must be 01h (mass storage), subclass must
12448 * be 01h (ATA).
12449 */
12450 if (pci_attr_r8(devind, PCI_BCR) != 0x01 ||
12451 pci_attr_r8(devind, PCI_SCR) != 0x01) {
12452 continue;
12453 }
12454 /* Found a controller.
12455 * Programming interface register tells us more.
12456 */
12457 interface = pci_attr_r8(devind, PCI_PIFR);
12458 irq = pci_attr_r8(devind, PCI_ILR);
12459
12460 /* Any non-compat drives? */
12461 if (interface & (ATA_IF_NOTCOMPAT1 | ATA_IF_NOTCOMPAT2)) {
12462 int s;
12463 irq_hook = irq;
12464 if (skip > 0) {
12465 if(w_pci_debug)printf("atapci skipping contr. (remain %d)\n",skip);
12466 skip--;
12467 continue;
12468 }
12469 if ((s=sys_irqsetpolicy(irq, 0, &irq_hook)) != OK) {
12470 printf("atapci: couldn’t set IRQ policy %d\n", irq);
12471 continue;
12472 }
12473 if ((s=sys_irqenable(&irq_hook)) != OK) {
12474 printf("atapci: couldn’t enable IRQ line %d\n", irq);
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12475 continue;
12476 }
12477 } else {
12478 /* If not.. this is not the ata-pci controller we’re
12479 * looking for.
12480 */
12481 if (w_pci_debug) printf("atapci skipping compatability controller\n");
12482 continue;
12483 }
12484
12485 /* Primary channel not in compatability mode? */
12486 if (interface & ATA_IF_NOTCOMPAT1) {
12487 u32_t base_cmd, base_ctl;
12488 base_cmd = pci_attr_r32(devind, PCI_BAR) & 0xffffffe0;
12489 base_ctl = pci_attr_r32(devind, PCI_BAR_2) & 0xffffffe0;
12490 if (base_cmd != REG_CMD_BASE0 && base_cmd != REG_CMD_BASE1) {
12491 init_drive(&wini[w_next_drive],
12492 base_cmd, base_ctl, irq, 1, irq_hook, 0);
12493 init_drive(&wini[w_next_drive+1],
12494 base_cmd, base_ctl, irq, 1, irq_hook, 1);
12495 if (w_pci_debug)
12496 printf("atapci %d: 0x%x 0x%x irq %d\n",devind,base_cmd,base_ctl,irq)
12497 } else printf("atapci: ignored drives on pri, base: %x\n",base_cmd);
12498 }
12499
12500 /* Secondary channel not in compatability mode? */
12501 if (interface & ATA_IF_NOTCOMPAT2) {
12502 u32_t base_cmd, base_ctl;
12503 base_cmd = pci_attr_r32(devind, PCI_BAR_3) & 0xffffffe0;
12504 base_ctl = pci_attr_r32(devind, PCI_BAR_4) & 0xffffffe0;
12505 if (base_cmd != REG_CMD_BASE0 && base_cmd != REG_CMD_BASE1) {
12506 init_drive(&wini[w_next_drive+2],
12507 base_cmd, base_ctl, irq, 1, irq_hook, 2);
12508 init_drive(&wini[w_next_drive+3],
12509 base_cmd, base_ctl, irq, 1, irq_hook, 3);
12510 if (w_pci_debug)
12511 printf("atapci %d: 0x%x 0x%x irq %d\n",devind,base_cmd,base_ctl,irq);
12512 } else printf("atapci: ignored drives on secondary %x\n", base_cmd);
12513 }
12514 w_next_drive += 4;
12515 }
12516 }

12518 /*===========================================================================*
12519 * w_do_open *
12520 *===========================================================================*/
12521 PRIVATE int w_do_open(dp, m_ptr)
12522 struct driver *dp;
12523 message *m_ptr;
12524 {
12525 /* Device open: Initialize the controller and read the partition table. */
12526
12527 struct wini *wn;
12528
12529 if (w_prepare(m_ptr->DEVICE) == NIL_DEV) return(ENXIO);
12530
12531 wn = w_wn;
12532
12533 /* If we’ve probed it before and it failed, don’t probe it again. */
12534 if (wn->state & IGNORING) return ENXIO;
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12535
12536 /* If we haven’t identified it yet, or it’s gone deaf,
12537 * (re-)identify it.
12538 */
12539 if (!(wn->state & IDENTIFIED) || (wn->state & DEAF)) {
12540 /* Try to identify the device. */
12541 if (w_identify() != OK) {
12542 if (wn->state & DEAF) w_reset();
12543 wn->state = IGNORING;
12544 return(ENXIO);
12545 }
12546 /* Do a test transaction unless it’s a CD drive (then
12547 * we can believe the controller, and a test may fail
12548 * due to no CD being in the drive). If it fails, ignore
12549 * the device forever.
12550 */
12551 if (!(wn->state & ATAPI) && w_io_test() != OK) {
12552 wn->state |= IGNORING;
12553 return(ENXIO);
12554 }
12555 }
12556
12557 /* If it’s not an ATAPI device, then don’t open with RO_BIT. */
12558 if (!(wn->state & ATAPI) && (m_ptr->COUNT & RO_BIT)) return EACCES;
12559
12560 /* Partition the drive if it’s being opened for the first time,
12561 * or being opened after being closed.
12562 */
12563 if (wn->open_ct == 0) {
12564
12565 /* Partition the disk. */
12566 memset(wn->part, sizeof(wn->part), 0);
12567 memset(wn->subpart, sizeof(wn->subpart), 0);
12568 partition(&w_dtab, w_drive * DEV_PER_DRIVE, P_PRIMARY, wn->state & ATAPI);
12569 }
12570 wn->open_ct++;
12571 return(OK);
12572 }

12574 /*===========================================================================*
12575 * w_prepare *
12576 *===========================================================================*/
12577 PRIVATE struct device *w_prepare(int device)
12578 {
12579 /* Prepare for I/O on a device. */
12580 struct wini *prev_wn;
12581 prev_wn = w_wn;
12582 w_device = device;
12583
12584 if (device < NR_MINORS) { /* d0, d0p[0-3], d1, ... */
12585 w_drive = device / DEV_PER_DRIVE; /* save drive number */
12586 w_wn = &wini[w_drive];
12587 w_dv = &w_wn->part[device % DEV_PER_DRIVE];
12588 } else
12589 if ((unsigned) (device -= MINOR_d0p0s0) < NR_SUBDEVS) {/*d[0-7]p[0-3]s[0-3]*/
12590 w_drive = device / SUB_PER_DRIVE;
12591 w_wn = &wini[w_drive];
12592 w_dv = &w_wn->subpart[device % SUB_PER_DRIVE];
12593 } else {
12594 w_device = -1;
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12595 return(NIL_DEV);
12596 }
12597 return(w_dv);
12598 }

12600 /*===========================================================================*
12601 * w_identify *
12602 *===========================================================================*/
12603 PRIVATE int w_identify()
12604 {
12605 /* Find out if a device exists, if it is an old AT disk, or a newer ATA
12606 * drive, a removable media device, etc.
12607 */
12608
12609 struct wini *wn = w_wn;
12610 struct command cmd;
12611 int i, s;
12612 unsigned long size;
12613 #define id_byte(n) (&tmp_buf[2 * (n)])
12614 #define id_word(n) (((u16_t) id_byte(n)[0] << 0) \
12615 |((u16_t) id_byte(n)[1] << 8))
12616 #define id_longword(n) (((u32_t) id_byte(n)[0] << 0) \
12617 |((u32_t) id_byte(n)[1] << 8) \
12618 |((u32_t) id_byte(n)[2] << 16) \
12619 |((u32_t) id_byte(n)[3] << 24))
12620
12621 /* Try to identify the device. */
12622 cmd.ldh = wn->ldhpref;
12623 cmd.command = ATA_IDENTIFY;
12624 if (com_simple(&cmd) == OK) {
12625 /* This is an ATA device. */
12626 wn->state |= SMART;
12627
12628 /* Device information. */
12629 if ((s=sys_insw(wn->base_cmd + REG_DATA, SELF, tmp_buf, SECTOR_SIZE)) != OK)
12630 panic(w_name(),"Call to sys_insw() failed", s);
12631
12632 /* Why are the strings byte swapped??? */
12633 for (i = 0; i < 40; i++) w_id_string[i] = id_byte(27)[iˆ1];
12634
12635 /* Preferred CHS translation mode. */
12636 wn->pcylinders = id_word(1);
12637 wn->pheads = id_word(3);
12638 wn->psectors = id_word(6);
12639 size = (u32_t) wn->pcylinders * wn->pheads * wn->psectors;
12640
12641 if ((id_byte(49)[1] & 0x02) && size > 512L*1024*2) {
12642 /* Drive is LBA capable and is big enough to trust it to
12643 * not make a mess of it.
12644 */
12645 wn->ldhpref |= LDH_LBA;
12646 size = id_longword(60);
12647
12648 if (w_lba48 && ((id_word(83)) & (1L << 10))) {
12649 /* Drive is LBA48 capable (and LBA48 is turned on). */
12650 if (id_word(102) || id_word(103)) {
12651 /* If no. of sectors doesn’t fit in 32 bits,
12652 * trunacte to this. So it’s LBA32 for now.
12653 * This can still address devices up to 2TB
12654 * though.
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12655 */
12656 size = ULONG_MAX;
12657 } else {
12658 /* Actual number of sectors fits in 32 bits. */
12659 size = id_longword(100);
12660 }
12661
12662 wn->lba48 = 1;
12663 }
12664 }
12665
12666 if (wn->lcylinders == 0) {
12667 /* No BIOS parameters? Then make some up. */
12668 wn->lcylinders = wn->pcylinders;
12669 wn->lheads = wn->pheads;
12670 wn->lsectors = wn->psectors;
12671 while (wn->lcylinders > 1024) {
12672 wn->lheads *= 2;
12673 wn->lcylinders /= 2;
12674 }
12675 }
12676 } else {
12677 /* Not an ATA device; no translations, no special features. Don’t
12678 * touch it unless the BIOS knows about it.
12679 */
12680 if (wn->lcylinders == 0) { return(ERR); } /* no BIOS parameters */
12681 wn->pcylinders = wn->lcylinders;
12682 wn->pheads = wn->lheads;
12683 wn->psectors = wn->lsectors;
12684 size = (u32_t) wn->pcylinders * wn->pheads * wn->psectors;
12685 }
12686
12687 /* Size of the whole drive */
12688 wn->part[0].dv_size = mul64u(size, SECTOR_SIZE);
12689
12690 /* Reset/calibrate (where necessary) */
12691 if (w_specify() != OK && w_specify() != OK) {
12692 return(ERR);
12693 }
12694
12695 if (wn->irq == NO_IRQ) {
12696 /* Everything looks OK; register IRQ so we can stop polling. */
12697 wn->irq = w_drive < 2 ? AT_WINI_0_IRQ : AT_WINI_1_IRQ;
12698 wn->irq_hook_id = wn->irq; /* id to be returned if interrupt occurs */
12699 if ((s=sys_irqsetpolicy(wn->irq, IRQ_REENABLE, &wn->irq_hook_id)) != OK)
12700 panic(w_name(), "couldn’t set IRQ policy", s);
12701 if ((s=sys_irqenable(&wn->irq_hook_id)) != OK)
12702 panic(w_name(), "couldn’t enable IRQ line", s);
12703 }
12704 wn->state |= IDENTIFIED;
12705 return(OK);
12706 }

12708 /*===========================================================================*
12709 * w_name *
12710 *===========================================================================*/
12711 PRIVATE char *w_name()
12712 {
12713 /* Return a name for the current device. */
12714 static char name[] = "AT-D0";
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12715
12716 name[4] = ’0’ + w_drive;
12717 return name;
12718 }

12720 /*===========================================================================*
12721 * w_io_test *
12722 *===========================================================================*/
12723 PRIVATE int w_io_test(void)
12724 {
12725 int r, save_dev;
12726 int save_timeout, save_errors, save_wakeup;
12727 iovec_t iov;
12728 static char buf[SECTOR_SIZE];
12729 iov.iov_addr = (vir_bytes) buf;
12730 iov.iov_size = sizeof(buf);
12731 save_dev = w_device;
12732
12733 /* Reduce timeout values for this test transaction. */
12734 save_timeout = timeout_ticks;
12735 save_errors = max_errors;
12736 save_wakeup = wakeup_ticks;
12737
12738 if (!w_standard_timeouts) {
12739 timeout_ticks = HZ * 4;
12740 wakeup_ticks = HZ * 6;
12741 max_errors = 3;
12742 }
12743
12744 w_testing = 1;
12745
12746 /* Try I/O on the actual drive (not any (sub)partition). */
12747 if (w_prepare(w_drive * DEV_PER_DRIVE) == NIL_DEV)
12748 panic(w_name(), "Couldn’t switch devices", NO_NUM);
12749
12750 r = w_transfer(SELF, DEV_GATHER, 0, &iov, 1);
12751
12752 /* Switch back. */
12753 if (w_prepare(save_dev) == NIL_DEV)
12754 panic(w_name(), "Couldn’t switch back devices", NO_NUM);
12755
12756 /* Restore parameters. */
12757 timeout_ticks = save_timeout;
12758 max_errors = save_errors;
12759 wakeup_ticks = save_wakeup;
12760 w_testing = 0;
12761
12762 /* Test if everything worked. */
12763 if (r != OK || iov.iov_size != 0) {
12764 return ERR;
12765 }
12766
12767 /* Everything worked. */
12768
12769 return OK;
12770 }
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12772 /*===========================================================================*
12773 * w_specify *
12774 *===========================================================================*/
12775 PRIVATE int w_specify()
12776 {
12777 /* Routine to initialize the drive after boot or when a reset is needed. */
12778
12779 struct wini *wn = w_wn;
12780 struct command cmd;
12781
12782 if ((wn->state & DEAF) && w_reset() != OK) {
12783 return(ERR);
12784 }
12785
12786 if (!(wn->state & ATAPI)) {
12787 /* Specify parameters: precompensation, number of heads and sectors. */
12788 cmd.precomp = wn->precomp;
12789 cmd.count = wn->psectors;
12790 cmd.ldh = w_wn->ldhpref | (wn->pheads - 1);
12791 cmd.command = CMD_SPECIFY; /* Specify some parameters */
12792
12793 /* Output command block and see if controller accepts the parameters. */
12794 if (com_simple(&cmd) != OK) return(ERR);
12795
12796 if (!(wn->state & SMART)) {
12797 /* Calibrate an old disk. */
12798 cmd.sector = 0;
12799 cmd.cyl_lo = 0;
12800 cmd.cyl_hi = 0;
12801 cmd.ldh = w_wn->ldhpref;
12802 cmd.command = CMD_RECALIBRATE;
12803
12804 if (com_simple(&cmd) != OK) return(ERR);
12805 }
12806 }
12807 wn->state |= INITIALIZED;
12808 return(OK);
12809 }

12811 /*===========================================================================*
12812 * do_transfer *
12813 *===========================================================================*/
12814 PRIVATE int do_transfer(struct wini *wn, unsigned int precomp, unsigned int count,
12815 unsigned int sector, unsigned int opcode)
12816 {
12817 struct command cmd;
12818 unsigned secspcyl = wn->pheads * wn->psectors;
12819
12820 cmd.precomp = precomp;
12821 cmd.count = count;
12822 cmd.command = opcode == DEV_SCATTER ? CMD_WRITE : CMD_READ;
12823 /*
12824 if (w_lba48 && wn->lba48) {
12825 } else */
12826 if (wn->ldhpref & LDH_LBA) {
12827 cmd.sector = (sector >> 0) & 0xFF;
12828 cmd.cyl_lo = (sector >> 8) & 0xFF;
12829 cmd.cyl_hi = (sector >> 16) & 0xFF;
12830 cmd.ldh = wn->ldhpref | ((sector >> 24) & 0xF);
12831 } else {
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12832 int cylinder, head, sec;
12833 cylinder = sector / secspcyl;
12834 head = (sector % secspcyl) / wn->psectors;
12835 sec = sector % wn->psectors;
12836 cmd.sector = sec + 1;
12837 cmd.cyl_lo = cylinder & BYTE;
12838 cmd.cyl_hi = (cylinder >> 8) & BYTE;
12839 cmd.ldh = wn->ldhpref | head;
12840 }
12841
12842 return com_out(&cmd);
12843 }

12845 /*===========================================================================*
12846 * w_transfer *
12847 *===========================================================================*/
12848 PRIVATE int w_transfer(proc_nr, opcode, position, iov, nr_req)
12849 int proc_nr; /* process doing the request */
12850 int opcode; /* DEV_GATHER or DEV_SCATTER */
12851 off_t position; /* offset on device to read or write */
12852 iovec_t *iov; /* pointer to read or write request vector */
12853 unsigned nr_req; /* length of request vector */
12854 {
12855 struct wini *wn = w_wn;
12856 iovec_t *iop, *iov_end = iov + nr_req;
12857 int r, s, errors;
12858 unsigned long block;
12859 unsigned long dv_size = cv64ul(w_dv->dv_size);
12860 unsigned cylinder, head, sector, nbytes;
12861
12862 /* Check disk address. */
12863 if ((position & SECTOR_MASK) != 0) return(EINVAL);
12864
12865 errors = 0;
12866
12867 while (nr_req > 0) {
12868 /* How many bytes to transfer? */
12869 nbytes = 0;
12870 for (iop = iov; iop < iov_end; iop++) nbytes += iop->iov_size;
12871 if ((nbytes & SECTOR_MASK) != 0) return(EINVAL);
12872
12873 /* Which block on disk and how close to EOF? */
12874 if (position >= dv_size) return(OK); /* At EOF */
12875 if (position + nbytes > dv_size) nbytes = dv_size - position;
12876 block = div64u(add64ul(w_dv->dv_base, position), SECTOR_SIZE);
12877
12878 if (nbytes >= wn->max_count) {
12879 /* The drive can’t do more then max_count at once. */
12880 nbytes = wn->max_count;
12881 }
12882
12883 /* First check to see if a reinitialization is needed. */
12884 if (!(wn->state & INITIALIZED) && w_specify() != OK) return(EIO);
12885
12886 /* Tell the controller to transfer nbytes bytes. */
12887 r = do_transfer(wn, wn->precomp, ((nbytes >> SECTOR_SHIFT) & BYTE),
12888 block, opcode);
12889
12890 while (r == OK && nbytes > 0) {
12891 /* For each sector, wait for an interrupt and fetch the data
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12892 * (read), or supply data to the controller and wait for an
12893 * interrupt (write).
12894 */
12895
12896 if (opcode == DEV_GATHER) {
12897 /* First an interrupt, then data. */
12898 if ((r = at_intr_wait()) != OK) {
12899 /* An error, send data to the bit bucket. */
12900 if (w_wn->w_status & STATUS_DRQ) {
12901 if ((s=sys_insw(wn->base_cmd + REG_DATA, SELF, tmp_buf, SECTOR_SIZE)) != OK)
12902 panic(w_name(),"Call to sys_insw() failed", s);
12903 }
12904 break;
12905 }
12906 }
12907
12908 /* Wait for data transfer requested. */
12909 if (!w_waitfor(STATUS_DRQ, STATUS_DRQ)) { r = ERR; break; }
12910
12911 /* Copy bytes to or from the device’s buffer. */
12912 if (opcode == DEV_GATHER) { if((s=sys_insw(wn->base_cmd+REG_DATA,
12913 proc_nr,(void*)iov->iov_addr,SECTOR_SIZE))!=OK)
12914 panic(w_name(),"Call to sys_insw() failed", s);
12915 } else { if((s=sys_outsw(wn->base_cmd+REG_DATA,proc_nr,
12916 (void *) iov->iov_addr,SECTOR_SIZE))!=OK)
12917 panic(w_name(),"Call to sys_insw() failed", s);
12918
12919 /* Data sent, wait for an interrupt. */
12920 if ((r = at_intr_wait()) != OK) break;
12921 }
12922
12923 /* Book the bytes successfully transferred. */
12924 nbytes -= SECTOR_SIZE;
12925 position += SECTOR_SIZE;
12926 iov->iov_addr += SECTOR_SIZE;
12927 if ((iov->iov_size -= SECTOR_SIZE) == 0) { iov++; nr_req--; }
12928 }
12929
12930 /* Any errors? */
12931 if (r != OK) {
12932 /* Don’t retry if sector marked bad or too many errors. */
12933 if (r == ERR_BAD_SECTOR || ++errors == max_errors) {
12934 w_command = CMD_IDLE;
12935 return(EIO);
12936 }
12937 }
12938 }
12939
12940 w_command = CMD_IDLE;
12941 return(OK);
12942 }

12944 /*===========================================================================*
12945 * com_out *
12946 *===========================================================================*/
12947 PRIVATE int com_out(cmd)
12948 struct command *cmd; /* Command block */
12949 {
12950 /* Output the command block to the winchester controller and return status */
12951
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12952 struct wini *wn = w_wn;
12953 unsigned base_cmd = wn->base_cmd;
12954 unsigned base_ctl = wn->base_ctl;
12955 pvb_pair_t outbyte[7]; /* vector for sys_voutb() */
12956 int s; /* status for sys_(v)outb() */
12957
12958 if (w_wn->state & IGNORING) return ERR;
12959
12960 if (!w_waitfor(STATUS_BSY, 0)) {
12961 printf("%s: controller not ready\n", w_name());
12962 return(ERR);
12963 }
12964
12965 /* Select drive. */
12966 if ((s=sys_outb(base_cmd + REG_LDH, cmd->ldh)) != OK)
12967 panic(w_name(),"Couldn’t write register to select drive",s);
12968
12969 if (!w_waitfor(STATUS_BSY, 0)) {
12970 printf("%s: com_out: drive not ready\n", w_name());
12971 return(ERR);
12972 }
12973
12974 /* Schedule a wakeup call, some controllers are flaky. This is done with
12975 * a synchronous alarm. If a timeout occurs a SYN_ALARM message is sent
12976 * from HARDWARE, so that w_intr_wait() can call w_timeout() in case the
12977 * controller was not able to execute the command. Leftover timeouts are
12978 * simply ignored by the main loop.
12979 */
12980 sys_setalarm(wakeup_ticks, 0);
12981
12982 wn->w_status = STATUS_ADMBSY;
12983 w_command = cmd->command;
12984 pv_set(outbyte[0], base_ctl + REG_CTL, wn->pheads >= 8 ? CTL_EIGHTHEADS : 0);
12985 pv_set(outbyte[1], base_cmd + REG_PRECOMP, cmd->precomp);
12986 pv_set(outbyte[2], base_cmd + REG_COUNT, cmd->count);
12987 pv_set(outbyte[3], base_cmd + REG_SECTOR, cmd->sector);
12988 pv_set(outbyte[4], base_cmd + REG_CYL_LO, cmd->cyl_lo);
12989 pv_set(outbyte[5], base_cmd + REG_CYL_HI, cmd->cyl_hi);
12990 pv_set(outbyte[6], base_cmd + REG_COMMAND, cmd->command);
12991 if ((s=sys_voutb(outbyte,7)) != OK)
12992 panic(w_name(),"Couldn’t write registers with sys_voutb()",s);
12993 return(OK);
12994 }

12996 /*===========================================================================*
12997 * w_need_reset *
12998 *===========================================================================*/
12999 PRIVATE void w_need_reset()
13000 {
13001 /* The controller needs to be reset. */
13002 struct wini *wn;
13003 int dr = 0;
13004
13005 for (wn = wini; wn < &wini[MAX_DRIVES]; wn++, dr++) {
13006 if (wn->base_cmd == w_wn->base_cmd) {
13007 wn->state |= DEAF;
13008 wn->state &= ˜INITIALIZED;
13009 }
13010 }
13011 }



MINIX SOURCE CODE File: drivers/at_wini/at_wini.c 803

13013 /*===========================================================================*
13014 * w_do_close *
13015 *===========================================================================*/
13016 PRIVATE int w_do_close(dp, m_ptr)
13017 struct driver *dp;
13018 message *m_ptr;
13019 {
13020 /* Device close: Release a device. */
13021 if (w_prepare(m_ptr->DEVICE) == NIL_DEV)
13022 return(ENXIO);
13023 w_wn->open_ct--;
13024 return(OK);
13025 }

13027 /*===========================================================================*
13028 * com_simple *
13029 *===========================================================================*/
13030 PRIVATE int com_simple(cmd)
13031 struct command *cmd; /* Command block */
13032 {
13033 /* A simple controller command, only one interrupt and no data-out phase. */
13034 int r;
13035
13036 if (w_wn->state & IGNORING) return ERR;
13037
13038 if ((r = com_out(cmd)) == OK) r = at_intr_wait();
13039 w_command = CMD_IDLE;
13040 return(r);
13041 }

13043 /*===========================================================================*
13044 * w_timeout *
13045 *===========================================================================*/
13046 PRIVATE void w_timeout(void)
13047 {
13048 struct wini *wn = w_wn;
13049
13050 switch (w_command) {
13051 case CMD_IDLE:
13052 break; /* fine */
13053 case CMD_READ:
13054 case CMD_WRITE:
13055 /* Impossible, but not on PC’s: The controller does not respond. */
13056
13057 /* Limiting multisector I/O seems to help. */
13058 if (wn->max_count > 8 * SECTOR_SIZE) {
13059 wn->max_count = 8 * SECTOR_SIZE;
13060 } else {
13061 wn->max_count = SECTOR_SIZE;
13062 }
13063 /*FALL THROUGH*/
13064 default:
13065 /* Some other command. */
13066 if (w_testing) wn->state |= IGNORING; /* Kick out this drive. */
13067 else if (!w_silent) printf("%s: timeout on command %02x\n", w_name(), w_command);
13068 w_need_reset();
13069 wn->w_status = 0;
13070 }
13071 }
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13073 /*===========================================================================*
13074 * w_reset *
13075 *===========================================================================*/
13076 PRIVATE int w_reset()
13077 {
13078 /* Issue a reset to the controller. This is done after any catastrophe,
13079 * like the controller refusing to respond.
13080 */
13081 int s;
13082 struct wini *wn = w_wn;
13083
13084 /* Don’t bother if this drive is forgotten. */
13085 if (w_wn->state & IGNORING) return ERR;
13086
13087 /* Wait for any internal drive recovery. */
13088 tickdelay(RECOVERY_TICKS);
13089
13090 /* Strobe reset bit */
13091 if ((s=sys_outb(wn->base_ctl + REG_CTL, CTL_RESET)) != OK)
13092 panic(w_name(),"Couldn’t strobe reset bit",s);
13093 tickdelay(DELAY_TICKS);
13094 if ((s=sys_outb(wn->base_ctl + REG_CTL, 0)) != OK)
13095 panic(w_name(),"Couldn’t strobe reset bit",s);
13096 tickdelay(DELAY_TICKS);
13097
13098 /* Wait for controller ready */
13099 if (!w_waitfor(STATUS_BSY, 0)) {
13100 printf("%s: reset failed, drive busy\n", w_name());
13101 return(ERR);
13102 }
13103
13104 /* The error register should be checked now, but some drives mess it up. */
13105
13106 for (wn = wini; wn < &wini[MAX_DRIVES]; wn++) {
13107 if (wn->base_cmd == w_wn->base_cmd) {
13108 wn->state &= ˜DEAF;
13109 if (w_wn->irq_need_ack) {
13110 /* Make sure irq is actually enabled.. */
13111 sys_irqenable(&w_wn->irq_hook_id);
13112 }
13113 }
13114 }
13115
13116
13117 return(OK);
13118 }

13120 /*===========================================================================*
13121 * w_intr_wait *
13122 *===========================================================================*/
13123 PRIVATE void w_intr_wait()
13124 {
13125 /* Wait for a task completion interrupt. */
13126
13127 message m;
13128
13129 if (w_wn->irq != NO_IRQ) {
13130 /* Wait for an interrupt that sets w_status to "not busy". */
13131 while (w_wn->w_status & (STATUS_ADMBSY|STATUS_BSY)) {



MINIX SOURCE CODE File: drivers/at_wini/at_wini.c 805

13132 receive(ANY, &m); /* expect HARD_INT message */
13133 if (m.m_type == SYN_ALARM) { /* but check for timeout */
13134 w_timeout(); /* a.o. set w_status */
13135 } else if (m.m_type == HARD_INT) {
13136 sys_inb(w_wn->base_cmd + REG_STATUS, &w_wn->w_status);
13137 ack_irqs(m.NOTIFY_ARG);
13138 } else {
13139 printf("AT_WINI got unexpected message %d from %d\n",
13140 m.m_type, m.m_source);
13141 }
13142 }
13143 } else {
13144 /* Interrupt not yet allocated; use polling. */
13145 (void) w_waitfor(STATUS_BSY, 0);
13146 }
13147 }

13149 /*===========================================================================*
13150 * at_intr_wait *
13151 *===========================================================================*/
13152 PRIVATE int at_intr_wait()
13153 {
13154 /* Wait for an interrupt, study the status bits and return error/success. */
13155 int r;
13156 int s,inbval; /* read value with sys_inb */
13157
13158 w_intr_wait();
13159 if ((w_wn->w_status & (STATUS_BSY | STATUS_WF | STATUS_ERR)) == 0) {
13160 r = OK;
13161 } else {
13162 if ((s=sys_inb(w_wn->base_cmd + REG_ERROR, &inbval)) != OK)
13163 panic(w_name(),"Couldn’t read register",s);
13164 if ((w_wn->w_status & STATUS_ERR) && (inbval & ERROR_BB)) {
13165 r = ERR_BAD_SECTOR; /* sector marked bad, retries won’t help */
13166 } else {
13167 r = ERR; /* any other error */
13168 }
13169 }
13170 w_wn->w_status |= STATUS_ADMBSY; /* assume still busy with I/O */
13171 return(r);
13172 }

13174 /*===========================================================================*
13175 * w_waitfor *
13176 *===========================================================================*/
13177 PRIVATE int w_waitfor(mask, value)
13178 int mask; /* status mask */
13179 int value; /* required status */
13180 {
13181 /* Wait until controller is in the required state. Return zero on timeout.
13182 * An alarm that set a timeout flag is used. TIMEOUT is in micros, we need
13183 * ticks. Disabling the alarm is not needed, because a static flag is used
13184 * and a leftover timeout cannot do any harm.
13185 */
13186 clock_t t0, t1;
13187 int s;
13188 getuptime(&t0);
13189 do {
13190 if ((s=sys_inb(w_wn->base_cmd + REG_STATUS, &w_wn->w_status)) != OK)
13191 panic(w_name(),"Couldn’t read register",s);
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13192 if ((w_wn->w_status & mask) == value) {
13193 return 1;
13194 }
13195 } while ((s=getuptime(&t1)) == OK && (t1-t0) < timeout_ticks );
13196 if (OK != s) printf("AT_WINI: warning, get_uptime failed: %d\n",s);
13197
13198 w_need_reset(); /* controller gone deaf */
13199 return(0);
13200 }

13202 /*===========================================================================*
13203 * w_geometry *
13204 *===========================================================================*/
13205 PRIVATE void w_geometry(entry)
13206 struct partition *entry;
13207 {
13208 struct wini *wn = w_wn;
13209
13210 if (wn->state & ATAPI) { /* Make up some numbers. */
13211 entry->cylinders = div64u(wn->part[0].dv_size, SECTOR_SIZE) / (64*32);
13212 entry->heads = 64;
13213 entry->sectors = 32;
13214 } else { /* Return logical geometry. */
13215 entry->cylinders = wn->lcylinders;
13216 entry->heads = wn->lheads;
13217 entry->sectors = wn->lsectors;
13218 }
13219 }

13221 /*===========================================================================*
13222 * w_other *
13223 *===========================================================================*/
13224 PRIVATE int w_other(dr, m)
13225 struct driver *dr;
13226 message *m;
13227 {
13228 int r, timeout, prev;
13229
13230 if (m->m_type != DEV_IOCTL ) {
13231 return EINVAL;
13232 }
13233
13234 if (m->REQUEST == DIOCTIMEOUT) {
13235 if ((r=sys_datacopy(m->PROC_NR, (vir_bytes)m->ADDRESS,
13236 SELF, (vir_bytes)&timeout, sizeof(timeout))) != OK)
13237 return r;
13238
13239 if (timeout == 0) {
13240 /* Restore defaults. */
13241 timeout_ticks = DEF_TIMEOUT_TICKS;
13242 max_errors = MAX_ERRORS;
13243 wakeup_ticks = WAKEUP;
13244 w_silent = 0;
13245 } else if (timeout < 0) {
13246 return EINVAL;
13247 } else {
13248 prev = wakeup_ticks;
13249
13250 if (!w_standard_timeouts) {
13251 /* Set (lower) timeout, lower error
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13252 * tolerance and set silent mode.
13253 */
13254 wakeup_ticks = timeout;
13255 max_errors = 3;
13256 w_silent = 1;
13257
13258 if (timeout_ticks > timeout)
13259 timeout_ticks = timeout;
13260 }
13261
13262 if ((r=sys_datacopy(SELF, (vir_bytes)&prev,
13263 m->PROC_NR,(vir_bytes)m->ADDRESS,sizeof(prev)))!=OK)
13264 return r;
13265 }
13266
13267 return OK;
13268 } else if (m->REQUEST == DIOCOPENCT) {
13269 int count;
13270 if (w_prepare(m->DEVICE) == NIL_DEV) return ENXIO;
13271 count = w_wn->open_ct;
13272 if ((r=sys_datacopy(SELF, (vir_bytes)&count,
13273 m->PROC_NR, (vir_bytes)m->ADDRESS, sizeof(count))) != OK)
13274 return r;
13275 return OK;
13276 }
13277 return EINVAL;
13278 }

13280 /*===========================================================================*
13281 * w_hw_int *
13282 *===========================================================================*/
13283 PRIVATE int w_hw_int(dr, m)
13284 struct driver *dr;
13285 message *m;
13286 {
13287 /* Leftover interrupt(s) received; ack it/them. */
13288 ack_irqs(m->NOTIFY_ARG);
13289
13290 return OK;
13291 }

13294 /*===========================================================================*
13295 * ack_irqs *
13296 *===========================================================================*/
13297 PRIVATE void ack_irqs(unsigned int irqs)
13298 {
13299 unsigned int drive;
13300 for (drive = 0; drive < MAX_DRIVES && irqs; drive++) {
13301 if (!(wini[drive].state & IGNORING) && wini[drive].irq_need_ack &&
13302 (wini[drive].irq_mask & irqs)) {
13303 if (sys_inb((wini[drive].base_cmd+REG_STATUS),&wini[drive].w_status)!=OK)
13304 printf("couldn’t ack irq on drive %d\n", drive);
13305 if (sys_irqenable(&wini[drive].irq_hook_id) != OK)
13306 printf("couldn’t re-enable drive %d\n", drive);
13307 irqs &= ˜wini[drive].irq_mask;
13308 }
13309 }
13310 }
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13313 #define STSTR(a) if (status & STATUS_ ## a) { strcat(str, #a); strcat(str, " "); }
13314 #define ERRSTR(a) if (e & ERROR_ ## a) { strcat(str, #a); strcat(str, " "); }
13315 char *strstatus(int status)
13316 {
13317 static char str[200];
13318 str[0] = ’\0’;
13319
13320 STSTR(BSY);
13321 STSTR(DRDY);
13322 STSTR(DMADF);
13323 STSTR(SRVCDSC);
13324 STSTR(DRQ);
13325 STSTR(CORR);
13326 STSTR(CHECK);
13327 return str;
13328 }

13330 char *strerr(int e)
13331 {
13332 static char str[200];
13333 str[0] = ’\0’;
13334
13335 ERRSTR(BB);
13336 ERRSTR(ECC);
13337 ERRSTR(ID);
13338 ERRSTR(AC);
13339 ERRSTR(TK);
13340 ERRSTR(DM);
13341
13342 return str;
13343 }

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
drivers/tty/tty.h

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

13400 /* tty.h - Terminals */
13401
13402 #include <timers.h>
13403
13404 /* First minor numbers for the various classes of TTY devices. */
13405 #define CONS_MINOR 0
13406 #define LOG_MINOR 15
13407 #define RS232_MINOR 16
13408 #define TTYPX_MINOR 128
13409 #define PTYPX_MINOR 192
13410
13411 #define LINEWRAP 1 /* console.c - wrap lines at column 80 */
13412
13413 #define TTY_IN_BYTES 256 /* tty input queue size */
13414 #define TAB_SIZE 8 /* distance between tab stops */
13415 #define TAB_MASK 7 /* mask to compute a tab stop position */
13416
13417 #define ESC ’\33’ /* escape */
13418
13419 #define O_NOCTTY 00400 /* from <fcntl.h>, or cc will choke */
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13420 #define O_NONBLOCK 04000
13421
13422 struct tty;
13423 typedef _PROTOTYPE( int (*devfun_t), (struct tty *tp, int try_only) );
13424 typedef _PROTOTYPE( void (*devfunarg_t), (struct tty *tp, int c) );
13425
13426 typedef struct tty {
13427 int tty_events; /* set when TTY should inspect this line */
13428 int tty_index; /* index into TTY table */
13429 int tty_minor; /* device minor number */
13430
13431 /* Input queue. Typed characters are stored here until read by a program. */
13432 u16_t *tty_inhead; /* pointer to place where next char goes */
13433 u16_t *tty_intail; /* pointer to next char to be given to prog */
13434 int tty_incount; /* # chars in the input queue */
13435 int tty_eotct; /* number of "line breaks" in input queue */
13436 devfun_t tty_devread; /* routine to read from low level buffers */
13437 devfun_t tty_icancel; /* cancel any device input */
13438 int tty_min; /* minimum requested #chars in input queue */
13439 timer_t tty_tmr; /* the timer for this tty */
13440
13441 /* Output section. */
13442 devfun_t tty_devwrite; /* routine to start actual device output */
13443 devfunarg_t tty_echo; /* routine to echo characters input */
13444 devfun_t tty_ocancel; /* cancel any ongoing device output */
13445 devfun_t tty_break; /* let the device send a break */
13446
13447 /* Terminal parameters and status. */
13448 int tty_position; /* current position on the screen for echoing */
13449 char tty_reprint; /* 1 when echoed input messed up, else 0 */
13450 char tty_escaped; /* 1 when LNEXT (ˆV) just seen, else 0 */
13451 char tty_inhibited; /* 1 when STOP (ˆS) just seen (stops output) */
13452 char tty_pgrp; /* slot number of controlling process */
13453 char tty_openct; /* count of number of opens of this tty */
13454
13455 /* Information about incomplete I/O requests is stored here. */
13456 char tty_inrepcode; /* reply code, TASK_REPLY or REVIVE */
13457 char tty_inrevived; /* set to 1 if revive callback is pending */
13458 char tty_incaller; /* process that made the call (usually FS) */
13459 char tty_inproc; /* process that wants to read from tty */
13460 vir_bytes tty_in_vir; /* virtual address where data is to go */
13461 int tty_inleft; /* how many chars are still needed */
13462 int tty_incum; /* # chars input so far */
13463 char tty_outrepcode; /* reply code, TASK_REPLY or REVIVE */
13464 char tty_outrevived; /* set to 1 if revive callback is pending */
13465 char tty_outcaller; /* process that made the call (usually FS) */
13466 char tty_outproc; /* process that wants to write to tty */
13467 vir_bytes tty_out_vir; /* virtual address where data comes from */
13468 int tty_outleft; /* # chars yet to be output */
13469 int tty_outcum; /* # chars output so far */
13470 char tty_iocaller; /* process that made the call (usually FS) */
13471 char tty_ioproc; /* process that wants to do an ioctl */
13472 int tty_ioreq; /* ioctl request code */
13473 vir_bytes tty_iovir; /* virtual address of ioctl buffer */
13474
13475 /* select() data */
13476 int tty_select_ops; /* which operations are interesting */
13477 int tty_select_proc; /* which process wants notification */
13478
13479 /* Miscellaneous. */
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13480 devfun_t tty_ioctl; /* set line speed, etc. at the device level */
13481 devfun_t tty_close; /* tell the device that the tty is closed */
13482 void *tty_priv; /* pointer to per device private data */
13483 struct termios tty_termios; /* terminal attributes */
13484 struct winsize tty_winsize; /* window size (#lines and #columns) */
13485
13486 u16_t tty_inbuf[TTY_IN_BYTES];/* tty input buffer */
13487
13488 } tty_t;
13489
13490 /* Memory allocated in tty.c, so extern here. */
13491 extern tty_t tty_table[NR_CONS+NR_RS_LINES+NR_PTYS];
13492 extern int ccurrent; /* currently visible console */
13493 extern int irq_hook_id; /* hook id for keyboard irq */
13494
13495 extern unsigned long kbd_irq_set;
13496 extern unsigned long rs_irq_set;
13497
13498 /* Values for the fields. */
13499 #define NOT_ESCAPED 0 /* previous character is not LNEXT (ˆV) */
13500 #define ESCAPED 1 /* previous character was LNEXT (ˆV) */
13501 #define RUNNING 0 /* no STOP (ˆS) has been typed to stop output */
13502 #define STOPPED 1 /* STOP (ˆS) has been typed to stop output */
13503
13504 /* Fields and flags on characters in the input queue. */
13505 #define IN_CHAR 0x00FF /* low 8 bits are the character itself */
13506 #define IN_LEN 0x0F00 /* length of char if it has been echoed */
13507 #define IN_LSHIFT 8 /* length = (c & IN_LEN) >> IN_LSHIFT */
13508 #define IN_EOT 0x1000 /* char is a line break (ˆD, LF) */
13509 #define IN_EOF 0x2000 /* char is EOF (ˆD), do not return to user */
13510 #define IN_ESC 0x4000 /* escaped by LNEXT (ˆV), no interpretation */
13511
13512 /* Times and timeouts. */
13513 #define force_timeout() ((void) (0))
13514
13515 /* Memory allocated in tty.c, so extern here. */
13516 extern timer_t *tty_timers; /* queue of TTY timers */
13517 extern clock_t tty_next_timeout; /* next TTY timeout */
13518
13519 /* Number of elements and limit of a buffer. */
13520 #define buflen(buf) (sizeof(buf) / sizeof((buf)[0]))
13521 #define bufend(buf) ((buf) + buflen(buf))
13522
13523 /* Memory allocated in tty.c, so extern here. */
13524 extern struct machine machine; /* machine information (a.o.: pc_at, ega) */
13525
13526 /* Function prototypes for TTY driver. */
13527 /* tty.c */
13528 _PROTOTYPE( void handle_events, (struct tty *tp) );
13529 _PROTOTYPE( void sigchar, (struct tty *tp, int sig) );
13530 _PROTOTYPE( void tty_task, (void) );
13531 _PROTOTYPE( int in_process, (struct tty *tp, char *buf, int count) );
13532 _PROTOTYPE( void out_process, (struct tty *tp, char *bstart, char *bpos,
13533 char *bend, int *icount, int *ocount) );
13534 _PROTOTYPE( void tty_wakeup, (clock_t now) );
13535 _PROTOTYPE( void tty_reply, (int code, int replyee, int proc_nr,
13536 int status) );
13537 _PROTOTYPE( int tty_devnop, (struct tty *tp, int try) );
13538 _PROTOTYPE( int select_try, (struct tty *tp, int ops) );
13539 _PROTOTYPE( int select_retry, (struct tty *tp) );
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13540
13541 /* console.c */
13542 _PROTOTYPE( void kputc, (int c) );
13543 _PROTOTYPE( void cons_stop, (void) );
13544 _PROTOTYPE( void do_new_kmess, (message *m) );
13545 _PROTOTYPE( void do_diagnostics, (message *m) );
13546 _PROTOTYPE( void scr_init, (struct tty *tp) );
13547 _PROTOTYPE( void toggle_scroll, (void) );
13548 _PROTOTYPE( int con_loadfont, (message *m) );
13549 _PROTOTYPE( void select_console, (int cons_line) );
13550
13551 /* keyboard.c */
13552 _PROTOTYPE( void kb_init, (struct tty *tp) );
13553 _PROTOTYPE( void kb_init_once, (void) );
13554 _PROTOTYPE( int kbd_loadmap, (message *m) );
13555 _PROTOTYPE( void do_panic_dumps, (message *m) );
13556 _PROTOTYPE( void do_fkey_ctl, (message *m) );
13557 _PROTOTYPE( void kbd_interrupt, (message *m) );
13558
13559 /* vidcopy.s */
13560 _PROTOTYPE( void vid_vid_copy, (unsigned src, unsigned dst, unsigned count));
13561 _PROTOTYPE( void mem_vid_copy, (u16_t *src, unsigned dst, unsigned count));

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
drivers/tty/tty.c

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

13600 /* This file contains the terminal driver, both for the IBM console and regular
13601 * ASCII terminals. It handles only the device-independent part of a TTY, the
13602 * device dependent parts are in console.c, rs232.c, etc. This file contains
13603 * two main entry points, tty_task() and tty_wakeup(), and several minor entry
13604 * points for use by the device-dependent code.
13605 *
13606 * The device-independent part accepts "keyboard" input from the device-
13607 * dependent part, performs input processing (special key interpretation),
13608 * and sends the input to a process reading from the TTY. Output to a TTY
13609 * is sent to the device-dependent code for output processing and "screen"
13610 * display. Input processing is done by the device by calling ’in_process’
13611 * on the input characters, output processing may be done by the device itself
13612 * or by calling ’out_process’. The TTY takes care of input queuing, the
13613 * device does the output queuing. If a device receives an external signal,
13614 * like an interrupt, then it causes tty_wakeup() to be run by the CLOCK task
13615 * to, you guessed it, wake up the TTY to check if input or output can
13616 * continue.
13617 *
13618 * The valid messages and their parameters are:
13619 *
13620 * HARD_INT: output has been completed or input has arrived
13621 * SYS_SIG: e.g., MINIX wants to shutdown; run code to cleanly stop
13622 * DEV_READ: a process wants to read from a terminal
13623 * DEV_WRITE: a process wants to write on a terminal
13624 * DEV_IOCTL: a process wants to change a terminal’s parameters
13625 * DEV_OPEN: a tty line has been opened
13626 * DEV_CLOSE: a tty line has been closed
13627 * DEV_SELECT: start select notification request
13628 * DEV_STATUS: FS wants to know status for SELECT or REVIVE
13629 * CANCEL: terminate a previous incomplete system call immediately
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13630 *
13631 * m_type TTY_LINE PROC_NR COUNT TTY_SPEK TTY_FLAGS ADDRESS
13632 * ---------------------------------------------------------------------------
13633 * | HARD_INT | | | | | | |
13634 * |-------------+---------+---------+---------+---------+---------+---------|
13635 * | SYS_SIG | sig set | | | | | |
13636 * |-------------+---------+---------+---------+---------+---------+---------|
13637 * | DEV_READ |minor dev| proc nr | count | O_NONBLOCK| buf ptr |
13638 * |-------------+---------+---------+---------+---------+---------+---------|
13639 * | DEV_WRITE |minor dev| proc nr | count | | | buf ptr |
13640 * |-------------+---------+---------+---------+---------+---------+---------|
13641 * | DEV_IOCTL |minor dev| proc nr |func code|erase etc| flags | |
13642 * |-------------+---------+---------+---------+---------+---------+---------|
13643 * | DEV_OPEN |minor dev| proc nr | O_NOCTTY| | | |
13644 * |-------------+---------+---------+---------+---------+---------+---------|
13645 * | DEV_CLOSE |minor dev| proc nr | | | | |
13646 * |-------------+---------+---------+---------+---------+---------+---------|
13647 * | DEV_STATUS | | | | | | |
13648 * |-------------+---------+---------+---------+---------+---------+---------|
13649 * | CANCEL |minor dev| proc nr | | | | |
13650 * ---------------------------------------------------------------------------
13651 *
13652 * Changes:
13653 * Jan 20, 2004 moved TTY driver to user-space (Jorrit N. Herder)
13654 * Sep 20, 2004 local timer management/ sync alarms (Jorrit N. Herder)
13655 * Jul 13, 2004 support for function key observers (Jorrit N. Herder)
13656 */
13657
13658 #include "../drivers.h"
13659 #include "../drivers.h"
13660 #include <termios.h>
13661 #include <sys/ioc_tty.h>
13662 #include <signal.h>
13663 #include <minix/callnr.h>
13664 #include <minix/keymap.h>
13665 #include "tty.h"
13666
13667 #include <sys/time.h>
13668 #include <sys/select.h>
13669
13670 extern int irq_hook_id;
13671
13672 unsigned long kbd_irq_set = 0;
13673 unsigned long rs_irq_set = 0;
13674
13675 /* Address of a tty structure. */
13676 #define tty_addr(line) (&tty_table[line])
13677
13678 /* Macros for magic tty types. */
13679 #define isconsole(tp) ((tp) < tty_addr(NR_CONS))
13680 #define ispty(tp) ((tp) >= tty_addr(NR_CONS+NR_RS_LINES))
13681
13682 /* Macros for magic tty structure pointers. */
13683 #define FIRST_TTY tty_addr(0)
13684 #define END_TTY tty_addr(sizeof(tty_table) / sizeof(tty_table[0]))
13685
13686 /* A device exists if at least its ’devread’ function is defined. */
13687 #define tty_active(tp) ((tp)->tty_devread != NULL)
13688
13689 /* RS232 lines or pseudo terminals can be completely configured out. */
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13690 #if NR_RS_LINES == 0
13691 #define rs_init(tp) ((void) 0)
13692 #endif
13693 #if NR_PTYS == 0
13694 #define pty_init(tp) ((void) 0)
13695 #define do_pty(tp, mp) ((void) 0)
13696 #endif
13697
13698 FORWARD _PROTOTYPE( void tty_timed_out, (timer_t *tp) );
13699 FORWARD _PROTOTYPE( void expire_timers, (void) );
13700 FORWARD _PROTOTYPE( void settimer, (tty_t *tty_ptr, int enable) );
13701 FORWARD _PROTOTYPE( void do_cancel, (tty_t *tp, message *m_ptr) );
13702 FORWARD _PROTOTYPE( void do_ioctl, (tty_t *tp, message *m_ptr) );
13703 FORWARD _PROTOTYPE( void do_open, (tty_t *tp, message *m_ptr) );
13704 FORWARD _PROTOTYPE( void do_close, (tty_t *tp, message *m_ptr) );
13705 FORWARD _PROTOTYPE( void do_read, (tty_t *tp, message *m_ptr) );
13706 FORWARD _PROTOTYPE( void do_write, (tty_t *tp, message *m_ptr) );
13707 FORWARD _PROTOTYPE( void do_select, (tty_t *tp, message *m_ptr) );
13708 FORWARD _PROTOTYPE( void do_status, (message *m_ptr) );
13709 FORWARD _PROTOTYPE( void in_transfer, (tty_t *tp) );
13710 FORWARD _PROTOTYPE( int tty_echo, (tty_t *tp, int ch) );
13711 FORWARD _PROTOTYPE( void rawecho, (tty_t *tp, int ch) );
13712 FORWARD _PROTOTYPE( int back_over, (tty_t *tp) );
13713 FORWARD _PROTOTYPE( void reprint, (tty_t *tp) );
13714 FORWARD _PROTOTYPE( void dev_ioctl, (tty_t *tp) );
13715 FORWARD _PROTOTYPE( void setattr, (tty_t *tp) );
13716 FORWARD _PROTOTYPE( void tty_icancel, (tty_t *tp) );
13717 FORWARD _PROTOTYPE( void tty_init, (void) );
13718
13719 /* Default attributes. */
13720 PRIVATE struct termios termios_defaults = {
13721 TINPUT_DEF, TOUTPUT_DEF, TCTRL_DEF, TLOCAL_DEF, TSPEED_DEF, TSPEED_DEF,
13722 {
13723 TEOF_DEF, TEOL_DEF, TERASE_DEF, TINTR_DEF, TKILL_DEF, TMIN_DEF,
13724 TQUIT_DEF, TTIME_DEF, TSUSP_DEF, TSTART_DEF, TSTOP_DEF,
13725 TREPRINT_DEF, TLNEXT_DEF, TDISCARD_DEF,
13726 },
13727 };
13728 PRIVATE struct winsize winsize_defaults; /* = all zeroes */
13729
13730 /* Global variables for the TTY task (declared extern in tty.h). */
13731 PUBLIC tty_t tty_table[NR_CONS+NR_RS_LINES+NR_PTYS];
13732 PUBLIC int ccurrent; /* currently active console */
13733 PUBLIC timer_t *tty_timers; /* queue of TTY timers */
13734 PUBLIC clock_t tty_next_timeout; /* time that the next alarm is due */
13735 PUBLIC struct machine machine; /* kernel environment variables */
13736
13737 /*===========================================================================*
13738 * tty_task *
13739 *===========================================================================*/
13740 PUBLIC void main(void)
13741 {
13742 /* Main routine of the terminal task. */
13743
13744 message tty_mess; /* buffer for all incoming messages */
13745 unsigned line;
13746 int s;
13747 char *types[] = {"task","driver","server", "user"};
13748 register struct proc *rp;
13749 register tty_t *tp;
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13750
13751 /* Initialize the TTY driver. */
13752 tty_init();
13753
13754 /* Get kernel environment (protected_mode, pc_at and ega are needed). */
13755 if (OK != (s=sys_getmachine(&machine))) {
13756 panic("TTY","Couldn’t obtain kernel environment.", s);
13757 }
13758
13759 /* Final one-time keyboard initialization. */
13760 kb_init_once();
13761
13762 printf("\n");
13763
13764 while (TRUE) {
13765
13766 /* Check for and handle any events on any of the ttys. */
13767 for (tp = FIRST_TTY; tp < END_TTY; tp++) {
13768 if (tp->tty_events) handle_events(tp);
13769 }
13770
13771 /* Get a request message. */
13772 receive(ANY, &tty_mess);
13773
13774 /* First handle all kernel notification types that the TTY supports.
13775 * - An alarm went off, expire all timers and handle the events.
13776 * - A hardware interrupt also is an invitation to check for events.
13777 * - A new kernel message is available for printing.
13778 * - Reset the console on system shutdown.
13779 * Then see if this message is different from a normal device driver
13780 * request and should be handled separately. These extra functions
13781 * do not operate on a device, in constrast to the driver requests.
13782 */
13783 switch (tty_mess.m_type) {
13784 case SYN_ALARM: /* fall through */
13785 expire_timers(); /* run watchdogs of expired timers */
13786 continue; /* contine to check for events */
13787 case HARD_INT: { /* hardware interrupt notification */
13788 if (tty_mess.NOTIFY_ARG & kbd_irq_set)
13789 kbd_interrupt(&tty_mess);/* fetch chars from keyboard */
13790 #if NR_RS_LINES > 0
13791 if (tty_mess.NOTIFY_ARG & rs_irq_set)
13792 rs_interrupt(&tty_mess);/* serial I/O */
13793 #endif
13794 expire_timers(); /* run watchdogs of expired timers */
13795 continue; /* contine to check for events */
13796 }
13797 case SYS_SIG: { /* system signal */
13798 sigset_t sigset = (sigset_t) tty_mess.NOTIFY_ARG;
13799
13800 if (sigismember(&sigset, SIGKSTOP)) {
13801 cons_stop(); /* switch to primary console */
13802 if (irq_hook_id != -1) {
13803 sys_irqdisable(&irq_hook_id);
13804 sys_irqrmpolicy(KEYBOARD_IRQ, &irq_hook_id);
13805 }
13806 }
13807 if (sigismember(&sigset, SIGTERM)) cons_stop();
13808 if (sigismember(&sigset, SIGKMESS)) do_new_kmess(&tty_mess);
13809 continue;
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13810 }
13811 case PANIC_DUMPS: /* allow panic dumps */
13812 cons_stop(); /* switch to primary console */
13813 do_panic_dumps(&tty_mess);
13814 continue;
13815 case DIAGNOSTICS: /* a server wants to print some */
13816 do_diagnostics(&tty_mess);
13817 continue;
13818 case FKEY_CONTROL: /* (un)register a fkey observer */
13819 do_fkey_ctl(&tty_mess);
13820 continue;
13821 default: /* should be a driver request */
13822 ; /* do nothing; end switch */
13823 }
13824
13825 /* Only device requests should get to this point. All requests,
13826 * except DEV_STATUS, have a minor device number. Check this
13827 * exception and get the minor device number otherwise.
13828 */
13829 if (tty_mess.m_type == DEV_STATUS) {
13830 do_status(&tty_mess);
13831 continue;
13832 }
13833 line = tty_mess.TTY_LINE;
13834 if ((line - CONS_MINOR) < NR_CONS) {
13835 tp = tty_addr(line - CONS_MINOR);
13836 } else if (line == LOG_MINOR) {
13837 tp = tty_addr(0);
13838 } else if ((line - RS232_MINOR) < NR_RS_LINES) {
13839 tp = tty_addr(line - RS232_MINOR + NR_CONS);
13840 } else if ((line - TTYPX_MINOR) < NR_PTYS) {
13841 tp = tty_addr(line - TTYPX_MINOR + NR_CONS + NR_RS_LINES);
13842 } else if ((line - PTYPX_MINOR) < NR_PTYS) {
13843 tp = tty_addr(line - PTYPX_MINOR + NR_CONS + NR_RS_LINES);
13844 if (tty_mess.m_type != DEV_IOCTL) {
13845 do_pty(tp, &tty_mess);
13846 continue;
13847 }
13848 } else {
13849 tp = NULL;
13850 }
13851
13852 /* If the device doesn’t exist or is not configured return ENXIO. */
13853 if (tp == NULL || ! tty_active(tp)) {
13854 printf("Warning, TTY got illegal request %d from %d\n",
13855 tty_mess.m_type, tty_mess.m_source);
13856 tty_reply(TASK_REPLY, tty_mess.m_source,
13857 tty_mess.PROC_NR, ENXIO);
13858 continue;
13859 }
13860
13861 /* Execute the requested device driver function. */
13862 switch (tty_mess.m_type) {
13863 case DEV_READ: do_read(tp, &tty_mess); break;
13864 case DEV_WRITE: do_write(tp, &tty_mess); break;
13865 case DEV_IOCTL: do_ioctl(tp, &tty_mess); break;
13866 case DEV_OPEN: do_open(tp, &tty_mess); break;
13867 case DEV_CLOSE: do_close(tp, &tty_mess); break;
13868 case DEV_SELECT: do_select(tp, &tty_mess); break;
13869 case CANCEL: do_cancel(tp, &tty_mess); break;
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13870 default:
13871 printf("Warning, TTY got unexpected request %d from %d\n",
13872 tty_mess.m_type, tty_mess.m_source);
13873 tty_reply(TASK_REPLY, tty_mess.m_source,
13874 tty_mess.PROC_NR, EINVAL);
13875 }
13876 }
13877 }

13879 /*===========================================================================*
13880 * do_status *
13881 *===========================================================================*/
13882 PRIVATE void do_status(m_ptr)
13883 message *m_ptr;
13884 {
13885 register struct tty *tp;
13886 int event_found;
13887 int status;
13888 int ops;
13889
13890 /* Check for select or revive events on any of the ttys. If we found an,
13891 * event return a single status message for it. The FS will make another
13892 * call to see if there is more.
13893 */
13894 event_found = 0;
13895 for (tp = FIRST_TTY; tp < END_TTY; tp++) {
13896 if ((ops = select_try(tp, tp->tty_select_ops)) &&
13897 tp->tty_select_proc == m_ptr->m_source) {
13898
13899 /* I/O for a selected minor device is ready. */
13900 m_ptr->m_type = DEV_IO_READY;
13901 m_ptr->DEV_MINOR = tp->tty_index;
13902 m_ptr->DEV_SEL_OPS = ops;
13903
13904 tp->tty_select_ops &= ˜ops; /* unmark select event */
13905 event_found = 1;
13906 break;
13907 }
13908 else if (tp->tty_inrevived && tp->tty_incaller == m_ptr->m_source) {
13909
13910 /* Suspended request finished. Send a REVIVE. */
13911 m_ptr->m_type = DEV_REVIVE;
13912 m_ptr->REP_PROC_NR = tp->tty_inproc;
13913 m_ptr->REP_STATUS = tp->tty_incum;
13914
13915 tp->tty_inleft = tp->tty_incum = 0;
13916 tp->tty_inrevived = 0; /* unmark revive event */
13917 event_found = 1;
13918 break;
13919 }
13920 else if (tp->tty_outrevived && tp->tty_outcaller == m_ptr->m_source) {
13921
13922 /* Suspended request finished. Send a REVIVE. */
13923 m_ptr->m_type = DEV_REVIVE;
13924 m_ptr->REP_PROC_NR = tp->tty_outproc;
13925 m_ptr->REP_STATUS = tp->tty_outcum;
13926
13927 tp->tty_outcum = 0;
13928 tp->tty_outrevived = 0; /* unmark revive event */
13929 event_found = 1;
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13930 break;
13931 }
13932 }
13933
13934 #if NR_PTYS > 0
13935 if (!event_found)
13936 event_found = pty_status(m_ptr);
13937 #endif
13938
13939 if (! event_found) {
13940 /* No events of interest were found. Return an empty message. */
13941 m_ptr->m_type = DEV_NO_STATUS;
13942 }
13943
13944 /* Almost done. Send back the reply message to the caller. */
13945 if ((status = send(m_ptr->m_source, m_ptr)) != OK) {
13946 panic("TTY","send in do_status failed, status\n", status);
13947 }
13948 }

13950 /*===========================================================================*
13951 * do_read *
13952 *===========================================================================*/
13953 PRIVATE void do_read(tp, m_ptr)
13954 register tty_t *tp; /* pointer to tty struct */
13955 register message *m_ptr; /* pointer to message sent to the task */
13956 {
13957 /* A process wants to read from a terminal. */
13958 int r, status;
13959 phys_bytes phys_addr;
13960
13961 /* Check if there is already a process hanging in a read, check if the
13962 * parameters are correct, do I/O.
13963 */
13964 if (tp->tty_inleft > 0) {
13965 r = EIO;
13966 } else
13967 if (m_ptr->COUNT <= 0) {
13968 r = EINVAL;
13969 } else
13970 if (sys_umap(m_ptr->PROC_NR, D, (vir_bytes) m_ptr->ADDRESS, m_ptr->COUNT,
13971 &phys_addr) != OK) {
13972 r = EFAULT;
13973 } else {
13974 /* Copy information from the message to the tty struct. */
13975 tp->tty_inrepcode = TASK_REPLY;
13976 tp->tty_incaller = m_ptr->m_source;
13977 tp->tty_inproc = m_ptr->PROC_NR;
13978 tp->tty_in_vir = (vir_bytes) m_ptr->ADDRESS;
13979 tp->tty_inleft = m_ptr->COUNT;
13980
13981 if (!(tp->tty_termios.c_lflag & ICANON)
13982 && tp->tty_termios.c_cc[VTIME] > 0) {
13983 if (tp->tty_termios.c_cc[VMIN] == 0) {
13984 /* MIN & TIME specify a read timer that finishes the
13985 * read in TIME/10 seconds if no bytes are available.
13986 */
13987 settimer(tp, TRUE);
13988 tp->tty_min = 1;
13989 } else {
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13990 /* MIN & TIME specify an inter-byte timer that may
13991 * have to be cancelled if there are no bytes yet.
13992 */
13993 if (tp->tty_eotct == 0) {
13994 settimer(tp, FALSE);
13995 tp->tty_min = tp->tty_termios.c_cc[VMIN];
13996 }
13997 }
13998 }
13999
14000 /* Anything waiting in the input buffer? Clear it out... */
14001 in_transfer(tp);
14002 /* ...then go back for more. */
14003 handle_events(tp);
14004 if (tp->tty_inleft == 0) {
14005 if (tp->tty_select_ops)
14006 select_retry(tp);
14007 return; /* already done */
14008 }
14009
14010 /* There were no bytes in the input queue available, so either suspend
14011 * the caller or break off the read if nonblocking.
14012 */
14013 if (m_ptr->TTY_FLAGS & O_NONBLOCK) {
14014 r = EAGAIN; /* cancel the read */
14015 tp->tty_inleft = tp->tty_incum = 0;
14016 } else {
14017 r = SUSPEND; /* suspend the caller */
14018 tp->tty_inrepcode = REVIVE;
14019 }
14020 }
14021 tty_reply(TASK_REPLY, m_ptr->m_source, m_ptr->PROC_NR, r);
14022 if (tp->tty_select_ops)
14023 select_retry(tp);
14024 }

14026 /*===========================================================================*
14027 * do_write *
14028 *===========================================================================*/
14029 PRIVATE void do_write(tp, m_ptr)
14030 register tty_t *tp;
14031 register message *m_ptr; /* pointer to message sent to the task */
14032 {
14033 /* A process wants to write on a terminal. */
14034 int r;
14035 phys_bytes phys_addr;
14036
14037 /* Check if there is already a process hanging in a write, check if the
14038 * parameters are correct, do I/O.
14039 */
14040 if (tp->tty_outleft > 0) {
14041 r = EIO;
14042 } else
14043 if (m_ptr->COUNT <= 0) {
14044 r = EINVAL;
14045 } else
14046 if (sys_umap(m_ptr->PROC_NR, D, (vir_bytes) m_ptr->ADDRESS, m_ptr->COUNT,
14047 &phys_addr) != OK) {
14048 r = EFAULT;
14049 } else {
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14050 /* Copy message parameters to the tty structure. */
14051 tp->tty_outrepcode = TASK_REPLY;
14052 tp->tty_outcaller = m_ptr->m_source;
14053 tp->tty_outproc = m_ptr->PROC_NR;
14054 tp->tty_out_vir = (vir_bytes) m_ptr->ADDRESS;
14055 tp->tty_outleft = m_ptr->COUNT;
14056
14057 /* Try to write. */
14058 handle_events(tp);
14059 if (tp->tty_outleft == 0)
14060 return; /* already done */
14061
14062 /* None or not all the bytes could be written, so either suspend the
14063 * caller or break off the write if nonblocking.
14064 */
14065 if (m_ptr->TTY_FLAGS & O_NONBLOCK) { /* cancel the write */
14066 r = tp->tty_outcum > 0 ? tp->tty_outcum : EAGAIN;
14067 tp->tty_outleft = tp->tty_outcum = 0;
14068 } else {
14069 r = SUSPEND; /* suspend the caller */
14070 tp->tty_outrepcode = REVIVE;
14071 }
14072 }
14073 tty_reply(TASK_REPLY, m_ptr->m_source, m_ptr->PROC_NR, r);
14074 }

14076 /*===========================================================================*
14077 * do_ioctl *
14078 *===========================================================================*/
14079 PRIVATE void do_ioctl(tp, m_ptr)
14080 register tty_t *tp;
14081 message *m_ptr; /* pointer to message sent to task */
14082 {
14083 /* Perform an IOCTL on this terminal. Posix termios calls are handled
14084 * by the IOCTL system call
14085 */
14086
14087 int r;
14088 union {
14089 int i;
14090 } param;
14091 size_t size;
14092
14093 /* Size of the ioctl parameter. */
14094 switch (m_ptr->TTY_REQUEST) {
14095 case TCGETS: /* Posix tcgetattr function */
14096 case TCSETS: /* Posix tcsetattr function, TCSANOW option */
14097 case TCSETSW: /* Posix tcsetattr function, TCSADRAIN option */
14098 case TCSETSF: /* Posix tcsetattr function, TCSAFLUSH option */
14099 size = sizeof(struct termios);
14100 break;
14101
14102 case TCSBRK: /* Posix tcsendbreak function */
14103 case TCFLOW: /* Posix tcflow function */
14104 case TCFLSH: /* Posix tcflush function */
14105 case TIOCGPGRP: /* Posix tcgetpgrp function */
14106 case TIOCSPGRP: /* Posix tcsetpgrp function */
14107 size = sizeof(int);
14108 break;
14109
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14110 case TIOCGWINSZ: /* get window size (not Posix) */
14111 case TIOCSWINSZ: /* set window size (not Posix) */
14112 size = sizeof(struct winsize);
14113 break;
14114
14115 case KIOCSMAP: /* load keymap (Minix extension) */
14116 size = sizeof(keymap_t);
14117 break;
14118
14119 case TIOCSFON: /* load font (Minix extension) */
14120 size = sizeof(u8_t [8192]);
14121 break;
14122
14123 case TCDRAIN: /* Posix tcdrain function -- no parameter */
14124 default: size = 0;
14125 }
14126
14127 r = OK;
14128 switch (m_ptr->TTY_REQUEST) {
14129 case TCGETS:
14130 /* Get the termios attributes. */
14131 r = sys_vircopy(SELF, D, (vir_bytes) &tp->tty_termios,
14132 m_ptr->PROC_NR, D, (vir_bytes) m_ptr->ADDRESS,
14133 (vir_bytes) size);
14134 break;
14135
14136 case TCSETSW:
14137 case TCSETSF:
14138 case TCDRAIN:
14139 if (tp->tty_outleft > 0) {
14140 /* Wait for all ongoing output processing to finish. */
14141 tp->tty_iocaller = m_ptr->m_source;
14142 tp->tty_ioproc = m_ptr->PROC_NR;
14143 tp->tty_ioreq = m_ptr->REQUEST;
14144 tp->tty_iovir = (vir_bytes) m_ptr->ADDRESS;
14145 r = SUSPEND;
14146 break;
14147 }
14148 if (m_ptr->TTY_REQUEST == TCDRAIN) break;
14149 if (m_ptr->TTY_REQUEST == TCSETSF) tty_icancel(tp);
14150 /*FALL THROUGH*/
14151 case TCSETS:
14152 /* Set the termios attributes. */
14153 r = sys_vircopy( m_ptr->PROC_NR, D, (vir_bytes) m_ptr->ADDRESS,
14154 SELF, D, (vir_bytes) &tp->tty_termios, (vir_bytes) size);
14155 if (r != OK) break;
14156 setattr(tp);
14157 break;
14158
14159 case TCFLSH:
14160 r = sys_vircopy( m_ptr->PROC_NR, D, (vir_bytes) m_ptr->ADDRESS,
14161 SELF, D, (vir_bytes) &param.i, (vir_bytes) size);
14162 if (r != OK) break;
14163 switch (param.i) {
14164 case TCIFLUSH: tty_icancel(tp); break;
14165 case TCOFLUSH: (*tp->tty_ocancel)(tp, 0); break;
14166 case TCIOFLUSH: tty_icancel(tp); (*tp->tty_ocancel)(tp, 0); break;
14167 default: r = EINVAL;
14168 }
14169 break;
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14170
14171 case TCFLOW:
14172 r = sys_vircopy( m_ptr->PROC_NR, D, (vir_bytes) m_ptr->ADDRESS,
14173 SELF, D, (vir_bytes) &param.i, (vir_bytes) size);
14174 if (r != OK) break;
14175 switch (param.i) {
14176 case TCOOFF:
14177 case TCOON:
14178 tp->tty_inhibited = (param.i == TCOOFF);
14179 tp->tty_events = 1;
14180 break;
14181 case TCIOFF:
14182 (*tp->tty_echo)(tp, tp->tty_termios.c_cc[VSTOP]);
14183 break;
14184 case TCION:
14185 (*tp->tty_echo)(tp, tp->tty_termios.c_cc[VSTART]);
14186 break;
14187 default:
14188 r = EINVAL;
14189 }
14190 break;
14191
14192 case TCSBRK:
14193 if (tp->tty_break != NULL) (*tp->tty_break)(tp,0);
14194 break;
14195
14196 case TIOCGWINSZ:
14197 r = sys_vircopy(SELF, D, (vir_bytes) &tp->tty_winsize,
14198 m_ptr->PROC_NR, D, (vir_bytes) m_ptr->ADDRESS,
14199 (vir_bytes) size);
14200 break;
14201
14202 case TIOCSWINSZ:
14203 r = sys_vircopy( m_ptr->PROC_NR, D, (vir_bytes) m_ptr->ADDRESS,
14204 SELF, D, (vir_bytes) &tp->tty_winsize, (vir_bytes) size);
14205 /* SIGWINCH... */
14206 break;
14207
14208 case KIOCSMAP:
14209 /* Load a new keymap (only /dev/console). */
14210 if (isconsole(tp)) r = kbd_loadmap(m_ptr);
14211 break;
14212
14213 case TIOCSFON:
14214 /* Load a font into an EGA or VGA card (hs@hck.hr) */
14215 if (isconsole(tp)) r = con_loadfont(m_ptr);
14216 break;
14217
14218 /* These Posix functions are allowed to fail if _POSIX_JOB_CONTROL is
14219 * not defined.
14220 */
14221 case TIOCGPGRP:
14222 case TIOCSPGRP:
14223 default:
14224 r = ENOTTY;
14225 }
14226
14227 /* Send the reply. */
14228 tty_reply(TASK_REPLY, m_ptr->m_source, m_ptr->PROC_NR, r);
14229 }
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14231 /*===========================================================================*
14232 * do_open *
14233 *===========================================================================*/
14234 PRIVATE void do_open(tp, m_ptr)
14235 register tty_t *tp;
14236 message *m_ptr; /* pointer to message sent to task */
14237 {
14238 /* A tty line has been opened. Make it the callers controlling tty if
14239 * O_NOCTTY is *not* set and it is not the log device. 1 is returned if
14240 * the tty is made the controlling tty, otherwise OK or an error code.
14241 */
14242 int r = OK;
14243
14244 if (m_ptr->TTY_LINE == LOG_MINOR) {
14245 /* The log device is a write-only diagnostics device. */
14246 if (m_ptr->COUNT & R_BIT) r = EACCES;
14247 } else {
14248 if (!(m_ptr->COUNT & O_NOCTTY)) {
14249 tp->tty_pgrp = m_ptr->PROC_NR;
14250 r = 1;
14251 }
14252 tp->tty_openct++;
14253 }
14254 tty_reply(TASK_REPLY, m_ptr->m_source, m_ptr->PROC_NR, r);
14255 }

14257 /*===========================================================================*
14258 * do_close *
14259 *===========================================================================*/
14260 PRIVATE void do_close(tp, m_ptr)
14261 register tty_t *tp;
14262 message *m_ptr; /* pointer to message sent to task */
14263 {
14264 /* A tty line has been closed. Clean up the line if it is the last close. */
14265
14266 if (m_ptr->TTY_LINE != LOG_MINOR && --tp->tty_openct == 0) {
14267 tp->tty_pgrp = 0;
14268 tty_icancel(tp);
14269 (*tp->tty_ocancel)(tp, 0);
14270 (*tp->tty_close)(tp, 0);
14271 tp->tty_termios = termios_defaults;
14272 tp->tty_winsize = winsize_defaults;
14273 setattr(tp);
14274 }
14275 tty_reply(TASK_REPLY, m_ptr->m_source, m_ptr->PROC_NR, OK);
14276 }

14278 /*===========================================================================*
14279 * do_cancel *
14280 *===========================================================================*/
14281 PRIVATE void do_cancel(tp, m_ptr)
14282 register tty_t *tp;
14283 message *m_ptr; /* pointer to message sent to task */
14284 {
14285 /* A signal has been sent to a process that is hanging trying to read or write.
14286 * The pending read or write must be finished off immediately.
14287 */
14288
14289 int proc_nr;
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14290 int mode;
14291
14292 /* Check the parameters carefully, to avoid cancelling twice. */
14293 proc_nr = m_ptr->PROC_NR;
14294 mode = m_ptr->COUNT;
14295 if ((mode & R_BIT) && tp->tty_inleft != 0 && proc_nr == tp->tty_inproc) {
14296 /* Process was reading when killed. Clean up input. */
14297 tty_icancel(tp);
14298 tp->tty_inleft = tp->tty_incum = 0;
14299 }
14300 if ((mode & W_BIT) && tp->tty_outleft != 0 && proc_nr == tp->tty_outproc) {
14301 /* Process was writing when killed. Clean up output. */
14302 (*tp->tty_ocancel)(tp, 0);
14303 tp->tty_outleft = tp->tty_outcum = 0;
14304 }
14305 if (tp->tty_ioreq != 0 && proc_nr == tp->tty_ioproc) {
14306 /* Process was waiting for output to drain. */
14307 tp->tty_ioreq = 0;
14308 }
14309 tp->tty_events = 1;
14310 tty_reply(TASK_REPLY, m_ptr->m_source, proc_nr, EINTR);
14311 }

14313 PUBLIC int select_try(struct tty *tp, int ops)
14314 {
14315 int ready_ops = 0;
14316
14317 /* Special case. If line is hung up, no operations will block.
14318 * (and it can be seen as an exceptional condition.)
14319 */
14320 if (tp->tty_termios.c_ospeed == B0) {
14321 ready_ops |= ops;
14322 }
14323
14324 if (ops & SEL_RD) {
14325 /* will i/o not block on read? */
14326 if (tp->tty_inleft > 0) {
14327 ready_ops |= SEL_RD; /* EIO - no blocking */
14328 } else if (tp->tty_incount > 0) {
14329 /* Is a regular read possible? tty_incount
14330 * says there is data. But a read will only succeed
14331 * in canonical mode if a newline has been seen.
14332 */
14333 if (!(tp->tty_termios.c_lflag & ICANON) ||
14334 tp->tty_eotct > 0) {
14335 ready_ops |= SEL_RD;
14336 }
14337 }
14338 }
14339
14340 if (ops & SEL_WR) {
14341 if (tp->tty_outleft > 0) ready_ops |= SEL_WR;
14342 else if ((*tp->tty_devwrite)(tp, 1)) ready_ops |= SEL_WR;
14343 }
14344
14345 return ready_ops;
14346 }

14348 PUBLIC int select_retry(struct tty *tp)
14349 {
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14350 if (select_try(tp, tp->tty_select_ops))
14351 notify(tp->tty_select_proc);
14352 return OK;
14353 }

14355 /*===========================================================================*
14356 * handle_events *
14357 *===========================================================================*/
14358 PUBLIC void handle_events(tp)
14359 tty_t *tp; /* TTY to check for events. */
14360 {
14361 /* Handle any events pending on a TTY. These events are usually device
14362 * interrupts.
14363 *
14364 * Two kinds of events are prominent:
14365 * - a character has been received from the console or an RS232 line.
14366 * - an RS232 line has completed a write request (on behalf of a user).
14367 * The interrupt handler may delay the interrupt message at its discretion
14368 * to avoid swamping the TTY task. Messages may be overwritten when the
14369 * lines are fast or when there are races between different lines, input
14370 * and output, because MINIX only provides single buffering for interrupt
14371 * messages (in proc.c). This is handled by explicitly checking each line
14372 * for fresh input and completed output on each interrupt.
14373 */
14374 char *buf;
14375 unsigned count;
14376 int status;
14377
14378 do {
14379 tp->tty_events = 0;
14380
14381 /* Read input and perform input processing. */
14382 (*tp->tty_devread)(tp, 0);
14383
14384 /* Perform output processing and write output. */
14385 (*tp->tty_devwrite)(tp, 0);
14386
14387 /* Ioctl waiting for some event? */
14388 if (tp->tty_ioreq != 0) dev_ioctl(tp);
14389 } while (tp->tty_events);
14390
14391 /* Transfer characters from the input queue to a waiting process. */
14392 in_transfer(tp);
14393
14394 /* Reply if enough bytes are available. */
14395 if (tp->tty_incum >= tp->tty_min && tp->tty_inleft > 0) {
14396 if (tp->tty_inrepcode == REVIVE) {
14397 notify(tp->tty_incaller);
14398 tp->tty_inrevived = 1;
14399 } else {
14400 tty_reply(tp->tty_inrepcode, tp->tty_incaller,
14401 tp->tty_inproc, tp->tty_incum);
14402 tp->tty_inleft = tp->tty_incum = 0;
14403 }
14404 }
14405 if (tp->tty_select_ops)
14406 select_retry(tp);
14407 #if NR_PTYS > 0
14408 if (ispty(tp))
14409 select_retry_pty(tp);
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14410 #endif
14411 }

14413 /*===========================================================================*
14414 * in_transfer *
14415 *===========================================================================*/
14416 PRIVATE void in_transfer(tp)
14417 register tty_t *tp; /* pointer to terminal to read from */
14418 {
14419 /* Transfer bytes from the input queue to a process reading from a terminal. */
14420
14421 int ch;
14422 int count;
14423 char buf[64], *bp;
14424
14425 /* Force read to succeed if the line is hung up, looks like EOF to reader. */
14426 if (tp->tty_termios.c_ospeed == B0) tp->tty_min = 0;
14427
14428 /* Anything to do? */
14429 if (tp->tty_inleft == 0 || tp->tty_eotct < tp->tty_min) return;
14430
14431 bp = buf;
14432 while (tp->tty_inleft > 0 && tp->tty_eotct > 0) {
14433 ch = *tp->tty_intail;
14434
14435 if (!(ch & IN_EOF)) {
14436 /* One character to be delivered to the user. */
14437 *bp = ch & IN_CHAR;
14438 tp->tty_inleft--;
14439 if (++bp == bufend(buf)) {
14440 /* Temp buffer full, copy to user space. */
14441 sys_vircopy(SELF, D, (vir_bytes) buf,
14442 tp->tty_inproc, D, tp->tty_in_vir,
14443 (vir_bytes) buflen(buf));
14444 tp->tty_in_vir += buflen(buf);
14445 tp->tty_incum += buflen(buf);
14446 bp = buf;
14447 }
14448 }
14449
14450 /* Remove the character from the input queue. */
14451 if (++tp->tty_intail == bufend(tp->tty_inbuf))
14452 tp->tty_intail = tp->tty_inbuf;
14453 tp->tty_incount--;
14454 if (ch & IN_EOT) {
14455 tp->tty_eotct--;
14456 /* Don’t read past a line break in canonical mode. */
14457 if (tp->tty_termios.c_lflag & ICANON) tp->tty_inleft = 0;
14458 }
14459 }
14460
14461 if (bp > buf) {
14462 /* Leftover characters in the buffer. */
14463 count = bp - buf;
14464 sys_vircopy(SELF, D, (vir_bytes) buf,
14465 tp->tty_inproc, D, tp->tty_in_vir, (vir_bytes) count);
14466 tp->tty_in_vir += count;
14467 tp->tty_incum += count;
14468 }
14469
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14470 /* Usually reply to the reader, possibly even if incum == 0 (EOF). */
14471 if (tp->tty_inleft == 0) {
14472 if (tp->tty_inrepcode == REVIVE) {
14473 notify(tp->tty_incaller);
14474 tp->tty_inrevived = 1;
14475 } else {
14476 tty_reply(tp->tty_inrepcode, tp->tty_incaller,
14477 tp->tty_inproc, tp->tty_incum);
14478 tp->tty_inleft = tp->tty_incum = 0;
14479 }
14480 }
14481 }

14483 /*===========================================================================*
14484 * in_process *
14485 *===========================================================================*/
14486 PUBLIC int in_process(tp, buf, count)
14487 register tty_t *tp; /* terminal on which character has arrived */
14488 char *buf; /* buffer with input characters */
14489 int count; /* number of input characters */
14490 {
14491 /* Characters have just been typed in. Process, save, and echo them. Return
14492 * the number of characters processed.
14493 */
14494
14495 int ch, sig, ct;
14496 int timeset = FALSE;
14497 static unsigned char csize_mask[] = { 0x1F, 0x3F, 0x7F, 0xFF };
14498
14499 for (ct = 0; ct < count; ct++) {
14500 /* Take one character. */
14501 ch = *buf++ & BYTE;
14502
14503 /* Strip to seven bits? */
14504 if (tp->tty_termios.c_iflag & ISTRIP) ch &= 0x7F;
14505
14506 /* Input extensions? */
14507 if (tp->tty_termios.c_lflag & IEXTEN) {
14508
14509 /* Previous character was a character escape? */
14510 if (tp->tty_escaped) {
14511 tp->tty_escaped = NOT_ESCAPED;
14512 ch |= IN_ESC; /* protect character */
14513 }
14514
14515 /* LNEXT (ˆV) to escape the next character? */
14516 if (ch == tp->tty_termios.c_cc[VLNEXT]) {
14517 tp->tty_escaped = ESCAPED;
14518 rawecho(tp, ’ˆ’);
14519 rawecho(tp, ’\b’);
14520 continue; /* do not store the escape */
14521 }
14522
14523 /* REPRINT (ˆR) to reprint echoed characters? */
14524 if (ch == tp->tty_termios.c_cc[VREPRINT]) {
14525 reprint(tp);
14526 continue;
14527 }
14528 }
14529
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14530 /* _POSIX_VDISABLE is a normal character value, so better escape it. */
14531 if (ch == _POSIX_VDISABLE) ch |= IN_ESC;
14532
14533 /* Map CR to LF, ignore CR, or map LF to CR. */
14534 if (ch == ’\r’) {
14535 if (tp->tty_termios.c_iflag & IGNCR) continue;
14536 if (tp->tty_termios.c_iflag & ICRNL) ch = ’\n’;
14537 } else
14538 if (ch == ’\n’) {
14539 if (tp->tty_termios.c_iflag & INLCR) ch = ’\r’;
14540 }
14541
14542 /* Canonical mode? */
14543 if (tp->tty_termios.c_lflag & ICANON) {
14544
14545 /* Erase processing (rub out of last character). */
14546 if (ch == tp->tty_termios.c_cc[VERASE]) {
14547 (void) back_over(tp);
14548 if (!(tp->tty_termios.c_lflag & ECHOE)) {
14549 (void) tty_echo(tp, ch);
14550 }
14551 continue;
14552 }
14553
14554 /* Kill processing (remove current line). */
14555 if (ch == tp->tty_termios.c_cc[VKILL]) {
14556 while (back_over(tp)) {}
14557 if (!(tp->tty_termios.c_lflag & ECHOE)) {
14558 (void) tty_echo(tp, ch);
14559 if (tp->tty_termios.c_lflag & ECHOK)
14560 rawecho(tp, ’\n’);
14561 }
14562 continue;
14563 }
14564
14565 /* EOF (ˆD) means end-of-file, an invisible "line break". */
14566 if (ch == tp->tty_termios.c_cc[VEOF]) ch |= IN_EOT | IN_EOF;
14567
14568 /* The line may be returned to the user after an LF. */
14569 if (ch == ’\n’) ch |= IN_EOT;
14570
14571 /* Same thing with EOL, whatever it may be. */
14572 if (ch == tp->tty_termios.c_cc[VEOL]) ch |= IN_EOT;
14573 }
14574
14575 /* Start/stop input control? */
14576 if (tp->tty_termios.c_iflag & IXON) {
14577
14578 /* Output stops on STOP (ˆS). */
14579 if (ch == tp->tty_termios.c_cc[VSTOP]) {
14580 tp->tty_inhibited = STOPPED;
14581 tp->tty_events = 1;
14582 continue;
14583 }
14584
14585 /* Output restarts on START (ˆQ) or any character if IXANY. */
14586 if (tp->tty_inhibited) {
14587 if (ch == tp->tty_termios.c_cc[VSTART]
14588 || (tp->tty_termios.c_iflag & IXANY)) {
14589 tp->tty_inhibited = RUNNING;
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14590 tp->tty_events = 1;
14591 if (ch == tp->tty_termios.c_cc[VSTART])
14592 continue;
14593 }
14594 }
14595 }
14596
14597 if (tp->tty_termios.c_lflag & ISIG) {
14598 /* Check for INTR (ˆ?) and QUIT (ˆ\) characters. */
14599 if (ch == tp->tty_termios.c_cc[VINTR]
14600 || ch == tp->tty_termios.c_cc[VQUIT]) {
14601 sig = SIGINT;
14602 if (ch == tp->tty_termios.c_cc[VQUIT]) sig = SIGQUIT;
14603 sigchar(tp, sig);
14604 (void) tty_echo(tp, ch);
14605 continue;
14606 }
14607 }
14608
14609 /* Is there space in the input buffer? */
14610 if (tp->tty_incount == buflen(tp->tty_inbuf)) {
14611 /* No space; discard in canonical mode, keep in raw mode. */
14612 if (tp->tty_termios.c_lflag & ICANON) continue;
14613 break;
14614 }
14615
14616 if (!(tp->tty_termios.c_lflag & ICANON)) {
14617 /* In raw mode all characters are "line breaks". */
14618 ch |= IN_EOT;
14619
14620 /* Start an inter-byte timer? */
14621 if (!timeset && tp->tty_termios.c_cc[VMIN] > 0
14622 && tp->tty_termios.c_cc[VTIME] > 0) {
14623 settimer(tp, TRUE);
14624 timeset = TRUE;
14625 }
14626 }
14627
14628 /* Perform the intricate function of echoing. */
14629 if (tp->tty_termios.c_lflag & (ECHO|ECHONL)) ch = tty_echo(tp, ch);
14630
14631 /* Save the character in the input queue. */
14632 *tp->tty_inhead++ = ch;
14633 if (tp->tty_inhead == bufend(tp->tty_inbuf))
14634 tp->tty_inhead = tp->tty_inbuf;
14635 tp->tty_incount++;
14636 if (ch & IN_EOT) tp->tty_eotct++;
14637
14638 /* Try to finish input if the queue threatens to overflow. */
14639 if (tp->tty_incount == buflen(tp->tty_inbuf)) in_transfer(tp);
14640 }
14641 return ct;
14642 }

14644 /*===========================================================================*
14645 * echo *
14646 *===========================================================================*/
14647 PRIVATE int tty_echo(tp, ch)
14648 register tty_t *tp; /* terminal on which to echo */
14649 register int ch; /* pointer to character to echo */
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14650 {
14651 /* Echo the character if echoing is on. Some control characters are echoed
14652 * with their normal effect, other control characters are echoed as "ˆX",
14653 * normal characters are echoed normally. EOF (ˆD) is echoed, but immediately
14654 * backspaced over. Return the character with the echoed length added to its
14655 * attributes.
14656 */
14657 int len, rp;
14658
14659 ch &= ˜IN_LEN;
14660 if (!(tp->tty_termios.c_lflag & ECHO)) {
14661 if (ch == (’\n’ | IN_EOT) && (tp->tty_termios.c_lflag
14662 & (ICANON|ECHONL)) == (ICANON|ECHONL))
14663 (*tp->tty_echo)(tp, ’\n’);
14664 return(ch);
14665 }
14666
14667 /* "Reprint" tells if the echo output has been messed up by other output. */
14668 rp = tp->tty_incount == 0 ? FALSE : tp->tty_reprint;
14669
14670 if ((ch & IN_CHAR) < ’ ’) {
14671 switch (ch & (IN_ESC|IN_EOF|IN_EOT|IN_CHAR)) {
14672 case ’\t’:
14673 len = 0;
14674 do {
14675 (*tp->tty_echo)(tp, ’ ’);
14676 len++;
14677 } while (len < TAB_SIZE && (tp->tty_position & TAB_MASK) != 0);
14678 break;
14679 case ’\r’ | IN_EOT:
14680 case ’\n’ | IN_EOT:
14681 (*tp->tty_echo)(tp, ch & IN_CHAR);
14682 len = 0;
14683 break;
14684 default:
14685 (*tp->tty_echo)(tp, ’ˆ’);
14686 (*tp->tty_echo)(tp, ’@’ + (ch & IN_CHAR));
14687 len = 2;
14688 }
14689 } else
14690 if ((ch & IN_CHAR) == ’\177’) {
14691 /* A DEL prints as "ˆ?". */
14692 (*tp->tty_echo)(tp, ’ˆ’);
14693 (*tp->tty_echo)(tp, ’?’);
14694 len = 2;
14695 } else {
14696 (*tp->tty_echo)(tp, ch & IN_CHAR);
14697 len = 1;
14698 }
14699 if (ch & IN_EOF) while (len > 0) { (*tp->tty_echo)(tp, ’\b’); len--; }
14700
14701 tp->tty_reprint = rp;
14702 return(ch | (len << IN_LSHIFT));
14703 }

14705 /*===========================================================================*
14706 * rawecho *
14707 *===========================================================================*/
14708 PRIVATE void rawecho(tp, ch)
14709 register tty_t *tp;
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14710 int ch;
14711 {
14712 /* Echo without interpretation if ECHO is set. */
14713 int rp = tp->tty_reprint;
14714 if (tp->tty_termios.c_lflag & ECHO) (*tp->tty_echo)(tp, ch);
14715 tp->tty_reprint = rp;
14716 }

14718 /*===========================================================================*
14719 * back_over *
14720 *===========================================================================*/
14721 PRIVATE int back_over(tp)
14722 register tty_t *tp;
14723 {
14724 /* Backspace to previous character on screen and erase it. */
14725 u16_t *head;
14726 int len;
14727
14728 if (tp->tty_incount == 0) return(0); /* queue empty */
14729 head = tp->tty_inhead;
14730 if (head == tp->tty_inbuf) head = bufend(tp->tty_inbuf);
14731 if (*--head & IN_EOT) return(0); /* can’t erase "line breaks" */
14732 if (tp->tty_reprint) reprint(tp); /* reprint if messed up */
14733 tp->tty_inhead = head;
14734 tp->tty_incount--;
14735 if (tp->tty_termios.c_lflag & ECHOE) {
14736 len = (*head & IN_LEN) >> IN_LSHIFT;
14737 while (len > 0) {
14738 rawecho(tp, ’\b’);
14739 rawecho(tp, ’ ’);
14740 rawecho(tp, ’\b’);
14741 len--;
14742 }
14743 }
14744 return(1); /* one character erased */
14745 }

14747 /*===========================================================================*
14748 * reprint *
14749 *===========================================================================*/
14750 PRIVATE void reprint(tp)
14751 register tty_t *tp; /* pointer to tty struct */
14752 {
14753 /* Restore what has been echoed to screen before if the user input has been
14754 * messed up by output, or if REPRINT (ˆR) is typed.
14755 */
14756 int count;
14757 u16_t *head;
14758
14759 tp->tty_reprint = FALSE;
14760
14761 /* Find the last line break in the input. */
14762 head = tp->tty_inhead;
14763 count = tp->tty_incount;
14764 while (count > 0) {
14765 if (head == tp->tty_inbuf) head = bufend(tp->tty_inbuf);
14766 if (head[-1] & IN_EOT) break;
14767 head--;
14768 count--;
14769 }
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14770 if (count == tp->tty_incount) return; /* no reason to reprint */
14771
14772 /* Show REPRINT (ˆR) and move to a new line. */
14773 (void) tty_echo(tp, tp->tty_termios.c_cc[VREPRINT] | IN_ESC);
14774 rawecho(tp, ’\r’);
14775 rawecho(tp, ’\n’);
14776
14777 /* Reprint from the last break onwards. */
14778 do {
14779 if (head == bufend(tp->tty_inbuf)) head = tp->tty_inbuf;
14780 *head = tty_echo(tp, *head);
14781 head++;
14782 count++;
14783 } while (count < tp->tty_incount);
14784 }

14786 /*===========================================================================*
14787 * out_process *
14788 *===========================================================================*/
14789 PUBLIC void out_process(tp, bstart, bpos, bend, icount, ocount)
14790 tty_t *tp;
14791 char *bstart, *bpos, *bend; /* start/pos/end of circular buffer */
14792 int *icount; /* # input chars / input chars used */
14793 int *ocount; /* max output chars / output chars used */
14794 {
14795 /* Perform output processing on a circular buffer. *icount is the number of
14796 * bytes to process, and the number of bytes actually processed on return.
14797 * *ocount is the space available on input and the space used on output.
14798 * (Naturally *icount < *ocount.) The column position is updated modulo
14799 * the TAB size, because we really only need it for tabs.
14800 */
14801
14802 int tablen;
14803 int ict = *icount;
14804 int oct = *ocount;
14805 int pos = tp->tty_position;
14806
14807 while (ict > 0) {
14808 switch (*bpos) {
14809 case ’\7’:
14810 break;
14811 case ’\b’:
14812 pos--;
14813 break;
14814 case ’\r’:
14815 pos = 0;
14816 break;
14817 case ’\n’:
14818 if ((tp->tty_termios.c_oflag & (OPOST|ONLCR))
14819 == (OPOST|ONLCR)) {
14820 /* Map LF to CR+LF if there is space. Note that the
14821 * next character in the buffer is overwritten, so
14822 * we stop at this point.
14823 */
14824 if (oct >= 2) {
14825 *bpos = ’\r’;
14826 if (++bpos == bend) bpos = bstart;
14827 *bpos = ’\n’;
14828 pos = 0;
14829 ict--;
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14830 oct -= 2;
14831 }
14832 goto out_done; /* no space or buffer got changed */
14833 }
14834 break;
14835 case ’\t’:
14836 /* Best guess for the tab length. */
14837 tablen = TAB_SIZE - (pos & TAB_MASK);
14838
14839 if ((tp->tty_termios.c_oflag & (OPOST|XTABS))
14840 == (OPOST|XTABS)) {
14841 /* Tabs must be expanded. */
14842 if (oct >= tablen) {
14843 pos += tablen;
14844 ict--;
14845 oct -= tablen;
14846 do {
14847 *bpos = ’ ’;
14848 if (++bpos == bend) bpos = bstart;
14849 } while (--tablen != 0);
14850 }
14851 goto out_done;
14852 }
14853 /* Tabs are output directly. */
14854 pos += tablen;
14855 break;
14856 default:
14857 /* Assume any other character prints as one character. */
14858 pos++;
14859 }
14860 if (++bpos == bend) bpos = bstart;
14861 ict--;
14862 oct--;
14863 }
14864 out_done:
14865 tp->tty_position = pos & TAB_MASK;
14866
14867 *icount -= ict; /* [io]ct are the number of chars not used */
14868 *ocount -= oct; /* *[io]count are the number of chars that are used */
14869 }

14871 /*===========================================================================*
14872 * dev_ioctl *
14873 *===========================================================================*/
14874 PRIVATE void dev_ioctl(tp)
14875 tty_t *tp;
14876 {
14877 /* The ioctl’s TCSETSW, TCSETSF and TCDRAIN wait for output to finish to make
14878 * sure that an attribute change doesn’t affect the processing of current
14879 * output. Once output finishes the ioctl is executed as in do_ioctl().
14880 */
14881 int result;
14882
14883 if (tp->tty_outleft > 0) return; /* output not finished */
14884
14885 if (tp->tty_ioreq != TCDRAIN) {
14886 if (tp->tty_ioreq == TCSETSF) tty_icancel(tp);
14887 result = sys_vircopy(tp->tty_ioproc, D, tp->tty_iovir,
14888 SELF, D, (vir_bytes) &tp->tty_termios,
14889 (vir_bytes) sizeof(tp->tty_termios));
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14890 setattr(tp);
14891 }
14892 tp->tty_ioreq = 0;
14893 tty_reply(REVIVE, tp->tty_iocaller, tp->tty_ioproc, result);
14894 }

14896 /*===========================================================================*
14897 * setattr *
14898 *===========================================================================*/
14899 PRIVATE void setattr(tp)
14900 tty_t *tp;
14901 {
14902 /* Apply the new line attributes (raw/canonical, line speed, etc.) */
14903 u16_t *inp;
14904 int count;
14905
14906 if (!(tp->tty_termios.c_lflag & ICANON)) {
14907 /* Raw mode; put a "line break" on all characters in the input queue.
14908 * It is undefined what happens to the input queue when ICANON is
14909 * switched off, a process should use TCSAFLUSH to flush the queue.
14910 * Keeping the queue to preserve typeahead is the Right Thing, however
14911 * when a process does use TCSANOW to switch to raw mode.
14912 */
14913 count = tp->tty_eotct = tp->tty_incount;
14914 inp = tp->tty_intail;
14915 while (count > 0) {
14916 *inp |= IN_EOT;
14917 if (++inp == bufend(tp->tty_inbuf)) inp = tp->tty_inbuf;
14918 --count;
14919 }
14920 }
14921
14922 /* Inspect MIN and TIME. */
14923 settimer(tp, FALSE);
14924 if (tp->tty_termios.c_lflag & ICANON) {
14925 /* No MIN & TIME in canonical mode. */
14926 tp->tty_min = 1;
14927 } else {
14928 /* In raw mode MIN is the number of chars wanted, and TIME how long
14929 * to wait for them. With interesting exceptions if either is zero.
14930 */
14931 tp->tty_min = tp->tty_termios.c_cc[VMIN];
14932 if (tp->tty_min == 0 && tp->tty_termios.c_cc[VTIME] > 0)
14933 tp->tty_min = 1;
14934 }
14935
14936 if (!(tp->tty_termios.c_iflag & IXON)) {
14937 /* No start/stop output control, so don’t leave output inhibited. */
14938 tp->tty_inhibited = RUNNING;
14939 tp->tty_events = 1;
14940 }
14941
14942 /* Setting the output speed to zero hangs up the phone. */
14943 if (tp->tty_termios.c_ospeed == B0) sigchar(tp, SIGHUP);
14944
14945 /* Set new line speed, character size, etc at the device level. */
14946 (*tp->tty_ioctl)(tp, 0);
14947 }
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14949 /*===========================================================================*
14950 * tty_reply *
14951 *===========================================================================*/
14952 PUBLIC void tty_reply(code, replyee, proc_nr, status)
14953 int code; /* TASK_REPLY or REVIVE */
14954 int replyee; /* destination address for the reply */
14955 int proc_nr; /* to whom should the reply go? */
14956 int status; /* reply code */
14957 {
14958 /* Send a reply to a process that wanted to read or write data. */
14959 message tty_mess;
14960
14961 tty_mess.m_type = code;
14962 tty_mess.REP_PROC_NR = proc_nr;
14963 tty_mess.REP_STATUS = status;
14964
14965 if ((status = send(replyee, &tty_mess)) != OK) {
14966 panic("TTY","tty_reply failed, status\n", status);
14967 }
14968 }

14970 /*===========================================================================*
14971 * sigchar *
14972 *===========================================================================*/
14973 PUBLIC void sigchar(tp, sig)
14974 register tty_t *tp;
14975 int sig; /* SIGINT, SIGQUIT, SIGKILL or SIGHUP */
14976 {
14977 /* Process a SIGINT, SIGQUIT or SIGKILL char from the keyboard or SIGHUP from
14978 * a tty close, "stty 0", or a real RS-232 hangup. MM will send the signal to
14979 * the process group (INT, QUIT), all processes (KILL), or the session leader
14980 * (HUP).
14981 */
14982 int status;
14983
14984 if (tp->tty_pgrp != 0)
14985 if (OK != (status = sys_kill(tp->tty_pgrp, sig)))
14986 panic("TTY","Error, call to sys_kill failed", status);
14987
14988 if (!(tp->tty_termios.c_lflag & NOFLSH)) {
14989 tp->tty_incount = tp->tty_eotct = 0; /* kill earlier input */
14990 tp->tty_intail = tp->tty_inhead;
14991 (*tp->tty_ocancel)(tp, 0); /* kill all output */
14992 tp->tty_inhibited = RUNNING;
14993 tp->tty_events = 1;
14994 }
14995 }

14997 /*===========================================================================*
14998 * tty_icancel *
14999 *===========================================================================*/
15000 PRIVATE void tty_icancel(tp)
15001 register tty_t *tp;
15002 {
15003 /* Discard all pending input, tty buffer or device. */
15004
15005 tp->tty_incount = tp->tty_eotct = 0;
15006 tp->tty_intail = tp->tty_inhead;
15007 (*tp->tty_icancel)(tp, 0);
15008 }
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15010 /*===========================================================================*
15011 * tty_init *
15012 *===========================================================================*/
15013 PRIVATE void tty_init()
15014 {
15015 /* Initialize tty structure and call device initialization routines. */
15016
15017 register tty_t *tp;
15018 int s;
15019 struct sigaction sigact;
15020
15021 /* Initialize the terminal lines. */
15022 for (tp = FIRST_TTY,s=0; tp < END_TTY; tp++,s++) {
15023
15024 tp->tty_index = s;
15025
15026 tmr_inittimer(&tp->tty_tmr);
15027
15028 tp->tty_intail = tp->tty_inhead = tp->tty_inbuf;
15029 tp->tty_min = 1;
15030 tp->tty_termios = termios_defaults;
15031 tp->tty_icancel = tp->tty_ocancel = tp->tty_ioctl = tp->tty_close =
15032 tty_devnop;
15033 if (tp < tty_addr(NR_CONS)) {
15034 scr_init(tp);
15035 tp->tty_minor = CONS_MINOR + s;
15036 } else
15037 if (tp < tty_addr(NR_CONS+NR_RS_LINES)) {
15038 rs_init(tp);
15039 tp->tty_minor = RS232_MINOR + s-NR_CONS;
15040 } else {
15041 pty_init(tp);
15042 tp->tty_minor = s - (NR_CONS+NR_RS_LINES) + TTYPX_MINOR;
15043 }
15044 }
15045 }

15047 /*===========================================================================*
15048 * tty_timed_out *
15049 *===========================================================================*/
15050 PRIVATE void tty_timed_out(timer_t *tp)
15051 {
15052 /* This timer has expired. Set the events flag, to force processing. */
15053 tty_t *tty_ptr;
15054 tty_ptr = &tty_table[tmr_arg(tp)->ta_int];
15055 tty_ptr->tty_min = 0; /* force read to succeed */
15056 tty_ptr->tty_events = 1;
15057 }

15059 /*===========================================================================*
15060 * expire_timers *
15061 *===========================================================================*/
15062 PRIVATE void expire_timers(void)
15063 {
15064 /* A synchronous alarm message was received. Check if there are any expired
15065 * timers. Possibly set the event flag and reschedule another alarm.
15066 */
15067 clock_t now; /* current time */
15068 int s;
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15069
15070 /* Get the current time to compare the timers against. */
15071 if ((s=getuptime(&now)) != OK)
15072 panic("TTY","Couldn’t get uptime from clock.", s);
15073
15074 /* Scan the queue of timers for expired timers. This dispatch the watchdog
15075 * functions of expired timers. Possibly a new alarm call must be scheduled.
15076 */
15077 tmrs_exptimers(&tty_timers, now, NULL);
15078 if (tty_timers == NULL) tty_next_timeout = TMR_NEVER;
15079 else { /* set new sync alarm */
15080 tty_next_timeout = tty_timers->tmr_exp_time;
15081 if ((s=sys_setalarm(tty_next_timeout, 1)) != OK)
15082 panic("TTY","Couldn’t set synchronous alarm.", s);
15083 }
15084 }

15086 /*===========================================================================*
15087 * settimer *
15088 *===========================================================================*/
15089 PRIVATE void settimer(tty_ptr, enable)
15090 tty_t *tty_ptr; /* line to set or unset a timer on */
15091 int enable; /* set timer if true, otherwise unset */
15092 {
15093 clock_t now; /* current time */
15094 clock_t exp_time;
15095 int s;
15096
15097 /* Get the current time to calculate the timeout time. */
15098 if ((s=getuptime(&now)) != OK)
15099 panic("TTY","Couldn’t get uptime from clock.", s);
15100 if (enable) {
15101 exp_time = now + tty_ptr->tty_termios.c_cc[VTIME] * (HZ/10);
15102 /* Set a new timer for enabling the TTY events flags. */
15103 tmrs_settimer(&tty_timers, &tty_ptr->tty_tmr,
15104 exp_time, tty_timed_out, NULL);
15105 } else {
15106 /* Remove the timer from the active and expired lists. */
15107 tmrs_clrtimer(&tty_timers, &tty_ptr->tty_tmr, NULL);
15108 }
15109
15110 /* Now check if a new alarm must be scheduled. This happens when the front
15111 * of the timers queue was disabled or reinserted at another position, or
15112 * when a new timer was added to the front.
15113 */
15114 if (tty_timers == NULL) tty_next_timeout = TMR_NEVER;
15115 else if (tty_timers->tmr_exp_time != tty_next_timeout) {
15116 tty_next_timeout = tty_timers->tmr_exp_time;
15117 if ((s=sys_setalarm(tty_next_timeout, 1)) != OK)
15118 panic("TTY","Couldn’t set synchronous alarm.", s);
15119 }
15120 }

15122 /*===========================================================================*
15123 * tty_devnop *
15124 *===========================================================================*/
15125 PUBLIC int tty_devnop(tp, try)
15126 tty_t *tp;
15127 int try;
15128 {
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15129 /* Some functions need not be implemented at the device level. */
15130 }

15132 /*===========================================================================*
15133 * do_select *
15134 *===========================================================================*/
15135 PRIVATE void do_select(tp, m_ptr)
15136 register tty_t *tp; /* pointer to tty struct */
15137 register message *m_ptr; /* pointer to message sent to the task */
15138 {
15139 int ops, ready_ops = 0, watch;
15140
15141 ops = m_ptr->PROC_NR & (SEL_RD|SEL_WR|SEL_ERR);
15142 watch = (m_ptr->PROC_NR & SEL_NOTIFY) ? 1 : 0;
15143
15144 ready_ops = select_try(tp, ops);
15145
15146 if (!ready_ops && ops && watch) {
15147 tp->tty_select_ops |= ops;
15148 tp->tty_select_proc = m_ptr->m_source;
15149 }
15150
15151 tty_reply(TASK_REPLY, m_ptr->m_source, m_ptr->PROC_NR, ready_ops);
15152
15153 return;
15154 }

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
drivers/tty/keyboard.c

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

15200 /* Keyboard driver for PC’s and AT’s.
15201 *
15202 * Changes:
15203 * Jul 13, 2004 processes can observe function keys (Jorrit N. Herder)
15204 * Jun 15, 2004 removed wreboot(), except panic dumps (Jorrit N. Herder)
15205 * Feb 04, 1994 loadable keymaps (Marcus Hampel)
15206 */
15207
15208 #include "../drivers.h"
15209 #include <sys/time.h>
15210 #include <sys/select.h>
15211 #include <termios.h>
15212 #include <signal.h>
15213 #include <unistd.h>
15214 #include <minix/callnr.h>
15215 #include <minix/com.h>
15216 #include <minix/keymap.h>
15217 #include "tty.h"
15218 #include "keymaps/us-std.src"
15219 #include "../../kernel/const.h"
15220 #include "../../kernel/config.h"
15221 #include "../../kernel/type.h"
15222 #include "../../kernel/proc.h"
15223
15224 int irq_hook_id = -1;
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15225
15226 /* Standard and AT keyboard. (PS/2 MCA implies AT throughout.) */
15227 #define KEYBD 0x60 /* I/O port for keyboard data */
15228
15229 /* AT keyboard. */
15230 #define KB_COMMAND 0x64 /* I/O port for commands on AT */
15231 #define KB_STATUS 0x64 /* I/O port for status on AT */
15232 #define KB_ACK 0xFA /* keyboard ack response */
15233 #define KB_OUT_FULL 0x01 /* status bit set when keypress char pending */
15234 #define KB_IN_FULL 0x02 /* status bit set when not ready to receive */
15235 #define LED_CODE 0xED /* command to keyboard to set LEDs */
15236 #define MAX_KB_ACK_RETRIES 0x1000 /* max #times to wait for kb ack */
15237 #define MAX_KB_BUSY_RETRIES 0x1000 /* max #times to loop while kb busy */
15238 #define KBIT 0x80 /* bit used to ack characters to keyboard */
15239
15240 /* Miscellaneous. */
15241 #define ESC_SCAN 0x01 /* reboot key when panicking */
15242 #define SLASH_SCAN 0x35 /* to recognize numeric slash */
15243 #define RSHIFT_SCAN 0x36 /* to distinguish left and right shift */
15244 #define HOME_SCAN 0x47 /* first key on the numeric keypad */
15245 #define INS_SCAN 0x52 /* INS for use in CTRL-ALT-INS reboot */
15246 #define DEL_SCAN 0x53 /* DEL for use in CTRL-ALT-DEL reboot */
15247
15248 #define CONSOLE 0 /* line number for console */
15249 #define KB_IN_BYTES 32 /* size of keyboard input buffer */
15250 PRIVATE char ibuf[KB_IN_BYTES]; /* input buffer */
15251 PRIVATE char *ihead = ibuf; /* next free spot in input buffer */
15252 PRIVATE char *itail = ibuf; /* scan code to return to TTY */
15253 PRIVATE int icount; /* # codes in buffer */
15254
15255 PRIVATE int esc; /* escape scan code detected? */
15256 PRIVATE int alt_l; /* left alt key state */
15257 PRIVATE int alt_r; /* right alt key state */
15258 PRIVATE int alt; /* either alt key */
15259 PRIVATE int ctrl_l; /* left control key state */
15260 PRIVATE int ctrl_r; /* right control key state */
15261 PRIVATE int ctrl; /* either control key */
15262 PRIVATE int shift_l; /* left shift key state */
15263 PRIVATE int shift_r; /* right shift key state */
15264 PRIVATE int shift; /* either shift key */
15265 PRIVATE int num_down; /* num lock key depressed */
15266 PRIVATE int caps_down; /* caps lock key depressed */
15267 PRIVATE int scroll_down; /* scroll lock key depressed */
15268 PRIVATE int locks[NR_CONS]; /* per console lock keys state */
15269
15270 /* Lock key active bits. Chosen to be equal to the keyboard LED bits. */
15271 #define SCROLL_LOCK 0x01
15272 #define NUM_LOCK 0x02
15273 #define CAPS_LOCK 0x04
15274
15275 PRIVATE char numpad_map[] =
15276 {’H’, ’Y’, ’A’, ’B’, ’D’, ’C’, ’V’, ’U’, ’G’, ’S’, ’T’, ’@’};
15277
15278 /* Variables and definition for observed function keys. */
15279 typedef struct observer { int proc_nr; int events; } obs_t;
15280 PRIVATE obs_t fkey_obs[12]; /* observers for F1-F12 */
15281 PRIVATE obs_t sfkey_obs[12]; /* observers for SHIFT F1-F12 */
15282
15283 FORWARD _PROTOTYPE( int kb_ack, (void) );
15284 FORWARD _PROTOTYPE( int kb_wait, (void) );
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15285 FORWARD _PROTOTYPE( int func_key, (int scode) );
15286 FORWARD _PROTOTYPE( int scan_keyboard, (void) );
15287 FORWARD _PROTOTYPE( unsigned make_break, (int scode) );
15288 FORWARD _PROTOTYPE( void set_leds, (void) );
15289 FORWARD _PROTOTYPE( void show_key_mappings, (void) );
15290 FORWARD _PROTOTYPE( int kb_read, (struct tty *tp, int try) );
15291 FORWARD _PROTOTYPE( unsigned map_key, (int scode) );
15292
15293 /*===========================================================================*
15294 * map_key0 *
15295 *===========================================================================*/
15296 /* Map a scan code to an ASCII code ignoring modifiers. */
15297 #define map_key0(scode) \
15298 ((unsigned) keymap[(scode) * MAP_COLS])
15299
15300 /*===========================================================================*
15301 * map_key *
15302 *===========================================================================*/
15303 PRIVATE unsigned map_key(scode)
15304 int scode;
15305 {
15306 /* Map a scan code to an ASCII code. */
15307
15308 int caps, column, lk;
15309 u16_t *keyrow;
15310
15311 if (scode == SLASH_SCAN && esc) return ’/’; /* don’t map numeric slash */
15312
15313 keyrow = &keymap[scode * MAP_COLS];
15314
15315 caps = shift;
15316 lk = locks[ccurrent];
15317 if ((lk & NUM_LOCK) && HOME_SCAN <= scode && scode <= DEL_SCAN) caps = !caps;
15318 if ((lk & CAPS_LOCK) && (keyrow[0] & HASCAPS)) caps = !caps;
15319
15320 if (alt) {
15321 column = 2;
15322 if (ctrl || alt_r) column = 3; /* Ctrl + Alt == AltGr */
15323 if (caps) column = 4;
15324 } else {
15325 column = 0;
15326 if (caps) column = 1;
15327 if (ctrl) column = 5;
15328 }
15329 return keyrow[column] & ˜HASCAPS;
15330 }

15332 /*===========================================================================*
15333 * kbd_interrupt *
15334 *===========================================================================*/
15335 PUBLIC void kbd_interrupt(m_ptr)
15336 message *m_ptr;
15337 {
15338 /* A keyboard interrupt has occurred. Process it. */
15339 int scode;
15340 static timer_t timer; /* timer must be static! */
15341
15342 /* Fetch the character from the keyboard hardware and acknowledge it. */
15343 scode = scan_keyboard();
15344
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15345 /* Store the scancode in memory so the task can get at it later. */
15346 if (icount < KB_IN_BYTES) {
15347 *ihead++ = scode;
15348 if (ihead == ibuf + KB_IN_BYTES) ihead = ibuf;
15349 icount++;
15350 tty_table[ccurrent].tty_events = 1;
15351 if (tty_table[ccurrent].tty_select_ops & SEL_RD) {
15352 select_retry(&tty_table[ccurrent]);
15353 }
15354 }
15355 }

15357 /*===========================================================================*
15358 * kb_read *
15359 *===========================================================================*/
15360 PRIVATE int kb_read(tp, try)
15361 tty_t *tp;
15362 int try;
15363 {
15364 /* Process characters from the circular keyboard buffer. */
15365 char buf[3];
15366 int scode;
15367 unsigned ch;
15368
15369 tp = &tty_table[ccurrent]; /* always use the current console */
15370
15371 if (try) {
15372 if (icount > 0) return 1;
15373 return 0;
15374 }
15375
15376 while (icount > 0) {
15377 scode = *itail++; /* take one key scan code */
15378 if (itail == ibuf + KB_IN_BYTES) itail = ibuf;
15379 icount--;
15380
15381 /* Function keys are being used for debug dumps. */
15382 if (func_key(scode)) continue;
15383
15384 /* Perform make/break processing. */
15385 ch = make_break(scode);
15386
15387 if (ch <= 0xFF) {
15388 /* A normal character. */
15389 buf[0] = ch;
15390 (void) in_process(tp, buf, 1);
15391 } else
15392 if (HOME <= ch && ch <= INSRT) {
15393 /* An ASCII escape sequence generated by the numeric pad. */
15394 buf[0] = ESC;
15395 buf[1] = ’[’;
15396 buf[2] = numpad_map[ch - HOME];
15397 (void) in_process(tp, buf, 3);
15398 } else
15399 if (ch == ALEFT) {
15400 /* Choose lower numbered console as current console. */
15401 select_console(ccurrent - 1);
15402 set_leds();
15403 } else
15404 if (ch == ARIGHT) {
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15405 /* Choose higher numbered console as current console. */
15406 select_console(ccurrent + 1);
15407 set_leds();
15408 } else
15409 if (AF1 <= ch && ch <= AF12) {
15410 /* Alt-F1 is console, Alt-F2 is ttyc1, etc. */
15411 select_console(ch - AF1);
15412 set_leds();
15413 } else
15414 if (CF1 <= ch && ch <= CF12) {
15415 switch(ch) {
15416 case CF1: show_key_mappings(); break;
15417 case CF3: toggle_scroll(); break; /* hardware <-> software */
15418 case CF7: sigchar(&tty_table[CONSOLE], SIGQUIT); break;
15419 case CF8: sigchar(&tty_table[CONSOLE], SIGINT); break;
15420 case CF9: sigchar(&tty_table[CONSOLE], SIGKILL); break;
15421 }
15422 }
15423 }
15424
15425 return 1;
15426 }

15428 /*===========================================================================*
15429 * make_break *
15430 *===========================================================================*/
15431 PRIVATE unsigned make_break(scode)
15432 int scode; /* scan code of key just struck or released */
15433 {
15434 /* This routine can handle keyboards that interrupt only on key depression,
15435 * as well as keyboards that interrupt on key depression and key release.
15436 * For efficiency, the interrupt routine filters out most key releases.
15437 */
15438 int ch, make, escape;
15439 static int CAD_count = 0;
15440
15441 /* Check for CTRL-ALT-DEL, and if found, halt the computer. This would
15442 * be better done in keyboard() in case TTY is hung, except control and
15443 * alt are set in the high level code.
15444 */
15445 if (ctrl && alt && (scode == DEL_SCAN || scode == INS_SCAN))
15446 {
15447 if (++CAD_count == 3) sys_abort(RBT_HALT);
15448 sys_kill(INIT_PROC_NR, SIGABRT);
15449 return -1;
15450 }
15451
15452 /* High-order bit set on key release. */
15453 make = (scode & KEY_RELEASE) == 0; /* true if pressed */
15454
15455 ch = map_key(scode &= ASCII_MASK); /* map to ASCII */
15456
15457 escape = esc; /* Key is escaped? (true if added since the XT) */
15458 esc = 0;
15459
15460 switch (ch) {
15461 case CTRL: /* Left or right control key */
15462 *(escape ? &ctrl_r : &ctrl_l) = make;
15463 ctrl = ctrl_l | ctrl_r;
15464 break;
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15465 case SHIFT: /* Left or right shift key */
15466 *(scode == RSHIFT_SCAN ? &shift_r : &shift_l) = make;
15467 shift = shift_l | shift_r;
15468 break;
15469 case ALT: /* Left or right alt key */
15470 *(escape ? &alt_r : &alt_l) = make;
15471 alt = alt_l | alt_r;
15472 break;
15473 case CALOCK: /* Caps lock - toggle on 0 -> 1 transition */
15474 if (caps_down < make) {
15475 locks[ccurrent] ˆ= CAPS_LOCK;
15476 set_leds();
15477 }
15478 caps_down = make;
15479 break;
15480 case NLOCK: /* Num lock */
15481 if (num_down < make) {
15482 locks[ccurrent] ˆ= NUM_LOCK;
15483 set_leds();
15484 }
15485 num_down = make;
15486 break;
15487 case SLOCK: /* Scroll lock */
15488 if (scroll_down < make) {
15489 locks[ccurrent] ˆ= SCROLL_LOCK;
15490 set_leds();
15491 }
15492 scroll_down = make;
15493 break;
15494 case EXTKEY: /* Escape keycode */
15495 esc = 1; /* Next key is escaped */
15496 return(-1);
15497 default: /* A normal key */
15498 if (make) return(ch);
15499 }
15500
15501 /* Key release, or a shift type key. */
15502 return(-1);
15503 }

15505 /*===========================================================================*
15506 * set_leds *
15507 *===========================================================================*/
15508 PRIVATE void set_leds()
15509 {
15510 /* Set the LEDs on the caps, num, and scroll lock keys */
15511 int s;
15512 if (! machine.pc_at) return; /* PC/XT doesn’t have LEDs */
15513
15514 kb_wait(); /* wait for buffer empty */
15515 if ((s=sys_outb(KEYBD, LED_CODE)) != OK)
15516 printf("Warning, sys_outb couldn’t prepare for LED values: %d\n", s);
15517 /* prepare keyboard to accept LED values */
15518 kb_ack(); /* wait for ack response */
15519
15520 kb_wait(); /* wait for buffer empty */
15521 if ((s=sys_outb(KEYBD, locks[ccurrent])) != OK)
15522 printf("Warning, sys_outb couldn’t give LED values: %d\n", s);
15523 /* give keyboard LED values */
15524 kb_ack(); /* wait for ack response */
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15525 }

15527 /*===========================================================================*
15528 * kb_wait *
15529 *===========================================================================*/
15530 PRIVATE int kb_wait()
15531 {
15532 /* Wait until the controller is ready; return zero if this times out. */
15533
15534 int retries, status, temp;
15535 int s;
15536
15537 retries = MAX_KB_BUSY_RETRIES + 1; /* wait until not busy */
15538 do {
15539 s = sys_inb(KB_STATUS, &status);
15540 if (status & KB_OUT_FULL) {
15541 s = sys_inb(KEYBD, &temp); /* discard value */
15542 }
15543 if (! (status & (KB_IN_FULL|KB_OUT_FULL)) )
15544 break; /* wait until ready */
15545 } while (--retries != 0); /* continue unless timeout */
15546 return(retries); /* zero on timeout, positive if ready */
15547 }

15549 /*===========================================================================*
15550 * kb_ack *
15551 *===========================================================================*/
15552 PRIVATE int kb_ack()
15553 {
15554 /* Wait until kbd acknowledges last command; return zero if this times out. */
15555
15556 int retries, s;
15557 u8_t u8val;
15558
15559 retries = MAX_KB_ACK_RETRIES + 1;
15560 do {
15561 s = sys_inb(KEYBD, &u8val);
15562 if (u8val == KB_ACK)
15563 break; /* wait for ack */
15564 } while(--retries != 0); /* continue unless timeout */
15565
15566 return(retries); /* nonzero if ack received */
15567 }

15569 /*===========================================================================*
15570 * kb_init *
15571 *===========================================================================*/
15572 PUBLIC void kb_init(tp)
15573 tty_t *tp;
15574 {
15575 /* Initialize the keyboard driver. */
15576
15577 tp->tty_devread = kb_read; /* input function */
15578 }

15580 /*===========================================================================*
15581 * kb_init_once *
15582 *===========================================================================*/
15583 PUBLIC void kb_init_once(void)
15584 {
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15585 int i;
15586
15587 set_leds(); /* turn off numlock led */
15588 scan_keyboard(); /* discard leftover keystroke */
15589
15590 /* Clear the function key observers array. Also see func_key(). */
15591 for (i=0; i<12; i++) {
15592 fkey_obs[i].proc_nr = NONE; /* F1-F12 observers */
15593 fkey_obs[i].events = 0; /* F1-F12 observers */
15594 sfkey_obs[i].proc_nr = NONE; /* Shift F1-F12 observers */
15595 sfkey_obs[i].events = 0; /* Shift F1-F12 observers */
15596 }
15597
15598 /* Set interrupt handler and enable keyboard IRQ. */
15599 irq_hook_id = KEYBOARD_IRQ; /* id to be returned on interrupt */
15600 if ((i=sys_irqsetpolicy(KEYBOARD_IRQ, IRQ_REENABLE, &irq_hook_id)) != OK)
15601 panic("TTY", "Couldn’t set keyboard IRQ policy", i);
15602 if ((i=sys_irqenable(&irq_hook_id)) != OK)
15603 panic("TTY", "Couldn’t enable keyboard IRQs", i);
15604 kbd_irq_set |= (1 << KEYBOARD_IRQ);
15605 }

15607 /*===========================================================================*
15608 * kbd_loadmap *
15609 *===========================================================================*/
15610 PUBLIC int kbd_loadmap(m)
15611 message *m;
15612 {
15613 /* Load a new keymap. */
15614 int result;
15615 result = sys_vircopy(m->PROC_NR, D, (vir_bytes) m->ADDRESS,
15616 SELF, D, (vir_bytes) keymap,
15617 (vir_bytes) sizeof(keymap));
15618 return(result);
15619 }

15621 /*===========================================================================*
15622 * do_fkey_ctl *
15623 *===========================================================================*/
15624 PUBLIC void do_fkey_ctl(m_ptr)
15625 message *m_ptr; /* pointer to the request message */
15626 {
15627 /* This procedure allows processes to register a function key to receive
15628 * notifications if it is pressed. At most one binding per key can exist.
15629 */
15630 int i;
15631 int result;
15632
15633 switch (m_ptr->FKEY_REQUEST) { /* see what we must do */
15634 case FKEY_MAP: /* request for new mapping */
15635 result = OK; /* assume everything will be ok*/
15636 for (i=0; i < 12; i++) { /* check F1-F12 keys */
15637 if (bit_isset(m_ptr->FKEY_FKEYS, i+1) ) {
15638 if (fkey_obs[i].proc_nr == NONE) {
15639 fkey_obs[i].proc_nr = m_ptr->m_source;
15640 fkey_obs[i].events = 0;
15641 bit_unset(m_ptr->FKEY_FKEYS, i+1);
15642 } else {
15643 printf("WARNING, fkey_map failed F%d\n", i+1);
15644 result = EBUSY; /* report failure, but try rest */
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15645 }
15646 }
15647 }
15648 for (i=0; i < 12; i++) { /* check Shift+F1-F12 keys */
15649 if (bit_isset(m_ptr->FKEY_SFKEYS, i+1) ) {
15650 if (sfkey_obs[i].proc_nr == NONE) {
15651 sfkey_obs[i].proc_nr = m_ptr->m_source;
15652 sfkey_obs[i].events = 0;
15653 bit_unset(m_ptr->FKEY_SFKEYS, i+1);
15654 } else {
15655 printf("WARNING, fkey_map failed Shift F%d\n", i+1);
15656 result = EBUSY; /* report failure but try rest */
15657 }
15658 }
15659 }
15660 break;
15661 case FKEY_UNMAP:
15662 result = OK; /* assume everything will be ok*/
15663 for (i=0; i < 12; i++) { /* check F1-F12 keys */
15664 if (bit_isset(m_ptr->FKEY_FKEYS, i+1) ) {
15665 if (fkey_obs[i].proc_nr == m_ptr->m_source) {
15666 fkey_obs[i].proc_nr = NONE;
15667 fkey_obs[i].events = 0;
15668 bit_unset(m_ptr->FKEY_FKEYS, i+1);
15669 } else {
15670 result = EPERM; /* report failure, but try rest */
15671 }
15672 }
15673 }
15674 for (i=0; i < 12; i++) { /* check Shift+F1-F12 keys */
15675 if (bit_isset(m_ptr->FKEY_SFKEYS, i+1) ) {
15676 if (sfkey_obs[i].proc_nr == m_ptr->m_source) {
15677 sfkey_obs[i].proc_nr = NONE;
15678 sfkey_obs[i].events = 0;
15679 bit_unset(m_ptr->FKEY_SFKEYS, i+1);
15680 } else {
15681 result = EPERM; /* report failure, but try rest */
15682 }
15683 }
15684 }
15685 break;
15686 case FKEY_EVENTS:
15687 m_ptr->FKEY_FKEYS = m_ptr->FKEY_SFKEYS = 0;
15688 for (i=0; i < 12; i++) { /* check (Shift+) F1-F12 keys */
15689 if (fkey_obs[i].proc_nr == m_ptr->m_source) {
15690 if (fkey_obs[i].events) {
15691 bit_set(m_ptr->FKEY_FKEYS, i+1);
15692 fkey_obs[i].events = 0;
15693 }
15694 }
15695 if (sfkey_obs[i].proc_nr == m_ptr->m_source) {
15696 if (sfkey_obs[i].events) {
15697 bit_set(m_ptr->FKEY_SFKEYS, i+1);
15698 sfkey_obs[i].events = 0;
15699 }
15700 }
15701 }
15702 break;
15703 default:
15704 result = EINVAL; /* key cannot be observed */
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15705 }
15706
15707 /* Almost done, return result to caller. */
15708 m_ptr->m_type = result;
15709 send(m_ptr->m_source, m_ptr);
15710 }

15712 /*===========================================================================*
15713 * func_key *
15714 *===========================================================================*/
15715 PRIVATE int func_key(scode)
15716 int scode; /* scan code for a function key */
15717 {
15718 /* This procedure traps function keys for debugging purposes. Observers of
15719 * function keys are kept in a global array. If a subject (a key) is pressed
15720 * the observer is notified of the event. Initialization of the arrays is done
15721 * in kb_init, where NONE is set to indicate there is no interest in the key.
15722 * Returns FALSE on a key release or if the key is not observable.
15723 */
15724 message m;
15725 int key;
15726 int proc_nr;
15727 int i,s;
15728
15729 /* Ignore key releases. If this is a key press, get full key code. */
15730 if (scode & KEY_RELEASE) return(FALSE); /* key release */
15731 key = map_key(scode); /* include modifiers */
15732
15733 /* Key pressed, now see if there is an observer for the pressed key.
15734 * F1-F12 observers are in fkey_obs array.
15735 * SHIFT F1-F12 observers are in sfkey_req array.
15736 * CTRL F1-F12 reserved (see kb_read)
15737 * ALT F1-F12 reserved (see kb_read)
15738 * Other combinations are not in use. Note that Alt+Shift+F1-F12 is yet
15739 * defined in <minix/keymap.h>, and thus is easy for future extensions.
15740 */
15741 if (F1 <= key && key <= F12) { /* F1-F12 */
15742 proc_nr = fkey_obs[key - F1].proc_nr;
15743 fkey_obs[key - F1].events ++ ;
15744 } else if (SF1 <= key && key <= SF12) { /* Shift F2-F12 */
15745 proc_nr = sfkey_obs[key - SF1].proc_nr;
15746 sfkey_obs[key - SF1].events ++;
15747 }
15748 else {
15749 return(FALSE); /* not observable */
15750 }
15751
15752 /* See if an observer is registered and send it a message. */
15753 if (proc_nr != NONE) {
15754 m.NOTIFY_TYPE = FKEY_PRESSED;
15755 notify(proc_nr);
15756 }
15757 return(TRUE);
15758 }

15760 /*===========================================================================*
15761 * show_key_mappings *
15762 *===========================================================================*/
15763 PRIVATE void show_key_mappings()
15764 {
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15765 int i,s;
15766 struct proc proc;
15767
15768 printf("\n");
15769 printf("System information. Known function key mappings to request debug dumps:\n");
15770 printf("-------------------------------------------------------------------------\n");
15771 for (i=0; i<12; i++) {
15772
15773 printf(" %sF%d: ", i+1<10? " ":"", i+1);
15774 if (fkey_obs[i].proc_nr != NONE) {
15775 if ((s=sys_getproc(&proc, fkey_obs[i].proc_nr))!=OK)
15776 printf("sys_getproc: %d\n", s);
15777 printf("%-14.14s", proc.p_name);
15778 } else {
15779 printf("%-14.14s", "<none>");
15780 }
15781
15782 printf(" %sShift-F%d: ", i+1<10? " ":"", i+1);
15783 if (sfkey_obs[i].proc_nr != NONE) {
15784 if ((s=sys_getproc(&proc, sfkey_obs[i].proc_nr))!=OK)
15785 printf("sys_getproc: %d\n", s);
15786 printf("%-14.14s", proc.p_name);
15787 } else {
15788 printf("%-14.14s", "<none>");
15789 }
15790 printf("\n");
15791 }
15792 printf("\n");
15793 printf("Press one of the registered function keys to trigger a debug dump.\n");
15794 printf("\n");
15795 }

15797 /*===========================================================================*
15798 * scan_keyboard *
15799 *===========================================================================*/
15800 PRIVATE int scan_keyboard()
15801 {
15802 /* Fetch the character from the keyboard hardware and acknowledge it. */
15803 pvb_pair_t byte_in[2], byte_out[2];
15804
15805 byte_in[0].port = KEYBD; /* get the scan code for the key struck */
15806 byte_in[1].port = PORT_B; /* strobe the keyboard to ack the char */
15807 sys_vinb(byte_in, 2); /* request actual input */
15808
15809 pv_set(byte_out[0], PORT_B, byte_in[1].value | KBIT); /* strobe bit high */
15810 pv_set(byte_out[1], PORT_B, byte_in[1].value); /* then strobe low */
15811 sys_voutb(byte_out, 2); /* request actual output */
15812
15813 return(byte_in[0].value); /* return scan code */
15814 }

15816 /*===========================================================================*
15817 * do_panic_dumps *
15818 *===========================================================================*/
15819 PUBLIC void do_panic_dumps(m)
15820 message *m; /* request message to TTY */
15821 {
15822 /* Wait for keystrokes for printing debugging info and reboot. */
15823 int quiet, code;
15824
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15825 /* A panic! Allow debug dumps until user wants to shutdown. */
15826 printf("\nHit ESC to reboot, DEL to shutdown, F-keys for debug dumps\n");
15827
15828 (void) scan_keyboard(); /* ack any old input */
15829 quiet = scan_keyboard();/* quiescent value (0 on PC, last code on AT)*/
15830 for (;;) {
15831 tickdelay(10);
15832 /* See if there are pending request for output, but don’t block.
15833 * Diagnostics can span multiple printf()s, so do it in a loop.
15834 */
15835 while (nb_receive(ANY, m) == OK) {
15836 switch(m->m_type) {
15837 case FKEY_CONTROL: do_fkey_ctl(m); break;
15838 case SYS_SIG: do_new_kmess(m); break;
15839 case DIAGNOSTICS: do_diagnostics(m); break;
15840 default: ; /* do nothing */
15841 }
15842 tickdelay(1); /* allow more */
15843 }
15844 code = scan_keyboard();
15845 if (code != quiet) {
15846 /* A key has been pressed. */
15847 switch (code) { /* possibly abort MINIX */
15848 case ESC_SCAN: sys_abort(RBT_REBOOT); return;
15849 case DEL_SCAN: sys_abort(RBT_HALT); return;
15850 }
15851 (void) func_key(code); /* check for function key */
15852 quiet = scan_keyboard();
15853 }
15854 }
15855 }

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
drivers/tty/console.c

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

15900 /* Code and data for the IBM console driver.
15901 *
15902 * The 6845 video controller used by the IBM PC shares its video memory with
15903 * the CPU somewhere in the 0xB0000 memory bank. To the 6845 this memory
15904 * consists of 16-bit words. Each word has a character code in the low byte
15905 * and a so-called attribute byte in the high byte. The CPU directly modifies
15906 * video memory to display characters, and sets two registers on the 6845 that
15907 * specify the video origin and the cursor position. The video origin is the
15908 * place in video memory where the first character (upper left corner) can
15909 * be found. Moving the origin is a fast way to scroll the screen. Some
15910 * video adapters wrap around the top of video memory, so the origin can
15911 * move without bounds. For other adapters screen memory must sometimes be
15912 * moved to reset the origin. All computations on video memory use character
15913 * (word) addresses for simplicity and assume there is no wrapping. The
15914 * assembly support functions translate the word addresses to byte addresses
15915 * and the scrolling function worries about wrapping.
15916 */
15917
15918 #include "../drivers.h"
15919 #include <termios.h>
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15920 #include <minix/callnr.h>
15921 #include <minix/com.h>
15922 #include "tty.h"
15923
15924 #include "../../kernel/const.h"
15925 #include "../../kernel/config.h"
15926 #include "../../kernel/type.h"
15927
15928 /* Definitions used by the console driver. */
15929 #define MONO_BASE 0xB0000L /* base of mono video memory */
15930 #define COLOR_BASE 0xB8000L /* base of color video memory */
15931 #define MONO_SIZE 0x1000 /* 4K mono video memory */
15932 #define COLOR_SIZE 0x4000 /* 16K color video memory */
15933 #define EGA_SIZE 0x8000 /* EGA & VGA have at least 32K */
15934 #define BLANK_COLOR 0x0700 /* determines cursor color on blank screen */
15935 #define SCROLL_UP 0 /* scroll forward */
15936 #define SCROLL_DOWN 1 /* scroll backward */
15937 #define BLANK_MEM ((u16_t *) 0) /* tells mem_vid_copy() to blank the screen */
15938 #define CONS_RAM_WORDS 80 /* video ram buffer size */
15939 #define MAX_ESC_PARMS 4 /* number of escape sequence params allowed */
15940
15941 /* Constants relating to the controller chips. */
15942 #define M_6845 0x3B4 /* port for 6845 mono */
15943 #define C_6845 0x3D4 /* port for 6845 color */
15944 #define INDEX 0 /* 6845’s index register */
15945 #define DATA 1 /* 6845’s data register */
15946 #define STATUS 6 /* 6845’s status register */
15947 #define VID_ORG 12 /* 6845’s origin register */
15948 #define CURSOR 14 /* 6845’s cursor register */
15949
15950 /* Beeper. */
15951 #define BEEP_FREQ 0x0533 /* value to put into timer to set beep freq */
15952 #define B_TIME 3 /* length of CTRL-G beep is ticks */
15953
15954 /* definitions used for font management */
15955 #define GA_SEQUENCER_INDEX 0x3C4
15956 #define GA_SEQUENCER_DATA 0x3C5
15957 #define GA_GRAPHICS_INDEX 0x3CE
15958 #define GA_GRAPHICS_DATA 0x3CF
15959 #define GA_VIDEO_ADDRESS 0xA0000L
15960 #define GA_FONT_SIZE 8192
15961
15962 /* Global variables used by the console driver and assembly support. */
15963 PUBLIC int vid_index; /* index of video segment in remote mem map */
15964 PUBLIC u16_t vid_seg;
15965 PUBLIC vir_bytes vid_off; /* video ram is found at vid_seg:vid_off */
15966 PUBLIC unsigned vid_size; /* 0x2000 for color or 0x0800 for mono */
15967 PUBLIC unsigned vid_mask; /* 0x1FFF for color or 0x07FF for mono */
15968 PUBLIC unsigned blank_color = BLANK_COLOR; /* display code for blank */
15969
15970 /* Private variables used by the console driver. */
15971 PRIVATE int vid_port; /* I/O port for accessing 6845 */
15972 PRIVATE int wrap; /* hardware can wrap? */
15973 PRIVATE int softscroll; /* 1 = software scrolling, 0 = hardware */
15974 PRIVATE int beeping; /* speaker is beeping? */
15975 PRIVATE unsigned font_lines; /* font lines per character */
15976 PRIVATE unsigned scr_width; /* # characters on a line */
15977 PRIVATE unsigned scr_lines; /* # lines on the screen */
15978 PRIVATE unsigned scr_size; /* # characters on the screen */
15979
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15980 /* Per console data. */
15981 typedef struct console {
15982 tty_t *c_tty; /* associated TTY struct */
15983 int c_column; /* current column number (0-origin) */
15984 int c_row; /* current row (0 at top of screen) */
15985 int c_rwords; /* number of WORDS (not bytes) in outqueue */
15986 unsigned c_start; /* start of video memory of this console */
15987 unsigned c_limit; /* limit of this console’s video memory */
15988 unsigned c_org; /* location in RAM where 6845 base points */
15989 unsigned c_cur; /* current position of cursor in video RAM */
15990 unsigned c_attr; /* character attribute */
15991 unsigned c_blank; /* blank attribute */
15992 char c_reverse; /* reverse video */
15993 char c_esc_state; /* 0=normal, 1=ESC, 2=ESC[ */
15994 char c_esc_intro; /* Distinguishing character following ESC */
15995 int *c_esc_parmp; /* pointer to current escape parameter */
15996 int c_esc_parmv[MAX_ESC_PARMS]; /* list of escape parameters */
15997 u16_t c_ramqueue[CONS_RAM_WORDS]; /* buffer for video RAM */
15998 } console_t;
15999
16000 PRIVATE int nr_cons= 1; /* actual number of consoles */
16001 PRIVATE console_t cons_table[NR_CONS];
16002 PRIVATE console_t *curcons; /* currently visible */
16003
16004 /* Color if using a color controller. */
16005 #define color (vid_port == C_6845)
16006
16007 /* Map from ANSI colors to the attributes used by the PC */
16008 PRIVATE int ansi_colors[8] = {0, 4, 2, 6, 1, 5, 3, 7};
16009
16010 /* Structure used for font management */
16011 struct sequence {
16012 unsigned short index;
16013 unsigned char port;
16014 unsigned char value;
16015 };
16016
16017 FORWARD _PROTOTYPE( int cons_write, (struct tty *tp, int try) );
16018 FORWARD _PROTOTYPE( void cons_echo, (tty_t *tp, int c) );
16019 FORWARD _PROTOTYPE( void out_char, (console_t *cons, int c) );
16020 FORWARD _PROTOTYPE( void putk, (int c) );
16021 FORWARD _PROTOTYPE( void beep, (void) );
16022 FORWARD _PROTOTYPE( void do_escape, (console_t *cons, int c) );
16023 FORWARD _PROTOTYPE( void flush, (console_t *cons) );
16024 FORWARD _PROTOTYPE( void parse_escape, (console_t *cons, int c) );
16025 FORWARD _PROTOTYPE( void scroll_screen, (console_t *cons, int dir) );
16026 FORWARD _PROTOTYPE( void set_6845, (int reg, unsigned val) );
16027 FORWARD _PROTOTYPE( void get_6845, (int reg, unsigned *val) );
16028 FORWARD _PROTOTYPE( void stop_beep, (timer_t *tmrp) );
16029 FORWARD _PROTOTYPE( void cons_org0, (void) );
16030 FORWARD _PROTOTYPE( int ga_program, (struct sequence *seq) );
16031 FORWARD _PROTOTYPE( int cons_ioctl, (tty_t *tp, int) );
16032
16033 /*===========================================================================*
16034 * cons_write *
16035 *===========================================================================*/
16036 PRIVATE int cons_write(tp, try)
16037 register struct tty *tp; /* tells which terminal is to be used */
16038 int try;
16039 {
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16040 /* Copy as much data as possible to the output queue, then start I/O. On
16041 * memory-mapped terminals, such as the IBM console, the I/O will also be
16042 * finished, and the counts updated. Keep repeating until all I/O done.
16043 */
16044
16045 int count;
16046 int result;
16047 register char *tbuf;
16048 char buf[64];
16049 console_t *cons = tp->tty_priv;
16050
16051 if (try) return 1; /* we can always write to console */
16052
16053 /* Check quickly for nothing to do, so this can be called often without
16054 * unmodular tests elsewhere.
16055 */
16056 if ((count = tp->tty_outleft) == 0 || tp->tty_inhibited) return;
16057
16058 /* Copy the user bytes to buf[] for decent addressing. Loop over the
16059 * copies, since the user buffer may be much larger than buf[].
16060 */
16061 do {
16062 if (count > sizeof(buf)) count = sizeof(buf);
16063 if ((result = sys_vircopy(tp->tty_outproc, D, tp->tty_out_vir,
16064 SELF, D, (vir_bytes) buf, (vir_bytes) count)) != OK)
16065 break;
16066 tbuf = buf;
16067
16068 /* Update terminal data structure. */
16069 tp->tty_out_vir += count;
16070 tp->tty_outcum += count;
16071 tp->tty_outleft -= count;
16072
16073 /* Output each byte of the copy to the screen. Avoid calling
16074 * out_char() for the "easy" characters, put them into the buffer
16075 * directly.
16076 */
16077 do {
16078 if ((unsigned) *tbuf < ’ ’ || cons->c_esc_state > 0
16079 || cons->c_column >= scr_width
16080 || cons->c_rwords >= buflen(cons->c_ramqueue))
16081 {
16082 out_char(cons, *tbuf++);
16083 } else {
16084 cons->c_ramqueue[cons->c_rwords++] =
16085 cons->c_attr | (*tbuf++ & BYTE);
16086 cons->c_column++;
16087 }
16088 } while (--count != 0);
16089 } while ((count = tp->tty_outleft) != 0 && !tp->tty_inhibited);
16090
16091 flush(cons); /* transfer anything buffered to the screen */
16092
16093 /* Reply to the writer if all output is finished or if an error occured. */
16094 if (tp->tty_outleft == 0 || result != OK) {
16095 /* REVIVE is not possible. I/O on memory mapped consoles finishes. */
16096 tty_reply(tp->tty_outrepcode, tp->tty_outcaller, tp->tty_outproc,
16097 tp->tty_outcum);
16098 tp->tty_outcum = 0;
16099 }
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16100 }

16102 /*===========================================================================*
16103 * cons_echo *
16104 *===========================================================================*/
16105 PRIVATE void cons_echo(tp, c)
16106 register tty_t *tp; /* pointer to tty struct */
16107 int c; /* character to be echoed */
16108 {
16109 /* Echo keyboard input (print & flush). */
16110 console_t *cons = tp->tty_priv;
16111
16112 out_char(cons, c);
16113 flush(cons);
16114 }

16116 /*===========================================================================*
16117 * out_char *
16118 *===========================================================================*/
16119 PRIVATE void out_char(cons, c)
16120 register console_t *cons; /* pointer to console struct */
16121 int c; /* character to be output */
16122 {
16123 /* Output a character on the console. Check for escape sequences first. */
16124 if (cons->c_esc_state > 0) {
16125 parse_escape(cons, c);
16126 return;
16127 }
16128
16129 switch(c) {
16130 case 000: /* null is typically used for padding */
16131 return; /* better not do anything */
16132
16133 case 007: /* ring the bell */
16134 flush(cons); /* print any chars queued for output */
16135 beep();
16136 return;
16137
16138 case ’\b’: /* backspace */
16139 if (--cons->c_column < 0) {
16140 if (--cons->c_row >= 0) cons->c_column += scr_width;
16141 }
16142 flush(cons);
16143 return;
16144
16145 case ’\n’: /* line feed */
16146 if ((cons->c_tty->tty_termios.c_oflag & (OPOST|ONLCR))
16147 == (OPOST|ONLCR)) {
16148 cons->c_column = 0;
16149 }
16150 /*FALL THROUGH*/
16151 case 013: /* CTRL-K */
16152 case 014: /* CTRL-L */
16153 if (cons->c_row == scr_lines-1) {
16154 scroll_screen(cons, SCROLL_UP);
16155 } else {
16156 cons->c_row++;
16157 }
16158 flush(cons);
16159 return;
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16160
16161 case ’\r’: /* carriage return */
16162 cons->c_column = 0;
16163 flush(cons);
16164 return;
16165
16166 case ’\t’: /* tab */
16167 cons->c_column = (cons->c_column + TAB_SIZE) & ˜TAB_MASK;
16168 if (cons->c_column > scr_width) {
16169 cons->c_column -= scr_width;
16170 if (cons->c_row == scr_lines-1) {
16171 scroll_screen(cons, SCROLL_UP);
16172 } else {
16173 cons->c_row++;
16174 }
16175 }
16176 flush(cons);
16177 return;
16178
16179 case 033: /* ESC - start of an escape sequence */
16180 flush(cons); /* print any chars queued for output */
16181 cons->c_esc_state = 1; /* mark ESC as seen */
16182 return;
16183
16184 default: /* printable chars are stored in ramqueue */
16185 if (cons->c_column >= scr_width) {
16186 if (!LINEWRAP) return;
16187 if (cons->c_row == scr_lines-1) {
16188 scroll_screen(cons, SCROLL_UP);
16189 } else {
16190 cons->c_row++;
16191 }
16192 cons->c_column = 0;
16193 flush(cons);
16194 }
16195 if (cons->c_rwords == buflen(cons->c_ramqueue)) flush(cons);
16196 cons->c_ramqueue[cons->c_rwords++] = cons->c_attr | (c & BYTE);
16197 cons->c_column++; /* next column */
16198 return;
16199 }
16200 }

16202 /*===========================================================================*
16203 * scroll_screen *
16204 *===========================================================================*/
16205 PRIVATE void scroll_screen(cons, dir)
16206 register console_t *cons; /* pointer to console struct */
16207 int dir; /* SCROLL_UP or SCROLL_DOWN */
16208 {
16209 unsigned new_line, new_org, chars;
16210
16211 flush(cons);
16212 chars = scr_size - scr_width; /* one screen minus one line */
16213
16214 /* Scrolling the screen is a real nuisance due to the various incompatible
16215 * video cards. This driver supports software scrolling (Hercules?),
16216 * hardware scrolling (mono and CGA cards) and hardware scrolling without
16217 * wrapping (EGA cards). In the latter case we must make sure that
16218 * c_start <= c_org && c_org + scr_size <= c_limit
16219 * holds, because EGA doesn’t wrap around the end of video memory.
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16220 */
16221 if (dir == SCROLL_UP) {
16222 /* Scroll one line up in 3 ways: soft, avoid wrap, use origin. */
16223 if (softscroll) {
16224 vid_vid_copy(cons->c_start + scr_width, cons->c_start, chars);
16225 } else
16226 if (!wrap && cons->c_org + scr_size + scr_width >= cons->c_limit) {
16227 vid_vid_copy(cons->c_org + scr_width, cons->c_start, chars);
16228 cons->c_org = cons->c_start;
16229 } else {
16230 cons->c_org = (cons->c_org + scr_width) & vid_mask;
16231 }
16232 new_line = (cons->c_org + chars) & vid_mask;
16233 } else {
16234 /* Scroll one line down in 3 ways: soft, avoid wrap, use origin. */
16235 if (softscroll) {
16236 vid_vid_copy(cons->c_start, cons->c_start + scr_width, chars);
16237 } else
16238 if (!wrap && cons->c_org < cons->c_start + scr_width) {
16239 new_org = cons->c_limit - scr_size;
16240 vid_vid_copy(cons->c_org, new_org + scr_width, chars);
16241 cons->c_org = new_org;
16242 } else {
16243 cons->c_org = (cons->c_org - scr_width) & vid_mask;
16244 }
16245 new_line = cons->c_org;
16246 }
16247 /* Blank the new line at top or bottom. */
16248 blank_color = cons->c_blank;
16249 mem_vid_copy(BLANK_MEM, new_line, scr_width);
16250
16251 /* Set the new video origin. */
16252 if (cons == curcons) set_6845(VID_ORG, cons->c_org);
16253 flush(cons);
16254 }

16256 /*===========================================================================*
16257 * flush *
16258 *===========================================================================*/
16259 PRIVATE void flush(cons)
16260 register console_t *cons; /* pointer to console struct */
16261 {
16262 /* Send characters buffered in ’ramqueue’ to screen memory, check the new
16263 * cursor position, compute the new hardware cursor position and set it.
16264 */
16265 unsigned cur;
16266 tty_t *tp = cons->c_tty;
16267
16268 /* Have the characters in ’ramqueue’ transferred to the screen. */
16269 if (cons->c_rwords > 0) {
16270 mem_vid_copy(cons->c_ramqueue, cons->c_cur, cons->c_rwords);
16271 cons->c_rwords = 0;
16272
16273 /* TTY likes to know the current column and if echoing messed up. */
16274 tp->tty_position = cons->c_column;
16275 tp->tty_reprint = TRUE;
16276 }
16277
16278 /* Check and update the cursor position. */
16279 if (cons->c_column < 0) cons->c_column = 0;
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16280 if (cons->c_column > scr_width) cons->c_column = scr_width;
16281 if (cons->c_row < 0) cons->c_row = 0;
16282 if (cons->c_row >= scr_lines) cons->c_row = scr_lines - 1;
16283 cur = cons->c_org + cons->c_row * scr_width + cons->c_column;
16284 if (cur != cons->c_cur) {
16285 if (cons == curcons) set_6845(CURSOR, cur);
16286 cons->c_cur = cur;
16287 }
16288 }

16290 /*===========================================================================*
16291 * parse_escape *
16292 *===========================================================================*/
16293 PRIVATE void parse_escape(cons, c)
16294 register console_t *cons; /* pointer to console struct */
16295 char c; /* next character in escape sequence */
16296 {
16297 /* The following ANSI escape sequences are currently supported.
16298 * If n and/or m are omitted, they default to 1.
16299 * ESC [nA moves up n lines
16300 * ESC [nB moves down n lines
16301 * ESC [nC moves right n spaces
16302 * ESC [nD moves left n spaces
16303 * ESC [m;nH" moves cursor to (m,n)
16304 * ESC [J clears screen from cursor
16305 * ESC [K clears line from cursor
16306 * ESC [nL inserts n lines ar cursor
16307 * ESC [nM deletes n lines at cursor
16308 * ESC [nP deletes n chars at cursor
16309 * ESC [n@ inserts n chars at cursor
16310 * ESC [nm enables rendition n (0=normal, 4=bold, 5=blinking, 7=reverse)
16311 * ESC M scrolls the screen backwards if the cursor is on the top line
16312 */
16313
16314 switch (cons->c_esc_state) {
16315 case 1: /* ESC seen */
16316 cons->c_esc_intro = ’\0’;
16317 cons->c_esc_parmp = bufend(cons->c_esc_parmv);
16318 do {
16319 *--cons->c_esc_parmp = 0;
16320 } while (cons->c_esc_parmp > cons->c_esc_parmv);
16321 switch (c) {
16322 case ’[’: /* Control Sequence Introducer */
16323 cons->c_esc_intro = c;
16324 cons->c_esc_state = 2;
16325 break;
16326 case ’M’: /* Reverse Index */
16327 do_escape(cons, c);
16328 break;
16329 default:
16330 cons->c_esc_state = 0;
16331 }
16332 break;
16333
16334 case 2: /* ESC [ seen */
16335 if (c >= ’0’ && c <= ’9’) {
16336 if (cons->c_esc_parmp < bufend(cons->c_esc_parmv))
16337 *cons->c_esc_parmp = *cons->c_esc_parmp * 10 + (c-’0’);
16338 } else
16339 if (c == ’;’) {
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16340 if (cons->c_esc_parmp < bufend(cons->c_esc_parmv))
16341 cons->c_esc_parmp++;
16342 } else {
16343 do_escape(cons, c);
16344 }
16345 break;
16346 }
16347 }

16349 /*===========================================================================*
16350 * do_escape *
16351 *===========================================================================*/
16352 PRIVATE void do_escape(cons, c)
16353 register console_t *cons; /* pointer to console struct */
16354 char c; /* next character in escape sequence */
16355 {
16356 int value, n;
16357 unsigned src, dst, count;
16358 int *parmp;
16359
16360 /* Some of these things hack on screen RAM, so it had better be up to date */
16361 flush(cons);
16362
16363 if (cons->c_esc_intro == ’\0’) {
16364 /* Handle a sequence beginning with just ESC */
16365 switch (c) {
16366 case ’M’: /* Reverse Index */
16367 if (cons->c_row == 0) {
16368 scroll_screen(cons, SCROLL_DOWN);
16369 } else {
16370 cons->c_row--;
16371 }
16372 flush(cons);
16373 break;
16374
16375 default: break;
16376 }
16377 } else
16378 if (cons->c_esc_intro == ’[’) {
16379 /* Handle a sequence beginning with ESC [ and parameters */
16380 value = cons->c_esc_parmv[0];
16381 switch (c) {
16382 case ’A’: /* ESC [nA moves up n lines */
16383 n = (value == 0 ? 1 : value);
16384 cons->c_row -= n;
16385 flush(cons);
16386 break;
16387
16388 case ’B’: /* ESC [nB moves down n lines */
16389 n = (value == 0 ? 1 : value);
16390 cons->c_row += n;
16391 flush(cons);
16392 break;
16393
16394 case ’C’: /* ESC [nC moves right n spaces */
16395 n = (value == 0 ? 1 : value);
16396 cons->c_column += n;
16397 flush(cons);
16398 break;
16399
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16400 case ’D’: /* ESC [nD moves left n spaces */
16401 n = (value == 0 ? 1 : value);
16402 cons->c_column -= n;
16403 flush(cons);
16404 break;
16405
16406 case ’H’: /* ESC [m;nH" moves cursor to (m,n) */
16407 cons->c_row = cons->c_esc_parmv[0] - 1;
16408 cons->c_column = cons->c_esc_parmv[1] - 1;
16409 flush(cons);
16410 break;
16411
16412 case ’J’: /* ESC [sJ clears in display */
16413 switch (value) {
16414 case 0: /* Clear from cursor to end of screen */
16415 count = scr_size - (cons->c_cur - cons->c_org);
16416 dst = cons->c_cur;
16417 break;
16418 case 1: /* Clear from start of screen to cursor */
16419 count = cons->c_cur - cons->c_org;
16420 dst = cons->c_org;
16421 break;
16422 case 2: /* Clear entire screen */
16423 count = scr_size;
16424 dst = cons->c_org;
16425 break;
16426 default: /* Do nothing */
16427 count = 0;
16428 dst = cons->c_org;
16429 }
16430 blank_color = cons->c_blank;
16431 mem_vid_copy(BLANK_MEM, dst, count);
16432 break;
16433
16434 case ’K’: /* ESC [sK clears line from cursor */
16435 switch (value) {
16436 case 0: /* Clear from cursor to end of line */
16437 count = scr_width - cons->c_column;
16438 dst = cons->c_cur;
16439 break;
16440 case 1: /* Clear from beginning of line to cursor */
16441 count = cons->c_column;
16442 dst = cons->c_cur - cons->c_column;
16443 break;
16444 case 2: /* Clear entire line */
16445 count = scr_width;
16446 dst = cons->c_cur - cons->c_column;
16447 break;
16448 default: /* Do nothing */
16449 count = 0;
16450 dst = cons->c_cur;
16451 }
16452 blank_color = cons->c_blank;
16453 mem_vid_copy(BLANK_MEM, dst, count);
16454 break;
16455
16456 case ’L’: /* ESC [nL inserts n lines at cursor */
16457 n = value;
16458 if (n < 1) n = 1;
16459 if (n > (scr_lines - cons->c_row))
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16460 n = scr_lines - cons->c_row;
16461
16462 src = cons->c_org + cons->c_row * scr_width;
16463 dst = src + n * scr_width;
16464 count = (scr_lines - cons->c_row - n) * scr_width;
16465 vid_vid_copy(src, dst, count);
16466 blank_color = cons->c_blank;
16467 mem_vid_copy(BLANK_MEM, src, n * scr_width);
16468 break;
16469
16470 case ’M’: /* ESC [nM deletes n lines at cursor */
16471 n = value;
16472 if (n < 1) n = 1;
16473 if (n > (scr_lines - cons->c_row))
16474 n = scr_lines - cons->c_row;
16475
16476 dst = cons->c_org + cons->c_row * scr_width;
16477 src = dst + n * scr_width;
16478 count = (scr_lines - cons->c_row - n) * scr_width;
16479 vid_vid_copy(src, dst, count);
16480 blank_color = cons->c_blank;
16481 mem_vid_copy(BLANK_MEM, dst + count, n * scr_width);
16482 break;
16483
16484 case ’@’: /* ESC [n@ inserts n chars at cursor */
16485 n = value;
16486 if (n < 1) n = 1;
16487 if (n > (scr_width - cons->c_column))
16488 n = scr_width - cons->c_column;
16489
16490 src = cons->c_cur;
16491 dst = src + n;
16492 count = scr_width - cons->c_column - n;
16493 vid_vid_copy(src, dst, count);
16494 blank_color = cons->c_blank;
16495 mem_vid_copy(BLANK_MEM, src, n);
16496 break;
16497
16498 case ’P’: /* ESC [nP deletes n chars at cursor */
16499 n = value;
16500 if (n < 1) n = 1;
16501 if (n > (scr_width - cons->c_column))
16502 n = scr_width - cons->c_column;
16503
16504 dst = cons->c_cur;
16505 src = dst + n;
16506 count = scr_width - cons->c_column - n;
16507 vid_vid_copy(src, dst, count);
16508 blank_color = cons->c_blank;
16509 mem_vid_copy(BLANK_MEM, dst + count, n);
16510 break;
16511
16512 case ’m’: /* ESC [nm enables rendition n */
16513 for (parmp = cons->c_esc_parmv; parmp <= cons->c_esc_parmp
16514 && parmp < bufend(cons->c_esc_parmv); parmp++) {
16515 if (cons->c_reverse) {
16516 /* Unswap fg and bg colors */
16517 cons->c_attr = ((cons->c_attr & 0x7000) >> 4) |
16518 ((cons->c_attr & 0x0700) << 4) |
16519 ((cons->c_attr & 0x8800));
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16520 }
16521 switch (n = *parmp) {
16522 case 0: /* NORMAL */
16523 cons->c_attr = cons->c_blank = BLANK_COLOR;
16524 cons->c_reverse = FALSE;
16525 break;
16526
16527 case 1: /* BOLD */
16528 /* Set intensity bit */
16529 cons->c_attr |= 0x0800;
16530 break;
16531
16532 case 4: /* UNDERLINE */
16533 if (color) {
16534 /* Change white to cyan, i.e. lose red
16535 */
16536 cons->c_attr = (cons->c_attr & 0xBBFF);
16537 } else {
16538 /* Set underline attribute */
16539 cons->c_attr = (cons->c_attr & 0x99FF);
16540 }
16541 break;
16542
16543 case 5: /* BLINKING */
16544 /* Set the blink bit */
16545 cons->c_attr |= 0x8000;
16546 break;
16547
16548 case 7: /* REVERSE */
16549 cons->c_reverse = TRUE;
16550 break;
16551
16552 default: /* COLOR */
16553 if (n == 39) n = 37; /* set default color */
16554 if (n == 49) n = 40;
16555
16556 if (!color) {
16557 /* Don’t mess up a monochrome screen */
16558 } else
16559 if (30 <= n && n <= 37) {
16560 /* Foreground color */
16561 cons->c_attr =
16562 (cons->c_attr & 0xF8FF) |
16563 (ansi_colors[(n - 30)] << 8);
16564 cons->c_blank =
16565 (cons->c_blank & 0xF8FF) |
16566 (ansi_colors[(n - 30)] << 8);
16567 } else
16568 if (40 <= n && n <= 47) {
16569 /* Background color */
16570 cons->c_attr =
16571 (cons->c_attr & 0x8FFF) |
16572 (ansi_colors[(n - 40)] << 12);
16573 cons->c_blank =
16574 (cons->c_blank & 0x8FFF) |
16575 (ansi_colors[(n - 40)] << 12);
16576 }
16577 }
16578 if (cons->c_reverse) {
16579 /* Swap fg and bg colors */



860 File: drivers/tty/console.c MINIX SOURCE CODE

16580 cons->c_attr = ((cons->c_attr & 0x7000) >> 4) |
16581 ((cons->c_attr & 0x0700) << 4) |
16582 ((cons->c_attr & 0x8800));
16583 }
16584 }
16585 break;
16586 }
16587 }
16588 cons->c_esc_state = 0;
16589 }

16591 /*===========================================================================*
16592 * set_6845 *
16593 *===========================================================================*/
16594 PRIVATE void set_6845(reg, val)
16595 int reg; /* which register pair to set */
16596 unsigned val; /* 16-bit value to set it to */
16597 {
16598 /* Set a register pair inside the 6845.
16599 * Registers 12-13 tell the 6845 where in video ram to start
16600 * Registers 14-15 tell the 6845 where to put the cursor
16601 */
16602 pvb_pair_t char_out[4];
16603 pv_set(char_out[0], vid_port + INDEX, reg); /* set index register */
16604 pv_set(char_out[1], vid_port + DATA, (val>>8) & BYTE); /* high byte */
16605 pv_set(char_out[2], vid_port + INDEX, reg + 1); /* again */
16606 pv_set(char_out[3], vid_port + DATA, val&BYTE); /* low byte */
16607 sys_voutb(char_out, 4); /* do actual output */
16608 }

16610 /*===========================================================================*
16611 * get_6845 *
16612 *===========================================================================*/
16613 PRIVATE void get_6845(reg, val)
16614 int reg; /* which register pair to set */
16615 unsigned *val; /* 16-bit value to set it to */
16616 {
16617 char v1, v2;
16618 /* Get a register pair inside the 6845. */
16619 sys_outb(vid_port + INDEX, reg);
16620 sys_inb(vid_port + DATA, &v1);
16621 sys_outb(vid_port + INDEX, reg+1);
16622 sys_inb(vid_port + DATA, &v2);
16623 *val = (v1 << 8) | v2;
16624 }

16626 /*===========================================================================*
16627 * beep *
16628 *===========================================================================*/
16629 PRIVATE void beep()
16630 {
16631 /* Making a beeping sound on the speaker (output for CRTL-G).
16632 * This routine works by turning on the bits 0 and 1 in port B of the 8255
16633 * chip that drive the speaker.
16634 */
16635 static timer_t tmr_stop_beep;
16636 pvb_pair_t char_out[3];
16637 clock_t now;
16638 int port_b_val, s;
16639
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16640 /* Fetch current time in advance to prevent beeping delay. */
16641 if ((s=getuptime(&now)) != OK)
16642 panic("TTY","Console couldn’t get clock’s uptime.", s);
16643 if (!beeping) {
16644 /* Set timer channel 2, square wave, with given frequency. */
16645 pv_set(char_out[0], TIMER_MODE, 0xB6);
16646 pv_set(char_out[1], TIMER2, (BEEP_FREQ >> 0) & BYTE);
16647 pv_set(char_out[2], TIMER2, (BEEP_FREQ >> 8) & BYTE);
16648 if (sys_voutb(char_out, 3)==OK) {
16649 if (sys_inb(PORT_B, &port_b_val)==OK &&
16650 sys_outb(PORT_B, (port_b_val|3))==OK)
16651 beeping = TRUE;
16652 }
16653 }
16654 /* Add a timer to the timers list. Possibly reschedule the alarm. */
16655 tmrs_settimer(&tty_timers, &tmr_stop_beep, now+B_TIME, stop_beep, NULL);
16656 if (tty_timers->tmr_exp_time != tty_next_timeout) {
16657 tty_next_timeout = tty_timers->tmr_exp_time;
16658 if ((s=sys_setalarm(tty_next_timeout, 1)) != OK)
16659 panic("TTY","Console couldn’t set alarm.", s);
16660 }
16661 }

16663 /*===========================================================================*
16664 * stop_beep *
16665 *===========================================================================*/
16666 PRIVATE void stop_beep(tmrp)
16667 timer_t *tmrp;
16668 {
16669 /* Turn off the beeper by turning off bits 0 and 1 in PORT_B. */
16670 int port_b_val;
16671 if (sys_inb(PORT_B, &port_b_val)==OK &&
16672 sys_outb(PORT_B, (port_b_val & ˜3))==OK)
16673 beeping = FALSE;
16674 }

16676 /*===========================================================================*
16677 * scr_init *
16678 *===========================================================================*/
16679 PUBLIC void scr_init(tp)
16680 tty_t *tp;
16681 {
16682 /* Initialize the screen driver. */
16683 console_t *cons;
16684 phys_bytes vid_base;
16685 u16_t bios_columns, bios_crtbase, bios_fontlines;
16686 u8_t bios_rows;
16687 int line;
16688 int s;
16689 static int vdu_initialized = 0;
16690 unsigned page_size;
16691
16692 /* Associate console and TTY. */
16693 line = tp - &tty_table[0];
16694 if (line >= nr_cons) return;
16695 cons = &cons_table[line];
16696 cons->c_tty = tp;
16697 tp->tty_priv = cons;
16698
16699 /* Initialize the keyboard driver. */
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16700 kb_init(tp);
16701
16702 /* Fill in TTY function hooks. */
16703 tp->tty_devwrite = cons_write;
16704 tp->tty_echo = cons_echo;
16705 tp->tty_ioctl = cons_ioctl;
16706
16707 /* Get the BIOS parameters that describe the VDU. */
16708 if (! vdu_initialized++) {
16709
16710 /* How about error checking? What to do on failure??? */
16711 s=sys_vircopy(SELF, BIOS_SEG, (vir_bytes) VDU_SCREEN_COLS_ADDR,
16712 SELF, D, (vir_bytes) &bios_columns, VDU_SCREEN_COLS_SIZE);
16713 s=sys_vircopy(SELF, BIOS_SEG, (vir_bytes) VDU_CRT_BASE_ADDR,
16714 SELF, D, (vir_bytes) &bios_crtbase, VDU_CRT_BASE_SIZE);
16715 s=sys_vircopy(SELF, BIOS_SEG, (vir_bytes) VDU_SCREEN_ROWS_ADDR,
16716 SELF, D, (vir_bytes) &bios_rows, VDU_SCREEN_ROWS_SIZE);
16717 s=sys_vircopy(SELF, BIOS_SEG, (vir_bytes) VDU_FONTLINES_ADDR,
16718 SELF, D, (vir_bytes) &bios_fontlines, VDU_FONTLINES_SIZE);
16719
16720 vid_port = bios_crtbase;
16721 scr_width = bios_columns;
16722 font_lines = bios_fontlines;
16723 scr_lines = machine.vdu_ega ? bios_rows+1 : 25;
16724
16725 if (color) {
16726 vid_base = COLOR_BASE;
16727 vid_size = COLOR_SIZE;
16728 } else {
16729 vid_base = MONO_BASE;
16730 vid_size = MONO_SIZE;
16731 }
16732 if (machine.vdu_ega) vid_size = EGA_SIZE;
16733 wrap = ! machine.vdu_ega;
16734
16735 s = sys_segctl(&vid_index, &vid_seg, &vid_off, vid_base, vid_size);
16736
16737 vid_size >>= 1; /* word count */
16738 vid_mask = vid_size - 1;
16739
16740 /* Size of the screen (number of displayed characters.) */
16741 scr_size = scr_lines * scr_width;
16742
16743 /* There can be as many consoles as video memory allows. */
16744 nr_cons = vid_size / scr_size;
16745 if (nr_cons > NR_CONS) nr_cons = NR_CONS;
16746 if (nr_cons > 1) wrap = 0;
16747 page_size = vid_size / nr_cons;
16748 }
16749
16750 cons->c_start = line * page_size;
16751 cons->c_limit = cons->c_start + page_size;
16752 cons->c_cur = cons->c_org = cons->c_start;
16753 cons->c_attr = cons->c_blank = BLANK_COLOR;
16754
16755 if (line != 0) {
16756 /* Clear the non-console vtys. */
16757 blank_color = BLANK_COLOR;
16758 mem_vid_copy(BLANK_MEM, cons->c_start, scr_size);
16759 } else {
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16760 int i, n;
16761 /* Set the cursor of the console vty at the bottom. c_cur
16762 * is updated automatically later.
16763 */
16764 scroll_screen(cons, SCROLL_UP);
16765 cons->c_row = scr_lines - 1;
16766 cons->c_column = 0;
16767 }
16768 select_console(0);
16769 cons_ioctl(tp, 0);
16770 }

16772 /*===========================================================================*
16773 * kputc *
16774 *===========================================================================*/
16775 PUBLIC void kputc(c)
16776 int c;
16777 {
16778 putk(c);
16779 }

16781 /*===========================================================================*
16782 * do_new_kmess *
16783 *===========================================================================*/
16784 PUBLIC void do_new_kmess(m)
16785 message *m;
16786 {
16787 /* Notification for a new kernel message. */
16788 struct kmessages kmess; /* kmessages structure */
16789 static int prev_next = 0; /* previous next seen */
16790 int size, next;
16791 int bytes;
16792 int r;
16793
16794 /* Try to get a fresh copy of the buffer with kernel messages. */
16795 sys_getkmessages(&kmess);
16796
16797 /* Print only the new part. Determine how many new bytes there are with
16798 * help of the current and previous ’next’ index. Note that the kernel
16799 * buffer is circular. This works fine if less then KMESS_BUF_SIZE bytes
16800 * is new data; else we miss % KMESS_BUF_SIZE here.
16801 * Check for size being positive, the buffer might as well be emptied!
16802 */
16803 if (kmess.km_size > 0) {
16804 bytes = ((kmess.km_next + KMESS_BUF_SIZE) - prev_next) % KMESS_BUF_SIZE;
16805 r=prev_next; /* start at previous old */
16806 while (bytes > 0) {
16807 putk( kmess.km_buf[(r%KMESS_BUF_SIZE)] );
16808 bytes --;
16809 r ++;
16810 }
16811 putk(0); /* terminate to flush output */
16812 }
16813
16814 /* Almost done, store ’next’ so that we can determine what part of the
16815 * kernel messages buffer to print next time a notification arrives.
16816 */
16817 prev_next = kmess.km_next;
16818 }
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16820 /*===========================================================================*
16821 * do_diagnostics *
16822 *===========================================================================*/
16823 PUBLIC void do_diagnostics(m_ptr)
16824 message *m_ptr; /* pointer to request message */
16825 {
16826 /* Print a string for a server. */
16827 char c;
16828 vir_bytes src;
16829 int count;
16830 int result = OK;
16831 int proc_nr = m_ptr->DIAG_PROC_NR;
16832 if (proc_nr == SELF) proc_nr = m_ptr->m_source;
16833
16834 src = (vir_bytes) m_ptr->DIAG_PRINT_BUF;
16835 for (count = m_ptr->DIAG_BUF_COUNT; count > 0; count--) {
16836 if (sys_vircopy(proc_nr, D, src++, SELF, D, (vir_bytes) &c, 1) != OK) {
16837 result = EFAULT;
16838 break;
16839 }
16840 putk(c);
16841 }
16842 putk(0); /* always terminate, even with EFAULT */
16843 m_ptr->m_type = result;
16844 send(m_ptr->m_source, m_ptr);
16845 }

16847 /*===========================================================================*
16848 * putk *
16849 *===========================================================================*/
16850 PRIVATE void putk(c)
16851 int c; /* character to print */
16852 {
16853 /* This procedure is used by the version of printf() that is linked with
16854 * the TTY driver. The one in the library sends a message to FS, which is
16855 * not what is needed for printing within the TTY. This version just queues
16856 * the character and starts the output.
16857 */
16858 if (c != 0) {
16859 if (c == ’\n’) putk(’\r’);
16860 out_char(&cons_table[0], (int) c);
16861 } else {
16862 flush(&cons_table[0]);
16863 }
16864 }

16866 /*===========================================================================*
16867 * toggle_scroll *
16868 *===========================================================================*/
16869 PUBLIC void toggle_scroll()
16870 {
16871 /* Toggle between hardware and software scroll. */
16872
16873 cons_org0();
16874 softscroll = !softscroll;
16875 printf("%sware scrolling enabled.\n", softscroll ? "Soft" : "Hard");
16876 }
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16878 /*===========================================================================*
16879 * cons_stop *
16880 *===========================================================================*/
16881 PUBLIC void cons_stop()
16882 {
16883 /* Prepare for halt or reboot. */
16884 cons_org0();
16885 softscroll = 1;
16886 select_console(0);
16887 cons_table[0].c_attr = cons_table[0].c_blank = BLANK_COLOR;
16888 }

16890 /*===========================================================================*
16891 * cons_org0 *
16892 *===========================================================================*/
16893 PRIVATE void cons_org0()
16894 {
16895 /* Scroll video memory back to put the origin at 0. */
16896 int cons_line;
16897 console_t *cons;
16898 unsigned n;
16899
16900 for (cons_line = 0; cons_line < nr_cons; cons_line++) {
16901 cons = &cons_table[cons_line];
16902 while (cons->c_org > cons->c_start) {
16903 n = vid_size - scr_size; /* amount of unused memory */
16904 if (n > cons->c_org - cons->c_start)
16905 n = cons->c_org - cons->c_start;
16906 vid_vid_copy(cons->c_org, cons->c_org - n, scr_size);
16907 cons->c_org -= n;
16908 }
16909 flush(cons);
16910 }
16911 select_console(ccurrent);
16912 }

16914 /*===========================================================================*
16915 * select_console *
16916 *===========================================================================*/
16917 PUBLIC void select_console(int cons_line)
16918 {
16919 /* Set the current console to console number ’cons_line’. */
16920
16921 if (cons_line < 0 || cons_line >= nr_cons) return;
16922 ccurrent = cons_line;
16923 curcons = &cons_table[cons_line];
16924 set_6845(VID_ORG, curcons->c_org);
16925 set_6845(CURSOR, curcons->c_cur);
16926 }

16928 /*===========================================================================*
16929 * con_loadfont *
16930 *===========================================================================*/
16931 PUBLIC int con_loadfont(m)
16932 message *m;
16933 {
16934 /* Load a font into the EGA or VGA adapter. */
16935 int result;
16936 static struct sequence seq1[7] = {
16937 { GA_SEQUENCER_INDEX, 0x00, 0x01 },
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16938 { GA_SEQUENCER_INDEX, 0x02, 0x04 },
16939 { GA_SEQUENCER_INDEX, 0x04, 0x07 },
16940 { GA_SEQUENCER_INDEX, 0x00, 0x03 },
16941 { GA_GRAPHICS_INDEX, 0x04, 0x02 },
16942 { GA_GRAPHICS_INDEX, 0x05, 0x00 },
16943 { GA_GRAPHICS_INDEX, 0x06, 0x00 },
16944 };
16945 static struct sequence seq2[7] = {
16946 { GA_SEQUENCER_INDEX, 0x00, 0x01 },
16947 { GA_SEQUENCER_INDEX, 0x02, 0x03 },
16948 { GA_SEQUENCER_INDEX, 0x04, 0x03 },
16949 { GA_SEQUENCER_INDEX, 0x00, 0x03 },
16950 { GA_GRAPHICS_INDEX, 0x04, 0x00 },
16951 { GA_GRAPHICS_INDEX, 0x05, 0x10 },
16952 { GA_GRAPHICS_INDEX, 0x06, 0 },
16953 };
16954
16955 seq2[6].value= color ? 0x0E : 0x0A;
16956
16957 if (!machine.vdu_ega) return(ENOTTY);
16958 result = ga_program(seq1); /* bring font memory into view */
16959
16960 result = sys_physcopy(m->PROC_NR, D, (vir_bytes) m->ADDRESS,
16961 NONE, PHYS_SEG, (phys_bytes) GA_VIDEO_ADDRESS, (phys_bytes)GA_FONT_SIZE);
16962
16963 result = ga_program(seq2); /* restore */
16964
16965 return(result);
16966 }

16968 /*===========================================================================*
16969 * ga_program *
16970 *===========================================================================*/
16971 PRIVATE int ga_program(seq)
16972 struct sequence *seq;
16973 {
16974 pvb_pair_t char_out[14];
16975 int i;
16976 for (i=0; i<7; i++) {
16977 pv_set(char_out[2*i], seq->index, seq->port);
16978 pv_set(char_out[2*i+1], seq->index+1, seq->value);
16979 seq++;
16980 }
16981 return sys_voutb(char_out, 14);
16982 }

16984 /*===========================================================================*
16985 * cons_ioctl *
16986 *===========================================================================*/
16987 PRIVATE int cons_ioctl(tp, try)
16988 tty_t *tp;
16989 int try;
16990 {
16991 /* Set the screen dimensions. */
16992
16993 tp->tty_winsize.ws_row= scr_lines;
16994 tp->tty_winsize.ws_col= scr_width;
16995 tp->tty_winsize.ws_xpixel= scr_width * 8;
16996 tp->tty_winsize.ws_ypixel= scr_lines * font_lines;
16997 }
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++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
servers/pm/pm.h

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

17000 /* This is the master header for PM. It includes some other files
17001 * and defines the principal constants.
17002 */
17003 #define _POSIX_SOURCE 1 /* tell headers to include POSIX stuff */
17004 #define _MINIX 1 /* tell headers to include MINIX stuff */
17005 #define _SYSTEM 1 /* tell headers that this is the kernel */
17006
17007 /* The following are so basic, all the *.c files get them automatically. */
17008 #include <minix/config.h> /* MUST be first */
17009 #include <ansi.h> /* MUST be second */
17010 #include <sys/types.h>
17011 #include <minix/const.h>
17012 #include <minix/type.h>
17013
17014 #include <fcntl.h>
17015 #include <unistd.h>
17016 #include <minix/syslib.h>
17017 #include <minix/sysutil.h>
17018
17019 #include <limits.h>
17020 #include <errno.h>
17021
17022 #include "const.h"
17023 #include "type.h"
17024 #include "proto.h"
17025 #include "glo.h"

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
servers/pm/const.h

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

17100 /* Constants used by the Process Manager. */
17101
17102 #define NO_MEM ((phys_clicks) 0) /* returned by alloc_mem() with mem is up */
17103
17104 #define NR_PIDS 30000 /* process ids range from 0 to NR_PIDS-1.
17105 * (magic constant: some old applications use
17106 * a ’short’ instead of pid_t.)
17107 */
17108
17109 #define PM_PID 0 /* PM’s process id number */
17110 #define INIT_PID 1 /* INIT’s process id number */
17111
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++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
servers/pm/type.h

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

17200 /* If there were any type definitions local to the Process Manager, they would
17201 * be here. This file is included only for symmetry with the kernel and File
17202 * System, which do have some local type definitions.
17203 */
17204

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
servers/pm/proto.h

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

17300 /* Function prototypes. */
17301
17302 struct mproc;
17303 struct stat;
17304 struct mem_map;
17305 struct memory;
17306
17307 #include <timers.h>
17308
17309 /* alloc.c */
17310 _PROTOTYPE( phys_clicks alloc_mem, (phys_clicks clicks) );
17311 _PROTOTYPE( void free_mem, (phys_clicks base, phys_clicks clicks) );
17312 _PROTOTYPE( void mem_init, (struct memory *chunks, phys_clicks *free) );
17313 #define swap_in() ((void)0)
17314 #define swap_inqueue(rmp) ((void)0)
17315
17316 /* break.c */
17317 _PROTOTYPE( int adjust, (struct mproc *rmp,
17318 vir_clicks data_clicks, vir_bytes sp) );
17319 _PROTOTYPE( int do_brk, (void) );
17320 _PROTOTYPE( int size_ok, (int file_type, vir_clicks tc, vir_clicks dc,
17321 vir_clicks sc, vir_clicks dvir, vir_clicks s_vir) );
17322
17323 /* devio.c */
17324 _PROTOTYPE( int do_dev_io, (void) );
17325 _PROTOTYPE( int do_dev_io, (void) );
17326
17327 /* dmp.c */
17328 _PROTOTYPE( int do_fkey_pressed, (void) );
17329
17330 /* exec.c */
17331 _PROTOTYPE( int do_exec, (void) );
17332 _PROTOTYPE( void rw_seg, (int rw, int fd, int proc, int seg,
17333 phys_bytes seg_bytes) );
17334 _PROTOTYPE( struct mproc *find_share, (struct mproc *mp_ign, Ino_t ino,
17335 Dev_t dev, time_t ctime) );
17336
17337 /* forkexit.c */
17338 _PROTOTYPE( int do_fork, (void) );
17339 _PROTOTYPE( int do_pm_exit, (void) );
17340 _PROTOTYPE( int do_waitpid, (void) );
17341 _PROTOTYPE( void pm_exit, (struct mproc *rmp, int exit_status) );
17342
17343 /* getset.c */
17344 _PROTOTYPE( int do_getset, (void) );
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17345
17346 /* main.c */
17347 _PROTOTYPE( int main, (void) );
17348
17349 /* misc.c */
17350 _PROTOTYPE( int do_reboot, (void) );
17351 _PROTOTYPE( int do_getsysinfo, (void) );
17352 _PROTOTYPE( int do_getprocnr, (void) );
17353 _PROTOTYPE( int do_svrctl, (void) );
17354 _PROTOTYPE( int do_allocmem, (void) );
17355 _PROTOTYPE( int do_freemem, (void) );
17356 _PROTOTYPE( int do_getsetpriority, (void) );
17357
17358 _PROTOTYPE( void setreply, (int proc_nr, int result) );
17359
17360 /* signal.c */
17361 _PROTOTYPE( int do_alarm, (void) );
17362 _PROTOTYPE( int do_kill, (void) );
17363 _PROTOTYPE( int ksig_pending, (void) );
17364 _PROTOTYPE( int do_pause, (void) );
17365 _PROTOTYPE( int set_alarm, (int proc_nr, int sec) );
17366 _PROTOTYPE( int check_sig, (pid_t proc_id, int signo) );
17367 _PROTOTYPE( void sig_proc, (struct mproc *rmp, int sig_nr) );
17368 _PROTOTYPE( int do_sigaction, (void) );
17369 _PROTOTYPE( int do_sigpending, (void) );
17370 _PROTOTYPE( int do_sigprocmask, (void) );
17371 _PROTOTYPE( int do_sigreturn, (void) );
17372 _PROTOTYPE( int do_sigsuspend, (void) );
17373 _PROTOTYPE( void check_pending, (struct mproc *rmp) );
17374
17375 /* time.c */
17376 _PROTOTYPE( int do_stime, (void) );
17377 _PROTOTYPE( int do_time, (void) );
17378 _PROTOTYPE( int do_times, (void) );
17379 _PROTOTYPE( int do_gettimeofday, (void) );
17380
17381 /* timers.c */
17382 _PROTOTYPE( void pm_set_timer, (timer_t *tp, int delta,
17383 tmr_func_t watchdog, int arg));
17384 _PROTOTYPE( void pm_expire_timers, (clock_t now));
17385 _PROTOTYPE( void pm_cancel_timer, (timer_t *tp));
17386
17387 /* trace.c */
17388 _PROTOTYPE( int do_trace, (void) );
17389 _PROTOTYPE( void stop_proc, (struct mproc *rmp, int sig_nr) );
17390
17391 /* utility.c */
17392 _PROTOTYPE( pid_t get_free_pid, (void) );
17393 _PROTOTYPE( int allowed, (char *name_buf, struct stat *s_buf, int mask) );
17394 _PROTOTYPE( int no_sys, (void) );
17395 _PROTOTYPE( void panic, (char *who, char *mess, int num) );
17396 _PROTOTYPE( void tell_fs, (int what, int p1, int p2, int p3) );
17397 _PROTOTYPE( int get_stack_ptr, (int proc_nr, vir_bytes *sp) );
17398 _PROTOTYPE( int get_mem_map, (int proc_nr, struct mem_map *mem_map) );
17399 _PROTOTYPE( char *find_param, (const char *key));
17400 _PROTOTYPE( int proc_from_pid, (pid_t p));
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++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
servers/pm/glo.h

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

17500 /* EXTERN should be extern except in table.c */
17501 #ifdef _TABLE
17502 #undef EXTERN
17503 #define EXTERN
17504 #endif
17505
17506 /* Global variables. */
17507 EXTERN struct mproc *mp; /* ptr to ’mproc’ slot of current process */
17508 EXTERN int procs_in_use; /* how many processes are marked as IN_USE */
17509 EXTERN char monitor_params[128*sizeof(char *)]; /* boot monitor parameters */
17510 EXTERN struct kinfo kinfo; /* kernel information */
17511
17512 /* The parameters of the call are kept here. */
17513 EXTERN message m_in; /* the incoming message itself is kept here. */
17514 EXTERN int who; /* caller’s proc number */
17515 EXTERN int call_nr; /* system call number */
17516
17517 extern _PROTOTYPE (int (*call_vec[]), (void) ); /* system call handlers */
17518 extern char core_name[]; /* file name where core images are produced */
17519 EXTERN sigset_t core_sset; /* which signals cause core images */
17520 EXTERN sigset_t ign_sset; /* which signals are by default ignored */
17521

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
servers/pm/mproc.h

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

17600 /* This table has one slot per process. It contains all the process management
17601 * information for each process. Among other things, it defines the text, data
17602 * and stack segments, uids and gids, and various flags. The kernel and file
17603 * systems have tables that are also indexed by process, with the contents
17604 * of corresponding slots referring to the same process in all three.
17605 */
17606 #include <timers.h>
17607
17608 EXTERN struct mproc {
17609 struct mem_map mp_seg[NR_LOCAL_SEGS]; /* points to text, data, stack */
17610 char mp_exitstatus; /* storage for status when process exits */
17611 char mp_sigstatus; /* storage for signal # for killed procs */
17612 pid_t mp_pid; /* process id */
17613 pid_t mp_procgrp; /* pid of process group (used for signals) */
17614 pid_t mp_wpid; /* pid this process is waiting for */
17615 int mp_parent; /* index of parent process */
17616
17617 /* Child user and system times. Accounting done on child exit. */
17618 clock_t mp_child_utime; /* cumulative user time of children */
17619 clock_t mp_child_stime; /* cumulative sys time of children */
17620
17621 /* Real and effective uids and gids. */
17622 uid_t mp_realuid; /* process’ real uid */
17623 uid_t mp_effuid; /* process’ effective uid */
17624 gid_t mp_realgid; /* process’ real gid */
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17625 gid_t mp_effgid; /* process’ effective gid */
17626
17627 /* File identification for sharing. */
17628 ino_t mp_ino; /* inode number of file */
17629 dev_t mp_dev; /* device number of file system */
17630 time_t mp_ctime; /* inode changed time */
17631
17632 /* Signal handling information. */
17633 sigset_t mp_ignore; /* 1 means ignore the signal, 0 means don’t */
17634 sigset_t mp_catch; /* 1 means catch the signal, 0 means don’t */
17635 sigset_t mp_sig2mess; /* 1 means transform into notify message */
17636 sigset_t mp_sigmask; /* signals to be blocked */
17637 sigset_t mp_sigmask2; /* saved copy of mp_sigmask */
17638 sigset_t mp_sigpending; /* pending signals to be handled */
17639 struct sigaction mp_sigact[_NSIG + 1]; /* as in sigaction(2) */
17640 vir_bytes mp_sigreturn; /* address of C library __sigreturn function */
17641 struct timer mp_timer; /* watchdog timer for alarm(2) */
17642
17643 /* Backwards compatibility for signals. */
17644 sighandler_t mp_func; /* all sigs vectored to a single user fcn */
17645
17646 unsigned mp_flags; /* flag bits */
17647 vir_bytes mp_procargs; /* ptr to proc’s initial stack arguments */
17648 struct mproc *mp_swapq; /* queue of procs waiting to be swapped in */
17649 message mp_reply; /* reply message to be sent to one */
17650
17651 /* Scheduling priority. */
17652 signed int mp_nice; /* nice is PRIO_MIN..PRIO_MAX, standard 0. */
17653
17654 char mp_name[PROC_NAME_LEN]; /* process name */
17655 } mproc[NR_PROCS];
17656
17657 /* Flag values */
17658 #define IN_USE 0x001 /* set when ’mproc’ slot in use */
17659 #define WAITING 0x002 /* set by WAIT system call */
17660 #define ZOMBIE 0x004 /* set by EXIT, cleared by WAIT */
17661 #define PAUSED 0x008 /* set by PAUSE system call */
17662 #define ALARM_ON 0x010 /* set when SIGALRM timer started */
17663 #define SEPARATE 0x020 /* set if file is separate I & D space */
17664 #define TRACED 0x040 /* set if process is to be traced */
17665 #define STOPPED 0x080 /* set if process stopped for tracing */
17666 #define SIGSUSPENDED 0x100 /* set by SIGSUSPEND system call */
17667 #define REPLY 0x200 /* set if a reply message is pending */
17668 #define ONSWAP 0x400 /* set if data segment is swapped out */
17669 #define SWAPIN 0x800 /* set if on the "swap this in" queue */
17670 #define DONT_SWAP 0x1000 /* never swap out this process */
17671 #define PRIV_PROC 0x2000 /* system process, special privileges */
17672
17673 #define NIL_MPROC ((struct mproc *) 0)
17674

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
servers/pm/param.h

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

17700 /* The following names are synonyms for the variables in the input message. */
17701 #define addr m1_p1
17702 #define exec_name m1_p1
17703 #define exec_len m1_i1
17704 #define func m6_f1
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17705 #define grp_id m1_i1
17706 #define namelen m1_i2
17707 #define pid m1_i1
17708 #define procnr m1_i1
17709 #define seconds m1_i1
17710 #define sig m6_i1
17711 #define stack_bytes m1_i2
17712 #define stack_ptr m1_p2
17713 #define status m1_i1
17714 #define usr_id m1_i1
17715 #define request m2_i2
17716 #define taddr m2_l1
17717 #define data m2_l2
17718 #define sig_nr m1_i2
17719 #define sig_nsa m1_p1
17720 #define sig_osa m1_p2
17721 #define sig_ret m1_p3
17722 #define sig_set m2_l1
17723 #define sig_how m2_i1
17724 #define sig_flags m2_i2
17725 #define sig_context m2_p1
17726 #define info_what m1_i1
17727 #define info_where m1_p1
17728 #define reboot_flag m1_i1
17729 #define reboot_code m1_p1
17730 #define reboot_strlen m1_i2
17731 #define svrctl_req m2_i1
17732 #define svrctl_argp m2_p1
17733 #define stime m2_l1
17734 #define memsize m4_l1
17735 #define membase m4_l2
17736
17737 /* The following names are synonyms for the variables in a reply message. */
17738 #define reply_res m_type
17739 #define reply_res2 m2_i1
17740 #define reply_ptr m2_p1
17741 #define reply_mask m2_l1
17742 #define reply_trace m2_l2
17743 #define reply_time m2_l1
17744 #define reply_utime m2_l2
17745 #define reply_t1 m4_l1
17746 #define reply_t2 m4_l2
17747 #define reply_t3 m4_l3
17748 #define reply_t4 m4_l4
17749 #define reply_t5 m4_l5
17750
17751 /* The following names are used to inform the FS about certain events. */
17752 #define tell_fs_arg1 m1_i1
17753 #define tell_fs_arg2 m1_i2
17754 #define tell_fs_arg3 m1_i3
17755
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++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
servers/pm/table.c

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

17800 /* This file contains the table used to map system call numbers onto the
17801 * routines that perform them.
17802 */
17803
17804 #define _TABLE
17805
17806 #include "pm.h"
17807 #include <minix/callnr.h>
17808 #include <signal.h>
17809 #include "mproc.h"
17810 #include "param.h"
17811
17812 /* Miscellaneous */
17813 char core_name[] = "core"; /* file name where core images are produced */
17814
17815 _PROTOTYPE (int (*call_vec[NCALLS]), (void) ) = {
17816 no_sys, /* 0 = unused */
17817 do_pm_exit, /* 1 = exit */
17818 do_fork, /* 2 = fork */
17819 no_sys, /* 3 = read */
17820 no_sys, /* 4 = write */
17821 no_sys, /* 5 = open */
17822 no_sys, /* 6 = close */
17823 do_waitpid, /* 7 = wait */
17824 no_sys, /* 8 = creat */
17825 no_sys, /* 9 = link */
17826 no_sys, /* 10 = unlink */
17827 do_waitpid, /* 11 = waitpid */
17828 no_sys, /* 12 = chdir */
17829 do_time, /* 13 = time */
17830 no_sys, /* 14 = mknod */
17831 no_sys, /* 15 = chmod */
17832 no_sys, /* 16 = chown */
17833 do_brk, /* 17 = break */
17834 no_sys, /* 18 = stat */
17835 no_sys, /* 19 = lseek */
17836 do_getset, /* 20 = getpid */
17837 no_sys, /* 21 = mount */
17838 no_sys, /* 22 = umount */
17839 do_getset, /* 23 = setuid */
17840 do_getset, /* 24 = getuid */
17841 do_stime, /* 25 = stime */
17842 do_trace, /* 26 = ptrace */
17843 do_alarm, /* 27 = alarm */
17844 no_sys, /* 28 = fstat */
17845 do_pause, /* 29 = pause */
17846 no_sys, /* 30 = utime */
17847 no_sys, /* 31 = (stty) */
17848 no_sys, /* 32 = (gtty) */
17849 no_sys, /* 33 = access */
17850 no_sys, /* 34 = (nice) */
17851 no_sys, /* 35 = (ftime) */
17852 no_sys, /* 36 = sync */
17853 do_kill, /* 37 = kill */
17854 no_sys, /* 38 = rename */
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17855 no_sys, /* 39 = mkdir */
17856 no_sys, /* 40 = rmdir */
17857 no_sys, /* 41 = dup */
17858 no_sys, /* 42 = pipe */
17859 do_times, /* 43 = times */
17860 no_sys, /* 44 = (prof) */
17861 no_sys, /* 45 = unused */
17862 do_getset, /* 46 = setgid */
17863 do_getset, /* 47 = getgid */
17864 no_sys, /* 48 = (signal)*/
17865 no_sys, /* 49 = unused */
17866 no_sys, /* 50 = unused */
17867 no_sys, /* 51 = (acct) */
17868 no_sys, /* 52 = (phys) */
17869 no_sys, /* 53 = (lock) */
17870 no_sys, /* 54 = ioctl */
17871 no_sys, /* 55 = fcntl */
17872 no_sys, /* 56 = (mpx) */
17873 no_sys, /* 57 = unused */
17874 no_sys, /* 58 = unused */
17875 do_exec, /* 59 = execve */
17876 no_sys, /* 60 = umask */
17877 no_sys, /* 61 = chroot */
17878 do_getset, /* 62 = setsid */
17879 do_getset, /* 63 = getpgrp */
17880
17881 no_sys, /* 64 = unused */
17882 no_sys, /* 65 = UNPAUSE */
17883 no_sys, /* 66 = unused */
17884 no_sys, /* 67 = REVIVE */
17885 no_sys, /* 68 = TASK_REPLY */
17886 no_sys, /* 69 = unused */
17887 no_sys, /* 70 = unused */
17888 do_sigaction, /* 71 = sigaction */
17889 do_sigsuspend, /* 72 = sigsuspend */
17890 do_sigpending, /* 73 = sigpending */
17891 do_sigprocmask, /* 74 = sigprocmask */
17892 do_sigreturn, /* 75 = sigreturn */
17893 do_reboot, /* 76 = reboot */
17894 do_svrctl, /* 77 = svrctl */
17895
17896 no_sys, /* 78 = unused */
17897 do_getsysinfo, /* 79 = getsysinfo */
17898 do_getprocnr, /* 80 = getprocnr */
17899 no_sys, /* 81 = unused */
17900 no_sys, /* 82 = fstatfs */
17901 do_allocmem, /* 83 = memalloc */
17902 do_freemem, /* 84 = memfree */
17903 no_sys, /* 85 = select */
17904 no_sys, /* 86 = fchdir */
17905 no_sys, /* 87 = fsync */
17906 do_getsetpriority, /* 88 = getpriority */
17907 do_getsetpriority, /* 89 = setpriority */
17908 do_time, /* 90 = gettimeofday */
17909 };
17910 /* This should not fail with "array size is negative": */
17911 extern int dummy[sizeof(call_vec) == NCALLS * sizeof(call_vec[0]) ? 1 : -1];
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++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
servers/pm/main.c

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

18000 /* This file contains the main program of the process manager and some related
18001 * procedures. When MINIX starts up, the kernel runs for a little while,
18002 * initializing itself and its tasks, and then it runs PM and FS. Both PM
18003 * and FS initialize themselves as far as they can. PM asks the kernel for
18004 * all free memory and starts serving requests.
18005 *
18006 * The entry points into this file are:
18007 * main: starts PM running
18008 * setreply: set the reply to be sent to process making an PM system call
18009 */
18010
18011 #include "pm.h"
18012 #include <minix/keymap.h>
18013 #include <minix/callnr.h>
18014 #include <minix/com.h>
18015 #include <signal.h>
18016 #include <stdlib.h>
18017 #include <fcntl.h>
18018 #include <sys/resource.h>
18019 #include <string.h>
18020 #include "mproc.h"
18021 #include "param.h"
18022
18023 #include "../../kernel/const.h"
18024 #include "../../kernel/config.h"
18025 #include "../../kernel/type.h"
18026 #include "../../kernel/proc.h"
18027
18028 FORWARD _PROTOTYPE( void get_work, (void) );
18029 FORWARD _PROTOTYPE( void pm_init, (void) );
18030 FORWARD _PROTOTYPE( int get_nice_value, (int queue) );
18031 FORWARD _PROTOTYPE( void get_mem_chunks, (struct memory *mem_chunks) );
18032 FORWARD _PROTOTYPE( void patch_mem_chunks, (struct memory *mem_chunks,
18033 struct mem_map *map_ptr) );
18034
18035 #define click_to_round_k(n) \
18036 ((unsigned) ((((unsigned long) (n) << CLICK_SHIFT) + 512) / 1024))
18037
18038 /*===========================================================================*
18039 * main *
18040 *===========================================================================*/
18041 PUBLIC int main()
18042 {
18043 /* Main routine of the process manager. */
18044 int result, s, proc_nr;
18045 struct mproc *rmp;
18046 sigset_t sigset;
18047
18048 pm_init(); /* initialize process manager tables */
18049
18050 /* This is PM’s main loop- get work and do it, forever and forever. */
18051 while (TRUE) {
18052 get_work(); /* wait for an PM system call */
18053
18054 /* Check for system notifications first. Special cases. */
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18055 if (call_nr == SYN_ALARM) {
18056 pm_expire_timers(m_in.NOTIFY_TIMESTAMP);
18057 result = SUSPEND; /* don’t reply */
18058 } else if (call_nr == SYS_SIG) { /* signals pending */
18059 sigset = m_in.NOTIFY_ARG;
18060 if (sigismember(&sigset, SIGKSIG)) (void) ksig_pending();
18061 result = SUSPEND; /* don’t reply */
18062 }
18063 /* Else, if the system call number is valid, perform the call. */
18064 else if ((unsigned) call_nr >= NCALLS) {
18065 result = ENOSYS;
18066 } else {
18067 result = (*call_vec[call_nr])();
18068 }
18069
18070 /* Send the results back to the user to indicate completion. */
18071 if (result != SUSPEND) setreply(who, result);
18072
18073 swap_in(); /* maybe a process can be swapped in? */
18074
18075 /* Send out all pending reply messages, including the answer to
18076 * the call just made above. The processes must not be swapped out.
18077 */
18078 for (proc_nr=0, rmp=mproc; proc_nr < NR_PROCS; proc_nr++, rmp++) {
18079 /* In the meantime, the process may have been killed by a
18080 * signal (e.g. if a lethal pending signal was unblocked)
18081 * without the PM realizing it. If the slot is no longer in
18082 * use or just a zombie, don’t try to reply.
18083 */
18084 if ((rmp->mp_flags & (REPLY | ONSWAP | IN_USE | ZOMBIE)) ==
18085 (REPLY | IN_USE)) {
18086 if ((s=send(proc_nr, &rmp->mp_reply)) != OK) {
18087 panic(__FILE__,"PM can’t reply to", proc_nr);
18088 }
18089 rmp->mp_flags &= ˜REPLY;
18090 }
18091 }
18092 }
18093 return(OK);
18094 }

18096 /*===========================================================================*
18097 * get_work *
18098 *===========================================================================*/
18099 PRIVATE void get_work()
18100 {
18101 /* Wait for the next message and extract useful information from it. */
18102 if (receive(ANY, &m_in) != OK) panic(__FILE__,"PM receive error", NO_NUM);
18103 who = m_in.m_source; /* who sent the message */
18104 call_nr = m_in.m_type; /* system call number */
18105
18106 /* Process slot of caller. Misuse PM’s own process slot if the kernel is
18107 * calling. This can happen in case of synchronous alarms (CLOCK) or or
18108 * event like pending kernel signals (SYSTEM).
18109 */
18110 mp = &mproc[who < 0 ? PM_PROC_NR : who];
18111 }
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18113 /*===========================================================================*
18114 * setreply *
18115 *===========================================================================*/
18116 PUBLIC void setreply(proc_nr, result)
18117 int proc_nr; /* process to reply to */
18118 int result; /* result of call (usually OK or error #) */
18119 {
18120 /* Fill in a reply message to be sent later to a user process. System calls
18121 * may occasionally fill in other fields, this is only for the main return
18122 * value, and for setting the "must send reply" flag.
18123 */
18124 register struct mproc *rmp = &mproc[proc_nr];
18125
18126 rmp->mp_reply.reply_res = result;
18127 rmp->mp_flags |= REPLY; /* reply pending */
18128
18129 if (rmp->mp_flags & ONSWAP)
18130 swap_inqueue(rmp); /* must swap this process back in */
18131 }

18133 /*===========================================================================*
18134 * pm_init *
18135 *===========================================================================*/
18136 PRIVATE void pm_init()
18137 {
18138 /* Initialize the process manager.
18139 * Memory use info is collected from the boot monitor, the kernel, and
18140 * all processes compiled into the system image. Initially this information
18141 * is put into an array mem_chunks. Elements of mem_chunks are struct memory,
18142 * and hold base, size pairs in units of clicks. This array is small, there
18143 * should be no more than 8 chunks. After the array of chunks has been built
18144 * the contents are used to initialize the hole list. Space for the hole list
18145 * is reserved as an array with twice as many elements as the maximum number
18146 * of processes allowed. It is managed as a linked list, and elements of the
18147 * array are struct hole, which, in addition to storage for a base and size in
18148 * click units also contain space for a link, a pointer to another element.
18149 */
18150 int s;
18151 static struct boot_image image[NR_BOOT_PROCS];
18152 register struct boot_image *ip;
18153 static char core_sigs[] = { SIGQUIT, SIGILL, SIGTRAP, SIGABRT,
18154 SIGEMT, SIGFPE, SIGUSR1, SIGSEGV, SIGUSR2 };
18155 static char ign_sigs[] = { SIGCHLD };
18156 register struct mproc *rmp;
18157 register char *sig_ptr;
18158 phys_clicks total_clicks, minix_clicks, free_clicks;
18159 message mess;
18160 struct mem_map mem_map[NR_LOCAL_SEGS];
18161 struct memory mem_chunks[NR_MEMS];
18162
18163 /* Initialize process table, including timers. */
18164 for (rmp=&mproc[0]; rmp<&mproc[NR_PROCS]; rmp++) {
18165 tmr_inittimer(&rmp->mp_timer);
18166 }
18167
18168 /* Build the set of signals which cause core dumps, and the set of signals
18169 * that are by default ignored.
18170 */
18171 sigemptyset(&core_sset);
18172 for (sig_ptr = core_sigs; sig_ptr < core_sigs+sizeof(core_sigs); sig_ptr++)
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18173 sigaddset(&core_sset, *sig_ptr);
18174 sigemptyset(&ign_sset);
18175 for (sig_ptr = ign_sigs; sig_ptr < ign_sigs+sizeof(ign_sigs); sig_ptr++)
18176 sigaddset(&ign_sset, *sig_ptr);
18177
18178 /* Obtain a copy of the boot monitor parameters and the kernel info struct.
18179 * Parse the list of free memory chunks. This list is what the boot monitor
18180 * reported, but it must be corrected for the kernel and system processes.
18181 */
18182 if ((s=sys_getmonparams(monitor_params, sizeof(monitor_params))) != OK)
18183 panic(__FILE__,"get monitor params failed",s);
18184 get_mem_chunks(mem_chunks);
18185 if ((s=sys_getkinfo(&kinfo)) != OK)
18186 panic(__FILE__,"get kernel info failed",s);
18187
18188 /* Get the memory map of the kernel to see how much memory it uses. */
18189 if ((s=get_mem_map(SYSTASK, mem_map)) != OK)
18190 panic(__FILE__,"couldn’t get memory map of SYSTASK",s);
18191 minix_clicks = (mem_map[S].mem_phys+mem_map[S].mem_len)-mem_map[T].mem_phys;
18192 patch_mem_chunks(mem_chunks, mem_map);
18193
18194 /* Initialize PM’s process table. Request a copy of the system image table
18195 * that is defined at the kernel level to see which slots to fill in.
18196 */
18197 if (OK != (s=sys_getimage(image)))
18198 panic(__FILE__,"couldn’t get image table: %d\n", s);
18199 procs_in_use = 0; /* start populating table */
18200 printf("Building process table:"); /* show what’s happening */
18201 for (ip = &image[0]; ip < &image[NR_BOOT_PROCS]; ip++) {
18202 if (ip->proc_nr >= 0) { /* task have negative nrs */
18203 procs_in_use += 1; /* found user process */
18204
18205 /* Set process details found in the image table. */
18206 rmp = &mproc[ip->proc_nr];
18207 strncpy(rmp->mp_name, ip->proc_name, PROC_NAME_LEN);
18208 rmp->mp_parent = RS_PROC_NR;
18209 rmp->mp_nice = get_nice_value(ip->priority);
18210 if (ip->proc_nr == INIT_PROC_NR) { /* user process */
18211 rmp->mp_pid = INIT_PID;
18212 rmp->mp_flags |= IN_USE;
18213 sigemptyset(&rmp->mp_ignore);
18214 }
18215 else { /* system process */
18216 rmp->mp_pid = get_free_pid();
18217 rmp->mp_flags |= IN_USE | DONT_SWAP | PRIV_PROC;
18218 sigfillset(&rmp->mp_ignore);
18219 }
18220 sigemptyset(&rmp->mp_sigmask);
18221 sigemptyset(&rmp->mp_catch);
18222 sigemptyset(&rmp->mp_sig2mess);
18223
18224 /* Get memory map for this process from the kernel. */
18225 if ((s=get_mem_map(ip->proc_nr, rmp->mp_seg)) != OK)
18226 panic(__FILE__,"couldn’t get process entry",s);
18227 if (rmp->mp_seg[T].mem_len != 0) rmp->mp_flags |= SEPARATE;
18228 minix_clicks += rmp->mp_seg[S].mem_phys +
18229 rmp->mp_seg[S].mem_len - rmp->mp_seg[T].mem_phys;
18230 patch_mem_chunks(mem_chunks, rmp->mp_seg);
18231
18232 /* Tell FS about this system process. */
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18233 mess.PR_PROC_NR = ip->proc_nr;
18234 mess.PR_PID = rmp->mp_pid;
18235 if (OK != (s=send(FS_PROC_NR, &mess)))
18236 panic(__FILE__,"can’t sync up with FS", s);
18237 printf(" %s", ip->proc_name); /* display process name */
18238 }
18239 }
18240 printf(".\n"); /* last process done */
18241
18242 /* Override some details. PM is somewhat special. */
18243 mproc[PM_PROC_NR].mp_pid = PM_PID; /* magically override pid */
18244 mproc[PM_PROC_NR].mp_parent = PM_PROC_NR; /* PM doesn’t have parent */
18245
18246 /* Tell FS that no more system processes follow and synchronize. */
18247 mess.PR_PROC_NR = NONE;
18248 if (sendrec(FS_PROC_NR, &mess) != OK || mess.m_type != OK)
18249 panic(__FILE__,"can’t sync up with FS", NO_NUM);
18250
18251 /* Initialize tables to all physical memory and print memory information. */
18252 printf("Physical memory:");
18253 mem_init(mem_chunks, &free_clicks);
18254 total_clicks = minix_clicks + free_clicks;
18255 printf(" total %u KB,", click_to_round_k(total_clicks));
18256 printf(" system %u KB,", click_to_round_k(minix_clicks));
18257 printf(" free %u KB.\n", click_to_round_k(free_clicks));
18258 }

18260 /*===========================================================================*
18261 * get_nice_value *
18262 *===========================================================================*/
18263 PRIVATE int get_nice_value(queue)
18264 int queue; /* store mem chunks here */
18265 {
18266 /* Processes in the boot image have a priority assigned. The PM doesn’t know
18267 * about priorities, but uses ’nice’ values instead. The priority is between
18268 * MIN_USER_Q and MAX_USER_Q. We have to scale between PRIO_MIN and PRIO_MAX.
18269 */
18270 int nice_val = (queue - USER_Q) * (PRIO_MAX-PRIO_MIN+1) /
18271 (MIN_USER_Q-MAX_USER_Q+1);
18272 if (nice_val > PRIO_MAX) nice_val = PRIO_MAX; /* shouldn’t happen */
18273 if (nice_val < PRIO_MIN) nice_val = PRIO_MIN; /* shouldn’t happen */
18274 return nice_val;
18275 }

18277 /*===========================================================================*
18278 * get_mem_chunks *
18279 *===========================================================================*/
18280 PRIVATE void get_mem_chunks(mem_chunks)
18281 struct memory *mem_chunks; /* store mem chunks here */
18282 {
18283 /* Initialize the free memory list from the ’memory’ boot variable. Translate
18284 * the byte offsets and sizes in this list to clicks, properly truncated. Also
18285 * make sure that we don’t exceed the maximum address space of the 286 or the
18286 * 8086, i.e. when running in 16-bit protected mode or real mode.
18287 */
18288 long base, size, limit;
18289 char *s, *end; /* use to parse boot variable */
18290 int i, done = 0;
18291 struct memory *memp;
18292
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18293 /* Initialize everything to zero. */
18294 for (i = 0; i < NR_MEMS; i++) {
18295 memp = &mem_chunks[i]; /* next mem chunk is stored here */
18296 memp->base = memp->size = 0;
18297 }
18298
18299 /* The available memory is determined by MINIX’ boot loader as a list of
18300 * (base:size)-pairs in boothead.s. The ’memory’ boot variable is set in
18301 * in boot.s. The format is "b0:s0,b1:s1,b2:s2", where b0:s0 is low mem,
18302 * b1:s1 is mem between 1M and 16M, b2:s2 is mem above 16M. Pairs b1:s1
18303 * and b2:s2 are combined if the memory is adjacent.
18304 */
18305 s = find_param("memory"); /* get memory boot variable */
18306 for (i = 0; i < NR_MEMS && !done; i++) {
18307 memp = &mem_chunks[i]; /* next mem chunk is stored here */
18308 base = size = 0; /* initialize next base:size pair */
18309 if (*s != 0) { /* get fresh data, unless at end */
18310
18311 /* Read fresh base and expect colon as next char. */
18312 base = strtoul(s, &end, 0x10); /* get number */
18313 if (end != s && *end == ’:’) s = ++end; /* skip ’:’ */
18314 else *s=0; /* terminate, should not happen */
18315
18316 /* Read fresh size and expect comma or assume end. */
18317 size = strtoul(s, &end, 0x10); /* get number */
18318 if (end != s && *end == ’,’) s = ++end; /* skip ’,’ */
18319 else done = 1;
18320 }
18321 limit = base + size;
18322 base = (base + CLICK_SIZE-1) & ˜(long)(CLICK_SIZE-1);
18323 limit &= ˜(long)(CLICK_SIZE-1);
18324 if (limit <= base) continue;
18325 memp->base = base >> CLICK_SHIFT;
18326 memp->size = (limit - base) >> CLICK_SHIFT;
18327 }
18328 }

18330 /*===========================================================================*
18331 * patch_mem_chunks *
18332 *===========================================================================*/
18333 PRIVATE void patch_mem_chunks(mem_chunks, map_ptr)
18334 struct memory *mem_chunks; /* store mem chunks here */
18335 struct mem_map *map_ptr; /* memory to remove */
18336 {
18337 /* Remove server memory from the free memory list. The boot monitor
18338 * promises to put processes at the start of memory chunks. The
18339 * tasks all use same base address, so only the first task changes
18340 * the memory lists. The servers and init have their own memory
18341 * spaces and their memory will be removed from the list.
18342 */
18343 struct memory *memp;
18344 for (memp = mem_chunks; memp < &mem_chunks[NR_MEMS]; memp++) {
18345 if (memp->base == map_ptr[T].mem_phys) {
18346 memp->base += map_ptr[T].mem_len + map_ptr[D].mem_len;
18347 memp->size -= map_ptr[T].mem_len + map_ptr[D].mem_len;
18348 }
18349 }
18350 }
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++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
servers/pm/forkexit.c

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

18400 /* This file deals with creating processes (via FORK) and deleting them (via
18401 * EXIT/WAIT). When a process forks, a new slot in the ’mproc’ table is
18402 * allocated for it, and a copy of the parent’s core image is made for the
18403 * child. Then the kernel and file system are informed. A process is removed
18404 * from the ’mproc’ table when two events have occurred: (1) it has exited or
18405 * been killed by a signal, and (2) the parent has done a WAIT. If the process
18406 * exits first, it continues to occupy a slot until the parent does a WAIT.
18407 *
18408 * The entry points into this file are:
18409 * do_fork: perform the FORK system call
18410 * do_pm_exit: perform the EXIT system call (by calling pm_exit())
18411 * pm_exit: actually do the exiting
18412 * do_wait: perform the WAITPID or WAIT system call
18413 */
18414
18415 #include "pm.h"
18416 #include <sys/wait.h>
18417 #include <minix/callnr.h>
18418 #include <minix/com.h>
18419 #include <signal.h>
18420 #include "mproc.h"
18421 #include "param.h"
18422
18423 #define LAST_FEW 2 /* last few slots reserved for superuser */
18424
18425 FORWARD _PROTOTYPE (void cleanup, (register struct mproc *child) );
18426
18427 /*===========================================================================*
18428 * do_fork *
18429 *===========================================================================*/
18430 PUBLIC int do_fork()
18431 {
18432 /* The process pointed to by ’mp’ has forked. Create a child process. */
18433 register struct mproc *rmp; /* pointer to parent */
18434 register struct mproc *rmc; /* pointer to child */
18435 int child_nr, s;
18436 phys_clicks prog_clicks, child_base;
18437 phys_bytes prog_bytes, parent_abs, child_abs; /* Intel only */
18438 pid_t new_pid;
18439
18440 /* If tables might fill up during FORK, don’t even start since recovery half
18441 * way through is such a nuisance.
18442 */
18443 rmp = mp;
18444 if ((procs_in_use == NR_PROCS) ||
18445 (procs_in_use >= NR_PROCS-LAST_FEW && rmp->mp_effuid != 0))
18446 {
18447 printf("PM: warning, process table is full!\n");
18448 return(EAGAIN);
18449 }
18450
18451 /* Determine how much memory to allocate. Only the data and stack need to
18452 * be copied, because the text segment is either shared or of zero length.
18453 */
18454 prog_clicks = (phys_clicks) rmp->mp_seg[S].mem_len;
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18455 prog_clicks += (rmp->mp_seg[S].mem_vir - rmp->mp_seg[D].mem_vir);
18456 prog_bytes = (phys_bytes) prog_clicks << CLICK_SHIFT;
18457 if ( (child_base = alloc_mem(prog_clicks)) == NO_MEM) return(ENOMEM);
18458
18459 /* Create a copy of the parent’s core image for the child. */
18460 child_abs = (phys_bytes) child_base << CLICK_SHIFT;
18461 parent_abs = (phys_bytes) rmp->mp_seg[D].mem_phys << CLICK_SHIFT;
18462 s = sys_abscopy(parent_abs, child_abs, prog_bytes);
18463 if (s < 0) panic(__FILE__,"do_fork can’t copy", s);
18464
18465 /* Find a slot in ’mproc’ for the child process. A slot must exist. */
18466 for (rmc = &mproc[0]; rmc < &mproc[NR_PROCS]; rmc++)
18467 if ( (rmc->mp_flags & IN_USE) == 0) break;
18468
18469 /* Set up the child and its memory map; copy its ’mproc’ slot from parent. */
18470 child_nr = (int)(rmc - mproc); /* slot number of the child */
18471 procs_in_use++;
18472 *rmc = *rmp; /* copy parent’s process slot to child’s */
18473 rmc->mp_parent = who; /* record child’s parent */
18474 /* inherit only these flags */
18475 rmc->mp_flags &= (IN_USE|SEPARATE|PRIV_PROC|DONT_SWAP);
18476 rmc->mp_child_utime = 0; /* reset administration */
18477 rmc->mp_child_stime = 0; /* reset administration */
18478
18479 /* A separate I&D child keeps the parents text segment. The data and stack
18480 * segments must refer to the new copy.
18481 */
18482 if (!(rmc->mp_flags & SEPARATE)) rmc->mp_seg[T].mem_phys = child_base;
18483 rmc->mp_seg[D].mem_phys = child_base;
18484 rmc->mp_seg[S].mem_phys = rmc->mp_seg[D].mem_phys +
18485 (rmp->mp_seg[S].mem_vir - rmp->mp_seg[D].mem_vir);
18486 rmc->mp_exitstatus = 0;
18487 rmc->mp_sigstatus = 0;
18488
18489 /* Find a free pid for the child and put it in the table. */
18490 new_pid = get_free_pid();
18491 rmc->mp_pid = new_pid; /* assign pid to child */
18492
18493 /* Tell kernel and file system about the (now successful) FORK. */
18494 sys_fork(who, child_nr);
18495 tell_fs(FORK, who, child_nr, rmc->mp_pid);
18496
18497 /* Report child’s memory map to kernel. */
18498 sys_newmap(child_nr, rmc->mp_seg);
18499
18500 /* Reply to child to wake it up. */
18501 setreply(child_nr, 0); /* only parent gets details */
18502 rmp->mp_reply.procnr = child_nr; /* child’s process number */
18503 return(new_pid); /* child’s pid */
18504 }

18506 /*===========================================================================*
18507 * do_pm_exit *
18508 *===========================================================================*/
18509 PUBLIC int do_pm_exit()
18510 {
18511 /* Perform the exit(status) system call. The real work is done by pm_exit(),
18512 * which is also called when a process is killed by a signal.
18513 */
18514 pm_exit(mp, m_in.status);
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18515 return(SUSPEND); /* can’t communicate from beyond the grave */
18516 }

18518 /*===========================================================================*
18519 * pm_exit *
18520 *===========================================================================*/
18521 PUBLIC void pm_exit(rmp, exit_status)
18522 register struct mproc *rmp; /* pointer to the process to be terminated */
18523 int exit_status; /* the process’ exit status (for parent) */
18524 {
18525 /* A process is done. Release most of the process’ possessions. If its
18526 * parent is waiting, release the rest, else keep the process slot and
18527 * become a zombie.
18528 */
18529 register int proc_nr;
18530 int parent_waiting, right_child;
18531 pid_t pidarg, procgrp;
18532 struct mproc *p_mp;
18533 clock_t t[5];
18534
18535 proc_nr = (int) (rmp - mproc); /* get process slot number */
18536
18537 /* Remember a session leader’s process group. */
18538 procgrp = (rmp->mp_pid == mp->mp_procgrp) ? mp->mp_procgrp : 0;
18539
18540 /* If the exited process has a timer pending, kill it. */
18541 if (rmp->mp_flags & ALARM_ON) set_alarm(proc_nr, (unsigned) 0);
18542
18543 /* Do accounting: fetch usage times and accumulate at parent. */
18544 sys_times(proc_nr, t);
18545 p_mp = &mproc[rmp->mp_parent]; /* process’ parent */
18546 p_mp->mp_child_utime += t[0] + rmp->mp_child_utime; /* add user time */
18547 p_mp->mp_child_stime += t[1] + rmp->mp_child_stime; /* add system time */
18548
18549 /* Tell the kernel and FS that the process is no longer runnable. */
18550 tell_fs(EXIT, proc_nr, 0, 0); /* file system can free the proc slot */
18551 sys_exit(proc_nr);
18552
18553 /* Pending reply messages for the dead process cannot be delivered. */
18554 rmp->mp_flags &= ˜REPLY;
18555
18556 /* Release the memory occupied by the child. */
18557 if (find_share(rmp, rmp->mp_ino, rmp->mp_dev, rmp->mp_ctime) == NULL) {
18558 /* No other process shares the text segment, so free it. */
18559 free_mem(rmp->mp_seg[T].mem_phys, rmp->mp_seg[T].mem_len);
18560 }
18561 /* Free the data and stack segments. */
18562 free_mem(rmp->mp_seg[D].mem_phys,
18563 rmp->mp_seg[S].mem_vir
18564 + rmp->mp_seg[S].mem_len - rmp->mp_seg[D].mem_vir);
18565
18566 /* The process slot can only be freed if the parent has done a WAIT. */
18567 rmp->mp_exitstatus = (char) exit_status;
18568
18569 pidarg = p_mp->mp_wpid; /* who’s being waited for? */
18570 parent_waiting = p_mp->mp_flags & WAITING;
18571 right_child = /* child meets one of the 3 tests? */
18572 (pidarg == -1 || pidarg == rmp->mp_pid || -pidarg == rmp->mp_procgrp);
18573
18574 if (parent_waiting && right_child) {
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18575 cleanup(rmp); /* tell parent and release child slot */
18576 } else {
18577 rmp->mp_flags = IN_USE|ZOMBIE; /* parent not waiting, zombify child */
18578 sig_proc(p_mp, SIGCHLD); /* send parent a "child died" signal */
18579 }
18580
18581 /* If the process has children, disinherit them. INIT is the new parent. */
18582 for (rmp = &mproc[0]; rmp < &mproc[NR_PROCS]; rmp++) {
18583 if (rmp->mp_flags & IN_USE && rmp->mp_parent == proc_nr) {
18584 /* ’rmp’ now points to a child to be disinherited. */
18585 rmp->mp_parent = INIT_PROC_NR;
18586 parent_waiting = mproc[INIT_PROC_NR].mp_flags & WAITING;
18587 if (parent_waiting && (rmp->mp_flags & ZOMBIE)) cleanup(rmp);
18588 }
18589 }
18590
18591 /* Send a hangup to the process’ process group if it was a session leader. */
18592 if (procgrp != 0) check_sig(-procgrp, SIGHUP);
18593 }

18595 /*===========================================================================*
18596 * do_waitpid *
18597 *===========================================================================*/
18598 PUBLIC int do_waitpid()
18599 {
18600 /* A process wants to wait for a child to terminate. If a child is already
18601 * waiting, go clean it up and let this WAIT call terminate. Otherwise,
18602 * really wait.
18603 * A process calling WAIT never gets a reply in the usual way at the end
18604 * of the main loop (unless WNOHANG is set or no qualifying child exists).
18605 * If a child has already exited, the routine cleanup() sends the reply
18606 * to awaken the caller.
18607 * Both WAIT and WAITPID are handled by this code.
18608 */
18609 register struct mproc *rp;
18610 int pidarg, options, children;
18611
18612 /* Set internal variables, depending on whether this is WAIT or WAITPID. */
18613 pidarg = (call_nr == WAIT ? -1 : m_in.pid); /* 1st param of waitpid */
18614 options = (call_nr == WAIT ? 0 : m_in.sig_nr); /* 3rd param of waitpid */
18615 if (pidarg == 0) pidarg = -mp->mp_procgrp; /* pidarg < 0 ==> proc grp */
18616
18617 /* Is there a child waiting to be collected? At this point, pidarg != 0:
18618 * pidarg > 0 means pidarg is pid of a specific process to wait for
18619 * pidarg == -1 means wait for any child
18620 * pidarg < -1 means wait for any child whose process group = -pidarg
18621 */
18622 children = 0;
18623 for (rp = &mproc[0]; rp < &mproc[NR_PROCS]; rp++) {
18624 if ( (rp->mp_flags & IN_USE) && rp->mp_parent == who) {
18625 /* The value of pidarg determines which children qualify. */
18626 if (pidarg > 0 && pidarg != rp->mp_pid) continue;
18627 if (pidarg < -1 && -pidarg != rp->mp_procgrp) continue;
18628
18629 children++; /* this child is acceptable */
18630 if (rp->mp_flags & ZOMBIE) {
18631 /* This child meets the pid test and has exited. */
18632 cleanup(rp); /* this child has already exited */
18633 return(SUSPEND);
18634 }
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18635 if ((rp->mp_flags & STOPPED) && rp->mp_sigstatus) {
18636 /* This child meets the pid test and is being traced.*/
18637 mp->mp_reply.reply_res2 = 0177|(rp->mp_sigstatus << 8);
18638 rp->mp_sigstatus = 0;
18639 return(rp->mp_pid);
18640 }
18641 }
18642 }
18643
18644 /* No qualifying child has exited. Wait for one, unless none exists. */
18645 if (children > 0) {
18646 /* At least 1 child meets the pid test exists, but has not exited. */
18647 if (options & WNOHANG) return(0); /* parent does not want to wait */
18648 mp->mp_flags |= WAITING; /* parent wants to wait */
18649 mp->mp_wpid = (pid_t) pidarg; /* save pid for later */
18650 return(SUSPEND); /* do not reply, let it wait */
18651 } else {
18652 /* No child even meets the pid test. Return error immediately. */
18653 return(ECHILD); /* no - parent has no children */
18654 }
18655 }

18657 /*===========================================================================*
18658 * cleanup *
18659 *===========================================================================*/
18660 PRIVATE void cleanup(child)
18661 register struct mproc *child; /* tells which process is exiting */
18662 {
18663 /* Finish off the exit of a process. The process has exited or been killed
18664 * by a signal, and its parent is waiting.
18665 */
18666 struct mproc *parent = &mproc[child->mp_parent];
18667 int exitstatus;
18668
18669 /* Wake up the parent by sending the reply message. */
18670 exitstatus = (child->mp_exitstatus << 8) | (child->mp_sigstatus & 0377);
18671 parent->mp_reply.reply_res2 = exitstatus;
18672 setreply(child->mp_parent, child->mp_pid);
18673 parent->mp_flags &= ˜WAITING; /* parent no longer waiting */
18674
18675 /* Release the process table entry and reinitialize some field. */
18676 child->mp_pid = 0;
18677 child->mp_flags = 0;
18678 child->mp_child_utime = 0;
18679 child->mp_child_stime = 0;
18680 procs_in_use--;
18681 }

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
servers/pm/exec.c

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

18700 /* This file handles the EXEC system call. It performs the work as follows:
18701 * - see if the permissions allow the file to be executed
18702 * - read the header and extract the sizes
18703 * - fetch the initial args and environment from the user space
18704 * - allocate the memory for the new process
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18705 * - copy the initial stack from PM to the process
18706 * - read in the text and data segments and copy to the process
18707 * - take care of setuid and setgid bits
18708 * - fix up ’mproc’ table
18709 * - tell kernel about EXEC
18710 * - save offset to initial argc (for ps)
18711 *
18712 * The entry points into this file are:
18713 * do_exec: perform the EXEC system call
18714 * rw_seg: read or write a segment from or to a file
18715 * find_share: find a process whose text segment can be shared
18716 */
18717
18718 #include "pm.h"
18719 #include <sys/stat.h>
18720 #include <minix/callnr.h>
18721 #include <minix/com.h>
18722 #include <a.out.h>
18723 #include <signal.h>
18724 #include <string.h>
18725 #include "mproc.h"
18726 #include "param.h"
18727
18728 FORWARD _PROTOTYPE( int new_mem, (struct mproc *sh_mp, vir_bytes text_bytes,
18729 vir_bytes data_bytes, vir_bytes bss_bytes,
18730 vir_bytes stk_bytes, phys_bytes tot_bytes) );
18731 FORWARD _PROTOTYPE( void patch_ptr, (char stack[ARG_MAX], vir_bytes base) );
18732 FORWARD _PROTOTYPE( int insert_arg, (char stack[ARG_MAX],
18733 vir_bytes *stk_bytes, char *arg, int replace) );
18734 FORWARD _PROTOTYPE( char *patch_stack, (int fd, char stack[ARG_MAX],
18735 vir_bytes *stk_bytes, char *script) );
18736 FORWARD _PROTOTYPE( int read_header, (int fd, int *ft, vir_bytes *text_bytes,
18737 vir_bytes *data_bytes, vir_bytes *bss_bytes,
18738 phys_bytes *tot_bytes, long *sym_bytes, vir_clicks sc,
18739 vir_bytes *pc) );
18740
18741 #define ESCRIPT (-2000) /* Returned by read_header for a #! script. */
18742 #define PTRSIZE sizeof(char *) /* Size of pointers in argv[] and envp[]. */
18743
18744 /*===========================================================================*
18745 * do_exec *
18746 *===========================================================================*/
18747 PUBLIC int do_exec()
18748 {
18749 /* Perform the execve(name, argv, envp) call. The user library builds a
18750 * complete stack image, including pointers, args, environ, etc. The stack
18751 * is copied to a buffer inside PM, and then to the new core image.
18752 */
18753 register struct mproc *rmp;
18754 struct mproc *sh_mp;
18755 int m, r, fd, ft, sn;
18756 static char mbuf[ARG_MAX]; /* buffer for stack and zeroes */
18757 static char name_buf[PATH_MAX]; /* the name of the file to exec */
18758 char *new_sp, *name, *basename;
18759 vir_bytes src, dst, text_bytes, data_bytes, bss_bytes, stk_bytes, vsp;
18760 phys_bytes tot_bytes; /* total space for program, including gap */
18761 long sym_bytes;
18762 vir_clicks sc;
18763 struct stat s_buf[2], *s_p;
18764 vir_bytes pc;
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18765
18766 /* Do some validity checks. */
18767 rmp = mp;
18768 stk_bytes = (vir_bytes) m_in.stack_bytes;
18769 if (stk_bytes > ARG_MAX) return(ENOMEM); /* stack too big */
18770 if (m_in.exec_len <= 0 || m_in.exec_len > PATH_MAX) return(EINVAL);
18771
18772 /* Get the exec file name and see if the file is executable. */
18773 src = (vir_bytes) m_in.exec_name;
18774 dst = (vir_bytes) name_buf;
18775 r = sys_datacopy(who, (vir_bytes) src,
18776 PM_PROC_NR, (vir_bytes) dst, (phys_bytes) m_in.exec_len);
18777 if (r != OK) return(r); /* file name not in user data segment */
18778
18779 /* Fetch the stack from the user before destroying the old core image. */
18780 src = (vir_bytes) m_in.stack_ptr;
18781 dst = (vir_bytes) mbuf;
18782 r = sys_datacopy(who, (vir_bytes) src,
18783 PM_PROC_NR, (vir_bytes) dst, (phys_bytes)stk_bytes);
18784 /* can’t fetch stack (e.g. bad virtual addr) */
18785 if (r != OK) return(EACCES);
18786
18787 r = 0; /* r = 0 (first attempt), or 1 (interpreted script) */
18788 name = name_buf; /* name of file to exec. */
18789 do {
18790 s_p = &s_buf[r];
18791 tell_fs(CHDIR, who, FALSE, 0); /* switch to the user’s FS environ */
18792 fd = allowed(name, s_p, X_BIT); /* is file executable? */
18793 if (fd < 0) return(fd); /* file was not executable */
18794
18795 /* Read the file header and extract the segment sizes. */
18796 sc = (stk_bytes + CLICK_SIZE - 1) >> CLICK_SHIFT;
18797
18798 m = read_header(fd, &ft, &text_bytes, &data_bytes, &bss_bytes,
18799 &tot_bytes, &sym_bytes, sc, &pc);
18800 if (m != ESCRIPT || ++r > 1) break;
18801 } while ((name = patch_stack(fd, mbuf, &stk_bytes, name_buf)) != NULL);
18802
18803 if (m < 0) {
18804 close(fd); /* something wrong with header */
18805 return(stk_bytes > ARG_MAX ? ENOMEM : ENOEXEC);
18806 }
18807
18808 /* Can the process’ text be shared with that of one already running? */
18809 sh_mp = find_share(rmp, s_p->st_ino, s_p->st_dev, s_p->st_ctime);
18810
18811 /* Allocate new memory and release old memory. Fix map and tell kernel. */
18812 r = new_mem(sh_mp, text_bytes, data_bytes, bss_bytes, stk_bytes, tot_bytes);
18813 if (r != OK) {
18814 close(fd); /* insufficient core or program too big */
18815 return(r);
18816 }
18817
18818 /* Save file identification to allow it to be shared. */
18819 rmp->mp_ino = s_p->st_ino;
18820 rmp->mp_dev = s_p->st_dev;
18821 rmp->mp_ctime = s_p->st_ctime;
18822
18823 /* Patch up stack and copy it from PM to new core image. */
18824 vsp = (vir_bytes) rmp->mp_seg[S].mem_vir << CLICK_SHIFT;
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18825 vsp += (vir_bytes) rmp->mp_seg[S].mem_len << CLICK_SHIFT;
18826 vsp -= stk_bytes;
18827 patch_ptr(mbuf, vsp);
18828 src = (vir_bytes) mbuf;
18829 r = sys_datacopy(PM_PROC_NR, (vir_bytes) src,
18830 who, (vir_bytes) vsp, (phys_bytes)stk_bytes);
18831 if (r != OK) panic(__FILE__,"do_exec stack copy err on", who);
18832
18833 /* Read in text and data segments. */
18834 if (sh_mp != NULL) {
18835 lseek(fd, (off_t) text_bytes, SEEK_CUR); /* shared: skip text */
18836 } else {
18837 rw_seg(0, fd, who, T, text_bytes);
18838 }
18839 rw_seg(0, fd, who, D, data_bytes);
18840
18841 close(fd); /* don’t need exec file any more */
18842
18843 /* Take care of setuid/setgid bits. */
18844 if ((rmp->mp_flags & TRACED) == 0) { /* suppress if tracing */
18845 if (s_buf[0].st_mode & I_SET_UID_BIT) {
18846 rmp->mp_effuid = s_buf[0].st_uid;
18847 tell_fs(SETUID,who, (int)rmp->mp_realuid, (int)rmp->mp_effuid);
18848 }
18849 if (s_buf[0].st_mode & I_SET_GID_BIT) {
18850 rmp->mp_effgid = s_buf[0].st_gid;
18851 tell_fs(SETGID,who, (int)rmp->mp_realgid, (int)rmp->mp_effgid);
18852 }
18853 }
18854
18855 /* Save offset to initial argc (for ps) */
18856 rmp->mp_procargs = vsp;
18857
18858 /* Fix ’mproc’ fields, tell kernel that exec is done, reset caught sigs. */
18859 for (sn = 1; sn <= _NSIG; sn++) {
18860 if (sigismember(&rmp->mp_catch, sn)) {
18861 sigdelset(&rmp->mp_catch, sn);
18862 rmp->mp_sigact[sn].sa_handler = SIG_DFL;
18863 sigemptyset(&rmp->mp_sigact[sn].sa_mask);
18864 }
18865 }
18866
18867 rmp->mp_flags &= ˜SEPARATE; /* turn off SEPARATE bit */
18868 rmp->mp_flags |= ft; /* turn it on for separate I & D files */
18869 new_sp = (char *) vsp;
18870
18871 tell_fs(EXEC, who, 0, 0); /* allow FS to handle FD_CLOEXEC files */
18872
18873 /* System will save command line for debugging, ps(1) output, etc. */
18874 basename = strrchr(name, ’/’);
18875 if (basename == NULL) basename = name; else basename++;
18876 strncpy(rmp->mp_name, basename, PROC_NAME_LEN-1);
18877 rmp->mp_name[PROC_NAME_LEN] = ’\0’;
18878 sys_exec(who, new_sp, basename, pc);
18879
18880 /* Cause a signal if this process is traced. */
18881 if (rmp->mp_flags & TRACED) check_sig(rmp->mp_pid, SIGTRAP);
18882
18883 return(SUSPEND); /* no reply, new program just runs */
18884 }
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18886 /*===========================================================================*
18887 * read_header *
18888 *===========================================================================*/
18889 PRIVATE int read_header(fd, ft, text_bytes, data_bytes, bss_bytes,
18890 tot_bytes, sym_bytes, sc, pc)
18891 int fd; /* file descriptor for reading exec file */
18892 int *ft; /* place to return ft number */
18893 vir_bytes *text_bytes; /* place to return text size */
18894 vir_bytes *data_bytes; /* place to return initialized data size */
18895 vir_bytes *bss_bytes; /* place to return bss size */
18896 phys_bytes *tot_bytes; /* place to return total size */
18897 long *sym_bytes; /* place to return symbol table size */
18898 vir_clicks sc; /* stack size in clicks */
18899 vir_bytes *pc; /* program entry point (initial PC) */
18900 {
18901 /* Read the header and extract the text, data, bss and total sizes from it. */
18902
18903 int m, ct;
18904 vir_clicks tc, dc, s_vir, dvir;
18905 phys_clicks totc;
18906 struct exec hdr; /* a.out header is read in here */
18907
18908 /* Read the header and check the magic number. The standard MINIX header
18909 * is defined in <a.out.h>. It consists of 8 chars followed by 6 longs.
18910 * Then come 4 more longs that are not used here.
18911 * Byte 0: magic number 0x01
18912 * Byte 1: magic number 0x03
18913 * Byte 2: normal = 0x10 (not checked, 0 is OK), separate I/D = 0x20
18914 * Byte 3: CPU type, Intel 16 bit = 0x04, Intel 32 bit = 0x10,
18915 * Motorola = 0x0B, Sun SPARC = 0x17
18916 * Byte 4: Header length = 0x20
18917 * Bytes 5-7 are not used.
18918 *
18919 * Now come the 6 longs
18920 * Bytes 8-11: size of text segments in bytes
18921 * Bytes 12-15: size of initialized data segment in bytes
18922 * Bytes 16-19: size of bss in bytes
18923 * Bytes 20-23: program entry point
18924 * Bytes 24-27: total memory allocated to program (text, data + stack)
18925 * Bytes 28-31: size of symbol table in bytes
18926 * The longs are represented in a machine dependent order,
18927 * little-endian on the 8088, big-endian on the 68000.
18928 * The header is followed directly by the text and data segments, and the
18929 * symbol table (if any). The sizes are given in the header. Only the
18930 * text and data segments are copied into memory by exec. The header is
18931 * used here only. The symbol table is for the benefit of a debugger and
18932 * is ignored here.
18933 */
18934
18935 if ((m= read(fd, &hdr, A_MINHDR)) < 2) return(ENOEXEC);
18936
18937 /* Interpreted script? */
18938 if (((char *) &hdr)[0] == ’#’ && ((char *) &hdr)[1] == ’!’) return(ESCRIPT);
18939
18940 if (m != A_MINHDR) return(ENOEXEC);
18941
18942 /* Check magic number, cpu type, and flags. */
18943 if (BADMAG(hdr)) return(ENOEXEC);
18944 if (hdr.a_cpu != A_I80386) return(ENOEXEC);
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18945 if ((hdr.a_flags & ˜(A_NSYM | A_EXEC | A_SEP)) != 0) return(ENOEXEC);
18946
18947 *ft = ( (hdr.a_flags & A_SEP) ? SEPARATE : 0); /* separate I & D or not */
18948
18949 /* Get text and data sizes. */
18950 *text_bytes = (vir_bytes) hdr.a_text; /* text size in bytes */
18951 *data_bytes = (vir_bytes) hdr.a_data; /* data size in bytes */
18952 *bss_bytes = (vir_bytes) hdr.a_bss; /* bss size in bytes */
18953 *tot_bytes = hdr.a_total; /* total bytes to allocate for prog */
18954 *sym_bytes = hdr.a_syms; /* symbol table size in bytes */
18955 if (*tot_bytes == 0) return(ENOEXEC);
18956
18957 if (*ft != SEPARATE) {
18958 /* If I & D space is not separated, it is all considered data. Text=0*/
18959 *data_bytes += *text_bytes;
18960 *text_bytes = 0;
18961 }
18962 *pc = hdr.a_entry; /* initial address to start execution */
18963
18964 /* Check to see if segment sizes are feasible. */
18965 tc = ((unsigned long) *text_bytes + CLICK_SIZE - 1) >> CLICK_SHIFT;
18966 dc = (*data_bytes + *bss_bytes + CLICK_SIZE - 1) >> CLICK_SHIFT;
18967 totc = (*tot_bytes + CLICK_SIZE - 1) >> CLICK_SHIFT;
18968 if (dc >= totc) return(ENOEXEC); /* stack must be at least 1 click */
18969 dvir = (*ft == SEPARATE ? 0 : tc);
18970 s_vir = dvir + (totc - sc);
18971 m = (dvir + dc > s_vir) ? ENOMEM : OK;
18972 ct = hdr.a_hdrlen & BYTE; /* header length */
18973 if (ct > A_MINHDR) lseek(fd, (off_t) ct, SEEK_SET); /* skip unused hdr */
18974 return(m);
18975 }

18977 /*===========================================================================*
18978 * new_mem *
18979 *===========================================================================*/
18980 PRIVATE int new_mem(sh_mp, text_bytes, data_bytes,
18981 bss_bytes,stk_bytes,tot_bytes)
18982 struct mproc *sh_mp; /* text can be shared with this process */
18983 vir_bytes text_bytes; /* text segment size in bytes */
18984 vir_bytes data_bytes; /* size of initialized data in bytes */
18985 vir_bytes bss_bytes; /* size of bss in bytes */
18986 vir_bytes stk_bytes; /* size of initial stack segment in bytes */
18987 phys_bytes tot_bytes; /* total memory to allocate, including gap */
18988 {
18989 /* Allocate new memory and release the old memory. Change the map and report
18990 * the new map to the kernel. Zero the new core image’s bss, gap and stack.
18991 */
18992
18993 register struct mproc *rmp = mp;
18994 vir_clicks text_clicks, data_clicks, gap_clicks, stack_clicks, tot_clicks;
18995 phys_clicks new_base;
18996 phys_bytes bytes, base, bss_offset;
18997 int s;
18998
18999 /* No need to allocate text if it can be shared. */
19000 if (sh_mp != NULL) text_bytes = 0;
19001
19002 /* Allow the old data to be swapped out to make room. (Which is really a
19003 * waste of time, because we are going to throw it away anyway.)
19004 */
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19005 rmp->mp_flags |= WAITING;
19006
19007 /* Acquire the new memory. Each of the 4 parts: text, (data+bss), gap,
19008 * and stack occupies an integral number of clicks, starting at click
19009 * boundary. The data and bss parts are run together with no space.
19010 */
19011 text_clicks = ((unsigned long) text_bytes + CLICK_SIZE - 1) >> CLICK_SHIFT;
19012 data_clicks = (data_bytes + bss_bytes + CLICK_SIZE - 1) >> CLICK_SHIFT;
19013 stack_clicks = (stk_bytes + CLICK_SIZE - 1) >> CLICK_SHIFT;
19014 tot_clicks = (tot_bytes + CLICK_SIZE - 1) >> CLICK_SHIFT;
19015 gap_clicks = tot_clicks - data_clicks - stack_clicks;
19016 if ( (int) gap_clicks < 0) return(ENOMEM);
19017
19018 /* Try to allocate memory for the new process. */
19019 new_base = alloc_mem(text_clicks + tot_clicks);
19020 if (new_base == NO_MEM) return(ENOMEM);
19021
19022 /* We’ve got memory for the new core image. Release the old one. */
19023 rmp = mp;
19024
19025 if (find_share(rmp, rmp->mp_ino, rmp->mp_dev, rmp->mp_ctime) == NULL) {
19026 /* No other process shares the text segment, so free it. */
19027 free_mem(rmp->mp_seg[T].mem_phys, rmp->mp_seg[T].mem_len);
19028 }
19029 /* Free the data and stack segments. */
19030 free_mem(rmp->mp_seg[D].mem_phys,
19031 rmp->mp_seg[S].mem_vir + rmp->mp_seg[S].mem_len - rmp->mp_seg[D].mem_vir);
19032
19033 /* We have now passed the point of no return. The old core image has been
19034 * forever lost, memory for a new core image has been allocated. Set up
19035 * and report new map.
19036 */
19037 if (sh_mp != NULL) {
19038 /* Share the text segment. */
19039 rmp->mp_seg[T] = sh_mp->mp_seg[T];
19040 } else {
19041 rmp->mp_seg[T].mem_phys = new_base;
19042 rmp->mp_seg[T].mem_vir = 0;
19043 rmp->mp_seg[T].mem_len = text_clicks;
19044 }
19045 rmp->mp_seg[D].mem_phys = new_base + text_clicks;
19046 rmp->mp_seg[D].mem_vir = 0;
19047 rmp->mp_seg[D].mem_len = data_clicks;
19048 rmp->mp_seg[S].mem_phys = rmp->mp_seg[D].mem_phys + data_clicks + gap_clicks;
19049 rmp->mp_seg[S].mem_vir = rmp->mp_seg[D].mem_vir + data_clicks + gap_clicks;
19050 rmp->mp_seg[S].mem_len = stack_clicks;
19051
19052 sys_newmap(who, rmp->mp_seg); /* report new map to the kernel */
19053
19054 /* The old memory may have been swapped out, but the new memory is real. */
19055 rmp->mp_flags &= ˜(WAITING|ONSWAP|SWAPIN);
19056
19057 /* Zero the bss, gap, and stack segment. */
19058 bytes = (phys_bytes)(data_clicks + gap_clicks + stack_clicks) << CLICK_SHIFT;
19059 base = (phys_bytes) rmp->mp_seg[D].mem_phys << CLICK_SHIFT;
19060 bss_offset = (data_bytes >> CLICK_SHIFT) << CLICK_SHIFT;
19061 base += bss_offset;
19062 bytes -= bss_offset;
19063
19064 if ((s=sys_memset(0, base, bytes)) != OK) {
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19065 panic(__FILE__,"new_mem can’t zero", s);
19066 }
19067
19068 return(OK);
19069 }

19071 /*===========================================================================*
19072 * patch_ptr *
19073 *===========================================================================*/
19074 PRIVATE void patch_ptr(stack, base)
19075 char stack[ARG_MAX]; /* pointer to stack image within PM */
19076 vir_bytes base; /* virtual address of stack base inside user */
19077 {
19078 /* When doing an exec(name, argv, envp) call, the user builds up a stack
19079 * image with arg and env pointers relative to the start of the stack. Now
19080 * these pointers must be relocated, since the stack is not positioned at
19081 * address 0 in the user’s address space.
19082 */
19083
19084 char **ap, flag;
19085 vir_bytes v;
19086
19087 flag = 0; /* counts number of 0-pointers seen */
19088 ap = (char **) stack; /* points initially to ’nargs’ */
19089 ap++; /* now points to argv[0] */
19090 while (flag < 2) {
19091 if (ap >= (char **) &stack[ARG_MAX]) return; /* too bad */
19092 if (*ap != NULL) {
19093 v = (vir_bytes) *ap; /* v is relative pointer */
19094 v += base; /* relocate it */
19095 *ap = (char *) v; /* put it back */
19096 } else {
19097 flag++;
19098 }
19099 ap++;
19100 }
19101 }

19103 /*===========================================================================*
19104 * insert_arg *
19105 *===========================================================================*/
19106 PRIVATE int insert_arg(stack, stk_bytes, arg, replace)
19107 char stack[ARG_MAX]; /* pointer to stack image within PM */
19108 vir_bytes *stk_bytes; /* size of initial stack */
19109 char *arg; /* argument to prepend/replace as new argv[0] */
19110 int replace;
19111 {
19112 /* Patch the stack so that arg will become argv[0]. Be careful, the stack may
19113 * be filled with garbage, although it normally looks like this:
19114 * nargs argv[0] ... argv[nargs-1] NULL envp[0] ... NULL
19115 * followed by the strings "pointed" to by the argv[i] and the envp[i]. The
19116 * pointers are really offsets from the start of stack.
19117 * Return true iff the operation succeeded.
19118 */
19119 int offset, a0, a1, old_bytes = *stk_bytes;
19120
19121 /* Prepending arg adds at least one string and a zero byte. */
19122 offset = strlen(arg) + 1;
19123
19124 a0 = (int) ((char **) stack)[1]; /* argv[0] */
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19125 if (a0 < 4 * PTRSIZE || a0 >= old_bytes) return(FALSE);
19126
19127 a1 = a0; /* a1 will point to the strings to be moved */
19128 if (replace) {
19129 /* Move a1 to the end of argv[0][] (argv[1] if nargs > 1). */
19130 do {
19131 if (a1 == old_bytes) return(FALSE);
19132 --offset;
19133 } while (stack[a1++] != 0);
19134 } else {
19135 offset += PTRSIZE; /* new argv[0] needs new pointer in argv[] */
19136 a0 += PTRSIZE; /* location of new argv[0][]. */
19137 }
19138
19139 /* stack will grow by offset bytes (or shrink by -offset bytes) */
19140 if ((*stk_bytes += offset) > ARG_MAX) return(FALSE);
19141
19142 /* Reposition the strings by offset bytes */
19143 memmove(stack + a1 + offset, stack + a1, old_bytes - a1);
19144
19145 strcpy(stack + a0, arg); /* Put arg in the new space. */
19146
19147 if (!replace) {
19148 /* Make space for a new argv[0]. */
19149 memmove(stack + 2 * PTRSIZE, stack + 1 * PTRSIZE, a0 - 2 * PTRSIZE);
19150
19151 ((char **) stack)[0]++; /* nargs++; */
19152 }
19153 /* Now patch up argv[] and envp[] by offset. */
19154 patch_ptr(stack, (vir_bytes) offset);
19155 ((char **) stack)[1] = (char *) a0; /* set argv[0] correctly */
19156 return(TRUE);
19157 }

19159 /*===========================================================================*
19160 * patch_stack *
19161 *===========================================================================*/
19162 PRIVATE char *patch_stack(fd, stack, stk_bytes, script)
19163 int fd; /* file descriptor to open script file */
19164 char stack[ARG_MAX]; /* pointer to stack image within PM */
19165 vir_bytes *stk_bytes; /* size of initial stack */
19166 char *script; /* name of script to interpret */
19167 {
19168 /* Patch the argument vector to include the path name of the script to be
19169 * interpreted, and all strings on the #! line. Returns the path name of
19170 * the interpreter.
19171 */
19172 char *sp, *interp = NULL;
19173 int n;
19174 enum { INSERT=FALSE, REPLACE=TRUE };
19175
19176 /* Make script[] the new argv[0]. */
19177 if (!insert_arg(stack, stk_bytes, script, REPLACE)) return(NULL);
19178
19179 if (lseek(fd, 2L, 0) == -1 /* just behind the #! */
19180 || (n= read(fd, script, PATH_MAX)) < 0 /* read line one */
19181 || (sp= memchr(script, ’\n’, n)) == NULL) /* must be a proper line */
19182 return(NULL);
19183
19184 /* Move sp backwards through script[], prepending each string to stack. */
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19185 for (;;) {
19186 /* skip spaces behind argument. */
19187 while (sp > script && (*--sp == ’ ’ || *sp == ’\t’)) {}
19188 if (sp == script) break;
19189
19190 sp[1] = 0;
19191 /* Move to the start of the argument. */
19192 while (sp > script && sp[-1] != ’ ’ && sp[-1] != ’\t’) --sp;
19193
19194 interp = sp;
19195 if (!insert_arg(stack, stk_bytes, sp, INSERT)) return(NULL);
19196 }
19197
19198 /* Round *stk_bytes up to the size of a pointer for alignment contraints. */
19199 *stk_bytes= ((*stk_bytes + PTRSIZE - 1) / PTRSIZE) * PTRSIZE;
19200
19201 close(fd);
19202 return(interp);
19203 }

19205 /*===========================================================================*
19206 * rw_seg *
19207 *===========================================================================*/
19208 PUBLIC void rw_seg(rw, fd, proc, seg, seg_bytes0)
19209 int rw; /* 0 = read, 1 = write */
19210 int fd; /* file descriptor to read from / write to */
19211 int proc; /* process number */
19212 int seg; /* T, D, or S */
19213 phys_bytes seg_bytes0; /* how much is to be transferred? */
19214 {
19215 /* Transfer text or data from/to a file and copy to/from a process segment.
19216 * This procedure is a little bit tricky. The logical way to transfer a
19217 * segment would be block by block and copying each block to/from the user
19218 * space one at a time. This is too slow, so we do something dirty here,
19219 * namely send the user space and virtual address to the file system in the
19220 * upper 10 bits of the file descriptor, and pass it the user virtual address
19221 * instead of a PM address. The file system extracts these parameters when
19222 * gets a read or write call from the process manager, which is the only
19223 * process that is permitted to use this trick. The file system then copies
19224 * the whole segment directly to/from user space, bypassing PM completely.
19225 *
19226 * The byte count on read is usually smaller than the segment count, because
19227 * a segment is padded out to a click multiple, and the data segment is only
19228 * partially initialized.
19229 */
19230
19231 int new_fd, bytes, r;
19232 char *ubuf_ptr;
19233 struct mem_map *sp = &mproc[proc].mp_seg[seg];
19234 phys_bytes seg_bytes = seg_bytes0;
19235
19236 new_fd = (proc << 7) | (seg << 5) | fd;
19237 ubuf_ptr = (char *) ((vir_bytes) sp->mem_vir << CLICK_SHIFT);
19238
19239 while (seg_bytes != 0) {
19240 #define PM_CHUNK_SIZE 8192
19241 bytes = MIN((INT_MAX / PM_CHUNK_SIZE) * PM_CHUNK_SIZE, seg_bytes);
19242 if (rw == 0) {
19243 r = read(new_fd, ubuf_ptr, bytes);
19244 } else {
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19245 r = write(new_fd, ubuf_ptr, bytes);
19246 }
19247 if (r != bytes) break;
19248 ubuf_ptr += bytes;
19249 seg_bytes -= bytes;
19250 }
19251 }

19253 /*===========================================================================*
19254 * find_share *
19255 *===========================================================================*/
19256 PUBLIC struct mproc *find_share(mp_ign, ino, dev, ctime)
19257 struct mproc *mp_ign; /* process that should not be looked at */
19258 ino_t ino; /* parameters that uniquely identify a file */
19259 dev_t dev;
19260 time_t ctime;
19261 {
19262 /* Look for a process that is the file <ino, dev, ctime> in execution. Don’t
19263 * accidentally "find" mp_ign, because it is the process on whose behalf this
19264 * call is made.
19265 */
19266 struct mproc *sh_mp;
19267 for (sh_mp = &mproc[0]; sh_mp < &mproc[NR_PROCS]; sh_mp++) {
19268
19269 if (!(sh_mp->mp_flags & SEPARATE)) continue;
19270 if (sh_mp == mp_ign) continue;
19271 if (sh_mp->mp_ino != ino) continue;
19272 if (sh_mp->mp_dev != dev) continue;
19273 if (sh_mp->mp_ctime != ctime) continue;
19274 return sh_mp;
19275 }
19276 return(NULL);
19277 }

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
servers/pm/break.c

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

19300 /* The MINIX model of memory allocation reserves a fixed amount of memory for
19301 * the combined text, data, and stack segments. The amount used for a child
19302 * process created by FORK is the same as the parent had. If the child does
19303 * an EXEC later, the new size is taken from the header of the file EXEC’ed.
19304 *
19305 * The layout in memory consists of the text segment, followed by the data
19306 * segment, followed by a gap (unused memory), followed by the stack segment.
19307 * The data segment grows upward and the stack grows downward, so each can
19308 * take memory from the gap. If they meet, the process must be killed. The
19309 * procedures in this file deal with the growth of the data and stack segments.
19310 *
19311 * The entry points into this file are:
19312 * do_brk: BRK/SBRK system calls to grow or shrink the data segment
19313 * adjust: see if a proposed segment adjustment is allowed
19314 * size_ok: see if the segment sizes are feasible
19315 */
19316
19317 #include "pm.h"
19318 #include <signal.h>
19319 #include "mproc.h"
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19320 #include "param.h"
19321
19322 #define DATA_CHANGED 1 /* flag value when data segment size changed */
19323 #define STACK_CHANGED 2 /* flag value when stack size changed */
19324
19325 /*===========================================================================*
19326 * do_brk *
19327 *===========================================================================*/
19328 PUBLIC int do_brk()
19329 {
19330 /* Perform the brk(addr) system call.
19331 *
19332 * The call is complicated by the fact that on some machines (e.g., 8088),
19333 * the stack pointer can grow beyond the base of the stack segment without
19334 * anybody noticing it.
19335 * The parameter, ’addr’ is the new virtual address in D space.
19336 */
19337
19338 register struct mproc *rmp;
19339 int r;
19340 vir_bytes v, new_sp;
19341 vir_clicks new_clicks;
19342
19343 rmp = mp;
19344 v = (vir_bytes) m_in.addr;
19345 new_clicks = (vir_clicks) ( ((long) v + CLICK_SIZE - 1) >> CLICK_SHIFT);
19346 if (new_clicks < rmp->mp_seg[D].mem_vir) {
19347 rmp->mp_reply.reply_ptr = (char *) -1;
19348 return(ENOMEM);
19349 }
19350 new_clicks -= rmp->mp_seg[D].mem_vir;
19351 if ((r=get_stack_ptr(who, &new_sp)) != OK) /* ask kernel for sp value */
19352 panic(__FILE__,"couldn’t get stack pointer", r);
19353 r = adjust(rmp, new_clicks, new_sp);
19354 rmp->mp_reply.reply_ptr = (r == OK ? m_in.addr : (char *) -1);
19355 return(r); /* return new address or -1 */
19356 }

19358 /*===========================================================================*
19359 * adjust *
19360 *===========================================================================*/
19361 PUBLIC int adjust(rmp, data_clicks, sp)
19362 register struct mproc *rmp; /* whose memory is being adjusted? */
19363 vir_clicks data_clicks; /* how big is data segment to become? */
19364 vir_bytes sp; /* new value of sp */
19365 {
19366 /* See if data and stack segments can coexist, adjusting them if need be.
19367 * Memory is never allocated or freed. Instead it is added or removed from the
19368 * gap between data segment and stack segment. If the gap size becomes
19369 * negative, the adjustment of data or stack fails and ENOMEM is returned.
19370 */
19371
19372 register struct mem_map *mem_sp, *mem_dp;
19373 vir_clicks sp_click, gap_base, lower, old_clicks;
19374 int changed, r, ft;
19375 long base_of_stack, delta; /* longs avoid certain problems */
19376
19377 mem_dp = &rmp->mp_seg[D]; /* pointer to data segment map */
19378 mem_sp = &rmp->mp_seg[S]; /* pointer to stack segment map */
19379 changed = 0; /* set when either segment changed */
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19380
19381 if (mem_sp->mem_len == 0) return(OK); /* don’t bother init */
19382
19383 /* See if stack size has gone negative (i.e., sp too close to 0xFFFF...) */
19384 base_of_stack = (long) mem_sp->mem_vir + (long) mem_sp->mem_len;
19385 sp_click = sp >> CLICK_SHIFT; /* click containing sp */
19386 if (sp_click >= base_of_stack) return(ENOMEM); /* sp too high */
19387
19388 /* Compute size of gap between stack and data segments. */
19389 delta = (long) mem_sp->mem_vir - (long) sp_click;
19390 lower = (delta > 0 ? sp_click : mem_sp->mem_vir);
19391
19392 /* Add a safety margin for future stack growth. Impossible to do right. */
19393 #define SAFETY_BYTES (384 * sizeof(char *))
19394 #define SAFETY_CLICKS ((SAFETY_BYTES + CLICK_SIZE - 1) / CLICK_SIZE)
19395 gap_base = mem_dp->mem_vir + data_clicks + SAFETY_CLICKS;
19396 if (lower < gap_base) return(ENOMEM); /* data and stack collided */
19397
19398 /* Update data length (but not data orgin) on behalf of brk() system call. */
19399 old_clicks = mem_dp->mem_len;
19400 if (data_clicks != mem_dp->mem_len) {
19401 mem_dp->mem_len = data_clicks;
19402 changed |= DATA_CHANGED;
19403 }
19404
19405 /* Update stack length and origin due to change in stack pointer. */
19406 if (delta > 0) {
19407 mem_sp->mem_vir -= delta;
19408 mem_sp->mem_phys -= delta;
19409 mem_sp->mem_len += delta;
19410 changed |= STACK_CHANGED;
19411 }
19412
19413 /* Do the new data and stack segment sizes fit in the address space? */
19414 ft = (rmp->mp_flags & SEPARATE);
19415 r = (rmp->mp_seg[D].mem_vir + rmp->mp_seg[D].mem_len >
19416 rmp->mp_seg[S].mem_vir) ? ENOMEM : OK;
19417 if (r == OK) {
19418 if (changed) sys_newmap((int)(rmp - mproc), rmp->mp_seg);
19419 return(OK);
19420 }
19421
19422 /* New sizes don’t fit or require too many page/segment registers. Restore.*/
19423 if (changed & DATA_CHANGED) mem_dp->mem_len = old_clicks;
19424 if (changed & STACK_CHANGED) {
19425 mem_sp->mem_vir += delta;
19426 mem_sp->mem_phys += delta;
19427 mem_sp->mem_len -= delta;
19428 }
19429 return(ENOMEM);
19430 }
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++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
servers/pm/signal.c

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

19500 /* This file handles signals, which are asynchronous events and are generally
19501 * a messy and unpleasant business. Signals can be generated by the KILL
19502 * system call, or from the keyboard (SIGINT) or from the clock (SIGALRM).
19503 * In all cases control eventually passes to check_sig() to see which processes
19504 * can be signaled. The actual signaling is done by sig_proc().
19505 *
19506 * The entry points into this file are:
19507 * do_sigaction: perform the SIGACTION system call
19508 * do_sigpending: perform the SIGPENDING system call
19509 * do_sigprocmask: perform the SIGPROCMASK system call
19510 * do_sigreturn: perform the SIGRETURN system call
19511 * do_sigsuspend: perform the SIGSUSPEND system call
19512 * do_kill: perform the KILL system call
19513 * do_alarm: perform the ALARM system call by calling set_alarm()
19514 * set_alarm: tell the clock task to start or stop a timer
19515 * do_pause: perform the PAUSE system call
19516 * ksig_pending: the kernel notified about pending signals
19517 * sig_proc: interrupt or terminate a signaled process
19518 * check_sig: check which processes to signal with sig_proc()
19519 * check_pending: check if a pending signal can now be delivered
19520 */
19521
19522 #include "pm.h"
19523 #include <sys/stat.h>
19524 #include <sys/ptrace.h>
19525 #include <minix/callnr.h>
19526 #include <minix/com.h>
19527 #include <signal.h>
19528 #include <sys/sigcontext.h>
19529 #include <string.h>
19530 #include "mproc.h"
19531 #include "param.h"
19532
19533 #define CORE_MODE 0777 /* mode to use on core image files */
19534 #define DUMPED 0200 /* bit set in status when core dumped */
19535
19536 FORWARD _PROTOTYPE( void dump_core, (struct mproc *rmp) );
19537 FORWARD _PROTOTYPE( void unpause, (int pro) );
19538 FORWARD _PROTOTYPE( void handle_sig, (int proc_nr, sigset_t sig_map) );
19539 FORWARD _PROTOTYPE( void cause_sigalrm, (struct timer *tp) );
19540
19541 /*===========================================================================*
19542 * do_sigaction *
19543 *===========================================================================*/
19544 PUBLIC int do_sigaction()
19545 {
19546 int r;
19547 struct sigaction svec;
19548 struct sigaction *svp;
19549
19550 if (m_in.sig_nr == SIGKILL) return(OK);
19551 if (m_in.sig_nr < 1 || m_in.sig_nr > _NSIG) return (EINVAL);
19552 svp = &mp->mp_sigact[m_in.sig_nr];
19553 if ((struct sigaction *) m_in.sig_osa != (struct sigaction *) NULL) {
19554 r = sys_datacopy(PM_PROC_NR,(vir_bytes) svp,
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19555 who, (vir_bytes) m_in.sig_osa, (phys_bytes) sizeof(svec));
19556 if (r != OK) return(r);
19557 }
19558
19559 if ((struct sigaction *) m_in.sig_nsa == (struct sigaction *) NULL)
19560 return(OK);
19561
19562 /* Read in the sigaction structure. */
19563 r = sys_datacopy(who, (vir_bytes) m_in.sig_nsa,
19564 PM_PROC_NR, (vir_bytes) &svec, (phys_bytes) sizeof(svec));
19565 if (r != OK) return(r);
19566
19567 if (svec.sa_handler == SIG_IGN) {
19568 sigaddset(&mp->mp_ignore, m_in.sig_nr);
19569 sigdelset(&mp->mp_sigpending, m_in.sig_nr);
19570 sigdelset(&mp->mp_catch, m_in.sig_nr);
19571 sigdelset(&mp->mp_sig2mess, m_in.sig_nr);
19572 } else if (svec.sa_handler == SIG_DFL) {
19573 sigdelset(&mp->mp_ignore, m_in.sig_nr);
19574 sigdelset(&mp->mp_catch, m_in.sig_nr);
19575 sigdelset(&mp->mp_sig2mess, m_in.sig_nr);
19576 } else if (svec.sa_handler == SIG_MESS) {
19577 if (! (mp->mp_flags & PRIV_PROC)) return(EPERM);
19578 sigdelset(&mp->mp_ignore, m_in.sig_nr);
19579 sigaddset(&mp->mp_sig2mess, m_in.sig_nr);
19580 sigdelset(&mp->mp_catch, m_in.sig_nr);
19581 } else {
19582 sigdelset(&mp->mp_ignore, m_in.sig_nr);
19583 sigaddset(&mp->mp_catch, m_in.sig_nr);
19584 sigdelset(&mp->mp_sig2mess, m_in.sig_nr);
19585 }
19586 mp->mp_sigact[m_in.sig_nr].sa_handler = svec.sa_handler;
19587 sigdelset(&svec.sa_mask, SIGKILL);
19588 mp->mp_sigact[m_in.sig_nr].sa_mask = svec.sa_mask;
19589 mp->mp_sigact[m_in.sig_nr].sa_flags = svec.sa_flags;
19590 mp->mp_sigreturn = (vir_bytes) m_in.sig_ret;
19591 return(OK);
19592 }

19594 /*===========================================================================*
19595 * do_sigpending *
19596 *===========================================================================*/
19597 PUBLIC int do_sigpending()
19598 {
19599 mp->mp_reply.reply_mask = (long) mp->mp_sigpending;
19600 return OK;
19601 }

19603 /*===========================================================================*
19604 * do_sigprocmask *
19605 *===========================================================================*/
19606 PUBLIC int do_sigprocmask()
19607 {
19608 /* Note that the library interface passes the actual mask in sigmask_set,
19609 * not a pointer to the mask, in order to save a copy. Similarly,
19610 * the old mask is placed in the return message which the library
19611 * interface copies (if requested) to the user specified address.
19612 *
19613 * The library interface must set SIG_INQUIRE if the ’act’ argument
19614 * is NULL.
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19615 */
19616
19617 int i;
19618
19619 mp->mp_reply.reply_mask = (long) mp->mp_sigmask;
19620
19621 switch (m_in.sig_how) {
19622 case SIG_BLOCK:
19623 sigdelset((sigset_t *)&m_in.sig_set, SIGKILL);
19624 for (i = 1; i <= _NSIG; i++) {
19625 if (sigismember((sigset_t *)&m_in.sig_set, i))
19626 sigaddset(&mp->mp_sigmask, i);
19627 }
19628 break;
19629
19630 case SIG_UNBLOCK:
19631 for (i = 1; i <= _NSIG; i++) {
19632 if (sigismember((sigset_t *)&m_in.sig_set, i))
19633 sigdelset(&mp->mp_sigmask, i);
19634 }
19635 check_pending(mp);
19636 break;
19637
19638 case SIG_SETMASK:
19639 sigdelset((sigset_t *) &m_in.sig_set, SIGKILL);
19640 mp->mp_sigmask = (sigset_t) m_in.sig_set;
19641 check_pending(mp);
19642 break;
19643
19644 case SIG_INQUIRE:
19645 break;
19646
19647 default:
19648 return(EINVAL);
19649 break;
19650 }
19651 return OK;
19652 }

19654 /*===========================================================================*
19655 * do_sigsuspend *
19656 *===========================================================================*/
19657 PUBLIC int do_sigsuspend()
19658 {
19659 mp->mp_sigmask2 = mp->mp_sigmask; /* save the old mask */
19660 mp->mp_sigmask = (sigset_t) m_in.sig_set;
19661 sigdelset(&mp->mp_sigmask, SIGKILL);
19662 mp->mp_flags |= SIGSUSPENDED;
19663 check_pending(mp);
19664 return(SUSPEND);
19665 }

19667 /*===========================================================================*
19668 * do_sigreturn *
19669 *===========================================================================*/
19670 PUBLIC int do_sigreturn()
19671 {
19672 /* A user signal handler is done. Restore context and check for
19673 * pending unblocked signals.
19674 */
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19675
19676 int r;
19677
19678 mp->mp_sigmask = (sigset_t) m_in.sig_set;
19679 sigdelset(&mp->mp_sigmask, SIGKILL);
19680
19681 r = sys_sigreturn(who, (struct sigmsg *) m_in.sig_context);
19682 check_pending(mp);
19683 return(r);
19684 }

19686 /*===========================================================================*
19687 * do_kill *
19688 *===========================================================================*/
19689 PUBLIC int do_kill()
19690 {
19691 /* Perform the kill(pid, signo) system call. */
19692
19693 return check_sig(m_in.pid, m_in.sig_nr);
19694 }

19696 /*===========================================================================*
19697 * ksig_pending *
19698 *===========================================================================*/
19699 PUBLIC int ksig_pending()
19700 {
19701 /* Certain signals, such as segmentation violations originate in the kernel.
19702 * When the kernel detects such signals, it notifies the PM to take further
19703 * action. The PM requests the kernel to send messages with the process
19704 * slot and bit map for all signaled processes. The File System, for example,
19705 * uses this mechanism to signal writing on broken pipes (SIGPIPE).
19706 *
19707 * The kernel has notified the PM about pending signals. Request pending
19708 * signals until all signals are handled. If there are no more signals,
19709 * NONE is returned in the process number field.
19710 */
19711 int proc_nr;
19712 sigset_t sig_map;
19713
19714 while (TRUE) {
19715 sys_getksig(&proc_nr, &sig_map); /* get an arbitrary pending signal */
19716 if (NONE == proc_nr) { /* stop if no more pending signals */
19717 break;
19718 } else {
19719 handle_sig(proc_nr, sig_map); /* handle the received signal */
19720 sys_endksig(proc_nr); /* tell kernel it’s done */
19721 }
19722 }
19723 return(SUSPEND); /* prevents sending reply */
19724 }

19726 /*===========================================================================*
19727 * handle_sig *
19728 *===========================================================================*/
19729 PRIVATE void handle_sig(proc_nr, sig_map)
19730 int proc_nr;
19731 sigset_t sig_map;
19732 {
19733 register struct mproc *rmp;
19734 int i;
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19735 pid_t proc_id, id;
19736
19737 rmp = &mproc[proc_nr];
19738 if ((rmp->mp_flags & (IN_USE | ZOMBIE)) != IN_USE) return;
19739 proc_id = rmp->mp_pid;
19740 mp = &mproc[0]; /* pretend signals are from PM */
19741 mp->mp_procgrp = rmp->mp_procgrp; /* get process group right */
19742
19743 /* Check each bit in turn to see if a signal is to be sent. Unlike
19744 * kill(), the kernel may collect several unrelated signals for a
19745 * process and pass them to PM in one blow. Thus loop on the bit
19746 * map. For SIGINT and SIGQUIT, use proc_id 0 to indicate a broadcast
19747 * to the recipient’s process group. For SIGKILL, use proc_id -1 to
19748 * indicate a systemwide broadcast.
19749 */
19750 for (i = 1; i <= _NSIG; i++) {
19751 if (!sigismember(&sig_map, i)) continue;
19752 switch (i) {
19753 case SIGINT:
19754 case SIGQUIT:
19755 id = 0; break; /* broadcast to process group */
19756 case SIGKILL:
19757 id = -1; break; /* broadcast to all except INIT */
19758 default:
19759 id = proc_id;
19760 break;
19761 }
19762 check_sig(id, i);
19763 }
19764 }

19766 /*===========================================================================*
19767 * do_alarm *
19768 *===========================================================================*/
19769 PUBLIC int do_alarm()
19770 {
19771 /* Perform the alarm(seconds) system call. */
19772 return(set_alarm(who, m_in.seconds));
19773 }

19775 /*===========================================================================*
19776 * set_alarm *
19777 *===========================================================================*/
19778 PUBLIC int set_alarm(proc_nr, sec)
19779 int proc_nr; /* process that wants the alarm */
19780 int sec; /* how many seconds delay before the signal */
19781 {
19782 /* This routine is used by do_alarm() to set the alarm timer. It is also used
19783 * to turn the timer off when a process exits with the timer still on.
19784 */
19785 clock_t ticks; /* number of ticks for alarm */
19786 clock_t exptime; /* needed for remaining time on previous alarm */
19787 clock_t uptime; /* current system time */
19788 int remaining; /* previous time left in seconds */
19789 int s;
19790
19791 /* First determine remaining time of previous alarm, if set. */
19792 if (mproc[proc_nr].mp_flags & ALARM_ON) {
19793 if ( (s=getuptime(&uptime)) != OK)
19794 panic(__FILE__,"set_alarm couldn’t get uptime", s);
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19795 exptime = *tmr_exp_time(&mproc[proc_nr].mp_timer);
19796 remaining = (int) ((exptime - uptime + (HZ-1))/HZ);
19797 if (remaining < 0) remaining = 0;
19798 } else {
19799 remaining = 0;
19800 }
19801
19802 /* Tell the clock task to provide a signal message when the time comes.
19803 *
19804 * Large delays cause a lot of problems. First, the alarm system call
19805 * takes an unsigned seconds count and the library has cast it to an int.
19806 * That probably works, but on return the library will convert "negative"
19807 * unsigneds to errors. Presumably no one checks for these errors, so
19808 * force this call through. Second, If unsigned and long have the same
19809 * size, converting from seconds to ticks can easily overflow. Finally,
19810 * the kernel has similar overflow bugs adding ticks.
19811 *
19812 * Fixing this requires a lot of ugly casts to fit the wrong interface
19813 * types and to avoid overflow traps. ALRM_EXP_TIME has the right type
19814 * (clock_t) although it is declared as long. How can variables like
19815 * this be declared properly without combinatorial explosion of message
19816 * types?
19817 */
19818 ticks = (clock_t) (HZ * (unsigned long) (unsigned) sec);
19819 if ( (unsigned long) ticks / HZ != (unsigned) sec)
19820 ticks = LONG_MAX; /* eternity (really TMR_NEVER) */
19821
19822 if (ticks != 0) {
19823 pm_set_timer(&mproc[proc_nr].mp_timer, ticks, cause_sigalrm, proc_nr);
19824 mproc[proc_nr].mp_flags |= ALARM_ON;
19825 } else if (mproc[proc_nr].mp_flags & ALARM_ON) {
19826 pm_cancel_timer(&mproc[proc_nr].mp_timer);
19827 mproc[proc_nr].mp_flags &= ˜ALARM_ON;
19828 }
19829 return(remaining);
19830 }

19832 /*===========================================================================*
19833 * cause_sigalrm *
19834 *===========================================================================*/
19835 PRIVATE void cause_sigalrm(tp)
19836 struct timer *tp;
19837 {
19838 int proc_nr;
19839 register struct mproc *rmp;
19840
19841 proc_nr = tmr_arg(tp)->ta_int; /* get process from timer */
19842 rmp = &mproc[proc_nr];
19843
19844 if ((rmp->mp_flags & (IN_USE | ZOMBIE)) != IN_USE) return;
19845 if ((rmp->mp_flags & ALARM_ON) == 0) return;
19846 rmp->mp_flags &= ˜ALARM_ON;
19847 check_sig(rmp->mp_pid, SIGALRM);
19848 }

19850 /*===========================================================================*
19851 * do_pause *
19852 *===========================================================================*/
19853 PUBLIC int do_pause()
19854 {
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19855 /* Perform the pause() system call. */
19856
19857 mp->mp_flags |= PAUSED;
19858 return(SUSPEND);
19859 }

19861 /*===========================================================================*
19862 * sig_proc *
19863 *===========================================================================*/
19864 PUBLIC void sig_proc(rmp, signo)
19865 register struct mproc *rmp; /* pointer to the process to be signaled */
19866 int signo; /* signal to send to process (1 to _NSIG) */
19867 {
19868 /* Send a signal to a process. Check to see if the signal is to be caught,
19869 * ignored, tranformed into a message (for system processes) or blocked.
19870 * - If the signal is to be transformed into a message, request the KERNEL to
19871 * send the target process a system notification with the pending signal as an
19872 * argument.
19873 * - If the signal is to be caught, request the KERNEL to push a sigcontext
19874 * structure and a sigframe structure onto the catcher’s stack. Also, KERNEL
19875 * will reset the program counter and stack pointer, so that when the process
19876 * next runs, it will be executing the signal handler. When the signal handler
19877 * returns, sigreturn(2) will be called. Then KERNEL will restore the signal
19878 * context from the sigcontext structure.
19879 * If there is insufficient stack space, kill the process.
19880 */
19881
19882 vir_bytes new_sp;
19883 int s;
19884 int slot;
19885 int sigflags;
19886 struct sigmsg sm;
19887
19888 slot = (int) (rmp - mproc);
19889 if ((rmp->mp_flags & (IN_USE | ZOMBIE)) != IN_USE) {
19890 printf("PM: signal %d sent to %s process %d\n",
19891 signo, (rmp->mp_flags & ZOMBIE) ? "zombie" : "dead", slot);
19892 panic(__FILE__,"", NO_NUM);
19893 }
19894 if ((rmp->mp_flags & TRACED) && signo != SIGKILL) {
19895 /* A traced process has special handling. */
19896 unpause(slot);
19897 stop_proc(rmp, signo); /* a signal causes it to stop */
19898 return;
19899 }
19900 /* Some signals are ignored by default. */
19901 if (sigismember(&rmp->mp_ignore, signo)) {
19902 return;
19903 }
19904 if (sigismember(&rmp->mp_sigmask, signo)) {
19905 /* Signal should be blocked. */
19906 sigaddset(&rmp->mp_sigpending, signo);
19907 return;
19908 }
19909 sigflags = rmp->mp_sigact[signo].sa_flags;
19910 if (sigismember(&rmp->mp_catch, signo)) {
19911 if (rmp->mp_flags & SIGSUSPENDED)
19912 sm.sm_mask = rmp->mp_sigmask2;
19913 else
19914 sm.sm_mask = rmp->mp_sigmask;
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19915 sm.sm_signo = signo;
19916 sm.sm_sighandler = (vir_bytes) rmp->mp_sigact[signo].sa_handler;
19917 sm.sm_sigreturn = rmp->mp_sigreturn;
19918 if ((s=get_stack_ptr(slot, &new_sp)) != OK)
19919 panic(__FILE__,"couldn’t get new stack pointer",s);
19920 sm.sm_stkptr = new_sp;
19921
19922 /* Make room for the sigcontext and sigframe struct. */
19923 new_sp -= sizeof(struct sigcontext)
19924 + 3 * sizeof(char *) + 2 * sizeof(int);
19925
19926 if (adjust(rmp, rmp->mp_seg[D].mem_len, new_sp) != OK)
19927 goto doterminate;
19928
19929 rmp->mp_sigmask |= rmp->mp_sigact[signo].sa_mask;
19930 if (sigflags & SA_NODEFER)
19931 sigdelset(&rmp->mp_sigmask, signo);
19932 else
19933 sigaddset(&rmp->mp_sigmask, signo);
19934
19935 if (sigflags & SA_RESETHAND) {
19936 sigdelset(&rmp->mp_catch, signo);
19937 rmp->mp_sigact[signo].sa_handler = SIG_DFL;
19938 }
19939
19940 if (OK == (s=sys_sigsend(slot, &sm))) {
19941
19942 sigdelset(&rmp->mp_sigpending, signo);
19943 /* If process is hanging on PAUSE, WAIT, SIGSUSPEND, tty,
19944 * pipe, etc., release it.
19945 */
19946 unpause(slot);
19947 return;
19948 }
19949 panic(__FILE__, "warning, sys_sigsend failed", s);
19950 }
19951 else if (sigismember(&rmp->mp_sig2mess, signo)) {
19952 if (OK != (s=sys_kill(slot,signo)))
19953 panic(__FILE__, "warning, sys_kill failed", s);
19954 return;
19955 }
19956
19957 doterminate:
19958 /* Signal should not or cannot be caught. Take default action. */
19959 if (sigismember(&ign_sset, signo)) return;
19960
19961 rmp->mp_sigstatus = (char) signo;
19962 if (sigismember(&core_sset, signo)) {
19963 /* Switch to the user’s FS environment and dump core. */
19964 tell_fs(CHDIR, slot, FALSE, 0);
19965 dump_core(rmp);
19966 }
19967 pm_exit(rmp, 0); /* terminate process */
19968 }

19970 /*===========================================================================*
19971 * check_sig *
19972 *===========================================================================*/
19973 PUBLIC int check_sig(proc_id, signo)
19974 pid_t proc_id; /* pid of proc to sig, or 0 or -1, or -pgrp */
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19975 int signo; /* signal to send to process (0 to _NSIG) */
19976 {
19977 /* Check to see if it is possible to send a signal. The signal may have to be
19978 * sent to a group of processes. This routine is invoked by the KILL system
19979 * call, and also when the kernel catches a DEL or other signal.
19980 */
19981
19982 register struct mproc *rmp;
19983 int count; /* count # of signals sent */
19984 int error_code;
19985
19986 if (signo < 0 || signo > _NSIG) return(EINVAL);
19987
19988 /* Return EINVAL for attempts to send SIGKILL to INIT alone. */
19989 if (proc_id == INIT_PID && signo == SIGKILL) return(EINVAL);
19990
19991 /* Search the proc table for processes to signal. (See forkexit.c about
19992 * pid magic.)
19993 */
19994 count = 0;
19995 error_code = ESRCH;
19996 for (rmp = &mproc[0]; rmp < &mproc[NR_PROCS]; rmp++) {
19997 if (!(rmp->mp_flags & IN_USE)) continue;
19998 if ((rmp->mp_flags & ZOMBIE) && signo != 0) continue;
19999
20000 /* Check for selection. */
20001 if (proc_id > 0 && proc_id != rmp->mp_pid) continue;
20002 if (proc_id == 0 && mp->mp_procgrp != rmp->mp_procgrp) continue;
20003 if (proc_id == -1 && rmp->mp_pid <= INIT_PID) continue;
20004 if (proc_id < -1 && rmp->mp_procgrp != -proc_id) continue;
20005
20006 /* Check for permission. */
20007 if (mp->mp_effuid != SUPER_USER
20008 && mp->mp_realuid != rmp->mp_realuid
20009 && mp->mp_effuid != rmp->mp_realuid
20010 && mp->mp_realuid != rmp->mp_effuid
20011 && mp->mp_effuid != rmp->mp_effuid) {
20012 error_code = EPERM;
20013 continue;
20014 }
20015
20016 count++;
20017 if (signo == 0) continue;
20018
20019 /* ’sig_proc’ will handle the disposition of the signal. The
20020 * signal may be caught, blocked, ignored, or cause process
20021 * termination, possibly with core dump.
20022 */
20023 sig_proc(rmp, signo);
20024
20025 if (proc_id > 0) break; /* only one process being signaled */
20026 }
20027
20028 /* If the calling process has killed itself, don’t reply. */
20029 if ((mp->mp_flags & (IN_USE | ZOMBIE)) != IN_USE) return(SUSPEND);
20030 return(count > 0 ? OK : error_code);
20031 }
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20033 /*===========================================================================*
20034 * check_pending *
20035 *===========================================================================*/
20036 PUBLIC void check_pending(rmp)
20037 register struct mproc *rmp;
20038 {
20039 /* Check to see if any pending signals have been unblocked. The
20040 * first such signal found is delivered.
20041 *
20042 * If multiple pending unmasked signals are found, they will be
20043 * delivered sequentially.
20044 *
20045 * There are several places in this file where the signal mask is
20046 * changed. At each such place, check_pending() should be called to
20047 * check for newly unblocked signals.
20048 */
20049
20050 int i;
20051
20052 for (i = 1; i <= _NSIG; i++) {
20053 if (sigismember(&rmp->mp_sigpending, i) &&
20054 !sigismember(&rmp->mp_sigmask, i)) {
20055 sigdelset(&rmp->mp_sigpending, i);
20056 sig_proc(rmp, i);
20057 break;
20058 }
20059 }
20060 }

20062 /*===========================================================================*
20063 * unpause *
20064 *===========================================================================*/
20065 PRIVATE void unpause(pro)
20066 int pro; /* which process number */
20067 {
20068 /* A signal is to be sent to a process. If that process is hanging on a
20069 * system call, the system call must be terminated with EINTR. Possible
20070 * calls are PAUSE, WAIT, READ and WRITE, the latter two for pipes and ttys.
20071 * First check if the process is hanging on an PM call. If not, tell FS,
20072 * so it can check for READs and WRITEs from pipes, ttys and the like.
20073 */
20074
20075 register struct mproc *rmp;
20076
20077 rmp = &mproc[pro];
20078
20079 /* Check to see if process is hanging on a PAUSE, WAIT or SIGSUSPEND call. */
20080 if (rmp->mp_flags & (PAUSED | WAITING | SIGSUSPENDED)) {
20081 rmp->mp_flags &= ˜(PAUSED | WAITING | SIGSUSPENDED);
20082 setreply(pro, EINTR);
20083 return;
20084 }
20085
20086 /* Process is not hanging on an PM call. Ask FS to take a look. */
20087 tell_fs(UNPAUSE, pro, 0, 0);
20088 }



908 File: servers/pm/signal.c MINIX SOURCE CODE

20090 /*===========================================================================*
20091 * dump_core *
20092 *===========================================================================*/
20093 PRIVATE void dump_core(rmp)
20094 register struct mproc *rmp; /* whose core is to be dumped */
20095 {
20096 /* Make a core dump on the file "core", if possible. */
20097
20098 int s, fd, seg, slot;
20099 vir_bytes current_sp;
20100 long trace_data, trace_off;
20101
20102 slot = (int) (rmp - mproc);
20103
20104 /* Can core file be written? We are operating in the user’s FS environment,
20105 * so no special permission checks are needed.
20106 */
20107 if (rmp->mp_realuid != rmp->mp_effuid) return;
20108 if ( (fd = open(core_name, O_WRONLY | O_CREAT | O_TRUNC | O_NONBLOCK,
20109 CORE_MODE)) < 0) return;
20110 rmp->mp_sigstatus |= DUMPED;
20111
20112 /* Make sure the stack segment is up to date.
20113 * We don’t want adjust() to fail unless current_sp is preposterous,
20114 * but it might fail due to safety checking. Also, we don’t really want
20115 * the adjust() for sending a signal to fail due to safety checking.
20116 * Maybe make SAFETY_BYTES a parameter.
20117 */
20118 if ((s=get_stack_ptr(slot, &current_sp)) != OK)
20119 panic(__FILE__,"couldn’t get new stack pointer",s);
20120 adjust(rmp, rmp->mp_seg[D].mem_len, current_sp);
20121
20122 /* Write the memory map of all segments to begin the core file. */
20123 if (write(fd, (char *) rmp->mp_seg, (unsigned) sizeof rmp->mp_seg)
20124 != (unsigned) sizeof rmp->mp_seg) {
20125 close(fd);
20126 return;
20127 }
20128
20129 /* Write out the whole kernel process table entry to get the regs. */
20130 trace_off = 0;
20131 while (sys_trace(T_GETUSER, slot, trace_off, &trace_data) == OK) {
20132 if (write(fd, (char *) &trace_data, (unsigned) sizeof (long))
20133 != (unsigned) sizeof (long)) {
20134 close(fd);
20135 return;
20136 }
20137 trace_off += sizeof (long);
20138 }
20139
20140 /* Loop through segments and write the segments themselves out. */
20141 for (seg = 0; seg < NR_LOCAL_SEGS; seg++) {
20142 rw_seg(1, fd, slot, seg,
20143 (phys_bytes) rmp->mp_seg[seg].mem_len << CLICK_SHIFT);
20144 }
20145 close(fd);
20146 }
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++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
servers/pm/timers.c

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

20200 /* PM watchdog timer management. These functions in this file provide
20201 * a convenient interface to the timers library that manages a list of
20202 * watchdog timers. All details of scheduling an alarm at the CLOCK task
20203 * are hidden behind this interface.
20204 * Only system processes are allowed to set an alarm timer at the kernel.
20205 * Therefore, the PM maintains a local list of timers for user processes
20206 * that requested an alarm signal.
20207 *
20208 * The entry points into this file are:
20209 * pm_set_timer: reset and existing or set a new watchdog timer
20210 * pm_expire_timers: check for expired timers and run watchdog functions
20211 * pm_cancel_timer: remove a time from the list of timers
20212 *
20213 */
20214
20215 #include "pm.h"
20216
20217 #include <timers.h>
20218 #include <minix/syslib.h>
20219 #include <minix/com.h>
20220
20221 PRIVATE timer_t *pm_timers = NULL;
20222
20223 /*===========================================================================*
20224 * pm_set_timer *
20225 *===========================================================================*/
20226 PUBLIC void pm_set_timer(timer_t *tp, int ticks, tmr_func_t watchdog, int arg)
20227 {
20228 int r;
20229 clock_t now, prev_time = 0, next_time;
20230
20231 if ((r = getuptime(&now)) != OK)
20232 panic(__FILE__, "PM couldn’t get uptime", NO_NUM);
20233
20234 /* Set timer argument and add timer to the list. */
20235 tmr_arg(tp)->ta_int = arg;
20236 prev_time = tmrs_settimer(&pm_timers,tp,now+ticks,watchdog,&next_time);
20237
20238 /* Reschedule our synchronous alarm if necessary. */
20239 if (! prev_time || prev_time > next_time) {
20240 if (sys_setalarm(next_time, 1) != OK)
20241 panic(__FILE__, "PM set timer couldn’t set alarm.", NO_NUM);
20242 }
20243
20244 return;
20245 }

20247 /*===========================================================================*
20248 * pm_expire_timers *
20249 *===========================================================================*/
20250 PUBLIC void pm_expire_timers(clock_t now)
20251 {
20252 clock_t next_time;
20253
20254 /* Check for expired timers and possibly reschedule an alarm. */
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20255 tmrs_exptimers(&pm_timers, now, &next_time);
20256 if (next_time > 0) {
20257 if (sys_setalarm(next_time, 1) != OK)
20258 panic(__FILE__, "PM expire timer couldn’t set alarm.", NO_NUM);
20259 }
20260 }

20262 /*===========================================================================*
20263 * pm_cancel_timer *
20264 *===========================================================================*/
20265 PUBLIC void pm_cancel_timer(timer_t *tp)
20266 {
20267 clock_t next_time, prev_time;
20268 prev_time = tmrs_clrtimer(&pm_timers, tp, &next_time);
20269
20270 /* If the earliest timer has been removed, we have to set the alarm to
20271 * the next timer, or cancel the alarm altogether if the last timer has
20272 * been cancelled (next_time will be 0 then).
20273 */
20274 if (prev_time < next_time || ! next_time) {
20275 if (sys_setalarm(next_time, 1) != OK)
20276 panic(__FILE__, "PM expire timer couldn’t set alarm.", NO_NUM);
20277 }
20278 }

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
servers/pm/time.c

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

20300 /* This file takes care of those system calls that deal with time.
20301 *
20302 * The entry points into this file are
20303 * do_time: perform the TIME system call
20304 * do_stime: perform the STIME system call
20305 * do_times: perform the TIMES system call
20306 */
20307
20308 #include "pm.h"
20309 #include <minix/callnr.h>
20310 #include <minix/com.h>
20311 #include <signal.h>
20312 #include "mproc.h"
20313 #include "param.h"
20314
20315 PRIVATE time_t boottime;
20316
20317 /*===========================================================================*
20318 * do_time *
20319 *===========================================================================*/
20320 PUBLIC int do_time()
20321 {
20322 /* Perform the time(tp) system call. This returns the time in seconds since
20323 * 1.1.1970. MINIX is an astrophysically naive system that assumes the earth
20324 * rotates at a constant rate and that such things as leap seconds do not
20325 * exist.
20326 */
20327 clock_t uptime;
20328 int s;
20329
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20330 if ( (s=getuptime(&uptime)) != OK)
20331 panic(__FILE__,"do_time couldn’t get uptime", s);
20332
20333 mp->mp_reply.reply_time = (time_t) (boottime + (uptime/HZ));
20334 mp->mp_reply.reply_utime = (uptime%HZ)*1000000/HZ;
20335 return(OK);
20336 }

20338 /*===========================================================================*
20339 * do_stime *
20340 *===========================================================================*/
20341 PUBLIC int do_stime()
20342 {
20343 /* Perform the stime(tp) system call. Retrieve the system’s uptime (ticks
20344 * since boot) and store the time in seconds at system boot in the global
20345 * variable ’boottime’.
20346 */
20347 clock_t uptime;
20348 int s;
20349
20350 if (mp->mp_effuid != SUPER_USER) {
20351 return(EPERM);
20352 }
20353 if ( (s=getuptime(&uptime)) != OK)
20354 panic(__FILE__,"do_stime couldn’t get uptime", s);
20355 boottime = (long) m_in.stime - (uptime/HZ);
20356
20357 /* Also inform FS about the new system time. */
20358 tell_fs(STIME, boottime, 0, 0);
20359
20360 return(OK);
20361 }

20363 /*===========================================================================*
20364 * do_times *
20365 *===========================================================================*/
20366 PUBLIC int do_times()
20367 {
20368 /* Perform the times(buffer) system call. */
20369 register struct mproc *rmp = mp;
20370 clock_t t[5];
20371 int s;
20372
20373 if (OK != (s=sys_times(who, t)))
20374 panic(__FILE__,"do_times couldn’t get times", s);
20375 rmp->mp_reply.reply_t1 = t[0]; /* user time */
20376 rmp->mp_reply.reply_t2 = t[1]; /* system time */
20377 rmp->mp_reply.reply_t3 = rmp->mp_child_utime; /* child user time */
20378 rmp->mp_reply.reply_t4 = rmp->mp_child_stime; /* child system time */
20379 rmp->mp_reply.reply_t5 = t[4]; /* uptime since boot */
20380
20381 return(OK);
20382 }
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++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
servers/pm/getset.c

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

20400 /* This file handles the 4 system calls that get and set uids and gids.
20401 * It also handles getpid(), setsid(), and getpgrp(). The code for each
20402 * one is so tiny that it hardly seemed worthwhile to make each a separate
20403 * function.
20404 */
20405
20406 #include "pm.h"
20407 #include <minix/callnr.h>
20408 #include <signal.h>
20409 #include "mproc.h"
20410 #include "param.h"
20411
20412 /*===========================================================================*
20413 * do_getset *
20414 *===========================================================================*/
20415 PUBLIC int do_getset()
20416 {
20417 /* Handle GETUID, GETGID, GETPID, GETPGRP, SETUID, SETGID, SETSID. The four
20418 * GETs and SETSID return their primary results in ’r’. GETUID, GETGID, and
20419 * GETPID also return secondary results (the effective IDs, or the parent
20420 * process ID) in ’reply_res2’, which is returned to the user.
20421 */
20422
20423 register struct mproc *rmp = mp;
20424 register int r;
20425
20426 switch(call_nr) {
20427 case GETUID:
20428 r = rmp->mp_realuid;
20429 rmp->mp_reply.reply_res2 = rmp->mp_effuid;
20430 break;
20431
20432 case GETGID:
20433 r = rmp->mp_realgid;
20434 rmp->mp_reply.reply_res2 = rmp->mp_effgid;
20435 break;
20436
20437 case GETPID:
20438 r = mproc[who].mp_pid;
20439 rmp->mp_reply.reply_res2 = mproc[rmp->mp_parent].mp_pid;
20440 break;
20441
20442 case SETUID:
20443 if (rmp->mp_realuid != (uid_t) m_in.usr_id &&
20444 rmp->mp_effuid != SUPER_USER)
20445 return(EPERM);
20446 rmp->mp_realuid = (uid_t) m_in.usr_id;
20447 rmp->mp_effuid = (uid_t) m_in.usr_id;
20448 tell_fs(SETUID, who, rmp->mp_realuid, rmp->mp_effuid);
20449 r = OK;
20450 break;
20451
20452 case SETGID:
20453 if (rmp->mp_realgid != (gid_t) m_in.grp_id &&
20454 rmp->mp_effuid != SUPER_USER)
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20455 return(EPERM);
20456 rmp->mp_realgid = (gid_t) m_in.grp_id;
20457 rmp->mp_effgid = (gid_t) m_in.grp_id;
20458 tell_fs(SETGID, who, rmp->mp_realgid, rmp->mp_effgid);
20459 r = OK;
20460 break;
20461
20462 case SETSID:
20463 if (rmp->mp_procgrp == rmp->mp_pid) return(EPERM);
20464 rmp->mp_procgrp = rmp->mp_pid;
20465 tell_fs(SETSID, who, 0, 0);
20466 /* fall through */
20467
20468 case GETPGRP:
20469 r = rmp->mp_procgrp;
20470 break;
20471
20472 default:
20473 r = EINVAL;
20474 break;
20475 }
20476 return(r);
20477 }

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
servers/pm/misc.c

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

20500 /* Miscellaneous system calls. Author: Kees J. Bot
20501 * 31 Mar 2000
20502 * The entry points into this file are:
20503 * do_reboot: kill all processes, then reboot system
20504 * do_svrctl: process manager control
20505 * do_getsysinfo: request copy of PM data structure (Jorrit N. Herder)
20506 * do_getprocnr: lookup process slot number (Jorrit N. Herder)
20507 * do_memalloc: allocate a chunk of memory (Jorrit N. Herder)
20508 * do_memfree: deallocate a chunk of memory (Jorrit N. Herder)
20509 * do_getsetpriority: get/set process priority
20510 */
20511
20512 #include "pm.h"
20513 #include <minix/callnr.h>
20514 #include <signal.h>
20515 #include <sys/svrctl.h>
20516 #include <sys/resource.h>
20517 #include <minix/com.h>
20518 #include <string.h>
20519 #include "mproc.h"
20520 #include "param.h"
20521
20522 /*===========================================================================*
20523 * do_allocmem *
20524 *===========================================================================*/
20525 PUBLIC int do_allocmem()
20526 {
20527 vir_clicks mem_clicks;
20528 phys_clicks mem_base;
20529
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20530 mem_clicks = (m_in.memsize + CLICK_SIZE -1 ) >> CLICK_SHIFT;
20531 mem_base = alloc_mem(mem_clicks);
20532 if (mem_base == NO_MEM) return(ENOMEM);
20533 mp->mp_reply.membase = (phys_bytes) (mem_base << CLICK_SHIFT);
20534 return(OK);
20535 }

20537 /*===========================================================================*
20538 * do_freemem *
20539 *===========================================================================*/
20540 PUBLIC int do_freemem()
20541 {
20542 vir_clicks mem_clicks;
20543 phys_clicks mem_base;
20544
20545 mem_clicks = (m_in.memsize + CLICK_SIZE -1 ) >> CLICK_SHIFT;
20546 mem_base = (m_in.membase + CLICK_SIZE -1 ) >> CLICK_SHIFT;
20547 free_mem(mem_base, mem_clicks);
20548 return(OK);
20549 }

20551 /*===========================================================================*
20552 * do_getsysinfo *
20553 *===========================================================================*/
20554 PUBLIC int do_getsysinfo()
20555 {
20556 struct mproc *proc_addr;
20557 vir_bytes src_addr, dst_addr;
20558 struct kinfo kinfo;
20559 size_t len;
20560 int s;
20561
20562 switch(m_in.info_what) {
20563 case SI_KINFO: /* kernel info is obtained via PM */
20564 sys_getkinfo(&kinfo);
20565 src_addr = (vir_bytes) &kinfo;
20566 len = sizeof(struct kinfo);
20567 break;
20568 case SI_PROC_ADDR: /* get address of PM process table */
20569 proc_addr = &mproc[0];
20570 src_addr = (vir_bytes) &proc_addr;
20571 len = sizeof(struct mproc *);
20572 break;
20573 case SI_PROC_TAB: /* copy entire process table */
20574 src_addr = (vir_bytes) mproc;
20575 len = sizeof(struct mproc) * NR_PROCS;
20576 break;
20577 default:
20578 return(EINVAL);
20579 }
20580
20581 dst_addr = (vir_bytes) m_in.info_where;
20582 if (OK != (s=sys_datacopy(SELF, src_addr, who, dst_addr, len)))
20583 return(s);
20584 return(OK);
20585 }
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20587 /*===========================================================================*
20588 * do_getprocnr *
20589 *===========================================================================*/
20590 PUBLIC int do_getprocnr()
20591 {
20592 register struct mproc *rmp;
20593 static char search_key[PROC_NAME_LEN+1];
20594 int key_len;
20595 int s;
20596
20597 if (m_in.pid >= 0) { /* lookup process by pid */
20598 for (rmp = &mproc[0]; rmp < &mproc[NR_PROCS]; rmp++) {
20599 if ((rmp->mp_flags & IN_USE) && (rmp->mp_pid==m_in.pid)) {
20600 mp->mp_reply.procnr = (int) (rmp - mproc);
20601 return(OK);
20602 }
20603 }
20604 return(ESRCH);
20605 } else if (m_in.namelen > 0) { /* lookup process by name */
20606 key_len = MIN(m_in.namelen, PROC_NAME_LEN);
20607 if (OK != (s=sys_datacopy(who, (vir_bytes) m_in.addr,
20608 SELF, (vir_bytes) search_key, key_len)))
20609 return(s);
20610 search_key[key_len] = ’\0’; /* terminate for safety */
20611 for (rmp = &mproc[0]; rmp < &mproc[NR_PROCS]; rmp++) {
20612 if ((rmp->mp_flags & IN_USE) &&
20613 strncmp(rmp->mp_name, search_key, key_len)==0) {
20614 mp->mp_reply.procnr = (int) (rmp - mproc);
20615 return(OK);
20616 }
20617 }
20618 return(ESRCH);
20619 } else { /* return own process number */
20620 mp->mp_reply.procnr = who;
20621 }
20622 return(OK);
20623 }

20625 /*===========================================================================*
20626 * do_reboot *
20627 *===========================================================================*/
20628 #define REBOOT_CODE "delay; boot"
20629 PUBLIC int do_reboot()
20630 {
20631 char monitor_code[32*sizeof(char *)];
20632 int code_len;
20633 int abort_flag;
20634
20635 if (mp->mp_effuid != SUPER_USER) return(EPERM);
20636
20637 switch (m_in.reboot_flag) {
20638 case RBT_HALT:
20639 case RBT_PANIC:
20640 case RBT_RESET:
20641 abort_flag = m_in.reboot_flag;
20642 break;
20643 case RBT_REBOOT:
20644 code_len = strlen(REBOOT_CODE) + 1;
20645 strncpy(monitor_code, REBOOT_CODE, code_len);
20646 abort_flag = RBT_MONITOR;
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20647 break;
20648 case RBT_MONITOR:
20649 code_len = m_in.reboot_strlen + 1;
20650 if (code_len > sizeof(monitor_code)) return(EINVAL);
20651 if (sys_datacopy(who, (vir_bytes) m_in.reboot_code,
20652 PM_PROC_NR, (vir_bytes) monitor_code,
20653 (phys_bytes) (code_len)) != OK) return(EFAULT);
20654 if (monitor_code[code_len-1] != 0) return(EINVAL);
20655 abort_flag = RBT_MONITOR;
20656 break;
20657 default:
20658 return(EINVAL);
20659 }
20660
20661 check_sig(-1, SIGKILL); /* kill all processes except init */
20662 tell_fs(REBOOT,0,0,0); /* tell FS to prepare for shutdown */
20663
20664 /* Ask the kernel to abort. All system services, including the PM, will
20665 * get a HARD_STOP notification. Await the notification in the main loop.
20666 */
20667 sys_abort(abort_flag, PM_PROC_NR, monitor_code, code_len);
20668 return(SUSPEND); /* don’t reply to killed process */
20669 }

20671 /*===========================================================================*
20672 * do_getsetpriority *
20673 *===========================================================================*/
20674 PUBLIC int do_getsetpriority()
20675 {
20676 int arg_which, arg_who, arg_pri;
20677 int rmp_nr;
20678 struct mproc *rmp;
20679
20680 arg_which = m_in.m1_i1;
20681 arg_who = m_in.m1_i2;
20682 arg_pri = m_in.m1_i3; /* for SETPRIORITY */
20683
20684 /* Code common to GETPRIORITY and SETPRIORITY. */
20685
20686 /* Only support PRIO_PROCESS for now. */
20687 if (arg_which != PRIO_PROCESS)
20688 return(EINVAL);
20689
20690 if (arg_who == 0)
20691 rmp_nr = who;
20692 else
20693 if ((rmp_nr = proc_from_pid(arg_who)) < 0)
20694 return(ESRCH);
20695
20696 rmp = &mproc[rmp_nr];
20697
20698 if (mp->mp_effuid != SUPER_USER &&
20699 mp->mp_effuid != rmp->mp_effuid && mp->mp_effuid != rmp->mp_realuid)
20700 return EPERM;
20701
20702 /* If GET, that’s it. */
20703 if (call_nr == GETPRIORITY) {
20704 return(rmp->mp_nice - PRIO_MIN);
20705 }
20706
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20707 /* Only root is allowed to reduce the nice level. */
20708 if (rmp->mp_nice > arg_pri && mp->mp_effuid != SUPER_USER)
20709 return(EACCES);
20710
20711 /* We’re SET, and it’s allowed. Do it and tell kernel. */
20712 rmp->mp_nice = arg_pri;
20713 return sys_nice(rmp_nr, arg_pri);
20714 }

20716 /*===========================================================================*
20717 * do_svrctl *
20718 *===========================================================================*/
20719 PUBLIC int do_svrctl()
20720 {
20721 int s, req;
20722 vir_bytes ptr;
20723 #define MAX_LOCAL_PARAMS 2
20724 static struct {
20725 char name[30];
20726 char value[30];
20727 } local_param_overrides[MAX_LOCAL_PARAMS];
20728 static int local_params = 0;
20729
20730 req = m_in.svrctl_req;
20731 ptr = (vir_bytes) m_in.svrctl_argp;
20732
20733 /* Is the request indeed for the MM? */
20734 if (((req >> 8) & 0xFF) != ’M’) return(EINVAL);
20735
20736 /* Control operations local to the PM. */
20737 switch(req) {
20738 case MMSETPARAM:
20739 case MMGETPARAM: {
20740 struct sysgetenv sysgetenv;
20741 char search_key[64];
20742 char *val_start;
20743 size_t val_len;
20744 size_t copy_len;
20745
20746 /* Copy sysgetenv structure to PM. */
20747 if (sys_datacopy(who, ptr, SELF, (vir_bytes) &sysgetenv,
20748 sizeof(sysgetenv)) != OK) return(EFAULT);
20749
20750 /* Set a param override? */
20751 if (req == MMSETPARAM) {
20752 if (local_params >= MAX_LOCAL_PARAMS) return ENOSPC;
20753 if (sysgetenv.keylen <= 0
20754 || sysgetenv.keylen >=
20755 sizeof(local_param_overrides[local_params].name)
20756 || sysgetenv.vallen <= 0
20757 || sysgetenv.vallen >=
20758 sizeof(local_param_overrides[local_params].value))
20759 return EINVAL;
20760
20761 if ((s = sys_datacopy(who, (vir_bytes) sysgetenv.key,
20762 SELF, (vir_bytes) local_param_overrides[local_params].name,
20763 sysgetenv.keylen)) != OK)
20764 return s;
20765 if ((s = sys_datacopy(who, (vir_bytes) sysgetenv.val,
20766 SELF, (vir_bytes) local_param_overrides[local_params].value,
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20767 sysgetenv.keylen)) != OK)
20768 return s;
20769 local_param_overrides[local_params].name[sysgetenv.keylen] = ’\0’;
20770 local_param_overrides[local_params].value[sysgetenv.vallen] = ’\0’;
20771
20772 local_params++;
20773
20774 return OK;
20775 }
20776
20777 if (sysgetenv.keylen == 0) { /* copy all parameters */
20778 val_start = monitor_params;
20779 val_len = sizeof(monitor_params);
20780 }
20781 else { /* lookup value for key */
20782 int p;
20783 /* Try to get a copy of the requested key. */
20784 if (sysgetenv.keylen > sizeof(search_key)) return(EINVAL);
20785 if ((s = sys_datacopy(who, (vir_bytes) sysgetenv.key,
20786 SELF, (vir_bytes) search_key, sysgetenv.keylen)) != OK)
20787 return(s);
20788
20789 /* Make sure key is null-terminated and lookup value.
20790 * First check local overrides.
20791 */
20792 search_key[sysgetenv.keylen-1]= ’\0’;
20793 for(p = 0; p < local_params; p++) {
20794 if (!strcmp(search_key, local_param_overrides[p].name)) {
20795 val_start = local_param_overrides[p].value;
20796 break;
20797 }
20798 }
20799 if (p >= local_params && (val_start = find_param(search_key)) == NULL)
20800 return(ESRCH);
20801 val_len = strlen(val_start) + 1;
20802 }
20803
20804 /* See if it fits in the client’s buffer. */
20805 if (val_len > sysgetenv.vallen)
20806 return E2BIG;
20807
20808 /* Value found, make the actual copy (as far as possible). */
20809 copy_len = MIN(val_len, sysgetenv.vallen);
20810 if ((s=sys_datacopy(SELF, (vir_bytes) val_start,
20811 who, (vir_bytes) sysgetenv.val, copy_len)) != OK)
20812 return(s);
20813
20814 return OK;
20815 }
20816 default:
20817 return(EINVAL);
20818 }
20819 }
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++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
servers/fs/fs.h

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

20900 /* This is the master header for fs. It includes some other files
20901 * and defines the principal constants.
20902 */
20903 #define _POSIX_SOURCE 1 /* tell headers to include POSIX stuff */
20904 #define _MINIX 1 /* tell headers to include MINIX stuff */
20905 #define _SYSTEM 1 /* tell headers that this is the kernel */
20906
20907 #define VERBOSE 0 /* show messages during initialization? */
20908
20909 /* The following are so basic, all the *.c files get them automatically. */
20910 #include <minix/config.h> /* MUST be first */
20911 #include <ansi.h> /* MUST be second */
20912 #include <sys/types.h>
20913 #include <minix/const.h>
20914 #include <minix/type.h>
20915 #include <minix/dmap.h>
20916
20917 #include <limits.h>
20918 #include <errno.h>
20919
20920 #include <minix/syslib.h>
20921 #include <minix/sysutil.h>
20922
20923 #include "const.h"
20924 #include "type.h"
20925 #include "proto.h"
20926 #include "glo.h"

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
servers/fs/const.h

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

21000 /* Tables sizes */
21001 #define V1_NR_DZONES 7 /* # direct zone numbers in a V1 inode */
21002 #define V1_NR_TZONES 9 /* total # zone numbers in a V1 inode */
21003 #define V2_NR_DZONES 7 /* # direct zone numbers in a V2 inode */
21004 #define V2_NR_TZONES 10 /* total # zone numbers in a V2 inode */
21005
21006 #define NR_FILPS 128 /* # slots in filp table */
21007 #define NR_INODES 64 /* # slots in "in core" inode table */
21008 #define NR_SUPERS 8 /* # slots in super block table */
21009 #define NR_LOCKS 8 /* # slots in the file locking table */
21010
21011 /* The type of sizeof may be (unsigned) long. Use the following macro for
21012 * taking the sizes of small objects so that there are no surprises like
21013 * (small) long constants being passed to routines expecting an int.
21014 */
21015 #define usizeof(t) ((unsigned) sizeof(t))
21016
21017 /* File system types. */
21018 #define SUPER_MAGIC 0x137F /* magic number contained in super-block */
21019 #define SUPER_REV 0x7F13 /* magic # when 68000 disk read on PC or vv */
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21020 #define SUPER_V2 0x2468 /* magic # for V2 file systems */
21021 #define SUPER_V2_REV 0x6824 /* V2 magic written on PC, read on 68K or vv */
21022 #define SUPER_V3 0x4d5a /* magic # for V3 file systems */
21023
21024 #define V1 1 /* version number of V1 file systems */
21025 #define V2 2 /* version number of V2 file systems */
21026 #define V3 3 /* version number of V3 file systems */
21027
21028 /* Miscellaneous constants */
21029 #define SU_UID ((uid_t) 0) /* super_user’s uid_t */
21030 #define SYS_UID ((uid_t) 0) /* uid_t for processes MM and INIT */
21031 #define SYS_GID ((gid_t) 0) /* gid_t for processes MM and INIT */
21032 #define NORMAL 0 /* forces get_block to do disk read */
21033 #define NO_READ 1 /* prevents get_block from doing disk read */
21034 #define PREFETCH 2 /* tells get_block not to read or mark dev */
21035
21036 #define XPIPE (-NR_TASKS-1) /* used in fp_task when susp’d on pipe */
21037 #define XLOCK (-NR_TASKS-2) /* used in fp_task when susp’d on lock */
21038 #define XPOPEN (-NR_TASKS-3) /* used in fp_task when susp’d on pipe open */
21039 #define XSELECT (-NR_TASKS-4) /* used in fp_task when susp’d on select */
21040
21041 #define NO_BIT ((bit_t) 0) /* returned by alloc_bit() to signal failure */
21042
21043 #define DUP_MASK 0100 /* mask to distinguish dup2 from dup */
21044
21045 #define LOOK_UP 0 /* tells search_dir to lookup string */
21046 #define ENTER 1 /* tells search_dir to make dir entry */
21047 #define DELETE 2 /* tells search_dir to delete entry */
21048 #define IS_EMPTY 3 /* tells search_dir to ret. OK or ENOTEMPTY */
21049
21050 #define CLEAN 0 /* disk and memory copies identical */
21051 #define DIRTY 1 /* disk and memory copies differ */
21052 #define ATIME 002 /* set if atime field needs updating */
21053 #define CTIME 004 /* set if ctime field needs updating */
21054 #define MTIME 010 /* set if mtime field needs updating */
21055
21056 #define BYTE_SWAP 0 /* tells conv2/conv4 to swap bytes */
21057
21058 #define END_OF_FILE (-104) /* eof detected */
21059
21060 #define ROOT_INODE 1 /* inode number for root directory */
21061 #define BOOT_BLOCK ((block_t) 0) /* block number of boot block */
21062 #define SUPER_BLOCK_BYTES (1024) /* bytes offset */
21063 #define START_BLOCK 2 /* first block of FS (not counting SB) */
21064
21065 #define DIR_ENTRY_SIZE usizeof (struct direct) /* # bytes/dir entry */
21066 #define NR_DIR_ENTRIES(b) ((b)/DIR_ENTRY_SIZE) /* # dir entries/blk */
21067 #define SUPER_SIZE usizeof (struct super_block) /* super_block size */
21068 #define PIPE_SIZE(b) (V1_NR_DZONES*(b)) /* pipe size in bytes */
21069
21070 #define FS_BITMAP_CHUNKS(b) ((b)/usizeof (bitchunk_t))/* # map chunks/blk */
21071 #define FS_BITCHUNK_BITS (usizeof(bitchunk_t) * CHAR_BIT)
21072 #define FS_BITS_PER_BLOCK(b) (FS_BITMAP_CHUNKS(b) * FS_BITCHUNK_BITS)
21073
21074 /* Derived sizes pertaining to the V1 file system. */
21075 #define V1_ZONE_NUM_SIZE usizeof (zone1_t) /* # bytes in V1 zone */
21076 #define V1_INODE_SIZE usizeof (d1_inode) /* bytes in V1 dsk ino */
21077
21078 /* # zones/indir block */
21079 #define V1_INDIRECTS (STATIC_BLOCK_SIZE/V1_ZONE_NUM_SIZE)
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21080
21081 /* # V1 dsk inodes/blk */
21082 #define V1_INODES_PER_BLOCK (STATIC_BLOCK_SIZE/V1_INODE_SIZE)
21083
21084 /* Derived sizes pertaining to the V2 file system. */
21085 #define V2_ZONE_NUM_SIZE usizeof (zone_t) /* # bytes in V2 zone */
21086 #define V2_INODE_SIZE usizeof (d2_inode) /* bytes in V2 dsk ino */
21087 #define V2_INDIRECTS(b) ((b)/V2_ZONE_NUM_SIZE) /* # zones/indir block */
21088 #define V2_INODES_PER_BLOCK(b) ((b)/V2_INODE_SIZE)/* # V2 dsk inodes/blk */

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
servers/fs/type.h

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

21100 /* Declaration of the V1 inode as it is on the disk (not in core). */
21101 typedef struct { /* V1.x disk inode */
21102 mode_t d1_mode; /* file type, protection, etc. */
21103 uid_t d1_uid; /* user id of the file’s owner */
21104 off_t d1_size; /* current file size in bytes */
21105 time_t d1_mtime; /* when was file data last changed */
21106 u8_t d1_gid; /* group number */
21107 u8_t d1_nlinks; /* how many links to this file */
21108 u16_t d1_zone[V1_NR_TZONES]; /* block nums for direct, ind, and dbl ind */
21109 } d1_inode;
21110
21111 /* Declaration of the V2 inode as it is on the disk (not in core). */
21112 typedef struct { /* V2.x disk inode */
21113 mode_t d2_mode; /* file type, protection, etc. */
21114 u16_t d2_nlinks; /* how many links to this file. HACK! */
21115 uid_t d2_uid; /* user id of the file’s owner. */
21116 u16_t d2_gid; /* group number HACK! */
21117 off_t d2_size; /* current file size in bytes */
21118 time_t d2_atime; /* when was file data last accessed */
21119 time_t d2_mtime; /* when was file data last changed */
21120 time_t d2_ctime; /* when was inode data last changed */
21121 zone_t d2_zone[V2_NR_TZONES]; /* block nums for direct, ind, and dbl ind */
21122 } d2_inode;

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
servers/fs/proto.h

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

21200 /* Function prototypes. */
21201
21202 #include "timers.h"
21203
21204 /* Structs used in prototypes must be declared as such first. */
21205 struct buf;
21206 struct filp;
21207 struct inode;
21208 struct super_block;
21209
21210 /* cache.c */
21211 _PROTOTYPE( zone_t alloc_zone, (Dev_t dev, zone_t z) );
21212 _PROTOTYPE( void flushall, (Dev_t dev) );
21213 _PROTOTYPE( void free_zone, (Dev_t dev, zone_t numb) );
21214 _PROTOTYPE( struct buf *get_block, (Dev_t dev, block_t block,int only_search));
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21215 _PROTOTYPE( void invalidate, (Dev_t device) );
21216 _PROTOTYPE( void put_block, (struct buf *bp, int block_type) );
21217 _PROTOTYPE( void rw_block, (struct buf *bp, int rw_flag) );
21218 _PROTOTYPE( void rw_scattered, (Dev_t dev,
21219 struct buf **bufq, int bufqsize, int rw_flag) );
21220
21221 /* device.c */
21222 _PROTOTYPE( int dev_open, (Dev_t dev, int proc, int flags) );
21223 _PROTOTYPE( void dev_close, (Dev_t dev) );
21224 _PROTOTYPE( int dev_io, (int op, Dev_t dev, int proc, void *buf,
21225 off_t pos, int bytes, int flags) );
21226 _PROTOTYPE( int gen_opcl, (int op, Dev_t dev, int proc, int flags) );
21227 _PROTOTYPE( void gen_io, (int task_nr, message *mess_ptr) );
21228 _PROTOTYPE( int no_dev, (int op, Dev_t dev, int proc, int flags) );
21229 _PROTOTYPE( int tty_opcl, (int op, Dev_t dev, int proc, int flags) );
21230 _PROTOTYPE( int ctty_opcl, (int op, Dev_t dev, int proc, int flags) );
21231 _PROTOTYPE( int clone_opcl, (int op, Dev_t dev, int proc, int flags) );
21232 _PROTOTYPE( void ctty_io, (int task_nr, message *mess_ptr) );
21233 _PROTOTYPE( int do_ioctl, (void) );
21234 _PROTOTYPE( int do_setsid, (void) );
21235 _PROTOTYPE( void dev_status, (message *) );
21236
21237 /* dmp.c */
21238 _PROTOTYPE( int do_fkey_pressed, (void) );
21239
21240 /* dmap.c */
21241 _PROTOTYPE( int do_devctl, (void) );
21242 _PROTOTYPE( void build_dmap, (void) );
21243 _PROTOTYPE( int map_driver, (int major, int proc_nr, int dev_style) );
21244
21245 /* filedes.c */
21246 _PROTOTYPE( struct filp *find_filp, (struct inode *rip, mode_t bits) );
21247 _PROTOTYPE( int get_fd, (int start, mode_t bits, int *k, struct filp **fpt) );
21248 _PROTOTYPE( struct filp *get_filp, (int fild) );
21249
21250 /* inode.c */
21251 _PROTOTYPE( struct inode *alloc_inode, (dev_t dev, mode_t bits) );
21252 _PROTOTYPE( void dup_inode, (struct inode *ip) );
21253 _PROTOTYPE( void free_inode, (Dev_t dev, Ino_t numb) );
21254 _PROTOTYPE( struct inode *get_inode, (Dev_t dev, int numb) );
21255 _PROTOTYPE( void put_inode, (struct inode *rip) );
21256 _PROTOTYPE( void update_times, (struct inode *rip) );
21257 _PROTOTYPE( void rw_inode, (struct inode *rip, int rw_flag) );
21258 _PROTOTYPE( void wipe_inode, (struct inode *rip) );
21259
21260 /* link.c */
21261 _PROTOTYPE( int do_link, (void) );
21262 _PROTOTYPE( int do_unlink, (void) );
21263 _PROTOTYPE( int do_rename, (void) );
21264 _PROTOTYPE( void truncate, (struct inode *rip) );
21265
21266 /* lock.c */
21267 _PROTOTYPE( int lock_op, (struct filp *f, int req) );
21268 _PROTOTYPE( void lock_revive, (void) );
21269
21270 /* main.c */
21271 _PROTOTYPE( int main, (void) );
21272 _PROTOTYPE( void reply, (int whom, int result) );
21273
21274 /* misc.c */



MINIX SOURCE CODE File: servers/fs/proto.h 923

21275 _PROTOTYPE( int do_dup, (void) );
21276 _PROTOTYPE( int do_exit, (void) );
21277 _PROTOTYPE( int do_fcntl, (void) );
21278 _PROTOTYPE( int do_fork, (void) );
21279 _PROTOTYPE( int do_exec, (void) );
21280 _PROTOTYPE( int do_revive, (void) );
21281 _PROTOTYPE( int do_set, (void) );
21282 _PROTOTYPE( int do_sync, (void) );
21283 _PROTOTYPE( int do_fsync, (void) );
21284 _PROTOTYPE( int do_reboot, (void) );
21285 _PROTOTYPE( int do_svrctl, (void) );
21286 _PROTOTYPE( int do_getsysinfo, (void) );
21287
21288 /* mount.c */
21289 _PROTOTYPE( int do_mount, (void) );
21290 _PROTOTYPE( int do_umount, (void) );
21291 _PROTOTYPE( int unmount, (Dev_t dev) );
21292
21293 /* open.c */
21294 _PROTOTYPE( int do_close, (void) );
21295 _PROTOTYPE( int do_creat, (void) );
21296 _PROTOTYPE( int do_lseek, (void) );
21297 _PROTOTYPE( int do_mknod, (void) );
21298 _PROTOTYPE( int do_mkdir, (void) );
21299 _PROTOTYPE( int do_open, (void) );
21300
21301 /* path.c */
21302 _PROTOTYPE( struct inode *advance,(struct inode *dirp, char string[NAME_MAX]));
21303 _PROTOTYPE( int search_dir, (struct inode *ldir_ptr,
21304 char string [NAME_MAX], ino_t *numb, int flag) );
21305 _PROTOTYPE( struct inode *eat_path, (char *path) );
21306 _PROTOTYPE( struct inode *last_dir, (char *path, char string [NAME_MAX]));
21307
21308 /* pipe.c */
21309 _PROTOTYPE( int do_pipe, (void) );
21310 _PROTOTYPE( int do_unpause, (void) );
21311 _PROTOTYPE( int pipe_check, (struct inode *rip, int rw_flag,
21312 int oflags, int bytes, off_t position, int *canwrite, int notouch));
21313 _PROTOTYPE( void release, (struct inode *ip, int call_nr, int count) );
21314 _PROTOTYPE( void revive, (int proc_nr, int bytes) );
21315 _PROTOTYPE( void suspend, (int task) );
21316 _PROTOTYPE( int select_request_pipe, (struct filp *f, int *ops, int bl) );
21317 _PROTOTYPE( int select_cancel_pipe, (struct filp *f) );
21318 _PROTOTYPE( int select_match_pipe, (struct filp *f) );
21319
21320 /* protect.c */
21321 _PROTOTYPE( int do_access, (void) );
21322 _PROTOTYPE( int do_chmod, (void) );
21323 _PROTOTYPE( int do_chown, (void) );
21324 _PROTOTYPE( int do_umask, (void) );
21325 _PROTOTYPE( int forbidden, (struct inode *rip, mode_t access_desired) );
21326 _PROTOTYPE( int read_only, (struct inode *ip) );
21327
21328 /* read.c */
21329 _PROTOTYPE( int do_read, (void) );
21330 _PROTOTYPE( struct buf *rahead, (struct inode *rip, block_t baseblock,
21331 off_t position, unsigned bytes_ahead) );
21332 _PROTOTYPE( void read_ahead, (void) );
21333 _PROTOTYPE( block_t read_map, (struct inode *rip, off_t position) );
21334 _PROTOTYPE( int read_write, (int rw_flag) );
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21335 _PROTOTYPE( zone_t rd_indir, (struct buf *bp, int index) );
21336
21337 /* stadir.c */
21338 _PROTOTYPE( int do_chdir, (void) );
21339 _PROTOTYPE( int do_fchdir, (void) );
21340 _PROTOTYPE( int do_chroot, (void) );
21341 _PROTOTYPE( int do_fstat, (void) );
21342 _PROTOTYPE( int do_stat, (void) );
21343 _PROTOTYPE( int do_fstatfs, (void) );
21344
21345 /* super.c */
21346 _PROTOTYPE( bit_t alloc_bit, (struct super_block *sp, int map, bit_t origin));
21347 _PROTOTYPE( void free_bit, (struct super_block *sp, int map,
21348 bit_t bit_returned) );
21349 _PROTOTYPE( struct super_block *get_super, (Dev_t dev) );
21350 _PROTOTYPE( int mounted, (struct inode *rip) );
21351 _PROTOTYPE( int read_super, (struct super_block *sp) );
21352 _PROTOTYPE( int get_block_size, (dev_t dev) );
21353
21354 /* time.c */
21355 _PROTOTYPE( int do_stime, (void) );
21356 _PROTOTYPE( int do_utime, (void) );
21357
21358 /* utility.c */
21359 _PROTOTYPE( time_t clock_time, (void) );
21360 _PROTOTYPE( unsigned conv2, (int norm, int w) );
21361 _PROTOTYPE( long conv4, (int norm, long x) );
21362 _PROTOTYPE( int fetch_name, (char *path, int len, int flag) );
21363 _PROTOTYPE( int no_sys, (void) );
21364 _PROTOTYPE( void panic, (char *who, char *mess, int num) );
21365
21366 /* write.c */
21367 _PROTOTYPE( void clear_zone, (struct inode *rip, off_t pos, int flag) );
21368 _PROTOTYPE( int do_write, (void) );
21369 _PROTOTYPE( struct buf *new_block, (struct inode *rip, off_t position) );
21370 _PROTOTYPE( void zero_block, (struct buf *bp) );
21371
21372 /* select.c */
21373 _PROTOTYPE( int do_select, (void) );
21374 _PROTOTYPE( int select_callback, (struct filp *, int ops) );
21375 _PROTOTYPE( void select_forget, (int fproc) );
21376 _PROTOTYPE( void select_timeout_check, (timer_t *) );
21377 _PROTOTYPE( void init_select, (void) );
21378 _PROTOTYPE( int select_notified, (int major, int minor, int ops) );
21379
21380 /* timers.c */
21381 _PROTOTYPE( void fs_set_timer, (timer_t *tp, int delta, tmr_func_t watchdog, int arg));
21382 _PROTOTYPE( void fs_expire_timers, (clock_t now) );
21383 _PROTOTYPE( void fs_cancel_timer, (timer_t *tp) );
21384 _PROTOTYPE( void fs_init_timer, (timer_t *tp) );
21385
21386 /* cdprobe.c */
21387 _PROTOTYPE( int cdprobe, (void) );
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++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
servers/fs/glo.h

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

21400 /* EXTERN should be extern except for the table file */
21401 #ifdef _TABLE
21402 #undef EXTERN
21403 #define EXTERN
21404 #endif
21405
21406 /* File System global variables */
21407 EXTERN struct fproc *fp; /* pointer to caller’s fproc struct */
21408 EXTERN int super_user; /* 1 if caller is super_user, else 0 */
21409 EXTERN int susp_count; /* number of procs suspended on pipe */
21410 EXTERN int nr_locks; /* number of locks currently in place */
21411 EXTERN int reviving; /* number of pipe processes to be revived */
21412 EXTERN off_t rdahedpos; /* position to read ahead */
21413 EXTERN struct inode *rdahed_inode; /* pointer to inode to read ahead */
21414 EXTERN Dev_t root_dev; /* device number of the root device */
21415 EXTERN time_t boottime; /* time in seconds at system boot */
21416
21417 /* The parameters of the call are kept here. */
21418 EXTERN message m_in; /* the input message itself */
21419 EXTERN message m_out; /* the output message used for reply */
21420 EXTERN int who; /* caller’s proc number */
21421 EXTERN int call_nr; /* system call number */
21422 EXTERN char user_path[PATH_MAX];/* storage for user path name */
21423
21424 /* The following variables are used for returning results to the caller. */
21425 EXTERN int err_code; /* temporary storage for error number */
21426 EXTERN int rdwt_err; /* status of last disk i/o request */
21427
21428 /* Data initialized elsewhere. */
21429 extern _PROTOTYPE (int (*call_vec[]), (void) ); /* sys call table */
21430 extern char dot1[2]; /* dot1 (&dot1[0]) and dot2 (&dot2[0]) have a special */
21431 extern char dot2[3]; /* meaning to search_dir: no access permission check. */

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
servers/fs/fproc.h

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

21500 /* This is the per-process information. A slot is reserved for each potential
21501 * process. Thus NR_PROCS must be the same as in the kernel. It is not
21502 * possible or even necessary to tell when a slot is free here.
21503 */
21504 EXTERN struct fproc {
21505 mode_t fp_umask; /* mask set by umask system call */
21506 struct inode *fp_workdir; /* pointer to working directory’s inode */
21507 struct inode *fp_rootdir; /* pointer to current root dir (see chroot) */
21508 struct filp *fp_filp[OPEN_MAX];/* the file descriptor table */
21509 uid_t fp_realuid; /* real user id */
21510 uid_t fp_effuid; /* effective user id */
21511 gid_t fp_realgid; /* real group id */
21512 gid_t fp_effgid; /* effective group id */
21513 dev_t fp_tty; /* major/minor of controlling tty */
21514 int fp_fd; /* place to save fd if rd/wr can’t finish */
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21515 char *fp_buffer; /* place to save buffer if rd/wr can’t finish*/
21516 int fp_nbytes; /* place to save bytes if rd/wr can’t finish */
21517 int fp_cum_io_partial; /* partial byte count if rd/wr can’t finish */
21518 char fp_suspended; /* set to indicate process hanging */
21519 char fp_revived; /* set to indicate process being revived */
21520 char fp_task; /* which task is proc suspended on */
21521 char fp_sesldr; /* true if proc is a session leader */
21522 pid_t fp_pid; /* process id */
21523 long fp_cloexec; /* bit map for POSIX Table 6-2 FD_CLOEXEC */
21524 } fproc[NR_PROCS];
21525
21526 /* Field values. */
21527 #define NOT_SUSPENDED 0 /* process is not suspended on pipe or task */
21528 #define SUSPENDED 1 /* process is suspended on pipe or task */
21529 #define NOT_REVIVING 0 /* process is not being revived */
21530 #define REVIVING 1 /* process is being revived from suspension */
21531 #define PID_FREE 0 /* process slot free */
21532
21533 /* Check is process number is acceptable - includes system processes. */
21534 #define isokprocnr(n) ((unsigned)((n)+NR_TASKS) < NR_PROCS + NR_TASKS)
21535

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
servers/fs/buf.h

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

21600 /* Buffer (block) cache. To acquire a block, a routine calls get_block(),
21601 * telling which block it wants. The block is then regarded as "in use"
21602 * and has its ’b_count’ field incremented. All the blocks that are not
21603 * in use are chained together in an LRU list, with ’front’ pointing
21604 * to the least recently used block, and ’rear’ to the most recently used
21605 * block. A reverse chain, using the field b_prev is also maintained.
21606 * Usage for LRU is measured by the time the put_block() is done. The second
21607 * parameter to put_block() can violate the LRU order and put a block on the
21608 * front of the list, if it will probably not be needed soon. If a block
21609 * is modified, the modifying routine must set b_dirt to DIRTY, so the block
21610 * will eventually be rewritten to the disk.
21611 */
21612
21613 #include <sys/dir.h> /* need struct direct */
21614 #include <dirent.h>
21615
21616 EXTERN struct buf {
21617 /* Data portion of the buffer. */
21618 union {
21619 char b__data[MAX_BLOCK_SIZE]; /* ordinary user data */
21620 /* directory block */
21621 struct direct b__dir[NR_DIR_ENTRIES(MAX_BLOCK_SIZE)];
21622 /* V1 indirect block */
21623 zone1_t b__v1_ind[V1_INDIRECTS];
21624 /* V2 indirect block */
21625 zone_t b__v2_ind[V2_INDIRECTS(MAX_BLOCK_SIZE)];
21626 /* V1 inode block */
21627 d1_inode b__v1_ino[V1_INODES_PER_BLOCK];
21628 /* V2 inode block */
21629 d2_inode b__v2_ino[V2_INODES_PER_BLOCK(MAX_BLOCK_SIZE)];
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21630 /* bit map block */
21631 bitchunk_t b__bitmap[FS_BITMAP_CHUNKS(MAX_BLOCK_SIZE)];
21632 } b;
21633
21634 /* Header portion of the buffer. */
21635 struct buf *b_next; /* used to link all free bufs in a chain */
21636 struct buf *b_prev; /* used to link all free bufs the other way */
21637 struct buf *b_hash; /* used to link bufs on hash chains */
21638 block_t b_blocknr; /* block number of its (minor) device */
21639 dev_t b_dev; /* major | minor device where block resides */
21640 char b_dirt; /* CLEAN or DIRTY */
21641 char b_count; /* number of users of this buffer */
21642 } buf[NR_BUFS];
21643
21644 /* A block is free if b_dev == NO_DEV. */
21645
21646 #define NIL_BUF ((struct buf *) 0) /* indicates absence of a buffer */
21647
21648 /* These defs make it possible to use to bp->b_data instead of bp->b.b__data */
21649 #define b_data b.b__data
21650 #define b_dir b.b__dir
21651 #define b_v1_ind b.b__v1_ind
21652 #define b_v2_ind b.b__v2_ind
21653 #define b_v1_ino b.b__v1_ino
21654 #define b_v2_ino b.b__v2_ino
21655 #define b_bitmap b.b__bitmap
21656
21657 EXTERN struct buf *buf_hash[NR_BUF_HASH]; /* the buffer hash table */
21658
21659 EXTERN struct buf *front; /* points to least recently used free block */
21660 EXTERN struct buf *rear; /* points to most recently used free block */
21661 EXTERN int bufs_in_use; /* # bufs currently in use (not on free list)*/
21662
21663 /* When a block is released, the type of usage is passed to put_block(). */
21664 #define WRITE_IMMED 0100 /* block should be written to disk now */
21665 #define ONE_SHOT 0200 /* set if block not likely to be needed soon */
21666
21667 #define INODE_BLOCK 0 /* inode block */
21668 #define DIRECTORY_BLOCK 1 /* directory block */
21669 #define INDIRECT_BLOCK 2 /* pointer block */
21670 #define MAP_BLOCK 3 /* bit map */
21671 #define FULL_DATA_BLOCK 5 /* data, fully used */
21672 #define PARTIAL_DATA_BLOCK 6 /* data, partly used*/
21673
21674 #define HASH_MASK (NR_BUF_HASH - 1) /* mask for hashing block numbers */

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
servers/fs/file.h

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

21700 /* This is the filp table. It is an intermediary between file descriptors and
21701 * inodes. A slot is free if filp_count == 0.
21702 */
21703
21704 EXTERN struct filp {
21705 mode_t filp_mode; /* RW bits, telling how file is opened */
21706 int filp_flags; /* flags from open and fcntl */
21707 int filp_count; /* how many file descriptors share this slot?*/
21708 struct inode *filp_ino; /* pointer to the inode */
21709 off_t filp_pos; /* file position */
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21710
21711 /* the following fields are for select() and are owned by the generic
21712 * select() code (i.e., fd-type-specific select() code can’t touch these).
21713 */
21714 int filp_selectors; /* select()ing processes blocking on this fd */
21715 int filp_select_ops; /* interested in these SEL_* operations */
21716
21717 /* following are for fd-type-specific select() */
21718 int filp_pipe_select_ops;
21719 } filp[NR_FILPS];
21720
21721 #define FILP_CLOSED 0 /* filp_mode: associated device closed */
21722
21723 #define NIL_FILP (struct filp *) 0 /* indicates absence of a filp slot */

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
servers/fs/lock.h

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

21800 /* This is the file locking table. Like the filp table, it points to the
21801 * inode table, however, in this case to achieve advisory locking.
21802 */
21803 EXTERN struct file_lock {
21804 short lock_type; /* F_RDLOCK or F_WRLOCK; 0 means unused slot */
21805 pid_t lock_pid; /* pid of the process holding the lock */
21806 struct inode *lock_inode; /* pointer to the inode locked */
21807 off_t lock_first; /* offset of first byte locked */
21808 off_t lock_last; /* offset of last byte locked */
21809 } file_lock[NR_LOCKS];

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
servers/fs/inode.h

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

21900 /* Inode table. This table holds inodes that are currently in use. In some
21901 * cases they have been opened by an open() or creat() system call, in other
21902 * cases the file system itself needs the inode for one reason or another,
21903 * such as to search a directory for a path name.
21904 * The first part of the struct holds fields that are present on the
21905 * disk; the second part holds fields not present on the disk.
21906 * The disk inode part is also declared in "type.h" as ’d1_inode’ for V1
21907 * file systems and ’d2_inode’ for V2 file systems.
21908 */
21909
21910 EXTERN struct inode {
21911 mode_t i_mode; /* file type, protection, etc. */
21912 nlink_t i_nlinks; /* how many links to this file */
21913 uid_t i_uid; /* user id of the file’s owner */
21914 gid_t i_gid; /* group number */
21915 off_t i_size; /* current file size in bytes */
21916 time_t i_atime; /* time of last access (V2 only) */
21917 time_t i_mtime; /* when was file data last changed */
21918 time_t i_ctime; /* when was inode itself changed (V2 only)*/
21919 zone_t i_zone[V2_NR_TZONES]; /* zone numbers for direct, ind, and dbl ind */
21920
21921 /* The following items are not present on the disk. */
21922 dev_t i_dev; /* which device is the inode on */
21923 ino_t i_num; /* inode number on its (minor) device */
21924 int i_count; /* # times inode used; 0 means slot is free */
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21925 int i_ndzones; /* # direct zones (Vx_NR_DZONES) */
21926 int i_nindirs; /* # indirect zones per indirect block */
21927 struct super_block *i_sp; /* pointer to super block for inode’s device */
21928 char i_dirt; /* CLEAN or DIRTY */
21929 char i_pipe; /* set to I_PIPE if pipe */
21930 char i_mount; /* this bit is set if file mounted on */
21931 char i_seek; /* set on LSEEK, cleared on READ/WRITE */
21932 char i_update; /* the ATIME, CTIME, and MTIME bits are here */
21933 } inode[NR_INODES];
21934
21935 #define NIL_INODE (struct inode *) 0 /* indicates absence of inode slot */
21936
21937 /* Field values. Note that CLEAN and DIRTY are defined in "const.h" */
21938 #define NO_PIPE 0 /* i_pipe is NO_PIPE if inode is not a pipe */
21939 #define I_PIPE 1 /* i_pipe is I_PIPE if inode is a pipe */
21940 #define NO_MOUNT 0 /* i_mount is NO_MOUNT if file not mounted on*/
21941 #define I_MOUNT 1 /* i_mount is I_MOUNT if file mounted on */
21942 #define NO_SEEK 0 /* i_seek = NO_SEEK if last op was not SEEK */
21943 #define ISEEK 1 /* i_seek = ISEEK if last op was SEEK */

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
servers/fs/param.h

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

22000 /* The following names are synonyms for the variables in the input message. */
22001 #define acc_time m2_l1
22002 #define addr m1_i3
22003 #define buffer m1_p1
22004 #define child m1_i2
22005 #define co_mode m1_i1
22006 #define eff_grp_id m1_i3
22007 #define eff_user_id m1_i3
22008 #define erki m1_p1
22009 #define fd m1_i1
22010 #define fd2 m1_i2
22011 #define ioflags m1_i3
22012 #define group m1_i3
22013 #define real_grp_id m1_i2
22014 #define ls_fd m2_i1
22015 #define mk_mode m1_i2
22016 #define mk_z0 m1_i3
22017 #define mode m3_i2
22018 #define c_mode m1_i3
22019 #define c_name m1_p1
22020 #define name m3_p1
22021 #define name1 m1_p1
22022 #define name2 m1_p2
22023 #define name_length m3_i1
22024 #define name1_length m1_i1
22025 #define name2_length m1_i2
22026 #define nbytes m1_i2
22027 #define owner m1_i2
22028 #define parent m1_i1
22029 #define pathname m3_ca1
22030 #define pid m1_i3
22031 #define pro m1_i1
22032 #define ctl_req m4_l1
22033 #define driver_nr m4_l2
22034 #define dev_nr m4_l3
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22035 #define dev_style m4_l4
22036 #define rd_only m1_i3
22037 #define real_user_id m1_i2
22038 #define request m1_i2
22039 #define sig m1_i2
22040 #define slot1 m1_i1
22041 #define tp m2_l1
22042 #define utime_actime m2_l1
22043 #define utime_modtime m2_l2
22044 #define utime_file m2_p1
22045 #define utime_length m2_i1
22046 #define utime_strlen m2_i2
22047 #define whence m2_i2
22048 #define svrctl_req m2_i1
22049 #define svrctl_argp m2_p1
22050 #define pm_stime m1_i1
22051 #define info_what m1_i1
22052 #define info_where m1_p1
22053
22054 /* The following names are synonyms for the variables in the output message. */
22055 #define reply_type m_type
22056 #define reply_l1 m2_l1
22057 #define reply_i1 m1_i1
22058 #define reply_i2 m1_i2
22059 #define reply_t1 m4_l1
22060 #define reply_t2 m4_l2
22061 #define reply_t3 m4_l3
22062 #define reply_t4 m4_l4
22063 #define reply_t5 m4_l5

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
servers/fs/super.h

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

22100 /* Super block table. The root file system and every mounted file system
22101 * has an entry here. The entry holds information about the sizes of the bit
22102 * maps and inodes. The s_ninodes field gives the number of inodes available
22103 * for files and directories, including the root directory. Inode 0 is
22104 * on the disk, but not used. Thus s_ninodes = 4 means that 5 bits will be
22105 * used in the bit map, bit 0, which is always 1 and not used, and bits 1-4
22106 * for files and directories. The disk layout is:
22107 *
22108 * Item # blocks
22109 * boot block 1
22110 * super block 1 (offset 1kB)
22111 * inode map s_imap_blocks
22112 * zone map s_zmap_blocks
22113 * inodes (s_ninodes + ’inodes per block’ - 1)/’inodes per block’
22114 * unused whatever is needed to fill out the current zone
22115 * data zones (s_zones - s_firstdatazone) << s_log_zone_size
22116 *
22117 * A super_block slot is free if s_dev == NO_DEV.
22118 */
22119
22120 EXTERN struct super_block {
22121 ino_t s_ninodes; /* # usable inodes on the minor device */
22122 zone1_t s_nzones; /* total device size, including bit maps etc */
22123 short s_imap_blocks; /* # of blocks used by inode bit map */
22124 short s_zmap_blocks; /* # of blocks used by zone bit map */
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22125 zone1_t s_firstdatazone; /* number of first data zone */
22126 short s_log_zone_size; /* log2 of blocks/zone */
22127 short s_pad; /* try to avoid compiler-dependent padding */
22128 off_t s_max_size; /* maximum file size on this device */
22129 zone_t s_zones; /* number of zones (replaces s_nzones in V2) */
22130 short s_magic; /* magic number to recognize super-blocks */
22131
22132 /* The following items are valid on disk only for V3 and above */
22133
22134 /* The block size in bytes. Minimum MIN_BLOCK SIZE. SECTOR_SIZE
22135 * multiple. If V1 or V2 filesystem, this should be
22136 * initialised to STATIC_BLOCK_SIZE. Maximum MAX_BLOCK_SIZE.
22137 */
22138 short s_pad2; /* try to avoid compiler-dependent padding */
22139 unsigned short s_block_size; /* block size in bytes. */
22140 char s_disk_version; /* filesystem format sub-version */
22141
22142 /* The following items are only used when the super_block is in memory. */
22143 struct inode *s_isup; /* inode for root dir of mounted file sys */
22144 struct inode *s_imount; /* inode mounted on */
22145 unsigned s_inodes_per_block; /* precalculated from magic number */
22146 dev_t s_dev; /* whose super block is this? */
22147 int s_rd_only; /* set to 1 iff file sys mounted read only */
22148 int s_native; /* set to 1 iff not byte swapped file system */
22149 int s_version; /* file system version, zero means bad magic */
22150 int s_ndzones; /* # direct zones in an inode */
22151 int s_nindirs; /* # indirect zones per indirect block */
22152 bit_t s_isearch; /* inodes below this bit number are in use */
22153 bit_t s_zsearch; /* all zones below this bit number are in use*/
22154 } super_block[NR_SUPERS];
22155
22156 #define NIL_SUPER (struct super_block *) 0
22157 #define IMAP 0 /* operating on the inode bit map */
22158 #define ZMAP 1 /* operating on the zone bit map */

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
servers/fs/table.c

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

22200 /* This file contains the table used to map system call numbers onto the
22201 * routines that perform them.
22202 */
22203
22204 #define _TABLE
22205
22206 #include "fs.h"
22207 #include <minix/callnr.h>
22208 #include <minix/com.h>
22209 #include "buf.h"
22210 #include "file.h"
22211 #include "fproc.h"
22212 #include "inode.h"
22213 #include "lock.h"
22214 #include "super.h"
22215
22216 PUBLIC _PROTOTYPE (int (*call_vec[]), (void) ) = {
22217 no_sys, /* 0 = unused */
22218 do_exit, /* 1 = exit */
22219 do_fork, /* 2 = fork */
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22220 do_read, /* 3 = read */
22221 do_write, /* 4 = write */
22222 do_open, /* 5 = open */
22223 do_close, /* 6 = close */
22224 no_sys, /* 7 = wait */
22225 do_creat, /* 8 = creat */
22226 do_link, /* 9 = link */
22227 do_unlink, /* 10 = unlink */
22228 no_sys, /* 11 = waitpid */
22229 do_chdir, /* 12 = chdir */
22230 no_sys, /* 13 = time */
22231 do_mknod, /* 14 = mknod */
22232 do_chmod, /* 15 = chmod */
22233 do_chown, /* 16 = chown */
22234 no_sys, /* 17 = break */
22235 do_stat, /* 18 = stat */
22236 do_lseek, /* 19 = lseek */
22237 no_sys, /* 20 = getpid */
22238 do_mount, /* 21 = mount */
22239 do_umount, /* 22 = umount */
22240 do_set, /* 23 = setuid */
22241 no_sys, /* 24 = getuid */
22242 do_stime, /* 25 = stime */
22243 no_sys, /* 26 = ptrace */
22244 no_sys, /* 27 = alarm */
22245 do_fstat, /* 28 = fstat */
22246 no_sys, /* 29 = pause */
22247 do_utime, /* 30 = utime */
22248 no_sys, /* 31 = (stty) */
22249 no_sys, /* 32 = (gtty) */
22250 do_access, /* 33 = access */
22251 no_sys, /* 34 = (nice) */
22252 no_sys, /* 35 = (ftime) */
22253 do_sync, /* 36 = sync */
22254 no_sys, /* 37 = kill */
22255 do_rename, /* 38 = rename */
22256 do_mkdir, /* 39 = mkdir */
22257 do_unlink, /* 40 = rmdir */
22258 do_dup, /* 41 = dup */
22259 do_pipe, /* 42 = pipe */
22260 no_sys, /* 43 = times */
22261 no_sys, /* 44 = (prof) */
22262 no_sys, /* 45 = unused */
22263 do_set, /* 46 = setgid */
22264 no_sys, /* 47 = getgid */
22265 no_sys, /* 48 = (signal)*/
22266 no_sys, /* 49 = unused */
22267 no_sys, /* 50 = unused */
22268 no_sys, /* 51 = (acct) */
22269 no_sys, /* 52 = (phys) */
22270 no_sys, /* 53 = (lock) */
22271 do_ioctl, /* 54 = ioctl */
22272 do_fcntl, /* 55 = fcntl */
22273 no_sys, /* 56 = (mpx) */
22274 no_sys, /* 57 = unused */
22275 no_sys, /* 58 = unused */
22276 do_exec, /* 59 = execve */
22277 do_umask, /* 60 = umask */
22278 do_chroot, /* 61 = chroot */
22279 do_setsid, /* 62 = setsid */
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22280 no_sys, /* 63 = getpgrp */
22281
22282 no_sys, /* 64 = KSIG: signals originating in the kernel */
22283 do_unpause, /* 65 = UNPAUSE */
22284 no_sys, /* 66 = unused */
22285 do_revive, /* 67 = REVIVE */
22286 no_sys, /* 68 = TASK_REPLY */
22287 no_sys, /* 69 = unused */
22288 no_sys, /* 70 = unused */
22289 no_sys, /* 71 = si */
22290 no_sys, /* 72 = sigsuspend */
22291 no_sys, /* 73 = sigpending */
22292 no_sys, /* 74 = sigprocmask */
22293 no_sys, /* 75 = sigreturn */
22294 do_reboot, /* 76 = reboot */
22295 do_svrctl, /* 77 = svrctl */
22296
22297 no_sys, /* 78 = unused */
22298 do_getsysinfo, /* 79 = getsysinfo */
22299 no_sys, /* 80 = unused */
22300 do_devctl, /* 81 = devctl */
22301 do_fstatfs, /* 82 = fstatfs */
22302 no_sys, /* 83 = memalloc */
22303 no_sys, /* 84 = memfree */
22304 do_select, /* 85 = select */
22305 do_fchdir, /* 86 = fchdir */
22306 do_fsync, /* 87 = fsync */
22307 no_sys, /* 88 = getpriority */
22308 no_sys, /* 89 = setpriority */
22309 no_sys, /* 90 = gettimeofday */
22310 };
22311 /* This should not fail with "array size is negative": */
22312 extern int dummy[sizeof(call_vec) == NCALLS * sizeof(call_vec[0]) ? 1 : -1];
22313

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
servers/fs/cache.c

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

22400 /* The file system maintains a buffer cache to reduce the number of disk
22401 * accesses needed. Whenever a read or write to the disk is done, a check is
22402 * first made to see if the block is in the cache. This file manages the
22403 * cache.
22404 *
22405 * The entry points into this file are:
22406 * get_block: request to fetch a block for reading or writing from cache
22407 * put_block: return a block previously requested with get_block
22408 * alloc_zone: allocate a new zone (to increase the length of a file)
22409 * free_zone: release a zone (when a file is removed)
22410 * rw_block: read or write a block from the disk itself
22411 * invalidate: remove all the cache blocks on some device
22412 */
22413
22414 #include "fs.h"
22415 #include <minix/com.h>
22416 #include "buf.h"
22417 #include "file.h"
22418 #include "fproc.h"
22419 #include "super.h"



934 File: servers/fs/cache.c MINIX SOURCE CODE

22420
22421 FORWARD _PROTOTYPE( void rm_lru, (struct buf *bp) );
22422
22423 /*===========================================================================*
22424 * get_block *
22425 *===========================================================================*/
22426 PUBLIC struct buf *get_block(dev, block, only_search)
22427 register dev_t dev; /* on which device is the block? */
22428 register block_t block; /* which block is wanted? */
22429 int only_search; /* if NO_READ, don’t read, else act normal */
22430 {
22431 /* Check to see if the requested block is in the block cache. If so, return
22432 * a pointer to it. If not, evict some other block and fetch it (unless
22433 * ’only_search’ is 1). All the blocks in the cache that are not in use
22434 * are linked together in a chain, with ’front’ pointing to the least recently
22435 * used block and ’rear’ to the most recently used block. If ’only_search’ is
22436 * 1, the block being requested will be overwritten in its entirety, so it is
22437 * only necessary to see if it is in the cache; if it is not, any free buffer
22438 * will do. It is not necessary to actually read the block in from disk.
22439 * If ’only_search’ is PREFETCH, the block need not be read from the disk,
22440 * and the device is not to be marked on the block, so callers can tell if
22441 * the block returned is valid.
22442 * In addition to the LRU chain, there is also a hash chain to link together
22443 * blocks whose block numbers end with the same bit strings, for fast lookup.
22444 */
22445
22446 int b;
22447 register struct buf *bp, *prev_ptr;
22448
22449 /* Search the hash chain for (dev, block). Do_read() can use
22450 * get_block(NO_DEV ...) to get an unnamed block to fill with zeros when
22451 * someone wants to read from a hole in a file, in which case this search
22452 * is skipped
22453 */
22454 if (dev != NO_DEV) {
22455 b = (int) block & HASH_MASK;
22456 bp = buf_hash[b];
22457 while (bp != NIL_BUF) {
22458 if (bp->b_blocknr == block && bp->b_dev == dev) {
22459 /* Block needed has been found. */
22460 if (bp->b_count == 0) rm_lru(bp);
22461 bp->b_count++; /* record that block is in use */
22462
22463 return(bp);
22464 } else {
22465 /* This block is not the one sought. */
22466 bp = bp->b_hash; /* move to next block on hash chain */
22467 }
22468 }
22469 }
22470
22471 /* Desired block is not on available chain. Take oldest block (’front’). */
22472 if ((bp = front) == NIL_BUF) panic(__FILE__,"all buffers in use", NR_BUFS);
22473 rm_lru(bp);
22474
22475 /* Remove the block that was just taken from its hash chain. */
22476 b = (int) bp->b_blocknr & HASH_MASK;
22477 prev_ptr = buf_hash[b];
22478 if (prev_ptr == bp) {
22479 buf_hash[b] = bp->b_hash;
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22480 } else {
22481 /* The block just taken is not on the front of its hash chain. */
22482 while (prev_ptr->b_hash != NIL_BUF)
22483 if (prev_ptr->b_hash == bp) {
22484 prev_ptr->b_hash = bp->b_hash; /* found it */
22485 break;
22486 } else {
22487 prev_ptr = prev_ptr->b_hash; /* keep looking */
22488 }
22489 }
22490
22491 /* If the block taken is dirty, make it clean by writing it to the disk.
22492 * Avoid hysteresis by flushing all other dirty blocks for the same device.
22493 */
22494 if (bp->b_dev != NO_DEV) {
22495 if (bp->b_dirt == DIRTY) flushall(bp->b_dev);
22496 }
22497
22498 /* Fill in block’s parameters and add it to the hash chain where it goes. */
22499 bp->b_dev = dev; /* fill in device number */
22500 bp->b_blocknr = block; /* fill in block number */
22501 bp->b_count++; /* record that block is being used */
22502 b = (int) bp->b_blocknr & HASH_MASK;
22503 bp->b_hash = buf_hash[b];
22504 buf_hash[b] = bp; /* add to hash list */
22505
22506 /* Go get the requested block unless searching or prefetching. */
22507 if (dev != NO_DEV) {
22508 if (only_search == PREFETCH) bp->b_dev = NO_DEV;
22509 else
22510 if (only_search == NORMAL) {
22511 rw_block(bp, READING);
22512 }
22513 }
22514 return(bp); /* return the newly acquired block */
22515 }

22517 /*===========================================================================*
22518 * put_block *
22519 *===========================================================================*/
22520 PUBLIC void put_block(bp, block_type)
22521 register struct buf *bp; /* pointer to the buffer to be released */
22522 int block_type; /* INODE_BLOCK, DIRECTORY_BLOCK, or whatever */
22523 {
22524 /* Return a block to the list of available blocks. Depending on ’block_type’
22525 * it may be put on the front or rear of the LRU chain. Blocks that are
22526 * expected to be needed again shortly (e.g., partially full data blocks)
22527 * go on the rear; blocks that are unlikely to be needed again shortly
22528 * (e.g., full data blocks) go on the front. Blocks whose loss can hurt
22529 * the integrity of the file system (e.g., inode blocks) are written to
22530 * disk immediately if they are dirty.
22531 */
22532 if (bp == NIL_BUF) return; /* it is easier to check here than in caller */
22533
22534 bp->b_count--; /* there is one use fewer now */
22535 if (bp->b_count != 0) return; /* block is still in use */
22536
22537 bufs_in_use--; /* one fewer block buffers in use */
22538
22539 /* Put this block back on the LRU chain. If the ONE_SHOT bit is set in
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22540 * ’block_type’, the block is not likely to be needed again shortly, so put
22541 * it on the front of the LRU chain where it will be the first one to be
22542 * taken when a free buffer is needed later.
22543 */
22544 if (bp->b_dev == DEV_RAM || block_type & ONE_SHOT) {
22545 /* Block probably won’t be needed quickly. Put it on front of chain.
22546 * It will be the next block to be evicted from the cache.
22547 */
22548 bp->b_prev = NIL_BUF;
22549 bp->b_next = front;
22550 if (front == NIL_BUF)
22551 rear = bp; /* LRU chain was empty */
22552 else
22553 front->b_prev = bp;
22554 front = bp;
22555 } else {
22556 /* Block probably will be needed quickly. Put it on rear of chain.
22557 * It will not be evicted from the cache for a long time.
22558 */
22559 bp->b_prev = rear;
22560 bp->b_next = NIL_BUF;
22561 if (rear == NIL_BUF)
22562 front = bp;
22563 else
22564 rear->b_next = bp;
22565 rear = bp;
22566 }
22567
22568 /* Some blocks are so important (e.g., inodes, indirect blocks) that they
22569 * should be written to the disk immediately to avoid messing up the file
22570 * system in the event of a crash.
22571 */
22572 if ((block_type & WRITE_IMMED) && bp->b_dirt==DIRTY && bp->b_dev != NO_DEV) {
22573 rw_block(bp, WRITING);
22574 }
22575 }

22577 /*===========================================================================*
22578 * alloc_zone *
22579 *===========================================================================*/
22580 PUBLIC zone_t alloc_zone(dev, z)
22581 dev_t dev; /* device where zone wanted */
22582 zone_t z; /* try to allocate new zone near this one */
22583 {
22584 /* Allocate a new zone on the indicated device and return its number. */
22585
22586 int major, minor;
22587 bit_t b, bit;
22588 struct super_block *sp;
22589
22590 /* Note that the routine alloc_bit() returns 1 for the lowest possible
22591 * zone, which corresponds to sp->s_firstdatazone. To convert a value
22592 * between the bit number, ’b’, used by alloc_bit() and the zone number, ’z’,
22593 * stored in the inode, use the formula:
22594 * z = b + sp->s_firstdatazone - 1
22595 * Alloc_bit() never returns 0, since this is used for NO_BIT (failure).
22596 */
22597 sp = get_super(dev);
22598
22599 /* If z is 0, skip initial part of the map known to be fully in use. */



MINIX SOURCE CODE File: servers/fs/cache.c 937

22600 if (z == sp->s_firstdatazone) {
22601 bit = sp->s_zsearch;
22602 } else {
22603 bit = (bit_t) z - (sp->s_firstdatazone - 1);
22604 }
22605 b = alloc_bit(sp, ZMAP, bit);
22606 if (b == NO_BIT) {
22607 err_code = ENOSPC;
22608 major = (int) (sp->s_dev >> MAJOR) & BYTE;
22609 minor = (int) (sp->s_dev >> MINOR) & BYTE;
22610 printf("No space on %sdevice %d/%d\n",
22611 sp->s_dev == root_dev ? "root " : "", major, minor);
22612 return(NO_ZONE);
22613 }
22614 if (z == sp->s_firstdatazone) sp->s_zsearch = b; /* for next time */
22615 return(sp->s_firstdatazone - 1 + (zone_t) b);
22616 }

22618 /*===========================================================================*
22619 * free_zone *
22620 *===========================================================================*/
22621 PUBLIC void free_zone(dev, numb)
22622 dev_t dev; /* device where zone located */
22623 zone_t numb; /* zone to be returned */
22624 {
22625 /* Return a zone. */
22626
22627 register struct super_block *sp;
22628 bit_t bit;
22629
22630 /* Locate the appropriate super_block and return bit. */
22631 sp = get_super(dev);
22632 if (numb < sp->s_firstdatazone || numb >= sp->s_zones) return;
22633 bit = (bit_t) (numb - (sp->s_firstdatazone - 1));
22634 free_bit(sp, ZMAP, bit);
22635 if (bit < sp->s_zsearch) sp->s_zsearch = bit;
22636 }

22638 /*===========================================================================*
22639 * rw_block *
22640 *===========================================================================*/
22641 PUBLIC void rw_block(bp, rw_flag)
22642 register struct buf *bp; /* buffer pointer */
22643 int rw_flag; /* READING or WRITING */
22644 {
22645 /* Read or write a disk block. This is the only routine in which actual disk
22646 * I/O is invoked. If an error occurs, a message is printed here, but the error
22647 * is not reported to the caller. If the error occurred while purging a block
22648 * from the cache, it is not clear what the caller could do about it anyway.
22649 */
22650
22651 int r, op;
22652 off_t pos;
22653 dev_t dev;
22654 int block_size;
22655
22656 block_size = get_block_size(bp->b_dev);
22657
22658 if ( (dev = bp->b_dev) != NO_DEV) {
22659 pos = (off_t) bp->b_blocknr * block_size;
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22660 op = (rw_flag == READING ? DEV_READ : DEV_WRITE);
22661 r = dev_io(op, dev, FS_PROC_NR, bp->b_data, pos, block_size, 0);
22662 if (r != block_size) {
22663 if (r >= 0) r = END_OF_FILE;
22664 if (r != END_OF_FILE)
22665 printf("Unrecoverable disk error on device %d/%d, block %ld\n",
22666 (dev>>MAJOR)&BYTE, (dev>>MINOR)&BYTE, bp->b_blocknr);
22667 bp->b_dev = NO_DEV; /* invalidate block */
22668
22669 /* Report read errors to interested parties. */
22670 if (rw_flag == READING) rdwt_err = r;
22671 }
22672 }
22673
22674 bp->b_dirt = CLEAN;
22675 }

22677 /*===========================================================================*
22678 * invalidate *
22679 *===========================================================================*/
22680 PUBLIC void invalidate(device)
22681 dev_t device; /* device whose blocks are to be purged */
22682 {
22683 /* Remove all the blocks belonging to some device from the cache. */
22684
22685 register struct buf *bp;
22686
22687 for (bp = &buf[0]; bp < &buf[NR_BUFS]; bp++)
22688 if (bp->b_dev == device) bp->b_dev = NO_DEV;
22689 }

22691 /*===========================================================================*
22692 * flushall *
22693 *===========================================================================*/
22694 PUBLIC void flushall(dev)
22695 dev_t dev; /* device to flush */
22696 {
22697 /* Flush all dirty blocks for one device. */
22698
22699 register struct buf *bp;
22700 static struct buf *dirty[NR_BUFS]; /* static so it isn’t on stack */
22701 int ndirty;
22702
22703 for (bp = &buf[0], ndirty = 0; bp < &buf[NR_BUFS]; bp++)
22704 if (bp->b_dirt == DIRTY && bp->b_dev == dev) dirty[ndirty++] = bp;
22705 rw_scattered(dev, dirty, ndirty, WRITING);
22706 }

22708 /*===========================================================================*
22709 * rw_scattered *
22710 *===========================================================================*/
22711 PUBLIC void rw_scattered(dev, bufq, bufqsize, rw_flag)
22712 dev_t dev; /* major-minor device number */
22713 struct buf **bufq; /* pointer to array of buffers */
22714 int bufqsize; /* number of buffers */
22715 int rw_flag; /* READING or WRITING */
22716 {
22717 /* Read or write scattered data from a device. */
22718
22719 register struct buf *bp;



MINIX SOURCE CODE File: servers/fs/cache.c 939

22720 int gap;
22721 register int i;
22722 register iovec_t *iop;
22723 static iovec_t iovec[NR_IOREQS]; /* static so it isn’t on stack */
22724 int j, r;
22725 int block_size;
22726
22727 block_size = get_block_size(dev);
22728
22729 /* (Shell) sort buffers on b_blocknr. */
22730 gap = 1;
22731 do
22732 gap = 3 * gap + 1;
22733 while (gap <= bufqsize);
22734 while (gap != 1) {
22735 gap /= 3;
22736 for (j = gap; j < bufqsize; j++) {
22737 for (i = j - gap;
22738 i >= 0 && bufq[i]->b_blocknr > bufq[i + gap]->b_blocknr;
22739 i -= gap) {
22740 bp = bufq[i];
22741 bufq[i] = bufq[i + gap];
22742 bufq[i + gap] = bp;
22743 }
22744 }
22745 }
22746
22747 /* Set up I/O vector and do I/O. The result of dev_io is OK if everything
22748 * went fine, otherwise the error code for the first failed transfer.
22749 */
22750 while (bufqsize > 0) {
22751 for (j = 0, iop = iovec; j < NR_IOREQS && j < bufqsize; j++, iop++) {
22752 bp = bufq[j];
22753 if (bp->b_blocknr != bufq[0]->b_blocknr + j) break;
22754 iop->iov_addr = (vir_bytes) bp->b_data;
22755 iop->iov_size = block_size;
22756 }
22757 r = dev_io(rw_flag == WRITING ? DEV_SCATTER : DEV_GATHER,
22758 dev, FS_PROC_NR, iovec,
22759 (off_t) bufq[0]->b_blocknr * block_size, j, 0);
22760
22761 /* Harvest the results. Dev_io reports the first error it may have
22762 * encountered, but we only care if it’s the first block that failed.
22763 */
22764 for (i = 0, iop = iovec; i < j; i++, iop++) {
22765 bp = bufq[i];
22766 if (iop->iov_size != 0) {
22767 /* Transfer failed. An error? Do we care? */
22768 if (r != OK && i == 0) {
22769 printf(
22770 "fs: I/O error on device %d/%d, block %lu\n",
22771 (dev>>MAJOR)&BYTE, (dev>>MINOR)&BYTE,
22772 bp->b_blocknr);
22773 bp->b_dev = NO_DEV; /* invalidate block */
22774 }
22775 break;
22776 }
22777 if (rw_flag == READING) {
22778 bp->b_dev = dev; /* validate block */
22779 put_block(bp, PARTIAL_DATA_BLOCK);
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22780 } else {
22781 bp->b_dirt = CLEAN;
22782 }
22783 }
22784 bufq += i;
22785 bufqsize -= i;
22786 if (rw_flag == READING) {
22787 /* Don’t bother reading more than the device is willing to
22788 * give at this time. Don’t forget to release those extras.
22789 */
22790 while (bufqsize > 0) {
22791 put_block(*bufq++, PARTIAL_DATA_BLOCK);
22792 bufqsize--;
22793 }
22794 }
22795 if (rw_flag == WRITING && i == 0) {
22796 /* We’re not making progress, this means we might keep
22797 * looping. Buffers remain dirty if un-written. Buffers are
22798 * lost if invalidate()d or LRU-removed while dirty. This
22799 * is better than keeping unwritable blocks around forever..
22800 */
22801 break;
22802 }
22803 }
22804 }

22806 /*===========================================================================*
22807 * rm_lru *
22808 *===========================================================================*/
22809 PRIVATE void rm_lru(bp)
22810 struct buf *bp;
22811 {
22812 /* Remove a block from its LRU chain. */
22813 struct buf *next_ptr, *prev_ptr;
22814
22815 bufs_in_use++;
22816 next_ptr = bp->b_next; /* successor on LRU chain */
22817 prev_ptr = bp->b_prev; /* predecessor on LRU chain */
22818 if (prev_ptr != NIL_BUF)
22819 prev_ptr->b_next = next_ptr;
22820 else
22821 front = next_ptr; /* this block was at front of chain */
22822
22823 if (next_ptr != NIL_BUF)
22824 next_ptr->b_prev = prev_ptr;
22825 else
22826 rear = prev_ptr; /* this block was at rear of chain */
22827 }

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
servers/fs/inode.c

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

22900 /* This file manages the inode table. There are procedures to allocate and
22901 * deallocate inodes, acquire, erase, and release them, and read and write
22902 * them from the disk.
22903 *
22904 * The entry points into this file are
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22905 * get_inode: search inode table for a given inode; if not there,
22906 * read it
22907 * put_inode: indicate that an inode is no longer needed in memory
22908 * alloc_inode: allocate a new, unused inode
22909 * wipe_inode: erase some fields of a newly allocated inode
22910 * free_inode: mark an inode as available for a new file
22911 * update_times: update atime, ctime, and mtime
22912 * rw_inode: read a disk block and extract an inode, or corresp. write
22913 * old_icopy: copy to/from in-core inode struct and disk inode (V1.x)
22914 * new_icopy: copy to/from in-core inode struct and disk inode (V2.x)
22915 * dup_inode: indicate that someone else is using an inode table entry
22916 */
22917
22918 #include "fs.h"
22919 #include "buf.h"
22920 #include "file.h"
22921 #include "fproc.h"
22922 #include "inode.h"
22923 #include "super.h"
22924
22925 FORWARD _PROTOTYPE( void old_icopy, (struct inode *rip, d1_inode *dip,
22926 int direction, int norm));
22927 FORWARD _PROTOTYPE( void new_icopy, (struct inode *rip, d2_inode *dip,
22928 int direction, int norm));
22929
22930 /*===========================================================================*
22931 * get_inode *
22932 *===========================================================================*/
22933 PUBLIC struct inode *get_inode(dev, numb)
22934 dev_t dev; /* device on which inode resides */
22935 int numb; /* inode number (ANSI: may not be unshort) */
22936 {
22937 /* Find a slot in the inode table, load the specified inode into it, and
22938 * return a pointer to the slot. If ’dev’ == NO_DEV, just return a free slot.
22939 */
22940
22941 register struct inode *rip, *xp;
22942
22943 /* Search the inode table both for (dev, numb) and a free slot. */
22944 xp = NIL_INODE;
22945 for (rip = &inode[0]; rip < &inode[NR_INODES]; rip++) {
22946 if (rip->i_count > 0) { /* only check used slots for (dev, numb) */
22947 if (rip->i_dev == dev && rip->i_num == numb) {
22948 /* This is the inode that we are looking for. */
22949 rip->i_count++;
22950 return(rip); /* (dev, numb) found */
22951 }
22952 } else {
22953 xp = rip; /* remember this free slot for later */
22954 }
22955 }
22956
22957 /* Inode we want is not currently in use. Did we find a free slot? */
22958 if (xp == NIL_INODE) { /* inode table completely full */
22959 err_code = ENFILE;
22960 return(NIL_INODE);
22961 }
22962
22963 /* A free inode slot has been located. Load the inode into it. */
22964 xp->i_dev = dev;
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22965 xp->i_num = numb;
22966 xp->i_count = 1;
22967 if (dev != NO_DEV) rw_inode(xp, READING); /* get inode from disk */
22968 xp->i_update = 0; /* all the times are initially up-to-date */
22969
22970 return(xp);
22971 }

22973 /*===========================================================================*
22974 * put_inode *
22975 *===========================================================================*/
22976 PUBLIC void put_inode(rip)
22977 register struct inode *rip; /* pointer to inode to be released */
22978 {
22979 /* The caller is no longer using this inode. If no one else is using it either
22980 * write it back to the disk immediately. If it has no links, truncate it and
22981 * return it to the pool of available inodes.
22982 */
22983
22984 if (rip == NIL_INODE) return; /* checking here is easier than in caller */
22985 if (--rip->i_count == 0) { /* i_count == 0 means no one is using it now */
22986 if (rip->i_nlinks == 0) {
22987 /* i_nlinks == 0 means free the inode. */
22988 truncate(rip); /* return all the disk blocks */
22989 rip->i_mode = I_NOT_ALLOC; /* clear I_TYPE field */
22990 rip->i_dirt = DIRTY;
22991 free_inode(rip->i_dev, rip->i_num);
22992 } else {
22993 if (rip->i_pipe == I_PIPE) truncate(rip);
22994 }
22995 rip->i_pipe = NO_PIPE; /* should always be cleared */
22996 if (rip->i_dirt == DIRTY) rw_inode(rip, WRITING);
22997 }
22998 }

23000 /*===========================================================================*
23001 * alloc_inode *
23002 *===========================================================================*/
23003 PUBLIC struct inode *alloc_inode(dev_t dev, mode_t bits)
23004 {
23005 /* Allocate a free inode on ’dev’, and return a pointer to it. */
23006
23007 register struct inode *rip;
23008 register struct super_block *sp;
23009 int major, minor, inumb;
23010 bit_t b;
23011
23012 sp = get_super(dev); /* get pointer to super_block */
23013 if (sp->s_rd_only) { /* can’t allocate an inode on a read only device. */
23014 err_code = EROFS;
23015 return(NIL_INODE);
23016 }
23017
23018 /* Acquire an inode from the bit map. */
23019 b = alloc_bit(sp, IMAP, sp->s_isearch);
23020 if (b == NO_BIT) {
23021 err_code = ENFILE;
23022 major = (int) (sp->s_dev >> MAJOR) & BYTE;
23023 minor = (int) (sp->s_dev >> MINOR) & BYTE;
23024 printf("Out of i-nodes on %sdevice %d/%d\n",
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23025 sp->s_dev == root_dev ? "root " : "", major, minor);
23026 return(NIL_INODE);
23027 }
23028 sp->s_isearch = b; /* next time start here */
23029 inumb = (int) b; /* be careful not to pass unshort as param */
23030
23031 /* Try to acquire a slot in the inode table. */
23032 if ((rip = get_inode(NO_DEV, inumb)) == NIL_INODE) {
23033 /* No inode table slots available. Free the inode just allocated. */
23034 free_bit(sp, IMAP, b);
23035 } else {
23036 /* An inode slot is available. Put the inode just allocated into it. */
23037 rip->i_mode = bits; /* set up RWX bits */
23038 rip->i_nlinks = 0; /* initial no links */
23039 rip->i_uid = fp->fp_effuid; /* file’s uid is owner’s */
23040 rip->i_gid = fp->fp_effgid; /* ditto group id */
23041 rip->i_dev = dev; /* mark which device it is on */
23042 rip->i_ndzones = sp->s_ndzones; /* number of direct zones */
23043 rip->i_nindirs = sp->s_nindirs; /* number of indirect zones per blk*/
23044 rip->i_sp = sp; /* pointer to super block */
23045
23046 /* Fields not cleared already are cleared in wipe_inode(). They have
23047 * been put there because truncate() needs to clear the same fields if
23048 * the file happens to be open while being truncated. It saves space
23049 * not to repeat the code twice.
23050 */
23051 wipe_inode(rip);
23052 }
23053
23054 return(rip);
23055 }

23057 /*===========================================================================*
23058 * wipe_inode *
23059 *===========================================================================*/
23060 PUBLIC void wipe_inode(rip)
23061 register struct inode *rip; /* the inode to be erased */
23062 {
23063 /* Erase some fields in the inode. This function is called from alloc_inode()
23064 * when a new inode is to be allocated, and from truncate(), when an existing
23065 * inode is to be truncated.
23066 */
23067
23068 register int i;
23069
23070 rip->i_size = 0;
23071 rip->i_update = ATIME | CTIME | MTIME; /* update all times later */
23072 rip->i_dirt = DIRTY;
23073 for (i = 0; i < V2_NR_TZONES; i++) rip->i_zone[i] = NO_ZONE;
23074 }

23076 /*===========================================================================*
23077 * free_inode *
23078 *===========================================================================*/
23079 PUBLIC void free_inode(dev, inumb)
23080 dev_t dev; /* on which device is the inode */
23081 ino_t inumb; /* number of inode to be freed */
23082 {
23083 /* Return an inode to the pool of unallocated inodes. */
23084
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23085 register struct super_block *sp;
23086 bit_t b;
23087
23088 /* Locate the appropriate super_block. */
23089 sp = get_super(dev);
23090 if (inumb <= 0 || inumb > sp->s_ninodes) return;
23091 b = inumb;
23092 free_bit(sp, IMAP, b);
23093 if (b < sp->s_isearch) sp->s_isearch = b;
23094 }

23096 /*===========================================================================*
23097 * update_times *
23098 *===========================================================================*/
23099 PUBLIC void update_times(rip)
23100 register struct inode *rip; /* pointer to inode to be read/written */
23101 {
23102 /* Various system calls are required by the standard to update atime, ctime,
23103 * or mtime. Since updating a time requires sending a message to the clock
23104 * task--an expensive business--the times are marked for update by setting
23105 * bits in i_update. When a stat, fstat, or sync is done, or an inode is
23106 * released, update_times() may be called to actually fill in the times.
23107 */
23108
23109 time_t cur_time;
23110 struct super_block *sp;
23111
23112 sp = rip->i_sp; /* get pointer to super block. */
23113 if (sp->s_rd_only) return; /* no updates for read-only file systems */
23114
23115 cur_time = clock_time();
23116 if (rip->i_update & ATIME) rip->i_atime = cur_time;
23117 if (rip->i_update & CTIME) rip->i_ctime = cur_time;
23118 if (rip->i_update & MTIME) rip->i_mtime = cur_time;
23119 rip->i_update = 0; /* they are all up-to-date now */
23120 }

23122 /*===========================================================================*
23123 * rw_inode *
23124 *===========================================================================*/
23125 PUBLIC void rw_inode(rip, rw_flag)
23126 register struct inode *rip; /* pointer to inode to be read/written */
23127 int rw_flag; /* READING or WRITING */
23128 {
23129 /* An entry in the inode table is to be copied to or from the disk. */
23130
23131 register struct buf *bp;
23132 register struct super_block *sp;
23133 d1_inode *dip;
23134 d2_inode *dip2;
23135 block_t b, offset;
23136
23137 /* Get the block where the inode resides. */
23138 sp = get_super(rip->i_dev); /* get pointer to super block */
23139 rip->i_sp = sp; /* inode must contain super block pointer */
23140 offset = sp->s_imap_blocks + sp->s_zmap_blocks + 2;
23141 b = (block_t) (rip->i_num - 1)/sp->s_inodes_per_block + offset;
23142 bp = get_block(rip->i_dev, b, NORMAL);
23143 dip = bp->b_v1_ino + (rip->i_num - 1) % V1_INODES_PER_BLOCK;
23144 dip2 = bp->b_v2_ino + (rip->i_num - 1) %
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23145 V2_INODES_PER_BLOCK(sp->s_block_size);
23146
23147 /* Do the read or write. */
23148 if (rw_flag == WRITING) {
23149 if (rip->i_update) update_times(rip); /* times need updating */
23150 if (sp->s_rd_only == FALSE) bp->b_dirt = DIRTY;
23151 }
23152
23153 /* Copy the inode from the disk block to the in-core table or vice versa.
23154 * If the fourth parameter below is FALSE, the bytes are swapped.
23155 */
23156 if (sp->s_version == V1)
23157 old_icopy(rip, dip, rw_flag, sp->s_native);
23158 else
23159 new_icopy(rip, dip2, rw_flag, sp->s_native);
23160
23161 put_block(bp, INODE_BLOCK);
23162 rip->i_dirt = CLEAN;
23163 }

23165 /*===========================================================================*
23166 * old_icopy *
23167 *===========================================================================*/
23168 PRIVATE void old_icopy(rip, dip, direction, norm)
23169 register struct inode *rip; /* pointer to the in-core inode struct */
23170 register d1_inode *dip; /* pointer to the d1_inode inode struct */
23171 int direction; /* READING (from disk) or WRITING (to disk) */
23172 int norm; /* TRUE = do not swap bytes; FALSE = swap */
23173
23174 {
23175 /* The V1.x IBM disk, the V1.x 68000 disk, and the V2 disk (same for IBM and
23176 * 68000) all have different inode layouts. When an inode is read or written
23177 * this routine handles the conversions so that the information in the inode
23178 * table is independent of the disk structure from which the inode came.
23179 * The old_icopy routine copies to and from V1 disks.
23180 */
23181
23182 int i;
23183
23184 if (direction == READING) {
23185 /* Copy V1.x inode to the in-core table, swapping bytes if need be. */
23186 rip->i_mode = conv2(norm, (int) dip->d1_mode);
23187 rip->i_uid = conv2(norm, (int) dip->d1_uid );
23188 rip->i_size = conv4(norm, dip->d1_size);
23189 rip->i_mtime = conv4(norm, dip->d1_mtime);
23190 rip->i_atime = rip->i_mtime;
23191 rip->i_ctime = rip->i_mtime;
23192 rip->i_nlinks = dip->d1_nlinks; /* 1 char */
23193 rip->i_gid = dip->d1_gid; /* 1 char */
23194 rip->i_ndzones = V1_NR_DZONES;
23195 rip->i_nindirs = V1_INDIRECTS;
23196 for (i = 0; i < V1_NR_TZONES; i++)
23197 rip->i_zone[i] = conv2(norm, (int) dip->d1_zone[i]);
23198 } else {
23199 /* Copying V1.x inode to disk from the in-core table. */
23200 dip->d1_mode = conv2(norm, (int) rip->i_mode);
23201 dip->d1_uid = conv2(norm, (int) rip->i_uid );
23202 dip->d1_size = conv4(norm, rip->i_size);
23203 dip->d1_mtime = conv4(norm, rip->i_mtime);
23204 dip->d1_nlinks = rip->i_nlinks; /* 1 char */
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23205 dip->d1_gid = rip->i_gid; /* 1 char */
23206 for (i = 0; i < V1_NR_TZONES; i++)
23207 dip->d1_zone[i] = conv2(norm, (int) rip->i_zone[i]);
23208 }
23209 }

23211 /*===========================================================================*
23212 * new_icopy *
23213 *===========================================================================*/
23214 PRIVATE void new_icopy(rip, dip, direction, norm)
23215 register struct inode *rip; /* pointer to the in-core inode struct */
23216 register d2_inode *dip; /* pointer to the d2_inode struct */
23217 int direction; /* READING (from disk) or WRITING (to disk) */
23218 int norm; /* TRUE = do not swap bytes; FALSE = swap */
23219
23220 {
23221 /* Same as old_icopy, but to/from V2 disk layout. */
23222
23223 int i;
23224
23225 if (direction == READING) {
23226 /* Copy V2.x inode to the in-core table, swapping bytes if need be. */
23227 rip->i_mode = conv2(norm,dip->d2_mode);
23228 rip->i_uid = conv2(norm,dip->d2_uid);
23229 rip->i_nlinks = conv2(norm,dip->d2_nlinks);
23230 rip->i_gid = conv2(norm,dip->d2_gid);
23231 rip->i_size = conv4(norm,dip->d2_size);
23232 rip->i_atime = conv4(norm,dip->d2_atime);
23233 rip->i_ctime = conv4(norm,dip->d2_ctime);
23234 rip->i_mtime = conv4(norm,dip->d2_mtime);
23235 rip->i_ndzones = V2_NR_DZONES;
23236 rip->i_nindirs = V2_INDIRECTS(rip->i_sp->s_block_size);
23237 for (i = 0; i < V2_NR_TZONES; i++)
23238 rip->i_zone[i] = conv4(norm, (long) dip->d2_zone[i]);
23239 } else {
23240 /* Copying V2.x inode to disk from the in-core table. */
23241 dip->d2_mode = conv2(norm,rip->i_mode);
23242 dip->d2_uid = conv2(norm,rip->i_uid);
23243 dip->d2_nlinks = conv2(norm,rip->i_nlinks);
23244 dip->d2_gid = conv2(norm,rip->i_gid);
23245 dip->d2_size = conv4(norm,rip->i_size);
23246 dip->d2_atime = conv4(norm,rip->i_atime);
23247 dip->d2_ctime = conv4(norm,rip->i_ctime);
23248 dip->d2_mtime = conv4(norm,rip->i_mtime);
23249 for (i = 0; i < V2_NR_TZONES; i++)
23250 dip->d2_zone[i] = conv4(norm, (long) rip->i_zone[i]);
23251 }
23252 }

23254 /*===========================================================================*
23255 * dup_inode *
23256 *===========================================================================*/
23257 PUBLIC void dup_inode(ip)
23258 struct inode *ip; /* The inode to be duplicated. */
23259 {
23260 /* This routine is a simplified form of get_inode() for the case where
23261 * the inode pointer is already known.
23262 */
23263
23264 ip->i_count++;
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23265 }

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
servers/fs/super.c

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

23300 /* This file manages the super block table and the related data structures,
23301 * namely, the bit maps that keep track of which zones and which inodes are
23302 * allocated and which are free. When a new inode or zone is needed, the
23303 * appropriate bit map is searched for a free entry.
23304 *
23305 * The entry points into this file are
23306 * alloc_bit: somebody wants to allocate a zone or inode; find one
23307 * free_bit: indicate that a zone or inode is available for allocation
23308 * get_super: search the ’superblock’ table for a device
23309 * mounted: tells if file inode is on mounted (or ROOT) file system
23310 * read_super: read a superblock
23311 */
23312
23313 #include "fs.h"
23314 #include <string.h>
23315 #include <minix/com.h>
23316 #include "buf.h"
23317 #include "inode.h"
23318 #include "super.h"
23319 #include "const.h"
23320
23321 /*===========================================================================*
23322 * alloc_bit *
23323 *===========================================================================*/
23324 PUBLIC bit_t alloc_bit(sp, map, origin)
23325 struct super_block *sp; /* the filesystem to allocate from */
23326 int map; /* IMAP (inode map) or ZMAP (zone map) */
23327 bit_t origin; /* number of bit to start searching at */
23328 {
23329 /* Allocate a bit from a bit map and return its bit number. */
23330
23331 block_t start_block; /* first bit block */
23332 bit_t map_bits; /* how many bits are there in the bit map? */
23333 unsigned bit_blocks; /* how many blocks are there in the bit map? */
23334 unsigned block, word, bcount;
23335 struct buf *bp;
23336 bitchunk_t *wptr, *wlim, k;
23337 bit_t i, b;
23338
23339 if (sp->s_rd_only)
23340 panic(__FILE__,"can’t allocate bit on read-only filesys.", NO_NUM);
23341
23342 if (map == IMAP) {
23343 start_block = START_BLOCK;
23344 map_bits = sp->s_ninodes + 1;
23345 bit_blocks = sp->s_imap_blocks;
23346 } else {
23347 start_block = START_BLOCK + sp->s_imap_blocks;
23348 map_bits = sp->s_zones - (sp->s_firstdatazone - 1);
23349 bit_blocks = sp->s_zmap_blocks;
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23350 }
23351
23352 /* Figure out where to start the bit search (depends on ’origin’). */
23353 if (origin >= map_bits) origin = 0; /* for robustness */
23354
23355 /* Locate the starting place. */
23356 block = origin / FS_BITS_PER_BLOCK(sp->s_block_size);
23357 word = (origin % FS_BITS_PER_BLOCK(sp->s_block_size)) / FS_BITCHUNK_BITS;
23358
23359 /* Iterate over all blocks plus one, because we start in the middle. */
23360 bcount = bit_blocks + 1;
23361 do {
23362 bp = get_block(sp->s_dev, start_block + block, NORMAL);
23363 wlim = &bp->b_bitmap[FS_BITMAP_CHUNKS(sp->s_block_size)];
23364
23365 /* Iterate over the words in block. */
23366 for (wptr = &bp->b_bitmap[word]; wptr < wlim; wptr++) {
23367
23368 /* Does this word contain a free bit? */
23369 if (*wptr == (bitchunk_t) ˜0) continue;
23370
23371 /* Find and allocate the free bit. */
23372 k = conv2(sp->s_native, (int) *wptr);
23373 for (i = 0; (k & (1 << i)) != 0; ++i) {}
23374
23375 /* Bit number from the start of the bit map. */
23376 b = ((bit_t) block * FS_BITS_PER_BLOCK(sp->s_block_size))
23377 + (wptr - &bp->b_bitmap[0]) * FS_BITCHUNK_BITS
23378 + i;
23379
23380 /* Don’t allocate bits beyond the end of the map. */
23381 if (b >= map_bits) break;
23382
23383 /* Allocate and return bit number. */
23384 k |= 1 << i;
23385 *wptr = conv2(sp->s_native, (int) k);
23386 bp->b_dirt = DIRTY;
23387 put_block(bp, MAP_BLOCK);
23388 return(b);
23389 }
23390 put_block(bp, MAP_BLOCK);
23391 if (++block >= bit_blocks) block = 0; /* last block, wrap around */
23392 word = 0;
23393 } while (--bcount > 0);
23394 return(NO_BIT); /* no bit could be allocated */
23395 }

23397 /*===========================================================================*
23398 * free_bit *
23399 *===========================================================================*/
23400 PUBLIC void free_bit(sp, map, bit_returned)
23401 struct super_block *sp; /* the filesystem to operate on */
23402 int map; /* IMAP (inode map) or ZMAP (zone map) */
23403 bit_t bit_returned; /* number of bit to insert into the map */
23404 {
23405 /* Return a zone or inode by turning off its bitmap bit. */
23406
23407 unsigned block, word, bit;
23408 struct buf *bp;
23409 bitchunk_t k, mask;



MINIX SOURCE CODE File: servers/fs/super.c 949

23410 block_t start_block;
23411
23412 if (sp->s_rd_only)
23413 panic(__FILE__,"can’t free bit on read-only filesys.", NO_NUM);
23414
23415 if (map == IMAP) {
23416 start_block = START_BLOCK;
23417 } else {
23418 start_block = START_BLOCK + sp->s_imap_blocks;
23419 }
23420 block = bit_returned / FS_BITS_PER_BLOCK(sp->s_block_size);
23421 word = (bit_returned % FS_BITS_PER_BLOCK(sp->s_block_size))
23422 / FS_BITCHUNK_BITS;
23423
23424 bit = bit_returned % FS_BITCHUNK_BITS;
23425 mask = 1 << bit;
23426
23427 bp = get_block(sp->s_dev, start_block + block, NORMAL);
23428
23429 k = conv2(sp->s_native, (int) bp->b_bitmap[word]);
23430 if (!(k & mask)) {
23431 panic(__FILE__,map == IMAP ? "tried to free unused inode" :
23432 "tried to free unused block", NO_NUM);
23433 }
23434
23435 k &= ˜mask;
23436 bp->b_bitmap[word] = conv2(sp->s_native, (int) k);
23437 bp->b_dirt = DIRTY;
23438
23439 put_block(bp, MAP_BLOCK);
23440 }

23442 /*===========================================================================*
23443 * get_super *
23444 *===========================================================================*/
23445 PUBLIC struct super_block *get_super(dev)
23446 dev_t dev; /* device number whose super_block is sought */
23447 {
23448 /* Search the superblock table for this device. It is supposed to be there. */
23449
23450 register struct super_block *sp;
23451
23452 if (dev == NO_DEV)
23453 panic(__FILE__,"request for super_block of NO_DEV", NO_NUM);
23454
23455 for (sp = &super_block[0]; sp < &super_block[NR_SUPERS]; sp++)
23456 if (sp->s_dev == dev) return(sp);
23457
23458 /* Search failed. Something wrong. */
23459 panic(__FILE__,"can’t find superblock for device (in decimal)", (int) dev);
23460
23461 return(NIL_SUPER); /* to keep the compiler and lint quiet */
23462 }

23464 /*===========================================================================*
23465 * get_block_size *
23466 *===========================================================================*/
23467 PUBLIC int get_block_size(dev_t dev)
23468 {
23469 /* Search the superblock table for this device. */
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23470
23471 register struct super_block *sp;
23472
23473 if (dev == NO_DEV)
23474 panic(__FILE__,"request for block size of NO_DEV", NO_NUM);
23475
23476 for (sp = &super_block[0]; sp < &super_block[NR_SUPERS]; sp++) {
23477 if (sp->s_dev == dev) {
23478 return(sp->s_block_size);
23479 }
23480 }
23481
23482 /* no mounted filesystem? use this block size then. */
23483 return MIN_BLOCK_SIZE;
23484 }

23486 /*===========================================================================*
23487 * mounted *
23488 *===========================================================================*/
23489 PUBLIC int mounted(rip)
23490 register struct inode *rip; /* pointer to inode */
23491 {
23492 /* Report on whether the given inode is on a mounted (or ROOT) file system. */
23493
23494 register struct super_block *sp;
23495 register dev_t dev;
23496
23497 dev = (dev_t) rip->i_zone[0];
23498 if (dev == root_dev) return(TRUE); /* inode is on root file system */
23499
23500 for (sp = &super_block[0]; sp < &super_block[NR_SUPERS]; sp++)
23501 if (sp->s_dev == dev) return(TRUE);
23502
23503 return(FALSE);
23504 }

23506 /*===========================================================================*
23507 * read_super *
23508 *===========================================================================*/
23509 PUBLIC int read_super(sp)
23510 register struct super_block *sp; /* pointer to a superblock */
23511 {
23512 /* Read a superblock. */
23513 dev_t dev;
23514 int magic;
23515 int version, native, r;
23516 static char sbbuf[MIN_BLOCK_SIZE];
23517
23518 dev = sp->s_dev; /* save device (will be overwritten by copy) */
23519 if (dev == NO_DEV)
23520 panic(__FILE__,"request for super_block of NO_DEV", NO_NUM);
23521 r = dev_io(DEV_READ, dev, FS_PROC_NR,
23522 sbbuf, SUPER_BLOCK_BYTES, MIN_BLOCK_SIZE, 0);
23523 if (r != MIN_BLOCK_SIZE) {
23524 return EINVAL;
23525 }
23526 memcpy(sp, sbbuf, sizeof(*sp));
23527 sp->s_dev = NO_DEV; /* restore later */
23528 magic = sp->s_magic; /* determines file system type */
23529
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23530 /* Get file system version and type. */
23531 if (magic == SUPER_MAGIC || magic == conv2(BYTE_SWAP, SUPER_MAGIC)) {
23532 version = V1;
23533 native = (magic == SUPER_MAGIC);
23534 } else if (magic == SUPER_V2 || magic == conv2(BYTE_SWAP, SUPER_V2)) {
23535 version = V2;
23536 native = (magic == SUPER_V2);
23537 } else if (magic == SUPER_V3) {
23538 version = V3;
23539 native = 1;
23540 } else {
23541 return(EINVAL);
23542 }
23543
23544 /* If the super block has the wrong byte order, swap the fields; the magic
23545 * number doesn’t need conversion. */
23546 sp->s_ninodes = conv4(native, sp->s_ninodes);
23547 sp->s_nzones = conv2(native, (int) sp->s_nzones);
23548 sp->s_imap_blocks = conv2(native, (int) sp->s_imap_blocks);
23549 sp->s_zmap_blocks = conv2(native, (int) sp->s_zmap_blocks);
23550 sp->s_firstdatazone = conv2(native, (int) sp->s_firstdatazone);
23551 sp->s_log_zone_size = conv2(native, (int) sp->s_log_zone_size);
23552 sp->s_max_size = conv4(native, sp->s_max_size);
23553 sp->s_zones = conv4(native, sp->s_zones);
23554
23555 /* In V1, the device size was kept in a short, s_nzones, which limited
23556 * devices to 32K zones. For V2, it was decided to keep the size as a
23557 * long. However, just changing s_nzones to a long would not work, since
23558 * then the position of s_magic in the super block would not be the same
23559 * in V1 and V2 file systems, and there would be no way to tell whether
23560 * a newly mounted file system was V1 or V2. The solution was to introduce
23561 * a new variable, s_zones, and copy the size there.
23562 *
23563 * Calculate some other numbers that depend on the version here too, to
23564 * hide some of the differences.
23565 */
23566 if (version == V1) {
23567 sp->s_block_size = STATIC_BLOCK_SIZE;
23568 sp->s_zones = sp->s_nzones; /* only V1 needs this copy */
23569 sp->s_inodes_per_block = V1_INODES_PER_BLOCK;
23570 sp->s_ndzones = V1_NR_DZONES;
23571 sp->s_nindirs = V1_INDIRECTS;
23572 } else {
23573 if (version == V2)
23574 sp->s_block_size = STATIC_BLOCK_SIZE;
23575 if (sp->s_block_size < MIN_BLOCK_SIZE)
23576 return EINVAL;
23577 sp->s_inodes_per_block = V2_INODES_PER_BLOCK(sp->s_block_size);
23578 sp->s_ndzones = V2_NR_DZONES;
23579 sp->s_nindirs = V2_INDIRECTS(sp->s_block_size);
23580 }
23581
23582 if (sp->s_block_size < MIN_BLOCK_SIZE) {
23583 return EINVAL;
23584 }
23585 if (sp->s_block_size > MAX_BLOCK_SIZE) {
23586 printf("Filesystem block size is %d kB; maximum filesystem\n"
23587 "block size is %d kB. This limit can be increased by recompiling.\n",
23588 sp->s_block_size/1024, MAX_BLOCK_SIZE/1024);
23589 return EINVAL;
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23590 }
23591 if ((sp->s_block_size % 512) != 0) {
23592 return EINVAL;
23593 }
23594 if (SUPER_SIZE > sp->s_block_size) {
23595 return EINVAL;
23596 }
23597 if ((sp->s_block_size % V2_INODE_SIZE) != 0 ||
23598 (sp->s_block_size % V1_INODE_SIZE) != 0) {
23599 return EINVAL;
23600 }
23601
23602 sp->s_isearch = 0; /* inode searches initially start at 0 */
23603 sp->s_zsearch = 0; /* zone searches initially start at 0 */
23604 sp->s_version = version;
23605 sp->s_native = native;
23606
23607 /* Make a few basic checks to see if super block looks reasonable. */
23608 if (sp->s_imap_blocks < 1 || sp->s_zmap_blocks < 1
23609 || sp->s_ninodes < 1 || sp->s_zones < 1
23610 || (unsigned) sp->s_log_zone_size > 4) {
23611 printf("not enough imap or zone map blocks, \n");
23612 printf("or not enough inodes, or not enough zones, "
23613 "or zone size too large\n");
23614 return(EINVAL);
23615 }
23616 sp->s_dev = dev; /* restore device number */
23617 return(OK);
23618 }

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
servers/fs/filedes.c

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

23700 /* This file contains the procedures that manipulate file descriptors.
23701 *
23702 * The entry points into this file are
23703 * get_fd: look for free file descriptor and free filp slots
23704 * get_filp: look up the filp entry for a given file descriptor
23705 * find_filp: find a filp slot that points to a given inode
23706 */
23707
23708 #include "fs.h"
23709 #include "file.h"
23710 #include "fproc.h"
23711 #include "inode.h"
23712
23713 /*===========================================================================*
23714 * get_fd *
23715 *===========================================================================*/
23716 PUBLIC int get_fd(int start, mode_t bits, int *k, struct filp **fpt)
23717 {
23718 /* Look for a free file descriptor and a free filp slot. Fill in the mode word
23719 * in the latter, but don’t claim either one yet, since the open() or creat()
23720 * may yet fail.
23721 */
23722
23723 register struct filp *f;
23724 register int i;
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23725
23726 *k = -1; /* we need a way to tell if file desc found */
23727
23728 /* Search the fproc fp_filp table for a free file descriptor. */
23729 for (i = start; i < OPEN_MAX; i++) {
23730 if (fp->fp_filp[i] == NIL_FILP) {
23731 /* A file descriptor has been located. */
23732 *k = i;
23733 break;
23734 }
23735 }
23736
23737 /* Check to see if a file descriptor has been found. */
23738 if (*k < 0) return(EMFILE); /* this is why we initialized k to -1 */
23739
23740 /* Now that a file descriptor has been found, look for a free filp slot. */
23741 for (f = &filp[0]; f < &filp[NR_FILPS]; f++) {
23742 if (f->filp_count == 0) {
23743 f->filp_mode = bits;
23744 f->filp_pos = 0L;
23745 f->filp_selectors = 0;
23746 f->filp_select_ops = 0;
23747 f->filp_pipe_select_ops = 0;
23748 f->filp_flags = 0;
23749 *fpt = f;
23750 return(OK);
23751 }
23752 }
23753
23754 /* If control passes here, the filp table must be full. Report that back. */
23755 return(ENFILE);
23756 }

23758 /*===========================================================================*
23759 * get_filp *
23760 *===========================================================================*/
23761 PUBLIC struct filp *get_filp(fild)
23762 int fild; /* file descriptor */
23763 {
23764 /* See if ’fild’ refers to a valid file descr. If so, return its filp ptr. */
23765
23766 err_code = EBADF;
23767 if (fild < 0 || fild >= OPEN_MAX ) return(NIL_FILP);
23768 return(fp->fp_filp[fild]); /* may also be NIL_FILP */
23769 }

23771 /*===========================================================================*
23772 * find_filp *
23773 *===========================================================================*/
23774 PUBLIC struct filp *find_filp(register struct inode *rip, mode_t bits)
23775 {
23776 /* Find a filp slot that refers to the inode ’rip’ in a way as described
23777 * by the mode bit ’bits’. Used for determining whether somebody is still
23778 * interested in either end of a pipe. Also used when opening a FIFO to
23779 * find partners to share a filp field with (to shared the file position).
23780 * Like ’get_fd’ it performs its job by linear search through the filp table.
23781 */
23782
23783 register struct filp *f;
23784
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23785 for (f = &filp[0]; f < &filp[NR_FILPS]; f++) {
23786 if (f->filp_count != 0 && f->filp_ino == rip && (f->filp_mode & bits)){
23787 return(f);
23788 }
23789 }
23790
23791 /* If control passes here, the filp wasn’t there. Report that back. */
23792 return(NIL_FILP);
23793 }

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
servers/fs/lock.c

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

23800 /* This file handles advisory file locking as required by POSIX.
23801 *
23802 * The entry points into this file are
23803 * lock_op: perform locking operations for FCNTL system call
23804 * lock_revive: revive processes when a lock is released
23805 */
23806
23807 #include "fs.h"
23808 #include <minix/com.h>
23809 #include <fcntl.h>
23810 #include <unistd.h>
23811 #include "file.h"
23812 #include "fproc.h"
23813 #include "inode.h"
23814 #include "lock.h"
23815 #include "param.h"
23816
23817 /*===========================================================================*
23818 * lock_op *
23819 *===========================================================================*/
23820 PUBLIC int lock_op(f, req)
23821 struct filp *f;
23822 int req; /* either F_SETLK or F_SETLKW */
23823 {
23824 /* Perform the advisory locking required by POSIX. */
23825
23826 int r, ltype, i, conflict = 0, unlocking = 0;
23827 mode_t mo;
23828 off_t first, last;
23829 struct flock flock;
23830 vir_bytes user_flock;
23831 struct file_lock *flp, *flp2, *empty;
23832
23833 /* Fetch the flock structure from user space. */
23834 user_flock = (vir_bytes) m_in.name1;
23835 r = sys_datacopy(who, (vir_bytes) user_flock,
23836 FS_PROC_NR, (vir_bytes) &flock, (phys_bytes) sizeof(flock));
23837 if (r != OK) return(EINVAL);
23838
23839 /* Make some error checks. */
23840 ltype = flock.l_type;
23841 mo = f->filp_mode;
23842 if (ltype != F_UNLCK && ltype != F_RDLCK && ltype != F_WRLCK) return(EINVAL);
23843 if (req == F_GETLK && ltype == F_UNLCK) return(EINVAL);
23844 if ( (f->filp_ino->i_mode & I_TYPE) != I_REGULAR) return(EINVAL);
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23845 if (req != F_GETLK && ltype == F_RDLCK && (mo & R_BIT) == 0) return(EBADF);
23846 if (req != F_GETLK && ltype == F_WRLCK && (mo & W_BIT) == 0) return(EBADF);
23847
23848 /* Compute the first and last bytes in the lock region. */
23849 switch (flock.l_whence) {
23850 case SEEK_SET: first = 0; break;
23851 case SEEK_CUR: first = f->filp_pos; break;
23852 case SEEK_END: first = f->filp_ino->i_size; break;
23853 default: return(EINVAL);
23854 }
23855 /* Check for overflow. */
23856 if (((long)flock.l_start > 0) && ((first + flock.l_start) < first))
23857 return(EINVAL);
23858 if (((long)flock.l_start < 0) && ((first + flock.l_start) > first))
23859 return(EINVAL);
23860 first = first + flock.l_start;
23861 last = first + flock.l_len - 1;
23862 if (flock.l_len == 0) last = MAX_FILE_POS;
23863 if (last < first) return(EINVAL);
23864
23865 /* Check if this region conflicts with any existing lock. */
23866 empty = (struct file_lock *) 0;
23867 for (flp = &file_lock[0]; flp < & file_lock[NR_LOCKS]; flp++) {
23868 if (flp->lock_type == 0) {
23869 if (empty == (struct file_lock *) 0) empty = flp;
23870 continue; /* 0 means unused slot */
23871 }
23872 if (flp->lock_inode != f->filp_ino) continue; /* different file */
23873 if (last < flp->lock_first) continue; /* new one is in front */
23874 if (first > flp->lock_last) continue; /* new one is afterwards */
23875 if (ltype == F_RDLCK && flp->lock_type == F_RDLCK) continue;
23876 if (ltype != F_UNLCK && flp->lock_pid == fp->fp_pid) continue;
23877
23878 /* There might be a conflict. Process it. */
23879 conflict = 1;
23880 if (req == F_GETLK) break;
23881
23882 /* If we are trying to set a lock, it just failed. */
23883 if (ltype == F_RDLCK || ltype == F_WRLCK) {
23884 if (req == F_SETLK) {
23885 /* For F_SETLK, just report back failure. */
23886 return(EAGAIN);
23887 } else {
23888 /* For F_SETLKW, suspend the process. */
23889 suspend(XLOCK);
23890 return(SUSPEND);
23891 }
23892 }
23893
23894 /* We are clearing a lock and we found something that overlaps. */
23895 unlocking = 1;
23896 if (first <= flp->lock_first && last >= flp->lock_last) {
23897 flp->lock_type = 0; /* mark slot as unused */
23898 nr_locks--; /* number of locks is now 1 less */
23899 continue;
23900 }
23901
23902 /* Part of a locked region has been unlocked. */
23903 if (first <= flp->lock_first) {
23904 flp->lock_first = last + 1;
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23905 continue;
23906 }
23907
23908 if (last >= flp->lock_last) {
23909 flp->lock_last = first - 1;
23910 continue;
23911 }
23912
23913 /* Bad luck. A lock has been split in two by unlocking the middle. */
23914 if (nr_locks == NR_LOCKS) return(ENOLCK);
23915 for (i = 0; i < NR_LOCKS; i++)
23916 if (file_lock[i].lock_type == 0) break;
23917 flp2 = &file_lock[i];
23918 flp2->lock_type = flp->lock_type;
23919 flp2->lock_pid = flp->lock_pid;
23920 flp2->lock_inode = flp->lock_inode;
23921 flp2->lock_first = last + 1;
23922 flp2->lock_last = flp->lock_last;
23923 flp->lock_last = first - 1;
23924 nr_locks++;
23925 }
23926 if (unlocking) lock_revive();
23927
23928 if (req == F_GETLK) {
23929 if (conflict) {
23930 /* GETLK and conflict. Report on the conflicting lock. */
23931 flock.l_type = flp->lock_type;
23932 flock.l_whence = SEEK_SET;
23933 flock.l_start = flp->lock_first;
23934 flock.l_len = flp->lock_last - flp->lock_first + 1;
23935 flock.l_pid = flp->lock_pid;
23936
23937 } else {
23938 /* It is GETLK and there is no conflict. */
23939 flock.l_type = F_UNLCK;
23940 }
23941
23942 /* Copy the flock structure back to the caller. */
23943 r = sys_datacopy(FS_PROC_NR, (vir_bytes) &flock,
23944 who, (vir_bytes) user_flock, (phys_bytes) sizeof(flock));
23945 return(r);
23946 }
23947
23948 if (ltype == F_UNLCK) return(OK); /* unlocked a region with no locks */
23949
23950 /* There is no conflict. If space exists, store new lock in the table. */
23951 if (empty == (struct file_lock *) 0) return(ENOLCK); /* table full */
23952 empty->lock_type = ltype;
23953 empty->lock_pid = fp->fp_pid;
23954 empty->lock_inode = f->filp_ino;
23955 empty->lock_first = first;
23956 empty->lock_last = last;
23957 nr_locks++;
23958 return(OK);
23959 }
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23961 /*===========================================================================*
23962 * lock_revive *
23963 *===========================================================================*/
23964 PUBLIC void lock_revive()
23965 {
23966 /* Go find all the processes that are waiting for any kind of lock and
23967 * revive them all. The ones that are still blocked will block again when
23968 * they run. The others will complete. This strategy is a space-time
23969 * tradeoff. Figuring out exactly which ones to unblock now would take
23970 * extra code, and the only thing it would win would be some performance in
23971 * extremely rare circumstances (namely, that somebody actually used
23972 * locking).
23973 */
23974
23975 int task;
23976 struct fproc *fptr;
23977
23978 for (fptr = &fproc[INIT_PROC_NR + 1]; fptr < &fproc[NR_PROCS]; fptr++){
23979 task = -fptr->fp_task;
23980 if (fptr->fp_suspended == SUSPENDED && task == XLOCK) {
23981 revive( (int) (fptr - fproc), 0);
23982 }
23983 }
23984 }

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
servers/fs/main.c

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

24000 /* This file contains the main program of the File System. It consists of
24001 * a loop that gets messages requesting work, carries out the work, and sends
24002 * replies.
24003 *
24004 * The entry points into this file are:
24005 * main: main program of the File System
24006 * reply: send a reply to a process after the requested work is done
24007 *
24008 */
24009
24010 struct super_block; /* proto.h needs to know this */
24011
24012 #include "fs.h"
24013 #include <fcntl.h>
24014 #include <string.h>
24015 #include <stdio.h>
24016 #include <signal.h>
24017 #include <stdlib.h>
24018 #include <sys/ioc_memory.h>
24019 #include <sys/svrctl.h>
24020 #include <minix/callnr.h>
24021 #include <minix/com.h>
24022 #include <minix/keymap.h>
24023 #include <minix/const.h>
24024 #include "buf.h"
24025 #include "file.h"
24026 #include "fproc.h"
24027 #include "inode.h"
24028 #include "param.h"
24029 #include "super.h"
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24030
24031 FORWARD _PROTOTYPE( void fs_init, (void) );
24032 FORWARD _PROTOTYPE( int igetenv, (char *var, int optional) );
24033 FORWARD _PROTOTYPE( void get_work, (void) );
24034 FORWARD _PROTOTYPE( void load_ram, (void) );
24035 FORWARD _PROTOTYPE( void load_super, (Dev_t super_dev) );
24036
24037 /*===========================================================================*
24038 * main *
24039 *===========================================================================*/
24040 PUBLIC int main()
24041 {
24042 /* This is the main program of the file system. The main loop consists of
24043 * three major activities: getting new work, processing the work, and sending
24044 * the reply. This loop never terminates as long as the file system runs.
24045 */
24046 sigset_t sigset;
24047 int error;
24048
24049 fs_init();
24050
24051 /* This is the main loop that gets work, processes it, and sends replies. */
24052 while (TRUE) {
24053 get_work(); /* sets who and call_nr */
24054
24055 fp = &fproc[who]; /* pointer to proc table struct */
24056 super_user = (fp->fp_effuid == SU_UID ? TRUE : FALSE); /* su? */
24057
24058 /* Check for special control messages first. */
24059 if (call_nr == SYS_SIG) {
24060 sigset = m_in.NOTIFY_ARG;
24061 if (sigismember(&sigset, SIGKSTOP)) {
24062 do_sync();
24063 sys_exit(0); /* never returns */
24064 }
24065 } else if (call_nr == SYN_ALARM) {
24066 /* Not a user request; system has expired one of our timers,
24067 * currently only in use for select(). Check it.
24068 */
24069 fs_expire_timers(m_in.NOTIFY_TIMESTAMP);
24070 } else if ((call_nr & NOTIFY_MESSAGE)) {
24071 /* Device notifies us of an event. */
24072 dev_status(&m_in);
24073 } else {
24074 /* Call the internal function that does the work. */
24075 if (call_nr < 0 || call_nr >= NCALLS) {
24076 error = ENOSYS;
24077 printf("FS,warning illegal %d system call by %d\n",call_nr,who);
24078 } else if (fp->fp_pid == PID_FREE) {
24079 error = ENOSYS;
24080 printf("FS, bad process, who = %d, call_nr = %d, slot1 = %d\n",
24081 who, call_nr, m_in.slot1);
24082 } else {
24083 error = (*call_vec[call_nr])();
24084 }
24085
24086 /* Copy the results back to the user and send reply. */
24087 if (error != SUSPEND) { reply(who, error); }
24088 if (rdahed_inode != NIL_INODE) {
24089 read_ahead(); /* do block read ahead */
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24090 }
24091 }
24092 }
24093 return(OK); /* shouldn’t come here */
24094 }

24096 /*===========================================================================*
24097 * get_work *
24098 *===========================================================================*/
24099 PRIVATE void get_work()
24100 {
24101 /* Normally wait for new input. However, if ’reviving’ is
24102 * nonzero, a suspended process must be awakened.
24103 */
24104 register struct fproc *rp;
24105
24106 if (reviving != 0) {
24107 /* Revive a suspended process. */
24108 for (rp = &fproc[0]; rp < &fproc[NR_PROCS]; rp++)
24109 if (rp->fp_revived == REVIVING) {
24110 who = (int)(rp - fproc);
24111 call_nr = rp->fp_fd & BYTE;
24112 m_in.fd = (rp->fp_fd >>8) & BYTE;
24113 m_in.buffer = rp->fp_buffer;
24114 m_in.nbytes = rp->fp_nbytes;
24115 rp->fp_suspended = NOT_SUSPENDED; /*no longer hanging*/
24116 rp->fp_revived = NOT_REVIVING;
24117 reviving--;
24118 return;
24119 }
24120 panic(__FILE__,"get_work couldn’t revive anyone", NO_NUM);
24121 }
24122
24123 /* Normal case. No one to revive. */
24124 if (receive(ANY, &m_in) != OK) panic(__FILE__,"fs receive error", NO_NUM);
24125 who = m_in.m_source;
24126 call_nr = m_in.m_type;
24127 }

24129 /*===========================================================================*
24130 * buf_pool *
24131 *===========================================================================*/
24132 PRIVATE void buf_pool(void)
24133 {
24134 /* Initialize the buffer pool. */
24135
24136 register struct buf *bp;
24137
24138 bufs_in_use = 0;
24139 front = &buf[0];
24140 rear = &buf[NR_BUFS - 1];
24141
24142 for (bp = &buf[0]; bp < &buf[NR_BUFS]; bp++) {
24143 bp->b_blocknr = NO_BLOCK;
24144 bp->b_dev = NO_DEV;
24145 bp->b_next = bp + 1;
24146 bp->b_prev = bp - 1;
24147 }
24148 buf[0].b_prev = NIL_BUF;
24149 buf[NR_BUFS - 1].b_next = NIL_BUF;
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24150
24151 for (bp = &buf[0]; bp < &buf[NR_BUFS]; bp++) bp->b_hash = bp->b_next;
24152 buf_hash[0] = front;
24153
24154 }

24156 /*===========================================================================*
24157 * reply *
24158 *===========================================================================*/
24159 PUBLIC void reply(whom, result)
24160 int whom; /* process to reply to */
24161 int result; /* result of the call (usually OK or error #) */
24162 {
24163 /* Send a reply to a user process. It may fail (if the process has just
24164 * been killed by a signal), so don’t check the return code. If the send
24165 * fails, just ignore it.
24166 */
24167 int s;
24168 m_out.reply_type = result;
24169 s = send(whom, &m_out);
24170 if (s != OK) printf("FS: couldn’t send reply %d: %d\n", result, s);
24171 }

24173 /*===========================================================================*
24174 * fs_init *
24175 *===========================================================================*/
24176 PRIVATE void fs_init()
24177 {
24178 /* Initialize global variables, tables, etc. */
24179 register struct inode *rip;
24180 register struct fproc *rfp;
24181 message mess;
24182 int s;
24183
24184 /* Initialize the process table with help of the process manager messages.
24185 * Expect one message for each system process with its slot number and pid.
24186 * When no more processes follow, the magic process number NONE is sent.
24187 * Then, stop and synchronize with the PM.
24188 */
24189 do {
24190 if (OK != (s=receive(PM_PROC_NR, &mess)))
24191 panic(__FILE__,"FS couldn’t receive from PM", s);
24192 if (NONE == mess.PR_PROC_NR) break;
24193
24194 rfp = &fproc[mess.PR_PROC_NR];
24195 rfp->fp_pid = mess.PR_PID;
24196 rfp->fp_realuid = (uid_t) SYS_UID;
24197 rfp->fp_effuid = (uid_t) SYS_UID;
24198 rfp->fp_realgid = (gid_t) SYS_GID;
24199 rfp->fp_effgid = (gid_t) SYS_GID;
24200 rfp->fp_umask = ˜0;
24201
24202 } while (TRUE); /* continue until process NONE */
24203 mess.m_type = OK; /* tell PM that we succeeded */
24204 s=send(PM_PROC_NR, &mess); /* send synchronization message */
24205
24206 /* All process table entries have been set. Continue with FS initialization.
24207 * Certain relations must hold for the file system to work at all. Some
24208 * extra block_size requirements are checked at super-block-read-in time.
24209 */
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24210 if (OPEN_MAX > 127) panic(__FILE__,"OPEN_MAX > 127", NO_NUM);
24211 if (NR_BUFS < 6) panic(__FILE__,"NR_BUFS < 6", NO_NUM);
24212 if (V1_INODE_SIZE != 32) panic(__FILE__,"V1 inode size != 32", NO_NUM);
24213 if (V2_INODE_SIZE != 64) panic(__FILE__,"V2 inode size != 64", NO_NUM);
24214 if (OPEN_MAX > 8 * sizeof(long))
24215 panic(__FILE__,"Too few bits in fp_cloexec", NO_NUM);
24216
24217 /* The following initializations are needed to let dev_opcl succeed .*/
24218 fp = (struct fproc *) NULL;
24219 who = FS_PROC_NR;
24220
24221 buf_pool(); /* initialize buffer pool */
24222 build_dmap(); /* build device table and map boot driver */
24223 load_ram(); /* init RAM disk, load if it is root */
24224 load_super(root_dev); /* load super block for root device */
24225 init_select(); /* init select() structures */
24226
24227 /* The root device can now be accessed; set process directories. */
24228 for (rfp=&fproc[0]; rfp < &fproc[NR_PROCS]; rfp++) {
24229 if (rfp->fp_pid != PID_FREE) {
24230 rip = get_inode(root_dev, ROOT_INODE);
24231 dup_inode(rip);
24232 rfp->fp_rootdir = rip;
24233 rfp->fp_workdir = rip;
24234 }
24235 }
24236 }

24238 /*===========================================================================*
24239 * igetenv *
24240 *===========================================================================*/
24241 PRIVATE int igetenv(key, optional)
24242 char *key;
24243 int optional;
24244 {
24245 /* Ask kernel for an integer valued boot environment variable. */
24246 char value[64];
24247 int i;
24248
24249 if ((i = env_get_param(key, value, sizeof(value))) != OK) {
24250 if (!optional)
24251 printf("FS: Warning, couldn’t get monitor param: %d\n", i);
24252 return 0;
24253 }
24254 return(atoi(value));
24255 }

24257 /*===========================================================================*
24258 * load_ram *
24259 *===========================================================================*/
24260 PRIVATE void load_ram(void)
24261 {
24262 /* Allocate a RAM disk with size given in the boot parameters. If a RAM disk
24263 * image is given, the copy the entire image device block-by-block to a RAM
24264 * disk with the same size as the image.
24265 * If the root device is not set, the RAM disk will be used as root instead.
24266 */
24267 register struct buf *bp, *bp1;
24268 u32_t lcount, ram_size_kb;
24269 zone_t zones;
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24270 struct super_block *sp, *dsp;
24271 block_t b;
24272 Dev_t image_dev;
24273 static char sbbuf[MIN_BLOCK_SIZE];
24274 int block_size_image, block_size_ram, ramfs_block_size;
24275 int s;
24276
24277 /* Get some boot environment variables. */
24278 root_dev = igetenv("rootdev", 0);
24279 image_dev = igetenv("ramimagedev", 0);
24280 ram_size_kb = igetenv("ramsize", 0);
24281
24282 /* Open the root device. */
24283 if (dev_open(root_dev, FS_PROC_NR, R_BIT|W_BIT) != OK)
24284 panic(__FILE__,"Cannot open root device",NO_NUM);
24285
24286 /* If we must initialize a ram disk, get details from the image device. */
24287 if (root_dev == DEV_RAM) {
24288 u32_t fsmax, probedev;
24289
24290 /* If we are running from CD, see if we can find it. */
24291 if (igetenv("cdproberoot", 1) && (probedev=cdprobe()) != NO_DEV) {
24292 char devnum[10];
24293 struct sysgetenv env;
24294
24295 /* If so, this is our new RAM image device. */
24296 image_dev = probedev;
24297
24298 /* Tell PM about it, so userland can find out about it
24299 * with sysenv interface.
24300 */
24301 env.key = "cdproberoot";
24302 env.keylen = strlen(env.key);
24303 sprintf(devnum, "%d", (int) probedev);
24304 env.val = devnum;
24305 env.vallen = strlen(devnum);
24306 svrctl(MMSETPARAM, &env);
24307 }
24308
24309 /* Open image device for RAM root. */
24310 if (dev_open(image_dev, FS_PROC_NR, R_BIT) != OK)
24311 panic(__FILE__,"Cannot open RAM image device", NO_NUM);
24312
24313 /* Get size of RAM disk image from the super block. */
24314 sp = &super_block[0];
24315 sp->s_dev = image_dev;
24316 if (read_super(sp) != OK)
24317 panic(__FILE__,"Bad RAM disk image FS", NO_NUM);
24318
24319 lcount = sp->s_zones << sp->s_log_zone_size; /* # blks on root dev*/
24320
24321 /* Stretch the RAM disk file system to the boot parameters size, but
24322 * no further than the last zone bit map block allows.
24323 */
24324 if (ram_size_kb*1024 < lcount*sp->s_block_size)
24325 ram_size_kb = lcount*sp->s_block_size/1024;
24326 fsmax = (u32_t) sp->s_zmap_blocks * CHAR_BIT * sp->s_block_size;
24327 fsmax = (fsmax + (sp->s_firstdatazone-1)) << sp->s_log_zone_size;
24328 if (ram_size_kb*1024 > fsmax*sp->s_block_size)
24329 ram_size_kb = fsmax*sp->s_block_size/1024;
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24330 }
24331
24332 /* Tell RAM driver how big the RAM disk must be. */
24333 m_out.m_type = DEV_IOCTL;
24334 m_out.PROC_NR = FS_PROC_NR;
24335 m_out.DEVICE = RAM_DEV;
24336 m_out.REQUEST = MIOCRAMSIZE; /* I/O control to use */
24337 m_out.POSITION = (ram_size_kb * 1024); /* request in bytes */
24338 if ((s=sendrec(MEM_PROC_NR, &m_out)) != OK)
24339 panic("FS","sendrec from MEM failed", s);
24340 else if (m_out.REP_STATUS != OK) {
24341 /* Report and continue, unless RAM disk is required as root FS. */
24342 if (root_dev != DEV_RAM) {
24343 report("FS","can’t set RAM disk size", m_out.REP_STATUS);
24344 return;
24345 } else {
24346 panic(__FILE__,"can’t set RAM disk size", m_out.REP_STATUS);
24347 }
24348 }
24349
24350 /* See if we must load the RAM disk image, otherwise return. */
24351 if (root_dev != DEV_RAM)
24352 return;
24353
24354 /* Copy the blocks one at a time from the image to the RAM disk. */
24355 printf("Loading RAM disk onto /dev/ram:\33[23CLoaded: 0 KB");
24356
24357 inode[0].i_mode = I_BLOCK_SPECIAL; /* temp inode for rahead() */
24358 inode[0].i_size = LONG_MAX;
24359 inode[0].i_dev = image_dev;
24360 inode[0].i_zone[0] = image_dev;
24361
24362 block_size_ram = get_block_size(DEV_RAM);
24363 block_size_image = get_block_size(image_dev);
24364
24365 /* RAM block size has to be a multiple of the root image block
24366 * size to make copying easier.
24367 */
24368 if (block_size_image % block_size_ram) {
24369 printf("\nram block size: %d image block size: %d\n",
24370 block_size_ram, block_size_image);
24371 panic(__FILE__, "ram disk block size must be a multiple of "
24372 "the image disk block size", NO_NUM);
24373 }
24374
24375 /* Loading blocks from image device. */
24376 for (b = 0; b < (block_t) lcount; b++) {
24377 int rb, factor;
24378 bp = rahead(&inode[0], b, (off_t)block_size_image * b, block_size_image);
24379 factor = block_size_image/block_size_ram;
24380 for(rb = 0; rb < factor; rb++) {
24381 bp1 = get_block(root_dev, b * factor + rb, NO_READ);
24382 memcpy(bp1->b_data, bp->b_data + rb * block_size_ram,
24383 (size_t) block_size_ram);
24384 bp1->b_dirt = DIRTY;
24385 put_block(bp1, FULL_DATA_BLOCK);
24386 }
24387 put_block(bp, FULL_DATA_BLOCK);
24388 if (b % 11 == 0)
24389 printf("\b\b\b\b\b\b\b\b\b%6ld KB", ((long) b * block_size_image)/1024L);
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24390 }
24391
24392 /* Commit changes to RAM so dev_io will see it. */
24393 do_sync();
24394
24395 printf("\rRAM disk of %u KB loaded onto /dev/ram.", (unsigned) ram_size_kb);
24396 if (root_dev == DEV_RAM) printf(" Using RAM disk as root FS.");
24397 printf(" \n");
24398
24399 /* Invalidate and close the image device. */
24400 invalidate(image_dev);
24401 dev_close(image_dev);
24402
24403 /* Resize the RAM disk root file system. */
24404 if (dev_io(DEV_READ, root_dev, FS_PROC_NR,
24405 sbbuf, SUPER_BLOCK_BYTES, MIN_BLOCK_SIZE, 0) != MIN_BLOCK_SIZE) {
24406 printf("WARNING: ramdisk read for resizing failed\n");
24407 }
24408 dsp = (struct super_block *) sbbuf;
24409 if (dsp->s_magic == SUPER_V3)
24410 ramfs_block_size = dsp->s_block_size;
24411 else
24412 ramfs_block_size = STATIC_BLOCK_SIZE;
24413 zones = (ram_size_kb * 1024 / ramfs_block_size) >> sp->s_log_zone_size;
24414
24415 dsp->s_nzones = conv2(sp->s_native, (u16_t) zones);
24416 dsp->s_zones = conv4(sp->s_native, zones);
24417 if (dev_io(DEV_WRITE, root_dev, FS_PROC_NR,
24418 sbbuf, SUPER_BLOCK_BYTES, MIN_BLOCK_SIZE, 0) != MIN_BLOCK_SIZE) {
24419 printf("WARNING: ramdisk write for resizing failed\n");
24420 }
24421 }

24423 /*===========================================================================*
24424 * load_super *
24425 *===========================================================================*/
24426 PRIVATE void load_super(super_dev)
24427 dev_t super_dev; /* place to get superblock from */
24428 {
24429 int bad;
24430 register struct super_block *sp;
24431 register struct inode *rip;
24432
24433 /* Initialize the super_block table. */
24434 for (sp = &super_block[0]; sp < &super_block[NR_SUPERS]; sp++)
24435 sp->s_dev = NO_DEV;
24436
24437 /* Read in super_block for the root file system. */
24438 sp = &super_block[0];
24439 sp->s_dev = super_dev;
24440
24441 /* Check super_block for consistency. */
24442 bad = (read_super(sp) != OK);
24443 if (!bad) {
24444 rip = get_inode(super_dev, ROOT_INODE); /* inode for root dir */
24445 if ( (rip->i_mode & I_TYPE) != I_DIRECTORY || rip->i_nlinks < 3) bad++;
24446 }
24447 if (bad) panic(__FILE__,"Invalid root file system", NO_NUM);
24448
24449 sp->s_imount = rip;
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24450 dup_inode(rip);
24451 sp->s_isup = rip;
24452 sp->s_rd_only = 0;
24453 return;
24454 }

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
servers/fs/open.c

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

24500 /* This file contains the procedures for creating, opening, closing, and
24501 * seeking on files.
24502 *
24503 * The entry points into this file are
24504 * do_creat: perform the CREAT system call
24505 * do_open: perform the OPEN system call
24506 * do_mknod: perform the MKNOD system call
24507 * do_mkdir: perform the MKDIR system call
24508 * do_close: perform the CLOSE system call
24509 * do_lseek: perform the LSEEK system call
24510 */
24511
24512 #include "fs.h"
24513 #include <sys/stat.h>
24514 #include <fcntl.h>
24515 #include <minix/callnr.h>
24516 #include <minix/com.h>
24517 #include "buf.h"
24518 #include "file.h"
24519 #include "fproc.h"
24520 #include "inode.h"
24521 #include "lock.h"
24522 #include "param.h"
24523 #include "super.h"
24524
24525 #define offset m2_l1
24526
24527 PRIVATE char mode_map[] = {R_BIT, W_BIT, R_BIT|W_BIT, 0};
24528
24529 FORWARD _PROTOTYPE( int common_open, (int oflags, mode_t omode) );
24530 FORWARD _PROTOTYPE( int pipe_open, (struct inode *rip,mode_t bits,int oflags));
24531 FORWARD _PROTOTYPE( struct inode *new_node, (char *path, mode_t bits,
24532 zone_t z0) );
24533
24534 /*===========================================================================*
24535 * do_creat *
24536 *===========================================================================*/
24537 PUBLIC int do_creat()
24538 {
24539 /* Perform the creat(name, mode) system call. */
24540 int r;
24541
24542 if (fetch_name(m_in.name, m_in.name_length, M3) != OK) return(err_code);
24543 r = common_open(O_WRONLY | O_CREAT | O_TRUNC, (mode_t) m_in.mode);
24544 return(r);
24545 }
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24547 /*===========================================================================*
24548 * do_open *
24549 *===========================================================================*/
24550 PUBLIC int do_open()
24551 {
24552 /* Perform the open(name, flags,...) system call. */
24553
24554 int create_mode = 0; /* is really mode_t but this gives problems */
24555 int r;
24556
24557 /* If O_CREAT is set, open has three parameters, otherwise two. */
24558 if (m_in.mode & O_CREAT) {
24559 create_mode = m_in.c_mode;
24560 r = fetch_name(m_in.c_name, m_in.name1_length, M1);
24561 } else {
24562 r = fetch_name(m_in.name, m_in.name_length, M3);
24563 }
24564
24565 if (r != OK) return(err_code); /* name was bad */
24566 r = common_open(m_in.mode, create_mode);
24567 return(r);
24568 }

24570 /*===========================================================================*
24571 * common_open *
24572 *===========================================================================*/
24573 PRIVATE int common_open(register int oflags, mode_t omode)
24574 {
24575 /* Common code from do_creat and do_open. */
24576
24577 register struct inode *rip;
24578 int r, b, exist = TRUE;
24579 dev_t dev;
24580 mode_t bits;
24581 off_t pos;
24582 struct filp *fil_ptr, *filp2;
24583
24584 /* Remap the bottom two bits of oflags. */
24585 bits = (mode_t) mode_map[oflags & O_ACCMODE];
24586
24587 /* See if file descriptor and filp slots are available. */
24588 if ( (r = get_fd(0, bits, &m_in.fd, &fil_ptr)) != OK) return(r);
24589
24590 /* If O_CREATE is set, try to make the file. */
24591 if (oflags & O_CREAT) {
24592 /* Create a new inode by calling new_node(). */
24593 omode = I_REGULAR | (omode & ALL_MODES & fp->fp_umask);
24594 rip = new_node(user_path, omode, NO_ZONE);
24595 r = err_code;
24596 if (r == OK) exist = FALSE; /* we just created the file */
24597 else if (r != EEXIST) return(r); /* other error */
24598 else exist = !(oflags & O_EXCL); /* file exists, if the O_EXCL
24599 flag is set this is an error */
24600 } else {
24601 /* Scan path name. */
24602 if ( (rip = eat_path(user_path)) == NIL_INODE) return(err_code);
24603 }
24604
24605 /* Claim the file descriptor and filp slot and fill them in. */
24606 fp->fp_filp[m_in.fd] = fil_ptr;
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24607 fil_ptr->filp_count = 1;
24608 fil_ptr->filp_ino = rip;
24609 fil_ptr->filp_flags = oflags;
24610
24611 /* Only do the normal open code if we didn’t just create the file. */
24612 if (exist) {
24613 /* Check protections. */
24614 if ((r = forbidden(rip, bits)) == OK) {
24615 /* Opening reg. files directories and special files differ. */
24616 switch (rip->i_mode & I_TYPE) {
24617 case I_REGULAR:
24618 /* Truncate regular file if O_TRUNC. */
24619 if (oflags & O_TRUNC) {
24620 if ((r = forbidden(rip, W_BIT)) !=OK) break;
24621 truncate(rip);
24622 wipe_inode(rip);
24623 /* Send the inode from the inode cache to the
24624 * block cache, so it gets written on the next
24625 * cache flush.
24626 */
24627 rw_inode(rip, WRITING);
24628 }
24629 break;
24630
24631 case I_DIRECTORY:
24632 /* Directories may be read but not written. */
24633 r = (bits & W_BIT ? EISDIR : OK);
24634 break;
24635
24636 case I_CHAR_SPECIAL:
24637 case I_BLOCK_SPECIAL:
24638 /* Invoke the driver for special processing. */
24639 dev = (dev_t) rip->i_zone[0];
24640 r = dev_open(dev, who, bits | (oflags & ˜O_ACCMODE));
24641 break;
24642
24643 case I_NAMED_PIPE:
24644 oflags |= O_APPEND; /* force append mode */
24645 fil_ptr->filp_flags = oflags;
24646 r = pipe_open(rip, bits, oflags);
24647 if (r != ENXIO) {
24648 /* See if someone else is doing a rd or wt on
24649 * the FIFO. If so, use its filp entry so the
24650 * file position will be automatically shared.
24651 */
24652 b = (bits & R_BIT ? R_BIT : W_BIT);
24653 fil_ptr->filp_count = 0; /* don’t find self */
24654 if ((filp2 = find_filp(rip, b)) != NIL_FILP) {
24655 /* Co-reader or writer found. Use it.*/
24656 fp->fp_filp[m_in.fd] = filp2;
24657 filp2->filp_count++;
24658 filp2->filp_ino = rip;
24659 filp2->filp_flags = oflags;
24660
24661 /* i_count was incremented incorrectly
24662 * by eatpath above, not knowing that
24663 * we were going to use an existing
24664 * filp entry. Correct this error.
24665 */
24666 rip->i_count--;
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24667 } else {
24668 /* Nobody else found. Restore filp. */
24669 fil_ptr->filp_count = 1;
24670 if (b == R_BIT)
24671 pos = rip->i_zone[V2_NR_DZONES+0];
24672 else
24673 pos = rip->i_zone[V2_NR_DZONES+1];
24674 fil_ptr->filp_pos = pos;
24675 }
24676 }
24677 break;
24678 }
24679 }
24680 }
24681
24682 /* If error, release inode. */
24683 if (r != OK) {
24684 if (r == SUSPEND) return(r); /* Oops, just suspended */
24685 fp->fp_filp[m_in.fd] = NIL_FILP;
24686 fil_ptr->filp_count= 0;
24687 put_inode(rip);
24688 return(r);
24689 }
24690
24691 return(m_in.fd);
24692 }

24694 /*===========================================================================*
24695 * new_node *
24696 *===========================================================================*/
24697 PRIVATE struct inode *new_node(char *path, mode_t bits, zone_t z0)
24698 {
24699 /* New_node() is called by common_open(), do_mknod(), and do_mkdir().
24700 * In all cases it allocates a new inode, makes a directory entry for it on
24701 * the path ’path’, and initializes it. It returns a pointer to the inode if
24702 * it can do this; otherwise it returns NIL_INODE. It always sets ’err_code’
24703 * to an appropriate value (OK or an error code).
24704 */
24705
24706 register struct inode *rlast_dir_ptr, *rip;
24707 register int r;
24708 char string[NAME_MAX];
24709
24710 /* See if the path can be opened down to the last directory. */
24711 if ((rlast_dir_ptr = last_dir(path, string)) == NIL_INODE) return(NIL_INODE);
24712
24713 /* The final directory is accessible. Get final component of the path. */
24714 rip = advance(rlast_dir_ptr, string);
24715 if ( rip == NIL_INODE && err_code == ENOENT) {
24716 /* Last path component does not exist. Make new directory entry. */
24717 if ( (rip = alloc_inode(rlast_dir_ptr->i_dev, bits)) == NIL_INODE) {
24718 /* Can’t creat new inode: out of inodes. */
24719 put_inode(rlast_dir_ptr);
24720 return(NIL_INODE);
24721 }
24722
24723 /* Force inode to the disk before making directory entry to make
24724 * the system more robust in the face of a crash: an inode with
24725 * no directory entry is much better than the opposite.
24726 */



MINIX SOURCE CODE File: servers/fs/open.c 969

24727 rip->i_nlinks++;
24728 rip->i_zone[0] = z0; /* major/minor device numbers */
24729 rw_inode(rip, WRITING); /* force inode to disk now */
24730
24731 /* New inode acquired. Try to make directory entry. */
24732 if ((r = search_dir(rlast_dir_ptr, string, &rip->i_num,ENTER)) != OK) {
24733 put_inode(rlast_dir_ptr);
24734 rip->i_nlinks--; /* pity, have to free disk inode */
24735 rip->i_dirt = DIRTY; /* dirty inodes are written out */
24736 put_inode(rip); /* this call frees the inode */
24737 err_code = r;
24738 return(NIL_INODE);
24739 }
24740
24741 } else {
24742 /* Either last component exists, or there is some problem. */
24743 if (rip != NIL_INODE)
24744 r = EEXIST;
24745 else
24746 r = err_code;
24747 }
24748
24749 /* Return the directory inode and exit. */
24750 put_inode(rlast_dir_ptr);
24751 err_code = r;
24752 return(rip);
24753 }

24755 /*===========================================================================*
24756 * pipe_open *
24757 *===========================================================================*/
24758 PRIVATE int pipe_open(register struct inode *rip, register mode_t bits,
24759 register int oflags)
24760 {
24761 /* This function is called from common_open. It checks if
24762 * there is at least one reader/writer pair for the pipe, if not
24763 * it suspends the caller, otherwise it revives all other blocked
24764 * processes hanging on the pipe.
24765 */
24766
24767 rip->i_pipe = I_PIPE;
24768 if (find_filp(rip, bits & W_BIT ? R_BIT : W_BIT) == NIL_FILP) {
24769 if (oflags & O_NONBLOCK) {
24770 if (bits & W_BIT) return(ENXIO);
24771 } else {
24772 suspend(XPOPEN); /* suspend caller */
24773 return(SUSPEND);
24774 }
24775 } else if (susp_count > 0) {/* revive blocked processes */
24776 release(rip, OPEN, susp_count);
24777 release(rip, CREAT, susp_count);
24778 }
24779 return(OK);
24780 }

24782 /*===========================================================================*
24783 * do_mknod *
24784 *===========================================================================*/
24785 PUBLIC int do_mknod()
24786 {
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24787 /* Perform the mknod(name, mode, addr) system call. */
24788
24789 register mode_t bits, mode_bits;
24790 struct inode *ip;
24791
24792 /* Only the super_user may make nodes other than fifos. */
24793 mode_bits = (mode_t) m_in.mk_mode; /* mode of the inode */
24794 if (!super_user && ((mode_bits & I_TYPE) != I_NAMED_PIPE)) return(EPERM);
24795 if (fetch_name(m_in.name1, m_in.name1_length, M1) != OK) return(err_code);
24796 bits = (mode_bits & I_TYPE) | (mode_bits & ALL_MODES & fp->fp_umask);
24797 ip = new_node(user_path, bits, (zone_t) m_in.mk_z0);
24798 put_inode(ip);
24799 return(err_code);
24800 }

24802 /*===========================================================================*
24803 * do_mkdir *
24804 *===========================================================================*/
24805 PUBLIC int do_mkdir()
24806 {
24807 /* Perform the mkdir(name, mode) system call. */
24808
24809 int r1, r2; /* status codes */
24810 ino_t dot, dotdot; /* inode numbers for . and .. */
24811 mode_t bits; /* mode bits for the new inode */
24812 char string[NAME_MAX]; /* last component of the new dir’s path name */
24813 register struct inode *rip, *ldirp;
24814
24815 /* Check to see if it is possible to make another link in the parent dir. */
24816 if (fetch_name(m_in.name1, m_in.name1_length, M1) != OK) return(err_code);
24817 ldirp = last_dir(user_path, string); /* pointer to new dir’s parent */
24818 if (ldirp == NIL_INODE) return(err_code);
24819 if (ldirp->i_nlinks >= (ldirp->i_sp->s_version == V1 ?
24820 CHAR_MAX : SHRT_MAX)) {
24821 put_inode(ldirp); /* return parent */
24822 return(EMLINK);
24823 }
24824
24825 /* Next make the inode. If that fails, return error code. */
24826 bits = I_DIRECTORY | (m_in.mode & RWX_MODES & fp->fp_umask);
24827 rip = new_node(user_path, bits, (zone_t) 0);
24828 if (rip == NIL_INODE || err_code == EEXIST) {
24829 put_inode(rip); /* can’t make dir: it already exists */
24830 put_inode(ldirp); /* return parent too */
24831 return(err_code);
24832 }
24833
24834 /* Get the inode numbers for . and .. to enter in the directory. */
24835 dotdot = ldirp->i_num; /* parent’s inode number */
24836 dot = rip->i_num; /* inode number of the new dir itself */
24837
24838 /* Now make dir entries for . and .. unless the disk is completely full. */
24839 /* Use dot1 and dot2, so the mode of the directory isn’t important. */
24840 rip->i_mode = bits; /* set mode */
24841 r1 = search_dir(rip, dot1, &dot, ENTER); /* enter . in the new dir */
24842 r2 = search_dir(rip, dot2, &dotdot, ENTER); /* enter .. in the new dir */
24843
24844 /* If both . and .. were successfully entered, increment the link counts. */
24845 if (r1 == OK && r2 == OK) {
24846 /* Normal case. It was possible to enter . and .. in the new dir. */
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24847 rip->i_nlinks++; /* this accounts for . */
24848 ldirp->i_nlinks++; /* this accounts for .. */
24849 ldirp->i_dirt = DIRTY; /* mark parent’s inode as dirty */
24850 } else {
24851 /* It was not possible to enter . or .. probably disk was full. */
24852 (void) search_dir(ldirp, string, (ino_t *) 0, DELETE);
24853 rip->i_nlinks--; /* undo the increment done in new_node() */
24854 }
24855 rip->i_dirt = DIRTY; /* either way, i_nlinks has changed */
24856
24857 put_inode(ldirp); /* return the inode of the parent dir */
24858 put_inode(rip); /* return the inode of the newly made dir */
24859 return(err_code); /* new_node() always sets ’err_code’ */
24860 }

24862 /*===========================================================================*
24863 * do_close *
24864 *===========================================================================*/
24865 PUBLIC int do_close()
24866 {
24867 /* Perform the close(fd) system call. */
24868
24869 register struct filp *rfilp;
24870 register struct inode *rip;
24871 struct file_lock *flp;
24872 int rw, mode_word, lock_count;
24873 dev_t dev;
24874
24875 /* First locate the inode that belongs to the file descriptor. */
24876 if ( (rfilp = get_filp(m_in.fd)) == NIL_FILP) return(err_code);
24877 rip = rfilp->filp_ino; /* ’rip’ points to the inode */
24878
24879 if (rfilp->filp_count - 1 == 0 && rfilp->filp_mode != FILP_CLOSED) {
24880 /* Check to see if the file is special. */
24881 mode_word = rip->i_mode & I_TYPE;
24882 if (mode_word == I_CHAR_SPECIAL || mode_word == I_BLOCK_SPECIAL) {
24883 dev = (dev_t) rip->i_zone[0];
24884 if (mode_word == I_BLOCK_SPECIAL) {
24885 /* Invalidate cache entries unless special is mounted
24886 * or ROOT
24887 */
24888 if (!mounted(rip)) {
24889 (void) do_sync(); /* purge cache */
24890 invalidate(dev);
24891 }
24892 }
24893 /* Do any special processing on device close. */
24894 dev_close(dev);
24895 }
24896 }
24897
24898 /* If the inode being closed is a pipe, release everyone hanging on it. */
24899 if (rip->i_pipe == I_PIPE) {
24900 rw = (rfilp->filp_mode & R_BIT ? WRITE : READ);
24901 release(rip, rw, NR_PROCS);
24902 }
24903
24904 /* If a write has been done, the inode is already marked as DIRTY. */
24905 if (--rfilp->filp_count == 0) {
24906 if (rip->i_pipe == I_PIPE && rip->i_count > 1) {
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24907 /* Save the file position in the i-node in case needed later.
24908 * The read and write positions are saved separately. The
24909 * last 3 zones in the i-node are not used for (named) pipes.
24910 */
24911 if (rfilp->filp_mode == R_BIT)
24912 rip->i_zone[V2_NR_DZONES+0] = (zone_t) rfilp->filp_pos;
24913 else
24914 rip->i_zone[V2_NR_DZONES+1] = (zone_t) rfilp->filp_pos;
24915 }
24916 put_inode(rip);
24917 }
24918
24919 fp->fp_cloexec &= ˜(1L << m_in.fd); /* turn off close-on-exec bit */
24920 fp->fp_filp[m_in.fd] = NIL_FILP;
24921
24922 /* Check to see if the file is locked. If so, release all locks. */
24923 if (nr_locks == 0) return(OK);
24924 lock_count = nr_locks; /* save count of locks */
24925 for (flp = &file_lock[0]; flp < &file_lock[NR_LOCKS]; flp++) {
24926 if (flp->lock_type == 0) continue; /* slot not in use */
24927 if (flp->lock_inode == rip && flp->lock_pid == fp->fp_pid) {
24928 flp->lock_type = 0;
24929 nr_locks--;
24930 }
24931 }
24932 if (nr_locks < lock_count) lock_revive(); /* lock released */
24933 return(OK);
24934 }

24936 /*===========================================================================*
24937 * do_lseek *
24938 *===========================================================================*/
24939 PUBLIC int do_lseek()
24940 {
24941 /* Perform the lseek(ls_fd, offset, whence) system call. */
24942
24943 register struct filp *rfilp;
24944 register off_t pos;
24945
24946 /* Check to see if the file descriptor is valid. */
24947 if ( (rfilp = get_filp(m_in.ls_fd)) == NIL_FILP) return(err_code);
24948
24949 /* No lseek on pipes. */
24950 if (rfilp->filp_ino->i_pipe == I_PIPE) return(ESPIPE);
24951
24952 /* The value of ’whence’ determines the start position to use. */
24953 switch(m_in.whence) {
24954 case 0: pos = 0; break;
24955 case 1: pos = rfilp->filp_pos; break;
24956 case 2: pos = rfilp->filp_ino->i_size; break;
24957 default: return(EINVAL);
24958 }
24959
24960 /* Check for overflow. */
24961 if (((long)m_in.offset > 0) && ((long)(pos + m_in.offset) < (long)pos))
24962 return(EINVAL);
24963 if (((long)m_in.offset < 0) && ((long)(pos + m_in.offset) > (long)pos))
24964 return(EINVAL);
24965 pos = pos + m_in.offset;
24966
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24967 if (pos != rfilp->filp_pos)
24968 rfilp->filp_ino->i_seek = ISEEK; /* inhibit read ahead */
24969 rfilp->filp_pos = pos;
24970 m_out.reply_l1 = pos; /* insert the long into the output message */
24971 return(OK);
24972 }

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
servers/fs/read.c

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

25000 /* This file contains the heart of the mechanism used to read (and write)
25001 * files. Read and write requests are split up into chunks that do not cross
25002 * block boundaries. Each chunk is then processed in turn. Reads on special
25003 * files are also detected and handled.
25004 *
25005 * The entry points into this file are
25006 * do_read: perform the READ system call by calling read_write
25007 * read_write: actually do the work of READ and WRITE
25008 * read_map: given an inode and file position, look up its zone number
25009 * rd_indir: read an entry in an indirect block
25010 * read_ahead: manage the block read ahead business
25011 */
25012
25013 #include "fs.h"
25014 #include <fcntl.h>
25015 #include <minix/com.h>
25016 #include "buf.h"
25017 #include "file.h"
25018 #include "fproc.h"
25019 #include "inode.h"
25020 #include "param.h"
25021 #include "super.h"
25022
25023 FORWARD _PROTOTYPE( int rw_chunk, (struct inode *rip, off_t position,
25024 unsigned off, int chunk, unsigned left, int rw_flag,
25025 char *buff, int seg, int usr, int block_size, int *completed));
25026
25027 /*===========================================================================*
25028 * do_read *
25029 *===========================================================================*/
25030 PUBLIC int do_read()
25031 {
25032 return(read_write(READING));
25033 }

25035 /*===========================================================================*
25036 * read_write *
25037 *===========================================================================*/
25038 PUBLIC int read_write(rw_flag)
25039 int rw_flag; /* READING or WRITING */
25040 {
25041 /* Perform read(fd, buffer, nbytes) or write(fd, buffer, nbytes) call. */
25042
25043 register struct inode *rip;
25044 register struct filp *f;
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25045 off_t bytes_left, f_size, position;
25046 unsigned int off, cum_io;
25047 int op, oflags, r, chunk, usr, seg, block_spec, char_spec;
25048 int regular, partial_pipe = 0, partial_cnt = 0;
25049 mode_t mode_word;
25050 struct filp *wf;
25051 int block_size;
25052 int completed, r2 = OK;
25053 phys_bytes p;
25054
25055 /* left unfinished rw_chunk()s from previous call! this can’t happen.
25056 * it means something has gone wrong we can’t repair now.
25057 */
25058 if (bufs_in_use < 0) {
25059 panic(__FILE__,"start - bufs_in_use negative", bufs_in_use);
25060 }
25061
25062 /* MM loads segments by putting funny things in upper 10 bits of ’fd’. */
25063 if (who == PM_PROC_NR && (m_in.fd & (˜BYTE)) ) {
25064 usr = m_in.fd >> 7;
25065 seg = (m_in.fd >> 5) & 03;
25066 m_in.fd &= 037; /* get rid of user and segment bits */
25067 } else {
25068 usr = who; /* normal case */
25069 seg = D;
25070 }
25071
25072 /* If the file descriptor is valid, get the inode, size and mode. */
25073 if (m_in.nbytes < 0) return(EINVAL);
25074 if ((f = get_filp(m_in.fd)) == NIL_FILP) return(err_code);
25075 if (((f->filp_mode) & (rw_flag == READING ? R_BIT : W_BIT)) == 0) {
25076 return(f->filp_mode == FILP_CLOSED ? EIO : EBADF);
25077 }
25078 if (m_in.nbytes == 0)
25079 return(0); /* so char special files need not check for 0*/
25080
25081 /* check if user process has the memory it needs.
25082 * if not, copying will fail later.
25083 * do this after 0-check above because umap doesn’t want to map 0 bytes.
25084 */
25085 if ((r = sys_umap(usr, seg, (vir_bytes) m_in.buffer, m_in.nbytes, &p)) != OK)
25086 return r;
25087 position = f->filp_pos;
25088 oflags = f->filp_flags;
25089 rip = f->filp_ino;
25090 f_size = rip->i_size;
25091 r = OK;
25092 if (rip->i_pipe == I_PIPE) {
25093 /* fp->fp_cum_io_partial is only nonzero when doing partial writes */
25094 cum_io = fp->fp_cum_io_partial;
25095 } else {
25096 cum_io = 0;
25097 }
25098 op = (rw_flag == READING ? DEV_READ : DEV_WRITE);
25099 mode_word = rip->i_mode & I_TYPE;
25100 regular = mode_word == I_REGULAR || mode_word == I_NAMED_PIPE;
25101
25102 if ((char_spec = (mode_word == I_CHAR_SPECIAL ? 1 : 0))) {
25103 if (rip->i_zone[0] == NO_DEV)
25104 panic(__FILE__,"read_write tries to read from "
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25105 "character device NO_DEV", NO_NUM);
25106 block_size = get_block_size(rip->i_zone[0]);
25107 }
25108 if ((block_spec = (mode_word == I_BLOCK_SPECIAL ? 1 : 0))) {
25109 f_size = ULONG_MAX;
25110 if (rip->i_zone[0] == NO_DEV)
25111 panic(__FILE__,"read_write tries to read from "
25112 " block device NO_DEV", NO_NUM);
25113 block_size = get_block_size(rip->i_zone[0]);
25114 }
25115
25116 if (!char_spec && !block_spec)
25117 block_size = rip->i_sp->s_block_size;
25118
25119 rdwt_err = OK; /* set to EIO if disk error occurs */
25120
25121 /* Check for character special files. */
25122 if (char_spec) {
25123 dev_t dev;
25124 dev = (dev_t) rip->i_zone[0];
25125 r = dev_io(op, dev, usr, m_in.buffer, position, m_in.nbytes, oflags);
25126 if (r >= 0) {
25127 cum_io = r;
25128 position += r;
25129 r = OK;
25130 }
25131 } else {
25132 if (rw_flag == WRITING && block_spec == 0) {
25133 /* Check in advance to see if file will grow too big. */
25134 if (position > rip->i_sp->s_max_size - m_in.nbytes)
25135 return(EFBIG);
25136
25137 /* Check for O_APPEND flag. */
25138 if (oflags & O_APPEND) position = f_size;
25139
25140 /* Clear the zone containing present EOF if hole about
25141 * to be created. This is necessary because all unwritten
25142 * blocks prior to the EOF must read as zeros.
25143 */
25144 if (position > f_size) clear_zone(rip, f_size, 0);
25145 }
25146
25147 /* Pipes are a little different. Check. */
25148 if (rip->i_pipe == I_PIPE) {
25149 r = pipe_check(rip, rw_flag, oflags,
25150 m_in.nbytes, position, &partial_cnt, 0);
25151 if (r <= 0) return(r);
25152 }
25153
25154 if (partial_cnt > 0) partial_pipe = 1;
25155
25156 /* Split the transfer into chunks that don’t span two blocks. */
25157 while (m_in.nbytes != 0) {
25158
25159 off = (unsigned int) (position % block_size);/* offset in blk*/
25160 if (partial_pipe) { /* pipes only */
25161 chunk = MIN(partial_cnt, block_size - off);
25162 } else
25163 chunk = MIN(m_in.nbytes, block_size - off);
25164 if (chunk < 0) chunk = block_size - off;
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25165
25166 if (rw_flag == READING) {
25167 bytes_left = f_size - position;
25168 if (position >= f_size) break; /* we are beyond EOF */
25169 if (chunk > bytes_left) chunk = (int) bytes_left;
25170 }
25171
25172 /* Read or write ’chunk’ bytes. */
25173 r = rw_chunk(rip, position, off, chunk, (unsigned) m_in.nbytes,
25174 rw_flag, m_in.buffer, seg, usr, block_size, &completed);
25175
25176 if (r != OK) break; /* EOF reached */
25177 if (rdwt_err < 0) break;
25178
25179 /* Update counters and pointers. */
25180 m_in.buffer += chunk; /* user buffer address */
25181 m_in.nbytes -= chunk; /* bytes yet to be read */
25182 cum_io += chunk; /* bytes read so far */
25183 position += chunk; /* position within the file */
25184
25185 if (partial_pipe) {
25186 partial_cnt -= chunk;
25187 if (partial_cnt <= 0) break;
25188 }
25189 }
25190 }
25191
25192 /* On write, update file size and access time. */
25193 if (rw_flag == WRITING) {
25194 if (regular || mode_word == I_DIRECTORY) {
25195 if (position > f_size) rip->i_size = position;
25196 }
25197 } else {
25198 if (rip->i_pipe == I_PIPE) {
25199 if ( position >= rip->i_size) {
25200 /* Reset pipe pointers. */
25201 rip->i_size = 0; /* no data left */
25202 position = 0; /* reset reader(s) */
25203 wf = find_filp(rip, W_BIT);
25204 if (wf != NIL_FILP) wf->filp_pos = 0;
25205 }
25206 }
25207 }
25208 f->filp_pos = position;
25209
25210 /* Check to see if read-ahead is called for, and if so, set it up. */
25211 if (rw_flag == READING && rip->i_seek == NO_SEEK && position % block_size== 0
25212 && (regular || mode_word == I_DIRECTORY)) {
25213 rdahed_inode = rip;
25214 rdahedpos = position;
25215 }
25216 rip->i_seek = NO_SEEK;
25217
25218 if (rdwt_err != OK) r = rdwt_err; /* check for disk error */
25219 if (rdwt_err == END_OF_FILE) r = OK;
25220
25221 /* if user-space copying failed, read/write failed. */
25222 if (r == OK && r2 != OK) {
25223 r = r2;
25224 }
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25225 if (r == OK) {
25226 if (rw_flag == READING) rip->i_update |= ATIME;
25227 if (rw_flag == WRITING) rip->i_update |= CTIME | MTIME;
25228 rip->i_dirt = DIRTY; /* inode is thus now dirty */
25229 if (partial_pipe) {
25230 partial_pipe = 0;
25231 /* partial write on pipe with */
25232 /* O_NONBLOCK, return write count */
25233 if (!(oflags & O_NONBLOCK)) {
25234 fp->fp_cum_io_partial = cum_io;
25235 suspend(XPIPE); /* partial write on pipe with */
25236 return(SUSPEND); /* nbyte > PIPE_SIZE - non-atomic */
25237 }
25238 }
25239 fp->fp_cum_io_partial = 0;
25240 return(cum_io);
25241 }
25242 if (bufs_in_use < 0) {
25243 panic(__FILE__,"end - bufs_in_use negative", bufs_in_use);
25244 }
25245 return(r);
25246 }

25248 /*===========================================================================*
25249 * rw_chunk *
25250 *===========================================================================*/
25251 PRIVATE int rw_chunk(rip, position, off, chunk, left, rw_flag, buff,
25252 seg, usr, block_size, completed)
25253 register struct inode *rip; /* pointer to inode for file to be rd/wr */
25254 off_t position; /* position within file to read or write */
25255 unsigned off; /* off within the current block */
25256 int chunk; /* number of bytes to read or write */
25257 unsigned left; /* max number of bytes wanted after position */
25258 int rw_flag; /* READING or WRITING */
25259 char *buff; /* virtual address of the user buffer */
25260 int seg; /* T or D segment in user space */
25261 int usr; /* which user process */
25262 int block_size; /* block size of FS operating on */
25263 int *completed; /* number of bytes copied */
25264 {
25265 /* Read or write (part of) a block. */
25266
25267 register struct buf *bp;
25268 register int r = OK;
25269 int n, block_spec;
25270 block_t b;
25271 dev_t dev;
25272
25273 *completed = 0;
25274
25275 block_spec = (rip->i_mode & I_TYPE) == I_BLOCK_SPECIAL;
25276 if (block_spec) {
25277 b = position/block_size;
25278 dev = (dev_t) rip->i_zone[0];
25279 } else {
25280 b = read_map(rip, position);
25281 dev = rip->i_dev;
25282 }
25283
25284 if (!block_spec && b == NO_BLOCK) {
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25285 if (rw_flag == READING) {
25286 /* Reading from a nonexistent block. Must read as all zeros.*/
25287 bp = get_block(NO_DEV, NO_BLOCK, NORMAL); /* get a buffer */
25288 zero_block(bp);
25289 } else {
25290 /* Writing to a nonexistent block. Create and enter in inode.*/
25291 if ((bp= new_block(rip, position)) == NIL_BUF)return(err_code);
25292 }
25293 } else if (rw_flag == READING) {
25294 /* Read and read ahead if convenient. */
25295 bp = rahead(rip, b, position, left);
25296 } else {
25297 /* Normally an existing block to be partially overwritten is first read
25298 * in. However, a full block need not be read in. If it is already in
25299 * the cache, acquire it, otherwise just acquire a free buffer.
25300 */
25301 n = (chunk == block_size ? NO_READ : NORMAL);
25302 if (!block_spec && off == 0 && position >= rip->i_size) n = NO_READ;
25303 bp = get_block(dev, b, n);
25304 }
25305
25306 /* In all cases, bp now points to a valid buffer. */
25307 if (bp == NIL_BUF) {
25308 panic(__FILE__,"bp not valid in rw_chunk, this can’t happen", NO_NUM);
25309 }
25310 if (rw_flag == WRITING && chunk != block_size && !block_spec &&
25311 position >= rip->i_size && off == 0) {
25312 zero_block(bp);
25313 }
25314
25315 if (rw_flag == READING) {
25316 /* Copy a chunk from the block buffer to user space. */
25317 r = sys_vircopy(FS_PROC_NR, D, (phys_bytes) (bp->b_data+off),
25318 usr, seg, (phys_bytes) buff,
25319 (phys_bytes) chunk);
25320 } else {
25321 /* Copy a chunk from user space to the block buffer. */
25322 r = sys_vircopy(usr, seg, (phys_bytes) buff,
25323 FS_PROC_NR, D, (phys_bytes) (bp->b_data+off),
25324 (phys_bytes) chunk);
25325 bp->b_dirt = DIRTY;
25326 }
25327 n = (off + chunk == block_size ? FULL_DATA_BLOCK : PARTIAL_DATA_BLOCK);
25328 put_block(bp, n);
25329
25330 return(r);
25331 }

25334 /*===========================================================================*
25335 * read_map *
25336 *===========================================================================*/
25337 PUBLIC block_t read_map(rip, position)
25338 register struct inode *rip; /* ptr to inode to map from */
25339 off_t position; /* position in file whose blk wanted */
25340 {
25341 /* Given an inode and a position within the corresponding file, locate the
25342 * block (not zone) number in which that position is to be found and return it.
25343 */
25344
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25345 register struct buf *bp;
25346 register zone_t z;
25347 int scale, boff, dzones, nr_indirects, index, zind, ex;
25348 block_t b;
25349 long excess, zone, block_pos;
25350
25351 scale = rip->i_sp->s_log_zone_size; /* for block-zone conversion */
25352 block_pos = position/rip->i_sp->s_block_size; /* relative blk # in file */
25353 zone = block_pos >> scale; /* position’s zone */
25354 boff = (int) (block_pos - (zone << scale) ); /* relative blk # within zone */
25355 dzones = rip->i_ndzones;
25356 nr_indirects = rip->i_nindirs;
25357
25358 /* Is ’position’ to be found in the inode itself? */
25359 if (zone < dzones) {
25360 zind = (int) zone; /* index should be an int */
25361 z = rip->i_zone[zind];
25362 if (z == NO_ZONE) return(NO_BLOCK);
25363 b = ((block_t) z << scale) + boff;
25364 return(b);
25365 }
25366
25367 /* It is not in the inode, so it must be single or double indirect. */
25368 excess = zone - dzones; /* first Vx_NR_DZONES don’t count */
25369
25370 if (excess < nr_indirects) {
25371 /* ’position’ can be located via the single indirect block. */
25372 z = rip->i_zone[dzones];
25373 } else {
25374 /* ’position’ can be located via the double indirect block. */
25375 if ( (z = rip->i_zone[dzones+1]) == NO_ZONE) return(NO_BLOCK);
25376 excess -= nr_indirects; /* single indir doesn’t count*/
25377 b = (block_t) z << scale;
25378 bp = get_block(rip->i_dev, b, NORMAL); /* get double indirect block */
25379 index = (int) (excess/nr_indirects);
25380 z = rd_indir(bp, index); /* z= zone for single*/
25381 put_block(bp, INDIRECT_BLOCK); /* release double ind block */
25382 excess = excess % nr_indirects; /* index into single ind blk */
25383 }
25384
25385 /* ’z’ is zone num for single indirect block; ’excess’ is index into it. */
25386 if (z == NO_ZONE) return(NO_BLOCK);
25387 b = (block_t) z << scale; /* b is blk # for single ind */
25388 bp = get_block(rip->i_dev, b, NORMAL); /* get single indirect block */
25389 ex = (int) excess; /* need an integer */
25390 z = rd_indir(bp, ex); /* get block pointed to */
25391 put_block(bp, INDIRECT_BLOCK); /* release single indir blk */
25392 if (z == NO_ZONE) return(NO_BLOCK);
25393 b = ((block_t) z << scale) + boff;
25394 return(b);
25395 }

25397 /*===========================================================================*
25398 * rd_indir *
25399 *===========================================================================*/
25400 PUBLIC zone_t rd_indir(bp, index)
25401 struct buf *bp; /* pointer to indirect block */
25402 int index; /* index into *bp */
25403 {
25404 /* Given a pointer to an indirect block, read one entry. The reason for
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25405 * making a separate routine out of this is that there are four cases:
25406 * V1 (IBM and 68000), and V2 (IBM and 68000).
25407 */
25408
25409 struct super_block *sp;
25410 zone_t zone; /* V2 zones are longs (shorts in V1) */
25411
25412 sp = get_super(bp->b_dev); /* need super block to find file sys type */
25413
25414 /* read a zone from an indirect block */
25415 if (sp->s_version == V1)
25416 zone = (zone_t) conv2(sp->s_native, (int) bp->b_v1_ind[index]);
25417 else
25418 zone = (zone_t) conv4(sp->s_native, (long) bp->b_v2_ind[index]);
25419
25420 if (zone != NO_ZONE &&
25421 (zone < (zone_t) sp->s_firstdatazone || zone >= sp->s_zones)) {
25422 printf("Illegal zone number %ld in indirect block, index %d\n",
25423 (long) zone, index);
25424 panic(__FILE__,"check file system", NO_NUM);
25425 }
25426 return(zone);
25427 }

25429 /*===========================================================================*
25430 * read_ahead *
25431 *===========================================================================*/
25432 PUBLIC void read_ahead()
25433 {
25434 /* Read a block into the cache before it is needed. */
25435 int block_size;
25436 register struct inode *rip;
25437 struct buf *bp;
25438 block_t b;
25439
25440 rip = rdahed_inode; /* pointer to inode to read ahead from */
25441 block_size = get_block_size(rip->i_dev);
25442 rdahed_inode = NIL_INODE; /* turn off read ahead */
25443 if ( (b = read_map(rip, rdahedpos)) == NO_BLOCK) return; /* at EOF */
25444 bp = rahead(rip, b, rdahedpos, block_size);
25445 put_block(bp, PARTIAL_DATA_BLOCK);
25446 }

25448 /*===========================================================================*
25449 * rahead *
25450 *===========================================================================*/
25451 PUBLIC struct buf *rahead(rip, baseblock, position, bytes_ahead)
25452 register struct inode *rip; /* pointer to inode for file to be read */
25453 block_t baseblock; /* block at current position */
25454 off_t position; /* position within file */
25455 unsigned bytes_ahead; /* bytes beyond position for immediate use */
25456 {
25457 /* Fetch a block from the cache or the device. If a physical read is
25458 * required, prefetch as many more blocks as convenient into the cache.
25459 * This usually covers bytes_ahead and is at least BLOCKS_MINIMUM.
25460 * The device driver may decide it knows better and stop reading at a
25461 * cylinder boundary (or after an error). Rw_scattered() puts an optional
25462 * flag on all reads to allow this.
25463 */
25464 int block_size;
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25465 /* Minimum number of blocks to prefetch. */
25466 # define BLOCKS_MINIMUM (NR_BUFS < 50 ? 18 : 32)
25467 int block_spec, scale, read_q_size;
25468 unsigned int blocks_ahead, fragment;
25469 block_t block, blocks_left;
25470 off_t ind1_pos;
25471 dev_t dev;
25472 struct buf *bp;
25473 static struct buf *read_q[NR_BUFS];
25474
25475 block_spec = (rip->i_mode & I_TYPE) == I_BLOCK_SPECIAL;
25476 if (block_spec) {
25477 dev = (dev_t) rip->i_zone[0];
25478 } else {
25479 dev = rip->i_dev;
25480 }
25481 block_size = get_block_size(dev);
25482
25483 block = baseblock;
25484 bp = get_block(dev, block, PREFETCH);
25485 if (bp->b_dev != NO_DEV) return(bp);
25486
25487 /* The best guess for the number of blocks to prefetch: A lot.
25488 * It is impossible to tell what the device looks like, so we don’t even
25489 * try to guess the geometry, but leave it to the driver.
25490 *
25491 * The floppy driver can read a full track with no rotational delay, and it
25492 * avoids reading partial tracks if it can, so handing it enough buffers to
25493 * read two tracks is perfect. (Two, because some diskette types have
25494 * an odd number of sectors per track, so a block may span tracks.)
25495 *
25496 * The disk drivers don’t try to be smart. With todays disks it is
25497 * impossible to tell what the real geometry looks like, so it is best to
25498 * read as much as you can. With luck the caching on the drive allows
25499 * for a little time to start the next read.
25500 *
25501 * The current solution below is a bit of a hack, it just reads blocks from
25502 * the current file position hoping that more of the file can be found. A
25503 * better solution must look at the already available zone pointers and
25504 * indirect blocks (but don’t call read_map!).
25505 */
25506
25507 fragment = position % block_size;
25508 position -= fragment;
25509 bytes_ahead += fragment;
25510
25511 blocks_ahead = (bytes_ahead + block_size - 1) / block_size;
25512
25513 if (block_spec && rip->i_size == 0) {
25514 blocks_left = NR_IOREQS;
25515 } else {
25516 blocks_left = (rip->i_size - position + block_size - 1) / block_size;
25517
25518 /* Go for the first indirect block if we are in its neighborhood. */
25519 if (!block_spec) {
25520 scale = rip->i_sp->s_log_zone_size;
25521 ind1_pos = (off_t) rip->i_ndzones * (block_size << scale);
25522 if (position <= ind1_pos && rip->i_size > ind1_pos) {
25523 blocks_ahead++;
25524 blocks_left++;
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25525 }
25526 }
25527 }
25528
25529 /* No more than the maximum request. */
25530 if (blocks_ahead > NR_IOREQS) blocks_ahead = NR_IOREQS;
25531
25532 /* Read at least the minimum number of blocks, but not after a seek. */
25533 if (blocks_ahead < BLOCKS_MINIMUM && rip->i_seek == NO_SEEK)
25534 blocks_ahead = BLOCKS_MINIMUM;
25535
25536 /* Can’t go past end of file. */
25537 if (blocks_ahead > blocks_left) blocks_ahead = blocks_left;
25538
25539 read_q_size = 0;
25540
25541 /* Acquire block buffers. */
25542 for (;;) {
25543 read_q[read_q_size++] = bp;
25544
25545 if (--blocks_ahead == 0) break;
25546
25547 /* Don’t trash the cache, leave 4 free. */
25548 if (bufs_in_use >= NR_BUFS - 4) break;
25549
25550 block++;
25551
25552 bp = get_block(dev, block, PREFETCH);
25553 if (bp->b_dev != NO_DEV) {
25554 /* Oops, block already in the cache, get out. */
25555 put_block(bp, FULL_DATA_BLOCK);
25556 break;
25557 }
25558 }
25559 rw_scattered(dev, read_q, read_q_size, READING);
25560 return(get_block(dev, baseblock, NORMAL));
25561 }

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
servers/fs/write.c

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

25600 /* This file is the counterpart of "read.c". It contains the code for writing
25601 * insofar as this is not contained in read_write().
25602 *
25603 * The entry points into this file are
25604 * do_write: call read_write to perform the WRITE system call
25605 * clear_zone: erase a zone in the middle of a file
25606 * new_block: acquire a new block
25607 */
25608
25609 #include "fs.h"
25610 #include <string.h>
25611 #include "buf.h"
25612 #include "file.h"
25613 #include "fproc.h"
25614 #include "inode.h"
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25615 #include "super.h"
25616
25617 FORWARD _PROTOTYPE( int write_map, (struct inode *rip, off_t position,
25618 zone_t new_zone) );
25619
25620 FORWARD _PROTOTYPE( void wr_indir, (struct buf *bp, int index, zone_t zone) );
25621
25622 /*===========================================================================*
25623 * do_write *
25624 *===========================================================================*/
25625 PUBLIC int do_write()
25626 {
25627 /* Perform the write(fd, buffer, nbytes) system call. */
25628
25629 return(read_write(WRITING));
25630 }

25632 /*===========================================================================*
25633 * write_map *
25634 *===========================================================================*/
25635 PRIVATE int write_map(rip, position, new_zone)
25636 register struct inode *rip; /* pointer to inode to be changed */
25637 off_t position; /* file address to be mapped */
25638 zone_t new_zone; /* zone # to be inserted */
25639 {
25640 /* Write a new zone into an inode. */
25641 int scale, ind_ex, new_ind, new_dbl, zones, nr_indirects, single, zindex, ex;
25642 zone_t z, z1;
25643 register block_t b;
25644 long excess, zone;
25645 struct buf *bp;
25646
25647 rip->i_dirt = DIRTY; /* inode will be changed */
25648 bp = NIL_BUF;
25649 scale = rip->i_sp->s_log_zone_size; /* for zone-block conversion */
25650 /* relative zone # to insert */
25651 zone = (position/rip->i_sp->s_block_size) >> scale;
25652 zones = rip->i_ndzones; /* # direct zones in the inode */
25653 nr_indirects = rip->i_nindirs;/* # indirect zones per indirect block */
25654
25655 /* Is ’position’ to be found in the inode itself? */
25656 if (zone < zones) {
25657 zindex = (int) zone; /* we need an integer here */
25658 rip->i_zone[zindex] = new_zone;
25659 return(OK);
25660 }
25661
25662 /* It is not in the inode, so it must be single or double indirect. */
25663 excess = zone - zones; /* first Vx_NR_DZONES don’t count */
25664 new_ind = FALSE;
25665 new_dbl = FALSE;
25666
25667 if (excess < nr_indirects) {
25668 /* ’position’ can be located via the single indirect block. */
25669 z1 = rip->i_zone[zones]; /* single indirect zone */
25670 single = TRUE;
25671 } else {
25672 /* ’position’ can be located via the double indirect block. */
25673 if ( (z = rip->i_zone[zones+1]) == NO_ZONE) {
25674 /* Create the double indirect block. */
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25675 if ( (z = alloc_zone(rip->i_dev, rip->i_zone[0])) == NO_ZONE)
25676 return(err_code);
25677 rip->i_zone[zones+1] = z;
25678 new_dbl = TRUE; /* set flag for later */
25679 }
25680
25681 /* Either way, ’z’ is zone number for double indirect block. */
25682 excess -= nr_indirects; /* single indirect doesn’t count */
25683 ind_ex = (int) (excess / nr_indirects);
25684 excess = excess % nr_indirects;
25685 if (ind_ex >= nr_indirects) return(EFBIG);
25686 b = (block_t) z << scale;
25687 bp = get_block(rip->i_dev, b, (new_dbl ? NO_READ : NORMAL));
25688 if (new_dbl) zero_block(bp);
25689 z1 = rd_indir(bp, ind_ex);
25690 single = FALSE;
25691 }
25692
25693 /* z1 is now single indirect zone; ’excess’ is index. */
25694 if (z1 == NO_ZONE) {
25695 /* Create indirect block and store zone # in inode or dbl indir blk. */
25696 z1 = alloc_zone(rip->i_dev, rip->i_zone[0]);
25697 if (single)
25698 rip->i_zone[zones] = z1; /* update inode */
25699 else
25700 wr_indir(bp, ind_ex, z1); /* update dbl indir */
25701
25702 new_ind = TRUE;
25703 if (bp != NIL_BUF) bp->b_dirt = DIRTY; /* if double ind, it is dirty*/
25704 if (z1 == NO_ZONE) {
25705 put_block(bp, INDIRECT_BLOCK); /* release dbl indirect blk */
25706 return(err_code); /* couldn’t create single ind */
25707 }
25708 }
25709 put_block(bp, INDIRECT_BLOCK); /* release double indirect blk */
25710
25711 /* z1 is indirect block’s zone number. */
25712 b = (block_t) z1 << scale;
25713 bp = get_block(rip->i_dev, b, (new_ind ? NO_READ : NORMAL) );
25714 if (new_ind) zero_block(bp);
25715 ex = (int) excess; /* we need an int here */
25716 wr_indir(bp, ex, new_zone);
25717 bp->b_dirt = DIRTY;
25718 put_block(bp, INDIRECT_BLOCK);
25719
25720 return(OK);
25721 }

25723 /*===========================================================================*
25724 * wr_indir *
25725 *===========================================================================*/
25726 PRIVATE void wr_indir(bp, index, zone)
25727 struct buf *bp; /* pointer to indirect block */
25728 int index; /* index into *bp */
25729 zone_t zone; /* zone to write */
25730 {
25731 /* Given a pointer to an indirect block, write one entry. */
25732
25733 struct super_block *sp;
25734
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25735 sp = get_super(bp->b_dev); /* need super block to find file sys type */
25736
25737 /* write a zone into an indirect block */
25738 if (sp->s_version == V1)
25739 bp->b_v1_ind[index] = (zone1_t) conv2(sp->s_native, (int) zone);
25740 else
25741 bp->b_v2_ind[index] = (zone_t) conv4(sp->s_native, (long) zone);
25742 }

25744 /*===========================================================================*
25745 * clear_zone *
25746 *===========================================================================*/
25747 PUBLIC void clear_zone(rip, pos, flag)
25748 register struct inode *rip; /* inode to clear */
25749 off_t pos; /* points to block to clear */
25750 int flag; /* 0 if called by read_write, 1 by new_block */
25751 {
25752 /* Zero a zone, possibly starting in the middle. The parameter ’pos’ gives
25753 * a byte in the first block to be zeroed. Clearzone() is called from
25754 * read_write and new_block().
25755 */
25756
25757 register struct buf *bp;
25758 register block_t b, blo, bhi;
25759 register off_t next;
25760 register int scale;
25761 register zone_t zone_size;
25762
25763 /* If the block size and zone size are the same, clear_zone() not needed. */
25764 scale = rip->i_sp->s_log_zone_size;
25765 if (scale == 0) return;
25766
25767 zone_size = (zone_t) rip->i_sp->s_block_size << scale;
25768 if (flag == 1) pos = (pos/zone_size) * zone_size;
25769 next = pos + rip->i_sp->s_block_size - 1;
25770
25771 /* If ’pos’ is in the last block of a zone, do not clear the zone. */
25772 if (next/zone_size != pos/zone_size) return;
25773 if ( (blo = read_map(rip, next)) == NO_BLOCK) return;
25774 bhi = ( ((blo>>scale)+1) << scale) - 1;
25775
25776 /* Clear all the blocks between ’blo’ and ’bhi’. */
25777 for (b = blo; b <= bhi; b++) {
25778 bp = get_block(rip->i_dev, b, NO_READ);
25779 zero_block(bp);
25780 put_block(bp, FULL_DATA_BLOCK);
25781 }
25782 }

25784 /*===========================================================================*
25785 * new_block *
25786 *===========================================================================*/
25787 PUBLIC struct buf *new_block(rip, position)
25788 register struct inode *rip; /* pointer to inode */
25789 off_t position; /* file pointer */
25790 {
25791 /* Acquire a new block and return a pointer to it. Doing so may require
25792 * allocating a complete zone, and then returning the initial block.
25793 * On the other hand, the current zone may still have some unused blocks.
25794 */
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25795
25796 register struct buf *bp;
25797 block_t b, base_block;
25798 zone_t z;
25799 zone_t zone_size;
25800 int scale, r;
25801 struct super_block *sp;
25802
25803 /* Is another block available in the current zone? */
25804 if ( (b = read_map(rip, position)) == NO_BLOCK) {
25805 /* Choose first zone if possible. */
25806 /* Lose if the file is nonempty but the first zone number is NO_ZONE
25807 * corresponding to a zone full of zeros. It would be better to
25808 * search near the last real zone.
25809 */
25810 if (rip->i_zone[0] == NO_ZONE) {
25811 sp = rip->i_sp;
25812 z = sp->s_firstdatazone;
25813 } else {
25814 z = rip->i_zone[0]; /* hunt near first zone */
25815 }
25816 if ( (z = alloc_zone(rip->i_dev, z)) == NO_ZONE) return(NIL_BUF);
25817 if ( (r = write_map(rip, position, z)) != OK) {
25818 free_zone(rip->i_dev, z);
25819 err_code = r;
25820 return(NIL_BUF);
25821 }
25822
25823 /* If we are not writing at EOF, clear the zone, just to be safe. */
25824 if ( position != rip->i_size) clear_zone(rip, position, 1);
25825 scale = rip->i_sp->s_log_zone_size;
25826 base_block = (block_t) z << scale;
25827 zone_size = (zone_t) rip->i_sp->s_block_size << scale;
25828 b = base_block + (block_t)((position % zone_size)/rip->i_sp->s_block_size);
25829 }
25830
25831 bp = get_block(rip->i_dev, b, NO_READ);
25832 zero_block(bp);
25833 return(bp);
25834 }

25836 /*===========================================================================*
25837 * zero_block *
25838 *===========================================================================*/
25839 PUBLIC void zero_block(bp)
25840 register struct buf *bp; /* pointer to buffer to zero */
25841 {
25842 /* Zero a block. */
25843 memset(bp->b_data, 0, MAX_BLOCK_SIZE);
25844 bp->b_dirt = DIRTY;
25845 }
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++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
servers/fs/pipe.c

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

25900 /* This file deals with the suspension and revival of processes. A process can
25901 * be suspended because it wants to read or write from a pipe and can’t, or
25902 * because it wants to read or write from a special file and can’t. When a
25903 * process can’t continue it is suspended, and revived later when it is able
25904 * to continue.
25905 *
25906 * The entry points into this file are
25907 * do_pipe: perform the PIPE system call
25908 * pipe_check: check to see that a read or write on a pipe is feasible now
25909 * suspend: suspend a process that cannot do a requested read or write
25910 * release: check to see if a suspended process can be released and do
25911 * it
25912 * revive: mark a suspended process as able to run again
25913 * do_unpause: a signal has been sent to a process; see if it suspended
25914 */
25915
25916 #include "fs.h"
25917 #include <fcntl.h>
25918 #include <signal.h>
25919 #include <minix/callnr.h>
25920 #include <minix/com.h>
25921 #include <sys/select.h>
25922 #include <sys/time.h>
25923 #include "file.h"
25924 #include "fproc.h"
25925 #include "inode.h"
25926 #include "param.h"
25927 #include "super.h"
25928 #include "select.h"
25929
25930 /*===========================================================================*
25931 * do_pipe *
25932 *===========================================================================*/
25933 PUBLIC int do_pipe()
25934 {
25935 /* Perform the pipe(fil_des) system call. */
25936
25937 register struct fproc *rfp;
25938 register struct inode *rip;
25939 int r;
25940 struct filp *fil_ptr0, *fil_ptr1;
25941 int fil_des[2]; /* reply goes here */
25942
25943 /* Acquire two file descriptors. */
25944 rfp = fp;
25945 if ( (r = get_fd(0, R_BIT, &fil_des[0], &fil_ptr0)) != OK) return(r);
25946 rfp->fp_filp[fil_des[0]] = fil_ptr0;
25947 fil_ptr0->filp_count = 1;
25948 if ( (r = get_fd(0, W_BIT, &fil_des[1], &fil_ptr1)) != OK) {
25949 rfp->fp_filp[fil_des[0]] = NIL_FILP;
25950 fil_ptr0->filp_count = 0;
25951 return(r);
25952 }
25953 rfp->fp_filp[fil_des[1]] = fil_ptr1;
25954 fil_ptr1->filp_count = 1;
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25955
25956 /* Make the inode on the pipe device. */
25957 if ( (rip = alloc_inode(root_dev, I_REGULAR) ) == NIL_INODE) {
25958 rfp->fp_filp[fil_des[0]] = NIL_FILP;
25959 fil_ptr0->filp_count = 0;
25960 rfp->fp_filp[fil_des[1]] = NIL_FILP;
25961 fil_ptr1->filp_count = 0;
25962 return(err_code);
25963 }
25964
25965 if (read_only(rip) != OK)
25966 panic(__FILE__,"pipe device is read only", NO_NUM);
25967
25968 rip->i_pipe = I_PIPE;
25969 rip->i_mode &= ˜I_REGULAR;
25970 rip->i_mode |= I_NAMED_PIPE; /* pipes and FIFOs have this bit set */
25971 fil_ptr0->filp_ino = rip;
25972 fil_ptr0->filp_flags = O_RDONLY;
25973 dup_inode(rip); /* for double usage */
25974 fil_ptr1->filp_ino = rip;
25975 fil_ptr1->filp_flags = O_WRONLY;
25976 rw_inode(rip, WRITING); /* mark inode as allocated */
25977 m_out.reply_i1 = fil_des[0];
25978 m_out.reply_i2 = fil_des[1];
25979 rip->i_update = ATIME | CTIME | MTIME;
25980 return(OK);
25981 }

25983 /*===========================================================================*
25984 * pipe_check *
25985 *===========================================================================*/
25986 PUBLIC int pipe_check(rip, rw_flag, oflags, bytes, position, canwrite, notouch)
25987 register struct inode *rip; /* the inode of the pipe */
25988 int rw_flag; /* READING or WRITING */
25989 int oflags; /* flags set by open or fcntl */
25990 register int bytes; /* bytes to be read or written (all chunks) */
25991 register off_t position; /* current file position */
25992 int *canwrite; /* return: number of bytes we can write */
25993 int notouch; /* check only */
25994 {
25995 /* Pipes are a little different. If a process reads from an empty pipe for
25996 * which a writer still exists, suspend the reader. If the pipe is empty
25997 * and there is no writer, return 0 bytes. If a process is writing to a
25998 * pipe and no one is reading from it, give a broken pipe error.
25999 */
26000
26001 /* If reading, check for empty pipe. */
26002 if (rw_flag == READING) {
26003 if (position >= rip->i_size) {
26004 /* Process is reading from an empty pipe. */
26005 int r = 0;
26006 if (find_filp(rip, W_BIT) != NIL_FILP) {
26007 /* Writer exists */
26008 if (oflags & O_NONBLOCK) {
26009 r = EAGAIN;
26010 } else {
26011 if (!notouch)
26012 suspend(XPIPE); /* block reader */
26013 r = SUSPEND;
26014 }
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26015 /* If need be, activate sleeping writers. */
26016 if (susp_count > 0 && !notouch)
26017 release(rip, WRITE, susp_count);
26018 }
26019 return(r);
26020 }
26021 } else {
26022 /* Process is writing to a pipe. */
26023 if (find_filp(rip, R_BIT) == NIL_FILP) {
26024 /* Tell kernel to generate a SIGPIPE signal. */
26025 if (!notouch)
26026 sys_kill((int)(fp - fproc), SIGPIPE);
26027 return(EPIPE);
26028 }
26029
26030 if (position + bytes > PIPE_SIZE(rip->i_sp->s_block_size)) {
26031 if ((oflags & O_NONBLOCK)
26032 && bytes < PIPE_SIZE(rip->i_sp->s_block_size))
26033 return(EAGAIN);
26034 else if ((oflags & O_NONBLOCK)
26035 && bytes > PIPE_SIZE(rip->i_sp->s_block_size)) {
26036 if ( (*canwrite = (PIPE_SIZE(rip->i_sp->s_block_size)
26037 - position)) > 0) {
26038 /* Do a partial write. Need to wakeup reader */
26039 if (!notouch)
26040 release(rip, READ, susp_count);
26041 return(1);
26042 } else {
26043 return(EAGAIN);
26044 }
26045 }
26046 if (bytes > PIPE_SIZE(rip->i_sp->s_block_size)) {
26047 if ((*canwrite = PIPE_SIZE(rip->i_sp->s_block_size)
26048 - position) > 0) {
26049 /* Do a partial write. Need to wakeup reader
26050 * since we’ll suspend ourself in read_write()
26051 */
26052 release(rip, READ, susp_count);
26053 return(1);
26054 }
26055 }
26056 if (!notouch)
26057 suspend(XPIPE); /* stop writer -- pipe full */
26058 return(SUSPEND);
26059 }
26060
26061 /* Writing to an empty pipe. Search for suspended reader. */
26062 if (position == 0 && !notouch)
26063 release(rip, READ, susp_count);
26064 }
26065
26066 *canwrite = 0;
26067 return(1);
26068 }

26070 /*===========================================================================*
26071 * suspend *
26072 *===========================================================================*/
26073 PUBLIC void suspend(task)
26074 int task; /* who is proc waiting for? (PIPE = pipe) */
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26075 {
26076 /* Take measures to suspend the processing of the present system call.
26077 * Store the parameters to be used upon resuming in the process table.
26078 * (Actually they are not used when a process is waiting for an I/O device,
26079 * but they are needed for pipes, and it is not worth making the distinction.)
26080 * The SUSPEND pseudo error should be returned after calling suspend().
26081 */
26082
26083 if (task == XPIPE || task == XPOPEN) susp_count++;/* #procs susp’ed on pipe*/
26084 fp->fp_suspended = SUSPENDED;
26085 fp->fp_fd = m_in.fd << 8 | call_nr;
26086 fp->fp_task = -task;
26087 if (task == XLOCK) {
26088 fp->fp_buffer = (char *) m_in.name1; /* third arg to fcntl() */
26089 fp->fp_nbytes = m_in.request; /* second arg to fcntl() */
26090 } else {
26091 fp->fp_buffer = m_in.buffer; /* for reads and writes */
26092 fp->fp_nbytes = m_in.nbytes;
26093 }
26094 }

26096 /*===========================================================================*
26097 * release *
26098 *===========================================================================*/
26099 PUBLIC void release(ip, call_nr, count)
26100 register struct inode *ip; /* inode of pipe */
26101 int call_nr; /* READ, WRITE, OPEN or CREAT */
26102 int count; /* max number of processes to release */
26103 {
26104 /* Check to see if any process is hanging on the pipe whose inode is in ’ip’.
26105 * If one is, and it was trying to perform the call indicated by ’call_nr’,
26106 * release it.
26107 */
26108
26109 register struct fproc *rp;
26110 struct filp *f;
26111
26112 /* Trying to perform the call also includes SELECTing on it with that
26113 * operation.
26114 */
26115 if (call_nr == READ || call_nr == WRITE) {
26116 int op;
26117 if (call_nr == READ)
26118 op = SEL_RD;
26119 else
26120 op = SEL_WR;
26121 for(f = &filp[0]; f < &filp[NR_FILPS]; f++) {
26122 if (f->filp_count < 1 || !(f->filp_pipe_select_ops & op) ||
26123 f->filp_ino != ip)
26124 continue;
26125 select_callback(f, op);
26126 f->filp_pipe_select_ops &= ˜op;
26127 }
26128 }
26129
26130 /* Search the proc table. */
26131 for (rp = &fproc[0]; rp < &fproc[NR_PROCS]; rp++) {
26132 if (rp->fp_suspended == SUSPENDED &&
26133 rp->fp_revived == NOT_REVIVING &&
26134 (rp->fp_fd & BYTE) == call_nr &&
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26135 rp->fp_filp[rp->fp_fd>>8]->filp_ino == ip) {
26136 revive((int)(rp - fproc), 0);
26137 susp_count--; /* keep track of who is suspended */
26138 if (--count == 0) return;
26139 }
26140 }
26141 }

26143 /*===========================================================================*
26144 * revive *
26145 *===========================================================================*/
26146 PUBLIC void revive(proc_nr, returned)
26147 int proc_nr; /* process to revive */
26148 int returned; /* if hanging on task, how many bytes read */
26149 {
26150 /* Revive a previously blocked process. When a process hangs on tty, this
26151 * is the way it is eventually released.
26152 */
26153
26154 register struct fproc *rfp;
26155 register int task;
26156
26157 if (proc_nr < 0 || proc_nr >= NR_PROCS)
26158 panic(__FILE__,"revive err", proc_nr);
26159 rfp = &fproc[proc_nr];
26160 if (rfp->fp_suspended == NOT_SUSPENDED || rfp->fp_revived == REVIVING)return;
26161
26162 /* The ’reviving’ flag only applies to pipes. Processes waiting for TTY get
26163 * a message right away. The revival process is different for TTY and pipes.
26164 * For select and TTY revival, the work is already done, for pipes it is not:
26165 * the proc must be restarted so it can try again.
26166 */
26167 task = -rfp->fp_task;
26168 if (task == XPIPE || task == XLOCK) {
26169 /* Revive a process suspended on a pipe or lock. */
26170 rfp->fp_revived = REVIVING;
26171 reviving++; /* process was waiting on pipe or lock */
26172 } else {
26173 rfp->fp_suspended = NOT_SUSPENDED;
26174 if (task == XPOPEN) /* process blocked in open or create */
26175 reply(proc_nr, rfp->fp_fd>>8);
26176 else if (task == XSELECT) {
26177 reply(proc_nr, returned);
26178 } else {
26179 /* Revive a process suspended on TTY or other device. */
26180 rfp->fp_nbytes = returned; /*pretend it wants only what there is*/
26181 reply(proc_nr, returned); /* unblock the process */
26182 }
26183 }
26184 }

26186 /*===========================================================================*
26187 * do_unpause *
26188 *===========================================================================*/
26189 PUBLIC int do_unpause()
26190 {
26191 /* A signal has been sent to a user who is paused on the file system.
26192 * Abort the system call with the EINTR error message.
26193 */
26194
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26195 register struct fproc *rfp;
26196 int proc_nr, task, fild;
26197 struct filp *f;
26198 dev_t dev;
26199 message mess;
26200
26201 if (who > PM_PROC_NR) return(EPERM);
26202 proc_nr = m_in.pro;
26203 if (proc_nr < 0 || proc_nr >= NR_PROCS)
26204 panic(__FILE__,"unpause err 1", proc_nr);
26205 rfp = &fproc[proc_nr];
26206 if (rfp->fp_suspended == NOT_SUSPENDED) return(OK);
26207 task = -rfp->fp_task;
26208
26209 switch (task) {
26210 case XPIPE: /* process trying to read or write a pipe */
26211 break;
26212
26213 case XLOCK: /* process trying to set a lock with FCNTL */
26214 break;
26215
26216 case XSELECT: /* process blocking on select() */
26217 select_forget(proc_nr);
26218 break;
26219
26220 case XPOPEN: /* process trying to open a fifo */
26221 break;
26222
26223 default: /* process trying to do device I/O (e.g. tty)*/
26224 fild = (rfp->fp_fd >> 8) & BYTE;/* extract file descriptor */
26225 if (fild < 0 || fild >= OPEN_MAX)
26226 panic(__FILE__,"unpause err 2",NO_NUM);
26227 f = rfp->fp_filp[fild];
26228 dev = (dev_t) f->filp_ino->i_zone[0]; /* device hung on */
26229 mess.TTY_LINE = (dev >> MINOR) & BYTE;
26230 mess.PROC_NR = proc_nr;
26231
26232 /* Tell kernel R or W. Mode is from current call, not open. */
26233 mess.COUNT = (rfp->fp_fd & BYTE) == READ ? R_BIT : W_BIT;
26234 mess.m_type = CANCEL;
26235 fp = rfp; /* hack - ctty_io uses fp */
26236 (*dmap[(dev >> MAJOR) & BYTE].dmap_io)(task, &mess);
26237 }
26238
26239 rfp->fp_suspended = NOT_SUSPENDED;
26240 reply(proc_nr, EINTR); /* signal interrupted call */
26241 return(OK);
26242 }

26244 /*===========================================================================*
26245 * select_request_pipe *
26246 *===========================================================================*/
26247 PUBLIC int select_request_pipe(struct filp *f, int *ops, int block)
26248 {
26249 int orig_ops, r = 0, err, canwrite;
26250 orig_ops = *ops;
26251 if ((*ops & SEL_RD)) {
26252 if ((err = pipe_check(f->filp_ino, READING, 0,
26253 1, f->filp_pos, &canwrite, 1)) != SUSPEND)
26254 r |= SEL_RD;
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26255 if (err < 0 && err != SUSPEND && (*ops & SEL_ERR))
26256 r |= SEL_ERR;
26257 }
26258 if ((*ops & SEL_WR)) {
26259 if ((err = pipe_check(f->filp_ino, WRITING, 0,
26260 1, f->filp_pos, &canwrite, 1)) != SUSPEND)
26261 r |= SEL_WR;
26262 if (err < 0 && err != SUSPEND && (*ops & SEL_ERR))
26263 r |= SEL_ERR;
26264 }
26265
26266 *ops = r;
26267
26268 if (!r && block) {
26269 f->filp_pipe_select_ops |= orig_ops;
26270 }
26271
26272 return SEL_OK;
26273 }

26275 /*===========================================================================*
26276 * select_match_pipe *
26277 *===========================================================================*/
26278 PUBLIC int select_match_pipe(struct filp *f)
26279 {
26280 /* recognize either pipe or named pipe (FIFO) */
26281 if (f && f->filp_ino && (f->filp_ino->i_mode & I_NAMED_PIPE))
26282 return 1;
26283 return 0;
26284 }

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
servers/fs/path.c

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

26300 /* This file contains the procedures that look up path names in the directory
26301 * system and determine the inode number that goes with a given path name.
26302 *
26303 * The entry points into this file are
26304 * eat_path: the ’main’ routine of the path-to-inode conversion mechanism
26305 * last_dir: find the final directory on a given path
26306 * advance: parse one component of a path name
26307 * search_dir: search a directory for a string and return its inode number
26308 */
26309
26310 #include "fs.h"
26311 #include <string.h>
26312 #include <minix/callnr.h>
26313 #include "buf.h"
26314 #include "file.h"
26315 #include "fproc.h"
26316 #include "inode.h"
26317 #include "super.h"
26318
26319 PUBLIC char dot1[2] = "."; /* used for search_dir to bypass the access */
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26320 PUBLIC char dot2[3] = ".."; /* permissions for . and .. */
26321
26322 FORWARD _PROTOTYPE( char *get_name, (char *old_name, char string [NAME_MAX]) );
26323
26324 /*===========================================================================*
26325 * eat_path *
26326 *===========================================================================*/
26327 PUBLIC struct inode *eat_path(path)
26328 char *path; /* the path name to be parsed */
26329 {
26330 /* Parse the path ’path’ and put its inode in the inode table. If not possible,
26331 * return NIL_INODE as function value and an error code in ’err_code’.
26332 */
26333
26334 register struct inode *ldip, *rip;
26335 char string[NAME_MAX]; /* hold 1 path component name here */
26336
26337 /* First open the path down to the final directory. */
26338 if ( (ldip = last_dir(path, string)) == NIL_INODE) {
26339 return(NIL_INODE); /* we couldn’t open final directory */
26340 }
26341
26342 /* The path consisting only of "/" is a special case, check for it. */
26343 if (string[0] == ’\0’) return(ldip);
26344
26345 /* Get final component of the path. */
26346 rip = advance(ldip, string);
26347 put_inode(ldip);
26348 return(rip);
26349 }

26351 /*===========================================================================*
26352 * last_dir *
26353 *===========================================================================*/
26354 PUBLIC struct inode *last_dir(path, string)
26355 char *path; /* the path name to be parsed */
26356 char string[NAME_MAX]; /* the final component is returned here */
26357 {
26358 /* Given a path, ’path’, located in the fs address space, parse it as
26359 * far as the last directory, fetch the inode for the last directory into
26360 * the inode table, and return a pointer to the inode. In
26361 * addition, return the final component of the path in ’string’.
26362 * If the last directory can’t be opened, return NIL_INODE and
26363 * the reason for failure in ’err_code’.
26364 */
26365
26366 register struct inode *rip;
26367 register char *new_name;
26368 register struct inode *new_ip;
26369
26370 /* Is the path absolute or relative? Initialize ’rip’ accordingly. */
26371 rip = (*path == ’/’ ? fp->fp_rootdir : fp->fp_workdir);
26372
26373 /* If dir has been removed or path is empty, return ENOENT. */
26374 if (rip->i_nlinks == 0 || *path == ’\0’) {
26375 err_code = ENOENT;
26376 return(NIL_INODE);
26377 }
26378
26379 dup_inode(rip); /* inode will be returned with put_inode */
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26380
26381 /* Scan the path component by component. */
26382 while (TRUE) {
26383 /* Extract one component. */
26384 if ( (new_name = get_name(path, string)) == (char*) 0) {
26385 put_inode(rip); /* bad path in user space */
26386 return(NIL_INODE);
26387 }
26388 if (*new_name == ’\0’) {
26389 if ( (rip->i_mode & I_TYPE) == I_DIRECTORY) {
26390 return(rip); /* normal exit */
26391 } else {
26392 /* last file of path prefix is not a directory */
26393 put_inode(rip);
26394 err_code = ENOTDIR;
26395 return(NIL_INODE);
26396 }
26397 }
26398
26399 /* There is more path. Keep parsing. */
26400 new_ip = advance(rip, string);
26401 put_inode(rip); /* rip either obsolete or irrelevant */
26402 if (new_ip == NIL_INODE) return(NIL_INODE);
26403
26404 /* The call to advance() succeeded. Fetch next component. */
26405 path = new_name;
26406 rip = new_ip;
26407 }
26408 }

26410 /*===========================================================================*
26411 * get_name *
26412 *===========================================================================*/
26413 PRIVATE char *get_name(old_name, string)
26414 char *old_name; /* path name to parse */
26415 char string[NAME_MAX]; /* component extracted from ’old_name’ */
26416 {
26417 /* Given a pointer to a path name in fs space, ’old_name’, copy the next
26418 * component to ’string’ and pad with zeros. A pointer to that part of
26419 * the name as yet unparsed is returned. Roughly speaking,
26420 * ’get_name’ = ’old_name’ - ’string’.
26421 *
26422 * This routine follows the standard convention that /usr/ast, /usr//ast,
26423 * //usr///ast and /usr/ast/ are all equivalent.
26424 */
26425
26426 register int c;
26427 register char *np, *rnp;
26428
26429 np = string; /* ’np’ points to current position */
26430 rnp = old_name; /* ’rnp’ points to unparsed string */
26431 while ( (c = *rnp) == ’/’) rnp++; /* skip leading slashes */
26432
26433 /* Copy the unparsed path, ’old_name’, to the array, ’string’. */
26434 while ( rnp < &old_name[PATH_MAX] && c != ’/’ && c != ’\0’) {
26435 if (np < &string[NAME_MAX]) *np++ = c;
26436 c = *++rnp; /* advance to next character */
26437 }
26438
26439 /* To make /usr/ast/ equivalent to /usr/ast, skip trailing slashes. */
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26440 while (c == ’/’ && rnp < &old_name[PATH_MAX]) c = *++rnp;
26441
26442 if (np < &string[NAME_MAX]) *np = ’\0’; /* Terminate string */
26443
26444 if (rnp >= &old_name[PATH_MAX]) {
26445 err_code = ENAMETOOLONG;
26446 return((char *) 0);
26447 }
26448 return(rnp);
26449 }

26451 /*===========================================================================*
26452 * advance *
26453 *===========================================================================*/
26454 PUBLIC struct inode *advance(dirp, string)
26455 struct inode *dirp; /* inode for directory to be searched */
26456 char string[NAME_MAX]; /* component name to look for */
26457 {
26458 /* Given a directory and a component of a path, look up the component in
26459 * the directory, find the inode, open it, and return a pointer to its inode
26460 * slot. If it can’t be done, return NIL_INODE.
26461 */
26462
26463 register struct inode *rip;
26464 struct inode *rip2;
26465 register struct super_block *sp;
26466 int r, inumb;
26467 dev_t mnt_dev;
26468 ino_t numb;
26469
26470 /* If ’string’ is empty, yield same inode straight away. */
26471 if (string[0] == ’\0’) { return(get_inode(dirp->i_dev, (int) dirp->i_num)); }
26472
26473 /* Check for NIL_INODE. */
26474 if (dirp == NIL_INODE) { return(NIL_INODE); }
26475
26476 /* If ’string’ is not present in the directory, signal error. */
26477 if ( (r = search_dir(dirp, string, &numb, LOOK_UP)) != OK) {
26478 err_code = r;
26479 return(NIL_INODE);
26480 }
26481
26482 /* Don’t go beyond the current root directory, unless the string is dot2. */
26483 if (dirp == fp->fp_rootdir && strcmp(string, "..") == 0 && string != dot2)
26484 return(get_inode(dirp->i_dev, (int) dirp->i_num));
26485
26486 /* The component has been found in the directory. Get inode. */
26487 if ( (rip = get_inode(dirp->i_dev, (int) numb)) == NIL_INODE) {
26488 return(NIL_INODE);
26489 }
26490
26491 if (rip->i_num == ROOT_INODE)
26492 if (dirp->i_num == ROOT_INODE) {
26493 if (string[1] == ’.’) {
26494 for (sp = &super_block[1]; sp < &super_block[NR_SUPERS]; sp++){
26495 if (sp->s_dev == rip->i_dev) {
26496 /* Release the root inode. Replace by the
26497 * inode mounted on.
26498 */
26499 put_inode(rip);
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26500 mnt_dev = sp->s_imount->i_dev;
26501 inumb = (int) sp->s_imount->i_num;
26502 rip2 = get_inode(mnt_dev, inumb);
26503 rip = advance(rip2, string);
26504 put_inode(rip2);
26505 break;
26506 }
26507 }
26508 }
26509 }
26510 if (rip == NIL_INODE) return(NIL_INODE);
26511
26512 /* See if the inode is mounted on. If so, switch to root directory of the
26513 * mounted file system. The super_block provides the linkage between the
26514 * inode mounted on and the root directory of the mounted file system.
26515 */
26516 while (rip != NIL_INODE && rip->i_mount == I_MOUNT) {
26517 /* The inode is indeed mounted on. */
26518 for (sp = &super_block[0]; sp < &super_block[NR_SUPERS]; sp++) {
26519 if (sp->s_imount == rip) {
26520 /* Release the inode mounted on. Replace by the
26521 * inode of the root inode of the mounted device.
26522 */
26523 put_inode(rip);
26524 rip = get_inode(sp->s_dev, ROOT_INODE);
26525 break;
26526 }
26527 }
26528 }
26529 return(rip); /* return pointer to inode’s component */
26530 }

26532 /*===========================================================================*
26533 * search_dir *
26534 *===========================================================================*/
26535 PUBLIC int search_dir(ldir_ptr, string, numb, flag)
26536 register struct inode *ldir_ptr; /* ptr to inode for dir to search */
26537 char string[NAME_MAX]; /* component to search for */
26538 ino_t *numb; /* pointer to inode number */
26539 int flag; /* LOOK_UP, ENTER, DELETE or IS_EMPTY */
26540 {
26541 /* This function searches the directory whose inode is pointed to by ’ldip’:
26542 * if (flag == ENTER) enter ’string’ in the directory with inode # ’*numb’;
26543 * if (flag == DELETE) delete ’string’ from the directory;
26544 * if (flag == LOOK_UP) search for ’string’ and return inode # in ’numb’;
26545 * if (flag == IS_EMPTY) return OK if only . and .. in dir else ENOTEMPTY;
26546 *
26547 * if ’string’ is dot1 or dot2, no access permissions are checked.
26548 */
26549
26550 register struct direct *dp = NULL;
26551 register struct buf *bp = NULL;
26552 int i, r, e_hit, t, match;
26553 mode_t bits;
26554 off_t pos;
26555 unsigned new_slots, old_slots;
26556 block_t b;
26557 struct super_block *sp;
26558 int extended = 0;
26559
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26560 /* If ’ldir_ptr’ is not a pointer to a dir inode, error. */
26561 if ( (ldir_ptr->i_mode & I_TYPE) != I_DIRECTORY) return(ENOTDIR);
26562
26563 r = OK;
26564
26565 if (flag != IS_EMPTY) {
26566 bits = (flag == LOOK_UP ? X_BIT : W_BIT | X_BIT);
26567
26568 if (string == dot1 || string == dot2) {
26569 if (flag != LOOK_UP) r = read_only(ldir_ptr);
26570 /* only a writable device is required. */
26571 }
26572 else r = forbidden(ldir_ptr, bits); /* check access permissions */
26573 }
26574 if (r != OK) return(r);
26575
26576 /* Step through the directory one block at a time. */
26577 old_slots = (unsigned) (ldir_ptr->i_size/DIR_ENTRY_SIZE);
26578 new_slots = 0;
26579 e_hit = FALSE;
26580 match = 0; /* set when a string match occurs */
26581
26582 for (pos = 0; pos < ldir_ptr->i_size; pos += ldir_ptr->i_sp->s_block_size) {
26583 b = read_map(ldir_ptr, pos); /* get block number */
26584
26585 /* Since directories don’t have holes, ’b’ cannot be NO_BLOCK. */
26586 bp = get_block(ldir_ptr->i_dev, b, NORMAL); /* get a dir block */
26587
26588 if (bp == NO_BLOCK)
26589 panic(__FILE__,"get_block returned NO_BLOCK", NO_NUM);
26590
26591 /* Search a directory block. */
26592 for (dp = &bp->b_dir[0];
26593 dp < &bp->b_dir[NR_DIR_ENTRIES(ldir_ptr->i_sp->s_block_size)];
26594 dp++) {
26595 if (++new_slots > old_slots) { /* not found, but room left */
26596 if (flag == ENTER) e_hit = TRUE;
26597 break;
26598 }
26599
26600 /* Match occurs if string found. */
26601 if (flag != ENTER && dp->d_ino != 0) {
26602 if (flag == IS_EMPTY) {
26603 /* If this test succeeds, dir is not empty. */
26604 if (strcmp(dp->d_name, "." ) != 0 &&
26605 strcmp(dp->d_name, "..") != 0) match = 1;
26606 } else {
26607 if (strncmp(dp->d_name, string, NAME_MAX) == 0) {
26608 match = 1;
26609 }
26610 }
26611 }
26612
26613 if (match) {
26614 /* LOOK_UP or DELETE found what it wanted. */
26615 r = OK;
26616 if (flag == IS_EMPTY) r = ENOTEMPTY;
26617 else if (flag == DELETE) {
26618 /* Save d_ino for recovery. */
26619 t = NAME_MAX - sizeof(ino_t);
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26620 *((ino_t *) &dp->d_name[t]) = dp->d_ino;
26621 dp->d_ino = 0; /* erase entry */
26622 bp->b_dirt = DIRTY;
26623 ldir_ptr->i_update |= CTIME | MTIME;
26624 ldir_ptr->i_dirt = DIRTY;
26625 } else {
26626 sp = ldir_ptr->i_sp; /* ’flag’ is LOOK_UP */
26627 *numb = conv4(sp->s_native, (int) dp->d_ino);
26628 }
26629 put_block(bp, DIRECTORY_BLOCK);
26630 return(r);
26631 }
26632
26633 /* Check for free slot for the benefit of ENTER. */
26634 if (flag == ENTER && dp->d_ino == 0) {
26635 e_hit = TRUE; /* we found a free slot */
26636 break;
26637 }
26638 }
26639
26640 /* The whole block has been searched or ENTER has a free slot. */
26641 if (e_hit) break; /* e_hit set if ENTER can be performed now */
26642 put_block(bp, DIRECTORY_BLOCK); /* otherwise, continue searching dir */
26643 }
26644
26645 /* The whole directory has now been searched. */
26646 if (flag != ENTER) {
26647 return(flag == IS_EMPTY ? OK : ENOENT);
26648 }
26649
26650 /* This call is for ENTER. If no free slot has been found so far, try to
26651 * extend directory.
26652 */
26653 if (e_hit == FALSE) { /* directory is full and no room left in last block */
26654 new_slots++; /* increase directory size by 1 entry */
26655 if (new_slots == 0) return(EFBIG); /* dir size limited by slot count */
26656 if ( (bp = new_block(ldir_ptr, ldir_ptr->i_size)) == NIL_BUF)
26657 return(err_code);
26658 dp = &bp->b_dir[0];
26659 extended = 1;
26660 }
26661
26662 /* ’bp’ now points to a directory block with space. ’dp’ points to slot. */
26663 (void) memset(dp->d_name, 0, (size_t) NAME_MAX); /* clear entry */
26664 for (i = 0; string[i] && i < NAME_MAX; i++) dp->d_name[i] = string[i];
26665 sp = ldir_ptr->i_sp;
26666 dp->d_ino = conv4(sp->s_native, (int) *numb);
26667 bp->b_dirt = DIRTY;
26668 put_block(bp, DIRECTORY_BLOCK);
26669 ldir_ptr->i_update |= CTIME | MTIME; /* mark mtime for update later */
26670 ldir_ptr->i_dirt = DIRTY;
26671 if (new_slots > old_slots) {
26672 ldir_ptr->i_size = (off_t) new_slots * DIR_ENTRY_SIZE;
26673 /* Send the change to disk if the directory is extended. */
26674 if (extended) rw_inode(ldir_ptr, WRITING);
26675 }
26676 return(OK);
26677 }
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++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
servers/fs/mount.c

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

26700 /* This file performs the MOUNT and UMOUNT system calls.
26701 *
26702 * The entry points into this file are
26703 * do_mount: perform the MOUNT system call
26704 * do_umount: perform the UMOUNT system call
26705 */
26706
26707 #include "fs.h"
26708 #include <fcntl.h>
26709 #include <minix/com.h>
26710 #include <sys/stat.h>
26711 #include "buf.h"
26712 #include "file.h"
26713 #include "fproc.h"
26714 #include "inode.h"
26715 #include "param.h"
26716 #include "super.h"
26717
26718 FORWARD _PROTOTYPE( dev_t name_to_dev, (char *path) );
26719
26720 /*===========================================================================*
26721 * do_mount *
26722 *===========================================================================*/
26723 PUBLIC int do_mount()
26724 {
26725 /* Perform the mount(name, mfile, rd_only) system call. */
26726
26727 register struct inode *rip, *root_ip;
26728 struct super_block *xp, *sp;
26729 dev_t dev;
26730 mode_t bits;
26731 int rdir, mdir; /* TRUE iff {root|mount} file is dir */
26732 int r, found;
26733
26734 /* Only the super-user may do MOUNT. */
26735 if (!super_user) return(EPERM);
26736
26737 /* If ’name’ is not for a block special file, return error. */
26738 if (fetch_name(m_in.name1, m_in.name1_length, M1) != OK) return(err_code);
26739 if ( (dev = name_to_dev(user_path)) == NO_DEV) return(err_code);
26740
26741 /* Scan super block table to see if dev already mounted & find a free slot.*/
26742 sp = NIL_SUPER;
26743 found = FALSE;
26744 for (xp = &super_block[0]; xp < &super_block[NR_SUPERS]; xp++) {
26745 if (xp->s_dev == dev) found = TRUE; /* is it mounted already? */
26746 if (xp->s_dev == NO_DEV) sp = xp; /* record free slot */
26747 }
26748 if (found) return(EBUSY); /* already mounted */
26749 if (sp == NIL_SUPER) return(ENFILE); /* no super block available */
26750
26751 /* Open the device the file system lives on. */
26752 if (dev_open(dev, who, m_in.rd_only ? R_BIT : (R_BIT|W_BIT)) != OK)
26753 return(EINVAL);
26754
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26755 /* Make the cache forget about blocks it has open on the filesystem */
26756 (void) do_sync();
26757 invalidate(dev);
26758
26759 /* Fill in the super block. */
26760 sp->s_dev = dev; /* read_super() needs to know which dev */
26761 r = read_super(sp);
26762
26763 /* Is it recognized as a Minix filesystem? */
26764 if (r != OK) {
26765 dev_close(dev);
26766 sp->s_dev = NO_DEV;
26767 return(r);
26768 }
26769
26770 /* Now get the inode of the file to be mounted on. */
26771 if (fetch_name(m_in.name2, m_in.name2_length, M1) != OK) {
26772 dev_close(dev);
26773 sp->s_dev = NO_DEV;
26774 return(err_code);
26775 }
26776 if ( (rip = eat_path(user_path)) == NIL_INODE) {
26777 dev_close(dev);
26778 sp->s_dev = NO_DEV;
26779 return(err_code);
26780 }
26781
26782 /* It may not be busy. */
26783 r = OK;
26784 if (rip->i_count > 1) r = EBUSY;
26785
26786 /* It may not be special. */
26787 bits = rip->i_mode & I_TYPE;
26788 if (bits == I_BLOCK_SPECIAL || bits == I_CHAR_SPECIAL) r = ENOTDIR;
26789
26790 /* Get the root inode of the mounted file system. */
26791 root_ip = NIL_INODE; /* if ’r’ not OK, make sure this is defined */
26792 if (r == OK) {
26793 if ( (root_ip = get_inode(dev, ROOT_INODE)) == NIL_INODE) r = err_code;
26794 }
26795 if (root_ip != NIL_INODE && root_ip->i_mode == 0) {
26796 r = EINVAL;
26797 }
26798
26799 /* File types of ’rip’ and ’root_ip’ may not conflict. */
26800 if (r == OK) {
26801 mdir = ((rip->i_mode & I_TYPE) == I_DIRECTORY); /* TRUE iff dir */
26802 rdir = ((root_ip->i_mode & I_TYPE) == I_DIRECTORY);
26803 if (!mdir && rdir) r = EISDIR;
26804 }
26805
26806 /* If error, return the super block and both inodes; release the maps. */
26807 if (r != OK) {
26808 put_inode(rip);
26809 put_inode(root_ip);
26810 (void) do_sync();
26811 invalidate(dev);
26812 dev_close(dev);
26813 sp->s_dev = NO_DEV;
26814 return(r);
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26815 }
26816
26817 /* Nothing else can go wrong. Perform the mount. */
26818 rip->i_mount = I_MOUNT; /* this bit says the inode is mounted on */
26819 sp->s_imount = rip;
26820 sp->s_isup = root_ip;
26821 sp->s_rd_only = m_in.rd_only;
26822 return(OK);
26823 }

26825 /*===========================================================================*
26826 * do_umount *
26827 *===========================================================================*/
26828 PUBLIC int do_umount()
26829 {
26830 /* Perform the umount(name) system call. */
26831 dev_t dev;
26832
26833 /* Only the super-user may do UMOUNT. */
26834 if (!super_user) return(EPERM);
26835
26836 /* If ’name’ is not for a block special file, return error. */
26837 if (fetch_name(m_in.name, m_in.name_length, M3) != OK) return(err_code);
26838 if ( (dev = name_to_dev(user_path)) == NO_DEV) return(err_code);
26839
26840 return(unmount(dev));
26841 }

26843 /*===========================================================================*
26844 * unmount *
26845 *===========================================================================*/
26846 PUBLIC int unmount(dev)
26847 Dev_t dev;
26848 {
26849 /* Unmount a file system by device number. */
26850 register struct inode *rip;
26851 struct super_block *sp, *sp1;
26852 int count;
26853
26854 /* See if the mounted device is busy. Only 1 inode using it should be
26855 * open -- the root inode -- and that inode only 1 time.
26856 */
26857 count = 0;
26858 for (rip = &inode[0]; rip< &inode[NR_INODES]; rip++)
26859 if (rip->i_count > 0 && rip->i_dev == dev) count += rip->i_count;
26860 if (count > 1) return(EBUSY); /* can’t umount a busy file system */
26861
26862 /* Find the super block. */
26863 sp = NIL_SUPER;
26864 for (sp1 = &super_block[0]; sp1 < &super_block[NR_SUPERS]; sp1++) {
26865 if (sp1->s_dev == dev) {
26866 sp = sp1;
26867 break;
26868 }
26869 }
26870
26871 /* Sync the disk, and invalidate cache. */
26872 (void) do_sync(); /* force any cached blocks out of memory */
26873 invalidate(dev); /* invalidate cache entries for this dev */
26874 if (sp == NIL_SUPER) {
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26875 return(EINVAL);
26876 }
26877
26878 /* Close the device the file system lives on. */
26879 dev_close(dev);
26880
26881 /* Finish off the unmount. */
26882 sp->s_imount->i_mount = NO_MOUNT; /* inode returns to normal */
26883 put_inode(sp->s_imount); /* release the inode mounted on */
26884 put_inode(sp->s_isup); /* release the root inode of the mounted fs */
26885 sp->s_imount = NIL_INODE;
26886 sp->s_dev = NO_DEV;
26887 return(OK);
26888 }

26890 /*===========================================================================*
26891 * name_to_dev *
26892 *===========================================================================*/
26893 PRIVATE dev_t name_to_dev(path)
26894 char *path; /* pointer to path name */
26895 {
26896 /* Convert the block special file ’path’ to a device number. If ’path’
26897 * is not a block special file, return error code in ’err_code’.
26898 */
26899
26900 register struct inode *rip;
26901 register dev_t dev;
26902
26903 /* If ’path’ can’t be opened, give up immediately. */
26904 if ( (rip = eat_path(path)) == NIL_INODE) return(NO_DEV);
26905
26906 /* If ’path’ is not a block special file, return error. */
26907 if ( (rip->i_mode & I_TYPE) != I_BLOCK_SPECIAL) {
26908 err_code = ENOTBLK;
26909 put_inode(rip);
26910 return(NO_DEV);
26911 }
26912
26913 /* Extract the device number. */
26914 dev = (dev_t) rip->i_zone[0];
26915 put_inode(rip);
26916 return(dev);
26917 }

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
servers/fs/link.c

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

27000 /* This file handles the LINK and UNLINK system calls. It also deals with
27001 * deallocating the storage used by a file when the last UNLINK is done to a
27002 * file and the blocks must be returned to the free block pool.
27003 *
27004 * The entry points into this file are
27005 * do_link: perform the LINK system call
27006 * do_unlink: perform the UNLINK and RMDIR system calls
27007 * do_rename: perform the RENAME system call
27008 * truncate: release all the blocks associated with an inode
27009 */
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27010
27011 #include "fs.h"
27012 #include <sys/stat.h>
27013 #include <string.h>
27014 #include <minix/com.h>
27015 #include <minix/callnr.h>
27016 #include "buf.h"
27017 #include "file.h"
27018 #include "fproc.h"
27019 #include "inode.h"
27020 #include "param.h"
27021 #include "super.h"
27022
27023 #define SAME 1000
27024
27025 FORWARD _PROTOTYPE( int remove_dir, (struct inode *rldirp, struct inode *rip,
27026 char dir_name[NAME_MAX]) );
27027
27028 FORWARD _PROTOTYPE( int unlink_file, (struct inode *dirp, struct inode *rip,
27029 char file_name[NAME_MAX]) );
27030
27031 /*===========================================================================*
27032 * do_link *
27033 *===========================================================================*/
27034 PUBLIC int do_link()
27035 {
27036 /* Perform the link(name1, name2) system call. */
27037
27038 register struct inode *ip, *rip;
27039 register int r;
27040 char string[NAME_MAX];
27041 struct inode *new_ip;
27042
27043 /* See if ’name’ (file to be linked) exists. */
27044 if (fetch_name(m_in.name1, m_in.name1_length, M1) != OK) return(err_code);
27045 if ( (rip = eat_path(user_path)) == NIL_INODE) return(err_code);
27046
27047 /* Check to see if the file has maximum number of links already. */
27048 r = OK;
27049 if (rip->i_nlinks >= (rip->i_sp->s_version == V1 ? CHAR_MAX : SHRT_MAX))
27050 r = EMLINK;
27051
27052 /* Only super_user may link to directories. */
27053 if (r == OK)
27054 if ( (rip->i_mode & I_TYPE) == I_DIRECTORY && !super_user) r = EPERM;
27055
27056 /* If error with ’name’, return the inode. */
27057 if (r != OK) {
27058 put_inode(rip);
27059 return(r);
27060 }
27061
27062 /* Does the final directory of ’name2’ exist? */
27063 if (fetch_name(m_in.name2, m_in.name2_length, M1) != OK) {
27064 put_inode(rip);
27065 return(err_code);
27066 }
27067 if ( (ip = last_dir(user_path, string)) == NIL_INODE) r = err_code;
27068
27069 /* If ’name2’ exists in full (even if no space) set ’r’ to error. */



MINIX SOURCE CODE File: servers/fs/link.c 1005

27070 if (r == OK) {
27071 if ( (new_ip = advance(ip, string)) == NIL_INODE) {
27072 r = err_code;
27073 if (r == ENOENT) r = OK;
27074 } else {
27075 put_inode(new_ip);
27076 r = EEXIST;
27077 }
27078 }
27079
27080 /* Check for links across devices. */
27081 if (r == OK)
27082 if (rip->i_dev != ip->i_dev) r = EXDEV;
27083
27084 /* Try to link. */
27085 if (r == OK)
27086 r = search_dir(ip, string, &rip->i_num, ENTER);
27087
27088 /* If success, register the linking. */
27089 if (r == OK) {
27090 rip->i_nlinks++;
27091 rip->i_update |= CTIME;
27092 rip->i_dirt = DIRTY;
27093 }
27094
27095 /* Done. Release both inodes. */
27096 put_inode(rip);
27097 put_inode(ip);
27098 return(r);
27099 }

27101 /*===========================================================================*
27102 * do_unlink *
27103 *===========================================================================*/
27104 PUBLIC int do_unlink()
27105 {
27106 /* Perform the unlink(name) or rmdir(name) system call. The code for these two
27107 * is almost the same. They differ only in some condition testing. Unlink()
27108 * may be used by the superuser to do dangerous things; rmdir() may not.
27109 */
27110
27111 register struct inode *rip;
27112 struct inode *rldirp;
27113 int r;
27114 char string[NAME_MAX];
27115
27116 /* Get the last directory in the path. */
27117 if (fetch_name(m_in.name, m_in.name_length, M3) != OK) return(err_code);
27118 if ( (rldirp = last_dir(user_path, string)) == NIL_INODE)
27119 return(err_code);
27120
27121 /* The last directory exists. Does the file also exist? */
27122 r = OK;
27123 if ( (rip = advance(rldirp, string)) == NIL_INODE) r = err_code;
27124
27125 /* If error, return inode. */
27126 if (r != OK) {
27127 put_inode(rldirp);
27128 return(r);
27129 }
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27130
27131 /* Do not remove a mount point. */
27132 if (rip->i_num == ROOT_INODE) {
27133 put_inode(rldirp);
27134 put_inode(rip);
27135 return(EBUSY);
27136 }
27137
27138 /* Now test if the call is allowed, separately for unlink() and rmdir(). */
27139 if (call_nr == UNLINK) {
27140 /* Only the su may unlink directories, but the su can unlink any dir.*/
27141 if ( (rip->i_mode & I_TYPE) == I_DIRECTORY && !super_user) r = EPERM;
27142
27143 /* Don’t unlink a file if it is the root of a mounted file system. */
27144 if (rip->i_num == ROOT_INODE) r = EBUSY;
27145
27146 /* Actually try to unlink the file; fails if parent is mode 0 etc. */
27147 if (r == OK) r = unlink_file(rldirp, rip, string);
27148
27149 } else {
27150 r = remove_dir(rldirp, rip, string); /* call is RMDIR */
27151 }
27152
27153 /* If unlink was possible, it has been done, otherwise it has not. */
27154 put_inode(rip);
27155 put_inode(rldirp);
27156 return(r);
27157 }

27159 /*===========================================================================*
27160 * do_rename *
27161 *===========================================================================*/
27162 PUBLIC int do_rename()
27163 {
27164 /* Perform the rename(name1, name2) system call. */
27165
27166 struct inode *old_dirp, *old_ip; /* ptrs to old dir, file inodes */
27167 struct inode *new_dirp, *new_ip; /* ptrs to new dir, file inodes */
27168 struct inode *new_superdirp, *next_new_superdirp;
27169 int r = OK; /* error flag; initially no error */
27170 int odir, ndir; /* TRUE iff {old|new} file is dir */
27171 int same_pdir; /* TRUE iff parent dirs are the same */
27172 char old_name[NAME_MAX], new_name[NAME_MAX];
27173 ino_t numb;
27174 int r1;
27175
27176 /* See if ’name1’ (existing file) exists. Get dir and file inodes. */
27177 if (fetch_name(m_in.name1, m_in.name1_length, M1) != OK) return(err_code);
27178 if ( (old_dirp = last_dir(user_path, old_name))==NIL_INODE) return(err_code);
27179
27180 if ( (old_ip = advance(old_dirp, old_name)) == NIL_INODE) r = err_code;
27181
27182 /* See if ’name2’ (new name) exists. Get dir and file inodes. */
27183 if (fetch_name(m_in.name2, m_in.name2_length, M1) != OK) r = err_code;
27184 if ( (new_dirp = last_dir(user_path, new_name)) == NIL_INODE) r = err_code;
27185 new_ip = advance(new_dirp, new_name); /* not required to exist */
27186
27187 if (old_ip != NIL_INODE)
27188 odir = ((old_ip->i_mode & I_TYPE) == I_DIRECTORY); /* TRUE iff dir */
27189
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27190 /* If it is ok, check for a variety of possible errors. */
27191 if (r == OK) {
27192 same_pdir = (old_dirp == new_dirp);
27193
27194 /* The old inode must not be a superdirectory of the new last dir. */
27195 if (odir && !same_pdir) {
27196 dup_inode(new_superdirp = new_dirp);
27197 while (TRUE) { /* may hang in a file system loop */
27198 if (new_superdirp == old_ip) {
27199 r = EINVAL;
27200 break;
27201 }
27202 next_new_superdirp = advance(new_superdirp, dot2);
27203 put_inode(new_superdirp);
27204 if (next_new_superdirp == new_superdirp)
27205 break; /* back at system root directory */
27206 new_superdirp = next_new_superdirp;
27207 if (new_superdirp == NIL_INODE) {
27208 /* Missing ".." entry. Assume the worst. */
27209 r = EINVAL;
27210 break;
27211 }
27212 }
27213 put_inode(new_superdirp);
27214 }
27215
27216 /* The old or new name must not be . or .. */
27217 if (strcmp(old_name, ".")==0 || strcmp(old_name, "..")==0 ||
27218 strcmp(new_name, ".")==0 || strcmp(new_name, "..")==0) r = EINVAL;
27219
27220 /* Both parent directories must be on the same device. */
27221 if (old_dirp->i_dev != new_dirp->i_dev) r = EXDEV;
27222
27223 /* Parent dirs must be writable, searchable and on a writable device */
27224 if ((r1 = forbidden(old_dirp, W_BIT | X_BIT)) != OK ||
27225 (r1 = forbidden(new_dirp, W_BIT | X_BIT)) != OK) r = r1;
27226
27227 /* Some tests apply only if the new path exists. */
27228 if (new_ip == NIL_INODE) {
27229 /* don’t rename a file with a file system mounted on it. */
27230 if (old_ip->i_dev != old_dirp->i_dev) r = EXDEV;
27231 if (odir && new_dirp->i_nlinks >=
27232 (new_dirp->i_sp->s_version == V1 ? CHAR_MAX : SHRT_MAX) &&
27233 !same_pdir && r == OK) r = EMLINK;
27234 } else {
27235 if (old_ip == new_ip) r = SAME; /* old=new */
27236
27237 /* has the old file or new file a file system mounted on it? */
27238 if (old_ip->i_dev != new_ip->i_dev) r = EXDEV;
27239
27240 ndir = ((new_ip->i_mode & I_TYPE) == I_DIRECTORY); /* dir ? */
27241 if (odir == TRUE && ndir == FALSE) r = ENOTDIR;
27242 if (odir == FALSE && ndir == TRUE) r = EISDIR;
27243 }
27244 }
27245
27246 /* If a process has another root directory than the system root, we might
27247 * "accidently" be moving it’s working directory to a place where it’s
27248 * root directory isn’t a super directory of it anymore. This can make
27249 * the function chroot useless. If chroot will be used often we should
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27250 * probably check for it here.
27251 */
27252
27253 /* The rename will probably work. Only two things can go wrong now:
27254 * 1. being unable to remove the new file. (when new file already exists)
27255 * 2. being unable to make the new directory entry. (new file doesn’t exists)
27256 * [directory has to grow by one block and cannot because the disk
27257 * is completely full].
27258 */
27259 if (r == OK) {
27260 if (new_ip != NIL_INODE) {
27261 /* There is already an entry for ’new’. Try to remove it. */
27262 if (odir)
27263 r = remove_dir(new_dirp, new_ip, new_name);
27264 else
27265 r = unlink_file(new_dirp, new_ip, new_name);
27266 }
27267 /* if r is OK, the rename will succeed, while there is now an
27268 * unused entry in the new parent directory.
27269 */
27270 }
27271
27272 if (r == OK) {
27273 /* If the new name will be in the same parent directory as the old one,
27274 * first remove the old name to free an entry for the new name,
27275 * otherwise first try to create the new name entry to make sure
27276 * the rename will succeed.
27277 */
27278 numb = old_ip->i_num; /* inode number of old file */
27279
27280 if (same_pdir) {
27281 r = search_dir(old_dirp, old_name, (ino_t *) 0, DELETE);
27282 /* shouldn’t go wrong. */
27283 if (r==OK) (void) search_dir(old_dirp, new_name, &numb, ENTER);
27284 } else {
27285 r = search_dir(new_dirp, new_name, &numb, ENTER);
27286 if (r == OK)
27287 (void) search_dir(old_dirp, old_name, (ino_t *) 0, DELETE);
27288 }
27289 }
27290 /* If r is OK, the ctime and mtime of old_dirp and new_dirp have been marked
27291 * for update in search_dir.
27292 */
27293
27294 if (r == OK && odir && !same_pdir) {
27295 /* Update the .. entry in the directory (still points to old_dirp). */
27296 numb = new_dirp->i_num;
27297 (void) unlink_file(old_ip, NIL_INODE, dot2);
27298 if (search_dir(old_ip, dot2, &numb, ENTER) == OK) {
27299 /* New link created. */
27300 new_dirp->i_nlinks++;
27301 new_dirp->i_dirt = DIRTY;
27302 }
27303 }
27304
27305 /* Release the inodes. */
27306 put_inode(old_dirp);
27307 put_inode(old_ip);
27308 put_inode(new_dirp);
27309 put_inode(new_ip);
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27310 return(r == SAME ? OK : r);
27311 }

27313 /*===========================================================================*
27314 * truncate *
27315 *===========================================================================*/
27316 PUBLIC void truncate(rip)
27317 register struct inode *rip; /* pointer to inode to be truncated */
27318 {
27319 /* Remove all the zones from the inode ’rip’ and mark it dirty. */
27320
27321 register block_t b;
27322 zone_t z, zone_size, z1;
27323 off_t position;
27324 int i, scale, file_type, waspipe, single, nr_indirects;
27325 struct buf *bp;
27326 dev_t dev;
27327
27328 file_type = rip->i_mode & I_TYPE; /* check to see if file is special */
27329 if (file_type == I_CHAR_SPECIAL || file_type == I_BLOCK_SPECIAL) return;
27330 dev = rip->i_dev; /* device on which inode resides */
27331 scale = rip->i_sp->s_log_zone_size;
27332 zone_size = (zone_t) rip->i_sp->s_block_size << scale;
27333 nr_indirects = rip->i_nindirs;
27334
27335 /* Pipes can shrink, so adjust size to make sure all zones are removed. */
27336 waspipe = rip->i_pipe == I_PIPE; /* TRUE is this was a pipe */
27337 if (waspipe) rip->i_size = PIPE_SIZE(rip->i_sp->s_block_size);
27338
27339 /* Step through the file a zone at a time, finding and freeing the zones. */
27340 for (position = 0; position < rip->i_size; position += zone_size) {
27341 if ( (b = read_map(rip, position)) != NO_BLOCK) {
27342 z = (zone_t) b >> scale;
27343 free_zone(dev, z);
27344 }
27345 }
27346
27347 /* All the data zones have been freed. Now free the indirect zones. */
27348 rip->i_dirt = DIRTY;
27349 if (waspipe) {
27350 wipe_inode(rip); /* clear out inode for pipes */
27351 return; /* indirect slots contain file positions */
27352 }
27353 single = rip->i_ndzones;
27354 free_zone(dev, rip->i_zone[single]); /* single indirect zone */
27355 if ( (z = rip->i_zone[single+1]) != NO_ZONE) {
27356 /* Free all the single indirect zones pointed to by the double. */
27357 b = (block_t) z << scale;
27358 bp = get_block(dev, b, NORMAL); /* get double indirect zone */
27359 for (i = 0; i < nr_indirects; i++) {
27360 z1 = rd_indir(bp, i);
27361 free_zone(dev, z1);
27362 }
27363
27364 /* Now free the double indirect zone itself. */
27365 put_block(bp, INDIRECT_BLOCK);
27366 free_zone(dev, z);
27367 }
27368
27369 /* Leave zone numbers for de(1) to recover file after an unlink(2). */
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27370 }

27372 /*===========================================================================*
27373 * remove_dir *
27374 *===========================================================================*/
27375 PRIVATE int remove_dir(rldirp, rip, dir_name)
27376 struct inode *rldirp; /* parent directory */
27377 struct inode *rip; /* directory to be removed */
27378 char dir_name[NAME_MAX]; /* name of directory to be removed */
27379 {
27380 /* A directory file has to be removed. Five conditions have to met:
27381 * - The file must be a directory
27382 * - The directory must be empty (except for . and ..)
27383 * - The final component of the path must not be . or ..
27384 * - The directory must not be the root of a mounted file system
27385 * - The directory must not be anybody’s root/working directory
27386 */
27387
27388 int r;
27389 register struct fproc *rfp;
27390
27391 /* search_dir checks that rip is a directory too. */
27392 if ((r = search_dir(rip, "", (ino_t *) 0, IS_EMPTY)) != OK) return r;
27393
27394 if (strcmp(dir_name, ".") == 0 || strcmp(dir_name, "..") == 0)return(EINVAL);
27395 if (rip->i_num == ROOT_INODE) return(EBUSY); /* can’t remove ’root’ */
27396
27397 for (rfp = &fproc[INIT_PROC_NR + 1]; rfp < &fproc[NR_PROCS]; rfp++)
27398 if (rfp->fp_workdir == rip || rfp->fp_rootdir == rip) return(EBUSY);
27399 /* can’t remove anybody’s working dir */
27400
27401 /* Actually try to unlink the file; fails if parent is mode 0 etc. */
27402 if ((r = unlink_file(rldirp, rip, dir_name)) != OK) return r;
27403
27404 /* Unlink . and .. from the dir. The super user can link and unlink any dir,
27405 * so don’t make too many assumptions about them.
27406 */
27407 (void) unlink_file(rip, NIL_INODE, dot1);
27408 (void) unlink_file(rip, NIL_INODE, dot2);
27409 return(OK);
27410 }

27412 /*===========================================================================*
27413 * unlink_file *
27414 *===========================================================================*/
27415 PRIVATE int unlink_file(dirp, rip, file_name)
27416 struct inode *dirp; /* parent directory of file */
27417 struct inode *rip; /* inode of file, may be NIL_INODE too. */
27418 char file_name[NAME_MAX]; /* name of file to be removed */
27419 {
27420 /* Unlink ’file_name’; rip must be the inode of ’file_name’ or NIL_INODE. */
27421
27422 ino_t numb; /* inode number */
27423 int r;
27424
27425 /* If rip is not NIL_INODE, it is used to get faster access to the inode. */
27426 if (rip == NIL_INODE) {
27427 /* Search for file in directory and try to get its inode. */
27428 err_code = search_dir(dirp, file_name, &numb, LOOK_UP);
27429 if (err_code == OK) rip = get_inode(dirp->i_dev, (int) numb);
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27430 if (err_code != OK || rip == NIL_INODE) return(err_code);
27431 } else {
27432 dup_inode(rip); /* inode will be returned with put_inode */
27433 }
27434
27435 r = search_dir(dirp, file_name, (ino_t *) 0, DELETE);
27436
27437 if (r == OK) {
27438 rip->i_nlinks--; /* entry deleted from parent’s dir */
27439 rip->i_update |= CTIME;
27440 rip->i_dirt = DIRTY;
27441 }
27442
27443 put_inode(rip);
27444 return(r);
27445 }

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
servers/fs/stadir.c

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

27500 /* This file contains the code for performing four system calls relating to
27501 * status and directories.
27502 *
27503 * The entry points into this file are
27504 * do_chdir: perform the CHDIR system call
27505 * do_chroot: perform the CHROOT system call
27506 * do_stat: perform the STAT system call
27507 * do_fstat: perform the FSTAT system call
27508 * do_fstatfs: perform the FSTATFS system call
27509 */
27510
27511 #include "fs.h"
27512 #include <sys/stat.h>
27513 #include <sys/statfs.h>
27514 #include <minix/com.h>
27515 #include "file.h"
27516 #include "fproc.h"
27517 #include "inode.h"
27518 #include "param.h"
27519 #include "super.h"
27520
27521 FORWARD _PROTOTYPE( int change, (struct inode **iip, char *name_ptr, int len));
27522 FORWARD _PROTOTYPE( int change_into, (struct inode **iip, struct inode *ip));
27523 FORWARD _PROTOTYPE( int stat_inode, (struct inode *rip, struct filp *fil_ptr,
27524 char *user_addr) );
27525
27526 /*===========================================================================*
27527 * do_fchdir *
27528 *===========================================================================*/
27529 PUBLIC int do_fchdir()
27530 {
27531 /* Change directory on already-opened fd. */
27532 struct filp *rfilp;
27533
27534 /* Is the file descriptor valid? */
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27535 if ( (rfilp = get_filp(m_in.fd)) == NIL_FILP) return(err_code);
27536 return change_into(&fp->fp_workdir, rfilp->filp_ino);
27537 }

27539 /*===========================================================================*
27540 * do_chdir *
27541 *===========================================================================*/
27542 PUBLIC int do_chdir()
27543 {
27544 /* Change directory. This function is also called by MM to simulate a chdir
27545 * in order to do EXEC, etc. It also changes the root directory, the uids and
27546 * gids, and the umask.
27547 */
27548
27549 int r;
27550 register struct fproc *rfp;
27551
27552 if (who == PM_PROC_NR) {
27553 rfp = &fproc[m_in.slot1];
27554 put_inode(fp->fp_rootdir);
27555 dup_inode(fp->fp_rootdir = rfp->fp_rootdir);
27556 put_inode(fp->fp_workdir);
27557 dup_inode(fp->fp_workdir = rfp->fp_workdir);
27558
27559 /* MM uses access() to check permissions. To make this work, pretend
27560 * that the user’s real ids are the same as the user’s effective ids.
27561 * FS calls other than access() do not use the real ids, so are not
27562 * affected.
27563 */
27564 fp->fp_realuid =
27565 fp->fp_effuid = rfp->fp_effuid;
27566 fp->fp_realgid =
27567 fp->fp_effgid = rfp->fp_effgid;
27568 fp->fp_umask = rfp->fp_umask;
27569 return(OK);
27570 }
27571
27572 /* Perform the chdir(name) system call. */
27573 r = change(&fp->fp_workdir, m_in.name, m_in.name_length);
27574 return(r);
27575 }

27577 /*===========================================================================*
27578 * do_chroot *
27579 *===========================================================================*/
27580 PUBLIC int do_chroot()
27581 {
27582 /* Perform the chroot(name) system call. */
27583
27584 register int r;
27585
27586 if (!super_user) return(EPERM); /* only su may chroot() */
27587 r = change(&fp->fp_rootdir, m_in.name, m_in.name_length);
27588 return(r);
27589 }
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27591 /*===========================================================================*
27592 * change *
27593 *===========================================================================*/
27594 PRIVATE int change(iip, name_ptr, len)
27595 struct inode **iip; /* pointer to the inode pointer for the dir */
27596 char *name_ptr; /* pointer to the directory name to change to */
27597 int len; /* length of the directory name string */
27598 {
27599 /* Do the actual work for chdir() and chroot(). */
27600 struct inode *rip;
27601
27602 /* Try to open the new directory. */
27603 if (fetch_name(name_ptr, len, M3) != OK) return(err_code);
27604 if ( (rip = eat_path(user_path)) == NIL_INODE) return(err_code);
27605 return change_into(iip, rip);
27606 }

27608 /*===========================================================================*
27609 * change_into *
27610 *===========================================================================*/
27611 PRIVATE int change_into(iip, rip)
27612 struct inode **iip; /* pointer to the inode pointer for the dir */
27613 struct inode *rip; /* this is what the inode has to become */
27614 {
27615 register int r;
27616
27617 /* It must be a directory and also be searchable. */
27618 if ( (rip->i_mode & I_TYPE) != I_DIRECTORY)
27619 r = ENOTDIR;
27620 else
27621 r = forbidden(rip, X_BIT); /* check if dir is searchable */
27622
27623 /* If error, return inode. */
27624 if (r != OK) {
27625 put_inode(rip);
27626 return(r);
27627 }
27628
27629 /* Everything is OK. Make the change. */
27630 put_inode(*iip); /* release the old directory */
27631 *iip = rip; /* acquire the new one */
27632 return(OK);
27633 }

27635 /*===========================================================================*
27636 * do_stat *
27637 *===========================================================================*/
27638 PUBLIC int do_stat()
27639 {
27640 /* Perform the stat(name, buf) system call. */
27641
27642 register struct inode *rip;
27643 register int r;
27644
27645 /* Both stat() and fstat() use the same routine to do the real work. That
27646 * routine expects an inode, so acquire it temporarily.
27647 */
27648 if (fetch_name(m_in.name1, m_in.name1_length, M1) != OK) return(err_code);
27649 if ( (rip = eat_path(user_path)) == NIL_INODE) return(err_code);
27650 r = stat_inode(rip, NIL_FILP, m_in.name2); /* actually do the work.*/
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27651 put_inode(rip); /* release the inode */
27652 return(r);
27653 }

27655 /*===========================================================================*
27656 * do_fstat *
27657 *===========================================================================*/
27658 PUBLIC int do_fstat()
27659 {
27660 /* Perform the fstat(fd, buf) system call. */
27661
27662 register struct filp *rfilp;
27663
27664 /* Is the file descriptor valid? */
27665 if ( (rfilp = get_filp(m_in.fd)) == NIL_FILP) return(err_code);
27666
27667 return(stat_inode(rfilp->filp_ino, rfilp, m_in.buffer));
27668 }

27670 /*===========================================================================*
27671 * stat_inode *
27672 *===========================================================================*/
27673 PRIVATE int stat_inode(rip, fil_ptr, user_addr)
27674 register struct inode *rip; /* pointer to inode to stat */
27675 struct filp *fil_ptr; /* filp pointer, supplied by ’fstat’ */
27676 char *user_addr; /* user space address where stat buf goes */
27677 {
27678 /* Common code for stat and fstat system calls. */
27679
27680 struct stat statbuf;
27681 mode_t mo;
27682 int r, s;
27683
27684 /* Update the atime, ctime, and mtime fields in the inode, if need be. */
27685 if (rip->i_update) update_times(rip);
27686
27687 /* Fill in the statbuf struct. */
27688 mo = rip->i_mode & I_TYPE;
27689
27690 /* true iff special */
27691 s = (mo == I_CHAR_SPECIAL || mo == I_BLOCK_SPECIAL);
27692
27693 statbuf.st_dev = rip->i_dev;
27694 statbuf.st_ino = rip->i_num;
27695 statbuf.st_mode = rip->i_mode;
27696 statbuf.st_nlink = rip->i_nlinks;
27697 statbuf.st_uid = rip->i_uid;
27698 statbuf.st_gid = rip->i_gid;
27699 statbuf.st_rdev = (dev_t) (s ? rip->i_zone[0] : NO_DEV);
27700 statbuf.st_size = rip->i_size;
27701
27702 if (rip->i_pipe == I_PIPE) {
27703 statbuf.st_mode &= ˜I_REGULAR; /* wipe out I_REGULAR bit for pipes */
27704 if (fil_ptr != NIL_FILP && fil_ptr->filp_mode & R_BIT)
27705 statbuf.st_size -= fil_ptr->filp_pos;
27706 }
27707
27708 statbuf.st_atime = rip->i_atime;
27709 statbuf.st_mtime = rip->i_mtime;
27710 statbuf.st_ctime = rip->i_ctime;
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27711
27712 /* Copy the struct to user space. */
27713 r = sys_datacopy(FS_PROC_NR, (vir_bytes) &statbuf,
27714 who, (vir_bytes) user_addr, (phys_bytes) sizeof(statbuf));
27715 return(r);
27716 }

27718 /*===========================================================================*
27719 * do_fstatfs *
27720 *===========================================================================*/
27721 PUBLIC int do_fstatfs()
27722 {
27723 /* Perform the fstatfs(fd, buf) system call. */
27724 struct statfs st;
27725 register struct filp *rfilp;
27726 int r;
27727
27728 /* Is the file descriptor valid? */
27729 if ( (rfilp = get_filp(m_in.fd)) == NIL_FILP) return(err_code);
27730
27731 st.f_bsize = rfilp->filp_ino->i_sp->s_block_size;
27732
27733 r = sys_datacopy(FS_PROC_NR, (vir_bytes) &st,
27734 who, (vir_bytes) m_in.buffer, (phys_bytes) sizeof(st));
27735
27736 return(r);
27737 }

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
servers/fs/protect.c

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

27800 /* This file deals with protection in the file system. It contains the code
27801 * for four system calls that relate to protection.
27802 *
27803 * The entry points into this file are
27804 * do_chmod: perform the CHMOD system call
27805 * do_chown: perform the CHOWN system call
27806 * do_umask: perform the UMASK system call
27807 * do_access: perform the ACCESS system call
27808 * forbidden: check to see if a given access is allowed on a given inode
27809 */
27810
27811 #include "fs.h"
27812 #include <unistd.h>
27813 #include <minix/callnr.h>
27814 #include "buf.h"
27815 #include "file.h"
27816 #include "fproc.h"
27817 #include "inode.h"
27818 #include "param.h"
27819 #include "super.h"
27820
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27821 /*===========================================================================*
27822 * do_chmod *
27823 *===========================================================================*/
27824 PUBLIC int do_chmod()
27825 {
27826 /* Perform the chmod(name, mode) system call. */
27827
27828 register struct inode *rip;
27829 register int r;
27830
27831 /* Temporarily open the file. */
27832 if (fetch_name(m_in.name, m_in.name_length, M3) != OK) return(err_code);
27833 if ( (rip = eat_path(user_path)) == NIL_INODE) return(err_code);
27834
27835 /* Only the owner or the super_user may change the mode of a file.
27836 * No one may change the mode of a file on a read-only file system.
27837 */
27838 if (rip->i_uid != fp->fp_effuid && !super_user)
27839 r = EPERM;
27840 else
27841 r = read_only(rip);
27842
27843 /* If error, return inode. */
27844 if (r != OK) {
27845 put_inode(rip);
27846 return(r);
27847 }
27848
27849 /* Now make the change. Clear setgid bit if file is not in caller’s grp */
27850 rip->i_mode = (rip->i_mode & ˜ALL_MODES) | (m_in.mode & ALL_MODES);
27851 if (!super_user && rip->i_gid != fp->fp_effgid)rip->i_mode &= ˜I_SET_GID_BIT;
27852 rip->i_update |= CTIME;
27853 rip->i_dirt = DIRTY;
27854
27855 put_inode(rip);
27856 return(OK);
27857 }

27859 /*===========================================================================*
27860 * do_chown *
27861 *===========================================================================*/
27862 PUBLIC int do_chown()
27863 {
27864 /* Perform the chown(name, owner, group) system call. */
27865
27866 register struct inode *rip;
27867 register int r;
27868
27869 /* Temporarily open the file. */
27870 if (fetch_name(m_in.name1, m_in.name1_length, M1) != OK) return(err_code);
27871 if ( (rip = eat_path(user_path)) == NIL_INODE) return(err_code);
27872
27873 /* Not permitted to change the owner of a file on a read-only file sys. */
27874 r = read_only(rip);
27875 if (r == OK) {
27876 /* FS is R/W. Whether call is allowed depends on ownership, etc. */
27877 if (super_user) {
27878 /* The super user can do anything. */
27879 rip->i_uid = m_in.owner; /* others later */
27880 } else {
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27881 /* Regular users can only change groups of their own files. */
27882 if (rip->i_uid != fp->fp_effuid) r = EPERM;
27883 if (rip->i_uid != m_in.owner) r = EPERM; /* no giving away */
27884 if (fp->fp_effgid != m_in.group) r = EPERM;
27885 }
27886 }
27887 if (r == OK) {
27888 rip->i_gid = m_in.group;
27889 rip->i_mode &= ˜(I_SET_UID_BIT | I_SET_GID_BIT);
27890 rip->i_update |= CTIME;
27891 rip->i_dirt = DIRTY;
27892 }
27893
27894 put_inode(rip);
27895 return(r);
27896 }

27898 /*===========================================================================*
27899 * do_umask *
27900 *===========================================================================*/
27901 PUBLIC int do_umask()
27902 {
27903 /* Perform the umask(co_mode) system call. */
27904 register mode_t r;
27905
27906 r = ˜fp->fp_umask; /* set ’r’ to complement of old mask */
27907 fp->fp_umask = ˜(m_in.co_mode & RWX_MODES);
27908 return(r); /* return complement of old mask */
27909 }

27911 /*===========================================================================*
27912 * do_access *
27913 *===========================================================================*/
27914 PUBLIC int do_access()
27915 {
27916 /* Perform the access(name, mode) system call. */
27917
27918 struct inode *rip;
27919 register int r;
27920
27921 /* First check to see if the mode is correct. */
27922 if ( (m_in.mode & ˜(R_OK | W_OK | X_OK)) != 0 && m_in.mode != F_OK)
27923 return(EINVAL);
27924
27925 /* Temporarily open the file whose access is to be checked. */
27926 if (fetch_name(m_in.name, m_in.name_length, M3) != OK) return(err_code);
27927 if ( (rip = eat_path(user_path)) == NIL_INODE) return(err_code);
27928
27929 /* Now check the permissions. */
27930 r = forbidden(rip, (mode_t) m_in.mode);
27931 put_inode(rip);
27932 return(r);
27933 }

27935 /*===========================================================================*
27936 * forbidden *
27937 *===========================================================================*/
27938 PUBLIC int forbidden(register struct inode *rip, mode_t access_desired)
27939 {
27940 /* Given a pointer to an inode, ’rip’, and the access desired, determine
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27941 * if the access is allowed, and if not why not. The routine looks up the
27942 * caller’s uid in the ’fproc’ table. If access is allowed, OK is returned
27943 * if it is forbidden, EACCES is returned.
27944 */
27945
27946 register struct inode *old_rip = rip;
27947 register struct super_block *sp;
27948 register mode_t bits, perm_bits;
27949 int r, shift, test_uid, test_gid, type;
27950
27951 if (rip->i_mount == I_MOUNT) /* The inode is mounted on. */
27952 for (sp = &super_block[1]; sp < &super_block[NR_SUPERS]; sp++)
27953 if (sp->s_imount == rip) {
27954 rip = get_inode(sp->s_dev, ROOT_INODE);
27955 break;
27956 } /* if */
27957
27958 /* Isolate the relevant rwx bits from the mode. */
27959 bits = rip->i_mode;
27960 test_uid = (call_nr == ACCESS ? fp->fp_realuid : fp->fp_effuid);
27961 test_gid = (call_nr == ACCESS ? fp->fp_realgid : fp->fp_effgid);
27962 if (test_uid == SU_UID) {
27963 /* Grant read and write permission. Grant search permission for
27964 * directories. Grant execute permission (for non-directories) if
27965 * and only if one of the ’X’ bits is set.
27966 */
27967 if ( (bits & I_TYPE) == I_DIRECTORY ||
27968 bits & ((X_BIT << 6) | (X_BIT << 3) | X_BIT))
27969 perm_bits = R_BIT | W_BIT | X_BIT;
27970 else
27971 perm_bits = R_BIT | W_BIT;
27972 } else {
27973 if (test_uid == rip->i_uid) shift = 6; /* owner */
27974 else if (test_gid == rip->i_gid ) shift = 3; /* group */
27975 else shift = 0; /* other */
27976 perm_bits = (bits >> shift) & (R_BIT | W_BIT | X_BIT);
27977 }
27978
27979 /* If access desired is not a subset of what is allowed, it is refused. */
27980 r = OK;
27981 if ((perm_bits | access_desired) != perm_bits) r = EACCES;
27982
27983 /* Check to see if someone is trying to write on a file system that is
27984 * mounted read-only.
27985 */
27986 type = rip->i_mode & I_TYPE;
27987 if (r == OK)
27988 if (access_desired & W_BIT)
27989 r = read_only(rip);
27990
27991 if (rip != old_rip) put_inode(rip);
27992
27993 return(r);
27994 }

27996 /*===========================================================================*
27997 * read_only *
27998 *===========================================================================*/
27999 PUBLIC int read_only(ip)
28000 struct inode *ip; /* ptr to inode whose file sys is to be cked */



MINIX SOURCE CODE File: servers/fs/protect.c 1019

28001 {
28002 /* Check to see if the file system on which the inode ’ip’ resides is mounted
28003 * read only. If so, return EROFS, else return OK.
28004 */
28005
28006 register struct super_block *sp;
28007
28008 sp = ip->i_sp;
28009 return(sp->s_rd_only ? EROFS : OK);
28010 }

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
servers/fs/dmap.c

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

28100 /* This file contains the table with device <-> driver mappings. It also
28101 * contains some routines to dynamically add and/ or remove device drivers
28102 * or change mappings.
28103 */
28104
28105 #include "fs.h"
28106 #include "fproc.h"
28107 #include <string.h>
28108 #include <stdlib.h>
28109 #include <ctype.h>
28110 #include <unistd.h>
28111 #include <minix/com.h>
28112 #include "param.h"
28113
28114 /* Some devices may or may not be there in the next table. */
28115 #define DT(enable, opcl, io, driver, flags) \
28116 { (enable?(opcl):no_dev), (enable?(io):0), \
28117 (enable?(driver):0), (flags) },
28118 #define NC(x) (NR_CTRLRS >= (x))
28119
28120 /* The order of the entries here determines the mapping between major device
28121 * numbers and tasks. The first entry (major device 0) is not used. The
28122 * next entry is major device 1, etc. Character and block devices can be
28123 * intermixed at random. The ordering determines the device numbers in /dev/.
28124 * Note that FS knows the device number of /dev/ram/ to load the RAM disk.
28125 * Also note that the major device numbers used in /dev/ are NOT the same as
28126 * the process numbers of the device drivers.
28127 */
28128 /*
28129 Driver enabled Open/Cls I/O Driver # Flags Device File
28130 -------------- -------- ------ ----------- ----- ------ ----
28131 */
28132 struct dmap dmap[NR_DEVICES]; /* actual map */
28133 PRIVATE struct dmap init_dmap[] = {
28134 DT(1, no_dev, 0, 0, 0) /* 0 = not used */
28135 DT(1, gen_opcl, gen_io, MEM_PROC_NR, 0) /* 1 = /dev/mem */
28136 DT(0, no_dev, 0, 0, DMAP_MUTABLE) /* 2 = /dev/fd0 */
28137 DT(0, no_dev, 0, 0, DMAP_MUTABLE) /* 3 = /dev/c0 */
28138 DT(1, tty_opcl, gen_io, TTY_PROC_NR, 0) /* 4 = /dev/tty00 */
28139 DT(1, ctty_opcl,ctty_io, TTY_PROC_NR, 0) /* 5 = /dev/tty */
28140 DT(0, no_dev, 0, NONE, DMAP_MUTABLE) /* 6 = /dev/lp */
28141 DT(1, no_dev, 0, 0, DMAP_MUTABLE) /* 7 = /dev/ip */
28142 DT(0, no_dev, 0, NONE, DMAP_MUTABLE) /* 8 = /dev/c1 */
28143 DT(0, 0, 0, 0, DMAP_MUTABLE) /* 9 = not used */
28144 DT(0, no_dev, 0, 0, DMAP_MUTABLE) /*10 = /dev/c2 */
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28145 DT(0, 0, 0, 0, DMAP_MUTABLE) /*11 = not used */
28146 DT(0, no_dev, 0, NONE, DMAP_MUTABLE) /*12 = /dev/c3 */
28147 DT(0, no_dev, 0, NONE, DMAP_MUTABLE) /*13 = /dev/audio */
28148 DT(0, no_dev, 0, NONE, DMAP_MUTABLE) /*14 = /dev/mixer */
28149 DT(1, gen_opcl, gen_io, LOG_PROC_NR, 0) /*15 = /dev/klog */
28150 DT(0, no_dev, 0, NONE, DMAP_MUTABLE) /*16 = /dev/random*/
28151 DT(0, no_dev, 0, NONE, DMAP_MUTABLE) /*17 = /dev/cmos */
28152 };
28153
28154 /*===========================================================================*
28155 * do_devctl *
28156 *===========================================================================*/
28157 PUBLIC int do_devctl()
28158 {
28159 int result;
28160
28161 switch(m_in.ctl_req) {
28162 case DEV_MAP:
28163 /* Try to update device mapping. */
28164 result = map_driver(m_in.dev_nr, m_in.driver_nr, m_in.dev_style);
28165 break;
28166 case DEV_UNMAP:
28167 result = ENOSYS;
28168 break;
28169 default:
28170 result = EINVAL;
28171 }
28172 return(result);
28173 }

28175 /*===========================================================================*
28176 * map_driver *
28177 *===========================================================================*/
28178 PUBLIC int map_driver(major, proc_nr, style)
28179 int major; /* major number of the device */
28180 int proc_nr; /* process number of the driver */
28181 int style; /* style of the device */
28182 {
28183 /* Set a new device driver mapping in the dmap table. Given that correct
28184 * arguments are given, this only works if the entry is mutable and the
28185 * current driver is not busy.
28186 * Normal error codes are returned so that this function can be used from
28187 * a system call that tries to dynamically install a new driver.
28188 */
28189 struct dmap *dp;
28190
28191 /* Get pointer to device entry in the dmap table. */
28192 if (major >= NR_DEVICES) return(ENODEV);
28193 dp = &dmap[major];
28194
28195 /* See if updating the entry is allowed. */
28196 if (! (dp->dmap_flags & DMAP_MUTABLE)) return(EPERM);
28197 if (dp->dmap_flags & DMAP_BUSY) return(EBUSY);
28198
28199 /* Check process number of new driver. */
28200 if (! isokprocnr(proc_nr)) return(EINVAL);
28201
28202 /* Try to update the entry. */
28203 switch (style) {
28204 case STYLE_DEV: dp->dmap_opcl = gen_opcl; break;
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28205 case STYLE_TTY: dp->dmap_opcl = tty_opcl; break;
28206 case STYLE_CLONE: dp->dmap_opcl = clone_opcl; break;
28207 default: return(EINVAL);
28208 }
28209 dp->dmap_io = gen_io;
28210 dp->dmap_driver = proc_nr;
28211 return(OK);
28212 }

28214 /*===========================================================================*
28215 * build_dmap *
28216 *===========================================================================*/
28217 PUBLIC void build_dmap()
28218 {
28219 /* Initialize the table with all device <-> driver mappings. Then, map
28220 * the boot driver to a controller and update the dmap table to that
28221 * selection. The boot driver and the controller it handles are set at
28222 * the boot monitor.
28223 */
28224 char driver[16];
28225 char *controller = "c##";
28226 int nr, major = -1;
28227 int i,s;
28228 struct dmap *dp;
28229
28230 /* Build table with device <-> driver mappings. */
28231 for (i=0; i<NR_DEVICES; i++) {
28232 dp = &dmap[i];
28233 if (i < sizeof(init_dmap)/sizeof(struct dmap) &&
28234 init_dmap[i].dmap_opcl != no_dev) { /* a preset driver */
28235 dp->dmap_opcl = init_dmap[i].dmap_opcl;
28236 dp->dmap_io = init_dmap[i].dmap_io;
28237 dp->dmap_driver = init_dmap[i].dmap_driver;
28238 dp->dmap_flags = init_dmap[i].dmap_flags;
28239 } else { /* no default */
28240 dp->dmap_opcl = no_dev;
28241 dp->dmap_io = 0;
28242 dp->dmap_driver = 0;
28243 dp->dmap_flags = DMAP_MUTABLE;
28244 }
28245 }
28246
28247 /* Get settings of ’controller’ and ’driver’ at the boot monitor. */
28248 if ((s = env_get_param("label", driver, sizeof(driver))) != OK)
28249 panic(__FILE__,"couldn’t get boot monitor parameter ’driver’", s);
28250 if ((s = env_get_param("controller", controller, sizeof(controller))) != OK)
28251 panic(__FILE__,"couldn’t get boot monitor parameter ’controller’", s);
28252
28253 /* Determine major number to map driver onto. */
28254 if (controller[0] == ’f’ && controller[1] == ’d’) {
28255 major = FLOPPY_MAJOR;
28256 }
28257 else if (controller[0] == ’c’ && isdigit(controller[1])) {
28258 if ((nr = (unsigned) atoi(&controller[1])) > NR_CTRLRS)
28259 panic(__FILE__,"monitor ’controller’ maximum ’c#’ is", NR_CTRLRS);
28260 major = CTRLR(nr);
28261 }
28262 else {
28263 panic(__FILE__,"monitor ’controller’ syntax is ’c#’ of ’fd’", NO_NUM);
28264 }
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28265
28266 /* Now try to set the actual mapping and report to the user. */
28267 if ((s=map_driver(major, DRVR_PROC_NR, STYLE_DEV)) != OK)
28268 panic(__FILE__,"map_driver failed",s);
28269 printf("Boot medium driver: %s driver mapped onto controller %s.\n",
28270 driver, controller);
28271 }

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
servers/fs/device.c

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

28300 /* When a needed block is not in the cache, it must be fetched from the disk.
28301 * Special character files also require I/O. The routines for these are here.
28302 *
28303 * The entry points in this file are:
28304 * dev_open: FS opens a device
28305 * dev_close: FS closes a device
28306 * dev_io: FS does a read or write on a device
28307 * dev_status: FS processes callback request alert
28308 * gen_opcl: generic call to a task to perform an open/close
28309 * gen_io: generic call to a task to perform an I/O operation
28310 * no_dev: open/close processing for devices that don’t exist
28311 * tty_opcl: perform tty-specific processing for open/close
28312 * ctty_opcl: perform controlling-tty-specific processing for open/close
28313 * ctty_io: perform controlling-tty-specific processing for I/O
28314 * do_ioctl: perform the IOCTL system call
28315 * do_setsid: perform the SETSID system call (FS side)
28316 */
28317
28318 #include "fs.h"
28319 #include <fcntl.h>
28320 #include <minix/callnr.h>
28321 #include <minix/com.h>
28322 #include "file.h"
28323 #include "fproc.h"
28324 #include "inode.h"
28325 #include "param.h"
28326
28327 #define ELEMENTS(a) (sizeof(a)/sizeof((a)[0]))
28328
28329 extern int dmap_size;
28330
28331 /*===========================================================================*
28332 * dev_open *
28333 *===========================================================================*/
28334 PUBLIC int dev_open(dev, proc, flags)
28335 dev_t dev; /* device to open */
28336 int proc; /* process to open for */
28337 int flags; /* mode bits and flags */
28338 {
28339 int major, r;
28340 struct dmap *dp;
28341
28342 /* Determine the major device number call the device class specific
28343 * open/close routine. (This is the only routine that must check the
28344 * device number for being in range. All others can trust this check.)



MINIX SOURCE CODE File: servers/fs/device.c 1023

28345 */
28346 major = (dev >> MAJOR) & BYTE;
28347 if (major >= NR_DEVICES) major = 0;
28348 dp = &dmap[major];
28349 r = (*dp->dmap_opcl)(DEV_OPEN, dev, proc, flags);
28350 if (r == SUSPEND) panic(__FILE__,"suspend on open from", dp->dmap_driver);
28351 return(r);
28352 }

28354 /*===========================================================================*
28355 * dev_close *
28356 *===========================================================================*/
28357 PUBLIC void dev_close(dev)
28358 dev_t dev; /* device to close */
28359 {
28360 (void) (*dmap[(dev >> MAJOR) & BYTE].dmap_opcl)(DEV_CLOSE, dev, 0, 0);
28361 }

28363 /*===========================================================================*
28364 * dev_status *
28365 *===========================================================================*/
28366 PUBLIC void dev_status(message *m)
28367 {
28368 message st;
28369 int d, get_more = 1;
28370
28371 for(d = 0; d < NR_DEVICES; d++)
28372 if (dmap[d].dmap_driver == m->m_source)
28373 break;
28374
28375 if (d >= NR_DEVICES)
28376 return;
28377
28378 do {
28379 int r;
28380 st.m_type = DEV_STATUS;
28381 if ((r=sendrec(m->m_source, &st)) != OK)
28382 panic(__FILE__,"couldn’t sendrec for DEV_STATUS", r);
28383
28384 switch(st.m_type) {
28385 case DEV_REVIVE:
28386 revive(st.REP_PROC_NR, st.REP_STATUS);
28387 break;
28388 case DEV_IO_READY:
28389 select_notified(d, st.DEV_MINOR, st.DEV_SEL_OPS);
28390 break;
28391 default:
28392 printf("FS: unrecognized rep %d to DEV_STATUS\n",st.m_type);
28393 /* Fall through. */
28394 case DEV_NO_STATUS:
28395 get_more = 0;
28396 break;
28397 }
28398 } while(get_more);
28399
28400 return;
28401 }
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28403 /*===========================================================================*
28404 * dev_io *
28405 *===========================================================================*/
28406 PUBLIC int dev_io(op, dev, proc, buf, pos, bytes, flags)
28407 int op; /* DEV_READ, DEV_WRITE, DEV_IOCTL, etc. */
28408 dev_t dev; /* major-minor device number */
28409 int proc; /* in whose address space is buf? */
28410 void *buf; /* virtual address of the buffer */
28411 off_t pos; /* byte position */
28412 int bytes; /* how many bytes to transfer */
28413 int flags; /* special flags, like O_NONBLOCK */
28414 {
28415 /* Read or write from a device. The parameter ’dev’ tells which one. */
28416 struct dmap *dp;
28417 message dev_mess;
28418
28419 /* Determine task dmap. */
28420 dp = &dmap[(dev >> MAJOR) & BYTE];
28421
28422 /* Set up the message passed to task. */
28423 dev_mess.m_type = op;
28424 dev_mess.DEVICE = (dev >> MINOR) & BYTE;
28425 dev_mess.POSITION = pos;
28426 dev_mess.PROC_NR = proc;
28427 dev_mess.ADDRESS = buf;
28428 dev_mess.COUNT = bytes;
28429 dev_mess.TTY_FLAGS = flags;
28430
28431 /* Call the task. */
28432 (*dp->dmap_io)(dp->dmap_driver, &dev_mess);
28433
28434 /* Task has completed. See if call completed. */
28435 if (dev_mess.REP_STATUS == SUSPEND) {
28436 if (flags & O_NONBLOCK) {
28437 /* Not supposed to block. */
28438 dev_mess.m_type = CANCEL;
28439 dev_mess.PROC_NR = proc;
28440 dev_mess.DEVICE = (dev >> MINOR) & BYTE;
28441 (*dp->dmap_io)(dp->dmap_driver, &dev_mess);
28442 if (dev_mess.REP_STATUS == EINTR) dev_mess.REP_STATUS = EAGAIN;
28443 } else {
28444 /* Suspend user. */
28445 suspend(dp->dmap_driver);
28446 return(SUSPEND);
28447 }
28448 }
28449 return(dev_mess.REP_STATUS);
28450 }

28452 /*===========================================================================*
28453 * gen_opcl *
28454 *===========================================================================*/
28455 PUBLIC int gen_opcl(op, dev, proc, flags)
28456 int op; /* operation, DEV_OPEN or DEV_CLOSE */
28457 dev_t dev; /* device to open or close */
28458 int proc; /* process to open/close for */
28459 int flags; /* mode bits and flags */
28460 {
28461 /* Called from the dmap struct in table.c on opens & closes of special files.*/
28462 struct dmap *dp;



MINIX SOURCE CODE File: servers/fs/device.c 1025

28463 message dev_mess;
28464
28465 /* Determine task dmap. */
28466 dp = &dmap[(dev >> MAJOR) & BYTE];
28467
28468 dev_mess.m_type = op;
28469 dev_mess.DEVICE = (dev >> MINOR) & BYTE;
28470 dev_mess.PROC_NR = proc;
28471 dev_mess.COUNT = flags;
28472
28473 /* Call the task. */
28474 (*dp->dmap_io)(dp->dmap_driver, &dev_mess);
28475
28476 return(dev_mess.REP_STATUS);
28477 }

28479 /*===========================================================================*
28480 * tty_opcl *
28481 *===========================================================================*/
28482 PUBLIC int tty_opcl(op, dev, proc, flags)
28483 int op; /* operation, DEV_OPEN or DEV_CLOSE */
28484 dev_t dev; /* device to open or close */
28485 int proc; /* process to open/close for */
28486 int flags; /* mode bits and flags */
28487 {
28488 /* This procedure is called from the dmap struct on tty open/close. */
28489
28490 int r;
28491 register struct fproc *rfp;
28492
28493 /* Add O_NOCTTY to the flags if this process is not a session leader, or
28494 * if it already has a controlling tty, or if it is someone elses
28495 * controlling tty.
28496 */
28497 if (!fp->fp_sesldr || fp->fp_tty != 0) {
28498 flags |= O_NOCTTY;
28499 } else {
28500 for (rfp = &fproc[0]; rfp < &fproc[NR_PROCS]; rfp++) {
28501 if (rfp->fp_tty == dev) flags |= O_NOCTTY;
28502 }
28503 }
28504
28505 r = gen_opcl(op, dev, proc, flags);
28506
28507 /* Did this call make the tty the controlling tty? */
28508 if (r == 1) {
28509 fp->fp_tty = dev;
28510 r = OK;
28511 }
28512 return(r);
28513 }

28515 /*===========================================================================*
28516 * ctty_opcl *
28517 *===========================================================================*/
28518 PUBLIC int ctty_opcl(op, dev, proc, flags)
28519 int op; /* operation, DEV_OPEN or DEV_CLOSE */
28520 dev_t dev; /* device to open or close */
28521 int proc; /* process to open/close for */
28522 int flags; /* mode bits and flags */
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28523 {
28524 /* This procedure is called from the dmap struct in table.c on opening/closing
28525 * /dev/tty, the magic device that translates to the controlling tty.
28526 */
28527
28528 return(fp->fp_tty == 0 ? ENXIO : OK);
28529 }

28531 /*===========================================================================*
28532 * do_setsid *
28533 *===========================================================================*/
28534 PUBLIC int do_setsid()
28535 {
28536 /* Perform the FS side of the SETSID call, i.e. get rid of the controlling
28537 * terminal of a process, and make the process a session leader.
28538 */
28539 register struct fproc *rfp;
28540
28541 /* Only MM may do the SETSID call directly. */
28542 if (who != PM_PROC_NR) return(ENOSYS);
28543
28544 /* Make the process a session leader with no controlling tty. */
28545 rfp = &fproc[m_in.slot1];
28546 rfp->fp_sesldr = TRUE;
28547 rfp->fp_tty = 0;
28548 return(OK);
28549 }

28551 /*===========================================================================*
28552 * do_ioctl *
28553 *===========================================================================*/
28554 PUBLIC int do_ioctl()
28555 {
28556 /* Perform the ioctl(ls_fd, request, argx) system call (uses m2 fmt). */
28557
28558 struct filp *f;
28559 register struct inode *rip;
28560 dev_t dev;
28561
28562 if ( (f = get_filp(m_in.ls_fd)) == NIL_FILP) return(err_code);
28563 rip = f->filp_ino; /* get inode pointer */
28564 if ( (rip->i_mode & I_TYPE) != I_CHAR_SPECIAL
28565 && (rip->i_mode & I_TYPE) != I_BLOCK_SPECIAL) return(ENOTTY);
28566 dev = (dev_t) rip->i_zone[0];
28567
28568 return(dev_io(DEV_IOCTL, dev, who, m_in.ADDRESS, 0L,
28569 m_in.REQUEST, f->filp_flags));
28570 }

28572 /*===========================================================================*
28573 * gen_io *
28574 *===========================================================================*/
28575 PUBLIC void gen_io(task_nr, mess_ptr)
28576 int task_nr; /* which task to call */
28577 message *mess_ptr; /* pointer to message for task */
28578 {
28579 /* All file system I/O ultimately comes down to I/O on major/minor device
28580 * pairs. These lead to calls on the following routines via the dmap table.
28581 */
28582
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28583 int r, proc_nr;
28584 message local_m;
28585
28586 proc_nr = mess_ptr->PROC_NR;
28587 if (! isokprocnr(proc_nr)) {
28588 printf("FS: warning, got illegal process number (%d) from %d\n",
28589 mess_ptr->PROC_NR, mess_ptr->m_source);
28590 return;
28591 }
28592
28593 while ((r = sendrec(task_nr, mess_ptr)) == ELOCKED) {
28594 /* sendrec() failed to avoid deadlock. The task ’task_nr’ is
28595 * trying to send a REVIVE message for an earlier request.
28596 * Handle it and go try again.
28597 */
28598 if ((r = receive(task_nr, &local_m)) != OK) {
28599 break;
28600 }
28601
28602 /* If we’re trying to send a cancel message to a task which has just
28603 * sent a completion reply, ignore the reply and abort the cancel
28604 * request. The caller will do the revive for the process.
28605 */
28606 if (mess_ptr->m_type == CANCEL && local_m.REP_PROC_NR == proc_nr) {
28607 return;
28608 }
28609
28610 /* Otherwise it should be a REVIVE. */
28611 if (local_m.m_type != REVIVE) {
28612 printf(
28613 "fs: strange device reply from %d, type = %d, proc = %d (1)\n",
28614 local_m.m_source,
28615 local_m.m_type, local_m.REP_PROC_NR);
28616 continue;
28617 }
28618
28619 revive(local_m.REP_PROC_NR, local_m.REP_STATUS);
28620 }
28621
28622 /* The message received may be a reply to this call, or a REVIVE for some
28623 * other process.
28624 */
28625 for (;;) {
28626 if (r != OK) {
28627 if (r == EDEADDST) return; /* give up */
28628 else panic(__FILE__,"call_task: can’t send/receive", r);
28629 }
28630
28631 /* Did the process we did the sendrec() for get a result? */
28632 if (mess_ptr->REP_PROC_NR == proc_nr) {
28633 break;
28634 } else if (mess_ptr->m_type == REVIVE) {
28635 /* Otherwise it should be a REVIVE. */
28636 revive(mess_ptr->REP_PROC_NR, mess_ptr->REP_STATUS);
28637 } else {
28638 printf(
28639 "fs: strange device reply from %d, type = %d, proc = %d (2)\n",
28640 mess_ptr->m_source,
28641 mess_ptr->m_type, mess_ptr->REP_PROC_NR);
28642 return;
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28643 }
28644
28645 r = receive(task_nr, mess_ptr);
28646 }
28647 }

28649 /*===========================================================================*
28650 * ctty_io *
28651 *===========================================================================*/
28652 PUBLIC void ctty_io(task_nr, mess_ptr)
28653 int task_nr; /* not used - for compatibility with dmap_t */
28654 message *mess_ptr; /* pointer to message for task */
28655 {
28656 /* This routine is only called for one device, namely /dev/tty. Its job
28657 * is to change the message to use the controlling terminal, instead of the
28658 * major/minor pair for /dev/tty itself.
28659 */
28660
28661 struct dmap *dp;
28662
28663 if (fp->fp_tty == 0) {
28664 /* No controlling tty present anymore, return an I/O error. */
28665 mess_ptr->REP_STATUS = EIO;
28666 } else {
28667 /* Substitute the controlling terminal device. */
28668 dp = &dmap[(fp->fp_tty >> MAJOR) & BYTE];
28669 mess_ptr->DEVICE = (fp->fp_tty >> MINOR) & BYTE;
28670 (*dp->dmap_io)(dp->dmap_driver, mess_ptr);
28671 }
28672 }

28674 /*===========================================================================*
28675 * no_dev *
28676 *===========================================================================*/
28677 PUBLIC int no_dev(op, dev, proc, flags)
28678 int op; /* operation, DEV_OPEN or DEV_CLOSE */
28679 dev_t dev; /* device to open or close */
28680 int proc; /* process to open/close for */
28681 int flags; /* mode bits and flags */
28682 {
28683 /* Called when opening a nonexistent device. */
28684
28685 return(ENODEV);
28686 }

28688 /*===========================================================================*
28689 * clone_opcl *
28690 *===========================================================================*/
28691 PUBLIC int clone_opcl(op, dev, proc, flags)
28692 int op; /* operation, DEV_OPEN or DEV_CLOSE */
28693 dev_t dev; /* device to open or close */
28694 int proc; /* process to open/close for */
28695 int flags; /* mode bits and flags */
28696 {
28697 /* Some devices need special processing upon open. Such a device is "cloned",
28698 * i.e. on a succesful open it is replaced by a new device with a new unique
28699 * minor device number. This new device number identifies a new object (such
28700 * as a new network connection) that has been allocated within a task.
28701 */
28702 struct dmap *dp;
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28703 int minor;
28704 message dev_mess;
28705
28706 /* Determine task dmap. */
28707 dp = &dmap[(dev >> MAJOR) & BYTE];
28708 minor = (dev >> MINOR) & BYTE;
28709
28710 dev_mess.m_type = op;
28711 dev_mess.DEVICE = minor;
28712 dev_mess.PROC_NR = proc;
28713 dev_mess.COUNT = flags;
28714
28715 /* Call the task. */
28716 (*dp->dmap_io)(dp->dmap_driver, &dev_mess);
28717
28718 if (op == DEV_OPEN && dev_mess.REP_STATUS >= 0) {
28719 if (dev_mess.REP_STATUS != minor) {
28720 /* A new minor device number has been returned. Create a
28721 * temporary device file to hold it.
28722 */
28723 struct inode *ip;
28724
28725 /* Device number of the new device. */
28726 dev = (dev & ˜(BYTE << MINOR)) | (dev_mess.REP_STATUS << MINOR);
28727
28728 ip = alloc_inode(root_dev, ALL_MODES | I_CHAR_SPECIAL);
28729 if (ip == NIL_INODE) {
28730 /* Oops, that didn’t work. Undo open. */
28731 (void) clone_opcl(DEV_CLOSE, dev, proc, 0);
28732 return(err_code);
28733 }
28734 ip->i_zone[0] = dev;
28735
28736 put_inode(fp->fp_filp[m_in.fd]->filp_ino);
28737 fp->fp_filp[m_in.fd]->filp_ino = ip;
28738 }
28739 dev_mess.REP_STATUS = OK;
28740 }
28741 return(dev_mess.REP_STATUS);
28742 }

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
servers/fs/time.c

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

28800 /* This file takes care of those system calls that deal with time.
28801 *
28802 * The entry points into this file are
28803 * do_utime: perform the UTIME system call
28804 * do_stime: PM informs FS about STIME system call
28805 */
28806
28807 #include "fs.h"
28808 #include <minix/callnr.h>
28809 #include <minix/com.h>
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28810 #include "file.h"
28811 #include "fproc.h"
28812 #include "inode.h"
28813 #include "param.h"
28814
28815 /*===========================================================================*
28816 * do_utime *
28817 *===========================================================================*/
28818 PUBLIC int do_utime()
28819 {
28820 /* Perform the utime(name, timep) system call. */
28821
28822 register struct inode *rip;
28823 register int len, r;
28824
28825 /* Adjust for case of ’timep’ being NULL;
28826 * utime_strlen then holds the actual size: strlen(name)+1.
28827 */
28828 len = m_in.utime_length;
28829 if (len == 0) len = m_in.utime_strlen;
28830
28831 /* Temporarily open the file. */
28832 if (fetch_name(m_in.utime_file, len, M1) != OK) return(err_code);
28833 if ( (rip = eat_path(user_path)) == NIL_INODE) return(err_code);
28834
28835 /* Only the owner of a file or the super_user can change its time. */
28836 r = OK;
28837 if (rip->i_uid != fp->fp_effuid && !super_user) r = EPERM;
28838 if (m_in.utime_length == 0 && r != OK) r = forbidden(rip, W_BIT);
28839 if (read_only(rip) != OK) r = EROFS; /* not even su can touch if R/O */
28840 if (r == OK) {
28841 if (m_in.utime_length == 0) {
28842 rip->i_atime = clock_time();
28843 rip->i_mtime = rip->i_atime;
28844 } else {
28845 rip->i_atime = m_in.utime_actime;
28846 rip->i_mtime = m_in.utime_modtime;
28847 }
28848 rip->i_update = CTIME; /* discard any stale ATIME and MTIME flags */
28849 rip->i_dirt = DIRTY;
28850 }
28851
28852 put_inode(rip);
28853 return(r);
28854 }

28856 /*===========================================================================*
28857 * do_stime *
28858 *===========================================================================*/
28859 PUBLIC int do_stime()
28860 {
28861 /* Perform the stime(tp) system call. */
28862 boottime = (long) m_in.pm_stime;
28863 return(OK);
28864 }
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INDEX TO FILES

Include directory 03400 include/minix/sysutil.h
00000 include/ansi.h 02800 include/minix/type.h
00200 include/errno.h 01800 include/sys/dir.h
00900 include/fcntl.h 02100 include/sys/ioc�disk.h
00100 include/limits.h 02000 include/sys/ioctl.h
00700 include/signal.h 01600 include/sys/sigcontext.h
00600 include/string.h 01700 include/sys/stat.h
01000 include/termios.h 01400 include/sys/types.h
01300 include/timers.h 01900 include/sys/wait.h
00400 include/unistd.h
04400 include/ibm/interrupt.h Drivers
04300 include/ibm/portio.h 10800 drivers/drivers.h
04500 include/ibm/ports.h 12100 drivers/at�wini/at�wini.c
03500 include/minix/callnr.h 12000 drivers/at�wini/at�wini.h
03600 include/minix/com.h 11000 drivers/libdriver/driver.c
02300 include/minix/config.h 10800 drivers/libdriver/driver.h
02600 include/minix/const.h 11400 drivers/libdriver/drvlib.c
04100 include/minix/devio.h 10900 drivers/libdriver/drvlib.h
04200 include/minix/dmap.h 11600 drivers/memory/memory.c
02200 include/minix/ioctl.h 15900 drivers/tty/console.c
03000 include/minix/ipc.h 15200 drivers/tty/keyboard.c
02500 include/minix/sys�config.h 13600 drivers/tty/tty.c
03200 include/minix/syslib.h 13400 drivers/tty/tty.h
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Kernel 22900 servers/fs/inode.c
10400 kernel/clock.c 21900 servers/fs/inode.h
04700 kernel/config.h 27000 servers/fs/link.c
04800 kernel/const.h 23800 servers/fs/lock.c
08000 kernel/exception.c 21800 servers/fs/lock.h
05300 kernel/glo.h 24000 servers/fs/main.c
08100 kernel/i8259.c 26700 servers/fs/mount.c
05400 kernel/ipc.h 24500 servers/fs/open.c
04600 kernel/kernel.h 22000 servers/fs/param.h
08700 kernel/klib.s 26300 servers/fs/path.c
08800 kernel/klib386.s 25900 servers/fs/pipe.c
07100 kernel/main.c 27800 servers/fs/protect.c
06200 kernel/mpx.s 21200 servers/fs/proto.h
06300 kernel/mpx386.s 25000 servers/fs/read.c
05700 kernel/priv.h 27500 servers/fs/stadir.c
07400 kernel/proc.c 23300 servers/fs/super.c
05500 kernel/proc.h 22100 servers/fs/super.h
08300 kernel/protect.c 22200 servers/fs/table.c
05800 kernel/protect.h 28800 servers/fs/time.c
05100 kernel/proto.h 21100 servers/fs/type.h
05600 kernel/sconst.h 25600 servers/fs/write.c
06900 kernel/start.c
09700 kernel/system.c Process manager
09600 kernel/system.h 19300 servers/pm/break.c
10300 kernel/system/do�exec.c 17100 servers/pm/const.h
10200 kernel/system/do�setalarm.c 18700 servers/pm/exec.c
06000 kernel/table.c 18400 servers/pm/forkexit.c
04900 kernel/type.h 20400 servers/pm/getset.c
09400 kernel/utility.c 17500 servers/pm/glo.h

18000 servers/pm/main.c
File System 20500 servers/pm/misc.c
21600 servers/fs/buf.h 17600 servers/pm/mproc.h
22400 servers/fs/cache.c 17700 servers/pm/param.h
21000 servers/fs/const.h 17000 servers/pm/pm.h
28300 servers/fs/device.c 17300 servers/pm/proto.h
28100 servers/fs/dmap.c 19500 servers/pm/signal.c
21700 servers/fs/file.h 17800 servers/pm/table.c
23700 servers/fs/filedes.c 20300 servers/pm/time.c
21500 servers/fs/fproc.h 20200 servers/pm/timers.c
20900 servers/fs/fs.h 17200 servers/pm/type.h
21400 servers/fs/glo.h
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1401, 8, 9
360, 10
7094, 8, 9, 10
6502, 14
6600, 378
8086, 14

A

Absolute path name, 493
Access control list, 540–542
Access matrix, 539
Acknowledgement, 86
ACL (see Access Control List)
Active partition, 116
Ada, 5
Adapter, device, 223, 287
Address

physical, 149
virtual, 385

Address space, 20
Admission scheduler, 101
Adversary, 527
Advisory file locking, 261, 563
Aging algorithm, 107, 402–403
Aiken, Howard, 7
Alarm signal, 21, 445

implementation in MINIX 3, 464–467
Allocation, local versus global, 406–-408
Amoeba, 544–545
ANSI C, 132
ANSI terminal escape sequence, 314–316
Alias, 505
Aperiodic real time system, 109
Apple, 14–15, 505, 508
Architecture, computer, 4
Argc, 30
Argv, 30
Assembly language, 7
Associative memory, 393
Asynchronous input/output, 230
Atomic action, 78
Attribute, file, 488–489
Authentication, 86, 533–537
Avoidance of deadlock, 247–252

1035



1036 INDEX

B

Babbage, Charles, 6
Backup, file system, 513–516
Bad block, 285
Banker’s algorithm, 247–248, 250–252
Base register, 377
Basic input/output system, 375
Batch scheduling, 99–102
Batch system, 8
Berkeley software distribution, 13
Best-fit algorithm, 382
Bibliography

alphabetical, 618–625
suggested readings, 611–617

Binary semaphore, 79
BIOS (see Basic Input/Output System)
Big-endian machine, 567
Bitmap, 31, 122, 152, 153, 154, 172, 179,

380–381, 553–555
Block, 61
Block cache, 40, 520
Block device, 222, 232
Block read ahead, 522
Block size, 235, 509–511
Block special file, 24, 25, 39, 53, 274, 557, 601
Block started by symbol, 156, 178, 423, 460
Boot block, 158, 497, 550
Boot disk, 116
Boot image, 117, 158–159, 356–357, 451–455
Boot monitor, 130, 149, 158–160
Boot parameter, 159, 288
Bootstrap, 116
Bootstrapping MINIX 3, 156–160
Bounded buffer, 76
BSD (see Berkeley Software Distribution)
BSS (see) Block Started by Symbol
Buffer cache, 520
Buffering, 230, 235
Busy waiting, 73, 226
Byron, Lord, 5
Byte order, 567

C

Cache, file system, 520–522
Call gate, 419
Canonical mode, 37, 308

Capability, 542–545
Capability list, 542
Catching signals, MINIX 3, 463–464
Cats, identification method used, 535
Cbreak mode, 37, 314
CDC 6600, 378
Challenge-response authentication, 535
Channel, covert 545–548
Character device, 222, 232
Character special file, 24, 25, 34, 53, 236, 318, 557

564, 565, 586, 601
Checkerboarding, 414
Child process, 21
Circular wait condition, 240–241
C language, 58, 125–126, 131, 140, 146, 150, 164
Classical IPC problems, 88–93

dining philosophers, 89–92
readers and writers, 92–93

Cleaner, 525
Click, 141, 428
Client process, 50
Client-server system, 49–51
C-list, 542
Clock, 204
Clock algorithm, 400
Clock driver, MINIX 3, 208–214
Clock hardware, 204–206
Clock interrupt handler, MINIX 3, 210
Clock page replacement algorithm, 400
Clock software, 206–208
Clock task, 113

MINIX 3, 204–214
Clock tick, 205
Clock ticks, lost, 150, 210, 212
CMS (see Conversational Monitor System)
Code page, 309
Combined I and D space, 422, 423, 431, 432, 437
Command interpreter, 20
Compaction, 378
Compatible time sharing system, 12, 105
Compute-bound process, 94, 99–100
Condition variable, 83
Conditional compilation, 133–135
Confinement problem, 546
Consistency, file system, 516–519
Context switch, 103, 150
Contiguous file allocation, 499–500
Control sequence introducer, 327
Controller, device, 223–225
Conversational monitor system, 47



INDEX 1037

Cooked mode, 36, 308
Cookie, 530
Core dump, 439
Core image, 20
Covert channel, 545–548
CP/M, 14
CPU scheduler, 102
CPU utilization, 98
CRT monitor, 304
CRTSO (see C Run Time Start Off)
C run-time start-off, 437
Critical region, 70–71
Critical section, 70–71
Crystal oscillator, 204
C-threads, 66
CTSS (see Compatible Time Sharing System)
Current directory, 494

D

Daemon, 58, 115, 236
Data confidentiality, 526
Data integrity, 526
Data loss, accidental, 531
Data segment, 30
DDOS attack (see Distributed Denial Of Service

attack)
Deadlock, 81, 237–252

banker’s algorithm, 247–248, 250–252
condition, 240
definition, 239–240
detection and recovery, 244–245
ostrich algorithm, 242–244
resource, 238–239
safe state, 248

Deadlock avoidance, 247–252
Deadlock handling, MINIX 3, 260–261
Deadlock modeling, 240–242
Deadlock prevention, 245–247
Deadly embrace (see Deadlock),
Debug dump, 152
Dedicated device, 235
#define, 133
Degree of multiprogramming, 102
Dekker’s algorithm, 73
Demand paging, 404
Denial of service attack, 527–528
Descriptor table, 155

Design principles, security, 532–533
Detection, deadlock, 244–245
Device controller, 223–225
Device driver, 114, 115, 223, 231–233

MINIX 3, 256–259, 273–277, 287–302,
316–366

Device independence, 229
Device-independent I/O, MINIX 3, 259–260
Device register, 2
Dining philosophers problem, 89–92
Direct memory access, 227–229
Directory, 22, 486, 491–497

hierarchical, 492–493
implementation, 502–509
NTFS, 507–509
UNIX, 506–507
Windows 98, 505–506

Directory management, 38–40
Directory operation, 496–497
Dirty bit, 392
Disk, 278–302

floppy, 4, 116, 300–302
hard, 287–300

Disk arm scheduling, 281–284
Disk block size, 509–511
Disk block, managing free blocks, 511–512
Disk operating system, 14
Disk optimization, 523–524
Disk software, 281–286
Disk space management, 509–512
Disk hardware, 278–280
Disk partition, 269–271
Diskette (see floppy disk)
Diskless workstation, 160
Display driver, MINIX 3, 357–366
Display software, 314–316
Distributed denial of service attack, 529
Distributed operating system, 15
Distributed shared memory, 410
Distributed system, 13
DMA (see Direct Memory Access)
Domain, protection, 537–539
DOS (see Disk Operating System)
DOS attack (see Denial of Service attack)
Double indirect block, 502
D space, 422–424, 432, 434, 435
Dump

incremental, 514
logical, 515
physical, 515
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E

ECC (see Error-Correcting Code),
Echoing, 309
Eckert, J. Presper, 7
EIDE (see Extended IDE disk)
Elevator algorithm, 282–283
Engelbart, Douglas, 15
Error-correcting code, 224, 367
Error handling, 230, 284–286
Error reporting, 235
Escape character, 312
Escape sequence, 315–316
Exception, 173, 177
Executable script, 458
Exokernel, 49
Extended IDE disk, 289
Extended key prefix, 354
Extended machine, 5
Extended partition, 270, 498
External fragmentation, 414

F

Fair-share scheduling, 108–109
FAT (see File Allocation Table)
Feature test macro, 132, 147
FIFO (see First-In First-Out algorithm)
File, 22–25, 482–491

block special, 24, 25, 39, 53, 274, 557, 601
character special, 24, 25, 34, 53, 236, 318,

557, 564, 565, 586, 601
executable, 115, 130, 148, 160,178, 262,

263, 433–436, 459, 486, 487
regular, 485, 486, 584, 585

File access, 488
File allocation

contiguous, 499–500
linked-list, 500–502

File allocation table, 501–502
File attribute, 488–489
File backup, 513–516
File descriptor, 24, 33
File extension, 483
File locking, advisory, 261
File management, 33–38
File naming, 482–484
File operation, 490–491

File position, 562
File server, 13
File structure, 484–485
File system, 114, 481–548

bitmaps, 553–555
cache, 520–522
consistency, 516–519
directories, 491–497, 505–509
disk space management, 509–512
implementation, 497–525
layout, 497–498
log-structured, 524–525
MINIX 3, 548–606
performance, 519–524
read ahead, 522
reliability, 512–519
root, 24, 39, 269, 273, 560, 582

File transfer protocol, 40
File type, 485–487
Filler character, 311
Finger-length identification, 535–536
Fingerprint identification, 535
Firmware, 269, 287
First-come first-served scheduling, 99–100
First-fit algorithm, 382
First generation computer, 7
First-in first-out page replacement, 399
Fixed partitions, 375–376
Flat panel display, 304
Floppy disk, 4, 116–117, 271, 300–302, 512, 550
Floppy disk driver, MINIX 3, 300–302
Folder, 491
FORTRAN, 8–9
Fragmentation

external, 414
internal, 517

Free block, 511–512
Free memory table, 451
FS (see File System)
FTP (see File Transfer Protocol)
Function key, 119, 121, 352, 355, 356
Function prototype, 132
Fungible resource, 238

G

GDT (see Global Descriptor Table)
GE-645, 12
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Generic right, 544
GID (see Group IDentification)
Glass tty, 307
Global allocation, 406–408
Global descriptor table, 415–416
Global page allocation algorithms, 406–407
Graphical user interface, 15
Group, 541
Group identification, 22
Guaranteed scheduling, 107
GUI (see Graphical User Interface)

H

Handler, interrupt, 79, 169, 186, 187, 209–210,
227, 252–255

Handler, signal, 21, 32, 65, 66, 438, 442, 444,
464, 467–468

Hard disk driver, MINIX 3, 287–300
Hard link, 496, 504
Hard real time, 109
Hardware scrolling, 326
Header files, POSIX, 126
Header file, MINIX 3, 130–146
Hierarchical directories, 492–493
History of operating systems, 6–19

MINIX, 16–19
first generation, 7
second generation, 7–9
third generation, 9–14

Hold and wait condition, 320, 245–246
Hole list, MINIX 3, 431–432
Hole table, 431, 451
HTTP (see HyperText Transfer Protocol)
Hypertext transfer protocol, 40

I

#if, 136, 161
#ifdef, 133, 134, 140
Idle task, 192
I-node, 38, 502
I/O (see Input/Output)
I/O adapter, 287
I/O bound process, 94, 95, 100–102,104
I/O channel, 224

I/O device, 222–223
I/O device controller, 223–224
I/O in MINIX 3, 253–366

block device, 261–271
disk, 287–302
display, 314–316, 323–331
keyboard, 308–314, 318–323
overview, 252–261
RAM disk, 271–277
terminal driver, 331–366

I/O port, 225
I/O protection level, 148
I/O software, 229–237
IBM 360, 10
IBM 1401, 8, 9
IBM 7094, 8, 9, 10
IBM PC, 14–15, 17
IBM System/360, 10
IDE (see Integrated Drive Electronics)
IDT (see Interrupt Descriptor Table)
Immediate file, 508, 557
Include file, MINIX 3, 131
Incremental dump, 514
Indirect block, 502
Inet server, 114
Information server, 114, 119, 356
Init process, 60, 115–120, 127–129, 160, 166, 455
Initial program loader, 497
Initialization

MINIX kernel, 118–120
MINIX file system, 580, 582
MINIX process manager, 451–455

Initialized variable, 150
Input/Output, 221–367

block size, 235
buffering, 235
clock, 204–214
controller, 223–225
daemon, 236
dedicated device, 235
device, 222–223
disk, 278–302
DMA, 227–229
error reporting, 235
memory-mapped, 225–226
RAM disk, 271–277
software, 229–237
spooled, 236
terminal, 302–366
user-space, 236–237
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Input/Output software, device independent,
233–236

Instruction set architecture, 2
Integrated drive electronics, 278
Intel 8086, 14
Intelligent terminal, 307
Interactive scheduling, 102–109
Internal fragmentation, 409
Interprocess communication, 21, 68–88, 142

busy waiting, 71–76
critical section, 70–71
dining philosophers, 89–92
message passing, 85–88
MINIX 3, 120–122, 178–182
monitor, 81–85
mutex, 81
mutual exclusion, 71–76
Peterson’s algorithm, 74–75
producer-consumer, 76–81, 83–85
race condition, 69–70
readers and writers, 92–93
semaphore, 78–81
sleep and wakeup, 76–78
spooler directory, 69–70

Interrupt, 226–227
Interrupt descriptor table, 64, 163, 188
Interrupt handler, 186, 231

MINIX 3, 252–256
Interrupt request, 227
Interrupt vector, 64, 167, 171–172, 201, 213, 227
Intruder, 527
Inverted page table, 395
IOPL (see I/O Protection Level)
IPC (see InterProcess Communication)
IPC primitive, 194
IPL (see Initial Program Loader)
IRQ (see Interrupt ReQuest),
IS (see Information Server)
ISA (see Instruction Set Architecture)
I space, 422–424, 432, 434, 435

J

Java virtual machine, 48
Job, 7
Job control, 31, 340
Jobs, Steven, 15
JVM (see Java Virtual Machine)

K

Kernel, 49, 112
Kernel call, 43, 113, 193, 426
Kernel mode, 3, 113
Kernighan & Ritchie C, 132, 139, 149, 450
Key logger, 529
Keyboard driver, MINIX 3, 350–357
Keyboard input, MINIX 3, 318–323
Keyboard software, 308–314
Keymap, 309, 329
K&R C (see Kernighan & Ritchie C)

L

LAMP (stands for Linux, Apache, MySql, PHP/Perl)
LAN (see Local Area Network)
Layered operating system, 45–46
LBA (see Logical Block Addressing)
LBA48 disk addressing, 294
LDT (see Local Descriptor Table)
Least recently used algorithm, 401
LFS (see Log-Structured File System)
Lightweight process, 65
Limit register, 377
Linear address, 417
Linear block addressing, 293–297
Link, file, 504
Link, hard, 504
Link, symbolic, 505
Linked list file allocation, 500–501
Linux, 18
Little-endian machine, 567
Load control, 408
Loadable fonts, 331
Loadable keymaps, 328–331
Local allocation, 406–408
Local area network, 13
Local descriptor table, 188, 415–416
Local label, 171
Local page allocation algorithms, 406
Locality of reference, 392, 404
Lock file, 261
Lock variable, 72
Log-structured file system, 524–525
Logic bomb, 529
Logical block addressing, 279, 293
Logical dump, 515
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Logical partition, 498
Lord Byron, 5
Lottery scheduling, 107–108
Lovelace, Ada, 5
LRU (see Least Recently Used algorithm)

M

Master file table, 508
Mac OS X, 15
Machine language, 2
Magic number, 156, 486, 550, 567
Mailbox, 88
Mainframe, 7
Major device number, 234
Makefile, 125
Malware, 528–530

key logger, 529
logic bomb, 529–530
spyware, 530
Trojan horse, 529
virus, 528
worm, 529

Master boot record, 116, 497
Master file table, 503, 508
Masterboot, 157, 497
Mauchley, John, 7
MBR (see Master Boot Record)
Mechanism, 421
Mechanism versus policy, 51, 110
Memory compaction, 378–379
Memory hierarchy, 373
Memory management, 373–476

basic, 374–378
best-fit algorithm, 382
bitmaps, 380–381
design issues, 404–410
first-fit algorithm, 382
linked lists, 381–383
next-fit algorithm, 382
page replacement, 396–403
quick-fit algorithm, 383
segmentation, 410–420
swapping, 378–383
virtual memory, 383–396
worst-fit algorithm, 382

Memory management unit, 385
Memory manager, 373

Memory-mapped input/output, 225–226
Memory-mapped terminal, 304–306
Memory scheduler, 102
Message passing, 85–88

MINIX 3, 425–426
Message-passing interface, 88
Message primitive, 194
Metadata, 485, 488
MFT (see Master File Table)
MFT (see Multiprogramming with Fixed Tasks)
Microarchitecture level, 2
Microcomputer, 14
Microprocessor, 14
Microprogram, 2
Microsoft, 14, 15
Middleware, 13
MINIX 3

alarms and timers, 464–467
bitmaps, 553–555
block cache, 557–559
block device, 261–271
block device drivers, 262–265
boot block, 550, 559, 582
boot monitor, 130, 149, 158–160, 162, 164, 167, 190,

213, 288, 353, 356, 365, 451–455, 480
boot parameters, 158–164, 167, 273, 288–289, 292,

452, 454, 582, 599–600
bootstrapping, 156–160
catching a signal, 442–445
clock driver implementation, 212–214
clock interrupt handler, 210
clock services, 212
clock task, 204–214
compiling and running, 128–130
core dump, 32, 35, 311–312, 439, 442, 444, 448, 453,

469–470, 516
data structures, 146–156
deadlock handling, 260–261
debugging dump, 121, 606
device driver, 256–259
device-independent I/O, 259–260
device-independent terminal driver, 331-350
DEV�CANCEL request, 265, 290
DEV�CLOSE request, 265, 268, 289–290, 333
DEV�GATHER request, 265, 275, 290, 294
DEV�IOCTL request, 265, 268, 290, 332, 333
DEV�IO�READY, 601
DEV�MAP, 599
DEV�NO�STATUS, 601
DEV�OPEN request, 265, 289, 292, 601
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MINIX 3 (continued)
DEV�READ request, 265, 290, 294–295, 332, 337
DEV�SCATTER request, 265, 275, 290, 294
DEV�SELECT request, 265, 290
DEV�REVIVE, 601
DEV�UNMAP, 599
DEV�WRITE request, 265, 290, 294–295, 332
directories and paths, 559–561

implementation, 591–595
disks, 278–302
display driver, 357–366
driver library, 269–271
escape sequence, 316, 323, 324, 327, 353,

358, 362, 370
EXTERN definition, 138, 140, 450, 568–570
file descriptor, 561–563, 578
file locking, 563 ,578–579
file operations, 583–590
file position, 33, 561–563, 565, 569, 585, 586–587
file system, 481–607

block management, 570–574
header files, 566-569
implementation, 566–606
overview, 548–566
initialization, 580–582
main program, 579
table management, 570–579

file system header, 566–570
file system layout, 550–553
floppy disk driver, 262, 265, 266, 269, 300–302
hard disk driver, 287–300
hardware-dependent kernel support, 185–190
header files, 130–146
history, 16–19
hole list, 431–432
i-node management, 574–576
i-nodes, 555–557
I/O, 253–366
I/O, overview, 252–261
implementation of process management, 125–214
implementation,

clock driver, 212–214
file system, 566–606
hard disk driver, 290–300
memory driver, 274–277
process manager, 447–475
processes, 125–192
system task, 197–204
terminal driver, 331–366

initialization, 118–120, 160–167

MINIX 3 (continued)
initialized variables, 149, 155
internal structure, 112–116
interprocess communication, 120–122, 178–182
interrupt handling, 167–178, 252–256
keyboard driver, 350–357
keyboard input, 318–323
loadable fonts, 328–331
loadable keymaps, 328–331
magic number, 156, 178, 550–551, 553, 567, 578, 593
memory layout, 422–425
memory management utilities, 473–475
memory management

implementation, 447–475
overview, 420–447

message, 550
message handling, 425–426
millisecond timing, 211–212
notification, 425, 451
overview of processes, 112–124
overview

clock driver, 208–212
file system, 548–566
hard disk driver, 287–300
memory driver, 273–274
process manager, 420–447
processes, 112–124
system task, 194–197
terminal driver, 316–331

path name processing, 506–507, 591–592
pipes and special files, 563–565, 590–591
PM data structures, 426–427
process manager, 420–475

data structures, 447–450
header files, 447–450
implementation, 447–475
initialization, 451–455
main program, 450–455
overview, 420–447

process scheduling 122–124
processes in memory, 428–430
RAM disk, 271–277
reincarnation server, 119
scheduling, 182–185
shared text, 423, 430–431
signal, 441
signal handling, 438–445, 462–470
source code organization, 125–128
special files, 24–25, 35, 36, 39, 234–236, 273–274,

318, 486, 557, 564–565, 586, 593–594, 597–601
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MINIX 3 (continued)
startup, 116–118
superblock management, 576–578
synchronous alarm, 195, 199, 201, 202,

210– 212, 298
system initialization, 160–167
system library, 200–204
system task, 192–204
tasks, 105, 113, 115–118, 123, 125, 127,

128, 145, 150, 152, 154–156, 164–166, 182,
184, 185

terminal data structure, 309, 312
terminal driver, 316–366
terminal output, 323–331
termios structure, 37, 134, 138, 313, 317,

332–334, 337–339, 344–345, 347–348, 602
time management, 603
timer implementation, 470
user-level I/O software, 260
user-space timers, 445–446
utilities, 190–192
watchdog timer, 210–211
zombies, 433, 442, 444, 456–457, 467

MINIX 3 files
/boot/image, 130, 158
/dev/boot, 267, 274, 276–277
/dev/console, 318, 340, 350
/dev/fd0, 302, 599
/dev/klog, 606
/dev/kmem, 267, 273–274, 276–277
/dev/log, 340
/dev/mem, 267, 273, 274, 276, 277
/dev/null, 267, 271, 273, 274, 275, 276
/dev/pc0, 302
/dev/ram, 267, 273, 274, 275, 276, 277
/dev/tty, 602
/dev/ttyc1, 350
/dev/zero, 267, 271, 274, 275, 276
/etc/passwd, 119
/etc/rc, 60, 119, 130, 195, 599
/etc/termcap, 334
/etc/ttytab, 60, 119
/sbin/floppy, 599
/usr/adm/wtmp, 119
/usr/bin/getty, 119
/usr/bin/login, 119
/usr/bin/stty, 119
/usr/lib/i386/libsysutil.a, 144
/usr/spool/locks/, 261
drivers/tty/vidcopy.s, 360

MINIX 3 files (continued)
init, 115–120, 127–129, 160, 166, 455
keymap.src, 329
src/drivers/log/, 606
src/servers/inet/, 606
src/servers/is/, 606
src/servers/rs/, 606
std.src, 350
us-std.src, 330

MINIX 3 kernel calls
notify, 121–122, 178–179, 181, 194

210–211, 214, 261
receive, 121–123, 178–181, 210,
revive, 145
send, 85, 86, 88, 121–123, 143, 151, 178, 181,

194, 214, 261, 318, 394, 454
sendrec, 120–122, 143, 154, 261, 318, 454
sys�abort, 353
sys�copy, 456
sys�datacopy, 268, 596, 603
sys�exit, 277, 456
sys�fork, 456
sys�getimage, 453
sys�getinfo, 453–454, 475, 600
sys�getkinfo, 276
sys�getkmessages, 365
sys�getmachine, 277, 334
sys�insw, 293
sys�irqctl, 255
sys�irqenable, 294, 300, 355
sys�irqsetpolicy, 293, 355
sys�kill, 352, 469
sys�memset, 460
sys�newmap, 460
sys�physcopy, 276
sys�privctl, 600
sys�segctl, 277
sys�setalarm, 297–298, 349, 364, 471
sys�sigsend, 469
sys�times, 471
sys�vircopy, 276, 365
sys�voutb, 297–298, 363

MINIX 3 source files
8259.c, 186
a.out.h, 459
alloc.c, 431, 473–474
ansi.h, 131–133, 135
at�wini.c, 263, 291–300, 371
bios.h, 146, 291
bitmap.h, 146
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MINIX 3 source files (continued)
break.c, 462
brksize.s, 438
buf.h, 568–569
cache.c, 570–574
callnr.h, 145
cdprobe.c, 582, 606
chmem, 480
clock.c, 208–214
cmos.h, 146
com.h, 145, 152
config.h, 132, 138, 139, 147–148, 152, 192,

198, 333, 355, 559, 567, 569, 570, 591, 609
console.c, 318, 350–358, 365
const.h, 127, 139, 141, 147, 148, 149, 447–448,

567, 569, 609
cpu.h, 146
crtso.s, 437–438
device.c, 598, 600, 602
devio.h, 145, 298
dir.h, 136, 567
diskparm.h, 146
dmap.c, 598, 600
dmap.h, 145, 598
do�exec.c, 201, 202, 146
do�irqctl.c, 319
do�setalarm.c, 201
driver.c, 256, 265–268, 274, 275, 291
driver.h, 256, 293
drvlib.c, 263, 269–271, 292
drvlib.h, 269
errno.h, 133
exception.c, 185, 440
exec.c, 458–461
fcntl.h, 134, 332, 447
file.c, 487
file.h, 569
filedes.c, 578
forkexit.c, 455–458
fproc.h, 568
fs.h, 131, 567
getset.c, 471–473
glo.h, 139, 140, 147, 149–150, 155, 171, 186,

192, 212, 447–450, 567–568
i8259.c, 172, 185–188
inode.h, 569
installboot, 129, 158
int86.h, 146
interrupt.h, 146
ioc�disk.h, 137

MINIX 3 source files (continued)
ioctl.h, 137–138
ipc.h, 142–143, 147, 150
is, 119
kernel.h, 131, 144, 146–147, 150, 447, 567
keyboard.c, 318, 329, 350, 355, 357
keymap.h, 146, 330–331, 352
klib.s, 190–192
klib386.s, 190, 200, 213
limits.h, 133, 585
link.c, 594–595
lock.c, 578
lock.h, 569
log, 117, 128
main.c, 162, 163, 167, 182, 450–455, 579–582,

600
memory.c, 274, 277
memory.h, 146
misc.c, 190, 471–473, 603, 605
mount.c, 593–594
mproc.h, 428, 448–450
mpx.s, 161, 190
mpx386.s, 148, 156, 161–163, 165–167, 170,

174, 178, 185, 187, 219
mpx88.s, 161
open.c, 583, 585
param.h, 450, 569
partition.h, 146, 269
path.c, 583, 592
pipe.c, 590–591, 601
pm.h, 131, 447, 567
portio.h, 146
ports.h, 146
priv.h, 153–154, 179
proc.c, 140, 150, 179–181
proc.h, 150–153, 182, 449, 455
prog.c, 483
protect.c, 185, 188–190, 597
protect.h, 154–155, 188
proto.h, 147, 149, 447–451, 567–568
ptrace.h, 136
pty.c, 336
read.c, 573, 586, 588
resource.h, 455
sconst.h, 150, 153
select.c, 605
select.h, 137, 605
setalarm.c, 201
sigcontext.h, 136
signal.c, 462–470
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MINIX 3 source files (continued)
signal.h, 134, 440, 448
stadir.c, 596
start.c, 162, 163, 167, 188–189
stat.h, 136, 567
statfs.h, 597
stddef.h, 135
stdio.h, 135
stdlib.h, 135
string.h, 134
super.c, 576
super.h, 569
svrctl.h, 136
sys�config.h, 138, 139, 161
syslib.h, 144, 197, 475
system.c, 194, 197–200
system.h, 155, 197, 198
sysutil.h, 144
table.c, 140, 149, 155–156, 164, 165, 182,

192, 447–449, 453, 568, 570
termios.h, 134, 138, 317, 334, 602
time.c, 471, 603
timers.c, 470, 605
timers.h, 135, 470
trace.c, 473
tty.c, 256, 318, 333–350
tty.h, 256, 332–334
ttytab, 433
type.h, 141, 147, 148–149, 186, 197, 267,

447, 472, 567
types.h, 135–136
u64.h, 145–146
unistd.h, 134, 447
utility.c, 192, 473–475, 605
wait.h, 136
write.c, 586–590

MINIX 3 POSIX system calls
access, 547, 597
alarm, 67–68, 114, 197, 206, 211, 425, 464–465
brk, 114, 420, 424, 425, 426, 429, 437,

437–438, 461–462, 462, 468
chdir, 114, 562, 596
chmod, 597
chown, 597
chroot, 562, 596, 608
close, 263–264, 490, 583, 598, 602
closedir, 496
creat, 578, 583, 584, 590, 597
dup, 603
dup2, 603

MINIX 3 POSIX system calls (continued)
exec, 60, 120, 135, 188, 191, 202, 420–421

422–425, 430, 432–437, 455–459, 568,
596, 599

execve, 58–59
exit, 59, 114, 120, 425, 455, 456, 604
fchdir, 596
fcntl, 578, 603, 604
fork, 58, 59, 60, 67, 114, 120, 152, 192, 194
fork, 244, 420–423, 425, 432–433, 448, 455–458,

476, 562, 604
fstat, 136, 568, 575, 596
get�time, 142
getgid, 426, 447, 471
getpgrp, 447, 471
getpid, 426, 447, 471
getprocnr, 425
getsetpriority, 425
getsysinfo, 425
getuid, 426, 447, 471
ioctl, 137–138, 277, 313–314, 316, 317, 330, 331,

333, 338, 339, 341, 348, 365, 366, 598, 602
kill, 59, 114, 196, 425, 440, 464
link, 496
lock, 491
lseek, 562, 569, 583
mkdir, 583–585
mknod, 583–585
mount, 114, 553, 560, 591, 592
open, 235, 264, 267, 332, 490, 494, 542, 559, 578,

583–586, 591, 598, 600, 601, 602
opendir, 496
pause, 61, 425, 466, 469, 470
pipe, 590
ptrace, 136, 425, 447, 473
read, 275, 314, 333, 337, 338, 342, 346, 349, 444,

445, 469, 488, 490, 496, 537, 548, 561, 565,
566, 586–588, 602, 603

readdir, 496
reboot, 425, 447, 469
rename, 491, 496, 594, 607
rmdir, 594
sbrk, 426, 437
seek, 488, 490
select, 136, 338, 350, 351, 349–350, 591, 601, 605
setgid, 447, 471
setpriority, 219
setsid, 447, 471, 602
setuid, 447, 471
sigaction, 425, 438, 442, 462, 465



1046 INDEX

MINIX 3 POSIX system calls (continued)
sigalrm, 440
sigint, 440
sigkill, 463
signal, 83, 231
sigpending, 425, 464
sigpipe, 440
sigprocmask, 438, 442, 464
sigreturn, 425, 439, 442, 444, 464, 466, 467
sigsuspend, 425, 464, 467, 469–470
sleep, 76–78, 83
stat, 136, 568, 575, 596
stime, 425, 446, 471, 603
sync, 521, 522, 558, 559, 572, 604
time, 425, 446, 471
times, 197, 425, 446, 471
umask, 597
umount, 592, 594
unlink, 114, 497, 591, 594
unpause, 145
utime, 447, 603
wait, 83–84, 136, 231, 425, 431–433,

455–458, 470
waitpid, 136, 425, 457
wakeup, 76–79, 83
write, 236, 276, 324, 333, 338, 358, 359,

469, 490, 522, 537, 561, 588–590,
598, 602

Minor device, 40, 234
Missing block, 517
Mkfs command, 553–554, 582
MMU (see Memory Management Unit)
Mode, 28, 33, 40, 41, 557, 562, 568, 584
Modified bit, 392, 597
Monitor, 81–85, 158
Monolithic operating system, 42–45
Monoprogramming, 374–375
MOSTEK 6502, 14
Motherboard (see Parentboard)
Motif, 15
Motorola 68000, 15, 141
Mounted file system, 230
MPI (see Message Passing Interface)
MS-DOS, 15
MULTICS, 12–13
Multilevel page table, 389–391
Multiple queue scheduling, 105–106
Multiprocessor, 55
Multiprogramming, 9–11, 56, 375–376
Multiprogramming with fixed tasks, 376

Murphy’s law, 69
Mutex, 81
Mutual exclusion 70, 320, 245

N

NEC PD 765 chip, 4
Network operating system, 15
Network server, 114
New technology file system, 483, 507

directory, 507–509
Next-fit algorithm, 382
NFU (see Not Frequently Used algorithm)
Noncanonical mode, 37, 308
Nonpreemptable resource, 239
Nonpreemptive scheduling, 96
Nonresident attribute, 508
Not frequently used algorithm, 401
Not recently used algorithm, 398
Notification message, 451
Notification, MINIX 3, 425, 451
NRU algorithm (see Not Recently Used algorithm)
NTFS (see New Technology File System)
Null pointer, 192, 333, 463

O

Object, 540
Off-line printing, 8
One-shot mode, 204
One-time password, 534
Open source, 19
Operating system, 1

as extended machine, 4–5
as resource manager, 5–6
characteristics, 4–6
client-server, 49–51
file systems, 481–606
history, 6–19
input/output, 221–366
layered, 45–46
memory management, 373–475
processes, 55–214
structure, 42–51
virtual machine, 46–49

Operating system concepts, 19–26
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Optimal page replacement, 397
OS/360, 10–11, 46, 376
Ostrich algorithm, 242–244
Overlapped seek, 278
Overlays, 383

P

Page, virtual memory, 385
Page directory, 417
Page fault, 386
Page fault frequency algorithm, 407–408
Page frame, 385
Page replacement algorithm, 396–403

aging, 402–403
clock, 400
first-in, first-out, 399
global, 406–407
least recently used, 401
local, 406–407
not recently used, 398
optimal, 397
page fault frequency, 407
second chance, 399–400
WSclock, 400

Page size, 408–410
Page table, 387, 388–392

inverted, 395–396
multilevel, 389–391

Page table structure, 391–392
Paging, 384–410

Pentium, 415–419
design issues, 404–410

Parentboard, 227, 278, 287, 291, 306, 350
Partition, 40, 116
Partition table, 116
Password, 533–535

challenge-response, 535
one-time, 534
salted, 534

Path name, 22, 493–496
PDP-1, 13
PDP-7, 13
PDP-11, 14
Penetration team, 531
Pentium, paging, 415–419
Pentium, virtual memory, 415–420
Performance, file system, 519–524

Periodic real time system, 109
Permission bits (see mode)
Peterson’s solution, 73–75
PFF (see Page Fault Frequency algorithm)
Physical address, 149
Physical dump, 515
Physical identification, 535–536
PID, 29
Pipe, 25
Pixel, 304
Plug ’n Play, 227
Plug-in, browser, 530
PM (see Process Manager)
Policy, 421
Policy versus mechanism, 51, 110
Polling, 226
Ports, I/O (see I/O ports)
POSIX, 14

header files, 126
Preamble, disk block, 224
Preemptable resource, 238
Preemptive scheduling, 96
Prepaging, 405
Preprocessor, C, 58, 132, 140, 161, 450
Present/absent bit, 386
Prevention of deadlock, 245–247
Primary partition, 498
Primitive, message, 85, 112, 120–122, 143, 154,

178, 194, 214, 318
Principal, 540
Principle of least privilege, 545
Printer daemon, 69
Priority inversion, 76
Priority scheduling, 104–105
Privacy, 527
PRIVATE, 140, 573, 576
Privilege level, 155
Process, 20–22, 55–214
Process control block, 62
Process creation, 57–59
Process hierarchy, 60
Process implementation, 62–64

MINIX 3, 125–192
Process management, 27–31

MINIX 3, 116–120
Process manager, 114, 420

data structures, 447–450
header files, 447–450
implementation, 447–475
initialization, 451–455
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Process manager (continued)
main program, 450–455
overview, 420–447

Process model, 56–57
Process scheduling, 93–112

MINIX 3, 122–124, 182–185
Process state, 60–62
Process switch, 103
Process table, 20, 62
Process termination, 59–60
Processor status word, 148
Producer-consumer problem, 76–88
Prompt, 25
Proportionality, 98
Protected mode, 141
Protection, 40–42
Protection domain, 537–548
Protection mechanism, 526, 537–548
Pseudo terminal, 260, 317
Pseudoparallelism, 55
PSW, 148
P-threads, 66
PUBLIC, 140, 199, 202, 209, 212–213, 334, 573

Q

Quantum, 103
Queue(s)

character input, 311–313, 318–323, 332–333,
341–349, 352

input, 58, 100–101
multilevel in MINIX, 123–124, 151–153, 156,

166, 173, 182–185, 198, 215
multiple, 105–106
process, 99
send, 178, 180–181
timer, 197

Quickfit algorithm, 383

R

Race condition, 70
RAID (see Redundant Array of Inexpensive Disks)
RAM disk, 117, 271–277

Random access file, 488
Raw mode, 36, 308
Read Only Memory, 15
Readers-and-writers problem, 92–93
Real-time scheduling, 109–110
Real time system, 109, 206
Recycle bin, 513
Redundant array of inexpensive disks, 280–281
Reference monitor, 537
Referenced bit, 392
Regular file, 486
Reincarnation server, 60, 114, 599
Relative path name, 494
Reliability, file system, 512–513
Relocation, memory, 377–378
Rendezvous, 88
Reserved suffix, 135
Resource, 238

fungible, 238, 242
nonpreemptable, 238–239
preemptable, 238–239

Resource deadlock, 240
Resource manager, 5–6
Resource trajectory, 249–250
Response time, 98
Right

capability, 538
generic, 540, 544

RISC, 15, 19, 394
Role, 541
ROM (see Read Only Memory)
Root directory, 22
Root file system, 24
Round-robin scheduling, 103–104
RS (see Reincarnation Server)
RS232 terminal, 306–307
Run-to-completion scheduling, 96
RWX bits, 23, 584 (see also mode)

S

Safe state, 248
Salted password, 534
SATA (see Serial AT Attachment)
Scan code, 319
Schedulable system, 109
Scheduler, 94
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Scheduling
batch system, 99–102
categories of algorithms, 96
fair-share, 108–109
first-come first-served, 99–100
goals, 97–99
guaranteed, 107
interactive system, 102–109
lottery, 107–108
MINIX 3, 182–185
multiple queue, 105–106
nonpreemptive, 96, 99–103
policy vs. mechanism, 110
preemptive, 96, 99–103, 123, 213
priority, 104–105
process, 93–112
real-time system, 109–110
round-robin, 103–104
shortest job first, 100–101
shortest process next, 106–107
shortest remaining time next, 101
thread, 110–112
three level, 101–102
XDS 940, 106

Scheduling algorithm, 94–112
Scheduling mechanism, 110
Scheduling policy, 110
Scrolling, 326
SCSI, 223, 513
Second chance paging algorithm, 399–400
Second generation computer, 7–9
Security, 526–548

access control list, 539–542
capability, 542–545
design principles, 532–533
physical identification, 535–536
protection mechanisms, 40–41, 148, 163,

526, 537–548
viruses, 528–529
worms, 529

Security attack, 527–532
Security flaws, 531–532
Security threat, 526–527
Segment, 412

data, 30–31, 63, 178, 188, 379–380, 415–416,
423–424, 428–429, 434–435, 437–438,
440–441, 445, 459–462, 468, 516

descriptor table, 424
Intel versus MINIX, 188, 424
memory, 412

Segment (continued)
register, 424
stack, 30–31, 120, 177, 188, 380, 409, 412, 424,

428–429, 431, 440, 455–462
text, 30, 63, 253, 273, 428, 431, 434, 455–456,

460
Segmentation, 410–420
Segmentation, implementation, 414–420

Pentium, 415–420
Semaphore, 78–81
Separate I and D space, 422
Sequential access file, 488
Sequential process, 56
Serial AT Attachment, 291
Serial line, 260
Server, 50, 114
Service, 115

MINIX 3, 119
Session leader, 340
SETUID bit, 38, 40–41, 447, 459, 472, 519,

538–539, 557
Shared library, 413
Shared text, 423, 430

MINIX 3, 430–431
Shebang, 458
Shell, 20, 25–26
Shortcut, 505
Shortest job first scheduling, 100–101
Shortest process next scheduling, 106–107
Shortest remaining time next scheduling, 101
Shortest seek first algorithm, 282
Signal, 31–33, 114, 438
Signal handler, 438
Signal handling, MINIX 3, 438–445
Signals, implementation in MINIX 3, 462–464
Single large expensive disk, 280
SLED (see Single Large Expensive Disk)
Sleep and wakeup, 76
Sleep primitive, 76
Soft real time, 109
Software interrupt, 123
Software scrolling, 326
Source code organization, MINIX 3, 125–128
Sparse file, 570
Special file, 24
Spin lock, 73
Spooling, 11, 236
Spooling directory, 69, 236
Spyware, 530
Square-wave mode, 204
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SSF (see Shortest Seek First algorithm)
Stack segment, 30
Standard C (see ANSI C)
Standard input, 26
Standard output, 26
Starvation, 90
State, 248
Static, 140
Status bit, 226
Strict alternation, 72
Striping, disk, 280
Strobed register, 298
Stty command, 119, 311, 352
Subject, 540
Subpartition table, 157, 267, 270, 498
Superblock, 498, 551
Superuser, 22
Supervisor call, 43
Supervisor mode, 3
Swapping, 378–383
Symbolic link, 505
Synchronization, 81
Synchronous alarm, 210
Synchronous input/output, 230
System availability, 527
System call, 19, 26–42, 193

directory management, 38–40
file management, 33–38
process management, 27–31
signaling, 31–33

System image (see Boot image)
System library, MINIX 3, 200–204
System notification message, 425
System process, 115
System task, MINIX 3, 113, 192–204
System V, 13

T

Tagged architecture, 542–543
Task, 115
Task state segment, 169, 188
Terminal driver, MINIX 3, 316–366
Terminal hardware, 303–307
Terminal input, MINIX 3, 318–323
Terminal mode, 36
Terminal output, MINIX 3, 323–331
Terminal software, 307–316

Termios structure, 37, 134, 138, 313, 317, 332–334,
337–339, 344–345, 347–348, 602

Text segment, 30
Third generation computer, 9–14
Thompson, Ken, 137
Thrashing, 404
Threads, 64–68

C-threads, 66
P-threads, 66

Threat, security, 526–527
Three-level scheduling, 101–102
Throughput, 98
Tiger team, 531
Timer, 204

user-space in MINIX 3, 445–446
Timers, implementation in MINIX 3, 464–467
Timesharing, 11
TLB (see Translation Lookaside Buffer)
Track-at-a-time caching, 286
Translation lookaside buffer, 392–394
Trap, 123, 194
Trapdoor, 532
Triple indirect block, 502
Trojan horse, 529
TSL instruction, 75–76
TSS (see Task State Segment)
Turnaround time, 98
Two-phase locking, 252

U

UART (see Universal Asynchronous Receiver
Transmitter

UID (see User IDentification)
Uniform interface, input/output device, 233–234
Uniform naming, 229
Universal asynchronous receiver transmitter, 306
Universal coordinated time, 205
UNIX

beginning of time, 205
boot block, 158
deadlock, 244
device driver, 257
device numbers, 234
directories, 502-507, 559-560
error reporting, 67
file system caching, 521-522
file system consistency, 516-519
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UNIX (continued)
file system, 483-486, 490-497
files, 22-25
history, 13-15
i-nodes, 554-555
interprocess communication, 88
link system call, 38-39
mounted file systems, 229-230
paging, 415
passwords, 533-534
processes, 20-22, 59
process structure
scripts, 458
signals, 340, 440
structure, 256-258
terminal I/O, 310-313
threads, 67-68

User authentication, 533–537
User identification, 22
User-friendliness, 15
User-level I/O software, MINIX 3, 260
User mode, 3, 113
UTC (see Universal Coordinated Time)

V

Vector
interrupt, 64
I/O request, 196, 290, 363, 573

Video controller, 304
Video RAM, 304
Virtual address, 385
Virtual address space, 385
Virtual console, 350
Virtual machine, 1–2, 5, 46–49
Virtual machine monitor, 47
Virtual memory interface, 410
Virtual memory, 378, 383–420

design issues, 404–410
page replacement algorithms, 396–403
paging, 384–396
Pentium, 415–420
segmentation, 410–420
working set model, 404–406

Virus, 528
VM/370, 47
Volume boot code, 497
Von Neumann, John, 7

W

Wakeup primitive, 76–78
Wakeup waiting bit, 78
Watchdog timer, 208

MINIX 3, 210–211
Wildcard, 541
Windows, 15, 48, 52–53, 244, 483–484, 494,

517, 522
Windows 98, 483, 502, 505–506
Windows 2000, 234, 483
Windows NT, 15, 510
Windows XP, 234, 374, 483, 485
Working directory, 23, 494
Working set model, 404–406
Workstation, 13
Worm, 529
Worst-fit algorithm, 382
Write-through cache, 522
WSclock algorithm, 406
WSclock page replacement algorithm, 406

X

X Window system, 15
XDS 940, 106

Z

Zilog Z80, 14
Zombie state, 433
Zuse, Konrad, 7
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SYSTEM REQUIREMENTS
Below is a list of Minimum System Requirements to install the software sup-

plied on this CD. 

HARDWARE
MINIX 3 OS requires the following hardware:

•  PC with a Pentium or compatible processor
• 16 Mb or more of RAM
• 200 Mb of free disk space
• IDE CD-ROM driver
•  IDE hard disk

NOT SUPPORTED: Serial ATA, USB, and SCSI disks are not supported. For
alternative configurations, visit http://www.minix3.org

SOFTWARE
MINIX 3 OS is an operating system. If you wish to retain your existing operat-

ing system and data (recommended) and create a dual-boot machine, you will need
to partition your hard drive. You may use one of the following:

• Partition Magic (http://www.powerquest.com/partitionmagic)
or

• The Partition Resizer (http://www.zeleps.com)
or

• Follow the instructions at http://www.minix3.org/partitions.html

INSTALLATION
Installation can be completed without a live internet connection, but some

advanced documentation is only available online at http://www.minix3.org. Com-
plete installation instructions are supplied on the CD in Adobe Acrobat PDF format. 

PRODUCT SUPPORT
For further technical information about the MINIX software on this CD, visit the

official MINIX website at http://www.minix3.org
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