
Untitled-1 1 07/08/2018 21:31

DIGITAL DESIGN
Principles and Practices

DDPP5.book Page i Tuesday, March 28, 2017 5:46 PM

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

DIGITAL DESIGN
Principles and Practices

Fifth Edition with Verilog

John F. Wakerly

330 Hudson Street, NY NY 10013

DDPP5.book Page iii Tuesday, March 28, 2017 5:46 PM

Senior Vice President Courseware Portfolio Management: Marcia J. Horton
Director, Portfolio Management: Engineering, Computer Science & Global Editions: Julian Partridge
Portfolio Manager Assistant: Michelle Bayman
Field Marketing Manager: Demetrius Hall
Product Marketing Manager: Yvonne Vannatta
Marketing Assistant: Jon Bryant
Content Managing Producer, ECS and Math: Scott Disanno
Operations Specialist: Maura Zaldivar-Garcia
Manager, Rights and Permissions: Ben Ferrini
Cover Designer: Black Horse Designs
Cover Art: “Tuesday Matinee,” by Peter Alan Crowell

Copyright © 2018, 2006, 2000 by Pearson Education, Inc. Hoboken, NJ 07030. All rights reserved. Manufactured in the
United States of America. This publication is protected by copyright and permissions should be obtained from the
publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means,
electronic, mechanical, photocopying, recording, or otherwise. For information regarding permissions, request forms
and the appropriate contacts within the Pearson Education Global Rights & Permissions department, please visit
www.pearsoned.com/permissions/.

Many of the designations by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
those designations appear in this book, and the publisher was aware of a trademark claim, the designations have been
printed in initial caps or all caps. The author and publisher of this book have used their best efforts in preparing this book.
These efforts include the development, research, and testing of theories and programs to determine their effectiveness.

The author and publisher make no warranty of any kind, expressed or implied, with regard to these programs or the
documentation contained in this book. The author and publisher shall not be liable in any event for incidental or
consequential damages with, or arising out of, the furnishing, performance, or use of these programs.

Pearson Education Ltd., London
Pearson Education Singapore, Pte. Ltd
Pearson Education Canada, Inc.
Pearson Education Japan
Pearson Education Australia PTY, Ltd
Pearson Education North Asia, Ltd., Hong Kong
Pearson Education de Mexico, S.A. de C.V.
Pearson Education Malaysia, Pte. Ltd.
Pearson Education, Inc., Hoboken

Library of Congress Cataloging-in-Publication Data on File

ISBN-10: 013446009X
1 16 ISBN-13: 9780134460093

 www.pearsonhighered.com

DDPP5.book Page iv Tuesday, March 28, 2017 5:46 PM

For Ralph and Carm, again

DDPP5.book Page v Tuesday, March 28, 2017 5:46 PM

DDPP5.book Page ii Tuesday, March 28, 2017 5:46 PM

This page intentionally left blank

vii

CONTENTS

Preface xv

1 INTRODUCTION 1
1.1 About Digital Design 1
1.2 Analog versus Digital 3
1.3 Analog Signals 7
1.4 Digital Logic Signals 7
1.5 Logic Circuits and Gates 9
1.6 Software Aspects of Digital Design 13
1.7 Integrated Circuits 16
1.8 Logic Families and CMOS 19
1.9 CMOS Logic Circuits 20
1.10 Programmable Devices 25
1.11 Application-Specific ICs 27
1.12 Printed-Circuit Boards 28
1.13 Digital-Design Levels 29
1.14 The Name of the Game 33
1.15 Going Forward 34
Drill Problems 34

2 NUMBER SYSTEMS AND CODES 35
2.1 Positional Number Systems 36
2.2 Binary, Octal, and Hexadecimal Numbers 37
2.3 Binary-Decimal Conversions 39
2.4 Addition and Subtraction of Binary Numbers 42
2.5 Representation of Negative Numbers 44

2.5.1 Signed-Magnitude Representation 2.5.2 Complement Number Systems
2.5.3 Two’s-Complement Representation
2.5.4 Ones’-Complement Representation 2.5.5 Excess Representations

2.6 Two’s-Complement Addition and Subtraction 48
2.6.1 Addition Rules 2.6.2 A Graphical View 2.6.3 Overflow
2.6.4 Subtraction Rules 2.6.5 Two’s-Complement and Unsigned Binary Numbers

DDPP5.book Page vii Tuesday, March 28, 2017 5:46 PM

viii Contents

2.7 Ones’-Complement Addition and Subtraction 52
2.8 Binary Multiplication 54
2.9 Binary Division 56
2.10 Binary Codes for Decimal Numbers 57
2.11 Gray Code 60
2.12 Character Codes 62
2.13 Codes for Actions, Conditions, and States 64
2.14 n-Cubes and Distance 66
2.15 Codes for Detecting and Correcting Errors 67

2.15.1 Error-Detecting Codes
2.15.2 Error-Correcting and Multiple-Error-Detecting Codes
2.15.3 Hamming Codes 2.15.4 CRC Codes
2.15.5 Two-Dimensional Codes 2.15.6 Checksum Codes
2.15.7 m-out-of-n Codes

2.16 Codes for Transmitting and Storing Serial Data 78
2.16.1 Parallel and Serial Data 2.16.2 Serial Line Codes

References 82
Drill Problems 83
Exercises 85

3 SWITCHING ALGEBRA AND COMBINATIONAL LOGIC 89
3.1 Switching Algebra 91

3.1.1 Axioms 3.1.2 Single-Variable Theorems
3.1.3 Two- and Three-Variable Theorems 3.1.4 n-Variable Theorems
3.1.5 Duality 3.1.6 Standard Representations of Logic Functions

3.2 Combinational-Circuit Analysis 104
3.3 Combinational-Circuit Synthesis 110

3.3.1 Circuit Descriptions and Designs 3.3.2 Circuit Manipulations
3.3.3 Combinational-Circuit Minimization 3.3.4 Karnaugh Maps

3.4 Timing Hazards 122
3.4.1 Static Hazards 3.4.2 Finding Static Hazards Using Maps
3.4.3 Dynamic Hazards 3.4.4 Designing Hazard-Free Circuits

References 126
Drill Problems 128
Exercises 129

4 DIGITAL DESIGN PRACTICES 133
4.1 Documentation Standards 133

4.1.1 Block Diagrams 4.1.2 Gate Symbols
4.1.3 Signal Names and Active Levels 4.1.4 Active Levels for Pins
4.1.5 Constant Logic Signals 4.1.6 Bubble-to-Bubble Logic Design
4.1.7 Signal Naming in HDL Models 4.1.8 Drawing Layout
4.1.9 Buses 4.1.10 Additional Schematic Information

4.2 Circuit Timing 154
4.2.1 Timing Diagrams 4.2.2 Propagation Delay
4.2.3 Timing Specifications 4.2.4 Sample Timing Specifications
4.2.5 Timing Analysis Tools

DDPP5.book Page viii Tuesday, March 28, 2017 5:46 PM

Contents ix

4.3 HDL-Based Digital Design 165
4.3.1 HDL History 4.3.2 Why HDLs?
4.3.3 EDA Tool Suites for HDLs 4.3.4 HDL-Based Design Flow

References 172
Drill Problems 174
Exercises 176

5 VERILOG HARDWARE DESCRIPTION LANGUAGE 177
5.1 Verilog Models and Modules 179
5.2 Logic System, Nets, Variables, and Constants 184
5.3 Vectors and Operators 189
5.4 Arrays 193
5.5 Logical Operators and Expressions 194
5.6 Compiler Directives 197
5.7 Structural Models 198
5.8 Dataflow Models 203
5.9 Behavioral Models (Procedural Code) 205

5.9.1 Always Statements and Blocks 5.9.2 Procedural Statements
5.9.3 Inferred Latches 5.9.4 Assignment Statements
5.9.5 begin-end Blocks 5.9.6 if and if-else Statements
5.9.7 case Statements 5.9.8 Looping Statements

5.10 Functions and Tasks 220
5.11 The Time Dimension 224
5.12 Simulation 225
5.13 Test Benches 226
5.14 Verilog Features for Sequential Logic Design 232
5.15 Synthesis 232
References 233
Drill Problems 234
Exercises 235

6 BASIC COMBINATIONAL LOGIC ELEMENTS 237
6.1 Read-Only Memories (ROMs) 240

6.1.1 ROMs and Truth Tables
6.1.2 Using ROMs for Arbitrary Combinational Logic Functions
6.1.3 FPGA Lookup Tables (LUTs)

6.2 Combinational PLDs 246
6.2.1 Programmable Logic Arrays
6.2.2 Programmable Array Logic Devices

6.3 Decoding and Selecting 250
6.3.1 A More Mathy Decoder Definition 6.3.2 Binary Decoders
6.3.3 Larger Decoders 6.3.4 Decoders in Verilog
6.3.5 Custom Decoders 6.3.6 Seven-Segment Decoders
6.3.7 Binary Encoders

6.4 Multiplexing 281
6.4.1 Gate-Level Multiplexer Circuits 6.4.2 Expanding Multiplexers
6.4.3 Multiplexers, Demultiplexers, and Buses
6.4.4 Multiplexers in Verilog

DDPP5.book Page ix Tuesday, March 28, 2017 5:46 PM

x Contents

References 294
Drill Problems 295
Exercises 296

7 MORE COMBINATIONAL BUILDING BLOCKS 301
7.1 Three-State Devices 302

7.1.1 Three-State Buffers 7.1.2 Standard MSI Three-State Buffers
7.1.3 Three-State Outputs in Verilog 7.1.4 Three-State Outputs in FPGAs

7.2 Priority Encoding 312
7.2.1 Cascading Priority Encoders 7.2.2 Priority Encoders in Verilog

7.3 Exclusive-OR Gates and Parity Functions 320
7.3.1 Exclusive-OR and Exclusive-NOR Gates
7.3.2 Parity Circuits 7.3.3 Parity-Checking Applications
7.3.4 Exclusive-OR Gates and Parity Circuits in Verilog

7.4 Comparing 331
7.4.1 Comparator Structure 7.4.2 Iterative Circuits
7.4.3 An Iterative Comparator Circuit 7.4.4 Magnitude Comparators
7.4.5 Comparators in HDLs 7.4.6 Comparators in Verilog
7.4.7 Comparator Test Benches
7.4.8 Comparing Comparator Performance

7.5 A Random-Logic Example in Verilog 356
Drill Problems 363
Exercises 364

8 COMBINATIONAL ARITHMETIC ELEMENTS 371
8.1 Adding and Subtracting 372

8.1.1 Half Adders and Full Adders 8.1.2 Ripple Adders
8.1.3 Subtractors 8.1.4 Carry-Lookahead Adders
8.1.5 Group Ripple Adders 8.1.6 Group-Carry Lookahead
8.1.7 MSI Arithmetic and Logic Units 8.1.8 Adders in Verilog
8.1.9 Parallel-Prefix Adders 8.1.10 FPGA CARRY4 Element

8.2 Shifting and Rotating 403
8.2.1 Barrel Shifters 8.2.2 Barrel Shifters in Verilog

8.3 Multiplying 416
8.3.1 Combinational Multiplier Structures 8.3.2 Multiplication in Verilog

8.4 Dividing 426
8.4.1 Basic Unsigned Binary Division Algorithm
8.4.2 Division in Verilog

References 433
Drill Problems 433
Exercises 434

9 STATE MACHINES 439
9.1 State-Machine Basics 440
9.2 State-Machine Structure and Analysis 443

9.2.1 State-Machine Structure 9.2.2 Output Logic
9.2.3 State-Machine Timing
9.2.4 Analysis of State Machines with D Flip-Flops

DDPP5.book Page x Tuesday, March 28, 2017 5:46 PM

Contents xi

9.3 State-Machine Design with State Tables 455
9.3.1 State-Table Design Example 9.3.2 State Minimization
9.3.3 State Assignment 9.3.4 Synthesis Using D Flip-Flops
9.3.5 Beyond State Tables

9.4 State-Machine Design with State Diagrams 472
9.4.1 T-Bird Tail Lights Example

9.5 State-Machine Design with ASM Charts 478
9.5.1 T-Bird Tail Lights with ASM Charts

9.6 State-Machine Design with Verilog 483
References 486
Drill Problems 487
Exercises 490

10 SEQUENTIAL LOGIC ELEMENTS 495
10.1 Bistable Elements 496

10.1.1 Digital Analysis 10.1.2 Analog Analysis
10.1.3 Metastable Behavior

10.2 Latches and Flip-Flops 499
10.2.1 S-R Latch 10.2.2 S-R Latch
10.2.3 D Latch 10.2.4 Edge-Triggered D Flip-Flop
10.2.5 Edge-Triggered D Flip-Flop with Enable 10.2.6 T Flip-Flops

10.3 Latches and Flip-Flops in Verilog 508
10.3.1 Instance Statements and Library Components
10.3.2 Behavioral Latch and Flip-Flop Models
10.3.3 More about clocking in Verilog

10.4 Multibit Registers and Latches 522
10.4.1 MSI Registers and Latches
10.4.2 Multibit Registers and Latches in Verilog

10.5 Miscellaneous Latch and Bistable Applications 525
10.5.1 Switch Debouncing 10.5.2 Bus-Holder Circuits

10.6 Sequential PLDs 528
10.7 FPGA Sequential Logic Elements 531
10.8 Feedback Sequential Circuits 534

10.8.1 Basic Analysis
10.8.2 Analyzing Circuits with Multiple Feedback Loops
10.8.3 Feedback Sequential-Circuit Design
10.8.4 Feedback Sequential Circuits in Verilog

References 544
Drill Problems 545
Exercises 547

11 COUNTERS AND SHIFT REGISTERS 553
11.1 Counters 554

11.1.1 Ripple Counters 11.1.2 Synchronous Counters
11.1.3 A Universal 4-Bit Counter Circuit
11.1.4 Decoding Binary-Counter States
11.1.5 Counters in Verilog

DDPP5.book Page xi Tuesday, March 28, 2017 5:46 PM

xii Contents

11.2 Shift Registers 566
11.2.1 Shift-Register Structure 11.2.2 Shift-Register Counters
11.2.3 Ring Counters 11.2.4 Johnson Counters
11.2.5 Linear Feedback Shift-Register Counters
11.2.6 Shift Registers in Verilog 11.2.7 Timing-Generator Examples
11.2.8 LFSR Examples

11.3 Iterative versus Sequential Circuits 593
References 596
Drill Problems 596
Exercises 599

12 STATE MACHINES IN VERILOG 605
12.1 Verilog State-Machine Coding Styles 606

12.1.1 Basic Coding Style 12.1.2 A Verilog State-Machine Example
12.1.3 Combined State Memory and Next-State Logic 12.1.4 Reset Inputs
12.1.5 Pipelined Moore Outputs in Verilog
12.1.6 Direct Verilog Coding Without a State Table
12.1.7 State-Machine Extraction

12.2 Verilog State-Machine Test Benches 616
12.2.1 State-Machine Test-Bench Construction Methods
12.2.2 Example Test Benches
12.2.3 Instrumenting Next-State Logic for Testing
12.2.4 In Summary

12.3 Ones Counter 626
12.4 Combination Lock 628
12.5 T-Bird Tail Lights 632
12.6 Reinventing Traffic-Light Controllers 637
12.7 The Guessing Game 642
12.8 “Don’t-Care” State Encodings 646
12.9 Decomposing State Machines 648

12.9.1 The Guessing Game Again
12.10 The Trilogy Game 656
References 664
Drill Problems 664
Exercises 666

13 SEQUENTIAL-CIRCUIT DESIGN PRACTICES 673
13.1 Sequential-Circuit Documentation Practices 674

13.1.1 General Requirements 13.1.2 Logic Symbols
13.1.3 State-Machine Descriptions
13.1.4 Timing Diagrams and Specifications

13.2 Synchronous Design Methodology 681
13.2.1 Synchronous System Structure
13.2.2 A Synchronous System Design Example

13.3 Difficulties in Synchronous Design 691
13.3.1 Clock Skew 13.3.2 Gating the Clock
13.3.3 Asynchronous Inputs

DDPP5.book Page xii Tuesday, March 28, 2017 5:46 PM

Contents xiii

13.4 Synchronizer Failure and Metastability 701
13.4.1 Synchronizer Failure 13.4.2 Metastability Resolution Time
13.4.3 Reliable Synchronizer Design 13.4.4 Analysis of Metastable Timing
13.4.5 Better Synchronizers 13.4.6 Other Synchronizer Designs

13.5 Two-Clock Synchronization Example 710
References 729
Drill Problems 729
Exercises 730

14 DIGITAL CIRCUITS 733
14.1 CMOS Logic Circuits 735

14.1.1 CMOS Logic Levels 14.1.2 MOS Transistors
14.1.3 Basic CMOS Inverter Circuit
14.1.4 CMOS NAND and NOR Gates
14.1.5 Fan-In 14.1.6 Noninverting Gates
14.1.7 CMOS AND-OR-INVERT and OR-AND-INVERT Gates

14.2 Electrical Behavior of CMOS Circuits 745
14.2.1 Overview 14.2.2 Data Sheets and Specifications

14.3 CMOS Static Electrical Behavior 748
14.3.1 Logic Levels and Noise Margins
14.3.2 Circuit Behavior with Resistive Loads
14.3.3 Circuit Behavior with Nonideal Inputs 14.3.4 Fanout
14.3.5 Effects of Loading 14.3.6 Unused Inputs
14.3.7 How to Destroy a CMOS Device

14.4 CMOS Dynamic Electrical Behavior 764
14.4.1 Transition Time 14.4.2 Propagation Delay
14.4.3 Power Consumption
14.4.4 Current Spikes and Decoupling Capacitors
14.4.5 Inductive Effects
14.4.6 Simultaneous Switching and Ground Bounce

14.5 Other CMOS Input and Output Structures 778
14.5.1 Transmission Gates 14.5.2 Schmitt-Trigger Inputs
14.5.3 Three-State Outputs 14.5.4 Open-Drain Outputs
14.5.5 Driving LEDs and Relays 14.5.6 Multisource Buses
14.5.7 Wired Logic 14.5.8 Pull-Up Resistors

14.6 CMOS Logic Families 790
14.6.1 HC and HCT 14.6.2 AHC and AHCT
14.6.3 HC, HCT, AHC, and AHCT Electrical Characteristics
14.6.4 AC and ACT 14.6.5 FCT and FCT-T

14.7 Low-Voltage CMOS Logic and Interfacing 798
14.7.1 3.3-V LVTTL and LVCMOS Logic Levels 14.7.2 5-V Tolerant Inputs
14.7.3 5-V Tolerant Outputs 14.7.4 TTL/LVTTL Interfacing Summary
14.7.5 Logic Levels Less Than 3.3 V

14.8 Differential Signaling 803
References 804
Drill Problems 805
Exercises 808

DDPP5.book Page xiii Tuesday, March 28, 2017 5:46 PM

xiv Contents

15 ROMS, RAMS, AND FPGAS 813
15.1 Read-Only Memory 814

15.1.1 Internal ROM Structure 15.1.2 Two-Dimensional Decoding
15.1.3 Commercial ROM Types 15.1.4 Parallel-ROM Interfaces
15.1.5 Parallel-ROM Timing
15.1.6 Byte-Serial Interfaces for NAND Flash Memories
15.1.7 NAND Memory Timing and Access Bandwidth
15.1.8 Storage Management for NAND Memories

15.2 Read/Write Memory 833
15.3 Static RAM 834

15.3.1 Static-RAM Inputs and Outputs
15.3.2 Static-RAM Internal Structure 15.3.3 Static-RAM Timing
15.3.4 Standard Asynchronous SRAMs 15.3.5 Synchronous SRAM

15.4 Dynamic RAM 844
15.4.1 Dynamic-RAM Structure 15.4.2 SDRAM Timing
15.4.3 DDR SDRAMs

15.5 Field-Programmable Gate Arrays (FPGAs) 851
15.5.1 Xilinx 7-Series FPGA Family
15.5.2 CLBs and Other Logic Resources 15.5.3 Input/Output Block
15.5.4 Programmable Interconnect

References 863
Drill Problems 864

Index 867

DDPP5.book Page xiv Tuesday, March 28, 2017 5:46 PM

xv

PREFACE

This book is for everyone who wants to design and build real digital circuits. It
is based on the idea that, in order to do this, you have to grasp the fundamentals,
but at the same time you need to understand how things work in the real world.
Hence, the “principles and practices” theme.

The practice of digital design has undergone a major transformation during
the past 30 years, a direct result of the stunning increases in integrated-circuit
speed and density over the same time period. In the past, when digital designers
were building systems with thousands or at most tens of thousands of gates and
flip-flops, academic courses emphasized minimization and efficient use of chip
and board-level resources.

Today, a single chip can contain tens of millions of transistors and can be
programmed to create a system-on-a-chip that, using the technology of the past,
would have required hundreds of discrete chips containing millions of individual
gates and flip-flops. Successful product development nowadays is limited more
by the design team’s ability to correctly and completely specify the product’s
detailed functions, than by the team’s ability to cram all the needed circuits into
a single board or chip. Thus, a modern academic program must necessarily
emphasize design methodologies and software tools, including hardware
description languages (HDLs), that allow very large, hierarchical designs to be
accomplished by teams of designers.

On one hand, with HDLs, we see the level of abstraction for typical designs
moving higher, above the level of individual gates and flip-flops. But at the same
time, the increased speed and density of digital circuits at both the chip and
board level is forcing many digital designers to be more competent at a lower,
electrical circuit level.

The most employable and ultimately successful digital designers are
skilled, or at least conversant, at both levels of abstraction. This book gives you

DDPP5.book Page xv Tuesday, March 28, 2017 5:46 PM

xvi Preface

the opportunity to learn the basics at the high level (HDLs), at the low level
(electrical circuits), and throughout the “vast middle” (gates, flip-flops, and
higher-level digital-design building blocks).

Target Audience
The material in this book is appropriate for introductory and second courses on
digital logic design in electrical or computer engineering or computer science
curricula. Computer science students who are unfamiliar with basic electronics
concepts or who just aren't interested in the electrical behavior of digital devices
may wish to skip Chapter 14; the rest of the book is written to be independent of
this material, as long as you understand the basics in Chapter 1. On the other
hand, anyone with a basic electronics background who wants to get up to speed
on digital electronics can do so by reading Chapter 14. In addition, students with
no electronics background can get the basics by reading a 20-page electronics
tutorial at the author’s website, www.ddpp.com.

Although this book's starting level is introductory, it goes beyond that and
contains much more material than can be taught in a typical introductory course.
I expect that typical courses will use no more than two-thirds of the material
here, but each will use a different two thirds. Therefore, I’ve left it to the individ-
ual instructors and independent readers to tailor their reading to their own needs.
To help these choices along, though, I've marked the headings of optional sec-
tions with an asterisk. In general, these sections can be skipped without any loss
of continuity in the non-optional sections that follow. Also, the material in the
sidebars (aka “boxed comments”) is generally optional.

Undoubtedly, some people will use this book in second courses and in lab-
oratory courses. Advanced students will want to skip the basics and get right into
the fun stuff. Once you know the basics, some of the most important and fun
stuff is in the many sections and examples of digital design using Verilog.

All readers should make good use of the comprehensive index and of the
marginal notes throughout the text that call attention to definitions and impor-
tant topics. Maybe the highlighted topics in this section were more marginal than
important, but I just wanted to show off my text formatting system.

Chapter Descriptions
What follows is a list of short descriptions of this book's fifteen chapters. This
may remind you of the section in typical software guides, “For People Who Hate
Reading Manuals.” If you read this list, then maybe you don't have to read the
rest of the book.

• Chapter 1 gives a few basic definitions and a preview of a few important
topics. It also has a little bit on digital circuits, to enable readers to handle
the rest of the book without Chapter 14’s “deep dive.”

introductory courses

electronics concepts

optional sections

sidebars
boxed comments
second courses
laboratory courses
fun stuff

marginal notes
marginal pun

DDPP5.book Page xvi Tuesday, March 28, 2017 5:46 PM

Preface xvii

• Chapter 2 is an introduction to binary number systems and codes. Readers
who are already familiar with binary number systems from a software
course should still read Sections 2.10–2.13 to get an idea of how binary
codes are used by hardware. Advanced students can get a nice introduction
to error-detecting codes by reading Sections 2.14 and 2.15. The material in
Section 2.16.1 should be read by everyone; it is used in a lot of modern
systems.

• Chapter 3 teaches combinational logic design principles, including
switching algebra and combinational-circuit analysis, synthesis, and
minimization.

• Chapter 4 introduces various digital-design practices, starting with docu-
mentation standards, probably the most important practice for aspiring
designers to start practicing. Next, it introduces timing concepts, especially
for combinational circuits, and it ends with a discussion of HDLs, design
flow, and tools.

• Chapter 5 is a tutorial and reference on Verilog, the HDL that is used
throughout the rest of the book. The first few sections should be read by
all, but some readers may wish to skip the rest until it’s needed, since new
Verilog constructs are summarized in later chapters “on the fly” the first
time they’re used, mainly in Chapter 6.

• Chapter 6 describes two “universal” combinational building blocks, ROMs
and PLDs. It then describes the two most commonly used functional build-
ing blocks, decoders and multiplexers; gate-level and Verilog-based
designs are shown for each. It’s possible for the reader to go from here
directly to state machines in Chapter 9, and come back to 7 and 8 later.

NOT AS LONG
AS IT SEEMS

A few reviewers have complained about the length of previous editions of this book.
The present edition is a little shorter, but also please keep in mind:

• You don't have to read everything. The headings of sections and subsections
that are optional for most readers are marked with an asterisk.

• Stuff written in these “boxed comments” (a.k.a. sidebars) is usually optional too.

• I asked the publisher to print this book in a larger font (11 point) than is typical
for technical texts (10 point). This is easier on your eyes and mine, and it also
allows me to put in more figures and tables while still keeping most of them on
the same facing pages as the referring text. (I do the page layout myself and pay
a lot of attention to this.)

• I write my books to be “reference quality,” with comprehensive topic coverage
and excellent indexing, so you can come back to them in later courses, or later
in your career to refresh or even to learn new things. The cost of books being
what they are these days, you may not keep this book, but the option is there.

DDPP5.book Page xvii Tuesday, March 28, 2017 5:46 PM

xviii Preface

• Chapter 7 continues the discussion of combinational building blocks, at
both the gate level and in Verilog, for three-state devices, priority encoders,
XOR and parity functions, and comparators, then concludes with a Verilog
example design for a nontrivial “random logic” function.

• Chapter 8 covers combinational circuits for arithmetic functions, including
adding and subtracting, shifting, multiplying, and dividing.

• Chapter 9 is a traditional introduction to state machines using D flip-flops,
including analysis and synthesis using state tables, state diagrams, ASM
charts, and Verilog.

• Chapter 10 introduces other sequential elements including latches, more
edge-triggered devices, and their Verilog behavioral models. This chapter
also describes the sequential elements in a typical FPGA and, for interested
readers, has sections on sequential PLDs and feedback sequential circuits.

• Chapter 11 is focused on the two most commonly used sequential-circuit
building blocks, counters and shift registers, and their applications. Both
gate-level and Verilog-based examples are given.

• Chapter 12 gives a lot more details on how to model state machines using
Verilog and gives many examples.

• Chapter 13 discusses important practical concepts for sequential-circuit
design, including synchronous system structure, clocking and clock skew,
asynchronous inputs and metastability, and a detailed two-clock synchro-
nization example in Verilog.

• Chapter 14 describes digital circuit operation, placing primary emphasis
on the external electrical characteristics of logic devices. The starting point
is a basic electronics background including voltage, current, and Ohm's
law. This chapter may be omitted by readers who aren't interested in how
to make real circuits work, or who have the luxury of having someone else
to do the dirty work.

• Chapter 15 is all about memory devices and FPGAs. Memory coverage
includes read-only memory and static and dynamic read/write memories in
terms of both internal circuitry and functional behavior. The last section
gives more details of an FPGA architecture, the Xilinx 7 series.

Most of the chapters contain references, drill problems, and exercises. Drill
problems are typically short-answer or “turn-the-crank” questions that can be
answered directly based on the text material, while exercises typically require a
little more thinking. The drill problems in Chapter 14 are particularly extensive
and are designed to allow non-EEs to ease into this material.

DDPP5.book Page xviii Tuesday, March 28, 2017 5:46 PM

Preface xix

Differences from the Fourth Edition
For readers and instructors who have used previous editions of this book, this
fifth edition has several key differences in addition to general updates:

• This edition covers Verilog only; there’s no VHDL. Bouncing between the
languages is just too distracting. Moreover, Verilog and its successor
SystemVerilog are now the HDLs of choice in non-government settings.
See the excellent, well-reasoned and nicely documented paper by Steve
Golson and Leah Clark, “Language Wars in the 21st Century: Verilog
versus VHDL—Revisited” (2016 Synopsys Users Group Conference), and
jump to the last section if you don’t want to read the whole article.

• This edition has many more HDL examples and a much greater emphasis
on design flow and on test benches, including purely stimulative as well as
self-checking ones.

• To make the book more accessible to non-EE computer engineering stu-
dents, detailed coverage of CMOS circuits has been moved to Chapter 14
and a minimal amount of electronics has been added to Chapter 1 so that
the CMOS chapter can be skipped entirely if desired.

• TTL, SSI, MSI, 74-series logic, PLDs, and CPLDs have been deprecated.

• Karnaugh-map-based minimization has finally been, well, minimized.

• While the book still has a comprehensive Verilog tutorial and reference in
Chapter 5, Verilog concepts are interspersed “just in time” in sidebars in
Chapters 6 and 7 so students can go straight to “the good stuff” there.

• There is a greater emphasis on FPGA-based design, FPGA architectural
features, and synthesis results and trade-offs.

• The chapter on combinational-logic elements has been split into three, to
facilitate going straight to state machines after just the first if desired. This
also allows more coverage of arithmetic circuits in the last.

• An entire chapter has been devoted to state-machine design in Verilog,
including many examples.

• The chapter on synchronous design methodology now contains a detailed
control-unit-plus-datapath example and a comprehensive example on
crossing clocking domains using asynchronous FIFOs.

• The jokes aren’t quite as bad, I hope.

Digital-Design Software Tools
All of the Verilog examples in this book have been compiled and tested using the
Xilinx Vivado® suite, which includes tools for targeting Verilog, SystemVerilog,
and VHDL designs to Xilinx 7-series FPGAs. However, in general there’s no

DDPP5.book Page xix Tuesday, March 28, 2017 5:46 PM

xx Preface

special requirement for the examples to be compiled and synthesized using
Vivado or even to be targeted to Xilinx or any other FPGA. Also, this book does
not contain a tutorial on Vivado; Xilinx has plenty of online materials for that.
Thus, a reader will able to use this text with any Verilog tools, including the ones
described below.

The free “Webpack” edition of Vivado can be downloaded from Xilinx; it
supports smaller 7-series FPGAs, Zynq® SoC-capable FPGAs, and evaluation
boards. It’s a big download, over 10 gigabytes, but it’s a comprehensive tool
suite. Pre-7-series FPGAs as well as the smaller Zynq FPGAs are supported by
the Xilinx ISE® (Integrated Software Environment) tool suite, also available in a
free “Webpack” edition. Note that ISE is supported in “legacy” mode and has
not been updated since 2013. For either suite, go to www.xilinx.com and search
for “Webpack download.”

If you’re using Altera (now part of Intel) devices, they also have a good
University Program and tools; search for “Altera university support” and then
navigate to the “For Students” page. Free tools include their Quartus™ Prime
Lite Edition for targeting Verilog, SystemVerilog, and VHDL designs to their
entry-level FPGAs and CPLDs, and a starter edition of industry-standard
ModelSim® software for simulating them.

Both Altera and Xilinx offer inexpensive evaluation boards suitable for
implementing FPGA-based student projects, either directly or through third par-
ties. Such boards may include switches and LEDs, analog/digital converters and
motion sensors, and even USB and VGA interfaces, and may cost less than $100
through the manufacturers’ university programs.

Another long-time source of professional digital design tools with good
university support is Aldec, Inc. (www.aldec.com). They offer a student edition
of their popular Active-HDL™ tool suite for design entry and simulation;
besides the usual HDL tools, it also includes block-diagram and state-machine
graphical editors, and its simulator also includes a waveform editor for creating
stimuli interactively. The Active-HDL simulator can be installed as a plug-in
with Vivado to use its features instead of the Vivado simulator.

All of the above tools, as well as most other engineering design tools, run
on Windows PCs, so if you are a Mac fan, get used to it! Depending on the tools,
you may or may not have some success running them on a Mac in a Windows
emulation environment like VMware’s. The most important thing you can do to
make the tools “go fast” on your PC is to equip it with a solid-state disk drive
(SSD), not a rotating one.

Even if you’re not ready to do your own original designs, you can use any
of the above tools to try out and modify the examples in the text, since the source
code for all of them is available online, as discussed next.

DDPP5.book Page xx Tuesday, March 28, 2017 5:46 PM

Preface xxi

Engineering Resources and www.ddpp.com
Abundant support materials for this book are available on the Web at Pearson’s
“Engineering Resources” site. At the time of publication, the Pearson link was
media.pearsoncmg.com/bc/abp/engineering-resources, but you know
how it goes with long links. It’s easier just to go to the author’s website,
www.ddpp.com, which contains a link to Pearson’s site. Also, the author’s site
will contain the latest errata and other materials that may be added or changed
“on the fly,” and perhaps even a blog someday.

Resources at the Pearson site include downloadable source-code files for
all Verilog modules in the book, selected drill and exercise solutions, and supple-
mentary materials, such as a 20-page introduction to basic electronics concepts
for non-EEs.

For Instructors
Pearson maintains a website with a comprehensive set of additional materials for
instructors only. Go to the Engineering Resources site mentioned above, navi-
gate to this book, and click on the “Instructor Resources” link. Registration is
required, and it may take a few days for your access to be approved. Resources
include additional drill and exercise solutions, additional source code, more
exercises, and line art and tables from the book for use in your lectures. Upon
request, materials from previous editions may also be posted there to aid instruc-
tors who are transitioning their courses from older technology.

Other resources for instructors include the author’s site, www.ddpp.com,
and the university programs at Xilinx, Altera, and Aldec; go to www.ddpp.com
for up-to-date links to them. The manufacturer sites offer a variety of product
materials, course materials, and discounts on chips and boards you can use in
digital-design lab courses, and in some cases “full-strength” tool packages that
you can obtain at a steep discount for use in your advanced courses and research.

Errors
Warning: This book may contain errors. The author and the publisher assume no
liability for any damage—incidental, brain, or otherwise—caused by errors.

There, that should make the lawyers happy. Now, to make you happy, let
me assure you that a great deal of care has gone into the preparation of this book
to make it as error free as possible. I am anxious to learn of the remaining errors
so that they may be fixed in future printings, editions, and spin-offs. Therefore, I
will pay $5 via PayPal to the first finder of each undiscovered error—technical,
typographical, or otherwise—in the printed book. Please email your comments
to me by using the appropriate link at www.ddpp.com.

An up-to-date list of discovered errors can always be obtained using the
appropriate link at www.ddpp.com. It will be a very short file transfer, I hope.

DDPP5.book Page xxi Tuesday, March 28, 2017 5:46 PM

xxii Preface

Acknowledgements
Many people helped make this book possible. Most of them helped with the first
four editions and are acknowledged there. For the ideas on the “principles” side
of this book, I still owe great thanks to my teacher, research advisor, and friend,
the late Ed McCluskey. On the “practices” side, I got good advice from my
friend Jesse Jenkins, from Xilinx staffers Parimal Patel and Trevor Bauer, and
from fellow McCluskey advisee Prof. Subhasish Mitra of Stanford.

Since the fourth edition was published, I have received many helpful
comments from readers. In addition to suggesting or otherwise motivating many
improvements, readers have spotted dozens of typographical and technical
errors whose fixes are incorporated in this fifth edition.

The most substantial influence and contribution to this edition came from
ten anonymous (to me) academic reviewers, all of whom teach digital design
courses using my fourth edition or one of its competitors. I did my best to incor-
porate their suggestions, which often meant deleting material that experienced
designers like me (aka old-timers) are perhaps too attached to, while greatly
enhancing the coverage of modern concepts in HDL-based design flow, test
benches, synthesis, and more.

My sponsoring editor at Pearson, Julie Bai, deserves thanks for shepherd-
ing this project over the past couple of years; she’s my first editor who actually
took a digital design course using a previous edition of this book. Unfortunately,
she’s also the fourth or fifth editor who has changed jobs after almost completing
one of my book projects, convincing me that working with me inevitably leads to
an editor’s burnout or success or both. Special thanks go to her boss’s boss,
Marcia Horton, who has kept an eye on my projects for a couple of decades, and
to Scott Disanno and Michelle Bayman, who guided the production and launch
processes for this edition.

Thanks also go to artist Peter Crowell, whose paintings I discovered on
Ebay when editor Julie Bai suggested we do a cover based on Piet Mondrian’s
work, some of which she said “almost looks like an abstract take on logic
circuits.” Crowell’s “Tuesday Matinee” fits the bill beautifully. His painting is
“tiled” on the cover and in the chapter-opening art in much the same way that
logic blocks and interconnect are tiled in an FPGA. Our cover designer Marta
Samsel took my engineering-ish concept and adapted it beautifully.

Finally, my wife Joanne Jacobs was very supportive of this project, letting
me work in peace “upstairs” while she worked “downstairs” on her education
blog. She didn’t even complain that the Christmas tree was still up in February.

John F. Wakerly
Los Altos, California

DDPP5.book Page xxii Tuesday, March 28, 2017 5:46 PM

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

1

c h a p t e r 1
Introduction

elcome to the world of digital design. Perhaps you’re a com-
puter science student who knows all about computer software
and programming, but you’re still trying to figure out how all
that fancy hardware could possibly work. Or perhaps you’re
an electrical engineering student who already knows

something about analog electronics and circuit design, but you wouldn’t
know a bit if it bit you. No matter. Starting from a fairly basic level, this book
will show you how to design digital circuits and subsystems.

We’ll give you the basic principles that you need to figure things out,
and we’ll give you lots of examples. Along with principles, we’ll try to con-
vey the flavor of real-world digital design by discussing practical matters
whenever possible. And I, the author, will often refer to myself as “we” in
the hope that you’ll be drawn in and feel that we’re walking through the
learning process together.

1.1 About Digital Design
Some people call it “logic design.” That’s OK, but ultimately the goal of
design is to build systems. To that end, we’ll cover a whole lot more in this
text than logic equations and theorems.

This book claims to be about principles and practices. Most of the
principles that we present will continue to be important years from now;

W

Hi, I'm John

DDPP5.book Page 1 Tuesday, March 28, 2017 5:33 PM

2 Chapter 1 Introduction

some may be applied in ways that have not even been discovered yet. As for
practices, they are sure to be a little different from what’s presented here by the
time you start working in the field, and they will continue to change throughout
your career. So you should treat the “practices” material in this book as a way to
reinforce principles, and as a way to learn design methods by example.

One of the book’s goals is to present enough about basic principles for you
to know what’s happening when you use software tools to “turn the crank” for
you. The same basic principles can help you get to the root of problems when the
tools happen to get in your way.

Listed in the box below are several key points that you should learn
through your studies with this text. Many of these items may not make sense to
you right now, but you can come back and review them later.

Digital design is engineering, and engineering means “problem solving.”
My experience is that only 5% to 10% of digital design is “the fun stuff”—the
creative part of design, the flash of insight, the invention of a new approach.
Much of the rest is just “turning the crank.” To be sure, turning the crank is much

IMPORTANT
THEMES IN

DIGITAL DESIGN

• Good tools do not guarantee good design, but they help a lot by taking the pain
out of doing things right.

• Digital circuits have analog characteristics.

• Know when to worry and when not to worry about the analog aspects of digital
design.

• Transistors and all the digital components built with them are cheap and plentiful;
make sensible trade-offs between minimizing the size of your designs and your
engineering time.

• Always document your designs to make them understandable to yourself and to
others.

• Use consistent coding, organizational, and documentation styles in your HDL-
based designs, following your company’s guidelines.

• Understand and use standard functional building blocks.

• State-machine design is like programming; approach it that way.

• Design for minimum cost at the system level, including your own engineering
effort as part of the cost.

• Design for testability and manufacturability.

• Use programmable logic to simplify designs, reduce cost, and accommodate last-
minute modifications.

• Avoid asynchronous design. Practice synchronous design until a better method-
ology comes along (if ever).

• Pinpoint the unavoidable asynchronous interfaces between different subsystems
and the outside world, and provide reliable synchronizers.

DDPP5.book Page 2 Tuesday, March 28, 2017 5:33 PM

1.2 Analog versus Digital 3

easier now than it was 25 or even 10 years ago, but you still can’t spend 100% or
even 50% of your time on the fun stuff.

Besides the fun stuff and turning the crank, there are many other areas in
which a successful digital designer must be competent, including the following:

• Debugging. It’s next to impossible to be a good designer without being a
good troubleshooter. Successful debugging takes planning, a systematic
approach, patience, and logic: if you can’t discover where a problem is,
find out where it is not!

• Business requirements and practices. A digital designer’s work is affected
by a lot of non-engineering factors, including documentation standards,
component availability, feature definitions, target specifications, task
scheduling, office politics, and going to lunch with vendors.

• Risk-taking. When you begin a design project, you must carefully balance
risks against potential rewards and consequences, in areas ranging from
component selection (Will it be available when I’m ready to build the first
prototype?) to schedule commitments (Will I still have a job if I’m late?).

• Communication. Eventually, you’ll hand off your successful designs to
other engineers, other departments, and customers. Without good commu-
nication skills, you’ll never complete this step successfully. Keep in mind
that communication includes not just transmitting but also receiving—
learn to be a good listener!

In the rest of this chapter, and throughout the text, I’ll continue to state
some opinions about what’s important and what is not. I think I’m entitled to do
so as a moderately successful practitioner of digital design.

1.2 Analog versus Digital
Analog devices and systems process time-varying signals that can take on any
value across a continuous range of voltage, current, or other measurable physical
quantity. So do digital circuits and systems; the difference is that we can pretend
that they don’t! A digital signal is modeled as taking on, at any time, only one
of two discrete values, which we call 0 and 1 (or LOW and HIGH, FALSE and
TRUE, negated and asserted, Frank and Teri, or whatever).

Digital computers have been around since the 1940s, and they’ve been in
widespread commercial use since the 1960s. Yet only in the past few decades has
the “digital revolution” spread to many other aspects of life. Examples of once-
analog systems that have now “gone digital” include the following:

• Still pictures. Twenty years ago, the majority of cameras still used silver-
halide film to record images. Today, inexpensive digital cameras and
smartphones record a picture as a 1920×1080 or larger array of pixels,
where each pixel stores the intensities of its red, green, and blue color com-

analog

digital

0
1

DDPP5.book Page 3 Tuesday, March 28, 2017 5:33 PM

4 Chapter 1 Introduction

ponents as 8 or more bits each. This data, almost 50 million bits in this
example, is usually processed and compressed in JPEG format down to as
few as 5% of the original number of bits. So, digital cameras rely on both
digital storage and digital processing.

• Video recordings. “Films” are no longer stored on film. A Blu-ray disc
(BD) stores video in a highly compressed digital format called MPEG-4.
This standard compresses a small fraction of the individual video frames
into a format similar to JPEG, and encodes each other frame as the differ-
ence between it and the previous one. The capacity of a dual-layer BD is
about 400 billion bits, sufficient for about 2 hours of high-definition video.

• Audio recordings. Once made exclusively by impressing analog wave-
forms onto magnetic tape or vinyl, audio recordings are now made and
delivered digitally, using a sequence of 16- to 24-bit values corresponding
to samples of the original analog waveform, and up to 192,000 samples per
second per audio channel. The number of bits, samples, and channels
depends on the recording format; a compact disc (CD) stores two channels
of 44,100 16-bit values for up to 73 minutes of stereo audio. Like a still
picture or a video recording, an audio recording may be compressed for
delivery to or storage on a device such as a smartphone, typically using a
format called MP3.

• Automobile carburetors. Once controlled strictly by mechanical linkages
(including clever “analog” mechanical devices that sensed temperature,
pressure, etc.), automobile engines are now controlled by embedded
microprocessors. Various electronic and electromechanical sensors con-
vert engine conditions into numbers that the microprocessor can examine
to determine how to control the flow of fuel and oxygen to the engine. The
microprocessor’s output is a time-varying sequence of numbers that
operate electromechanical actuators which, in turn, control the engine.

• The telephone system. It started out over a hundred years ago with analog
microphones and receivers connected to the ends of a pair of copper wires
(or was it string?). Even today, many homes still use analog telephones,
which transmit analog signals to the phone company’s central office (CO).
However, in the majority of COs, these analog signals are converted into a
digital format before they are routed to their destinations, be they in the
same CO or across the world. For many years, private branch exchanges
(PBXs) used by businesses have carried the digital format all the way to the
desktop. Now most businesses, COs, and traditional telephony service
providers have converted to integrated systems that combine digital voice
with data traffic over a single IP (Internet Protocol) network.

• Traffic lights. Stop lights used to be controlled by electromechanical timers
that would give the green light to each direction for a predetermined
amount of time. Later, relays were used in controllers that could activate

DDPP5.book Page 4 Tuesday, March 28, 2017 5:33 PM

1.2 Analog versus Digital 5

the lights according to the pattern of traffic detected by sensors embedded
in the pavement. Today’s controllers use microprocessors and can control
the lights in ways that maximize vehicle throughput or, in Sunnyvale,
California, frustrate drivers with all kinds of perverse behavior.

• Movie effects. Special effects used to be created exclusively with miniature
clay models, stop action, trick photography, and numerous overlays of film
on a frame-by-frame basis. Today, spaceships, cities, bugs, and monsters
are synthesized entirely using digital computers. Even actors and actresses
have been created or recreated using digital effects.

The electronics revolution has been going on for quite some time now, and
the “solid-state” revolution began with analog devices and applications like
transistors and transistor radios. So why has there now been a digital revolution?
There are in fact many reasons to favor digital circuits over analog ones,
including:

• Reproducibility of results. Given the same set of inputs (in both value and
time sequence), a properly designed digital circuit always produces exactly
the same results. The outputs of an analog circuit vary with temperature,
power-supply voltage, component aging, and other factors.

• Ease of design. Digital design, often called “logic design,” is logical. No
special math skills are needed, and the behavior of small logic circuits can
be mentally visualized without any special insights about the operation of
capacitors, transistors, or other devices that require calculus to model.

• Flexibility and functionality. Once a problem has been reduced to digital
form, it can be solved using a set of logical steps in space and time. For
example, you can design a digital circuit that scrambles your recorded
voice so it is absolutely indecipherable by anyone who does not have your
“key” (password), but it can be heard virtually undistorted by anyone who
does. Try doing that with an analog circuit.

• Programmability. You’re probably already quite familiar with digital com-
puters and the ease with which you can design, write, and debug programs
for them. Well, guess what? Most of digital design is done today by writing
“programs” too, in hardware description languages (HDLs).

While they’re not “programming” languages in the sense of C++ or Java,
HDLs allow both structure and function of a digital circuit to be specified
or modeled with language-based constructs rather than a circuit diagram.
Moreover, besides a compiler, an HDL also comes with simulation and
synthesis programs that are used to test the hardware model’s behavior
before any real hardware is built, and then to synthesize the model into a
circuit in a particular component technology. This saves a lot of work,
because the synthesized circuit typically has a lot more detail than the
model that generated it.

hardware description
language (HDL)

hardware model

DDPP5.book Page 5 Tuesday, March 28, 2017 5:33 PM

6 Chapter 1 Introduction

• Speed. Today’s digital devices are very fast. Individual transistors in the
fastest integrated circuits can switch in less than 10 picoseconds, and a
complex circuit built from these transistors can examine its inputs and pro-
duce an output in less than a nanosecond. A device incorporating such
circuits can produce a billion or more results per second.

• Economy. Digital circuits can provide a lot of functionality in a small
space. Circuits that are used repetitively can be “integrated” into a single
“chip” and mass-produced at very low cost, making possible throw-away
items like calculators, digital watches, and singing birthday cards. (You
may ask, “Is this such a good thing?” Never mind!)

• Steadily advancing technology. When you design a digital system, you
almost always know that there will be a faster, cheaper, or otherwise better
technology for it in a few years. Clever designers can accommodate these
expected advances during the initial design of a system, to forestall system
obsolescence and to add value for customers. For example, desktop com-
puters often have “expansion sockets” to accommodate faster processors
or larger memories than are available at the time of the computer’s
introduction.

So, that’s enough of a sales pitch on digital design. The rest of this chapter will
give you a bit more technical background to prepare you for the rest of the book.

PROGRAMS,
MODELS,

MODULES,
AND CODE

As you’ll see throughout this text, Verilog HDL examples look a lot like “programs”
and are even labeled as such. But generally they are not programs in the sense that
C++ or Java programs execute a sequence of instructions to produce a result. Rather,
they are models of hardware structures that receive input signals and produce output
signals on wires, and that’s something quite different. Since we’ll show you hard-
ware basics before we get into HDL models, you should be able to understand the
difference when we get there. To help you, we will avoid calling an HDL model a
“program.”

Verilog can also be used to write procedural programs called “test benches”
that do not model hardware. A test bench exercises a hardware model, applying a
sequence of inputs to it and observing the resulting outputs, and we will actually
sometimes call it a “program” and never a “model.”

To model a piece of hardware, Verilog typically uses statements in a construct
called a module, which may be stored in a single text file. We could call such a text
file either a module or a model, and we will. However, a complex piece of hardware
may be modeled hierarchically using multiple modules, so in that case, its model is
a collection of modules.

If none of the above terms seems quite appropriate for describing a particular
bit of Verilog, we may just call it Verilog “code,” for lack of a better short term.

DDPP5.book Page 6 Tuesday, March 28, 2017 5:33 PM

1.3 Analog Signals 7

1.3 Analog Signals
Marketing hype notwithstanding, we live in an analog world, not a digital one.
Voltages, currents, and other physical quantities in real circuits take on values
that are infinitely variable, depending on properties of the real devices that com-
prise the circuits. Because real values are continuously variable, we could use a
physical quantity such as a signal voltage in a circuit to represent a real number
(e.g., 3.14159265358979 volts represents the mathematical constant pi to 14
decimal digits of precision).

However, stability and accuracy in physical quantities are difficult to
obtain in real circuits. They can be affected by manufacturing variations, tem-
perature, power-supply voltage, cosmic rays, and noise created by other circuits,
among other things. If we used an analog voltage to represent pi, we might find
that instead of being an absolute mathematical constant, pi varied over a range of
10% or more.

Also, many mathematical and logical operations can be difficult or
impossible to perform with analog quantities. While it is possible with some
cleverness to build an analog circuit whose output voltage is the square root of its
input voltage, no one has ever built a 100-input, 100-output analog circuit whose
outputs are a set of voltages identical to the set of input voltages, but sorted
arithmetically.

1.4 Digital Logic Signals
Digital logic hides the pitfalls of the analog world by using digital signals,
where the infinite set of real values for a physical quantity are mapped into two
subsets corresponding to just two possible numbers or logic values: 0 and 1.
Thus, digital logic circuits can be analyzed and designed functionally, using
switching algebra, tables, and other abstract means to describe the operation of
well-behaved 0s and 1s in a circuit.

A logic value, 0 or 1, is often called a binary digit, or bit. If an application
requires more than two discrete values, additional bits may be used, with a set of
n bits representing 2n different values.

Examples of the physical phenomena used to represent bits in some
modern (and not-so-modern) digital technologies are given in Table 1-1. With

SHORT TIMES A millisecond (ms) is 10−3 second, and a microsecond (µs) is 10−6 second. A
nanosecond (ns) is just 10−9 second, and a picosecond (ps) is 10−12 second. In a
vacuum, light travels about a foot in a nanosecond, and an inch in 85 picoseconds.
With individual transistors in the fastest integrated circuits now switching in less
than 10 picoseconds, the speed-of-light delay between these transistors across a
half-inch-square silicon chip has become a limiting factor in circuit design.

digital logic
digital signals

logic values

binary digit
bit

DDPP5.book Page 7 Tuesday, March 28, 2017 5:33 PM

8 Chapter 1 Introduction

most phenomena, there is an undefined region between the 0 and 1 states (e.g.,
voltage = 1.0 V, dim light, capacitor slightly charged, etc.). This undefined
region is needed so the 0 and 1 states can be unambiguously defined and reliably
detected. Noise can more easily corrupt results if the boundaries separating the 0
and 1 states are too close to each other.

When discussing electronic logic circuits like CMOS, digital designers
often use the words “LOW” and “HIGH” in place of “0” and “1” to remind them
that they are dealing with real circuits, not abstract quantities:

LOW A signal in the range of algebraically lower voltages, which is
interpreted as a logic 0.

HIGH A signal in the range of algebraically higher voltages, which is
interpreted as a logic 1.

Table 1-1 Physical states representing bits in different logic and memory technologies.

State Representing Bit

Technology 0 1

Pneumatic logic Fluid at low pressure Fluid at high pressure

Relay logic Circuit open Circuit closed

Transistor-transistor logic (TTL) 0–0.8 V 2.0–5.0 V

Complementary metal-oxide
semiconductor (CMOS) 2-volt logic

0–0.5 V 1.5–2.0 V

Dynamic memory Capacitor discharged Capacitor charged

Nonvolatile, erasable memory Electrons trapped Electrons released

On-chip nonvolatile security key Fuse blown Fuse intact

Polymer memory Molecule in state A Molecule in state B

Fiber optics Light off Light on

Magnetic disk or tape Flux direction “north” Flux direction “south”

Compact disc (CD), digital versatile disc
(DVD), and Blu-ray disc (BD)

No pit Pit

Writable compact disc (CD-R) Dye in crystalline state Dye in noncrystalline state

STATE
TRANSITIONS

The last four technologies in Table 1-1 don’t actually use absolute states to represent
bit values. Rather, they use transitions (or absence of transitions) between states to
represent 0s and 1s using a code such as the Manchester code described on page 82.

LOW

HIGH

DDPP5.book Page 8 Tuesday, March 28, 2017 5:33 PM

1.5 Logic Circuits and Gates 9

Note that the assignments of 0 and 1 to LOW and HIGH are somewhat arbitrary.
Still, assigning 0 to LOW and 1 to HIGH seems natural and is called positive
logic, and that’s what we use in this book exclusively. The opposite assignment,
1 to LOW and 0 to HIGH, is not often used and is called negative logic.

Because a wide range of physical values represent the same binary value,
digital logic is highly immune to component and power-supply variations and
noise. Furthermore, buffer circuits can be used to regenerate (or amplify) “weak”
values into “strong” ones, so that digital signals can be transmitted over arbitrary
distances without loss of information. For example, using the voltage ranges in
the fourth row of Table 1-1, a buffer for 2-volt CMOS logic converts any LOW
input voltage into an output very close to 0.0 V, and any HIGH input voltage into
an output very close to 2.0 V.

1.5 Logic Circuits and Gates
A logic circuit can be represented with a minimum amount of detail simply

as a “black box” with a certain number of inputs and outputs. For example,
Figure 1-1 shows a logic circuit with three inputs and one output. However, this
representation does not describe how the circuit responds to input signals.

From the point of view of electronic circuit design, it takes a lot of informa-
tion to describe the precise electrical behavior of a circuit. However, since the
inputs of a digital logic circuit can be viewed as taking on only discrete 0 and 1
values, the circuit’s “logical” operation can be described with a table that ignores
electrical behavior and lists only discrete 0 and 1 values.

A logic circuit whose outputs depend only on its current inputs is called a
combinational circuit. Its operation is fully described by a truth table that lists
all combinations of input values and the output value(s) produced by each one.

positive logic
negative logic

buffer

THE DIGITAL
ABSTRACTION

Digital circuits are not exactly a binary version of alphabet soup—with all due
respect to our forthcoming descriptions like Figure 1-3, digital circuits don’t have
little 0s and 1s floating around in them. As you’ll see in Chapter 14, digital circuits
deal with analog voltages and currents and are built with analog components. The
“digital abstraction” allows analog behavior to be ignored in most cases, so circuits
can be modeled as if they really did process 0s and 1s.

Figure 1-1
“Black-box”
representation of a
3-input, 1-output
logic circuit.

logic circuit
X

Y

Z

F

Inputs Output

combinational circuit
truth table

DDPP5.book Page 9 Tuesday, March 28, 2017 5:33 PM

10 Chapter 1 Introduction

Table 1-2 is the truth table for a logic circuit with three inputs X, Y, and Z and a
single output F. This truth table lists all eight possible combinations of values of
X, Y, and Z and the circuit’s output value F for each combination.

A circuit with memory, whose outputs depend on the current input and the
sequence of past inputs, is called a sequential circuit. Its behavior may be
described by a state table that specifies its output and next state as functions of
its current state and input. Sequential circuits will be introduced in Chapter 9.

The most basic digital devices are called gates, and no, they were not
named after the founder of a large software company. Gates originally got their
name from their function of allowing or retarding (“gating”) the flow of digital
information. In general, a gate has one or more inputs and produces an output
that is a function of the current input value(s). While the inputs and outputs may
be analog conditions such as voltage, current, even hydraulic pressure, they are
modeled as taking on just two discrete values, 0 and 1.

As we’ll show in Section 3.1, just three basic logic functions, AND, OR,
and NOT, can be used to build any combinational digital logic circuit. The graph-
ical symbols for these logic gates are shown in Figure 1-2 along with their
corresponding truth tables. The gates’ functions are easily defined in words:

• An AND gate produces a 1 output if and only if all of its inputs are 1.

• An OR gate produces a 1 if and only if one or more of its inputs is 1.

Table 1-2
Truth table for a
combinational
logic circuit.

X Y Z F

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 0

1 0 0 0

1 0 1 0

1 1 0 1

1 1 1 1

sequential circuit
state table

gate

Figure 1-2
Basic logic gates:
(a) AND; (b) OR;
(c) NOT (inverter).

(c)

X NOT X

1

0 1

0

NOT XX(a)

X

0

1

X AND YY

0

1

1

0

1

0

0

0

0

1

X AND Y
X

Y (b)

X

0

1

X OR YY

0

1

1

0

1

0

0

1

1

1

X OR Y

X′X · Y X + Y

X

Y

AND gate

OR gate

DDPP5.book Page 10 Tuesday, March 28, 2017 5:33 PM

1.5 Logic Circuits and Gates 11

• A NOT gate, usually called an inverter, produces an output value that is the
opposite of its input value.

Notice that in the definitions of AND and OR functions, we only had to state the
input conditions for which the output is 1, because there is only one possibility
when the output is not 1—it must be 0. The symbols and truth tables for AND
and OR may be extended to gates with any number of inputs, and the functional
definition above already covers such cases.

Figure 1-2 also shows, in color, algebraic expressions for the output of
each gate, using both words and mathematical symbols for the logic operations.
The symbols are used in switching algebra, which we introduce in Chapter 3.
Figure 1-3 shows the gates’ graphical symbols again, each with all possible
combinations of inputs that may be applied to it, and the resulting outputs.

The circle on the inverter symbol’s output is called an inversion bubble and
is used in this and other gate symbols to denote “inverting” behavior. For exam-
ple, two more logic functions are obtained inverting the outputs of AND and OR
gates. Figure 1-4 shows the truth tables, graphical symbols, and algebraic
expressions for the new gates. Their functions are also easily described in words:

• A NAND gate produces the opposite of an AND gate’s output, a 0 if and
only if all of its inputs are 1.

• A NOR gate produces the opposite of an OR gate’s output, a 0 if and only
if one or more of its inputs are 1.

As with AND and OR gates, the symbols and truth tables for NAND and NOR
may be extended to gates with any number of inputs.

NOT gate
inverter

Figure 1-3
Logic gates with input
values and outputs:
(a) AND; (b) OR;
(c) NOT or inverter.

(c)
1

(a) 0
0

0

(b) 0
0

0

0 0

0
0

1

1
0

1

1

0
1

0

1
1

0

1
1

1

1
1

1

inversion bubble

Figure 1-4
Inverting gates:
(a) NAND; (b) NOR.

(a)

X

0

1

X NAND YY

0

1

1

0

1

0

1

1

1

0

X NAND Y
X

Y (b)

X

0

1

X NOR YY

0

1

1

0

1

0

1

0

0

0

X NOR Y

(X · Y)′ (X + Y) ′

X

Y

NAND gate

NOR gate

DDPP5.book Page 11 Tuesday, March 28, 2017 5:33 PM

12 Chapter 1 Introduction

A logic diagram shows the graphical symbols for multiple logic gates and
other elements in a logic circuit, and their interconnections (wires). The output
of each element may connect to inputs of one or more other elements. Signals
traditionally flow from left to right, and inputs and outputs of the overall circuit
are drawn on the left and right, respectively.

Figure 1-5 is the logic diagram of a circuit using AND, OR, and NOT gates
that functions according to the truth table of Table 1-2. In Chapter 3, you’ll learn
how to go from a truth table to a logic circuit, and vice versa. You’ll also learn
how to derive an algebraic expression for the logic function on any signal wire
(again shown in color in the figure). Most importantly, you’ll learn how to create
a logic circuit in any of several different structures to perform the operation
defined by any given algebraic expression.

We mentioned at that outset that digital circuits called sequential circuits
have memory, so their outputs depend on the sequence of past inputs as well as
their current inputs. The simplest sequential circuits are latches and flip-flops,
each of which stores a single 0 or 1. These devices are typically interconnected
with gates or more complex combinational circuits to create larger sequential
circuits. You’ll learn about sequential circuits beginning in Chapter 9.

In this section’s examples, the digital abstraction allowed us to ignore most
of the analog aspects of logic signals, like voltage and current, but logic circuits
function in another very important analog dimension—time. For example,
Figure 1-6 is a timing diagram that graphically shows how the circuit of
Figure 1-5 might respond to a time-varying pattern of input signals. Time is
graphed horizontally, and logic values are graphed vertically. While each logic

logic diagram
wire

Figure 1-5
Logic circuit with the
truth table of Table 1-2.

X

Y

Z

F

X · Y

X′ · Y′ · Z

X′

Y′
(X · Y) + (X′ · Y′ · Z)

Figure 1-6
Timing diagram for a
logic circuit.

X

Y

Z

F

TIME

timing diagram

DDPP5.book Page 12 Tuesday, March 28, 2017 5:33 PM

1.6 Software Aspects of Digital Design 13

signal has only two possible values in the steady state, this timing diagram is
drawn with the signal transitions sloped, reminding us that the logic signals do
not change instantaneously between the analog values corresponding to 0 and 1.
Also, looking at the colored vertical reference lines and arrows, you can see
there is a lag between an input change in X, Y, or Z and the beginning of the
resulting change in the output F. In later chapters, you’ll learn how the timing
behavior of digital devices and circuits is specified and handled.

1.6 Software Aspects of Digital Design
Digital design need not involve any software tools. For example, Figure 1-7
shows the primary tool of what used to be the “old school” and could now be
called the “prehistoric school” of digital design—a plastic template for drawing
symbols in logic diagrams by hand (the designer’s name was engraved into the
plastic with a soldering iron).

Today, however, software tools are an essential part of digital design.
Indeed, the availability and practicality of hardware description languages
(HDLs) and accompanying circuit simulation and synthesis tools have changed
the entire landscape of digital design over the past decades. We’ll use the Verilog
HDL extensively throughout this book.

Modern electronic design automation (EDA) tools improve the designer’s
productivity and help to improve the correctness and quality of designs. In a
competitive world, the use of software tools is mandatory to obtain high-quality
results on aggressive schedules. Important examples of EDA tools for digital
design are listed below:

• Schematic entry. This is the digital designer’s equivalent of a word
processor. It allows schematic diagrams—fully detailed logic diagrams—
to be drawn “online,” instead of with paper and pencil. The more advanced
schematic-entry programs also check for common, easy-to-spot errors, like
shorted outputs, signals that don’t go anywhere, and so on.

• HDLs. Hardware description languages, originally developed for circuit
modeling and simulation, are now used extensively for hardware design.

Figure 1-7
A logic-design
template.

Quarter-size logic symbols, copyright 1976 by Micro Systems Engineering

electronic design
automation (EDA)

DDPP5.book Page 13 Tuesday, March 28, 2017 5:33 PM

14 Chapter 1 Introduction

They can be used to design anything from small, individual function mod-
ules to large, multichip digital systems. We will introduce Verilog, one of
two predominant HDLs, in Chapter 5. If you go on to practice digital
design in industry, you’ll be likely also to encounter and learn the other,
VHDL. Both HDLs may be used in large, multi-module system designs,
especially when the modules are supplied by different providers.

• HDL text editors, compilers, and synthesizers. A typical HDL software
package has many components. The designer uses a text editor to write an
HDL model, and an HDL compiler checks it for syntax and related errors.
The designer then can hand over the model to a synthesizer that creates (or
“synthesizes”) a corresponding circuit targeted to a particular hardware
technology. Most often though, before synthesis, the designer runs the
HDL model on a “simulator” to verify the behavior of the design.

• Simulators. The design cycle for a customized, single-chip digital inte-
grated circuit is long and expensive. Once the first chip is built, it’s very
difficult, often impossible, to debug it by probing internal connections
(they are really tiny), or to change the gates and interconnections. Usually,
changes must be made in the original design database, and a new chip must
be manufactured to incorporate the required changes. Since this process
can take months to complete and cost hundreds of thousands of dollars,
chip designers are highly motivated to “get it right” on the first try. Simu-
lators help designers predict the electrical and functional behavior of a chip
without actually building it, allowing most if not all bugs to be found
before the chip is fabricated.

• Simulators are also used in the overall design of systems that incorporate
many individual components. They are somewhat less critical in this case
because it’s possible for the designer to make changes in components and
interconnections on a printed-circuit board, though the process can take
anywhere from hours (cutting connections and making new ones with tiny
wires) to weeks (modifying a printed-circuit board’s layout and fabricating
a new one). So, even a little bit of simulation can save time and expense by
catching mistakes early.

• Simulators are also used extensively to check for proper operation of
designs that are implemented in programmable devices, introduced in
Section 1.10. These devices can be easily reprogrammed if the design
doesn’t work correctly the first time, so why not just try out a new design
on the real device instead of simulating, and reprogram it if it doesn’t
work? The answer is that a simulator is like a software debugger—besides
showing you the device outputs that are produced by applying various
inputs, the simulator lets you observe what’s happening inside the design
so you can more easily determine what’s gone wrong and how to fix it.

DDPP5.book Page 14 Tuesday, March 28, 2017 5:33 PM

1.6 Software Aspects of Digital Design 15

• If you think you’ve already seen already too many bullets on “simulators,”
you’re wrong—they are really important. In the design of chips, systems,
and even HDL-based programmable logic devices, more engineering time
may actually be devoted to simulation than to the original logic design!

• Test benches. HDL-based digital designs are simulated and tested using
software called “test benches.” The idea is to build a set of programs
around the HDL models to automatically exercise them, checking both
their functional and their timing behavior. This is especially handy when
small design changes are made—the test bench can be run to ensure that
bug fixes or “improvements” in one area do not break something else. Test-
bench programs may be written in the same HDL as the design itself, in C
or C++, or in a combination of languages including scripting languages
like Perl.

• Timing analyzers and verifiers. The time dimension is very important in
digital design. All digital circuits take time to produce a new output value
in response to an input change, and much of a designer’s effort is spent
ensuring that such output changes occur quickly enough (or, in some cases,
not too quickly). Timing analysis and verification is often a component of
the simulation program and environment. In addition, specialized tools can
automate the tedious task of specifying and verifying timing relationships
between different signals in a complex system.

• Word processors. HDL-specific text editors are useful for writing source
code, but word processors supporting fancy fonts and pretty graphics also
have an important use in every design—to create documentation!

In addition to using the tools above, designers may sometimes write
specialized programs in high-level languages such as C or C++, or scripts in
languages like TCL and Perl, to solve particular design problems. For example,
Section 6.1.2 gives an example where a program is needed to generate the truth
table of a complex combinational logic function.

As you continue to study and use EDA tools, you will encounter other
nomenclature and acronyms that refer to them. In particular, computer-aided
engineering (CAE) usually refers to tools that are used at the “front end” of the
design process, including the tools listed above. On the other hand, computer-
aided design (CAD) usually refers to “back-end” tools, such as the ones that are
used to place components or route their interconnections on a customized chip.
Note that the term “CAD” is also used predominantly in nonelectronic physical
design, such as mechanical design and architecture (as in the “AutoCAD” tool).

Although EDA tools are important, they don’t make or break a digital
designer. To take an analogy from another field, you couldn’t consider yourself
to be a great writer just because you’re a fast typist or very handy with a word
processor. During your study of digital design, be sure to learn and use all the

computer-aided
engineering (CAE)

computer-aided design
(CAD)

DDPP5.book Page 15 Tuesday, March 28, 2017 5:33 PM

16 Chapter 1 Introduction

tools that are available to you, such as HDL-specific text editors and compilers,
simulators, and timing analyzers. But remember that learning to use tools is no
guarantee that you’ll be able to produce good results. Please pay attention to
what you’re producing with them!

1.7 Integrated Circuits
A collection of one or more gates fabricated on a single silicon chip is called an
integrated circuit (IC). Large ICs with hundreds of millions of transistors may
be 10 millimeters (mm) or more on a side, while small ICs may be less than
1 mm on a side.

Regardless of its size, an IC is initially part of a much larger circular wafer,
up to 300 mm in diameter, containing dozens to thousands of replicas of the
same IC. All of the IC chips on the wafer are fabricated at the same time, like
pizzas that are eventually sold by the slice. In the case of IC chips, the pieces are
cut into rectangles and each piece is called a die. Each die has pads around its
periphery—electrical contact points that are much larger than other chip fea-
tures, so wires can be connected later. After the wafer is fabricated, the dice are
tested in place on the wafer using tiny probing pins that temporarily contact the
pads, and defective dice are marked. Then the wafer is sliced up to produce the
individual dice, and the marked ones are discarded. (Compare with the pizza-
maker who sells all the pieces, even the ones without enough pepperoni!) Each
“good” die is mounted in a package, its pads are wired to the package pins, the
packaged IC is subjected to a final test, and it is shipped to a customer.

Some people use the term “IC” to refer to a silicon die. Some use “chip” to
refer to the same thing. Still others use “IC” or “chip” to refer to the combination
of a silicon die and its package. Digital designers tend to use the two terms inter-
changeably, and they really don’t care what they’re talking about. They don’t
require a precise definition, since they’re only looking at the functional and elec-
trical behavior of these things. In the balance of this text, we’ll use the term IC to
refer to a packaged die.

In the early days of integrated circuits, ICs were classified by size—small,
medium, or large—according to how many gates they contained. The simplest
type of commercially available ICs are still called small-scale integration (SSI)
and contain the equivalent of 1 to 20 gates. SSI ICs typically contain a handful of
gates or flip-flops, the basic building blocks of digital design.

integrated circuit (IC)

wafer

PIZZA ROMA You might debate whether pizzas should be cut into wedge-shaped slices or into
rectangles. I started my career at Pizza Roma, and like most Chicago pizzerias, we
cut our pies into rectangles. As far as I’m concerned, that’s the only way to do it!

die
pad

IC

small-scale integration
(SSI)

DDPP5.book Page 16 Tuesday, March 28, 2017 5:33 PM

1.7 Integrated Circuits 17

The SSI ICs that you might encounter in an educational lab come in a 14-
pin dual inline-pin (DIP) package. As shown in Figure 1-8(a), the space between
pins in a column is 0.1 inch, and the space between columns is 0.3 inch. Larger
DIP packages accommodate functions with more pins, as shown in (b) and (c). A
pin diagram supplied by the manufacturer shows the assignment of device
signals to package pins, or pinout. A 14-pin package might contain four 2-input
AND or OR gates or six inverters. SSI ICs are rarely used in new designs except
as “glue,” for example, to invert the polarity of a control signal between two
otherwise compatible larger-scale devices.

The next larger commercially available ICs, which you also might use in an
educational lab, are called medium-scale integration (MSI) and contain the
equivalent of about 20 to 200 gates. An MSI IC typically contains a functional
building block, like a decoder, register, or counter; we’ll describe such blocks in
later chapters. Even though discrete MSI ICs are rarely used in new designs,
equivalent building blocks are used frequently within larger ICs.

Large-scale integration (LSI) ICs are bigger still; the term originated at a
time when 1,000 gates seemed like a lot. LSI parts included small memories, the
first microprocessors, programmable logic devices, and customized devices. As

NOT A DICEY
DECISION

A reader of a previous edition wrote to me to collect a $5 reward for pointing out my
“glaring” misuse of “dice” as the plural of “die.” According to the dictionary, she
said, the plural form of “die” is “dice” only when describing those little cubes with
dots on each side; otherwise it’s “dies,” and she produced the references to prove it.

I disagreed with her then, and being stubborn, I recently did a Google search
to see which usage is more common. Yes, Google now reported about 50,000 Web
pages containing the word sequence “integrated circuit dies” and only about 30,000
with “integrated circuit dice.” But “dice” still wins, as far as I’m concerned. Its first
page of results had six integrated circuit patents, two administrative law citations,
and a site devoted to IC skills. On the other hand, half the hits in the first page for
“dies” were in headlines like “Jack Kilby, inventor of the integrated circuit, dies” (in
2005). So, out of respect for Jack, whom I once met, I’m sticking with “dice”!

dual inline-pin (DIP)
package

(b) (c)(a)

pin 1 pin 14

pin 8

pin 1 pin 20

pin 11

pin 1 pin 28

pin 15

Figure 1-8
Dual inline pin (DIP)
packages: (a) 14-pin;
(b) 20-pin; (c) 28-pin.

pin diagram
pinout

medium-scale
integration (MSI)

large-scale integration
(LSI)

DDPP5.book Page 17 Tuesday, March 28, 2017 5:33 PM

18 Chapter 1 Introduction

chip densities continued to increase, the term very large-scale integration (VLSI)
gradually came into use.

As LSI evolved into VLSI, and an increasing number of ICs combined
both logic gates and memories, chip sizes came to be stated in terms of number
of transistors rather than gates. This was more representative, independent of the
logic and memory mix, because typical logic gates use two transistors per input,
while different memories use one to six transistors per bit. In 2017, the largest
commercially available VLSI devices contained over ten billion transistors.

At one time, marketers and engineers who love to classify things flirted
with names like “ULSI” for even higher density chips beyond VLSI. But the
huge number of transistors available nowadays on ordinary, inexpensive ICs
makes such classifications irrelevant. Economics favors functional integration
well beyond mere “LSI,” and most new digital ICs today are VLSI.

There’s another set of nomenclature that you’ll encounter when working
with VLSI chips. The main reason for ever-increasing transistor counts is the
industry’s ever-improving ability to make smaller transistors, so the chips have
higher density (transistors per unit area). An IC process is the set of technolo-
gies, fabrication steps, and other characteristics associated with manufacturing
ICs of a given density. Different chip manufacturers have their own proprietary
processes, but all of the processes that produce ICs of a similar density are said
to belong to a particular process node. The node is identified by a number that
roughly corresponds to the smallest linear dimensions of physical features on a
chip, such as the widths of signal lines or transistors.

Intel’s first microprocessor, the 4004, was fabricated in 1971 using a 10 μm
(micron, 10–6 m) process. In 1985, the Intel 80386, whose architecture is the
basis of today’s personal computers, was launched using a 1 μm process.
Processes with even smaller dimensions are called submicron processes. By
1999, most manufacturers were able to achieve 250 nm (nanometers, 10–9 m),
and denser processes became known as deep submicron processes. By 2006,
much of the industry had achieved 45 nm. In 2015, the microprocessors in many
computers and smartphones used a 14 nm process. Major chip makers were
preparing to fabricate chips at 10 nm in 2017.

So, between 1971 and 2017, the linear dimensions of chip features shrank
by a factor of 1,000. Since transistors and wiring are laid out more or less in two
dimensions, overall density has increased by a factor of a million or more in that
time. Some transistor features are created nowadays by physical stacking, and
wiring can overlay transistors, but we still don’t routinely stack multiple vertical
layers of transistors on a single chip.

very large-scale
integration (VLSI)

ULSI AND RLSI ULSI stands for “ultra-large-scale integration.” In a previous edition of this text, I
suggested RLSI (ridiculously-large-scale integration), but it never caught on.

IC process

process node

submicron process

deep submicron process

DDPP5.book Page 18 Tuesday, March 28, 2017 5:33 PM

1.8 Logic Families and CMOS 19

1.8 Logic Families and CMOS
There are many, many ways to design an electronic logic circuit. The first elec-
trically controlled logic circuits, developed at Bell Laboratories in the 1930s,
were based on relays. In the mid-1940s, the first electronic digital computer, the
Eniac, used logic circuits based on vacuum tubes. The Eniac had about 18,000
tubes and a similar number of logic gates, not a lot by today’s standards of
microprocessor chips with billions of transistors. However, the Eniac could hurt
you a lot more than a chip could if it fell on you—it was 100 feet long, 10 feet
high, 3 feet deep, and consumed 140,000 watts of power!

The inventions of the semiconductor diode and the bipolar junction tran-
sistor allowed the development of smaller, faster, and more capable computers
in the late 1950s. In the 1960s, the invention of the integrated circuit (IC)
allowed multiple diodes, transistors, and other components to be fabricated on a
single chip, and computers got still better.

The 1960s also saw the introduction of the first integrated-circuit logic
families. A logic family is a collection of different integrated-circuit chips that
have similar input, output, and internal circuit characteristics, but that perform
different logic functions. Chips from the same family can be interconnected to
perform any desired logic function. Chips from different families might not be
compatible; they may use different power-supply voltages or may use different
input and output conditions to represent logic values.

The most successful bipolar logic family (one based on bipolar junction
transistors) was transistor-transistor logic (TTL). First introduced in the 1960s,
TTL evolved into a family of logic families that were compatible with each other
but differed in speed, power consumption, and cost. Digital systems could mix
components from several different TTL families, according to design goals and
constraints in different parts of the system.

Ten years before the bipolar junction transistor was invented, the principles
of operation were patented for another type of transistor, called the metal-oxide
semiconductor field-effect transistor (MOSFET), or simply MOS transistor.
However, MOS transistors were difficult to fabricate in the early days, and it
wasn’t until the 1960s that a wave of developments made MOS-based logic and
memory circuits practical. Even then, MOS circuits lagged bipolar circuits
considerably in speed. They were attractive in only a few applications because of
their lower power consumption and higher levels of integration.

Beginning in the mid-1980s, advances in the design of MOS circuits, in
particular complementary MOS (CMOS) circuits, tremendously increased their
performance and popularity. Today, almost all large-scale integrated circuits,
such as microprocessors, memories, and programmable logic devices, use
CMOS. Even small- to medium-scale applications, for which engineers used to
put together a customized collection of TTL devices, are now typically handled
by a CMOS microprocessor or by one or a few CMOS programmable devices,

semiconductor diode
bipolar junction

transistor

integrated circuit (IC)

logic family

bipolar logic family
transistor-transistor

logic (TTL)

metal-oxide
semiconductor field-
effect transistor
(MOSFET)

MOS transistor

complementary MOS
(CMOS)

DDPP5.book Page 19 Tuesday, March 28, 2017 5:33 PM

20 Chapter 1 Introduction

achieving more functionality, higher speed, and lower power consumption. A
few CMOS SSI and MSI parts might be used to tie up the loose ends. CMOS cir-
cuits account for the vast majority of the worldwide integrated-circuit market.

1.9 CMOS Logic Circuits
CMOS logic is both the most capable and the easiest to understand commercial
digital logic technology. In Chapter 14, we will describe CMOS logic circuits in
a fair amount of detail, from their basic structure to their electrical characteris-
tics, and we will introduce some common variants of CMOS logic families. In
this section, we’ll give you a small, only mildly “electronic” preview of CMOS
operation which will serve you until then.

A MOS transistor can be modeled as a 3-terminal device that acts like a
voltage-controlled resistance. In digital logic applications, a MOS transistor is
operated so its resistance is always either very high (and the transistor is “off”) or
very low (and the transistor is “on”).

There are two types of MOS transistors, n-channel and p-channel: the names
refer to the type of semiconductor material used in the controlled resistance. A
simplified circuit symbol for an n-channel MOS (NMOS) transistor is shown in
Figure 1-9. The terminals are called gate, source, and drain. Note the “gate” of a
MOS transistor is not a “logic gate,” though it does “gate” the flow of current
between the other two terminals. As you might guess from the orientation of the
circuit symbol, the drain is normally at a higher voltage than the source.

The voltage from gate to source (Vgs) in an NMOS transistor controls Rds,
the resistance between the drain and the source. If Vgs is zero or negative, then

GREEN STUFF Nowadays, the acronym “MOS” is usually spoken as “moss,” rather than spelled out.
Hence in this book, we say “a MOS transistor,” not “an MOS transistor.” And
“CMOS” has always been spoken as “sea moss.”

LEGACY LOGIC SSI and MSI device part numbers are written “74FAMnn” where FAM designates a
family like LS, HC, or AC, and two or more digits nn designate the function; for
example, a 74HC00 is a High-speed CMOS NAND gate. To specify only the function
and not the family, we write “74x00” or simply “ ’00” without the “74x.”

“off” transistor
“on” transistor

n-channel MOS
(NMOS) transistor

Figure 1-9
Simplified circuit
symbol for an
n-channel MOS
(NMOS) transistor.

gate
drain

source

Voltage-controlled resistance:
increase Vgs ==> decrease Rds

Vgs

+

−

Rds

gate
source
drain

DDPP5.book Page 20 Tuesday, March 28, 2017 5:33 PM

1.9 CMOS Logic Circuits 21

Rds is very high, at least a megohm (106 ohms) or more. As we increase Vgs (i.e.,
increase the voltage on the gate), Rds decreases to a very low value, 10 ohms or
less in some devices. In digital applications, Vgs is always LOW or HIGH (except
during transitions), and the connection between source and drain acts like a
logic-controlled switch—open if Vgs is LOW, and closed if it is HIGH.

A circuit symbol for a p-channel MOS (PMOS) transistor is shown in
Figure 1-10. Operation is analogous but opposite to that of an NMOS transistor.
If Vgs is zero or positive, then Rds is very high. As we algebraically decrease Vgs
(i.e., decrease the voltage on the gate), Rds decreases to a very low value. The
inversion bubble on the gate of the PMOS transistor’s symbol in digital applica-
tions reminds us of this “opposite” behavior. Again the connection between
source and drain acts like a logic-controlled switch—but it’s open if Vgs is HIGH,
and closed if Vgs is LOW.

NMOS and PMOS transistors are used together in a complementary way to
form CMOS logic. The simplest CMOS circuit, a logic inverter, requires only
one of each type of transistor, connected as shown in Figure 1-11(a). The power-
supply voltage, VDD, may be in the range 1–6 V depending on the CMOS family,
and is shown as 3.3 V in the figure.

The functional behavior of the CMOS inverter circuit can be characterized
by just two cases tabulated shown in Figure 1-11(b). A LOW voltage on the input
turns on the p-channel transistor Q2, and turns off the n-channel transistor Q1.
So, the output is connected to VDD through Q2 and the output is HIGH. When the
input voltage is HIGH, we have the opposite behavior and the output is connected
to ground (0 volts) through Q1 and is LOW. This is clearly an inverter function—
the output’s logic value is the opposite of the input’s.

Figure 1-10
Simplified circuit
symbol for a
p-channel MOS
(PMOS) transistor.

gate
drain

source

Voltage-controlled resistance:
decrease Vgs ==> decrease Rds

Vgs
+

−

Rds

p-channel MOS
(PMOS) transistor

CMOS logic

Figure 1-11
CMOS inverter:
(a) circuit diagram;
(b) functional behavior;
(c) logic symbol.VIN

VDD = +3.3 V

VOUT

Q2
(p-channel)

Q1
(n-channel)

0.0
3.3

 VIN

(LOW)
(HIGH)

(HIGH)
(LOW)

 Q1

off
on

 Q2

on
off

3.3
0.0

 VOUT(b)

(c)

(a)

IN OUT

DDPP5.book Page 21 Tuesday, March 28, 2017 5:33 PM

22 Chapter 1 Introduction

The inverter’s function can also be visualized using switches. As shown in
Figure 1-12(a), the n-channel (bottom) transistor is modeled by a normally-open
switch, and the p-channel (top) transistor by a normally-closed switch. Applying
a HIGH voltage “pushes” each switch to the opposite of its normal state, as
shown in (b).

Both NAND and NOR gates can be constructed in CMOS using p-channel
and n-channel transistors in a series-parallel configuration. Figure 1-13 shows a
2-input CMOS NAND gate. If either input is LOW, the output Z is connected to
VDD through the corresponding “on” p-channel transistor, and the path to ground
is blocked by the corresponding “off” n-channel transistor. If both inputs are
HIGH, the path to VDD is blocked, and Z is connected to ground. Figure 1-14
shows the switch model for the NAND gate’s operation.

Figure 1-15 shows a CMOS NOR gate. If both inputs are LOW, then the
output Z connects to VDD through the “on” p-channel transistors, and the path to
ground is blocked by the “off” n-channel transistors. If either input is HIGH, the
path to VDD is blocked, and Z connects to ground

Figure 1-12
Switch model for
CMOS inverter:
(a) LOW input;
(b) HIGH input.

VDD = +3.3 V

VOUT = HIGHVIN = LOW

(a)
VDD = +3.3 V

VOUT = LOWVIN = HIGH

(b)

Figure 1-13
CMOS 2-input
NAND gate:
(a) circuit diagram;
(b) function table;
(c) logic symbol.

VDD

A

B

Z

Q1

Q3

Q2 Q4

A

LOW
LOW
HIGH
HIGH

B

LOW
HIGH
LOW
HIGH

 Q1

off
off
on
on

 Q2

on
on
off
off

 Q3

off
on
off
on

 Q4

on
off
on
off

Z

HIGH
HIGH
HIGH
LOW

A

B
Z

(a)

(b)

(c)

DDPP5.book Page 22 Tuesday, March 28, 2017 5:33 PM

23

By extending the series-parallel configurations, you can build a k-input
CMOS NAND or NOR gate using 2k transistors, although there is a limit to k
based on electrical performance. CMOS inverters, NAND gates, and NOR gates
“naturally” perform a logical inversion using the minimal transistor-level cir-
cuits that we’ve shown. To build a noninverting buffer, an AND gate, or an OR
gate, you must follow the inverting gate with an inverter, which uses another pair
of transistors.

Another important CMOS circuit configuration is the transmission gate,
which acts as a logic-controlled switch that passes or blocks a CMOS logic
signal. A transmission gate is a p-channel and an n-channel transistor pair with a

Figure 1-14 Switch model for CMOS 2-input NAND gate: (a) both inputs LOW;
(b) one input HIGH; (c) both inputs HIGH.

VDD

A = LOW

Z = HIGH

(a)

B = LOW

VDD

A = HIGH

Z = HIGH

(b)

B = LOW

VDD

A = HIGH

Z = LOW

(c)

B = HIGH

Figure 1-15
CMOS 2-input
NOR gate:
(a) circuit diagram;
(b) function table;
(c) logic symbol.

A

LOW
LOW
HIGH
HIGH

B

LOW
HIGH
LOW
HIGH

 Q1

off
off
on
on

 Q2

on
on
off
off

 Q3

off
on
off
on

 Q4

on
off
on
off

Z

HIGH
LOW
LOW
LOW

A

B
Z

VDD

A

B

Z

Q2

Q4

Q1 Q3

(a)

(b)

(c)

transmission gate

DDPP5.book Page 23 Tuesday, March 28, 2017 5:33 PM

24 Chapter 1 Introduction

control signal and its complement applied as shown in Figure 1-16. When the
control signal EN is HIGH, both transistors are on, and a logic signal can pass
from A to B or vice versa. When EN is LOW, both transistors are off, and A and B
are effectively disconnected. A pair of transistors is needed for analog reasons:
when a HIGH logic signal is passed between A and B, the p-channel transistor
has low resistance; when a LOW signal is passed, the n-channel transistor makes
the connection. In later chapters, we’ll see how transmission gates can be used in
multiplexers, flip-flops, and other logic elements.

Besides the basics that we already covered, there are a few more things you
should know about CMOS electrical characteristics to augment the digital topics
that we will cover between now and Chapter 14:

• With higher power-supply voltages, CMOS circuits run faster and their
noise immunity is better, and vice versa. However, with higher voltage they
also consume more power.

• In fact, the major portion of CMOS power consumption, called “dynamic
power,” is proportional to CV2f, where V is the supply voltage, C is the
electrical capacitance of the signal lines that are being switched, and f is
the switching frequency. Because of this formula’s square term, halving
the voltage reduces dynamic power by a factor of 4.

Figure 1-16
CMOS transmission gate.

EN

A B

ANALOG STUFF If you’re not an electrical engineer and “analog stuff” bothers you, don’t worry, at
least for now. This book is written to be as independent of that stuff as possible while
still recognizing its pitfalls and occasional opportunities. Even if you know little or
nothing about analog electronics, you will be able to understand the logical behavior
of digital circuits.

Almost every practicing digital logic designer eventually faces a time in design
and debugging when the digital abstraction must be thrown out temporarily and the
analog phenomena that limit or disrupt digital performance must be considered.
Knowing something about the analog side of digital design will help you earn more
of that other “green stuff.”

If you are an electrical engineer, you may already have studied the equivalent
of Chapter 14 in another course, but you still may enjoy reviewing that material in
your copious “spare time.”

DDPP5.book Page 24 Tuesday, March 28, 2017 5:33 PM

1.10 Programmable Devices 25

• As a result of the above, there has been a big incentive to reduce supply
voltage wherever possible in different CMOS components, and in many
cases, in different parts of the same VLSI chip. This has given rise to so-
called power-management ICs (PMICs), which supply and control the
voltages used among different ICs in a digital system, including systems as
small as smartphones and smartwatches.

• Usually the biggest contributor to a CMOS circuit’s delay is the time to
charge or discharge the electrical capacitance of the signal lines and inputs
that are driven by each output. A longer signal line, or one that drives more
inputs, means more capacitance and hence more delay. Physically larger
CMOS devices can charge or discharge this capacitance faster, but they
consume more power and more chip area. So there is a trade-off among
speed, power, and chip area.

1.10 Programmable Devices
There are a wide variety of ICs that can have their logic function “programmed”
into them after they are manufactured. Most of these devices use technology that
also allows the function to be reprogrammed, which means that if you find a bug
in your design, you may be able to fix it without physically replacing or rewiring
the device. In this book, we’ll generically call such chips programmable devices,
and we’ll pay a lot of attention to design methods that use them.

Probably the earliest available programmable device for combinational
logic was the read-only memory (ROM). A ROM stores a two-dimensional array
of bits, with 2n rows and b columns; if n=16 and b=8, we would speak of a
“64 Kbyte ROM.” ROMs are typically used for storing programs and fixed data
for microprocessors. However, a 64 Kbyte ROM can store the truth table for any
combinational logic function with up to 16 inputs and 8 outputs, for example,
one that compares two 8-bit numbers and outputs the larger one.

Early ROMs were slow and expensive compared to SSI and MSI functions,
so they weren’t often considered for performing logic; in the example, you’d do
better on both counts with an MSI-based design. However, ROMs were often
used for the most complex, non-time-critical functions with up to about 20
inputs. More significantly, today’s “FPGA” devices, introduced shortly, use a
large collection of much smaller ROMs as their fundamental combinational-
logic building blocks.

Historically, programmable logic arrays (PLAs) arrived next, offering a
two-level array of AND and OR gates with user-programmable connections.
Using this structure, a designer could accommodate any logic function up to a
certain level of complexity using the well-known theory of two-level combina-
tional logic synthesis that we’ll present in Chapter 3.

PLA structure was enhanced and PLA costs were reduced with the
introduction of programmable array logic (PAL) devices. Today, such devices

programmable device

read-only memory
(ROM)

programmable logic
array (PLA)

programmable array
logic (PAL) device

DDPP5.book Page 25 Tuesday, March 28, 2017 5:33 PM

26 Chapter 1 Introduction

are generically called programmable logic devices (PLDs) and are the “SSI and
MSI” of the programmable logic industry. Since their functionality and density
are very low compared to newer programmable devices, they are seldom at the
heart of a new design, but they are sometimes convenient to use as “glue”
between larger chips whose interfaces are mismatched. We’ll introduce basic
PLD architecture and technology in Sections 6.2 and 10.6.

The ever-increasing capacity of integrated circuits created an opportunity
for IC manufacturers to create larger PLDs for larger digital-design applications.
However, for technical reasons, the basic two-level AND-OR structure of PLDs
could not be scaled to larger sizes. Instead, IC manufacturers devised complex
PLD (CPLD) architectures to achieve the required scale. A typical CPLD is just
a collection of multiple PLDs and an interconnection structure, all on the same
chip. The on-chip interconnection structure is programmed at the same time as
the individual PLDs, providing a rich variety of design possibilities. CPLDs can
be scaled to larger sizes by increasing the number of individual PLDs and the
richness of the interconnection structure on the CPLD chip.

At about the same time that CPLDs were invented, other IC manufacturers
took a different approach to scaling the size of programmable logic chips. Com-
pared to a CPLD, a field-programmable gate array (FPGA) contains a much
larger number of smaller configurable logic blocks (CLBs) and provides a large,
distributed and programmable interconnection structure that dominates the
entire chip. Figure 1-17 shows the difference between the two chip-design
approaches. We’ll describe the basic architectural features of an example FPGA
family’s logic blocks in Sections 6.1.3 and 10.7, and its overall architecture
including programmable interconnect and input/output blocks in Section 15.5.1.

Proponents of CPLDs and FPGAs used to get into “religious” arguments
over which programmable-device architectural approach was better. At one

programmable logic
device (PLD)

complex PLD (CPLD)

field-programmable
gate array (FPGA)

configurable logic block
(CLB)

Figure 1-17 Large programmable-logic-device scaling approaches: (a) CPLD; (b) FPGA.

PLD PLD PLD PLD

PLD PLD PLD PLD

Programmable Interconnect

(a) (b) = logic block

DDPP5.book Page 26 Tuesday, March 28, 2017 5:33 PM

1.11 Application-Specific ICs 27

time, leading manufacturers of both device types acknowledged that there is a
place for both approaches, and they developed new versions of both types for
different design requirements (including different density, speed, power, and
cost levels). Both types of device are still actively marketed for new designs.
However, it has been over five years since any manufacturer introduced a new
CPLD architecture, and even the most prominent CPLD manufacturer (Altera,
acquired by Intel in 2015) has moved to an FPGA architecture in their latest
devices. With the industry’s two decades of design and application experience
with both device types, FPGAs have proven to be more able to take advantage of
ever increasing IC density and performance.

Programmable devices support a style of design in which products can be
moved from design concept to prototype and production in a very short time.
Also important in achieving short “time to market” for these products is the use
of HDLs in their design. Verilog and VHDL and their accompanying EDA tools
enable a design to be compiled, synthesized, and downloaded into a CPLD or
FPGA in minutes. These highly structured, hierarchical languages are essential
for enabling designers to utilize the millions of gates provided in the largest
programmable devices.

Programmable devices do have some downsides. Because of their pro-
grammability, they are almost always larger and slower than a customized chip
would be for the same application, and they usually have a higher cost per chip.
That brings us to the subject of “ASICs.”

1.11 Application-Specific ICs
Chips that are designed for a particular, limited product or application are called
application-specific ICs (ASICs). ASICs generally reduce the total component
and manufacturing cost of a product by reducing chip count, physical size, and
power consumption, and they often provide higher performance.

While the price per chip of an ASIC for a given application is typically
much lower than that of a programmable device that performs the same function,
the up-front costs are much higher. Compared to a programmable device, the
basic engineering cost for an ASIC’s logic design may be about the same, but
additional nonrecurring engineering (NRE) cost for the ASIC can be $100,000
to $1,000,000 or more. NRE charges are paid to the IC manufacturer and others
who are responsible for designing the internal structure of the chip, creating
tooling such as the metal masks for manufacturing the chips, developing tests for
the manufactured chips, and actually making the first few sample chips. So, an
ASIC design normally makes sense only if NRE cost is offset by the per-unit
savings over the expected sales volume of the product, or if there’s no way to
achieve the required performance in a programmable device.

The NRE cost to design a custom VLSI chip—a chip whose functions,
internal architecture, and detailed transistor-level design is tailored for a specific

application-specific IC
(ASIC)

nonrecurring
engineering (NRE)
cost

custom VLSI

DDPP5.book Page 27 Tuesday, March 28, 2017 5:33 PM

28 Chapter 1 Introduction

customer—is very high, $10,000,000 or more. Thus, full custom VLSI design is
done only for chips that have general commercial application (e.g., microproces-
sors) or that will enjoy very high sales volume in a specific application (e.g., a
digital watch chip, a network interface, or a sensor controller for smartphones).

To reduce NRE charges, IC manufacturers have developed libraries of
standard cells including commonly used small building blocks like decoders,
registers, and counters, and larger blocks like memories, microprocessors, and
network interfaces. In a standard-cell design, the logic designer interconnects
functions in much the same way as in a multichip board-level design. Custom
cells are created (at added cost, of course) only if absolutely necessary. All of the
cells are then laid out on the chip, optimizing the layout to reduce timing delays
and minimize the size of the chip. Minimizing the chip size reduces the per-unit
cost of the chip, since it increases the number of chips that can be fabricated on a
single wafer. The NRE cost for a standard-cell design is typically on the order of
$300,000 or more.

The basic digital design methods that you’ll study throughout this book
apply very well to the functional design of ASICs. However, there are additional
opportunities, constraints, and steps in ASIC design which usually depend on
the particular ASIC vendor and design environment.

1.12 Printed-Circuit Boards
An IC is normally mounted on a printed-circuit board (PCB) that connects it to
other ICs in a system. The multilayer PCBs used in typical digital systems have
copper wiring etched on multiple, thin layers of fiberglass that are laminated into
a single board usually about 1/16 inch thick.

Individual wire connections, or PCB traces, are usually quite narrow, 5 to
25 mils in typical PCBs. (A mil is one-thousandth of an inch.) In fine-line PCB
technology, the traces and spaces are extremely narrow, under 2 mils wide in
high-density interconnect (HDI) PCBs. Thus, hundreds of connections may be
routed in a one-inch-wide band on a single layer of the PCB. If higher connec-
tion density is needed, then more layers are used.

Most of the components in modern PCBs use surface-mount technology
(SMT). Instead of having the long pins of DIP packages that poke through the
board and are soldered to the underside, some SMT IC packages have pins that
are bent to make flat contact with the top surface of the PCB. Instead of pins,
others have “bumps” on the underside of the package, which in many cases
occupy the entire under-surface of the package, not just the edges. Before such
components are mounted on the PCB, a special “solder paste” is applied to con-
tact pads on the PCB using a stencil with a hole pattern that matches the contact
pads to be soldered. Then the SMT components are placed on the pads, usually
by machine, where they are held in place by the solder paste (or in some cases,

standard cells

standard-cell design

printed-circuit board
(PCB)

printed-wiring board
(PWB)

PCB traces
mil
fine-line

surface-mount
technology (SMT)

DDPP5.book Page 28 Tuesday, March 28, 2017 5:33 PM

29

by glue). Finally, the entire assembly is passed through an oven to melt the sol-
der paste, which then solidifies when cooled.

Surface-mount technology, coupled with fine-line PCB technology, allows
extremely dense packing of integrated circuits and other components on a PCB.
This dense packing does more than save space. For very high-speed circuits,
dense packing helps to minimize certain adverse analog phenomena, such as
transmission-line effects and speed-of-light limitations.

To satisfy the most stringent requirements for speed and density, multichip
modules (MCMs) have been developed. In this technology, IC dice are not
mounted in individual plastic or ceramic packages. Instead, the IC dice for a
high-speed system (say, a processor, memory, and system interface) are bonded
directly to a substrate that contains the required interconnections on multiple
layers. The MCM is hermetically sealed and has its own external pins for power,
ground, and just those signals that are required by the system that contains it.

1.13 Digital-Design Levels
Digital design can be carried out at several different levels of representation and
abstraction. Although you may learn and practice design at a particular level,
from time to time you’ll need to go up or down a level or two to get the job done.
Also, the industry itself and most designers have been steadily moving to higher
levels of abstraction as circuit density and functionality have increased.

The lowest level of digital design is device physics and IC manufacturing
processes. This is the level that is primarily responsible for the breathtaking
advances in IC speed and density that have occurred over the past decades. The
effects of these advances are summarized in Moore’s Law, first stated by Intel
founder Gordon Moore in 1965: that the number of transistors per square inch in
the newest ICs will double every year. In recent years, the rate of advance has
slowed down to doubling about every 24 months, but it is important to note that
with each doubling of density has also come a significant increase in speed.

This book does not reach down to the level of device physics and IC
processes, but you need to recognize the importance of that level. Being aware of
likely technology advances and other changes is important in system and
product planning. For example, reductions in chip geometries in the past
decades have forced a move to lower logic-power-supply voltages, causing
major changes in the way designers plan and specify modular systems and
upgrades.

In this book, we will discuss some digital-design topics at the transistor
level (mostly in Chapter 14) and go all the way up to the level of logic design
using HDLs. We stop short of the next level, which includes computer design
and overall system design. The “center” of our discussion is at the level of func-
tional building blocks.

multichip module
(MCM)

Moore’s Law

DDPP5.book Page 29 Tuesday, March 28, 2017 5:33 PM

30 Chapter 1 Introduction

To get a preview of the levels of design that we’ll cover, consider a simple
design example. Suppose you are to build a “multiplexer” with two data input
bits, A and B, a control input bit S, and an output bit Z. Depending on the value
of S, 0 or 1, the circuit is to transfer the value of either A or B to the output Z. This
idea is illustrated in the “switch model” of Figure 1-18. Let us consider the
design of this function at several different levels.

Although logic design is usually carried out at a higher level, for some
functions it is advantageous to optimize them by designing at the transistor level.
The multiplexer is such a function. Figure 1-19 shows how the multiplexer can
be designed in CMOS technology using a pair of the transmission gates that we
introduced in Section 1.9, along with an inverter for the control input. Using this
approach, the multiplexer can be built with just six transistors. Any of the other
approaches that we describe requires at least 14 transistors.

In the traditional study of logic design, we would use a truth table to
describe the multiplexer’s logic function. Since the multiplexer has three inputs,
it has 23 or 8 possible input combinations, as shown in the truth table in
Table 1-3. To create this function inside an FPGA, we could load the truth table
into one of the FPGA’s ROM lookup tables (LUTs), and connect A, B, and S to
the ROM’s address inputs and Z to its data output as shown in Figure 1-20.

Starting with the truth table, and using the traditional logic design methods
described in Section 3.3.3, we could use switching algebra and well-understood

Figure 1-18
Switch model for
multiplexer function.

A

B

Z

S

Figure 1-19
Multiplexer design
using CMOS
transmission gates.

A

B

S

VCC

Z

Q1

Q2

Q3

Q4

Q5

Q6

DDPP5.book Page 30 Tuesday, March 28, 2017 5:33 PM

1.13 Digital-Design Levels 31

minimization algorithms to derive an “optimal” two-level AND-OR equation for
the multiplexer function:

This equation is read “Z equals not S and A, or S and B.” Going one step further,
we can convert the equation into a set of logic gates suitable for performing the
specified logic function in an ASIC, as shown in Figure 1-21. This circuit
requires 20 transistors if we use standard CMOS technology for the four gates
shown, and 14 transistors if we replace the AND and OR gates with NAND gates,
which is possible as we’ll show in Section 3.2.

The gate-level structure of the multiplexer circuit in Figure 1-21 can also
be specified using an HDL model rather than a logic diagram. A Verilog model
corresponding to the logic diagram is shown in Program 1-1. The first four lines

Z = (S′ ⋅ A) + (S ⋅ B)

S A B Z

Table 1-3
Truth table for the
multiplexer function.

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 1

Figure 1-20
Multiplexer design
using an FPGA
lookup table (LUT).B

D

A0

A2

A1

0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 1

LUT

S

A Z

A0 DA2A1

Figure 1-21
Gate-level logic
diagram for
multiplexer function.

A

S

B

Z

SN
ASN

SB

U1

U4

U3

U2

DDPP5.book Page 31 Tuesday, March 28, 2017 5:33 PM

32 Chapter 1 Introduction

define the circuit’s inputs, outputs, and internal signals. The next four statements
create the four gates, whose identifiers are shown in color in Figure 1-21, along
with their output and input connections.

The Verilog “structural” model in Program 1-1 doesn’t actually raise the
level of the multiplexer design—it merely uses text to specify the same gate-
level structure that the logic diagram does. We must use a different approach to
capture the primary value of HDLs, which is to take design to a higher level by
specifying logic functions behaviorally. Then, we can let a synthesis tool work
out the details of implementing the specified behaviors in lookup tables, gate-
level structures, or whatever other implementation technology is targeted.

Thus, Program 1-2 is a behavioral model that uses other Verilog language
features to obtain the same multiplexer function. After defining the circuit’s
inputs and outputs, the model has just one high-level statement. The inputs A, B,
and S are to be monitored continuously. If any of them change, then the Z output

Program 1-1 Structural Verilog model for a 2-input multiplexer circuit.

module Ch1mux_s(A, B, S, Z); // 2-input multiplexer
 input A, B, S;
 output Z;
 wire SN, ASN, SB;

 not U1 (SN, S);
 and U2 (ASN, A, SN);
 and U3 (SB, B, S);
 or U4 (Z, ASN, SB);
endmodule

Program 1-2 Behavioral Verilog model for a 2-input multiplexer circuit.

module Ch1mux_b(A, B, S, Z); // 2-input multiplexer
 input A, B, S;
 output reg Z;

 always @ (A, B, S) if (S==1) Z = B; else Z = A;
endmodule

 IMPLEMENTING
REALIZATIONS

. . . or is it realizing implementations? In this book, we’ll use the verbs implement and
realize, as well as the nouns implementation and realization, pretty much inter-
changeably. Both verbs refer to the process of converting an abstract functional
description, whether it be a truth table or an HDL model or anything in between, into
a real circuit that performs the described function. The nouns refer to the results of
that process. Note, however, that “implementation” has a more specific technical
meaning in the context of Xilinx Vivado tools as described on page 173.

DDPP5.book Page 32 Tuesday, March 28, 2017 5:33 PM

1.14 The Name of the Game 33

is to be updated so it always equals B if S is 1, and equals A otherwise. In
Program 1-2, it’s obviously a lot easier to see what’s going on than in the original
transistor-level multiplexer circuit, the truth table, the resulting logic equations
and gate-level circuit, or the corresponding structural Verilog model that we
showed. This ease of description and the automated implementation provided by
synthesis tools are primary reasons for using HDLs.

1.14 The Name of the Game
Given the functional and performance requirements for a digital system, the
name of the game in practical digital design is to minimize cost. For board-level
designs—systems that are packaged on a single PCB—this usually means
minimizing the number of IC packages. If too many ICs are required, they won’t
all fit on the PCB. “Well, just use a bigger PCB,” you say. Unfortunately, PCB
sizes are usually constrained by factors like preexisting standards (e.g., add-in
boards for PCs), packaging constraints (e.g., it has to fit in your pocket), or edicts
from above (e.g., in order to get the project approved three months ago, you fool-
ishly told your manager that it would all fit on a 3 × 5 inch PCB, and now you’ve
got to deliver!). In each of these cases, the cost of using a larger PCB or multiple
PCBs may be unacceptable.

In ASIC design, the name of the game is a little different, but the
importance of structured, functional design techniques is the same. Although it’s
easy to burn hours and weeks creating custom macrocells and minimizing the
total gate count of an ASIC, only rarely is this advisable. The per-unit cost
reduction achieved by having a 10% smaller chip is negligible except in high-
volume applications. In applications with low to medium volume (the majority),
two other factors are more important: design time and NRE cost.

A shorter design time allows a product to reach the market sooner,
increasing revenues over the lifetime of the product. A lower NRE cost also
flows right to the “bottom line” and in small companies may be the only way the
project can be completed before the company runs out of money (Believe me,
I’ve been there!). If the product is successful, it’s always possible and profitable
to “tweak” the design later to reduce per-unit costs. The need to minimize design
time and NRE cost argues in favor of a structured, as opposed to highly
optimized, approach to ASIC design, using standard building blocks provided in
the ASIC manufacturer’s library.

The design considerations using programmable devices are a combination
of the above. For example, the choice of a particular FPGA technology and
device size is usually made fairly early in the design cycle. Later, as long as the
design “fits” in the selected device, there’s no point in trying to optimize gate
count or board area—the device has already been committed. However, if new
functions or bug fixes push the design beyond the capacity of the selected
device, that’s when you must work very hard to modify the design to make it fit!

board-level design

ASIC design

design with
programmable devices

DDPP5.book Page 33 Tuesday, March 28, 2017 5:33 PM

34 Chapter 1 Introduction

1.15 Going Forward
This concludes the introductory chapter. As you continue reading this book,
keep in mind two things. First, the ultimate goal of digital design is to build
systems that solve problems for people. While this book will give you the basic
tools for design, it’s still your job to keep “the big picture” in the back of your
mind. Second, cost is an important factor in every design decision; and you must
consider not only the cost of digital components, but also the cost of the design
activity itself.

Finally, as you get deeper into the text, if you encounter something that you
think you’ve seen before but don’t remember where, please consult the index.
I’ve tried to make it as helpful and complete as possible.

Drill Problems
1.1 Give three different definitions for the word “bit” as used in this chapter.

1.2 Find the definitions in this chapter of the following acronyms: ASIC, BD, CAD,
CAE, CD, CMOS, CO, CPLD, DIP, DVD, EDA, FPGA, HDL, IC, IP, LSI, LUT,
MCM, MOS, MOSFET, MSI, NMOS, NRE, PBX, PCB, PLD, PMIC, PMOS,
ROM, SMT, SSI, TTL, VHDL, VLSI.

1.3 Research the definitions of the following acronyms: DDPP, JPEG, MPEG, MP3,
OK, PERL, TCL. (Are OK and PERL really acronyms?)

1.4 Excluding the topics in Section 1.2, list three once-analog systems that have
“gone digital” since you were born.

1.5 Draw a digital circuit consisting of a 2-input AND gate and three inverters, where
an inverter is connected to each of the AND gate’s inputs and its output. For each
of the four possible combinations of inputs applied to the two primary inputs of
this circuit, determine the value produced at the primary output. Is there a simpler
circuit that gives the same input/output behavior?

1.6 The ability to search the Web for specifications and other needed information is
an important skill for digital designers and most engineers. With that in mind,
draw a pin diagram showing the pinouts of a quadruple 2-input NAND gate in a
14-pin DIP package.

1.7 What is the relationship between “die” and “dice”?

1.8 Today there are actually some SSI parts that are tinier than the originals. Go
online and find the part number for a single 2-input CMOS NAND gate. What are
the number of pins and dimensions of its largest package? Its smallest?

1.9 Draw a switch-level model for a CMOS NOR gate in the style of Figure 1-14,
showing the same three input conditions as in that figure.

1.10 In Figure 1-19, which transistors form an inverter?

1.11 How many bits of memory are stored in the LUT in Figure 1-20?

1.12 How is an HDL different from an executable programming language like C or
Java? How is it the same? (Hint: You won’t find a comprehensive answer in this
chapter. Look ahead, or do some Web research.)

DDPP5.book Page 34 Tuesday, March 28, 2017 5:33 PM

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

35

c h a p t e r 2
Number Systems and Codes

igital systems are built from circuits that process binary digits—
0s and 1s—yet very few real-life problems are based on binary
numbers, or any numbers at all. As a result, a digital system
designer must establish some correspondence between the
binary digits processed by digital circuits and real-life numbers,

events, and conditions. The purpose of this chapter is to show you how
familiar numeric quantities can be represented and manipulated in a digital
system, and also to show you how nonnumeric data, events, and conditions
can be represented.

The first nine sections will describe binary number systems and show
how addition, subtraction, multiplication, and division are performed in
binary number systems. Sections 2.10–2.13 will show how several other
things, such as decimal numbers, text characters, mechanical positions, and
arbitrary conditions, can be encoded using strings of binary digits.

Section 2.14 will introduce “n-cubes,” which provide a way to visual-
ize the relationship between different bit strings. The n-cubes are especially
useful in the study of error-detecting and -correcting codes in Section 2.15.
These codes are especially important for preserving the integrity of memory
and storage systems, which have grown tremendously in size over the years.
We will conclude the chapter in Section 2.16 with an introduction to “serial”
codes that are used for transmitting and storing data one bit at a time.

D

DDPP5.book Page 35 Tuesday, March 28, 2017 5:33 PM

36 Chapter 2 Number Systems and Codes

2.1 Positional Number Systems
The traditional number system we learned in school and use every day in busi-
ness is called a positional number system. In such a system, a number is
represented by a string of digits, where each digit position has an associated
weight. The value of a number is a weighted sum of the digits, for example:

1734 = 1·1000 + 7·100 + 3·10 + 4·1

Each weight is a power of 10 corresponding to the digit’s position. A decimal
point allows negative as well as positive powers of 10 to be used:

5185.68 = 5·1000 + 1·100 + 8·10 + 5·1 + 6·0.1 + 8·0.01

In general, a number D of the form d1d0.d−1d−2 has the following value:

D = d1·101 + d0·100 + d–1·10–1 + d–2·10–2

Here, 10 is called the base or radix of the number system. In a general positional
number system, the radix may be any integer r ≥ 2, and a digit in position i has
weight ri. The general form of a number in such a system is

dp–1dp–2· · ·d1d0 . d–1d–2· · ·d–n

where there are p digits to the left of the point and n digits to the right of the
point, called the radix point. If the radix point is missing, it is assumed to be to
the right of the rightmost digit. The value D of the number is given by an expan-
sion formula, the sum of each digit multiplied by the corresponding power of the
radix:

D = dp–1·r p–1 + dp–2·r p–2 +· · ·+ d1·r + d0 + d–1·r –1 + d–2·r –2 +· · ·+ d–n ·r –n

Except for possible leading and trailing zeroes, the representation of a
number in a positional number system is unique. (Obviously, 0185.6300 equals
185.63, and so on.) The leftmost digit in such a number is called the high-order
or most significant digit; the rightmost is the low-order or least significant digit.

Digital circuits have signals that are normally in one of only two states
such as low or high, charged or discharged, off or on. The signals in these cir-
cuits are interpreted to represent binary digits (or bits) that have one of two
values, 0 and 1. Thus, the binary radix is normally used to represent numbers in
a digital system. The general form of a binary number is

bp–1bp–2· · ·b1b0 . b–1b–2· · ·b–n

and its value is

B = bp–1·2 p–1 + bp–2·2 p–2 +· · ·+ b1·2 + b0 + b–1·2 –1 + b–2·2 –2 +· · ·+ b–n ·2 –n

In a binary number, the radix point is called the binary point. When dealing with
binary and other nondecimal numbers, we use a subscript to indicate the radix

positional number
system

weight

base
radix

radix point

expansion formula

high-order digit
most significant digit
low-order digit
least significant digit

binary digit
bit
binary radix

binary point

DDPP5.book Page 36 Tuesday, March 28, 2017 5:33 PM

2.2 Binary, Octal, and Hexadecimal Numbers 37

of each number, unless the radix is clear from the context. Examples of binary
numbers and their decimal equivalents are given here:

The leftmost bit of a binary number is called the high-order or most significant
bit (MSB); the rightmost is the low-order or least significant bit (LSB).

2.2 Binary, Octal, and Hexadecimal Numbers
Radix 10 is important because we use it in everyday business, and radix 2 is
important because binary numbers can be processed directly by digital circuits.
Numbers in other radices are not often processed directly but may be important
for documentation or other purposes. In particular, the radices 8 and 16 provide
convenient shorthand representations for multibit numbers in a digital system.

The octal number system uses radix 8, while the hexadecimal (hex) number
system uses radix 16. You may have already encountered octal in permissions
settings in file systems, and hexadecimal in Ethernet MAC addresses or in the
MEID of your phone. Table 2-1 shows the binary integers from 0 to 1111 and
their octal, decimal, and hexadecimal equivalents. The octal system needs 8
digits, so it uses digits 0–7 of the decimal system. The hexadecimal system
needs 16 digits, so it supplements decimal digits 0–9 with the letters A–F.

The octal and hexadecimal number systems are useful for representing
multibit numbers because their radices are powers of 2. Since a string of three
bits can take on eight different combinations, it follows that each 3-bit string can
be uniquely represented by one octal digit, according to the third and fourth
columns of Table 2-1. Likewise, a 4-bit string can be represented by one hexa-
decimal digit according to the fifth and sixth columns of the table.

Thus, it is very easy to convert a binary number to octal. Starting at the
binary point and working left, we simply separate the bits into groups of three
and replace each group with the corresponding octal digit as follows:

The procedure for binary-to-hexadecimal conversion is similar, except we use
groups of four bits as follows:

In these examples, we have freely added zero bits on the left to make the total
number of bits a multiple of 3 or 4 as required.

100112 = 1·16 + 0·8 + 0·4 + 1·2 + 1·1 = 1910

1000102 = 1·32 + 0·16 + 0·8 + 0·4 + 1·2 + 0·1 = 3410

101.0012 = 1·4 + 0·2 + 1·1 + 0·0.5 + 0·0.25 + 1·0.125 = 5.12510

1000110011102 = 100 011 001 1102 = 43168

111011011101010012 = 011 101 101 110 101 0012 = 3556518

1000110011102 = 1000 1100 11102 = 8CE16

111011011101010012 = 0001 1101 1011 1010 10012 = 1DBA916

MSB
LSB

octal number system
hexadecimal (hex)

number system

hexadecimal digits
A–F

binary-to-octal
conversion

binary-to-hexadecimal
conversion

DDPP5.book Page 37 Tuesday, March 28, 2017 5:33 PM

38 Chapter 2 Number Systems and Codes

If a binary number contains digits to the right of the binary point, we can
convert them to octal or hexadecimal by starting at the binary point and working
right. Both the lefthand and righthand sides can be padded with zeroes to get
multiples of three or four bits, as shown in the following example:

Converting in the reverse direction, from octal or hexadecimal to binary, is
very easy. We simply replace each octal or hexadecimal digit with the corre-
sponding 3- or 4-bit string, as shown below:

Computers primarily process information in groups of 8-bit bytes. In the
hexadecimal system, two hex digits represent an 8-bit byte, and 2n hex digits
represent an n-byte word; each pair of digits constitutes exactly one byte. For
example, the 32-bit hexadecimal number 5678ABCD16 consists of four bytes
with values 5616, 7816, AB16, and CD16.

10.10110010112 = 010 . 101 100 101 1002 = 2.54548

= 0010 . 1011 0010 11002 = 2.B2C16

13578 = 001 011 101 1112

2046.178 = 010 000 100 110 . 001 1112

BEAD16 = 1011 1110 1010 11012

9F.46C16 = 1001 1111 . 0100 0110 11002

Table 2-1 Binary, decimal, octal, and hexadecimal numbers.

Binary Decimal Octal 3-Bit String Hexadecimal 4-Bit String

0 0 0 000 0 0000

1 1 1 001 1 0001

10 2 2 010 2 0010

11 3 3 011 3 0011

100 4 4 100 4 0100

101 5 5 101 5 0101

110 6 6 110 6 0110

111 7 7 111 7 0111

1000 8 10 — 8 1000

1001 9 11 — 9 1001

1010 10 12 — A 1010

1011 11 13 — B 1011

1100 12 14 — C 1100

1101 13 15 — D 1101

1110 14 16 — E 1110

1111 15 17 — F 1111

octal- or hexadecimal-
to-binary conversion

byte

DDPP5.book Page 38 Tuesday, March 28, 2017 5:33 PM

2.3 Binary-Decimal Conversions 39

In this context, a 4-bit hexadecimal digit is sometimes called a nibble; so a
32-bit (4-byte) number has eight nibbles. Hexadecimal numbers are often used
to describe a computer’s memory address space. For example, a computer with
32-bit addresses might be described as having 1 gigabyte (GB) of read/write
memory installed at addresses 0–3FFFFFFF16, reserved expansion space at
addresses 40000000–FFEFFFFF16, and input/output ports at addresses
FFF00000–FFFFFFFF16. Many computer programming languages use the pre-
fix “0x” to denote a hexadecimal number, for example, 0xBFC00000.

2.3 Binary-Decimal Conversions
Binary numbers can be converted into decimal numbers pretty easily, using deci-
mal (base-10) arithmetic. As we showed in examples at the end of Section 2.1,
we simply substitute the value of each bit according to its position in the binary
number, and solve using decimal arithmetic.

The same principle can be used for octal or hexadecimal conversion, sub-
stituting the decimal equivalents for hex digits A-F as needed, for example:

1CE816 = 1·163 + 12·162 + 14·161 + 8·160 = 740010

F1A316 = 15·163 + 1·162 + 10·161 + 3·160 = 6185910

436.58 = 4·82 + 3·81 + 6·80 + 5·8–1 = 286.62510

ANCIENT MINIS The octal number system was quite popular 40 years ago because of certain mini-
computers that had their front-panel lights and switches arranged in groups of three.
In fact, Unix (the predecessor of Linux) was developed in part on such computers,
which perhaps explains the use of octal in Linux filesystem permissions. However,
the octal number system is not used for much else today. It is cumbersome to extract
individual byte values in multibyte quantities in the octal representation; for
example, what are the octal values of the four 8-bit bytes in the 32-bit number with
octal representation 123456701238?

WHEN I’M 64 As you grow older, you’ll find that the hexadecimal number system is useful for
more than just computers. When I turned 40, I told friends that I had just turned 2816.
The “16” was whispered under my breath, of course. At age 50, I was only 3216.

People get all excited about decennial birthdays like 20, 30, 40, 50, …, but you
should be able to convince your friends that the decimal system is of no fundamental
significance. More significant life changes occur around birthdays 2, 4, 8, 16, 32, and
64, when you add a most significant bit to your age. Why do you think the Beatles
sang “When I’m sixty-four”?

Even today, very few people expect their age to make it to eight bits.

nibble

 prefix

binary-to-decimal
conversion

DDPP5.book Page 39 Tuesday, March 28, 2017 5:33 PM

40 Chapter 2 Number Systems and Codes

To convert decimal numbers into binary, we take a different approach,
based on rewriting the expansion formula for a binary number’s decimal value in
a nested fashion:

B = ((· · ·((bp–1)·2 + bp–2)·2 + · · ·) · 2 + b1)·2 + b0

That is, we start with a sum of 0; beginning with the leftmost bit, we multiply
the sum by 2 and add the next bit to the sum, repeating until all bits have been
processed. For example, we can write

101100112 = ((((((((1)·2 + 0)·2 + 1)·2 + 1)·2 + 0)·2 + 0)·2 + 1)·2 + 1) = 17910

Now, consider what happens if we divide the formula for B by 2. Since the
parenthesized part of the formula is evenly divisible by 2, the quotient will be

Q = (· · ·((bp–1)·2 + bp–2)·2 + · · ·) ·2 + b1

and the remainder will be b0. Thus, d0 can be computed as the remainder of the
long division of B by 2. Furthermore, the quotient Q has the same form as the
original formula. Therefore, successive divisions by 2 yield successive digits of
B from right to left, until all the digits of B have been derived. Thus, running the
previous example in reverse, we get:

179 ÷ 2 = 89 remainder 1 (LSB)
÷ 2 = 44 remainder 1

÷ 2 = 22 remainder 0
÷ 2 = 11 remainder 0

÷ 2 = 5 remainder 1
÷ 2 = 2 remainder 1

÷ 2 = 1 remainder 0
÷ 2 = 0 remainder 1 (MSB)

17910 = 101100112

We can use the same approach to convert from decimal to other bases, for
example, dividing by 8 or 16 to convert to octal or hexadecimal:

467 ÷ 8 = 58 remainder 3 (least significant digit)
÷ 8 = 7 remainder 2

÷ 8 = 0 remainder 7 (most significant digit)
46710 = 7238

3417 ÷ 16 = 213 remainder 9 (least significant digit)
 ÷ 16 = 13 remainder 5

 ÷ 16 = 0 remainder 13 (most significant digit)
341710 = D5916

Table 2-2 summarizes methods for converting among the most common radices.

decimal-to-binary
conversion

nested expansion
formula

DDPP5.book Page 40 Tuesday, March 28, 2017 5:33 PM

2.3 Binary-Decimal Conversions 41

Table 2-2 Conversion methods for common radices using decimal arithmetic.

Conversion Method Example

Binary to

Octal Substitution 101110110012 = 10 111 011 0012 = 27318

Hexadecimal Substitution 101110110012 = 101 1101 10012 = 5D916

Decimal Summation 101110110012 = 1 ⋅ 1024 + 0 ⋅ 512 + 1 ⋅ 256 + 1 ⋅ 128 + 1 ⋅ 64
 + 0 ⋅ 32 + 1 ⋅ 16 + 1 ⋅ 8 + 0 ⋅ 4 + 0 ⋅ 2 + 1 ⋅ 1 = 149710

Octal to

Binary Substitution 12348 = 001 010 011 1002

Hexadecimal Substitution 12348 = 001 010 011 1002 = 0010 1001 11002 = 29C16

Decimal Summation 12348 = 1 ⋅ 512 + 2 ⋅ 64 + 3 ⋅ 8 + 4 ⋅ 1 = 66810

Hexadecimal to

Binary Substitution C0DE16 = 1100 0000 1101 11102

Octal Substitution C0DE16 = 1100 0000 1101 11102 = 1 100 000 011 011 1102 = 1403368

Decimal Summation C0DE16 = 12 ⋅ 4096 + 0 ⋅ 256 + 13 ⋅ 16 + 14 ⋅ 1 = 4937410

Decimal to

Binary Division 10810 ÷ 2 = 54 remainder 0 (LSB)
 ÷ 2 = 27 remainder 0
 ÷ 2 = 13 remainder 1
 ÷ 2 = 6 remainder 1
 ÷ 2 = 3 remainder 0
 ÷ 2 = 1 remainder 1
 ÷ 2 = 0 remainder 1 (MSB)
10810 = 11011002

Octal Division 10810 ÷ 8 = 13 remainder 4 (least significant digit)
÷ 8 = 1 remainder 5

÷ 8 = 0 remainder 1 (most significant digit)
10810 = 1548

Hexadecimal Division 10810 ÷ 16 = 6 remainder 12 (least significant digit)
÷ 16 = 0 remainder 6 (most significant digit)

10810 = 6C16

DDPP5.book Page 41 Tuesday, March 28, 2017 5:33 PM

42 Chapter 2 Number Systems and Codes

2.4 Addition and Subtraction of Binary Numbers
Addition and subtraction of a pair of nondecimal numbers by hand uses the same
technique that your parents learned and maybe you even learned in grammar
school for decimal numbers, before you got a calculator. For addition, we line
up the numbers with their rightmost digits on the right, and starting at that end,
we add the digits one column at a time. If a column sum has more than one digit,
we propagate the extra digit or “carry” to the column to the left. Subtraction is
similar, using “borrows.” Compared to decimal operations, the only catch for
binary operations is that the addition and subtraction tables are different.

Table 2-3 is the addition and subtraction table for binary digits. To add two
binary numbers X and Y, we add together the least significant bits with an initial
carry (cin) of 0, producing carry (cout) and sum (s) bits according to the table. We
continue processing bits from right to left, adding the carry out of each column
into the next column’s sum.

Two examples of decimal additions and the corresponding binary additions
are shown in Figure 2-1, using a colored arrow to indicate a carry of 1. The same
examples are repeated below along with two more, with the carries shown as a
bit string C:

C
X
Y

190
+141

101111000
10111110

+ 10001101

C
X
Y

173
+ 44

001011000
10101101

+ 00101100
X + Y 331 101001011 X + Y 217 11011001

C
X
Y

127
+ 63

011111110
01111111

+ 00111111

C
X
Y

170
+ 85

000000000
10101010

+ 01010101

X + Y 190 10111110 X + Y 255 11111111

Table 2-3
Binary addition and
subtraction table.

cin or bin x y cout s bout d

0 0 0 0 0 0 0

 0 0 1 0 1 1 1

 0 1 0 0 1 0 1

 0 1 1 1 0 0 0

 1 0 0 0 1 1 1

 1 0 1 1 0 1 0

 1 1 0 1 0 0 0

 1 1 1 1 1 1 1

binary addition

DDPP5.book Page 42 Tuesday, March 28, 2017 5:33 PM

2.4 Addition and Subtraction of Binary Numbers 43

Binary subtraction is performed similarly, using borrows (bin and bout)
instead of carries between steps, and producing a difference bit d. Two examples
of decimal subtractions and the corresponding binary subtractions (minuend
minus subtrahend yields difference) are shown in Figure 2-2. As in decimal sub-
traction, the binary minuend values in the columns are modified when borrows
occur, as shown by the colored arrows and bits. The examples from the figure are
repeated below along with two more, this time showing the borrows as a bit
string B:

B
X
Y

229
− 46

001111100
11100101

− 00101110

B
X
Y

210
−109

011011010
11010010

− 01101101

X − Y 183 10110111 X − Y 101 01100101

B
X
Y

170
− 85

010101010
10101010

− 01010101

B
X
Y

221
− 76

000000000
11011101

− 01001100

X − Y 85 01010101 X − Y 145 10010001

190

+ 141

331

1

1

0

+

1

0

0

1

1 1 1 1 1 1 1

1

0

0

1

0

0

1

1

1

1

1

0

1

0

1

0

1

1

X

Y

X + Y

X

Y

X + Y

173

+ 44

217

1

0

1

+

0

0

1

1

1

0

0

0

1

1

1

1

1

1

0

0

0

0

1

0

1

Figure 2-1 Examples of decimal and corresponding binary additions.

binary subtraction

minuend
subtrahend

229

– 46

183

–

1

0

1

0

0

1

1

0

1

1

0

0 0 10 10 0 1 10 0 1010 1 1 10 10

1

0

1

 X

 Y

 X – Y

 X

 Y

 X – Y

 minuend

 subtrahend

difference

210

– 109

101

– 0

0

1

1

0

1

1

0

0

1

0

0

1

1

0

0

0

1

1

The borrow ripples through three columns
to reach a borrowable 1, i.e.,
100 = 011 (the modified bits)
 + 1 (the borrow)

After the first borrow, the new
subtraction for this column is
0 – 1, so we must borrow again.

Must borrow 1, yielding
the new subtraction 10 – 1 = 1

1 0 0 1

1

1

0

1

1

1 1 1 0 11

Figure 2-2 Examples of decimal and corresponding binary subtractions.

difference

DDPP5.book Page 43 Tuesday, March 28, 2017 5:33 PM

44 Chapter 2 Number Systems and Codes

A very common use of subtraction in computers is to compare two num-
bers. For example, if the operation X − Y produces a borrow out of the most
significant bit position, then X is less than Y; otherwise, X is greater than or equal
to Y. The relationship between carries and borrows in adders and subtractors will
be explored in Section 8.1.3.

Addition and subtraction tables can be developed for octal and hexadeci-
mal digits, or any other desired radix. However, few computer engineers bother
to memorize these tables anymore—it’s easier to install a programmer’s “hex
calculator” app on your computer or phone.

2.5 Representation of Negative Numbers
So far, we have dealt only with positive numbers, but there are many ways to rep-
resent negative numbers. In everyday business we use the signed-magnitude
system, discussed next. However, most computers use the two’s-complement
number system that we will introduce right after that.

2.5.1 Signed-Magnitude Representation
In the signed-magnitude system, a number consists of a magnitude and a symbol
indicating whether the number is positive or negative. Thus, we interpret
decimal numbers +98, −57, +123.5, and −13 in the usual way, and we also
assume that the sign is “+” if no sign symbol is written. There are two possible
representations of zero, “+0” and “−0”, but both have the same value.

The signed-magnitude system is applied to binary numbers by using an
extra bit position to represent the sign (the sign bit). Traditionally, the most
significant bit (MSB) of a bit string is used as the sign bit (0 = plus, 1 = minus),
and the lower-order bits contain the magnitude. Thus, we can write several 8-bit
signed-magnitude integers and their decimal equivalents:

The signed-magnitude system has an equal number of positive and nega-
tive integers. An n-bit signed-magnitude integer lies within the range −(2n−1 − 1)
through +(2n−1 − 1), and there are two possible representations of zero.

Now suppose we wanted to build a digital logic circuit that adds signed-
magnitude numbers. The circuit must examine the signs of the addends to deter-
mine what to do with the magnitudes. If the signs are the same, it must add the
magnitudes and give the result the same sign. If the signs are different, it must
compare the magnitudes, subtract the smaller from the larger, and give the result
the sign of the larger. All of these “ifs,” “adds,” “subtracts,” and “compares”
translate into a lot of logic-circuit complexity. Adders for complement number
systems are much simpler, as we’ll show next.

010101012 = +8510 110101012 = –8510

011111112 = +12710 111111112 = –12710

000000002 = +010 100000002 = –010

comparing numbers

signed-magnitude
system

sign bit

signed-magnitude
adder

DDPP5.book Page 44 Tuesday, March 28, 2017 5:33 PM

2.5 Representation of Negative Numbers 45

2.5.2 Complement Number Systems
While the signed-magnitude system negates a number by changing its sign, a
complement number system negates a number by taking its complement as
defined by the system. Taking the complement is more difficult than changing
the sign, but two numbers in a complement number system can be added or
subtracted directly without the sign and magnitude checks that have to be done
in the signed-magnitude system. We’ll describe two such systems for binary
numbers, called the “two’s complement” and the “ones’ complement.”

In two’s and ones’ complement number systems, we normally deal with a
fixed number of bits, say n. However, we can increase the number of bits by
“sign extension” as shown in Exercise 2.35, and decrease the number by truncat-
ing high-order bits as shown in Exercise 2.36. We assume the numbers have the
following form:

B = bn–1bn–2· · ·b1b0 .

The binary point is on the right, and so the number is an integer. In either system,
if an operation produces a result that requires more than n bits, we throw away
the extra high-order bit(s). If a number B is complemented twice, the result is B.

2.5.3 Two’s-Complement Representation
In a two’s-complement system, the complement of an n-bit number B is obtained
by subtracting it from 2n. If B is between 1 and 2 n − 1, this subtraction produces
another number between 1 and 2 n − 1. If B is 0, the result of the subtraction is
2n, which has the form 100 ⋅ ⋅ ⋅ 00, where there are a total of n + 1 bits. We throw
away the extra high-order bit and get a result of 00 ⋅ ⋅ ⋅ 00 (n 0s). Thus, there is
only one representation of zero in a two’s-complement system.

It seems from the definition that a subtraction operation is needed to calcu-
late the two’s complement of B. However, this subtraction can be avoided by
rewriting 2 n as (2 n − 1) + 1 and 2 n − B as ((2 n − 1) − B) + 1. The number 2 n − 1
has the form 11 ⋅ ⋅ ⋅ 11, where there are n 1’s. For example, for n = 8, 1000000002

THE SIMPLEST
SUBTRACTOR

Perhaps the one redeeming feature of a signed-magnitude system is that, once we
know how to build a signed-magnitude adder, a signed-magnitude subtractor is
almost trivial to build—it need only change the sign of the subtrahend and pass it
along with the minuend to the signed-magnitude adder.

complement number
system

FUNNY
PUNCTUATION

The punctuation for two’s complement and ones’ complement really is supposed to
be different, for rather arcane reasons. See the first two citations in the references at
the end of this chapter.

two’s-complement
system

computing the two’s
complement

DDPP5.book Page 45 Tuesday, March 28, 2017 5:33 PM

46 Chapter 2 Number Systems and Codes

equals 111111112 + 1. If we define the complement of a bit b to be the opposite
value of the bit, then (2n − 1) − B is obtained by simply complementing the bits
of B. Therefore, the two’s complement of a number B is obtained by comple-
menting the individual bits of B and adding 1. For example, again for n = 8, the
2’s complement of 01110100 is 10001011 + 1, or 10001100.

The MSB of a number in the two’s-complement system serves as the sign
bit; a number is negative if and only if its MSB is 1. The decimal equivalent for
a two’s-complement binary number is calculated in the same way as for an
unsigned number, except that the weight of the MSB is −2n−1 instead of +2 n−1.
The range of representable numbers is −(2 n−1) through +(2 n−1 − 1). Some 8-bit
examples are shown below:

A carry out of the MSB position occurs in one case, in the bottom left-hand
example above. As in all two’s-complement operations, this bit is ignored and
only the low-order n bits of the result are used.

In the two’s-complement number system, zero is considered positive
because its sign bit is 0. Since the two’s-complement system has only one repre-
sentation of zero, we end up with one extra negative number, −2n−1, that does not
have a positive counterpart.

We can convert an n-bit two’s-complement number X into an m-bit one, but
some care is needed. If m > n, we must append m − n copies of X’s sign bit to the
left of X (see Exercise 2.35). That is, we pad a positive number with 0s and a
negative one with 1s; this is called sign extension. If m < n, we discard X’s n − m
leftmost bits; however, the result is valid only if all of the discarded bits are the
same as the sign bit of the result (see Exercise 2.36).

1710 = 00010001
↓ .

11101110

+1

2
complement bits

−9910 = 10011101
↓ .

01100010
+1

2

complement bits

111011112 = −1710 011000112 = 9910

11910 = 01110111
↓ .

10001000
+1

2

2

complement bits
−12710 = 10000001

↓ .
01111110

+1

2

2

complement bits

100010012 = −11910 011111112 = 12710

010 = 00000000
↓ .

11111111

+1

2
complement bits

−12810 = 10000000
↓ .

01111111

+1

2
complement bits

1 000000002 = 010 100000002 = −12810

weight of MSB

extra negative number

sign extension

DDPP5.book Page 46 Tuesday, March 28, 2017 5:33 PM

2.5 Representation of Negative Numbers 47

Most computers and other digital systems use the two’s-complement
system to represent negative numbers. However, for completeness, we’ll also
describe two other representations that have some special uses.

*2.5.4 Ones’-Complement Representation
In a ones’-complement system, the complement of an n-bit number B is obtained
by subtracting it from 2n − 1. This can be accomplished by complementing the
individual digits of B, without adding 1 as in the two’s-complement system. As
in two’s complement, the most significant bit is the sign, 0 if positive and 1 if
negative. Thus, there are two representations of zero: positive zero (00 ⋅ ⋅ ⋅ 00)
and negative zero (11 ⋅ ⋅ ⋅ 11). Positive-number representations are the same for
both ones’ and two’s complements. However, negative-number representations
differ by 1. A weight of −(2n−1 − 1), rather than −2n−1, is given to the most sig-
nificant bit when computing the decimal equivalent of a ones’-complement
number. The range of representable numbers is −(2n−1 − 1) through +(2n−1 − 1).
Some 8-bit numbers and their ones’ complements are shown below:

The main advantages of the ones’-complement system are its symmetry
and the ease of complementation, which led to its use in a few early computers.
However, the adder design for ones’-complement numbers is somewhat trickier
than for two’s-complement (see Exercise 10.47). Also, zero-detecting circuits in
a ones’-complement system either must check for both representations of zero,
or must always convert 11 ⋅ ⋅ ⋅ 11 to 00 ⋅ ⋅ ⋅ 00. Still, ones’-complement addition is
everywhere since it’s used in the header checksum of Internet packets.

*2.5.5 Excess Representations
Yes, the number of different systems for representing negative numbers may
seem excessive, but there’s just one more for us to cover. In excess-B represen-
tation, an m-bit string whose unsigned integer value is M (0 ≤ M < 2m) represents
the signed integer M − B, where B is called the bias of the number system.

* Throughout this book, optional sections are marked with an asterisk.

1710 = 000100012

↓ .
111011102

= −1710

−9910 = 100111002

↓ .
011000112

= 9910

11910 = 011101112

↓ .
100010002

= −11910

−12710 = 100000002

↓ .
011111112

= 12710

010 = 000000002 (positive zero)0000000

↓ .
000 0111111112 = 010 (negative zero)

ones’-complement
system

excess-B representation

bias

DDPP5.book Page 47 Tuesday, March 28, 2017 5:33 PM

48 Chapter 2 Number Systems and Codes

For example, an excess-2m−1 system represents any number X in the range
−2m−1 through +2m−1 − 1 by the m-bit binary representation of X + 2m−1 (which
is always nonnegative and less than 2m). The range of this representation is
exactly the same as that of m-bit two’s-complement numbers. In fact, the repre-
sentations of any number in the two systems are identical except for the sign bits,
which are always opposite. (Note this is true only when the bias is 2m−1.)

The most common use of excess representation is in exponents in floating-
point number systems (see References).

2.6 Two’s-Complement Addition and Subtraction
2.6.1 Addition Rules
Table 2-4, a table of decimal numbers and their equivalents in different number
systems, reveals why the two’s complement is preferred for arithmetic opera-
tions. If we start with the smallest (most negative) number 10002 (−810) and
count up, we see that each successive two’s-complement number all the way to
01112 (+710) can be obtained by adding 1 to the previous one, but ignoring any

excess-2m−1 system

Table 2-4 Decimal and 4-bit numbers.

Decimal

Two’s
Complement

Ones’
Complement

Signed
Magnitude

Excess
2m−1

 −8 1000 — — 0000

 −7 1001 1000 1111 0001

 −6 1010 1001 1110 0010

 −5 1011 1010 1101 0011

 −4 1100 1011 1100 0100

 −3 1101 1100 1011 0101

 −2 1110 1101 1010 0110

 −1 1111 1110 1001 0111

 0 0000 1111 or 0000 1000 or 0000 1000

 1 0001 0001 0001 1001

 2 0010 0010 0010 1010

 3 0011 0011 0011 1011

 4 0100 0100 0100 1100

 5 0101 0101 0101 1101

 6 0110 0110 0110 1110

 7 0111 0111 0111 1111

DDPP5.book Page 48 Tuesday, March 28, 2017 5:33 PM

2.6 Two’s-Complement Addition and Subtraction 49

carries beyond the fourth bit position. The same thing cannot be said of signed-
magnitude and ones’-complement numbers.

Because ordinary addition is just an extension of counting, two’s-comple-
ment numbers can thus be added by ordinary binary addition, ignoring any
carries beyond the MSB. The result will always be the correct sum as long as the
range of the number system is not exceeded. Some examples of decimal addition
and the corresponding 4-bit two’s-complement additions confirm this:

2.6.2 A Graphical View
Another way to view the two’s-complement system uses the 4-bit “counter
wheel” shown in Figure 2-3. Here we have shown the numbers in a circular or
“modular” representation. The operation of this counter wheel very closely
mimics that of a real 4-bit up/down counter circuit, which we’ll encounter in
Section 11.1.5. Starting with the arrow pointing to any number, we can add +n
to that number by counting up n times, that is, by moving the arrow n positions
clockwise. It is also evident that we can subtract n from a number by counting
down n times, that is, by moving the arrow n positions counterclockwise. Of
course, these operations give correct results only if n is small enough that we
don’t cross the discontinuity between −8 and +7.

+3
+ +4

0011
+ 0100

−2
+ −6

1110
+ 1010

+7 0111 −8 11000

+6
+ −3

0110
+ 1101

+4
+ −7

0100
+ 1001

+3 10011 −3 1101

two’s-complement
addition

Figure 2-3
A counter wheel for
adding and
subtracting 4-bit
two’s-complement
numbers.

0000

1000

0001

0010

0011

01011011

1100

1101

1110

1111

01101010

01111001

0100

+0

–8

+1–1

+7–7

+2–2

+3–3

+4–4

+5–5

+6–6

Subtraction of
positive numbers

Addition of
positive numbers

DDPP5.book Page 49 Tuesday, March 28, 2017 5:33 PM

50 Chapter 2 Number Systems and Codes

What is most interesting is that we can also subtract n (or add −n) by mov-
ing the arrow 16 − n positions clockwise. Notice the quantity 16 − n is what we
defined to be the 4-bit two’s complement of n, that is, the two’s-complement rep-
resentation of −n. This graphically supports our earlier claim that a negative
number in two’s-complement representation may be added to another number
simply by adding the 4-bit representations using ordinary binary addition. In
Figure 2-3, adding a number is equivalent to moving the arrow a corresponding
number of positions clockwise.

2.6.3 Overflow
If an addition operation produces a result that exceeds the range of the number
system, overflow is said to occur. In the counter wheel of Figure 2-3, overflow
occurs during addition of positive numbers when we count past +7. Addition of
two numbers with different signs can never produce overflow, but addition of
two numbers of like sign can, as shown by the following examples:

Fortunately, there is a simple rule for detecting overflow in addition: An
addition overflows if the addends’ signs are the same but the sum’s sign is
different from that of the addends. The overflow rule is sometimes stated in
terms of carries generated during the addition operation: An addition overflows
if the carry bits cin into and cout out of the sign position are different. Close exam-
ination of Table 2-3 on page 42 shows that the two rules are equivalent—there
are only two cases where cin ≠ cout, and these are the only two cases where x = y
and the sum bit is different.

2.6.4 Subtraction Rules
Two’s-complement numbers may be subtracted as if they were ordinary
unsigned binary numbers, and appropriate rules for detecting overflow may be
formulated. However, most subtraction circuits for two’s-complement numbers
do not perform subtraction directly. Rather, they negate the subtrahend by taking
its two’s complement, and then add it to the minuend using the normal rules for
addition.

Negating the subtrahend and adding the minuend can be accomplished
with only one addition operation as follows: Perform a bit-by-bit complement of

−3
+ −6

1101
+ 1010

+5
+ +6

0101
+ 0110

−9 10111 = +7 +11 1011 = −5

−8
+ −8

1000
+ 1000

+7
+ +7

0111
+ 0111

−16 10000 = +0 +14 1110 = −2

overflow

overflow rules

two’s-complement
subtraction

DDPP5.book Page 50 Tuesday, March 28, 2017 5:33 PM

2.6 Two’s-Complement Addition and Subtraction 51

the subtrahend and add the complemented subtrahend to the minuend with an
initial carry (cin) of 1 instead of 0. Examples are given below:

Overflow in subtraction can be detected by examining the signs of the
minuend and the complemented subtrahend, using the same rule as in addition.
Or, using the technique in the preceding examples, the carries into and out of the
sign position can be observed, and overflow can be detected irrespective of the
signs of inputs and output, again using the same rule as in addition.

An attempt to negate the “extra” negative number results in overflow
according to the rules above, when we add 1 in the complementation process:

However, this number can still be used in additions and subtractions, with results
being valid as long as they do not exceed the number range:

2.6.5 Two’s-Complement and Unsigned Binary Numbers
Since two’s-complement numbers are added and subtracted by the same basic
binary addition and subtraction algorithms as unsigned numbers of the same
length, a computer or other digital system can use the same adder circuit to deal
with numbers of both types. However, the results must be interpreted differently,
depending on whether the system is dealing with signed numbers (e.g., −8
through +7) or unsigned numbers (e.g., 0 through 15).

We introduced a graphical representation of the 4-bit two’s-complement
system in Figure 2-3. We can relabel this figure as shown in Figure 2-4 to obtain

+4
− +3

0100
− 0011

1
0100

+ 1100

— cin

+3
− +4

0011
− 0100

1
0011

+ 1011

— cin

+1 10001 −1 1111

+3
− −4

0011
− 1100

1
0011

+ 0011

— cin

−3
− −4

1101
− 1100

1
1101

+ 0011

— cin

+7 0111 +1 10001

−(−8) = −1000 = 0111
+ 0001

1000 = −8

+4
+ −8

0100
+ 1000

−3
− −8

1101
− 1000

1
1101

+ 0111

— cin

−4 1100 +5 10101

signed vs. unsigned
numbers

DDPP5.book Page 51 Tuesday, March 28, 2017 5:33 PM

52 Chapter 2 Number Systems and Codes

a representation of the 4-bit unsigned numbers. The binary combinations occupy
the same positions on the wheel, and a number is still added by moving the arrow
a corresponding number of positions clockwise, and subtracted by moving the
arrow counterclockwise.

An addition operation can be seen to exceed the range of the 4-bit
unsigned-number system in Figure 2-4 if the arrow moves clockwise through
the discontinuity between 0 and 15. In this case, a carry out of the most
significant bit position is said to occur.

Likewise a subtraction operation exceeds the range of the number system if
the arrow moves counterclockwise through the discontinuity. In this case, a
borrow out of the most significant bit position is said to occur.

From Figure 2-4 it is also evident that we may subtract an unsigned
number n by counting clockwise 16 − n positions. This is equivalent to adding
the 4-bit two’s-complement of n. The subtraction produces a borrow if the
corresponding addition of the two’s complement does not produce a carry.

In summary, in unsigned addition the carry or borrow in the most signifi-
cant bit position indicates an out-of-range result. In signed, two’s-complement
addition the overflow condition defined earlier indicates an out-of-range result.
The carry from the most significant bit position is irrelevant in signed addition in
the sense that overflow may or may not occur independently of whether or not a
carry occurs.

*2.7 Ones’-Complement Addition and Subtraction
Another look at Table 2-4 helps to explain the rule for adding ones’-complement
numbers. If we start at 10002 (−710) and count up, we obtain each successive
ones’-complement number by adding 1 to the previous one, except at the transi-
tion from 11112 (negative 0) to 00012 (+110). To maintain the proper count, we

Figure 2-4
Modular counting
representation of
4-bit unsigned
numbers.

0000

1000

0001

0010

0011

01011011

1100

1101

1110

1111

01101010

01111001

0100

0

8

115

79

214

313

412

511

610

Subtraction Addition

carry

borrow

DDPP5.book Page 52 Tuesday, March 28, 2017 5:33 PM

2.7 Ones’-Complement Addition and Subtraction 53

must add 2 instead of 1 whenever we count past 11112. This suggests a technique
for adding ones’-complement numbers: Perform a standard binary addition, but
add an extra 1 whenever we count past 11112.

Counting past 11112 during an addition can be detected by observing the
carry out of the sign position. Thus, the rule for adding ones’-complement
numbers can be stated quite simply:

• Perform a standard binary addition; if there is a carry out of the sign
position, add 1 to the result.

This rule is often called end-around carry. Examples of ones’-complement
addition are given below; the last three include an end-around carry:

Following the two-step addition rule above, the addition of a number and
its ones’ complement produces negative 0. In fact, an addition operation using
this rule can never produce positive 0 unless both addends are positive 0 (think
about it!).

Just like two’s-complement subtraction, ones’-complement subtraction is
easiest to do by complementing the subtrahend and then adding. Overflow rules
for ones’-complement addition and subtraction are also the same as for two’s-
complement.

Today, ones’-complement addition is actually happening all around you,
though you’d never know it. That’s because the header of every Internet Protocol
Version 4 (IPv4) packet contains a 16-bit ones’-complement sum of all of its
other 16-bit words, that is transmitted along with header and checked for errors
when the packet is received.

+3
+ +4

0011
+ 0100

+4
+ −7

0100
+ 1000

+5
+ −5

0101
+ 1010

+7 0111 −3 1100 −0 1111

−2
+ −5

1101
+ 1010

+6
+ −3

0110
+ 1100

−0
+ −0

1111
+ 1111

−7 10111
+ 1

+3 10010
+ 1

−0 11110
+ 1

1000 0011 1111

ones’-complement
addition

end-around carry

ones’-complement
subtraction

NUMBER
SYSTEMS

SUMMARY

Concluding our discussion of number systems, Table 2-5 summarizes the rules that
we presented in the preceding four sections for addition, negation, and subtraction in
binary number systems.

DDPP5.book Page 53 Tuesday, March 28, 2017 5:33 PM

54 Chapter 2 Number Systems and Codes

*2.8 Binary Multiplication
In grammar school we learned to multiply by adding a list of shifted multipli-
cands computed according to the digits of the multiplier. The same method can
be used to obtain the product of two unsigned binary numbers. Forming the
shifted multiplicands is trivial in binary multiplication, since the only possible
values of the multiplier digits are 0 and 1. An example is shown below:

Instead of listing all the shifted multiplicands and then adding, in a digital
system it is more convenient to add each shifted multiplicand as it is created to a

11
× 13

1011
× 1101

multiplicand
multiplier

33
110

1011
00000

shifted multiplicands
143 101100

1011000

10001111 product

Table 2-5 Summary of addition and subtraction rules for binary numbers.

Number System Addition Rules Negation Rules Subtraction Rules

Unsigned Add the numbers. Result is out of
range if a carry out of the MSB
occurs.

Not applicable Subtract the subtrahend
from the minuend. Result is
out of range if a borrow out
of the MSB occurs.

Signed magnitude (same sign) Add the magnitudes;
overflow occurs if a carry out of
the MSB occurs; result has the
same sign.
(opposite sign) Subtract the
smaller magnitude from the
larger; overflow is impossible;
result has the sign of the larger.

Change the number’s
sign bit.

Change the sign bit of the
subtrahend and proceed as
in addition.

Two’s complement Add, ignoring any carry out of the
MSB. Overflow occurs if
the carries into and out of the
MSB are different.

Complement all bits of
the number; add 1 to the
result.

Complement all bits of the
subtrahend and add to the
minuend with an initial
carry of 1.

Ones’ complement Add; if there is a carry out of the
MSB, add 1 to result. Overflow
occurs if carries into and out of
the MSB are different.

Complement all bits of
the number.

Complement all bits of the
subtrahend and proceed as
in addition.

shift-and-add
multiplication

unsigned binary
multiplication

DDPP5.book Page 54 Tuesday, March 28, 2017 5:33 PM

2.8 Binary Multiplication 55

partial product. Applying this technique to the previous example, four additions
and partial products are used to multiply 4-bit numbers:

In general, when we multiply an n-bit number by an m-bit number, the
resulting product requires at most n + m bits to express. The shift-and-add
algorithm requires m partial products and additions to obtain the result, but the
first addition is trivial, since the first partial product is zero. Although the first
partial product has only n significant bits, after each addition step the partial
product gains one more significant bit, since each addition may produce a carry.
At the same time, each step yields one more partial product bit, starting with the
rightmost and working toward the left, that does not change. The shift-and-add
algorithm can be performed by a digital circuit that includes a shift register, an
adder, and control logic, as shown in Section 13.2.2.

Multiplication of signed numbers can be accomplished using unsigned
multiplication and the usual grammar-school rules: Perform an unsigned multi-
plication of the magnitudes and make the product positive if the operands had
the same sign, negative if they had different signs. This is very convenient in
signed-magnitude systems, since the sign and magnitude are separate.

In the two’s-complement system, obtaining the magnitude of a negative
number and negating the unsigned product are nontrivial operations. This leads
us to seek a more efficient way of performing two’s-complement multiplication,
described next.

Conceptually, unsigned multiplication is accomplished by a sequence of
unsigned additions of the shifted multiplicands; at each step, the shift of the
multiplicand corresponds to the weight of the multiplier bit. The bits in a two’s-
complement number have the same weights as in an unsigned number, except
for the MSB, which has a negative weight (see Section 2.5.3). Thus, we can
perform two’s-complement multiplication by a sequence of two’s-complement
additions of shifted multiplicands, except for the last step, in which the shifted
multiplicand corresponding to the MSB of the multiplier must be negated before

11
× 13

1011
× 1101

multiplicand
multiplier

0000
1011

partial product
shifted multiplicand

01011
0000↓

partial product
shifted multiplicand

001011
1011↓↓

partial product
shifted multiplicand

0110111
1011↓↓↓

partial product
shifted multiplicand

10001111 product

partial product

signed multiplication

two’s-complement
multiplication

DDPP5.book Page 55 Tuesday, March 28, 2017 5:33 PM

56 Chapter 2 Number Systems and Codes

it is added to the partial product. Our previous example is repeated below, this
time interpreting the multiplier and multiplicand as two’s-complement numbers:

Handling the MSBs is a little tricky because we gain one significant bit at each
step and we are working with signed numbers. Therefore, before adding each
shifted multiplicand and k-bit partial product, we change them to k + 1 signifi-
cant bits by sign extension, as shown in color above. Each resulting sum has
k + 1 bits; any carry out of the MSB of the k + 1-bit sum is ignored.

*2.9 Binary Division
The simplest binary division algorithm is based on the shift-and-subtract method
that we learned in grammar school. Table 2-6 gives examples of this method for
unsigned decimal and binary numbers. In both cases, we mentally compare the
reduced dividend with multiples of the divisor to determine which multiple of
the shifted divisor to subtract. In the decimal case, we first pick 11 as the greatest
multiple of 11 less than 21, and then pick 99 as the greatest multiple less than
107. The binary case is simpler, since there are only two choices—zero and the
divisor itself.

Division methods for binary numbers are somewhat complementary to
binary multiplication methods. A typical division algorithm takes an (n + m)-bit
dividend and an n-bit divisor, and produces an m-bit quotient and an n-bit
remainder. A division overflows if the divisor is zero or the quotient would take
more than m bits to express. In most computer division circuits, n = m.

Division of signed numbers can be accomplished using unsigned division
and the usual grammar school rules: Perform an unsigned division of the magni-
tudes and make the quotient positive if the operands had the same sign, negative
if they had different signs. The remainder should be given the same sign as the
dividend. As in multiplication, there are special techniques for performing

−5
× −3

1011
× 1101

multiplicand
multiplier

00000
11011

partial product
shifted multiplicand

111011
00000↓

partial product
shifted multiplicand

1111011
11011↓↓

partial product
shifted multiplicand

11100111
00101↓↓↓

partial product
shifted and negated multiplicand

00001111 product

shift-and-subtract
division

unsigned division

division overflow

signed division

DDPP5.book Page 56 Tuesday, March 28, 2017 5:33 PM

2.10 Binary Codes for Decimal Numbers 57

division directly on two’s-complement numbers; these techniques are often
implemented in computer division circuits (see References).

*2.10 Binary Codes for Decimal Numbers
Even though binary numbers are the most appropriate for the internal computa-
tions of a digital system, most people still prefer to deal with decimal numbers.
As a result, the external interfaces of a digital system may read or display
decimal numbers, and some digital devices actually process decimal numbers
directly.

The human need to represent decimal numbers doesn’t change the basic
nature of digital electronic circuits—they still process signals that take on one of
only two states that we call 0 and 1. Therefore, a decimal number is represented
in a digital system by a string of bits, where different combinations of bit values
in the string represent different decimal numbers. For example, if we use a 4-bit
string to represent a decimal number, we might assign bit combination 0000 to
decimal digit 0, 0001 to 1, 0010 to 2, and so on.

A set of n-bit strings in which different bit strings represent different num-
bers or other things is called a code. A particular combination of n 1-bit values is
called a code word. As we’ll see in the examples of decimal codes in this section,
there may or may not be an arithmetic relationship between the bit values in a
code word and the thing that it represents. Furthermore, a code that uses n-bit
strings need not contain 2n valid code words.

At least four bits are needed to represent the ten decimal digits. There are
billions of different ways to choose ten 4-bit code words, but some of the more
common decimal codes are listed in Table 2-7.

11
19

)217 1011
10011

)11011001
quotient
dividend

110 10110000 shifted divisor

107
99

0101000
0000000

reduced dividend
shifted divisor

8 101000
000000

reduced dividend
shifted divisor

101000
10110

reduced dividend
shifted divisor

10011
1011

reduced dividend
shifted divisor

1000 remainder

Table 2-6
Example of
long division.

code
code word

DDPP5.book Page 57 Tuesday, March 28, 2017 5:33 PM

58 Chapter 2 Number Systems and Codes

Probably the most “natural” decimal code is binary-coded decimal (BCD),
which encodes the digits 0 through 9 by their 4-bit unsigned binary representa-
tions, 0000 through 1001. The code words 1010 through 1111 are not used.
Conversions between BCD and decimal representations are trivial, a direct
substitution of four bits for each decimal digit. Some computer programs place
two BCD digits in one 8-bit byte in packed-BCD representation; thus, one byte
may represent the values from 0 to 99 as opposed to 0 to 255 for a normal
unsigned 8-bit binary number. BCD numbers with any desired number of digits
may be obtained by using one byte for each two digits.

Table 2-7
Decimal codes

Decimal
digit BCD (8421) 2421 Excess-3 Biquinary 1-out-of-10

0 0000 0000 0011 0100001 1000000000

1 0001 0001 0100 0100010 0100000000

2 0010 0010 0101 0100100 0010000000

3 0011 0011 0110 0101000 0001000000

4 0100 0100 0111 0110000 0000100000

5 0101 1011 1000 1000001 0000010000

6 0110 1100 1001 1000010 0000001000

7 0111 1101 1010 1000100 0000000100

8 1000 1110 1011 1001000 0000000010

9 1001 1111 1100 1010000 0000000001

Unused code words

1010 0101 0000 0000000 0000000000

1011 0110 0001 0000001 0000000011

1100 0111 0010 0000010 0000000101

1101 1000 1101 0000011 0000000110

1110 1001 1110 0000101 0000000111

1111 1010 1111 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

binary-coded decimal
(BCD)

BINOMIAL
COEFFICIENTS

The number of different ways to choose m items from a set of n items is given by

a binomial coefficient, denoted , whose value is . For a 4-bit

decimal code, there are different ways to choose 10 out of 16 4-bit code

words, and 10! ways to assign each different choice to the 10 digits. So there are

⋅ 10! or 29,059,430,400 different 4-bit decimal codes.

n
m
 n!

m! n m–()!⋅
16
10

16!
10! 6!⋅

packed-BCD
representation

DDPP5.book Page 58 Tuesday, March 28, 2017 5:33 PM

2.10 Binary Codes for Decimal Numbers 59

Converting a number between packed-BCD representation and binary
requires a little work. An n-digit packed-BCD number D has the value

D = dn–1·10n−1+ dn–2·10n−2 + · · · + d1·101 + d0·100

where dn–1dn–1...d1d0 are its BCD digits. This value can be rewritten as

D = ((· · ·((dn–1)·10 + dn–2)·10 + · · ·) · 10 + d1)·10 + d0

Thus, given the n BCD digits, we can obtain the corresponding binary value with
the following algorithm using binary arithmetic:

1. Set i = n−1 and set D = 0.

2. Multiply D by 10 and add di to D.

3. Set i = i−1 and go back to step 2 if i ≥ 0.

The rewritten formula also leads to a way to convert a binary number into
the corresponding set of BCD digits. If we divide the righthand side of the for-
mula by 10, the remainder is d0 and the quotient is

D / 10 = (· · ·((dn–1)·10 + dn–2)·10 + · · ·) · 10 + d1

which has the same form as before. Successive divisions by 10 yield successive
digits of D, from right to left. Thus, the conversion can be performed as follows,
using binary arithmetic:

1. Set i = 0.

2. Divide D by 10. Set D equal to the quotient and set di to the remainder.

3. Set i = i+1 and go back to step 2 if i ≤ n−1.

If the number of BCD digits needed to represent D is unknown at the outset, we
can just start the conversion algorithm above and keep going until D is 0.

As with binary numbers, there are many possible representations of
negative BCD numbers. Signed BCD numbers have one extra digit position for
the sign. Both the signed-magnitude and 10’s-complement (analogous to two’s-
complement) representations are used in BCD arithmetic. In signed-magnitude
BCD, the encoding of the sign bit string is arbitrary; in 10’s-complement, 0000
indicates plus and 1001 indicates minus.

Addition of BCD digits is similar to adding 4-bit unsigned binary numbers,
except that a correction must be made if a result exceeds 1001. The result is
corrected by adding 6; examples are shown below:

5
+ 9

0101
+ 1001

4
+ 5

0100
+ 0101

14 1110
+ 0110 — correction

9 1001

10 + 4 1 0100

BCD addition

DDPP5.book Page 59 Tuesday, March 28, 2017 5:33 PM

60 Chapter 2 Number Systems and Codes

Notice the addition of two BCD digits produces a carry into the next digit
position if either the initial binary addition or the correction-factor addition
produces a carry. Many computers perform packed-BCD arithmetic using
special instructions that handle the carry correction automatically.

Binary-coded decimal is a weighted code because each decimal digit can
be obtained from its code word by assigning a fixed weight to each code-word
bit. The weights for the BCD bits are 8, 4, 2, and 1, and for this reason the code
is sometimes called the 8421 code. Another set of weights results in the 2421
code shown in Table 2-7. This code has the advantage that it is self-
complementing, that is, the code word for the 9s’ complement of any digit may
be obtained by complementing the individual bits of the digit’s code word.

Another self-complementing code shown in Table 2-7 is the excess-3 code.
Although this code is not weighted, it has an arithmetic relationship with the
BCD code—the code word for each decimal digit is the corresponding BCD
code word plus 00112.

Decimal codes can have more than four bits; for example, the biquinary
code in Table 2-7 uses seven. The first two bits in a code word indicate whether
the number is in the range 0–4 or 5–9, and the last five bits indicate which of the
five numbers in the selected range is represented. This code is used in an abacus.

One potential advantage of using more than the minimum number of bits in
a code is an error-detecting property. In the biquinary code, if any one bit in a
code word is accidentally changed to the opposite value, the resulting code word
does not represent a decimal digit and can therefore be flagged as an error. Out
of 128 possible 7-bit code words, only 10 are valid and recognized as decimal
digits; the rest can be flagged as errors if they appear.

A 1-out-of-10 code, like the one shown in the last column of Table 2-7, is
the sparsest encoding for decimal digits, using 10 out of 1024 possible 10-bit
code words.

2.11 Gray Code
In electromechanical applications of digital systems—such as machine tools,
automotive braking systems, and copiers—it is sometimes necessary for an
input sensor to produce a digital value that indicates a mechanical position. For
example, Figure 2-5 is a conceptual sketch of an encoding disk and a set of
contacts that produce one of eight 3-bit binary-coded values depending on the
rotational position of the disk. The dark areas of the disk are connected to a

8
+ 8

1000
+ 1000

9
+ 9

1001
+ 1001

16 1 0000
+ 0110 — correction

18 1 0010
+ 0110 — correction

10 + 6 1 0110 10 + 8 1 1000

weighted code

8421 code
2421 code
self-complementing

code

excess-3 code

biquinary code

1-out-of-10 code

DDPP5.book Page 60 Tuesday, March 28, 2017 5:33 PM

2.11 Gray Code 61

signal source corresponding to logic 1, and the light areas are unconnected,
which the contacts interpret as logic 0.

The encoder in Figure 2-5 has a problem when the disk is positioned at
certain boundaries between the regions. For example, consider the boundary
between the 001 and 010 regions of the disk; two of the encoded bits change
here. What value will the encoder produce if the disk is positioned right on the
theoretical boundary? Since we’re on the border, both 001 and 010 are accept-
able. However, because the mechanical assembly is imperfect, the two righthand
contacts may both touch a “1” region, giving an incorrect reading of 011. Like-
wise, a reading of 000 is possible. In general, this sort of problem can occur at
any boundary where more than one bit changes. The worst problems occur when
all three bits are changing, as at the 000–111 and 011–100 boundaries.

The encoding-disk problem can be solved by devising a digital code in
which only one bit changes between each pair of successive code words, as in
the redesigned disk in Figure 2-6. As you can see, only one bit of the new disk
changes at each border, so borderline readings give us a value on one side or the
other of the border. The new code is called a Gray code, and its code words are
listed in Table 2-8.

Figure 2-5
A mechanical
encoding disk
using a 3-bit
binary code.

000111

001

011100

010

110

101

0 0 1

Figure 2-6
A mechanical
encoding disk
using a 3-bit
Gray code.

000100

001

010110

011

101

111

0 0 1

Gray code

DDPP5.book Page 61 Tuesday, March 28, 2017 5:33 PM

62 Chapter 2 Number Systems and Codes

There are two convenient ways to construct a Gray code with any desired
number of bits. The first method is based on the fact that Gray code is a reflected
code; it can be defined (and constructed) recursively using the following rules:

1. A 1-bit Gray code has two code words: 0 and 1.

2. The first 2n code words of an (n + 1)-bit Gray code equal the code words of
an n-bit Gray code, written in order with a leading 0 appended.

3. The last 2n code words of an (n + 1)-bit Gray code equal the code words of
an n-bit Gray code, but written in reverse order with a leading 1 appended.

If we draw a line between rows 3 and 4 of Table 2-8, we can see that rules 2 and
3 are true for the 3-bit Gray code. Of course, to construct an n-bit Gray code for
an arbitrary value of n with this method, we must also construct a Gray code of
each length smaller than n.

The second method allows us to derive a code word in an n-bit Gray-code
directly from the corresponding n-bit binary code word:

1. The bits of an n-bit binary or Gray-code code word are numbered from
right to left, from 0 to n − 1.

2. Bit i of a Gray-code code word is 0 if bits i and i + 1 of the corresponding
binary code word are the same, else bit i is 1. (When i + 1 = n, bit n of the
binary code word is considered to be 0.)

Again, inspection of Table 2-8 shows that this is true for the 3-bit Gray code.

*2.12 Character Codes
As we showed in the preceding section, a string of bits need not represent a
number. In fact, most of the information processed by computers is nonnumeric.
The most common type of nonnumeric data is text, strings of characters from
some character set. Each character is represented in the computer by a bit string
according to an established convention.

Decimal
Number

Binary
Code

Gray
Code

0 000 000

1 001 001

2 010 011

3 011 010

4 100 110

5 101 111

6 110 101

7 111 100

Table 2-8
A comparison of 3-bit
binary code and
Gray code.

reflected code

text

DDPP5.book Page 62 Tuesday, March 28, 2017 5:33 PM

2.12 Character Codes 63

Table 2-9 American Standard Code for Information Interchange (ASCII),
Standard No. X3.4-1968 of the American National Standards Institute.

b6b5b4 (column)

b3b2b1b0

Row
(hex)

000
0

001
1

010
2

011
3

100
4

101
5

110
6

111
7

0000 0 NUL DLE SP 0 @ P ‘ p

0001 1 SOH DC1 ! 1 A Q a q

0010 2 STX DC2 " 2 B R b r

0011 3 ETX DC3 # 3 C S c s

0100 4 EOT DC4 $ 4 D T d t

0101 5 ENQ NAK % 5 E U e u

0110 6 ACK SYN & 6 F V f v

0111 7 BEL ETB ’ 7 G W g w

1000 8 BS CAN (8 H X h x

1001 9 HT EM) 9 I Y i y

1010 A LF SUB * : J Z j z

1011 B VT ESC + ; K [k {

1100 C FF FS , < L \ l |

1101 D CR GS - = M] m }

1110 E SO RS . > N ^ n ~

1111 F SI US / ? O _ o DEL

Control codes

NUL Null DLE Data link escape
SOH Start of heading DC1 Device control 1
STX Start of text DC2 Device control 2
ETX End of text DC3 Device control 3
EOT End of transmission DC4 Device control 4
ENQ Enquiry NAK Negative acknowledge
ACK Acknowledge SYN Synchronize
BEL Bell ETB End transmitted block
BS Backspace CAN Cancel
HT Horizontal tab EM End of medium
LF Line feed SUB Substitute
VT Vertical tab ESC Escape
FF Form feed FS File separator
CR Carriage return GS Group separator
SO Shift out RS Record separator
SI Shift in US Unit separator
SP Space DEL Delete or rubout

DDPP5.book Page 63 Tuesday, March 28, 2017 5:33 PM

64 Chapter 2 Number Systems and Codes

The most commonly used character code is ASCII (pronounced ASS key),
the American Standard Code for Information Interchange. ASCII represents
each character with a 7-bit string, yielding a total of 128 different characters
shown in Table 2-9. The code contains the uppercase and lowercase alphabet,
numerals, punctuation, and various nonprinting control characters. Thus, the
text string “D’oh!” is represented by the following list of five 7-bit numbers:

1000100 0100111 1101111 1101000 0100001

2.13 Codes for Actions, Conditions, and States
The codes that we’ve described so far are generally used to represent things that
we would probably consider to be “data”—things like numbers, positions, and
characters. Programmers know that dozens of different data types can be used in
a single computer program.

In digital system design, we often encounter nondata applications where a
string of bits must be used to control an action, to flag a condition, or to represent
the current state of the hardware. Probably the most commonly used type of code
for such an application is a simple binary code. If there are n different actions,
conditions, or states, we can represent them with a b-bit binary code with
b = bits. (The brackets denote the ceiling function—the smallest
integer greater than or equal to the bracketed quantity. As defined above, b is the
smallest integer such that 2b ≥ n.)

For example, consider a simple traffic-light controller. The signals at the
intersection of a north-south (N-S) and an east-west (E-W) street might be in any
of the six states listed in Table 2-10. These states can be encoded in three bits, as
shown in the last column of the table. Only six of the eight possible 3-bit code
words are needed, and the choice of six code words and the assignment of states
to them is arbitrary, so many other encodings are possible. An experienced digi-

ASCII

log2 n
ceiling function

Table 2-10 States in a traffic-light controller.

Lights

State
N-S

Green
N-S

Yellow
N-S
Red

E-W
Green

E-W
Yellow

E-W
Red

Code
Word

N-S go ON off off off off ON 000

N-S wait off ON off off off ON 001

N-S delay off off ON off off ON 010

E-W go off off ON ON off off 100

E-W wait off off ON off ON off 101

E-W delay off off ON off off ON 110

DDPP5.book Page 64 Tuesday, March 28, 2017 5:33 PM

2.13 Codes for Actions, Conditions, and States 65

tal designer will choose a particular encoding to minimize circuit cost, or to
optimize some other parameter like design time—there’s rarely any need to try
dozens of possible encodings.

Another application of a binary code is illustrated in Figure 2-7(a). Here,
we have a system with n devices, each of which can perform a certain action.
The characteristics of the devices are such that they may be enabled to operate
only one at a time. The control unit produces a binary-coded “device-select”
word with log2 n bits to indicate which device is enabled at any time. The
“device-select” code word is applied to each device, which compares it with its
own “device ID” to determine whether it is enabled.

Although a binary code has the smallest code words (fewest bits), it isn’t
always the best choice for encoding actions, conditions, or states. Figure 2-7(b)
shows how to control n devices with a 1-out-of-n code, an n-bit code in which
valid code words have one bit equal to 1 and the rest of the bits equal to 0. Each
bit of the 1-out-of-n code word is connected directly to the enable input of a

device
ID

compare

device
enable

Device

device
ID

compare

device
enable

Device

device
ID

compare

device
enable

Device

binary-coded device select

device
enable

Device

device
enable

Device

device
enable

Device

Control
Unit

(a)

(b)

1-out-of- coded device select

Control
Unit

Figure 2-7 Control structure for a digital system with n devices: (a) using a binary code;
(b) using a 1-out-of-n code.

1-out-of-n code

DDPP5.book Page 65 Tuesday, March 28, 2017 5:33 PM

66 Chapter 2 Number Systems and Codes

corresponding device. This simplifies the design of the devices, since they no
longer have device IDs; they need only a single “enable” input bit.

The code words of a 1-out-of-10 code were listed in Table 2-7. Sometimes
an all-0s word may also be included in a 1-out-of-n code, to indicate that no
device is selected. Another common code is an inverted 1-out-of-n code, in
which valid code words have one 0 bit and the rest of the bits equal to 1.

In complex systems, a combination of coding techniques may be used. For
example, consider a system similar to Figure 2-7(b), in which each of the n
devices contains up to s subdevices. The control unit could produce a device-
select code word with a 1-out-of-n coded field to select a device, and a log2 s-
bit binary-coded field to select one of the s subdevices of the selected device.

An m-out-of-n code is a generalization of the 1-out-of-n code in which
valid code words have m bits equal to 1 and the rest of the bits equal to 0. An m-
out-of-n code word can be detected with an m-input AND gate, which produces a
1 output if all of its inputs are 1. This is fairly simple and inexpensive to do, yet
for most values of m, an m-out-of-n code typically has far more valid code words
than a 1-out-of-n code. The total number of code words is given by the

binomial coefficient , which has the value . Thus, a 2-out-of-4

code has 6 valid code words, and a 3-out-of-10 code has 120.
An important variation of an m-out-of-n code is the 8B10B code used in the

802.3z Gigabit Ethernet standard. This code uses 10 bits to represent 8 bits of
data using 256 code words, most of which use a 5-out-of-10 coding. However,

since is only 252, some 4- and 6-out-of-10 words are also used in the code

in a very interesting way; we’ll say more about this in Section 2.16.2.

*2.14 n-Cubes and Distance
An n-bit string can be visualized geometrically, as a vertex of an object called an
n-cube. Figure 2-8 shows n-cubes for n = 1, 2, 3, 4. An n-cube has 2n vertices,
each of which is labeled with an n-bit string. Edges are drawn so that each vertex
is adjacent to n other vertices whose labels differ from the given vertex in only
one bit. Beyond n = 4, n-cubes are really tough to draw.

When n is small, n-cubes make it easy to visualize and understand certain
coding and logic-minimization problems. For example, the problem of design-
ing an n-bit Gray code is equivalent to finding a path along the edges of an n-
cube, a path that visits each vertex exactly once. The paths for 3- and 4-bit Gray
codes are shown in Figure 2-9.

Cubes also provide a geometrical interpretation for the concept of
distance, also called Hamming distance. The distance between two n-bit strings
is the number of bit positions in which they differ. In terms of an n-cube, the dis-
tance is the minimum length of a path between the two corresponding vertices.

inverted 1-out-of-n code

m-out-of-n code

n
m
 n!

m! n m–()!⋅

8B10B code

10
5

n-cube

distance
Hamming distance

DDPP5.book Page 66 Tuesday, March 28, 2017 5:33 PM

2.15 Codes for Detecting and Correcting Errors 67

Two adjacent vertices have distance 1; vertices 001 and 100 in the 3-cube have
distance 2. The concept of distance is crucial in the design and understanding of
error-detecting codes, discussed in the next section.

*2.15 Codes for Detecting and Correcting Errors
An error in a digital system is the corruption of data from its correct value to
some other value. In this sense, an error is caused by a physical failure. Failures
can be either temporary or permanent. For example, a cosmic ray or alpha par-
ticle can cause a temporary failure of a memory circuit, changing the value of a
bit stored in it. Letting a circuit get too hot or zapping it with static electricity
can cause a permanent failure, so that it never works correctly again.

Figure 2-8
n-cubes for n = 1,
2, 3, and 4.

100 101

010 011

110 111

000 001

1110

00 010 1

0100 0101

0010

0011

0110

0111

0000 0001

1100

1101

1010

1011

1110 1111

1000

1001

1-cube 2-cube

3-cube 4-cube

Figure 2-9
Traversing n-cubes
in Gray-code
order: (a) 3-cube;
(b) 4-cube.

100 101

010 011

110 111

000 001

0100

0010

0011

0110

0000 0001

1100

1101

1011

1110 1111

1000

1001

0111

(a) (b)

0101

1010

error
failure
temporary failure
permanent failure

DDPP5.book Page 67 Tuesday, March 28, 2017 5:33 PM

68 Chapter 2 Number Systems and Codes

The effects of failures on data are predicted by error models. The simplest
error model, which we consider here, is called the independent error model. In
this model, a single physical failure is assumed to affect only a single bit of data;
the corrupted data is said to contain a single error. Multiple failures may cause
multiple errors—two or more bits in error—but multiple errors are normally
assumed to be less likely than single errors.

*2.15.1 Error-Detecting Codes
Recall from our definitions in Section 2.10 that a code that uses n-bit strings
need not contain 2n valid code words; this is certainly the case for the codes that
we now consider. An error-detecting code has the property that corrupting or
garbling a code word will likely produce a bit string that is not a code word (a
noncode word).

A system that uses an error-detecting code generates, transmits, and stores
only code words. Thus, errors in a bit string can be detected by a simple rule—if
the bit string is a code word, it is assumed to be correct; if it is a noncode word,
it definitely contains at least one error.

An n-bit code and its error-detecting properties under the independent
error model are easily explained in terms of an n-cube. A code is simply a subset
of the vertices of the n-cube. In order for the code to detect all single errors, no
code-word vertex can be immediately adjacent to another code-word vertex.

For example, Figure 2-10(a) shows a 3-bit code with five code words.
Code word 111 is immediately adjacent to code words 110, 011, and 101. Since
a single failure could change 111 to 110, 011, or 101, this code does not detect
all single errors. If instead we specify 111 to be a noncode word, we obtain a
code that does have the single-error-detecting property, as shown in (b). No
single error can change one code word into another.

The ability of a code to detect single errors can be stated in terms of the
concept of distance introduced in the preceding section:

• A code detects all single errors if the minimum distance between all possi-
ble pairs of code words is 2.

In general, we need n + 1 bits to construct a single-error-detecting code
with 2n code words. The first n bits of a code word, called information bits, may

error model
independent error

model

single error
multiple error

error-detecting code

noncode word

Figure 2-10
Code words in two
different 3-bit codes:
(a) minimum distance 1,
does not detect all single
errors; (b) minimum
distance 2, detects all
single errors.

100 101

010 011

110 111

000 001

(b)

100 101

010 011

110 111

000 001

(a)

= code word

= noncode word

minimum distance

information bit

DDPP5.book Page 68 Tuesday, March 28, 2017 5:33 PM

2.15 Codes for Detecting and Correcting Errors 69

be any of the 2n n-bit strings. To obtain a minimum-distance-2 code, we add one
more bit, called a parity bit, that is set to 0 if there are an even number of 1s
among the information bits, and to 1 otherwise. This is illustrated in the first two
columns of Table 2-11 for a code with three information bits. A valid (n + 1)-bit
code word has an even number of 1s, and this code is called an even-parity code.
We can also construct a code in which the total number of 1s in a valid (n + 1)-bit
code word is odd; this is called an odd-parity code and is shown in the third
column of the table. These codes are also sometimes called 1-bit parity codes,
since they each use a single parity bit.

The 1-bit parity codes do not detect 2-bit errors, since changing two bits
does not affect the parity. However, the codes can detect errors in any odd
number of bits. For example, if three bits in a code word are changed, then the
resulting word has the wrong parity and is a noncode word. This doesn’t help us
much, though. Under the independent error model, 3-bit errors are much less
likely than 2-bit errors, which are not detectable. Thus, practically speaking, the
1-bit parity codes’ error-detection capability stops after 1-bit errors. Other
codes, with minimum distance greater than 2, can be used to detect multiple
errors.

*2.15.2 Error-Correcting and Multiple-Error-Detecting Codes
By using more than one parity bit, or check bits, according to some well-chosen
rules, we can create a code whose minimum distance is greater than 2. Before
showing how this can be done, let’s look at how such a code can be used either
to correct single errors or to detect multiple errors.

Suppose that a code has a minimum distance of 3. Figure 2-11 shows a
fragment of the n-cube for such a code. As shown, there are at least two noncode
words between each pair of code words. Now suppose we transmit code words,
and assume that failures affect at most one bit of each received code word. Then
a received noncode word with a 1-bit error will be closer to the originally trans-
mitted code word than to any other code word. Therefore, when we receive a

parity bit

Information
Bits

Even-parity
Code

Odd-parity
Code

000 000 0 000 1

001 001 1 001 0

010 010 1 010 0

011 011 0 011 1

100 100 1 100 0

101 101 0 101 1

110 110 0 110 1

111 111 1 111 0

Table 2-11
Distance-2 codes
with three
information bits.

even-parity code

odd-parity code
1-bit parity code

check bits

DDPP5.book Page 69 Tuesday, March 28, 2017 5:33 PM

70 Chapter 2 Number Systems and Codes

noncode word, we can correct the error by changing the received noncode word
to the nearest code word, as indicated by the arrows in the figure. Deciding
which code word was originally transmitted to produce a received word is called
decoding, and the hardware that does this is an error-correcting decoder.

A code that is used to correct errors is called an error-correcting code. In
general, if a code has minimum distance 2c + 1, it can be used to correct errors
that affect up to c bits (c = 1 in the preceding example). If a code’s minimum
distance is 2c + d + 1, it can be used to correct errors in up to c bits and to detect
errors in up to d additional bits.

For example, Figure 2-12(a) shows a fragment of the n-cube for a code
with minimum distance 4 (c = 1, d = 1). Single-bit errors that produce noncode
words 00101010 and 11010011 can be corrected. However, an error that pro-
duces 10100011 cannot be corrected, because no single-bit error can produce
this noncode word, and either of two 2-bit errors could have produced it. So the
code can detect a 2-bit error, but it cannot correct it.

With an error-correcting code, when a noncode word is received, we don’t
know which code word was originally transmitted; we only know which code

Figure 2-11
Some code words
and noncode
words in a 7-bit,
distance-3 code.

0001011

0001001

0000011

0001010

0011011

= code word

= noncode word

1011001

0011001

1001001

1011000

1010001

1010010

0001111 1111001

1010110

1010000

1011010

1010011

1001011 1011011

0010010

1000010

0101011 1011101

1110010

error correction

decoding
decoder
error-correcting code

DECISIONS,
DECISIONS

The names decoding and decoder make sense, since they are just distance-1 pertur-
bations of deciding and decider.

DDPP5.book Page 70 Tuesday, March 28, 2017 5:33 PM

2.15 Codes for Detecting and Correcting Errors 71

word is closest to what we’ve received. Thus, as shown in Figure 2-12(b), a 3-bit
error may be “corrected” to the wrong value. The possibility of making this kind
of mistake may be acceptable if 3-bit errors are very unlikely to occur. On the
other hand, if we are concerned about 3-bit errors, we can change the decoding
policy for the code. Instead of trying to correct errors, we just flag all noncode
words as uncorrectable errors. Thus, as shown in (c), we can use the same
distance-4 code to detect up to 3-bit errors but correct no errors (c = 0, d = 3).

Figure 2-12
Some code words and
noncode words in an
8-bit, distance-4 code:
(a) correcting 1-bit and
detecting 2-bit errors;
(b) incorrectly
“correcting” a 3-bit error;
(c) correcting no errors
but detecting up to
3-bit errors.

00101011

00101010

00100011

10100011

11100011

11010011

11000011

detectable 2-bit errors

3-bit error
looks like a
1-bit error

all 1- to 3-bit errors
are detectable

detectable 2-bit errors

correctable 1-bit errors

(a)

(b)

(c)

00101011

00101010

00100011

10100011

11100011

11010011

11000011

00101011 11000011

DDPP5.book Page 71 Tuesday, March 28, 2017 5:33 PM

72 Chapter 2 Number Systems and Codes

*2.15.3 Hamming Codes
In 1950, R. W. Hamming described a general method for constructing codes
with a minimum distance of 3, now called Hamming codes. For any value of i,
his method yields a (2 i − 1)-bit code with i check bits and 2i − 1 − i information
bits. Distance-3 codes with a smaller number of information bits are obtained by
deleting information bits from a Hamming code with a larger number of bits.

The bit positions in a Hamming code word can be numbered from 1
through 2 i−1. In this case, any position whose number is a power of 2 is a check
bit, and the remaining positions are information bits. Each check bit is grouped
with a subset of the information bits, as specified by a parity-check matrix. As
shown in Figure 2-13(a), each check bit is grouped with the information posi-
tions whose numbers have a 1 in the same bit when expressed in binary. For
example, check bit 2 (010) is grouped with information bits 3 (011), 6 (110), and
7 (111). For a given combination of information-bit values, each check bit is
chosen to produce even parity, that is, so the total number of 1s in its group
is even.

Traditionally, the bit positions of a parity-check matrix and the resulting
code words are rearranged so all of the check bits are on the righthand side, as in
Figure 2-13(b). The first two columns of Table 2-12 list the resulting code words.

We can prove that the minimum distance of a Hamming code is 3 by prov-
ing that at least a 3-bit change must be made to a code word to obtain another
code word. That is, we’ll prove that a 1-bit or 2-bit change in a code word yields
a noncode word.

Hamming code

parity-check matrix

Figure 2-13
Parity-check
matrices for 7-bit
Hamming codes:
(a) bit positions in
numerical order;
(b) check bits and
information bits
separated.

7 6 5 4

Bit position

3 2 1

Groups

Groups

(a)

7 6 5

Bit position

3

(b)

4 2 1

C

B

A

C

B

A

Group
name

Group
name

Check bits

Information bits Check bits

DDPP5.book Page 72 Tuesday, March 28, 2017 5:33 PM

2.15 Codes for Detecting and Correcting Errors 73

If we change one bit of a code word, in position j, then we change the parity
of every group that contains position j. Since every information bit is contained
in at least one group, at least one group has incorrect parity, and the result is a
noncode word.

What happens if we change two bits, in positions j and k? Parity groups that
contain both positions j and k will still have correct parity, since parity is not
affected when an even number of bits are changed. However, since j and k are
different, their binary representations differ in at least one bit, corresponding to
one of the parity groups. This group has only one bit changed, resulting in
incorrect parity and a noncode word.

If you understand this proof, you should also understand how the position-
numbering rules for constructing a Hamming code are a simple consequence of
the proof. For the first part of the proof (1-bit errors), we required that the
position numbers be nonzero. And for the second part (2-bit errors), we required
that no two positions have the same number. Thus, with an i-bit position number,
you can construct a Hamming code with up to 2 i − 1 bit positions.

Minimum-Distance-3 Code Minimum-Distance-4 Code

Information
Bits Parity Bits

Information
Bits Parity Bits

0000 000 0000 0000

0001 011 0001 0111

0010 101 0010 1011

0011 110 0011 1100

0100 110 0100 1101

0101 101 0101 1010

0110 011 0110 0110

0111 000 0111 0001

1000 111 1000 1110

1001 100 1001 1001

1010 010 1010 0101

1011 001 1011 0010

1100 001 1100 0011

1101 010 1101 0100

1110 100 1110 1000

1111 111 1111 1111

Table 2-12
Code words in
distance-3 and
distance-4 Hamming
codes with four
information bits.

DDPP5.book Page 73 Tuesday, March 28, 2017 5:33 PM

74 Chapter 2 Number Systems and Codes

The proof also suggests how we can design an error-correcting decoder for
a received Hamming code word. First, we check all of the parity groups; if all
have even parity, then the received word is assumed to be correct. If one or more
groups have odd parity, then a single error is assumed to have occurred. The
pattern of groups that have odd parity (called the syndrome) must match one of
the columns in the parity-check matrix; the corresponding bit position is
assumed to contain the wrong value and is complemented. For example, using
the code defined by Figure 2-13(b), suppose we receive the word 0101011.
Groups B and C have odd parity, corresponding to position 6 of the parity-check
matrix (the syndrome is 110, or 6). By complementing the bit in position 6 of the
received word, we determine that the correct word is 0001011.

A distance-3 Hamming code can easily be extended to increase its mini-
mum distance to 4. We simply add one more check bit, chosen so that the parity
of all the bits, including the new one, is even. As in the 1-bit even-parity code,
this bit ensures that all errors affecting an odd number of bits are detectable. In
particular, any 3-bit error is detectable. We already showed that 1- and 2-bit
errors are detected by the other parity bits, so the minimum distance of the
extended code must be 4.

Distance-3 and distance-4 extended Hamming codes are commonly used
to detect and correct errors in computer memory systems, especially in large
servers where memory circuits account for the bulk of the system’s electronics
and hence failures. These codes are especially attractive for very wide memory
words, since the required number of parity bits grows slowly with the width of
the memory word, as shown in Table 2-13.

*2.15.4 CRC Codes
Beyond Hamming codes, many other error-detecting and -correcting codes have
been developed. The most important codes, which happen to include Hamming
codes, are the cyclic-redundancy-check (CRC) codes. A rich theory has been
developed for these codes, focusing both on their error-detecting and error-

error-correcting
decoder

syndrome

extended Hamming
code

Minimum-Distance-3 Codes Minimum-Distance-4 Codes

Information Bits Parity Bits Total Bits Parity Bits Total Bits

1 2 3 3 4

≤ 4 3 ≤ 7 4 ≤ 8

≤ 11 4 ≤ 15 5 ≤ 16

≤ 26 5 ≤ 31 6 ≤ 32

≤ 57 6 ≤ 63 7 ≤ 64

≤ 120 7 ≤ 127 8 ≤ 128

Table 2-13
Word size of
distance-3 and
distance-4 extended
Hamming codes

cyclic-redundancy-
check (CRC) code

DDPP5.book Page 74 Tuesday, March 28, 2017 5:33 PM

2.15 Codes for Detecting and Correcting Errors 75

correcting properties and on the design of inexpensive encoders and decoders
for them (see References).

Two important applications of CRC codes are in disk drives and in data
networks. In a disk drive, each block of data (typically 512 bytes) is protected
by a CRC code, so that errors within a block can be detected and often corrected.
In a data network, each packet of data has appended to it check bits in a CRC
code. The CRC codes for both applications were selected because of their
burst-error detecting properties. In addition to single-bit errors, they can detect
multibit errors that are clustered together within the disk block or packet. Such
errors are more likely than errors of randomly distributed bits, because of the
likely physical causes of errors in the two applications—surface defects in disk
drives and noise bursts in communication links.

*2.15.5 Two-Dimensional Codes
Another way to obtain a code with large minimum distance is to construct a two-
dimensional code, as illustrated in Figure 2-14(a). The information bits are con-
ceptually arranged in a two-dimensional array, and parity bits are provided to
check both the rows and the columns. A code Crow with minimum distance drow is
used for the rows, and a possibly different code Ccol with minimum distance dcol
is used for the columns. That is, the row-parity bits are selected so that each row

two-dimensional code

(a)

information bits
checks
on rows

Rows are
code words
in Crow .

checks
on checkschecks on columns

Columns are code words in Ccol .

(b)

information bits

Rows are
code words
in 1-bit
even-parity
code.

Columns are code words
in 1-bit even-parity code.

No effect on column parity.

No effect on
row parity.

(c)

Figure 2-14
Two-dimensional codes:
(a) general structure;
(b) using even parity for
both the row and column
codes to obtain
minimum distance 4;
(c) typical pattern of an
undetectable error.

DDPP5.book Page 75 Tuesday, March 28, 2017 5:33 PM

76 Chapter 2 Number Systems and Codes

is a code word in Crow and the column-parity bits are selected so that each column
is a code word in Ccol. (The “corner” parity bits can be chosen according to either
code.) The minimum distance of the two-dimensional code is the product of drow
and dcol; in fact, two-dimensional codes are sometimes called product codes.

As shown in Figure 2-14(b), the simplest two-dimensional code uses 1-bit
even-parity codes for the rows and columns and has a minimum distance of 2 ⋅ 2,
or 4. You can easily prove that the minimum distance is 4 by convincing yourself
that any pattern of one, two, or three bits in error causes incorrect parity of a row
or a column or both. In order to obtain an undetectable error, at least four bits
must be changed in a rectangular pattern as in (c).

The error-detecting and -correcting procedures for this code are straight-
forward. Assume we are reading information one row at a time. As we read each
row, we check its row code. If an error is detected in a row, we can’t tell which bit
is wrong from the row check alone. However, assuming only one row is bad, we
can reconstruct it by forming the bit-by-bit Exclusive OR of the columns,
omitting the bad row, but including the column-check row.

To obtain an even larger minimum distance, a distance-3 or -4 Hamming
code can be used for the row or column code or both. It is also possible to
construct a code in three or more dimensions, with minimum distance equal to
the product of the minimum distances in each dimension.

An important application of two-dimensional codes is in some RAID
storage systems. RAID stands for “redundant array of inexpensive disks.” In the
RAID scheme, n + 1 identical disk drives may be used to store n disks worth of
data. For example, four 2-terabyte drives could be used to store 8 terabytes of
nonredundant data, and a fifth 2-terabyte drive would be used to store checking
information. This setup could store about 200 high-definition movies in MPEG-2
format, and never lose one to a (single) hard-drive crash!

Figure 2-15 shows a simplified scheme for a two-dimensional code in a
RAID system; each disk drive is considered to be a row in the code. Each drive

product code

RAID

KILO-, MEGA-,
GIGA-, TERA-

The prefixes k (kilo-), M (mega-), G (giga-), and T (tera-) mean 103, 106, 109, and
1012, respectively, when referring to bps, hertz, ohms, watts, and most other engi-
neering quantities. However, when referring to computer memory sizes, the prefixes
mean 210, 220, 230, and 240. Historically, the prefixes were co-opted for this purpose
because memory sizes are normally powers of 2, and 210 (1024) is very close to 1000.

Perversely, when referring to the sizes of disk and removable-storage devices
(including SD cards and the like), the prefixes go back to referring to powers of 10;
the drive manufacturers undoubtedly did this originally to make their drives seem a
little bit bigger. Percentage-wise, the size disparity between the nomenclatures has
only grown with increasing storage capacities.

So, when somebody offers you 70 kilobucks a year for your first engineering
job, it’s up to you to negotiate what the prefix means!

DDPP5.book Page 76 Tuesday, March 28, 2017 5:33 PM

2.15 Codes for Detecting and Correcting Errors 77

stores m blocks of data, where a block typically contains 512 bytes. For example,
a 2-terabyte drive would store about 4 billion blocks. As shown in the figure,
each block includes its own check bits in a CRC code, to detect and possibly cor-
rect errors within that block. The first n drives store the nonredundant data. Each
block in drive n + 1 stores parity bits for the corresponding blocks in the first n
drives. That is, each bit i in drive n + 1, block b, is chosen so that there are an
even number of 1s in block b, bit position i, across all the drives.

In operation, errors in the information blocks are detected by the CRC
code. Whenever an error is detected on one of the drives and cannot be corrected
using the local CRC code, the block’s original contents can still be reconstructed
by computing the parity of the corresponding blocks in all the other drives,
including drive n + 1. This method still works even if you lose all of the data on
a single drive.

Although RAID correction operations require n extra disk reads plus some
computation, it’s better than losing your data! Write operations also have extra
disk accesses, to update the corresponding check block when an information
block is written (see Exercise 2.62). Since disk writes are much less frequent
than reads in typical applications, this overhead usually is not a problem.

*2.15.6 Checksum Codes
The parity-checking operation that we’ve used in the previous subsections is
essentially modulo-2 addition of bits—the sum modulo 2 of a group of bits is 0
if the number of 1s in the group is even, and 1 if it is odd. This approach of
modular addition can be extended to other bases besides 2 to form check digits.

For example, a computer stores information as a sequence of 8-bit bytes.
Each byte may be considered to have a decimal value from 0 to 255. Therefore,
we can use modulo-256 addition to check the bytes. We form a single check
byte, called a checksum, that is the sum modulo 256 of all the information bytes.
The resulting checksum code can detect any single byte error, since such an error
will cause a recomputed sum of bytes to disagree with the checksum.

information blocks

Disk 1

Disk 2

Disk 3

Disk 4

Disk 5

Disk

Disk + 1

Block number
1 2 3 4 5 6 7 8 . . .9 10 1211

check blocks

. . .

. . .

. One block

CRC
Data bytes

1 2 3 4 5 6 5127
. . .
. . .

Figure 2-15 Structure of error-correcting code for a RAID-5 system.

checksum
checksum code

DDPP5.book Page 77 Tuesday, March 28, 2017 5:33 PM

78 Chapter 2 Number Systems and Codes

Checksum codes can also use a different modulus of addition. In particular,
checksum codes using modulo-255 or -65535, ones’-complement addition are
important because of their special computational and error-detecting properties,
and because they are used to check the headers of IPv4 packets on the Internet.

*2.15.7 m-out-of-n Codes
The 1-out-of-n and m-out-of-n codes we introduced in Section 2.13 have a min-
imum distance of 2, since changing only one bit changes the total number of 1s
in a code word and therefore produces a noncode word.

These codes have another useful error-detecting property—they detect
unidirectional multiple errors. In a unidirectional error, all of the erroneous bits
change in the same direction (0s change to 1s, or vice versa). This property is
very useful in systems where the predominant error mechanism tends to change
all bits in the same direction.

2.16 Codes for Transmitting and Storing Serial Data
2.16.1 Parallel and Serial Data
Most computers and other digital systems transmit and store data in a parallel
format. In parallel data transmission, a separate signal line is provided for each
bit of a data word. In parallel data storage, all of the bits of a data word can be
written or read simultaneously.

Parallel formats are not cost effective for some applications. For example,
parallel transmission of data bytes in an Ethernet cable would require eight
signal wires in each direction, and parallel storage of data bytes on a magnetic
disk would require a disk drive with read/write heads for eight separate tracks.
Serial formats allow data to be transmitted or stored one bit at a time. Even in
board-level design and in computer-peripheral interfacing, serial formats can
reduce cost and simplify certain system-design problems. For example, the PCI
Express serial interface evolved from the original, parallel PCI bus used by add-
in modules in desktop computers.

Figure 2-16 illustrates some of the basic ideas in serial data transmission.
A repetitive clock signal, named CLOCK in the figure, defines the rate at which
bits are transmitted, one bit per clock cycle. Thus, the bit rate in bits per second
(bps) numerically equals the clock frequency in cycles per second (hertz, or Hz).

The reciprocal of the bit rate is called the bit time and numerically equals
the clock period in seconds (s). This amount of time is reserved on the serial data
line (named SERDATA in Figure 2-16) for each bit that is transmitted. The time
occupied by each bit is sometimes called a bit cell. The format of the actual
signal that appears on the line during each bit cell depends on the line code. In
the simplest line code, called Non-Return-to-Zero (NRZ), a 1 is transmitted by
placing a 1 on the line for the entire bit cell, and a 0 is transmitted as a 0. More
complex line codes have other rules, as discussed in the next subsection.

ones’-complement
checksum code

unidirectional error

parallel data

serial data

bit rate, bps

bit time

bit cell
line code
Non-Return-to-Zero

(NRZ)

DDPP5.book Page 78 Tuesday, March 28, 2017 5:33 PM

2.16 Codes for Transmitting and Storing Serial Data 79

Regardless of the line code, a serial data-transmission or storage system
needs some way of identifying the significance of each bit in the serial stream. For
example, suppose that 8-bit bytes are transmitted serially. How can we tell which
bit is the first bit of each byte? In Figure 2-16, a synchronization signal, named
SYNC provides the necessary information; it is 1 only for the first bit of each byte.

Evidently, we need a minimum of three signals to recover a serial data
stream: a clock to define the bit cells, a synchronization signal to define the word
boundaries, and the serial data itself. In some applications, like the interconnec-
tion of modules in a computer or telecommunications system, a separate wire is
used for each of these signals, since reducing the number of wires per connec-
tion from n to three is savings enough.

But in many applications, the cost of having three separate signals is still
too high (e.g., three signals per direction for Ethernet, or using multiple radios in
any kind of wireless system). Such systems typically combine all three signals
into a single serial data stream and use sophisticated analog and digital circuits
to recover clock and synchronization information from the data stream, as we’ll
discuss in the next subsection.

*2.16.2 Serial Line Codes
The most commonly used line codes for serial data are illustrated in Figure 2-17
on the next page. As we describer earlier, the NRZ code transmits each bit value
for the entire bit cell. While this is the simplest coding scheme for short-distance
transmission, it generally requires a clock signal to be sent along with the data
to define the bit cells. Otherwise, it is not possible for the receiver to determine
how many 0s or 1s are represented by a continuous 0 or 1 level. For example,
without a clock signal to define the bit cells, the NRZ waveform in Figure 2-17
might be erroneously interpreted as 01010.

A digital phase-locked loop (DPLL) is an analog/digital circuit that can be
used to recover a clock signal from a serial data stream. The DPLL works only if

bit number 1 2 3 4 5 6 7 8 1

bit cell bit cell bit cell bit cell bit cell bit cell bit cell bit cell bit cell

2

bit cell

time

bit time

SYNC

SERDATA

CLOCK

Figure 2-16 Basic concepts for serial data transmission.

synchronization signal

digital phase-locked
loop (DPLL)

DDPP5.book Page 79 Tuesday, March 28, 2017 5:33 PM

80 Chapter 2 Number Systems and Codes

the serial data stream contains enough 0-to-1 and 1-to-0 transitions to give the
DPLL “hints” about when the original clock transitions took place. With NRZ-
coded data, the DPLL works only if the data does not contain any long, continu-
ous streams of 1s or 0s.

Some serial transmission and storage media are transition sensitive; they
cannot transmit or store absolute 0 or 1 levels, only transitions between two dis-
crete levels. For example, a magnetic disk or tape stores information by
changing the polarity of the medium’s magnetization in regions corresponding
to the stored bits. When the information is recovered, it is not feasible to deter-
mine the absolute magnetization polarity of a region, only that the polarity
changes between one region and the next.

Data stored in NRZ format on transition-sensitive media cannot be recov-
ered unambiguously; the data in Figure 2-17 might be interpreted as 01110010
or 10001101. The Non-Return-to-Zero Invert-on-1s (NRZI) code overcomes this
limitation by sending a 1 as the opposite of the level that was sent during the
previous bit cell, and a 0 as the same level. A DPLL can recover the clock from
NRZI-coded data as long as the data does not contain any long, continuous
streams of 0s.

The Return-to-Zero (RZ) code is similar to NRZ except that, for a 1 bit, the 1
level is transmitted only for a fraction of the bit time, usually 1/2. With this code,
data patterns that contain a lot of 1s create lots of transitions for a DPLL to use to
recover the clock. However, as in the other line codes, a string of 0s has no transi-
tions, and a long string of 0s makes clock recovery impossible.

Another requirement of some transmission media, like high-speed fiber-
optic links, is that the serial data stream be DC balanced. That is, it must have an
equal number of 1s and 0s; any long-term DC component in the stream (created
by having a lot more 1s than 0s or vice versa) creates a bias at the receiver that
reduces its ability to distinguish reliably between 1s and 0s.

Figure 2-17
Commonly used
line codes for serial
data.

NRZ

bit value 1 1 10 00 1 0

NRZI

RZ

Manchester

BPRZ

time

transition-sensitive
media

Non-Return-to-Zero
Invert-on-1s (NRZI)

Return-to-Zero (RZ)

DC balance

DDPP5.book Page 80 Tuesday, March 28, 2017 5:33 PM

2.16 Codes for Transmitting and Storing Serial Data 81

Ordinarily, NRZ, NRZI or RZ data has no guarantee of DC balance; there’s
nothing to prevent a user data stream from having a long string of words with
more than 1s than 0s or vice versa. However, DC balance can still be achieved by
using a few extra bits to code the user data in a balanced code, in which each
code word has an equal number of 1s and 0s, and then sending these code words
in NRZ format.

For example, in Section 2.13 we introduced the 8B10B code, which codes
8 bits of user data into 10 bits in a mostly 5-out-of-10 code. Recall that there are
only 252 5-out-of-10 code words, so at least four “extra” code words are needed
(plus a few more to convey certain control information). But there are another

= 210 4-out-of-10 code words, and an equal number of 6-out-of-10 code

words. Of course, these code words aren’t quite DC balanced. The 8B10B code
solves this problem by associating with each “extra” 8-bit value to be encoded a
pair of unbalanced code words, one 4-out-of-10 (“light”) and the other 6-out-of-
10 (“heavy”). The coder also keeps track of the running disparity, a single bit of
information indicating whether the last unbalanced code word that it transmitted
was heavy or light. When it comes time to transmit another unbalanced code
word, the coder selects the one of the pair with the opposite weight. This simple
trick makes available 252 + 210 = 462 code words, more than enough for the
8B10B to encode 8 bits of user data. Some of the “extra” code words are used to
conveniently encode nondata conditions on the serial line, such as IDLE, SYNC,
and ERROR. Not all the unbalanced code words are used. Also, some of the bal-
anced code words, like 0000011111, are not used either, in favor of unbalanced
pairs that contain more transitions.

A DPLL can recover a clock signal, but not byte synchronization. Still,
byte synchronization can be achieved in various clever ways by embedding spe-
cial patterns into the long-term serial data stream, recognizing them digitally,
and then “locking” onto them. For example, suppose that the IDLE code word in
a 10-bit code is 1011011000, and IDLE is sent continuously at system startup.
Then the beginning of the code word can be easily recognized as the bit after
three 0s in a row. Successive code words, even if not IDLE, can be expected to
begin at every tenth bit time thereafter. Of course, additional work is needed to
recognize loss of synchronization due to noise, and to get the transmitter to send
IDLE again, and this is an area of much cleverness and variety.

The preceding codes transmit or store only two signal levels, 0 and 1. The
Alternate-Mark-Inversion (AMI) code transmits three signal levels: +1, 0, and

. The code is like RZ except that 1s are transmitted alternately as +1 and −1.
The word “mark” in the code’s name comes from old phone-company parlance,
which called a 1 a “mark.”

The big advantage of AMI over RZ is that it’s DC balanced. This makes it
possible to send AMI streams over transmission media that cannot tolerate a DC
component, such as transformer-coupled analog phone lines. In fact, the AMI

balanced code

10
4

running disparity

Alternate-Mark-
Inversion (AMI)1–

DDPP5.book Page 81 Tuesday, March 28, 2017 5:33 PM

82 Chapter 2 Number Systems and Codes

code was used in T1 digital telephone links for decades, where analog speech
signals are carried as streams of 8000 8-bit digital samples per second that are
transmitted in AMI format on 64-Kbps serial channels.

As with RZ, it is possible to recover a clock signal from a AMI stream as
long as there aren’t too many 0s in a row. Although TPC (The Phone Company)
has no control over what you say (at least, not yet), they still have a simple way
of limiting runs of 0s. If one of the 8-bit bytes that results from sampling your
analog speech pattern is all 0s, they simply change the second-least significant
bit to 1! This is called zero-code suppression and I’ll bet you never noticed it.
And this is also why, in many data applications of T1 links, you get only 56 Kbps
of usable data per 64-Kbps channel; in data applications, the LSB of each byte is
always set to 1 to prevent zero-code suppression from changing the other bits.

The last code in Figure 2-17 is called Manchester or diphase code. The
major strength of this code is that, regardless of the transmitted data pattern, it
provides at least one transition per bit cell, making it very easy to recover the
clock. As shown in the figure, a 0 is encoded as a 0-to-1 transition in the middle
of the bit cell, and a 1 is encoded as a 1-to-0 transition. The Manchester code’s
major strength is also its major weakness. Since it has more transitions per bit
cell than other codes, it also requires more media bandwidth to transmit a given
bit rate. Bandwidth is not a problem in coaxial cable, however, which was used
in the original Ethernet local area networks to carry Manchester-coded serial
data at the rate of 10 Mbps (megabits per second).

References

Precise, thorough, and entertaining discussions of topics in the first nine sections
of this chapter can be found in Donald E. Knuth’s Seminumerical Algorithms,
third edition (Addison-Wesley, 1997). Mathematically inclined readers will find
Knuth’s analysis of the properties of number systems and arithmetic to be excel-
lent, and all readers should enjoy the insights and history sprinkled throughout
the text.

Descriptions of algorithms for arithmetic operations appear in Digital
Arithmetic by Miloš Ercegovac and Tomas Láng (Morgan Kaufmann, 2003). A
thorough discussion of arithmetic techniques and floating-point number systems
can be found in Introduction to Arithmetic for Digital Systems Designers by
Shlomo Waser and Michael J. Flynn (Oxford University Press, 1995).

CRC codes are based on the theory of finite fields, which was developed by
French mathematician Évariste Galois (1811–1832) shortly before he was killed
in a duel with a political opponent. The classic book on error-detecting and
error-correcting codes is Error-Correcting Codes by W. W. Peterson and
E. J. Weldon, Jr. (MIT Press, 1972, second edition); however, this book is
recommended only for mathematically sophisticated readers. A more accessible

zero-code suppression

Manchester
diphase

finite fields

DDPP5.book Page 82 Tuesday, March 28, 2017 5:33 PM

Drill Problems 83

introduction to coding can be found in Error Correcting Codes: A Mathematical
Introduction by John Baylis (Chapman & Hall/CRC, 1997), despite its use of the
word “mathematical” in the title. Another treatise on coding is Fundamentals of
Error-Correcting Codes by W. C. Huffman and V. Pless (Cambridge University
Press, 2010).

An introduction to coding techniques for serial data transmission, as well
as very useful coverage of the higher layers of communication and networking,
appears in Data and Computer Communications by William Stallings (Pearson,
2014, tenth edition).

The structure of the 8B10B code and the rationale behind it is explained
nicely in the original IBM patent by Peter Franaszek and Albert Widmer, U.S.
patent number 4,486,739 (1984). This and all U.S. patents issued after 1971 can
be found on the Web at www.uspto.gov. or at patents.google.com.

Drill Problems
2.1 Perform the following number system conversions:

2.2 Convert the following octal numbers into binary and hexadecimal:

2.3 Convert the following hexadecimal numbers into binary and octal:

2.4 What are the octal values of the four 8-bit bytes in the 32-bit number with octal
representation 345676543218?

2.5 Convert the following numbers into decimal:

(a) 10111012 = ?16 (b) 1370238 = ?2

(c) 100110112 = ?16 (d) 64.238 = ?2

(e) 11000.01112 = ?16 (f) D3B616 = ?2

(g) 111101012 = ?8 (h) ACBD16 = ?2

(i) 101101.01112 = ?8 (j) 37E.7316 = ?2

(a) 43218 = ?2 = ?16 (b) 17726318 = ?2 = ?16

(c) 5334348 = ?2 = ?16 (d) 245277 = ?2 = ?16

(e) 7542.228 = ?2 = ?16 (f) 63712.15158 = ?2 = ?16

(a) 204716 = ?2 = ?8 (b) 6CBA16 = ?2 = ?8

(c) FEAB16 = ?2 = ?8 (d) C07916 = ?2 = ?8

(e) 79EF.3C16 = ?2 = ?8 (f) BAD.DADD16 = ?2 = ?8

(a) 11110112 = ?10 (b) 1730168 = ?10

(c) 101100012 = ?10 (d) 66.278 = ?10

(e) 10101.10012 = ?10 (f) FCB616 = ?10

(g) 122103 = ?10 (h) FEED16 = ?10

(i) 77168 = ?10 (j) 15C1.9316 = ?10

DDPP5.book Page 83 Tuesday, March 28, 2017 5:33 PM

84 Chapter 2 Number Systems and Codes

2.6 Perform the following number-system conversions:

2.7 Add the following pairs of binary numbers, showing all carries:

2.8 Repeat Drill 2.7 using subtraction instead of addition, and showing borrows
instead of carries.

2.9 Add the following pairs of octal numbers:

2.10 Add the following pairs of hexadecimal numbers:

2.11 Write the 8-bit signed-magnitude, two’s-complement, and ones’-complement
representations for each of these decimal numbers: +19, +105, +81, −47, −2, −112.

2.12 Indicate whether or not overflow occurs when adding the following 8-bit two’s-
complement numbers:

2.13 How many errors can be detected by a code with minimum distance d+1?

2.14 What is the minimum number of parity bits required to obtain a distance-4, two-
dimensional code with n information bits?

2.15 Why is it that U.S. computer engineers sometimes confuse the dates of Christmas
and Halloween?

2.16 What 60s rock group had the lucky number 64,180?

2.17 The author grew up in ZIP code 60453, and missed his calling by a power of 10.
How?

2.18 Here’s a problem that lets you have a ball. What is the hexadecimal equivalent of
72417410?

2.19 Find a number that is a palindrome (reads the same forwards and backwards) in
binary, octal, and hexadecimal.

2.20 List the code words of a 4-bit Gray code.

2.21 How many code words are there in a 2-out-of-5 code? List them.

(a) 12910 = ?2 (b) 439810 = ?8

(c) 20710 = ?2 (d) 419610 = ?8

(e) 13810 = ?2 (f) 2243910 = ?16

(g) 79710 = ?5 (h) 5284410 = ?16

(i) 133310 = ?8 (j) 6400010 = ?16

(a) 110011
+ 11001

(b) 101110
+ 100101

(c) 11011101
+ 1100011

(d) 1110011
+ 1101001

(a) 1362
+ 4231

(b) 47135
+ 5145

(c) 175314
+ 152405

(d) 110321
+ 57573

(a) 1872
+ 4737

(b) 4F1A5
+ B7D4

(c) F32B
+ 2AE6

(d) 1B90F
+ A44E

(a) 11010110
+ 11101001

(b) 11011111
+ 10111111

(c) 00011101
+ 01110001

(d) 01110001
+ 00001111

DDPP5.book Page 84 Tuesday, March 28, 2017 5:33 PM

Exercises 85

2.22 Based on the formula for the value of the binomial coefficient that gives the num-
ber of code words in an m-out-of-n code, and you can see that the number of code
words in an (n−m)-out-of-n code is exactly the same. But can you ignore the math
and give a simple explanation in words of why this must be true?

2.23 Perform a Web search to determine where the “mark” in phone parlance and in
the AMI code originated.

2.24 The Magic Mind Reader. Make a copy of Figure X2.24 and cut it into six individ-
ual slips. Ask a friend to pick one of the slips, secretly pick a number from it, and
hand the slip to you. Then ask your friend to look at the remaining slips and hand
you any of them that contain the chosen number. Quickly add up the numbers in
the top left corners of all the slips you were handed and tell your friend the sum—
it is the chosen number! Explain how the trick works.

Exercises
2.25 Make a new version of a Magic Mind Reader based on Drill 2.24. This version

should have eight slips each containing fewer than 32 integers from 1 to 80 (but
the same number of integers on each slip). You may wish to write a program in
your favorite programming language to print out the slips.

2.26 Make a new version of a Magic Mind Reader based on Drill 2.24. This version
should have nine slips each containing only 16 integers from 1 to 63. You may
wish to write a program in your favorite programming language to print out the
slips.

2.27 Find an 8-bit binary number that has the same negative value when interpreted as
either a signed-magnitude or a two’s-complement number.

2.28 The first manned expedition to Mars found only the ruins of a civilization. From
the artifacts and pictures, the explorers deduced that the creatures who produced
this civilization were four-legged beings with a tentacle that branched out at the
end with a number of grasping “fingers.” After much study, the explorers were
able to translate Martian mathematics. They found the following equation:

5x2 − 50x + 125 = 0

with the indicated solutions x = 5 and x = 8. The value x = 5 seemed legitimate
enough, but x = 8 required some explanation. Then the explorers reflected on the
way in which Earth’s number system developed, and found evidence that the
Martian system had a similar history. How many fingers would you say the
Martians had? (From The Bent of Tau Beta Pi, February 1956.)

 1 3 5 7
17 19 21 23 25 27 29 31
33 35 37 39 41 43 45 47
49 51 53 55 57 59 61 63

 9 11 13 15

 8 9
24 25 26 27 28 29 30 31
40 41 42 43 44 45 46 47
56 57 58 59 60 61 62 63

 10 11 12 13 14 15

 2 3 6 7
18 19 22 23 26 27 30 31
34 35 38 39 42 43 46 47
50 51 54 55 58 59 62 63

 10 11 14 15

16 17 18 19 20 21 22 23
24 25 26 27 28 29 30 31
48 49 50 51 52 53 54 55
56 57 58 59 60 61 62 63

 4 5 6 7
20 21 22 23 28 29 30 31
36 37 38 39 44 45 46 47
52 53 54 55 60 61 62 63

 12 13 14 15

32 33 34 35 36 37 38 39
40 41 42 43 44 45 46 47
48 49 50 51 52 53 54 55
56 57 58 59 60 61 62 63

Figure X2.24

DDPP5.book Page 85 Tuesday, March 28, 2017 5:33 PM

86 Chapter 2 Number Systems and Codes

2.29 Each of the following arithmetic operations is correct in at least one number
system. Determine possible radices of the numbers in each operation.

2.30 Suppose a 4n-bit number B is represented by an n-digit hexadecimal number H.
Prove that the two’s complement of B is represented by the 16’s complement of
H. Make and prove true a similar statement for octal representation.

2.31 Repeat Exercise 2.30 using the ones’ complement of B and the 15s’ complement
of H.

2.32 Given an integer x in the range −2n−1 ≤ x ≤ 2n−1 − 1, we define [x] to be the two’s-
complement representation of x, expressed as a positive number: [x] = x if x ≥ 0
and [x] = 2n − |x | if x < 0, where | x | is the absolute value of x. Let y be another
integer in the same range as x. Prove that the two’s-complement addition rules
given in Section 2.6 are correct by proving that the following equation is always
true:

[x + y] = [x] + [y] modulo 2n

(Hints: Consider four cases based on the signs of x and y. Without loss of gener-
ality, you may assume that | x | ≥ | y |.)

2.33 Repeat Exercise 2.32, this time using appropriate expressions and rules for ones’-
complement addition.

2.34 State an overflow rule for addition of two’s-complement numbers in terms of
counting operations in the modular representation of Figure 2-3.

2.35 Show that a two’s-complement number can be converted to a representation with
more bits by sign extension. That is, given an n-bit two’s-complement number X,
show that the m-bit two’s-complement representation of X, where m > n, can be
obtained by appending m − n copies of X’s sign bit to the left of the n-bit repre-
sentation of X.

2.36 Show that a two’s-complement number can be converted to a representation with
fewer bits by removing higher-order bits. That is, given an n-bit two’s-comple-
ment number X, show that the m-bit two’s-complement number Y obtained by
discarding the d leftmost bits of X represents the same number as X if and only if
the discarded bits all equal the sign bit of Y.

2.37 Why is the punctuation of “two’s complement” and “ones’ complement” incon-
sistent? (See the first citation in the References.)

2.38 A n-bit binary adder can be used to perform an n-bit unsigned subtraction opera-
tion X − Y, by performing the operation X + Y + 1, where X and Y are n-bit
unsigned numbers and Y represents the bit-by-bit complement of Y. Demonstrate
this fact as follows. First, prove that (X − Y) = (X + Y + 1) − 2n. Second, prove that
the carry out of the n-bit adder is the opposite of the borrow from the n-bit
subtraction. That is, show that the operation X − Y produces a borrow out of the
MSB position if and only if the operation X + Y + 1 does not produce a carry out
of the MSB position.

(a) 1234 + 4321 = 5555 (b) 51 / 3 = 15

(c) 44/4 = 11 (d) 23 + 44 + 14 + 32 = 201

(e) 315/24 = 10.2 (f) 51 6=

DDPP5.book Page 86 Tuesday, March 28, 2017 5:33 PM

Exercises 87

2.39 In most cases, the product of two n-bit two’s-complement numbers requires fewer
than 2n bits to represent it. In fact, there is only one case in which 2n bits are
needed—find it.

2.40 Prove that a two’s-complement number can be multiplied by 2 by shifting it one
bit position to the left, with a carry of 0 into the least significant bit position and
disregarding any carry out of the most significant bit position, assuming no
overflow. State the rule for detecting overflow.

2.41 State and prove correct a technique similar to the one described in Exercise 2.40,
for multiplying a ones’-complement number by 2.

2.42 Show how to subtract BCD numbers, by stating the rules for generating borrows
and applying a correction factor. Show how your rules apply to each of the
following subtractions: 8 − 3, 4 − 8, 5 − 9, 2 − 7.

2.43 How many different 3-bit binary state encodings are possible in a controller with
4 states? How many are possible with 6 states? How many are possible with 8
states?

2.44 Your pointy-haired boss says every state encoding has to contain at least one 0,
because it “saves power.” So how many different management-approved 3-bit
binary state encodings are possible for the traffic-light controller of Table 2-10?
How many 4-bit encodings if two 0s are required in each state’s encoding?

2.45 List all of the “bad” boundaries in the mechanical encoding disk of Figure 2-5,
where an incorrect position may be sensed.

2.46 As a function of n, how many “bad” boundaries are there in a mechanical encod-
ing disk that uses an n-bit binary code?

2.47 A manufacturer of mechanical encoders discovers the 2-bit Gray code and man-
ufactures encoders with the decimal sequence 0, 1, 3, 2. Generalizing to n-bit
encoders, they decide all they need to do is to reverse every other pair of values
in the decimal sequence, resulting in a sequence of 0, 1, 3, 2, 4, 5, 7, 6, 8, 9, etc.
But this proves to be less than perfect. As a function of n, how many “bad” bound-
aries are there? How much better is their code than an n-bit binary code?

2.48 On-board altitude transponders on commercial and private aircraft use Gray code
to encode the altitude readings that are transmitted to air traffic controllers. Why?

2.49 An incandescent light bulb is stressed every time it is turned on, so in some appli-
cations the lifetime of the bulb is limited by the number of on/off cycles rather
than the total time it is illuminated. Use your knowledge of codes to suggest a way
to double the lifetime of 3-way bulbs in such applications.

2.50 The 5-byte sequence 0x44, 0x27, 0x6F, 0x68, 0x21 occurs repeatedly in a certain
computer file. Why?

2.51 Find a way to draw a 3-cube on a sheet of paper (or other two-dimensional object)
so none of the lines cross, or prove that it’s impossible.

2.52 Find a way to construct a 4-cube so none of the lines cross, or prove that it’s
impossible.

2.53 Is the statement in the box on page 70 true in ASCII?

2.54 Define parity groups for a distance-3 Hamming code with 11 information bits.

2.55 Write the code words of a Hamming code with one information bit.

DDPP5.book Page 87 Tuesday, March 28, 2017 5:33 PM

88 Chapter 2 Number Systems and Codes

2.56 A certain 64-bit computer’s memory system uses 72-bit-wide memory modules.
Describe in some detail the extra feature that this memory system can provide.

2.57 Exhibit the pattern for a 3-bit error that is not detected if the “corner” parity bits
are not included in the two-dimensional codes of Figure 2-14.

2.58 The rate of a code is the ratio of the number of information bits to the total num-
ber of bits in a code word. High rates, approaching 1, are desirable for efficient
transmission of information. Construct a graph comparing the rates of distance-2
parity codes and distance-3 and -4 Hamming codes for up to 100 information bits.

2.59 Which type of distance-4 code has a higher rate: a two-dimensional code or a
Hamming code? Support your answer with a table in the style of Table 2-13,
including the rate as well as the number of parity and information bits of each
code for up to 100 information bits.

2.60 Show how to construct a distance-6 code with eight information bits.

2.61 Show how to generalize your solution to Exercise 2.60 to create a distance-6 code
with an arbitrarily large number of information bits. What is the maximum rate
of this code as the number of information bits approaches infinity?

2.62 Describe the operations that must be performed in a RAID system to write new
data into information block b in drive d, so the data can be recovered in the event
of an error in block b in any drive. Minimize the number of disk accesses
required.

2.63 The headers of IPv4 packets on the Internet contain a 16-bit ones’-complement
sum of all of the 16-bit words in the header. This header checksum detects almost
all of the possible errors in any single 16-bit word in the header. Describe the two
errors that it does not detect.

2.64 The header checksum in IPv4 packets uses a 16-bit ones’-complement sum rather
than a two’s complement sum because the former can be computed in about half
or a fourth as many ones’-complement additions as the latter on a processor with
32-bit or 64-bit arithmetic, respectively. Explain why this is so; you’ll have to do
some online research for the answer.

2.65 In the style of Figure 2-17, draw the waveforms for the bit pattern 01010001
when sent serially using the NRZ, NRZI, RZ, BPRZ, and Manchester codes,
assuming that the bits are transmitted in order from left to right.

2.66 What serial line code is used in a single lane of the first two versions of the PCI
Express serial interface (PCIe 1.0 and 2.0)? Search the Web for the answer.

rate of a code

DDPP5.book Page 88 Tuesday, March 28, 2017 5:33 PM

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

89

c h a p t e r 3
Switching Algebra and
Combinational Logic

ou have undoubtedly already used various logic expressions when
forming conditional statements in a programming language.
There, variables and relations are combined in a somewhat ad-hoc
manner in parenthesized expressions to make decisions and to
control actions.

Digital logic design employs logic expressions that are often much
more complex than those found in a typical program. Moreover, in logic
design such expressions usually lead to a corresponding hardware imple-
mentation, a logic circuit whose output is the value obtained by evaluating
and combining the inputs as specified by the expression.

Logic expressions are therefore often manipulated—by a human or
more typically nowadays by an EDA tool—to achieve various circuit-design
goals. Such goals may include adapting an expression to an available circuit
structure or optimizing a circuit’s size or its performance in metrics like
speed and power consumption. To create, understand, and manipulate logic
expressions and circuits, digital hardware designers use switching algebra
as a fundamental tool.

Logic circuits are classified into two types, “combinational” and
“sequential.” A combinational logic circuit is one whose outputs depend
only on its current inputs. The fan-speed selection knob in an older car is like
a combinational circuit. Its “output” selects a speed based only on its current
“input”—the position of the knob.

Y

DDPP5.book Page 89 Tuesday, March 28, 2017 5:33 PM

90 Chapter 3 Switching Algebra and Combinational Logic

The outputs of a sequential logic circuit depend not only on the current
inputs but also on the past sequence of inputs, possibly arbitrarily far back in
time. The fan-speed circuit controlled by up and down buttons in a newer car is a
sequential circuit—the current speed depends on an arbitrarily long sequence of
up/down pushes, beginning when you first turned on the fan.

This chapter focuses on combinational logic circuits, exploring switching
algebra, logic expressions, and the analysis and synthesis of combinational logic
circuits at the gate level. Sequential circuits will be discussed in later chapters.

A combinational circuit may contain an arbitrary number of logic gates
and inverters but no feedback loops. A feedback loop is a signal path of a circuit
that allows the output of a gate to propagate back to the input of that same gate.
Such a loop generally creates memory and results in sequential circuit behavior,
as we’ll show in the later chapters.

In combinational circuit analysis, we start with a gate-level logic diagram
and proceed to a formal description of the function performed by that circuit,
like a truth table or a logic expression. In synthesis, we do the reverse, starting
with a formal description and proceeding to a logic diagram or other description
that will allow us to build the circuit using available components.

Combinational circuits may have one or more outputs. In this chapter,
we’ll discuss methods that apply to single-output circuits. Most analysis and
synthesis techniques can be extended in an obvious way from single-output to
multiple-output circuits (e.g., “Repeat these steps for each output”). Some
techniques can be extended to improve effectiveness for multiple outputs.

The purpose of this chapter is to give you a solid theoretical foundation for
the analysis and synthesis of combinational logic circuits, a foundation that will
be doubly important later when we move on to sequential circuits. Although
most analysis and synthesis procedures are automated nowadays by EDA tools,
a basic understanding of the fundamentals can help you use the tools as well as
understand what’s gone wrong when they give you undesirable results.

WHAT IS
SYNTHESIS?

In Chapter 1, we introduced the concept of HDL-based digital design using EDA
tools. In that approach, we can write an HDL model to precisely specify a combina-
tional logic function in any of a variety of ways, and then use an EDA synthesis tool
to realize the function in a selected implementation technology, as we'll describe in
more detail in Section 4.3.

In the present chapter, synthesis has a narrower meaning. We again start with
a precise specification of a combinational logic function, but only in the form of a
logic equation, truth table, or equivalent. And we target only one implementation
technology, a gate-level circuit that realizes the logic function. This is traditional
logic design, where minimizing the number of gates needed to perform the function
is the key goal. For most other implementation technologies, experience has proven
that’s still a good starting point for subsequent technology-specific optimization.

synthesis

feedback loop

DDPP5.book Page 90 Tuesday, March 28, 2017 5:33 PM

3.1 Switching Algebra 91

Before launching into a discussion of combinational logic circuits, we’ll
introduce switching algebra, the fundamental mathematical tool for analyzing
and synthesizing logic circuits of all types.

3.1 Switching Algebra
Formal analysis techniques for digital circuits have their roots in the work of an
English mathematician, George Boole. In 1854, he invented a two-valued
algebraic system, now called Boolean algebra, to “give expression … to the
fundamental laws of reasoning in the symbolic language of a Calculus.” Using
this system, a philosopher, logician, or inhabitant of the planet Vulcan can
formulate propositions that are true or false, combine them to make new
propositions, and determine the truth or falsehood of the new propositions. For
example, if we agree that “People who haven’t studied this material are either
failures or not nerds,” and “No computer designer is a failure,” then we can
answer questions like “If you’re a nerdy computer designer, then have you
already studied this?”

Long after Boole, in 1938, Bell Labs researcher Claude E. Shannon
showed how to adapt Boolean algebra to analyze and describe the behavior of
circuits built from relays, the most commonly used digital logic elements of that
time. In Shannon’s switching algebra, the condition of a relay contact, open or

DESIGN VS.
SYNTHESIS

Digital logic design is a superset of synthesis, since in a real design problem we start
out with an informal description of the circuit’s function, typically using natural lan-
guage and perhaps pseudo-code to describe its behavior. For a combinational circuit,
an informal description must at least name all of the circuit’s inputs and outputs, and
indicate how each output is affected by the inputs.

To formalize the circuit description, we need something that precisely defines
the circuit’s behavior for all situations; for a combinational circuit, this means the
output values produced for all possible input combinations. Formal descriptions for
combinational circuits include truth tables, logic equations, and models created using
an HDL.

Once we have a formal circuit description, we can follow a “turn-the-crank”
synthesis procedure to obtain a circuit with the specified functional behavior. The
circuit may be described in a logic diagram that shows its elements (such as gates)
and their interconnections, in a net list which is a text file conveying the same infor-
mation as the latter, or in one of a myriad of formats which specify a circuit’s
elements and interconnections in a particular implementation technology such as an
ASIC or FPGA.

The material in the first three sections of this chapter is the basis for “turn-the-
crank” synthesis procedures for creating combinational logic circuits using discrete
gates, whether the crank is turned by hand or by a computer.

Boolean algebra

switching algebra

DDPP5.book Page 91 Tuesday, March 28, 2017 5:33 PM

92 Chapter 3 Switching Algebra and Combinational Logic

closed, is represented by a variable X that can have one of two possible values,
0 or 1. In today’s logic technologies, these values correspond to a wide variety of
physical conditions—voltage HIGH or LOW, light off or on, capacitor discharged
or charged, electrons trapped or released, and so on.

In the remainder of this section, we will develop switching algebra directly,
using “first principles” and what you may already know about the behavior of
logic elements (gates and inverters). For more historical and/or mathematical
treatments of this material, consult the References section of this chapter.

3.1.1 Axioms
In switching algebra we use a symbolic variable, such as X, to represent the
condition of a logic signal. A logic signal is in one of two possible conditions—
low or high, off or on, and so on, depending on the technology. We say that X
has the value “0” for one of these conditions and “1” for the other.

For example, with CMOS and most other logic circuits the positive-logic
convention dictates that we associate the value “0” with a LOW voltage and “1”
with a HIGH voltage. The negative-logic convention, which is rarely used, makes
the opposite association: 0 = HIGH and 1 = LOW. However, the choice of positive
or negative logic has no effect on our ability to develop a consistent algebraic
description of circuit behavior; it only affects details of the physical-to-algebraic
abstraction. Thus, we may generally ignore the physical realities of logic circuits
and pretend that they operate directly on the logic symbols 0 and 1.

The axioms (or postulates) of a mathematical system are a minimal set of
basic definitions that we assume to be true, from which all other information
about the system can be derived. The first two axioms of switching algebra
embody the “digital abstraction” by formally stating that a variable X can take on
only one of two values:

Notice that we stated these axioms as a pair, the only difference between A1 and
A1D being the interchange of the symbols 0 and 1. This is a characteristic of all
the axioms of switching algebra and is the basis of the “duality” principle that
we’ll study later.

An inverter is a logic circuit whose output signal level is the opposite (or
complement) of its input signal level. We use a prime () to denote an inverter’s
function. That is, if a variable X denotes an inverter’s input signal, then X
denotes the value of a signal on the inverter’s output. This notation is formally
specified in the second pair of axioms:

Figure 3-1 shows the logic symbol for an inverter. with its input on the left
and its output on the right. The input and output signals may have arbitrary
names, say X and Y. Algebraically, however, we write Y = X to say “signal Y has

(A1) X = 0 if X ≠ 1 (A1D) X = 1 if X ≠ 0

(A2) If X = 0, then X = 1 (A2D) If X = 1, then X = 0

positive-logic
convention

negative-logic
convention

axiom
postulate

inverter
complement
prime ()

DDPP5.book Page 92 Tuesday, March 28, 2017 5:33 PM

3.1 Switching Algebra 93

the opposite value as signal X.” The prime () is an algebraic operator, and X is
an expression, which you can read as “X prime” or “NOT X.” This usage is anal-
ogous to what you’ve learned in programming languages, where if J is an integer
variable, then −J is an expression whose value is 0 − J. Although this may seem
like a small point, you’ll learn that the distinction between signal names (X, Y),
expressions (X), and equations (Y = X) is very important when we study docu-
mentation standards and software tools for logic design. In the logic diagrams in
this book, we maintain this distinction by writing signal names in black and
expressions in color.

A 2-input AND gate is a circuit whose output is 1 if both of its inputs are 1,
and it has the symbol in Figure 3-2(a). The function of a 2-input AND gate is
sometimes called logical multiplication and is symbolized algebraically by a
multiplication dot (). That is, an AND gate with inputs X and Y has an output sig-
nal whose value is X ⋅ Y, as shown in Figure 3-2(a). Some authors, especially
mathematicians and logicians, denote logical multiplication with a wedge
(X ∧ Y). We follow standard engineering practice here by using the dot (X ⋅ Y).
Verilog uses an ampersand (&) to denote the same thing.

A 2-input OR gate is a circuit whose output is 1 if either of its inputs is 1
and has the symbol in Figure 3-2(b). The function of a 2-input OR gate is some-
times called logical addition and is symbolized algebraically by a plus sign (+).
An OR gate with inputs X and Y has an output signal whose value is X + Y, as
shown in the figure. Some authors denote logical addition with a vee (X ∨ Y), but
we follow the typical engineering practice of using the plus sign (X + Y). Once
again, other notations are used in HDLs, like “|” in Verilog.

X Y = X′
Figure 3-1
Signal naming and algebraic
notation for an inverter.

algebraic operator
expression
NOT operation

Figure 3-2 Signal naming and algebraic notation: (a) AND gate; (b) OR gate.

X

Y
Z = X · Y

X

Y
Z = X + Y

(a) (b)

logical multiplication

NOTE ON
NOTATION

The notations X, ~X, and ¬X are also used by some authors to denote the complement
of X. The overbar notation (X) is probably the most widely used and the best looking
typographically. However, we use the prime notation to get you used to writing logic
expressions on a single text line without the more graphical overbar, and to force you
to parenthesize complex complemented subexpressions—because that’s what you’ll
have to do when you use HDLs like Verilog and other tools.

multiplication dot ()

logical addition

DDPP5.book Page 93 Tuesday, March 28, 2017 5:33 PM

94 Chapter 3 Switching Algebra and Combinational Logic

By convention in this and most texts, as well as by definition in Verilog,
multiplication has a higher precedence than addition in logical expressions, just
as in arithmetic expressions in conventional programming languages. That is,
the expression W ⋅ X + Y ⋅ Z is equivalent to (W ⋅ X) + (Y ⋅ Z). But be careful if
you ever use VHDL. There, “and” and “or” have the same precedence and are
evaluated from left to right. So, “W and X or Y and Z” has the same meaning as
“((W and X) or Y) and Z”, not “(W and X) or (Y and Z)”.

The last three pairs of axioms state the formal definitions of the AND and
OR operations by listing the output produced by each gate for each possible
input combination:

The five pairs of axioms, A1–A5 and A1D–A5D, completely define switching
algebra. All other facts about the system can be proved using these axioms as a
starting point.

3.1.2 Single-Variable Theorems
During the analysis or synthesis of logic circuits, we can write algebraic expres-
sions that characterize a circuit’s actual or desired behavior. Switching-algebra
theorems are statements, known to be always true, that allow us to manipulate
algebraic expressions for simpler analysis or more efficient synthesis of the
corresponding circuits. For example, the theorem X + 0 = X allows us to substi-
tute every occurrence of X + 0 in an expression with X.

Table 3-1 lists switching-algebra theorems involving a single variable X.
How do we know that these theorems are true? We can either prove them
ourselves or take the word of someone who has. OK, we’re in college now, let’s
learn how to prove them.

Most theorems in switching algebra are exceedingly simple to prove using
a technique called perfect induction. Axiom A1 is the key to this technique—

(A3) 0 ⋅ 0 = 0 (A3D) 1 + 1 = 1

(A4) 1 ⋅ 1 = 1 (A4D) 0 + 0 = 0

(A5) 0 ⋅ 1 = 1 ⋅ 0 = 0 (A5D) 1 + 0 = 0 + 1 = 1

precedence

JUXT A MINUTE… Older texts use simple juxtaposition (XY) to denote logical multiplication, but we
don’t. In general, juxtaposition is a clear notation only when signal names are limited
to a single character. Otherwise, is XY a logical product or a two-character signal
name? One-character variable names are common in algebra, but in real digital
design problems we prefer to use multicharacter signal names that mean something.
Thus, we need a separator between names, and the separator might just as well be a
multiplication dot rather than a space. The HDL equivalent of the multiplication dot
(like “&” in Verilog) is absolutely required when logic formulas are written in a
hardware description language.

AND operation
OR operation

theorem

perfect induction

DDPP5.book Page 94 Tuesday, March 28, 2017 5:33 PM

3.1 Switching Algebra 95

since a switching variable can take on only two different values, 0 and 1, we can
prove a theorem involving a single variable X by proving that it is true for both
X = 0 and X = 1. For example, to prove theorem T1, we make two substitutions:

All of the theorems in Table 3-1 can be proved using perfect induction, as you’re
asked to do in Drills 3.2 and 3.3.

3.1.3 Two- and Three-Variable Theorems
Switching-algebra theorems with two or three variables are listed in Table 3-2.
Each of these theorems is easily proved by perfect induction, by evaluating the
theorem statement for the four possible combinations of X and Y, or the eight
possible combinations of X, Y, and Z.

The first two theorem pairs concern commutativity and associativity of
logical addition and multiplication and are identical to the commutative and
associative laws you already know for addition and multiplication of integer and
real numbers. Taken together, they indicate that the parenthesization or order of
terms in a logical sum or logical product is irrelevant. For example, from a strict-
ly algebraic point of view, an expression such as W ⋅ X ⋅ Y ⋅ Z is ambiguous; it
should be written as (W ⋅ (X ⋅ (Y ⋅ Z))) or (((W ⋅ X) ⋅ Y) ⋅ Z) or (W ⋅ X) ⋅ (Y ⋅ Z)
(see Exercise 3.22). But the theorems tell us that the ambiguous form of the
expression is OK because we get the same results in any case. We even could

[X = 0] 0 + 0 = 0 true, according to axiom A4D

[X = 1] 1 + 0 = 1 true, according to axiom A5D

(T1) X + 0 = X (T1D) X 1 = X (Identities)
Table 3-1
Switching-algebra
theorems with one
variable.

(T2) X + 1 = 1 (T2D) X 0 = 0 (Null elements)

(T3) X + X = X (T3D X X = X (Idempotency)

(T4) (X) = X (Involution)

(T5) X + X = 1 (T5 D) X ⋅ X = 0 (Complements)

Table 3-2 Switching-algebra theorems with two or three variables.

(T6) X + Y = Y + X (T6D) X ⋅ Y = Y ⋅ X (Commutativity)

(T7) (X + Y) + Z = X + (Y + Z) (T7D) (X ⋅ Y) ⋅ Z = X ⋅ (Y ⋅ Z) (Associativity)

(T8) X ⋅ Y + X ⋅ Z = X ⋅ (Y + Z) (T8D) (X + Y) ⋅ (X + Z) = X + Y ⋅ Z (Distributivity)

(T9) X + X ⋅ Y = X (T9D) X ⋅ (X + Y) = X (Covering)

(T10) X ⋅ Y + X ⋅ Y = X (T10D) (X + Y) ⋅ (X + Y) = X (Combining)

(T11) X ⋅ Y + X ⋅ Z + Y ⋅ Z = X ⋅ Y + X′ ⋅ Z (Consensus)

(T11′) (X + Y) ⋅ (X + Z) ⋅ (Y + Z) = (X + Y) ⋅ (X + Z)

DDPP5.book Page 95 Tuesday, March 28, 2017 5:33 PM

96 Chapter 3 Switching Algebra and Combinational Logic

have rearranged the order of the variables (e.g., X ⋅ Z ⋅ Y ⋅ W) and gotten the
same results.

As trivial as this discussion may seem, it is very important, because it
forms the mathematical basis for using logic gates with more than two inputs.
We defined ⋅ and + as binary operators—operators that combine two variables.
Yet we use 3-input and larger AND and OR gates in practice. The theorems tell us
we can connect gate inputs in any order; in fact, printed-circuit-board and ASIC
layout programs take advantage of this principle to optimize wiring. Also, we
can use either one n-input gate or (n −1) 2-input gates interchangeably, though
cost and timing delay are likely to be higher with multiple 2 input gates.

Theorem T8 is identical to the distributive law for integers and reals—that
is, logical multiplication distributes over logical addition. As a result, we can
“multiply out” an expression to convert it to a sum-of-products form, as in the
example below:

V ⋅ (W + X) ⋅ (Y + Z) = V ⋅ W ⋅ Y + V ⋅ W ⋅ Z + V ⋅ X ⋅ Y + V ⋅ X ⋅ Z

However, switching algebra also has the unfamiliar property that the reverse is
true—logical addition distributes over logical multiplication—as demonstrated
by theorem T8D. Thus, we can also “add out” an expression to obtain a product-
of-sums form:

(V ⋅ W ⋅ X) + (Y ⋅ Z) = (V + Y) ⋅ (V + Z) ⋅ (W + Y) ⋅ (W + Z) ⋅ (X + Y) ⋅ (X + Z)

Theorems T9 and T10 are used extensively to minimize the number of
terms in logic expressions, which minimizes the number of gates or gate inputs
in the corresponding logic circuits. For example, if the subexpression X + X ⋅ Y
appears in a logic expression, the covering theorem T9 says that we need only
include X in the expression; X is said to cover X ⋅ Y. The combining theorem T10
says if the subexpression X ⋅ Y + X ⋅ Y′ appears in an expression, we can replace
it with X. Since Y must be 0 or 1, either way the original subexpression is 1 if and
only if X is 1.

Although we could easily prove T9 by perfect induction, the truth of T9
may be more obvious if we prove it using the other theorems that we’ve proved
so far:

Likewise, the other theorems can be used to prove T10, where the key step is to
use T8 to rewrite the lefthand side as X ⋅ (Y + Y′).

Theorem T11 is known as the consensus theorem. The Y ⋅ Z term is called
the consensus of X ⋅ Y and X′ ⋅ Z. The idea is that if Y ⋅ Z is 1, then either X ⋅ Y or
X′ ⋅ Z must also be 1, since Y and Z are both 1 and either X or X′ must be 1. Thus,
the Y ⋅ Z term is redundant and may be dropped from the righthand side of T11.

X + X ⋅ Y = X ⋅ 1 + X ⋅ Y (according to T1D)

= X ⋅ (1 + Y) (according to T8)

= X ⋅ 1 (according to T2)

= X (according to T1D)

binary operator

covering theorem
cover
combining theorem

consensus theorem
consensus

DDPP5.book Page 96 Tuesday, March 28, 2017 5:33 PM

3.1 Switching Algebra 97

The consensus theorem has two important applications. It can be used to
eliminate certain timing hazards in combinational logic circuits, as we’ll see in
Section 3.4. And it also forms the basis of the iterative-consensus method used
in logic-minimization programs to find “prime implicants” (see References).

In all of the theorems, it is possible to replace each variable with an
arbitrary logic expression. A simple replacement is to complement one or more
variables:

But more complex expressions may be substituted as well:

3.1.4 n-Variable Theorems
Several important theorems, listed in Table 3-3, are true for an arbitrary number
of variables, n. Most of these theorems can be proved using a two-step method
called finite induction—first proving that the theorem is true for n = 2 (the basis
step), and then proving that if the theorem is true for n = i, then it is also true for
n = i + 1 (the induction step). For example, consider the generalized idempotency
theorem T12. For n = 2, T12 is equivalent to T3 and is therefore true. If it is true
for a logical sum of i X’s, then it is also true for a sum of i + 1 X’s, according to
the following reasoning:

Thus, the theorem is true for all finite values of n.
DeMorgan’s theorems (T13 and T13D) are probably the most commonly

used of all the theorems of switching algebra. Theorem T13 says that an n-input
AND gate whose output is complemented is equivalent to an n-input OR gate
whose inputs are complemented. That is, the circuits of Figure 3-3(a) and (b) are
equivalent.

(X + Y) + Z X + (Y + Z) (based on T7)

(V X) ⋅ (W ⋅ (Y Z)) + (V X) ⋅ (W ⋅ (Y Z)) V + X (based on T10)

X + X + X + … + X = X + (X + X + … + X) (i + 1 X’s on either side)

= X + (X) (if T12 is true for n = i)

= X (according to T3)

Table 3-3 Switching-algebra theorems with n variables.

(T12)
(T12D)

X + X + … + X = X
X ⋅ X ⋅ … ⋅ X = X

(Generalized idempotency)

(T13)
(T13D

(X1 ⋅ X2 ⋅ … ⋅ Xn) = X1 + X2 … + Xn

(X1 + X2 + … + Xn) = X1 X2 … ⋅ Xn

(DeMorgan’s theorems)

(T14) [F(X1, X2, …, Xn, +, ⋅)] = F(X1 , X2 , …, Xn , ⋅ , +) (Generalized DeMorgan’s theorem)

(T15)
(T15D)

F(X1, X2, …, Xn) = X1 ⋅ F(1, X2, …, Xn) + X1 F(0, X2, …, Xn)

F(X1, X2, …, Xn) = [X1 + F(0,X2,…,Xn)] ⋅ [X1 F(1, X2, …, Xn)]

(Shannon’s expansion theorems)

finite induction
basis step
induction step

DeMorgan’s theorems

DDPP5.book Page 97 Tuesday, March 28, 2017 5:33 PM

98 Chapter 3 Switching Algebra and Combinational Logic

A NAND gate is like an AND gate, but with its output complemented, and
thus can have the logic symbol in Figure 3-3(c). However, a typical CMOS
NAND-gate circuit typically is not designed at the transistor level as an AND gate
followed by a transistor inverter (NOT gate); it’s just a collection of transistors
that happens to perform the AND-NOT function. In fact, theorem T13 tells us
that the logic symbol in Figure 3-3(d) denotes the same logic function (bubbles
on the OR-gate inputs indicate logical inversion). That is, a NAND gate may be
considered to perform a NOT-OR function.

By observing the inputs and output of a NAND gate, it is impossible to
determine whether it has been built internally as an AND gate followed by an
inverter, as inverters followed by an OR gate, or as a direct CMOS realization,
because all NAND gates perform precisely the same logic function. Although the
choice of symbol has no bearing on a gate’s functionality, the proper symbol
choice in documentation for a larger circuit incorporating the gate can make the
larger circuit easier to understand, as we’ll see in later chapters.

Another symbolic equivalence can be inferred from theorem T13D. As
shown in Figure 3-4, a NOR gate may be realized as an OR gate followed by an
inverter, or as inverters followed by an AND gate. Once again, the choice of one
or the other of the equivalent logic symbols can make a big difference in the
understandability of a larger circuit.

Theorems T13 and T13D happen to be just special cases of a generalized
DeMorgan’s theorem, T14, that applies to an arbitrary logic expression F. By

X

Y

X

Y

X

Y

Z = (X · Y)′ Z = (X · Y)′

X′

Y′

X

Y

Z = X′ + Y′

(a) (c)

(b) Z = X′ + Y′(d)

X · Y

Figure 3-3 Equivalent circuits according to DeMorgan’s theorem T13: (a) AND-NOT; (b) NOT-OR;
(c) logic symbol for a NAND gate; (d) equivalent symbol for a NAND gate.

X

Y

X

Y

X

Y

Z = (X + Y)′ Z = (X + Y)′

X′

Y′

X

Y

Z = X′ · Y′

(a) (c)

(b) Z = X′ · Y′(d)

X + Y

Figure 3-4 Equivalent circuits according to DeMorgan’s theorem T13D: (a) OR-NOT; (b) NOT-AND;
(c) logic symbol for a NOR gate; (d) equivalent symbol for a NOR gate.

generalized
DeMorgan’s theorem

DDPP5.book Page 98 Tuesday, March 28, 2017 5:33 PM

3.1 Switching Algebra 99

definition, the complement of a logic expression, written as (F)′, is an expression
whose value is the opposite of F’s for all possible input combinations. Theorem
T14 is very important because it gives us a way to manipulate and simplify the
complement of an expression.

Theorem T14 states that, given any n-variable logic expression, its comple-
ment can be obtained by swapping the + and ⋅ operators and complementing all
variables. For example, suppose that we have

In the second line, we have enclosed complemented variables in parentheses to
remind you that the ′ is an operator, not part of the variable name. By applying
theorem T14, we obtain

Using theorem T4, this can be simplified to

In general, we can use theorem T14 to complement a parenthesized expression
by swapping + and ⋅ , complementing all uncomplemented variables, and
uncomplementing all complemented ones.

The generalized DeMorgan’s theorem T14 can be proved by showing that
all logic functions can be written as either a sum or a product of subfunctions,
and then applying T13 and T13D recursively. Also, an enlightening and satisfy-
ing proof is presented in previous editions of this book, based on the principle of
duality which we explain in the next subsection.

Shannon’s expansion theorems T15 and T15D are very important for their
use in FPGAs to implement arbitrary combinational logic functions. An FPGA
contains many instances of a basic resource called a lookup table (LUT) that can
realize any combinational logic function of up to a certain number of inputs, on
the order of 6. What if you need a 7-input function? Shannon’s theorems tell you
how to combine the outputs of two 6-input LUTs to realize any 7-input function.
Similarly, 8-input functions can be implemented by combining 7-input functions
realized this way (with 4 LUTs total), and so on. Logic synthesizers for FPGAs
do this automatically, as discussed in Section 6.1.3 on page 244.

3.1.5 Duality
We stated all of the axioms of switching algebra in pairs. The dual of each axiom
(e.g., A5D) is obtained from the base axiom (e.g., A5) by simply swapping 0
and 1 and, if present, ⋅ and +. As a result, we can state the following metatheorem
(a metatheorem is a theorem about theorems):

Principle of Duality Any theorem or identity in switching algebra is also true if
0 and 1 are swapped and ⋅ and + are swapped throughout.

F(W, X, Y, Z) = (W′ ⋅ X) + (X ⋅ Y) + (W ⋅ (X′ + Z′))
= ((W)′ ⋅ X) + (X ⋅ Y) + (W ⋅ ((X)′ + (Z)′))

[F(W, X, Y, Z)]′ = ((W′)′ + X′) ⋅ (X′ + Y′) ⋅ (W′ + ((X′)′ ⋅ (Z′)′))

[F(W, X, Y, Z)]′ = (W + X′) ⋅ (X′ + Y′) ⋅ (W′ + (X ⋅ Z))

complement of a logic
expression

dual

metatheorem

DDPP5.book Page 99 Tuesday, March 28, 2017 5:33 PM

100 Chapter 3 Switching Algebra and Combinational Logic

The metatheorem is true because the duals of all the axioms are true, so duals of
all switching-algebra theorems can be proved using duals of the axioms.

After all, what’s in a name, or in a symbol for that matter? If the software
that was used to format this book had a bug, one that swapped 0 ↔ 1 and ⋅ ↔ +
throughout this chapter, you still would have learned exactly the same switching
algebra; only the nomenclature would have been a little weird, using words like
“product” to describe an operation that uses the symbol “+”.

Duality is important because it doubles the usefulness of almost everything
that you know about switching algebra and manipulation of switching functions.
This statement applies not only to you, but also to automated tools that manipu-
late logic functions and synthesize circuits that perform them. For example, if a
software tool can derive a sum-of-products expression from an arbitrary
combinational logic function defined in an HDL model, and synthesize a corre-
sponding two-stage AND-OR logic circuit from that expression, then with
relatively little effort, it can be adapted also to derive a product-of-sums expres-
sion and synthesize a corresponding OR-AND circuit for the same logic
function. We explore this idea in Exercise 3.41.

There is just one convention in switching algebra where we did not treat ⋅
and + identically, so duality does not necessarily hold true—can you remember
what it is before reading the answer below? Consider the following statement of
theorem T9 and its clearly absurd “dual”:

Obviously the last line above is false—where did we go wrong? The problem is
in operator precedence. We were able to write the lefthand side of the first line
without parentheses because of our convention that ⋅ has precedence. However,
once we applied the principle of duality, we should have given precedence to +
instead, or written the second line as X ⋅ (X + Y) = X. The best way to avoid
problems like this is to parenthesize an expression fully before taking its dual.

3.1.6 Standard Representations of Logic Functions
Before moving on to analysis and synthesis of combinational logic functions,
we’ll introduce some needed nomenclature and notation.

The most basic representation of a logic function is the truth table. Similar
in approach to the perfect-induction proof method, this brute-force representa-
tion simply lists the output of the circuit for every possible input combination.
Traditionally, the input combinations are arranged in rows in ascending binary
counting order, and the corresponding output values are written in a column next
to the rows. For example, the general structure of a 3-variable truth table is

X + X ⋅ Y = X (theorem T9)

X ⋅ X + Y = X (after applying the principle of duality)

X + Y = X (after applying theorem T3D)

truth table

DDPP5.book Page 100 Tuesday, March 28, 2017 5:33 PM

3.1 Switching Algebra 101

shown in Table 3-4. The rows of the table are numbered 0–7, corresponding to
the binary input combinations, but this numbering is not a necessary part of the
truth table.

The truth table for a particular 3-variable logic function is shown in
Table 3-5. Each distinct pattern of eight 0s and 1s in the output column yields a
different logic function; there are 28 such patterns. Thus, the logic function in
Table 3-5 is one of 28 different logic functions of three variables.

The truth table for an n-variable logic function has 2n rows. Obviously,
truth tables are practical to write only for logic functions with a small number of
variables, say, 10 for students and about 4–5 for everyone else.

The information contained in a truth table can also be conveyed algebra-
ically. To do so, we first need some definitions:

• A literal is a variable or the complement of a variable. Examples: X, Y, X′,
Y′.

• A product term is a single literal or a logical product of two or more
literals. Examples: Z′, W ⋅ X ⋅ Y, X ⋅ Y′ ⋅ Z, W′ ⋅ Y′ ⋅ Z.

Row X Y Z F

Table 3-4
General truth table
structure for a
3-variable logic
function, F(X,Y, Z).

0 0 0 0 F(0,0,0)

1 0 0 1 F(0,0,1)

2 0 1 0 F(0,1,0)

3 0 1 1 F(0,1,1)

4 1 0 0 F(1,0,0)

5 1 0 1 F(1,0,1)

6 1 1 0 F(1,1,0)

7 1 1 1 F(1,1,1)

Row X Y Z F

Table 3-5
Truth table for a
particular 3-variable
logic function, F(X,Y, Z).

0 0 0 0 1

1 0 0 1 0

2 0 1 0 0

3 0 1 1 1

4 1 0 0 1

5 1 0 1 0

6 1 1 0 1

7 1 1 1 1

literal

product term

DDPP5.book Page 101 Tuesday, March 28, 2017 5:33 PM

102 Chapter 3 Switching Algebra and Combinational Logic

• A sum-of-products expression is a logical sum of product terms. Example:
Z + W ⋅ X ⋅ Y + X ⋅ Y Z + W Y Z.

• A sum term is a single literal or a logical sum of two or more literals.
Examples: Z , W + X + Y, X + Y Z, W Y Z.

• A product-of-sums expression is a logical product of sum terms. Example:
Z ⋅ (W + X + Y) ⋅ (X + Y Z) ⋅ (W Y Z).

• A normal term is a product or sum term in which no variable appears more
than once. A nonnormal term can always be simplified to a constant or a
normal term using one of theorems T3, T3 , T5, or T5 . Examples of non-
normal terms: W ⋅ X ⋅ X ⋅ Y , W + W + X + Y, X ⋅ X Y. Examples of
normal terms: W ⋅ X ⋅ Y , W + X Y.

• An n-variable minterm is a normal product term with n literals. There
are 2n such product terms. Some examples of 4-variable minterms:
W′ ⋅ X Y Z , W ⋅ X ⋅ Y Z, W X Y ⋅ Z .

• An n-variable maxterm is a normal sum term with n literals. There are 2n

such sum terms. Examples of 4-variable maxterms: W + X + Y + Z ,
W + X + Y + Z, W + X + Y + Z .

There is a close correspondence among the truth table and minterms and
maxterms. A minterm can be defined as a product term that is 1 in exactly one
row of the truth table. Similarly, a maxterm can be defined as a sum term that is
0 in exactly one row of the truth table. Table 3-6 shows this correspondence for a
3-variable truth table.

An n-variable minterm can be represented by an n-bit integer, the minterm
number. We’ll use the name minterm i to denote the minterm corresponding to
row i of the truth table. In minterm i, a particular variable appears complemented
if the corresponding bit in the binary representation of i is 0; otherwise, it is
uncomplemented. For example, row 5 has binary representation 101, and the
corresponding minterm is X ⋅ Y Z. As you might expect, the correspondence
for maxterms is just the opposite: in maxterm i, a variable is complemented if the

sum-of-products
expression

sum term

product-of-sums
expression

normal term

minterm

maxterm

Table 3-6
Minterms and maxterms
for a 3-variable logic
function, F(X,Y, Z).

Row X Y Z F Minterm Maxterm

minterm number
minterm i

maxterm i

DDPP5.book Page 102 Tuesday, March 28, 2017 5:33 PM

3.1 Switching Algebra 103

corresponding bit in the binary representation of i is 1. Thus, maxterm 5 (101)
is X′ + Y + Z′. Note that all of this makes sense only if we have stated the number
of variables, three in the examples.

Based on the correspondence between the truth table and minterms, we can
easily create an algebraic representation of a logic function from its truth table.
The canonical sum of a logic function is a sum of the minterms corresponding to
truth-table rows (input combinations) for which the function produces a 1
output. For example, the canonical sum for the logic function in Table 3-5 on
page 101 is

Here, the notation ΣX,Y,Z(0, 3, 4, 6, 7) is a minterm list and means “the sum of
minterms 0, 3, 4, 6, and 7 with variables X, Y, and Z.” The minterm list is also
known as the on-set for the logic function. You can visualize that each minterm
“turns on” the output for exactly one input combination. Any logic function can
be written as a canonical sum.

The canonical product of a logic function is a product of the maxterms
corresponding to input combinations for which the function produces a 0 output.
For example, the canonical product for the logic function in Table 3-5 is

Here, the notation ∏X,Y,Z(1, 2, 5) is a maxterm list and means “the product of
maxterms 1, 2, and 5 with variables X, Y, and Z.” The maxterm list is also known
as the off-set for the logic function. You can visualize that each maxterm “turns
off” the output for exactly one input combination. Any logic function can be
written as a canonical product.

It’s easy to convert between a minterm list and a maxterm list. For a
function of n variables, the possible minterm and maxterm numbers are in the set
{0, 1, … , 2n − 1}; a minterm or maxterm list contains a subset of these numbers.
To switch between list types, take the set complement, for example:

A combinational logic function can also be described in many different
ways by statements in an HDL. In Verilog, a case statement can be written that
corresponds directly to the minterm list or maxterm list of a function. For the
example logic function that we’ve been using, from Table 3-5 on page 101, we
could write the following Verilog statement corresponding to the minterm list:

F = ΣX,Y,Z(0, 3, 4, 6, 7)

= X′ ⋅ Y′ ⋅ Z′ + X′ ⋅ Y ⋅ Z + X ⋅ Y′ ⋅ Z′ + X ⋅ Y ⋅ Z′ + X ⋅ Y ⋅ Z

F = ∏X,Y,Z(1, 2, 5)

= (X + Y + Z′) ⋅ (X + Y′ + Z) ⋅ (X′ + Y + Z′)

ΣA,B,C(0,1,2,3) = ∏A,B,C(4,5,6,7)

ΣX,Y(1) = ∏X,Y(0,2,3)

ΣW,X,Y,Z(0,1,2,3,5,7,11,13) = ∏W,X,Y,Z(4,6,8,9,10,12,14,15)

canonical sum

minterm list

on-set

canonical product

maxterm list

off-set

DDPP5.book Page 103 Tuesday, March 28, 2017 5:33 PM

104 Chapter 3 Switching Algebra and Combinational Logic

case ({X,Y,Z})
 0,3,4,6,7: F = 1;
 default: F = 0;
endcase

Here, the braces {} convert the three 1-bit inputs into a 3-bit value used to select
a case; the minterm numbers are listed for the cases where the function’s value
is 1; and the default value for unlisted cases is specified to be 0. We could also
write Verilog for the corresponding maxterm list as follows:

case ({X,Y,Z})
 1,2,5: F = 0;
 default: F = 1;
endcase

The Verilog statements above are of course just code fragments, but we’ll give
details of the language in Chapter 5.

We have now learned six equivalent representations for a combinational
logic function:

1. A truth table.

2. An algebraic sum of minterms, the canonical sum.

3. A minterm list using the Σ notation.

4. An algebraic product of maxterms, the canonical product.

5. A maxterm list using the Π notation.

6. A Verilog case statement.

Each one of these representations specifies exactly the same information; given
any one of them, we can derive any of the others using a simple process of selec-
tion and/or substitution. For example, to go from a minterm list to a canonical
product, we create a truth table with a 1 in each row corresponding to a listed
minterm number, and then write the algebraic product of the maxterms corre-
sponding to each truth-table row that does not have a 1 in it.

3.2 Combinational-Circuit Analysis
We can analyze a combinational logic circuit by obtaining a formal description
of its logic function. Once we have a description of the logic function, we can
perform a number of other operations:

• Determine the behavior of the logic circuit for various input combinations.
We can do this with paper and pencil, or use an EDA tool—a simulator.

• Manipulate an algebraic or equivalent graphical description to suggest dif-
ferent circuit elements or structures for the logic function. Some such
manipulations are very straightforward and may make the circuit’s func-
tion easier to understand.

DDPP5.book Page 104 Tuesday, March 28, 2017 5:33 PM

3.2 Combinational-Circuit Analysis 105

• Transform an algebraic description into a standard form corresponding to
an available circuit structure; such an operation could be used by a soft-
ware tool to “realize” (make real) a circuit that performs the logic function.
For example, a truth table corresponds to the function “lookup-table”
(LUT) memory used in FPGAs (field programmable gate arrays), and a
sum-of-products expression corresponds directly to the circuit structure
used in PLDs (programmable logic devices).

• Use an algebraic description of the circuit’s functional behavior in the anal-
ysis of a larger system that contains the circuit.

In this subsection we’ll focus on operations that you can carry out by hand for
small circuits, but we’ll also point out how equivalent operations can be done by
logic-design software tools.

Given a logic diagram for a combinational circuit, like Figure 3-5, there are
several ways to obtain a formal description of the circuit’s function. The most
basic functional description is the truth table.

Using only the basic axioms of switching algebra, we can obtain the truth
table of an n-input circuit by working our way through all 2n input combinations.
For each input combination, we determine all of the gate outputs produced by
that input, propagating information from the circuit inputs to the circuit outputs.
Figure 3-6 applies this “exhaustive” technique to our example circuit. Written
on each signal line in the circuit is a sequence of eight logic values, the values

Figure 3-5
A 3-input,1-output
logic circuit.

F

X

Y

Z

YN

XN

ZN

XYN

XYNZ

XNYZN

01100101

01000101

00100000

11001111

01010101

11110000

01010101

00110011 11001100

00110011

10101010

00001111
00001111

F

X

Y

Z
YN

XN

ZN

XYN

XYNZ

XNYZN

Figure 3-6 Gate outputs created by all input combinations.

DDPP5.book Page 105 Tuesday, March 28, 2017 5:33 PM

106 Chapter 3 Switching Algebra and Combinational Logic

present on that line when the circuit inputs X Y Z are 000, 001, …, 111. The
output column F of the truth table can be filled in by transcribing the output
sequence of the final OR gate, as shown in Table 3-7. Once we have the truth
table for the circuit, we can also directly write a logic expression—the canonical
sum or product—for F if we wish.

Table 3-7
Truth table for the
logic circuit of
Figure 3-5.

Row X Y Z F

0 0 0 0 0

1 0 0 1 1

2 0 1 0 1

3 0 1 1 0

4 1 0 0 0

5 1 0 1 1

6 1 1 0 0

7 1 1 1 1

Figure 3-7 Simulator timing diagram for logic circuit.

A LESS
EXHAUSTING

WAY TO GO

You can easily obtain the results in Figure 3-6 with typical EDA tools that include a
logic simulator. First, you draw the logic diagram or create an equivalent “structural”
HDL model. Then, in the simulator, you apply 3-bit combinations to the circuit’s X,
Y, and Z inputs in binary counting order as in the figure. (Many simulators have
counters built in for just this sort of exercise.) The simulator allows you to create a
timing diagram of the resulting signal values at any point in the schematic, including
the intermediate points as well as the output.

Figure 3-7 is a timing diagram produced by the simulator when a 3-bit counter
was provided to step through the input combinations, one every 10 ns. The simulated
output values on the signal lines correspond exactly to those shown in Figure 3-6.

DDPP5.book Page 106 Tuesday, March 28, 2017 5:33 PM

3.2 Combinational-Circuit Analysis 107

The number of input combinations of a logic circuit grows exponentially
with the number of inputs, so the exhaustive approach can quickly become
exhausting. For many analysis problems, it may be better to use an algebraic
approach whose complexity is more linearly proportional to the size of the cir-
cuit. The method is simple—we build up a parenthesized logic expression
corresponding to the logic operators and structure of the circuit. We start at the
circuit inputs and propagate expressions through gates toward the output. Using
the theorems of switching algebra, we may simplify the expressions as we go, or
we may defer all algebraic manipulations until an output expression is obtained.

Figure 3-8 applies the algebraic technique to our example circuit. The out-
put function is given on the output of the final OR gate:

No switching-algebra theorems were used to obtain this expression. However,
we can use theorems to transform this expression into another form. For
example, a sum of products can be obtained by “multiplying out”:

The new expression leads to a different circuit for the same logic function, as
shown in Figure 3-9.

F = ((X+Y′) ⋅ Z) + (X′ ⋅ Y ⋅ Z′)

F = X ⋅ Z + Y′ ⋅ Z + X′ ⋅ Y ⋅ Z′

F

X

Y
Y′

X + Y′

(X + Y′) · Z

X′

Z′

Z

= ((X + Y′) · Z) + (X′ · Y · Z′)

X′ · Y · Z′

Figure 3-8 Logic expressions for signal lines.

F = X · Z + Y′ · Z + X′ · Y · Z′

X

Y

Z

Y′
Y′ · Z

X · Z

X′ · Y · Z′

X′

Z′

Figure 3-9 Two-level AND-OR circuit.

DDPP5.book Page 107 Tuesday, March 28, 2017 5:33 PM

108 Chapter 3 Switching Algebra and Combinational Logic

Similarly, we can “add out” the original expression to obtain a product of
sums corresponding to the logic circuit in Figure 3-10:

Our next example of algebraic analysis uses a circuit with NAND and NOR
gates, shown in Figure 3-11. This analysis is a little messier than the previous
example, because each gate produces a complemented subexpression, not just a
simple sum or product. However, the output expression can be simplified by
repeated application of the generalized DeMorgan’s theorem:

F = ((X + Y′) ⋅ Z) + (X′ ⋅ Y ⋅ Z′)
= (X + Y′ + X′) ⋅ (X + Y′ + Y) ⋅ (X + Y′ + Z′) ⋅ (Z + X′) ⋅ (Z + Y) ⋅ (Z + Z′)
= 1 ⋅ 1 ⋅ (X + Y′ + Z′) ⋅ (X′ + Z) ⋅ (Y + Z) ⋅ 1

= (X + Y′ + Z′) ⋅ (X′ + Z) ⋅ (Y + Z)

F = [((W ⋅ X′)′ ⋅ Y)′ + (W′ + X + Y′)′ + (W + Z)′]′
= ((W′ + X)′ + Y′)′ ⋅ (W ⋅ X′ ⋅ Y)′ ⋅ (W′ ⋅ Z′)′
= ((W ⋅ X′)′ ⋅ Y) ⋅ (W′ + X + Y′) ⋅ (W + Z)

= ((W′ + X) ⋅ Y) ⋅ (W′ + X + Y′) ⋅ (W + Z)

X

Y

Z

Y′

Y + Z

X′ + Z

X + Y′ + Z′

X′

Z′

F = (X + Y′ + Z′) · (X′ + Z) · (Y + Z)

Figure 3-10 Two-level OR-AND circuit.

F

X

W

Y

Z

= [((W · X′)′ · Y)′ + (W′ + X + Y′)′
+ (W + Z)′]′

X′
(W · X′)′

((W · X′)′ · Y)′

(W′ + X + Y′)′

(W + Z)′

W′

Y′

Figure 3-11 Algebraic analysis of a logic circuit with NAND and NOR gates.

DDPP5.book Page 108 Tuesday, March 28, 2017 5:33 PM

3.2 Combinational-Circuit Analysis 109

Quite often, DeMorgan’s theorem can be applied graphically to simplify
algebraic analysis. Recall from Figures 3-3 and 3-4 that NAND and NOR gates
each have two equivalent symbols. By judiciously redrawing Figure 3-11, we
make it possible to cancel out some of the inversions during the analysis by using
theorem T4 [(X′)′ = X], as shown in Figure 3-12. This manipulation leads us
directly to a simplified output expression:

Figures 3-11 and 3-12 were just two different ways of drawing the same
physical logic circuit. However, when we simplify a logic expression using the
theorems of switching algebra, we get an expression corresponding to a different
physical circuit. For example, the simplified expression above corresponds to
the circuit of Figure 3-13, which is physically different from the one in the
previous two figures. Furthermore, we could multiply out and add out the
expression to obtain sum-of-products and product-of-sums expressions corre-
sponding to two more physically different circuits for the same logic function.

F = ((W′ + X) ⋅ Y) ⋅ (W′ + X + Y′) ⋅ (W + Z)

F

X

W

Y

Z

= ((W′ + X) · Y) · (W′ + X + Y′)
· (W + Z)

X′
W′ + X

((W′ + X) · Y)′

(W′ + X + Y′)′

(W + Z)′

W′

Y′

Figure 3-12 Algebraic analysis of previous circuit after substituting some NAND and NOR symbols.

F

X

W

Y

Z

= ((W′ + X) · Y) · (W′ + X + Y′)
· (W + Z)

X′
W′ + X

(W′ + X) · Y

W′ + X + Y′

W + Z

W′

Y′

Figure 3-13 A different circuit for same logic function.

DDPP5.book Page 109 Tuesday, March 28, 2017 5:33 PM

110 Chapter 3 Switching Algebra and Combinational Logic

Although we used logic expressions above to convey information about the
physical structure of a circuit, we don’t always do this. For example, we might
use the expression G(W, X, Y, Z) = W ⋅ X ⋅ Y + Y ⋅ Z to describe any of the circuits
in Figure 3-14. Normally, the only sure way to determine a circuit’s structure is
to look at its logic diagram. However, for certain restricted classes of circuits,
structural information can be inferred from logic expressions. For example, the
circuit in (a) could be described without reference to the drawing as “a two-level
AND-OR circuit for W ⋅ X ⋅ Y + Y ⋅ Z,” while the circuit in (b) could be described
as “a two-level NAND-NAND circuit for W ⋅ X ⋅ Y + Y ⋅ Z.”

3.3 Combinational-Circuit Synthesis
We may use the words “digital design” to refer broadly to an entire process, from
concept to physical design of a digital logic circuit or system. However, we use
the word synthesis more narrowly, referring to the process that starts with a
precise formal specification of the required function and creates details of an
implementation—a physical logic circuit that performs the function.

What is the starting point for the design of combinational logic circuits?
Usually, we are given a word description of a problem, or we develop one our-
selves. Unless we’re constrained to use a particular technology to realize the
corresponding physical circuit (as in this chapter, where we’re only looking at
discrete gates), the next step would be to select the target technology, since dif-
ferent ones may have different synthesis tools. We should develop the circuit’s
formal specification in a format that is compatible with those tools.

W
X

Y

Z

G

(a) (b)

(c)

W
X

Y

Z

G

G
W

X

Y

Z

Y′

W · X · Y

W · X · Y

(W · X · Y)′

(W · X)′

(Y · Z)′Y · Z

Y · Z

Figure 3-14 Three circuits for G(W, X, Y, Z) = W ⋅ X ⋅Y + Y ⋅ Z: (a) two-level AND-OR; (b) two-level
NAND-NAND; (c) with 2-input gates only.

DDPP5.book Page 110 Tuesday, March 28, 2017 5:33 PM

3.3 Combinational-Circuit Synthesis 111

In modern digital-design environments, the word description may be con-
verted into a model in a hardware description language (HDL) like Verilog, and
we’ll see many examples of that beginning in Chapter 6. In the current chapter,
which targets discrete gate-level designs, we’ll look at synthesis methods that
start with specifications using one of the tabular or algebraic representations that
we introduced in Section 3.1.

3.3.1 Circuit Descriptions and Designs
Occasionally, a logic circuit description is just a list of input combinations for
which a signal should be on or off, the verbal equivalent of a truth table or the Σ
or ∏ notation introduced previously. For example, the description of a 4-bit
prime-number detector might be, “Given a 4-bit input combination N =
N3N2N1N0, produce a 1 output for N = 1, 2, 3, 5, 7, 11, 13, and 0 otherwise.” A
logic function described in this way can be designed directly from the canonical
sum or product expression. For the prime-number detector, we have

The corresponding circuit is shown in Figure 3-15.

F = ΣN3,N2,N1,N0
(1, 2, 3, 5, 7, 11, 13)

= N3′ ⋅N2′ ⋅N1′ ⋅N0 + N3′ ⋅N2′ ⋅N1 ⋅N0′ + N3′ ⋅N2′ ⋅N1 ⋅N0+ N3′ ⋅N2 ⋅N1′ ⋅N0

+ N3′ ⋅N2 ⋅N1 ⋅N0 + N3 ⋅N2′ ⋅N1 ⋅N0 + N3 ⋅N2 ⋅N1′ ⋅N0

WHY STUDY
GATE-LEVEL
SYNTHESIS?

Most digital design nowadays is carried out using building blocks that are larger
(perhaps much larger) than discrete gates, or using HDLs and synthesizers that create
the corresponding physical implementations. There’s no need for the designer to get
involved with synthesis at the level described in this section. To design a micro-
processor with millions of gates, an HDL-based approach for the “routine” parts of
the design is essential if the it’s ever to be completed.

However, sometimes the synthesizer’s results just aren’t good enough. To
achieve performance goals, it may still be necessary for critical blocks (such as
adders, multipliers, multiplexers, and specialized high-speed control circuits) to be
synthesized “by hand,” with the designer playing an active role in the selection of
gate-level structures and interconnections, and even guiding physical layout in the
case of both ASIC and FPGA design.

There are also cases where the synthesizer may “run amok,” creating a circuit
that is much less efficient (in speed, size, or some other metric) than what is expected
and required. In these cases, it is important for the designer to have a good feel for
what could be achieved, and perhaps try a different style of HDL modeling or struc-
turing to cajole the synthesizer into creating a result that is closer to what is desired.
We’ll see some examples of that in Chapters 6 and 8.

A basic understanding of combinational logic synthesis at the level presented
in this section can help you develop such a “good feel.”

DDPP5.book Page 111 Tuesday, March 28, 2017 5:33 PM

112 Chapter 3 Switching Algebra and Combinational Logic

More often, we describe a logic function using the natural-language
connectives “and,” “or,” and “not.” For example, we might describe an alarm
circuit by saying, “The ALARM output is 1 if the PANIC input is 1, or if the
ENABLE input is 1, the EXITING input is 0, and the house is not secure; the
house is secure if the WINDOW, DOOR, and GARAGE inputs are all 1.” Such a
description can be translated directly into algebraic expressions:

Notice that we used the same method in switching algebra as in ordinary algebra
to formulate a complicated expression—we defined an auxiliary variable
SECURE to simplify the first equation, developed an expression for SECURE,
and used substitution to get the final expression. We can easily draw a circuit
using AND, OR, and NOT gates that realizes the final expression, as shown in

ALARM = PANIC + ENABLE ⋅ EXITING′ ⋅ SECURE′
SECURE = WINDOW ⋅ DOOR ⋅ GARAGE

ALARM = PANIC + ENABLE ⋅ EXITING′ ⋅ (WINDOW ⋅ DOOR ⋅ GARAGE)′

N 3

N3

N3′

N3′ · N2′ · N1′ · N0

N3′ · N2′ · N1 · N0′

N3′ · N2′ · N1 · N0

N3′ · N2 · N1′ · N0

N3′ · N2 · N1 · N0

N3 · N2′ · N1 · N0

N3 · N2 · N1′ · N0

N2

N2′

N1

N1′

N0

N0′

N 2

N 1

N 0

F

Figure 3-15 Canonical-sum design for 4-bit prime-number detector.

PRIME TIME Mathematicians will tell you that “1” is not really a prime number. But our prime-
number detector example is not nearly as interesting, from a logic-synthesis point of
view, if “1” is not prime. So, please do Drill 3.11 if you want to be a mathematical
purist.

DDPP5.book Page 112 Tuesday, March 28, 2017 5:33 PM

3.3 Combinational-Circuit Synthesis 113

Figure 3-16. A circuit realizes (“makes real”) an expression if its output function
equals that expression, and the circuit is called a realization of the function. We
can and will also call it an implementation; both terms are used in practice.

Once we have an expression, any expression, for a logic function, we can
do other things besides building a circuit directly from the expression. We can
manipulate the expression to get different circuits. For example, the ALARM
expression above can be multiplied out to get the sum-of-products circuit in
Figure 3-17. Or, if the number of variables is not too large, we can construct the
truth table for the expression and use any of the synthesis methods that apply to
truth tables, including the canonical sum or product method described earlier
and the minimization methods to be described later.

In general, when we’re designing a logic function for an application, it’s
easier to describe it in words using logical connectives and to write the corre-
sponding logic expressions than it is to write a complete truth table, especially if
the number of variables is large. However, sometimes we start with imprecise
word descriptions of logic functions, for example, “The ERROR output should
be 1 if the GEARUP, GEARDOWN, and GEARCHECK inputs are inconsistent.”
In this situation, the truth-table approach is best because it allows us to deter-
mine the output required for every input combination, based on our knowledge
and understanding of the problem environment (e.g., the brakes cannot be
applied unless the gear is down). Using a logic expression may make it difficult
to notice so-called “corner cases” and handle them appropriately.

PANIC
ALARM

ENABLE

EXITING

WINDOW

DOOR

GARAGE

SECURE

Figure 3-16 Alarm circuit derived from logic expression.

realize
realization
implementation

PANIC

ALARM

ENABLE

EXITING

WINDOW

DOOR

GARAGE

 = PANIC
+ ENABLE · EXITING′ · WINDOW′
+ ENABLE · EXITING′ · DOOR′
+ ENABLE · EXITING′ · GARAGE′

Figure 3-17 Sum-of-products version of alarm circuit.

DDPP5.book Page 113 Tuesday, March 28, 2017 5:33 PM

114 Chapter 3 Switching Algebra and Combinational Logic

3.3.2 Circuit Manipulations
The design methods that we’ve described so far use AND, OR, and NOT gates.
We might like to use NAND and NOR gates, too—they’re faster than ANDs and
ORs in most technologies, including typical CMOS ASIC libraries. However,
most people don’t develop logical propositions in terms of NAND and NOR con-
nectives. That is, you probably wouldn’t say, “I won’t date you if you’re not
clean or not wealthy and also you’re not smart or not friendly.” It would be more
natural for you to say, “I’ll date you if you’re clean and wealthy, or if you’re
smart and friendly.” So, given a “natural” logic expression, we need ways to
translate it into other forms for efficient implementation.

We can translate any logic expression into an equivalent sum-of-products
expression, simply by multiplying it out. As shown in Figure 3-18(a), a sum-of-
products expression can be realized directly with AND and OR gates. The invert-
ers needed for complemented inputs are not shown.

Figure 3-18
Alternative sum-of-
products circuits:
(a) AND-OR;
(b) AND-OR with
extra inverter pairs;
(c) NAND-NAND.

(c)

(a)

(b)

DDPP5.book Page 114 Tuesday, March 28, 2017 5:33 PM

3.3 Combinational-Circuit Synthesis 115

As shown in Figure 3-18(b), we can insert a pair of inverters between each
AND-gate output and the corresponding OR-gate input in a two-level AND-OR
circuit. According to theorem T4, these inverters have no effect on the output
function of the circuit. In fact, we’ve drawn the second inverter of each pair
with its inversion bubble on its input to provide a graphical reminder that the
inverters cancel. However, if these inverters are absorbed into the AND and OR
gates, we wind up with AND-NOT gates at the first level and a NOT-OR gate
at the second level. These are just two different symbols for the same type of
gate—a NAND gate. Thus, a two-level AND-OR circuit may be converted to a
two-level NAND-NAND circuit simply by substituting gates.

If any product terms in the sum-of-products expression contain just one
literal, then we may gain or lose inverters in the transformation from AND-OR to
NAND-NAND. In the example of Figure 3-19, an inverter is no longer needed on
the W input, but an inverter must be added to the Z input.

We have shown that any sum-of-products expression can be realized in
either of two ways—as an AND-OR circuit or as a NAND-NAND circuit. The
dual of this statement is also true: any product-of-sums expression can be real-

AND-OR circuit
NAND-NAND circuit

Figure 3-19
Another sum-of-
products circuit:
(a) AND-OR;
(b) AND-OR with
extra inverter pairs;
(c) NAND-NAND.

(a)
W

X

Y

Z

(c) W

X

Y

Z

(b)
W

X

Y

Z

DDPP5.book Page 115 Tuesday, March 28, 2017 5:33 PM

116 Chapter 3 Switching Algebra and Combinational Logic

ized as an OR-AND circuit or as a NOR-NOR circuit. Figure 3-20 shows an
example. Any logic expression can be translated into an equivalent product-of-
sums expression by adding it out, and hence has both OR-AND and NOR-NOR
circuit realizations.

The same kind of manipulations can be applied to arbitrary logic circuits.
For example, Figure 3-21(a) shows a circuit built from AND and OR gates. After
adding pairs of inverters, we obtain the circuit in (b). However, one of the gates,
a 2-input AND gate with a single inverted input, is not a standard type. We can
use a discrete inverter as shown in (c) to obtain a circuit that uses only standard
gate types—NAND, AND, and inverters. Actually, a better way to use the inverter
is shown in (d); one level of gate delay is eliminated, and the bottom gate
becomes a NOR instead of AND. Synthesis tools can perform such “inverter
pushing” operations automatically. In CMOS logic technology, inverting gates
like NAND and NOR are faster than noninverting gates like AND and OR.

OR-AND circuit

Figure 3-20
Realizations of a
product-of-sums
expression:
(a) OR-AND;
(b) OR-AND with
extra inverter pairs;
(c) NOR-NOR.

(a)

(b)

(c)

NOR-NOR circuit

DDPP5.book Page 116 Tuesday, March 28, 2017 5:33 PM

3.3 Combinational-Circuit Synthesis 117

3.3.3 Combinational-Circuit Minimization
It’s often uneconomical or inefficient to realize a logic circuit directly from the
first logic expression or other description that pops into your head. Canonical
sum and product expressions are especially expensive because the number of
possible minterms or maxterms (and hence gates) grows exponentially with the
number of variables. We minimize a combinational circuit by reducing the num-
ber and size of gates that are needed to build it.

The traditional combinational-circuit-minimization methods that we’ll
study have as their starting point a truth table or, equivalently, a minterm list or
maxterm list. If we are given a logic function that is not expressed in this form,
then we must convert it to an appropriate form before using these methods. For
example, if we are given an arbitrary logic expression, then we can evaluate it for
every input combination to construct the truth table.

The minimization methods reduce the cost of a two-level AND-OR, OR-
AND, NAND-NAND, or NOR-NOR circuit in three ways:

1. By minimizing the number of first-level gates.

2. By minimizing the number of inputs on each first-level gate.

3. By minimizing the number of inputs on the second-level gate. This is
actually a side effect of the first reduction.

(a) (b)

(d)(c)

Figure 3-21 Logic-symbol manipulations: (a) original circuit; (b) transformation with a nonstandard
gate; (c) inverter used to eliminate nonstandard gate; (d) preferred inverter placement.

minimize

DDPP5.book Page 117 Tuesday, March 28, 2017 5:33 PM

118 Chapter 3 Switching Algebra and Combinational Logic

However, the minimization methods do not consider the cost of input inverters;
they assume that both true and complemented versions of all input variables are
available, which is the case in some implementation technologies, in particular
PLDs. A two-level realization that has the minimum possible number of first-
level gates and gate inputs is called a minimal sum or minimal product. Some
functions have multiple minimal sums or products.

Most minimization methods are based on a generalization of the combin-
ing theorems, T10 and T10D:

That is, if two product or sum terms differ only in the complementing or not of
one variable, we can combine them into a single term with one less variable. So
we eliminate one gate, and the remaining gate has one less input.

We can apply this algebraic method repeatedly to combine minterms 1, 3,
5, and 7 of the prime-number detector shown in Figure 3-15 on page 112:

The resulting circuit is shown in Figure 3-22; it has three fewer gates, and one
of the remaining gates has two fewer inputs.

If we had worked a little harder on the preceding expression, we could have
saved a couple more first-level gate inputs, though not any more gates. But it’s
difficult to find terms that can be combined in a jumble of algebraic symbols.
And we don’t have to, as will be shown in the next subsection.

given product term ⋅ Y + given product term ⋅ Y′ = given product term

(given sum term + Y) ⋅ (given sum term + Y′) = given sum term

F = ΣN3,N2,N1,N0
(1, 3, 5, 7, 2, 11, 13)

= N3′ ⋅N2′⋅N1′⋅N0 + N3′ ⋅N2′ ⋅N1 ⋅N0 + N3′ ⋅N2 ⋅N1′ ⋅N0 + N3′ ⋅N2 ⋅N1 ⋅N0 + …

= (N3′ ⋅N2′ ⋅N1′ ⋅N0 + N3′ ⋅N2′ ⋅N1 ⋅N0) + (⋅N3′ ⋅N2 ⋅N1′ ⋅N0 + N3′ ⋅N2 ⋅N1 ⋅N0) + …

= N3′⋅N2′ ⋅N0 + N3′ ⋅N2 ⋅N0 + …

= N3′ ⋅N0 + …

minimal sum
minimal product

N3

N2

N1

N0

F

N3 N3′ N2 N2′ N1 N1′ N0 N0′

N3′ · N0

N3′ · N2′ · N1 · N0′

N3 · N2′ · N1 · N0

N3 · N2 · N1′ · N0

Figure 3-22 Simplified sum-of-products realization for 4-bit prime-number detector.

DDPP5.book Page 118 Tuesday, March 28, 2017 5:33 PM

3.3 Combinational-Circuit Synthesis 119

*3.3.4 Karnaugh Maps
Decades ago, digital designers used diagrams called Karnaugh maps to create
graphical representations of logic functions, so that minimization opportunities
could be identified by simple, visual pattern recognition. The key feature of a
Karnaugh map is its cell layout: each pair of adjacent cells corresponds to a pair
of minterms that differ in only one variable which is uncomplemented in one cell
and complemented in the other. Such a minterm pair can be combined into one
product term using a generalization of theorem T10, term ⋅ Y + term ⋅ Y′ = term.
Thus, using a logic function’s Karnaugh map, we can combine product terms to
reduce how many AND gates and gate inputs are needed to realize the function.

Figure 3-23 shows Karnaugh maps for 2-, 3-, and 4-variable functions. The
rows and columns of a map are labeled so the input combination for a cell can be
determined from its row and column headings, and the number inside each cell
is the truth table row or minterm number corresponding to that cell. Also, the
labeled brackets indicate the rows or columns where each variable is 1.

* Throughout this book, optional sections are marked with an asterisk.

WHY MINIMIZE? FPGAs don’t have a programmable AND-OR structure. Instead, they use a lookup
table that can realize any logic function of n variables, where n is typically 4 to 6.
But their synthesis tools may still perform two-level minimization along the lines
described here. For larger functions that don’t fit into one lookup table, experience
has shown that a minimized two-level expression is a good place to start “factoring”
to find a multi-level expressioin that will fit into a collection of smaller lookup tables.
For the same reason, minimization is also important in ASIC synthesis using discrete
gates, since the number of gate inputs is limited.

Programmable logic devices (PLDs) do use a programmable AND-OR struc-
ture. Since the number of gates in a PLD is fixed even if you don’t use them all, you
might think that extra gates are free—and they are, until you run out of them and
have to upgrade to a bigger, slower, and more expensive PLD. So, EDA tools for
FPGA, ASIC and PLD design have a minimization program built in. The main pur-
pose of Sections 3.3.3 and 3.3.4 is to give you a feel for how minimization works.

Karnaugh map

Figure 3-23
Karnaugh maps:
(a) 2-variable;
(b) 3-variable;
(c) 4-variable.

0

1

3

2

4

5

7

6

12

13

15

14

8

9

11

10

00 01 11 10

W X

Y Z

00

01

11

10

W

X

Y

Z

(a) (b)

(c)

0

1

2

3

6

7

4

5

00 01 11 10

X Y

Z

0

1

X

Y

Z

0

1

2

3

0 1

X

Y

0

1

X

Y

DDPP5.book Page 119 Tuesday, March 28, 2017 5:33 PM

120 Chapter 3 Switching Algebra and Combinational Logic

Figure 3-24 shows how a Karnaugh map can be used to minimize a logic
function, our prime-number-detector example. In (a), we’ve copied the 1 outputs
in the function’s truth table and entered them in the numbered cells in the map
for the corresponding input combinations (minterms). In (b), we have grouped
adjacent 1 cells in ways that correspond to prime implicants: product terms that
cover only input combinations for which the function has a 1 output, and that
would cover at least one input combination with a 0 output if any variable were
removed. These product terms are realized by “smallest possible” AND gates,
whose outputs are then combined to obtain a minimized AND-OR circuit, as
shown in (c). It has the same number of gates as the algebraically simplified cir-
cuit in Figure 3-22, but three of the gates have one fewer input each. See
Exercise 3.48 for other interesting examples.

Like most other things involving truth tables, minterms, or maxterms,
Karnaugh maps grow in size exponentially as the number of inputs is increased.
The maximum practical size for Karnaugh-map minimization is only 6 inputs.

Karnaugh maps are also useful for visualizing the properties of small logic
functions, as an aid to understanding the challenges in realizing certain larger
ones. In particular, consider an n-input even-parity function, which produces a

0

1

3

2

4

5

7

6

12

13

15

14

8

9

11

10

00 01 11 10

N3 N2

N1 N0

00

1 1 1

111

1

01

11

10

N3

N2

N1

N0

N3 N2

N1 N0

N3

N2

N1

N0

(a)

(c)

00 01 11 10

00

1 1 1

11 1

1

01

10

(b)

F = ΣN3,N2,N1,N0(1,2,3,5,7,11,13) F = N3′ · N0 + N3′ · N2′ · N1 + N2′ · N1 · N0 + N2 · N1′ · N0

11

N3

N2

N1

N0

F

N2 · N1′ · N0

N2 · N1′ · N0

N2′ · N1 · N0

N2′ · N1 · N0

N3′ · N2′ · N1

N3′ · N2′ · N1

N3′ · N0

N3′ · N0

N3′

N2

N2′

N1

N1′

N0

Figure 3-24 Prime-number detector: (a) initial Karnaugh map; (b) circled product terms;
(c) minimized circuit.

prime implicant

DDPP5.book Page 120 Tuesday, March 28, 2017 5:33 PM

3.3 Combinational-Circuit Synthesis 121

1 output if the number of 1 inputs is even. As we showed in Section 2.15, parity
functions are used to encode and check data using error-detecting and -correct-
ing codes. The map for a 4-input even-parity function is shown in Figure 3-25,
and it looks like a checkerboard. It doesn’t have any adjacent 1-cells that can be
combined. Therefore, this function’s minimal sum is its canonical sum, which is
the sum of its eight minterms circled on the map. A corresponding two-level
AND-OR circuit has eight 4-input AND gates to realize product terms like the
one shown in the lower righthand corner of the map, and an 8-input OR gate.

Two-level circuits for larger even-parity function would be even bigger; for
example, a 6-input function requires 32 AND gates and a 32-input OR gate,
which is well beyond the limits of electronic circuit design using a single “level”
of CMOS transistors. Instead, troublesome logic functions like this one may be
implemented using more than two levels of logic. For example, a 2n-input parity
function may be implemented as an n-level “tree” of 2n–1 2-input parity func-
tions that each have two levels of logic, as we’ll show in Section 7.3.

Karnaugh maps can also be used to visualize and understand the possibility
of a combinational logic circuit producing a short, unwanted pulse when input
signals change, as we will discuss in the next section.

Figure 3-25
Karnaugh map for
a 4-input even-
parity function.

0

1

3

2

4

5

7

6

12

13

15

14

8

9

11

10

00 01 11 10

W X

Y Z

00

01

11

10

W

X

Y

Z

1 0

0 1

1 0

0 1

1 0

0 1

1 0

0 1

W · X′ · Y · Z′

TROUBLESOME
FUNCTIONS AND
EASY LOOKUPS

Another example of a 6-input logic function that requires a lot of first-level gates is
the result bit S2 (third bit from the right) in the addition of a pair of 3-bit or larger
numbers. Though not quite as bad as the 6-bit even-parity function, a minimal sum-
of-products expression for this function has 18 AND gates. Higher-order bits are
exponentially worse, necessitating other methods, both multilevel and hierarchical,
to be used for addition, a very commonly used function, as we’ll show in Section 8.1.

In an FPGA, these functions are not troublesome at all, up to a point. There,
the basic resource for realizing combinational logic problem is a lookup table (LUT)
that can store the truth table for any function with up to a certain number of inputs,
on the order of six. Thus, the cost and performance of a 6-input parity function and
a 6-input NAND gate in a LUT are exactly the same; while they would be much dif-
ferent in any gate-level realization.

DDPP5.book Page 121 Tuesday, March 28, 2017 5:33 PM

122 Chapter 3 Switching Algebra and Combinational Logic

*3.4 Timing Hazards
The analysis methods that we developed in Section 3.2 ignore circuit delay and
predict only the steady-state behavior of combinational logic circuits. That is,
they predict a circuit’s output as a function of its inputs under the assumption
that the inputs have been stable for a long time, relative to the delays in the cir-
cuit’s electronics. However, the actual delay from an input change to the
corresponding output change in a real logic circuit is nonzero and depends on
many factors in the circuit’s electronic design and physical implementation.

Because of circuit delays, the transient behavior of a combinational logic
circuit may differ from what is predicted by a steady-state analysis. In particular,
a circuit’s output may produce a short pulse, often called a glitch, at a time when
steady-state analysis predicts that the output should not change. A hazard is said
to exist when a circuit has the possibility of producing such a glitch. Whether or
not the glitch actually occurs depends on the exact delays and other electrical
characteristics of the circuit.

Depending on how the circuit’s output is used, a system’s operation may or
may not be adversely affected by a glitch. When we discuss sequential circuits in
Chapters 9–13, you’ll see situations where glitches may be harmful. In these
situations, since exact delays and other electrical characteristics are difficult to
control in production circuits, a logic designer must be prepared to eliminate
hazards (the possibility of a glitch) even though a glitch may occur only under a
worst-case combination of logical and electrical conditions. This section will
introduce you to hazards and give you some tools to predict and eliminate haz-
ards, allowing you to design glitch-free circuits in simple cases when required.

*3.4.1 Static Hazards
A static-1 hazard is the possibility of a circuit’s output producing a 0 glitch when
we would expect the output to remain at a nice steady 1 based on a static analysis
of the circuit function. A formal definition is given as follows:

Definition: A static-1 hazard is a pair of input combinations that: (a) differ in
only one input variable and (b) both give a 1 output; such that it is
possible for a momentary 0 output to occur during a transition in
the differing input variable.

For example, consider the logic circuit in Figure 3-26(a). Suppose that X
and Y are both 1 and that Z is changing from 1 to 0. Then (b) shows the timing
diagram, assuming that the timing delay through each gate or inverter is one unit
time. Even though “static” analysis predicts that the output is 1 for both input
combinations X,Y,Z = 111 and X,Y,Z = 110, the timing diagram shows that F
goes to 0 for one unit time during a 1-0 transition on Z, because of the delay in
the inverter that generates Z′.

steady-state behavior

transient behavior

glitch
hazard

static-1 hazard

DDPP5.book Page 122 Tuesday, March 28, 2017 5:33 PM

3.4 Timing Hazards 123

A static-0 hazard is the possibility of a 1 glitch when we expect the circuit
to have a steady 0 output:

Definition: A static-0 hazard is a pair of input combinations that: (a) differ in
only one input variable and (b) both give a 0 output; such that it is
possible for a momentary 1 output to occur during a transition in
the differing input variable.

Since a static-0 hazard is just the dual of a static-1 hazard, an OR-AND circuit
that is the dual of Figure 3-26(a) would have a static-0 hazard.

An OR-AND circuit with four static-0 hazards is shown in Figure 3-27(a).
One of the hazards occurs when W,X,Y = 000 and Z is changed, as shown in (b).
You should be able to find the other three hazards and eliminate all of them after
studying the next subsection.

*3.4.2 Finding Static Hazards Using Maps
A Karnaugh map can be used to detect static hazards in a two-level sum-of-
products or product-of-sums circuit. The existence or nonexistence of static
hazards depends on the circuit design for a logic function.

A properly designed two-level sum-of-products (AND-OR) circuit has no
static-0 hazards. A static-0 hazard would exist in such a circuit only if both a
variable and its complement were connected to the same AND gate, which would

ZP

(a) (b)

X

Z

Y

F

1

0

1

0

1

0

1

0

1

0

Z

YZ

XZP

XZP

YZ

ZP

F

Figure 3-26 Circuit with a static-1 hazard: (a) logic diagram; (b) timing diagram.

static-0 hazard

ZP

(a) (b)
W

X

Z

Y

F

1

0

1

0

1

0

1

0

1

0

Z

YZ

WXZP

XPYP

WXZP

YZ

F

ZP

YP

XP

0

0

0→1

0→1

1→0

0→1

1→0

0 0

0
0

1

1

1

Figure 3-27 Circuit with static-0 hazards: (a) logic diagram; (b) timing diagram.

DDPP5.book Page 123 Tuesday, March 28, 2017 5:33 PM

124 Chapter 3 Switching Algebra and Combinational Logic

usually be silly. However, the circuit may have static-1 hazards. Their existence
can be predicted from a Karnaugh map.

Recall that a Karnaugh map is constructed so that each pair of immediately
adjacent cells corresponds to a pair of minterms that differ in only one variable
which is uncomplemented in one cell and complemented in the other. For static-
1 hazard analysis, we circle the product terms corresponding to the AND gates in
the circuit, and we search for adjacent 1 cells that are not covered by a single
product term.

Figure 3-28(a) shows the Karnaugh map for the circuit of Figure 3-26. It is
clear from the map that there is no single product term that covers both input
combinations X,Y,Z = 111 and X,Y,Z = 110. Thus, intuitively, it is possible for
the output to “glitch” momentarily to 0 if the AND gate output that covers one of
the combinations goes to 0 before the AND gate output covering the other input
combination goes to 1. The way to eliminate the hazard is also quite apparent:
Simply include an extra product term (AND gate) to cover the hazardous input
pair, as shown in Figure 3-28(b). The extra product term, as it turns out, is the
consensus of the two original terms; in general, we must add consensus terms
to eliminate hazards. The corresponding hazard-free circuit is shown in
Figure 3-29.

Another example is shown in Figure 3-30. In this example, three product
terms must be added to eliminate the static-1 hazards.

1

1

00 01 11 10
X Y

Z

X

Y

Z1

10

1 1

1

00 01 11 10
X Y

Z

X

Y

Z1

10

1

(a) (b)

X · Z′ X · Z′

Y · Z Y · Z X · Y

F = X · Z′ + Y · Z F = X · Z′ + Y · Z + X · Y

Figure 3-28 Karnaugh map for the circuit of Figure 3-26: (a) as originally
designed; (b) with static-1 hazard eliminated.

consensus

X

Z

Y

F

XZP

YZ

XY

ZP

Figure 3-29 Circuit with static-1 hazard eliminated.

DDPP5.book Page 124 Tuesday, March 28, 2017 5:33 PM

3.4 Timing Hazards 125

A properly designed two-level product-of-sums (OR-AND) circuit has no
static-1 hazards. It may have static-0 hazards, however. These hazards can be
detected and eliminated by studying the adjacent 0s in the Karnaugh map, in a
manner dual to the foregoing.

*3.4.3 Dynamic Hazards
A dynamic hazard is the possibility of an output changing more than once as the
result of a single input transition. Multiple output transitions can occur if there
are multiple paths with different delays from the input to the output.

For example, consider the circuit in Figure 3-31; it has three different paths
from input X to the output F. One of the paths goes through a slow OR gate, and
another goes through an OR gate that is even slower. If the input to the circuit is
W,X,Y,Z = 0,0,0,1, then the output will be 1, as shown. Now suppose we change
the X input to 1. Assuming that all of the gates except the two marked “slow” and
“slower” are very fast, the transitions shown in black occur next, and the output
goes to 0. Eventually, the output of the “slow” OR gate changes, creating the
transitions shown in nonitalic color, and the output goes to 1. Finally, the output

00 01 11 10

W X

Y Z

00 1

1

1 1

1 1 1

1

1 1

01

11

10

W

X

Y

Z

X • Y′ • Z′

W′ • Z

W • Y

(a)

00 01 10

W X

Y Z

00 1

1

1 1

1 1 1

1

1 1

01

11

10

W

X

Y

Z

(b)

11

W′ • X • Y′

W • X • Z′

Y • Z

F = X · Y′ · Z′ + W′ · Z + W · Y
+ W′ · X · Y′ + Y · Z + W · X · Z′

F = X · Y′ · Z′ + W′ · Z + W · Y

Figure 3-30 Karnaugh map for another sum-of-products circuit: (a) as originally
designed; (b) with extra product terms to cover static-1 hazards.

dynamic hazard

1

1

W

X

Y

Z

0 → 1

1 → 0

1 → 0

1 → 0
1 → 0 → 1 →

0 → 1

0 → 1 →
1 →

0

0

1

slow

F

Figure 3-31 Circuit with a dynamic hazard.

DDPP5.book Page 125 Tuesday, March 28, 2017 5:33 PM

126 Chapter 3 Switching Algebra and Combinational Logic

of the “slower” OR gate changes, creating the transitions shown in italic color,
and the output goes to its final state of 0.

Dynamic hazards do not occur in a properly designed two-level AND-OR
or OR-AND circuit, that is, one in which no variable and its complement are con-
nected to the same first-level gate.

*3.4.4 Designing Hazard-Free Circuits
Only a few situations, such as the design of feedback sequential circuits, require
hazard-free combinational circuits. Methods for finding hazards in arbitrary cir-
cuits, described in the References, are rather difficult to use. So, when you need
a hazard-free design, it’s best to use a circuit structure that’s easy to analyze.

In particular, we have indicated that a properly designed two-level AND-
OR circuit has no static-0 or dynamic hazards. Static-1 hazards may exist in such
a circuit, but they can be found and eliminated using the map method described
earlier. If cost is not a problem, then a brute-force method of obtaining a hazard-
free realization is to use the complete sum—the sum of all of the prime impli-
cants of the logic function (see previous editions of this book as well as
Exercise 3.53). In a dual manner, a hazard-free two-level OR-AND circuit can be
designed for any logic function. Finally, note that everything we’ve said about
AND-OR circuits naturally applies to the corresponding NAND-NAND designs,
and about OR-AND applies to NOR-NOR.

References
A historical description of Boole’s development of “the science of Logic”
appears in The Computer from Pascal to von Neumann by Herman H. Goldstine
(Princeton University Press, 1972). Claude E. Shannon showed how Boole’s
work could be applied to logic circuits in “A Symbolic Analysis of Relay and
Switching Circuits” (Trans. AIEE, Vol. 57, 1938, pp. 713–723).

Although the two-valued Boolean algebra is the basis for switching
algebra, a Boolean algebra need not have only two values. Boolean algebras with
2n values exist for every integer n; for example, see Discrete Mathematical

complete sum

MOST HAZARDS
ARE NOT

HAZARDOUS!

Any combinational circuit can be analyzed for the presence of hazards. However, a
well-designed, synchronous digital system is structured so that hazard analysis is not
needed for most of its circuits. In a synchronous system, all of the inputs to a com-
binational circuit are changed at a particular time, and the outputs are not “looked at”
until they have had time to settle to a steady-state value. Hazard analysis and elimi-
nation are typically needed only in the design of asynchronous sequential circuits,
like the feedback sequential circuits discussed in Section 10.8. You’ll rarely need to
design such a circuit, but if you do, an understanding of hazards will be essential for
a reliable result.

DDPP5.book Page 126 Tuesday, March 28, 2017 5:33 PM

References 127

Structures and Their Applications by Harold S. Stone (SRA, 1973). Such
algebras may be formally defined using the Huntington postulates devised by
E. V. Huntington in 1907; for example, see Digital Design by M. Morris Mano
and Michael D. Ciletti (Pearson, 2013, fifth edition). Our engineering-style,
“direct” development of switching algebra follows that of Edward J. McCluskey
in his Introduction to the Theory of Switching Circuits (McGraw-Hill, 1965) and
Logic Design Principles (Prentice Hall, 1986).

A graphical method for simplifying Boolean functions was proposed by
E. W. Veitch in “A Chart Method for Simplifying Boolean Functions” (Proc.
ACM, May 1952, pp. 127–133). His Veitch diagram actually reinvented a chart
proposed by an English archaeologist, A. Marquand (“On Logical Diagrams for
n Terms,” Philosophical Magazine XII, 1881, pp. 266–270). The Veitch diagram
or Marquand chart uses “natural” binary counting order for its rows and col-
umns, with the result that some adjacent rows and columns differ in more than
one value, and product terms do not always cover adjacent cells.

The Karnaugh-map method for minimizing combinational logic functions
was introduced by Maurice Karnaugh in “A Map Method for Synthesis of Com-
binational Logic Circuits” (Trans. AIEE, Comm. and Electron., Vol. 72, Part I,
November 1953, pp. 593–599). Previous editions of the book you’re reading and
other books describe the method in more detail.

Minimization can be performed on logic functions of an arbitrarily large
number of variables (at least in principle) using a tabular method called the
Quine-McCluskey algorithm. The method was originally developed as a paper-
and-pencil tabular procedure, but like all algorithms, it can be translated into a
computer program. Previous editions of this book give details on the operation
of such a program. As discussed there, both the program’s data structures and its
execution time can become quite large for even modest logic functions, growing
exponentially with the number of inputs. So, even with very fast computers and
gigabytes of main memory, this algorithm is practical only for logic functions
with a relatively small number of inputs (a dozen or so).

A different, heuristic minimization algorithm called Espresso was later
developed by Robert K. Brayton and others, as described in Logic Minimization
Algorithms for VLSI Synthesis (Kluwer Academic Publishers, 1984). While not
guaranteed always to find the smallest two-level realization of a logic function,
Espresso minimizes even large functions using a practical amount of memory
and computation time, and can find close to minimal implementations. There-
fore, Espresso or one of its derivatives is typically used at least as a first step to
minimize logic functions in most of today’s logic synthesis tools.

After minimization, modern synthesis tools perform additional steps, such
as factoring, to address the limitations of various implementation technologies,
like the maximum number of inputs in a single gate or other logic building block.
Such steps are described in Synthesis and Optimization of Digital Circuits by
Giovanni De Michelli (McGraw-Hill, 1994).

Huntington postulates

Quine-McCluskey
algorithm

DDPP5.book Page 127 Tuesday, March 28, 2017 5:33 PM

128 Chapter 3 Switching Algebra and Combinational Logic

In this chapter we described a map method for finding static hazards in
two-level AND-OR and OR-AND circuits, but any combinational circuit can be
analyzed for hazards. In both his 1965 and 1986 books, McCluskey defines the
0-set and 1-sets of a circuit and shows how they can be used to find static
hazards. He also defines P-sets and S-sets and shows how they can be used to
find dynamic hazards.

Many deeper and varied aspects of switching theory have been omitted
from this book but have been beaten to death in other books and literature.
A good starting point for an academic study of classical switching theory is in
Switching and Finite Automata Theory, by Zvi Kohavi and Niraj K. Jha (Cam-
bridge University Press, 2010, third edition), which includes material on set
theory, symmetric networks, functional decomposition, threshold logic, fault
detection, and path sensitization. Another area of great academic interest is non-
binary multiple-valued logic, in which each signal line can take on more than
two values, typically four, and new logic operations are defined to operate
directly on multivalued variables. But the only practical use of multivalued logic
so far has been in memories, such as MLC flash EPROMs, that use four discrete
analog levels to store two bits of information in each physical memory cell.

Drill Problems
3.1 Using variables ENGR, POET, and RHYME, write a logic expression that is 1 for

poets who don’t know how to rhyme and digital designers who like to come up
with rhyming signal names.

3.2 Prove theorems T2–T5 using perfect induction.

3.3 Prove theorems T1D–T3D and T5D using perfect induction.

3.4 Prove theorems T6–T9 using perfect induction.

3.5 According to DeMorgan’s theorem, the complement of X + Y ⋅ Z is X′ ⋅ Y′+Z′.
Yet both functions are 1 for XYZ = 110. How can both a function and its comple-
ment be 1 for the same input combination? What’s wrong here?

3.6 Use the theorems of switching algebra to simplify each of the following logic
functions:

3.7 Write the truth table for each of the following logic functions:

(a) F = W ⋅ X ⋅ Y ⋅ Z ⋅ (W ⋅ X ⋅ Y ⋅ Z′ + W ⋅ X′ ⋅ Y ⋅ Z + W′ ⋅ X ⋅ Y ⋅ Z + W ⋅ X ⋅ Y′ ⋅ Z)

(b) F = A ⋅ B + A ⋅ B ⋅ C′ ⋅ D + A ⋅ B ⋅ D ⋅ E′ + A ⋅ B ⋅ C′ ⋅ E + C′ ⋅ D ⋅ E

(c) F = M ⋅ N ⋅ O + Q′ ⋅ P′ ⋅ N′ + P ⋅ R ⋅ M + Q′ ⋅ O ⋅ M ⋅ P′ + M ⋅ R

(a) F = X′ ⋅ Y + X′ ⋅ Y′ ⋅ Z (b) F = W′ ⋅ X + Y′ ⋅ Z′ + X′ ⋅ Z

(c) F = W + X′ ⋅ (Y′ + Z) (d) F = A ⋅ B + B′ ⋅ C + C′ ⋅ D + D′ ⋅ A

(e) F = V ⋅ W + X′ ⋅ Y′ ⋅ Z (f) F = (A′ + B′ + C ⋅ D) ⋅ (B + C′ + D′ ⋅ E′)
(g) F = (W ⋅ X)′ ⋅ (Y′ + Z′)′ (h) F = (((A + B)′ + C′)′ + D)′
(i) F = (A′ + B + C) ⋅ (A + B′ + D′) ⋅ (B + C′ + D′) ⋅ (A + B + C + D)

0-set
1-set
P-set
S-set

multiple-valued logic

DDPP5.book Page 128 Tuesday, March 28, 2017 5:33 PM

Exercises 129

3.8 Write the truth table for each of the following logic functions:

3.9 Write the canonical sum and product for each of the following logic functions:

3.10 Write the canonical sum and product for each of the following logic functions:

3.11 Mathematicians will tell you that “1” is not really a prime number. Rewrite the
minterm list and the canonical sum and state how to modify the logic diagram of
the prime-number-detector example on page 111, assuming that “1” is not prime.

3.12 If the canonical sum for an n-input logic function is also a minimal sum, how
many literals are in each product term of the sum? Might there be any other
minimal sums in this case?

3.13 Give two reasons why the cost of input inverters typically is not considered in
logic minimization.

3.14 Re-do the prime-number-detector minimization example of Figure 3-24, assum-
ing “1” is not a prime number. Hint: There are two correct answers.

3.15 Give another name for a 2-input even-parity function. Hint: The answer appears
in this chapter’s exercises.

3.16 For each of the following logic expressions, use a Karnaugh map to find all of the
static hazards in the corresponding two-level AND-OR circuit, and design a
hazard-free circuit that realizes the same logic function:

Exercises
3.17 Design a non-trivial-looking logic circuit that contains a feedback loop but has an

output that depends only on its current input.

3.18 Prove the combining theorem T10 without using perfect induction, but assuming
that theorems T1–T9 and T1D–T9D are true.

(a) F = X′ ⋅ Y′ ⋅ Z′ + X ⋅ Y ⋅ Z + X ⋅ Y′ ⋅ Z′ (b) F = M′ ⋅ N′ + M ⋅ P′ + N ⋅ P′
(c) F = A ⋅ B + A ⋅ B′ ⋅ C′ + A′ ⋅ B ⋅ C′ (d) F = A′ ⋅ B ⋅ (C ⋅ B ⋅ A′ + B′ ⋅ C′)
(e) F = X ⋅ Y ⋅ (X′ ⋅ Y ⋅ Z + X ⋅ Y′ ⋅ Z + X′ ⋅ Y ⋅ Z′ + X ⋅ Y ⋅ Z) (f) F = M ⋅ N + M′ ⋅ N′ ⋅ P

(g) F = (A + A′) ⋅ B + B′ ⋅ A ⋅ C + C′ ⋅ (A + B′) ⋅ (A′ + B) (h) F = X ⋅ Y′ + Y ⋅ Z + Z′ ⋅ X′

(a) F = ΣX,Y(1,2) (b) F = ∏A,B(0,1,2)

(c) F = ΣA,B,C(2,4,6,7) (d) F = ∏W,X,Y(0,1,3,4,5)

(e) F = X + Y′ ⋅ Z′ (f) F = V′ + (W′ ⋅ X)′

(a) F = ΣX,Y,Z(0,1,3) (b) F = ∏A,B,C(0,2,4)

(c) F = ΣA,B,C,D(1,2,6,7) (d) F = ∏M,N,P(0,2,3,6,7)

(e) F = X + Y′ ⋅ Z + Y ⋅ Z′ (f) F = A′ ⋅ B + B ⋅ C + A

(a) F = W ⋅ X + W′ ⋅ Y′ (b) F = W ⋅ X′ ⋅ Y′ + X ⋅ Y′ ⋅ Z + X ⋅ Y

(c) F = W ⋅ Y + W′ ⋅ Z′ + X ⋅ Y′ ⋅ Z (d) F = W′ ⋅ X′ + Y′ ⋅ Z + W′ ⋅ X ⋅ Y ⋅ Z + W ⋅ X ⋅ Y ⋅ Z′
(e) F = W′ ⋅ Y + X′ ⋅ Y′ + W ⋅ X ⋅ Z (f) F = W′ ⋅ X + Y′ ⋅ Z + W ⋅ X ⋅ Y ⋅ Z + W ⋅ X′ ⋅ Y ⋅ Z′
(g) F = W ⋅ X′ ⋅ Y′ + X ⋅ Y′ ⋅ Z + X ⋅ Y

DDPP5.book Page 129 Tuesday, March 28, 2017 5:33 PM

130 Chapter 3 Switching Algebra and Combinational Logic

3.19 Prove that (X + Y′) ⋅ Y = X ⋅ Y without using perfect induction. You may assume
that theorems T1–T11 and T1D–T11D are true.

3.20 Prove that (X + Y) ⋅ (X′ + Z) = X ⋅ Z + X′ ⋅ Y without using perfect induction. You
may assume that theorems T1–T11 and T1D–T11D are true.

3.21 Show that an n-input OR gate can be replaced by (n−1) 2-input OR gates. Can the
same statement be made for NOR gates? Justify your answer.

3.22 How many physically different ways are there to realize V ⋅ W ⋅ X ⋅ Y ⋅ Z using
four 2-input AND gates? Justify your answer.

3.23 Use switching algebra to prove that tying together two inputs of an (n+1)-input
AND or OR gate gives it the functionality of an n-input gate.

3.24 Prove DeMorgan’s theorems (T13 and T13D) using finite induction.

3.25 Use the theorems of switching algebra to rewrite the following expression using
as few terms and inversions as possible (complemented parentheses are allowed):

3.26 Prove Shannon’s expansion theorems. (Hint: Don’t get carried away; it’s easy.)

3.27 The generalized Shannon expansion theorems “pull out” not just one but i vari-
ables so that a logic function can be expressed as a sum or product of 2 i terms.
Figure out and state the generalized Shannon expansion theorems.

3.28 Show how the generalized Shannon expansion theorems lead to the canonical
sum and canonical product representations of logic functions.

3.29 Prove or disprove the following propositions:

(a) Let A and B be switching-algebra variables. Then A ⋅ B = 0 and A + B = 1
implies that A = B′.

(b) Let X and Y be switching-algebra expressions. Then X ⋅ Y = 0 and X + Y = 1
implies that X = Y′.

3.30 An Exclusive OR (XOR) gate is a 2-input gate whose output is 1 if and only if
exactly one of its inputs is 1. Write a truth table, sum-of-products expression, and
corresponding AND-OR circuit for the Exclusive OR function.

3.31 An Exclusive NOR (XNOR) gate is a 2-input gate whose output is 1 if and only if
both of its inputs are equal. Write a truth table, sum-of-products expression, and
corresponding AND-OR circuit for the Exclusive NOR function.

3.32 From the point of view of switching algebra, what is the function of a 2-input
XNOR gate whose inputs are tied together? How might the output behavior of a
real XNOR gate differ?

3.33 Any set of logic-gate types that can realize any logic function is called a complete
set of logic gates. For example, 2-input AND gates, 2-input OR gates, and
inverters are a complete set, because any logic function can be expressed as a sum
of products of variables and their complements, and AND and OR gates with any
number of inputs can be made from 2-input gates. Do 2-input NOR gates form a
complete set of logic gates? Prove your answer.

3.34 Do 2-input AND gates which have one input inverted form a complete set of logic
gates? Prove your answer. Why might this type of gate be called an “inhibit” gate?
Does this mean that a standard AND gate could be called “uninhibited”?

B′ ⋅ C + A ⋅ C ⋅ D′ + A′ ⋅ C + D ⋅ B′ + E ⋅ (A + C) ⋅ (A′ + D′)

generalized Shannon-
expansion theorems

Exclusive OR (XOR)
gate

Exclusive NOR (XNOR)
gate

complete set

DDPP5.book Page 130 Tuesday, March 28, 2017 5:33 PM

Exercises 131

3.35 Do 2-input XOR gates form a complete set of logic gates? Prove your answer.
3.36 For each of the following descriptions of a combinational logic function, name

the function’s inputs and output and give their meanings. Then, fully specify the
function using a truth table or logic equations. In the second approach, you may
use intermediate variables if they are useful to simplify the problem.

3.37 Some people think that there are four basic logic functions, AND, OR, NOT, and
BUT. Figure X3.37 is a possible symbol for a 4-input, 2-output BUT gate. Invent
a useful, nontrivial function for the BUT gate to perform. The function should
have something to do with the name (BUT). Keep in mind that, due to the sym-
metry of the symbol, the function should be symmetric with respect to the A and
B inputs of each section and with respect to sections 1 and 2. Describe your BUT’s
function and write its truth table.

3.38 Write logic expressions for the Z1 and Z2 outputs of the BUT gate you designed
in the preceding exercise, and draw a corresponding logic diagram using AND
gates, OR gates, and inverters.

3.39 How many different nontrivial logic functions are there of n variables? Here,
“nontrivial” means that all of the variables affect the output.

3.40 Most students have no problem using theorem T8 to “multiply out” logic expres-
sions, but many develop a mental block if they try to use theorem T8D to “add
out” a logic expression. How can duality be used to overcome this problem?

3.41 Describe how to adapt any software tool that synthesizes AND-OR logic instead
to synthesize OR-AND logic.

3.42 Prove that .

3.43 A self-dual logic function is a function F such that F = FD. Which of the following
functions are self-dual? (The symbol ⊕ denotes the Exclusive OR (XOR)
operation.)

(a) Specify the on/off control signal for the dome light in a typical car.

(b) Specify a signal that is 1 if and only if two 2-bit numbers N and M are equal.

(c) In a certain nerdy family, each person P is identified by their generation PG
(0 being the parents) and their sex PS (for simplicity, just one bit, please);
each child was also given a unique 2-bit identifier PN at birth, starting at 00.
Specify a function that is 1 if and only if person P is a daughter of person Q.

(d) Repeat problem (c) for a function that is 1 if and only if person P is the father
of person Q.

(e) Repeat problem (c) for a function that is 1 if and only if person P is a younger
brother of person Q.

(f) Repeat problem (c) for a function that is 1 if and only if persons P and Q are
the parents.

(a) F = X (b) F = ΣX,Y,Z(0,3,5,6)

(c) F = X ⋅ Y + X Y (d) F = W ⋅ (X⊕Y⊕Z) + W (X⊕Y⊕Z)

(e) A function F of 7 variables
such that F = 1 if and only if 4
or more of the variables are 1

(f) A function F of 10 variables such
that F = 1 if and only if 5 or more
of the variables are 1

BUT
BUT gate

A1

B1

A2

B2

Z1

Z2

Figure X3.37

FD X1 X, 2 … Xn, ,() F X1 X, 2 Xn, ,[]=

self-dual logic function

DDPP5.book Page 131 Tuesday, March 28, 2017 5:33 PM

132 Chapter 3 Switching Algebra and Combinational Logic

3.44 Assuming the signal delay through NAND gates and inverters is 5 ns, NOR gates
is 6 ns, and noninverting gates is 9 ns, what is the total delay to the slowest output
in each of the circuits in Figure 3-21(a), (c), and (d).

3.45 How many self-dual logic functions of n input variables are there? (Hint:
Consider the structure of the truth table of a self-dual function.)

3.46 Prove that any n-input logic function F(X1,…, Xn) that can be written in the form
F = X1 ⋅ G(X2,…,Xn) + X1′ ⋅ GD(X2,…,Xn) is self-dual.

3.47 Assign variables to the inputs of the AND-XOR circuit in Figure X3.47 so that its
output is F = ΣW,X,Y,Z(6,7,12,13). You may use a Karnaugh map if it helps you.
What is the solution if the AND gates are changed to NAND gates?

3.48 A distinguished 1-cell in a logic function’s Karnaugh map is a cell (and a corre-
sponding input combination) that is covered by only one prime implicant. Such
an essential prime implicant must be present in any minimal sum for the function.
Thus, an efficient minimization algorithm looks first for essential prime impli-
cants, and then selects additional prime implicants only as needed for 1-cells that
are still uncovered, if any. The following logic functions all have one or more
essential prime implicants; find their minimal sums:

3.49 A 3-bit “comparator” circuit receives two 3-bit numbers, P = P2P1P0 and Q =
Q2Q1Q0. Design a minimal sum-of-products circuit that produces a 1 output if
and only if P < Q.

3.50 Algebraically prove whether or not the following expression is minimal. That is,
can any product term be eliminated and if not, can any input be removed from any
product term?

3.51 Exhibit a 4-input logic function, other than the one in Figure 3-25, whose Kar-
naugh map is a “checkerboard” with eight minterms. Does this logic function
have a concise name?

3.52 (Hamlet circuit.) Complete the timing diagram and explain the function of the cir-
cuit in Figure X3.52. Where does the circuit get its name?

3.53 Prove that a two-level AND-OR circuit corresponding to the complete sum of a
logic function is always hazard free.

(a) F = ΣX,Y,Z(1,3,5,6,7) (b) F = ΣW,X,Y,Z(1,4,5,6,7,9,14,15)

(c) F = ∏W,X,Y(1,4,5, 6, 7) (d) F = ΣW,X,Y,Z(0,1,6,7,8,9,14,15)

(e) F = ∏A,B,C,D(4, 5, 6, 13,15) (f) F = ΣA,B,C,D(4,5,6, 11, 13,14,15)

F = C ⋅ D ⋅ E′ ⋅ F′ ⋅ G + B ⋅ C ⋅ E ⋅ F′ ⋅ G + A ⋅ B ⋅ C ⋅ D ⋅ F′ ⋅ G

Figure X3.47

distinguished 1-cell

essential prime
implicant

2B
F 2B

F
Figure X3.52

DDPP5.book Page 132 Tuesday, March 28, 2017 5:33 PM

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

133

c h a p t e r 4
Digital Design Practices

his book aims to show you both the theoretical principles and the
practices used in modern digital design. This chapter focuses on
general practices and a few that are particular to combinational
circuits. We’ll wait until Chapter 13 to discuss practices that are
particular to sequential-circuit design.

The first topic we will discuss here is one that you don’t very often see
in engineering texts, namely the documentation practices that engineers use
to ensure that their designs are correct, manufacturable, and maintainable.
The next topic is circuit timing, a crucial element for successful digital
design. Finally, we give an introduction to HDL-based digital design, and
“design flow” in an HDL-based environment.

4.1 Documentation Standards
Good documentation is essential for correct design and efficient mainte-
nance of digital systems. In addition to being accurate and complete,
documentation must be somewhat instructive, so that a test engineer, main-
tenance technician, or even the original design engineer (six months after
designing the circuit) can figure out how the system works just by reading
the documentation.

T

DDPP5.book Page 133 Tuesday, March 28, 2017 5:33 PM

134 Chapter 4 Digital Design Practices

Although the type of documentation depends on system complexity and
the engineering and manufacturing environments, a documentation package
should generally contain at least the following items:

1. A specification (also known as a spec) describes exactly what the circuit or
system is supposed to do, including a description of all inputs and outputs
(“interfaces”) and the functions that are to be performed. Note the spec
doesn’t have to specify how the system achieves its results, just what the
results are supposed to be. However, in many companies it is a common
practice also to incorporate one or more of the following documents into
the spec to describe how the system works.

2. A block diagram is an informal pictorial description of the system’s major
functional modules and their basic interconnections.

3. A logic-device description describes the functions of each “custom” logic
device used in the system. (“Standard” devices are described by data sheets
or user manuals provided by their manufacturers.) Custom devices include
application-specific integrated circuits (ASICs), field-programmable gate
arrays (FPGAs), and programmable logic devices (PLDs and CPLDs).

At a high level, device descriptions are written in English, but the internals
are often specified in an HDL like Verilog. Some internals may also be
specified by logic diagrams, equations, state tables, or state diagrams.
Sometimes, a conventional programming language like C may be used to
model the operation of a circuit or to specify parts of its behavior.

4. A schematic diagram is a formal specification of the electrical components
of the system, their interconnections, and related details needed to build the
system. We’ve been using the term logic diagram for a less formal drawing
that does not have quite this level of detail.

In board-level design, the schematic is usually created by the designer and
should include IC types, reference designators, signal names, and the pin
numbers where signals appear on the physical devices. Most schematic-
drawing programs have the ability to generate a bill of materials (BOM)
from the schematic; this tells the purchasing department what electronic
components they have to acquire to build the system.

In FPGA- and PLD-based design, the internals of the FPGA or PLD are
usually specified with an HDL like Verilog and no schematic is needed for
the internals. But the EDA tools may have the ability to create one after the
language-specified design has been implemented. In addition to signal
names, such a schematic would include the names, types, and possibly the
on-chip locations of resources used by the implemented design. Such a
schematic may be useful in optimization and debugging of the design.

5. A timing diagram shows the values of various logic signals as a function
of time, including the cause-and-effect delays between critical signals.

specification (spec)

block diagram

logic-device description

schematic diagram

logic diagram

bill of materials (BOM)

timing diagram

DDPP5.book Page 134 Tuesday, March 28, 2017 5:33 PM

4.1 Documentation Standards 135

6. A circuit description is a narrative text document that, in conjunction with
the other documentation, explains how the circuit works internally. The
circuit description should list any assumptions and potential pitfalls in the
circuit’s design and operation, and point out the use of any nonobvious
design “tricks.” A good circuit description also contains definitions of
acronyms and other specialized terms and has references to related docu-
ments. Each “custom” logic device in the system should have its own
circuit description.

7. A test plan describes the methods and resources that will be needed to test
the system for proper operation, both before and after it is physically built.

You’ve probably already seen block diagrams in many contexts. We’ll first
present a few rules for drawing them, and then in the rest of this section, we’ll
focus on schematics for combinational logic circuits. Section 4.2.1 introduces
timing diagrams. Logic-device descriptions in the form of Verilog models will
be covered in Chapter 5, with many examples to follow in later chapters. In
Section 6.1.2, we’ll show how a C program can be used to generate and specify
the contents of a read-only memory that solves a design problem.

The circuit description is sometimes overlooked, but is very important in
practice. Just as an experienced programmer creates a program design document
before beginning to write code, an experienced logic designer starts writing the

circuit description

DOCUMENTS
ON-LINE

Professional engineering documentation nowadays is carefully maintained on corpo-
rate intranets, so it’s very useful to include pointers, like URLs, in circuit
specifications and descriptions so that references can be easily located. Of course,
URLs sometimes change as a result of network and server reconfiguration, so docu-
ments might be referenced instead by a permanent number assigned by the
company’s document-control system.

On-line documentation is so important and authoritative in one company that
the footer on every page of every specification contains the warning that “A printed
version of this document is an uncontrolled copy.” That is, a printed copy could very
well be obsolete.

test plan

DON’T FORGET
TO WRITE!

In order to create successful products, digital designers must develop their language
and writing skills, especially in the area of logical outlining and organization. The
most successful digital designers (and later, project leaders, system architects, and
entrepreneurs) are the ones who communicate their ideas, proposals, and decisions
effectively to others. Even though it’s a lot of fun to tinker in the digital design lab,
don’t use that as an excuse to shortchange your writing and communications courses
and projects!

DDPP5.book Page 135 Tuesday, March 28, 2017 5:33 PM

136 Chapter 4 Digital Design Practices

circuit description before drawing a schematic or writing HDL code. Sadly, the
circuit description is sometimes the last document to be created, and sometimes
it’s never written at all. A circuit without a description is difficult to debug,
manufacture, test, maintain, modify, and enhance, even by the original designer
six months after it’s done.

Overall test plans are beyond the scope of this text, but we’ll cover one
aspect of them, specifically test benches for Verilog models, in quite a bit of
detail in later chapters.

4.1.1 Block Diagrams
A block diagram shows the inputs, outputs, functional modules, internal data
paths, and important control signals of a system. In general, it should not be so
detailed that it occupies more than one page, yet it must not be too vague. A
small block diagram may have three to six blocks, while a large one may have
10 to 15 blocks, depending on system complexity. In any case, the block diagram
must show the most important system elements and how they work together.

Large systems are designed and described hierarchically. At the top level,
and in the corresponding block diagram, the system is partitioned into a small
number of independent subsystems or blocks that interact with each other in
well defined ways. Each of those subsystems or blocks is further partitioned as
needed until reaching an appropriate lower level below which the details can be
fully understood and designed with the available components and tools.

Figure 4-1 shows a sample block diagram. Each block is labeled with the
function of the block, not the individual components that comprise it. As another
example, Figure 4-2(a) shows the block-diagram symbol for a 32-bit register. If
the register is to be built using four 8-bit-register components named “REG8,”
and this information might be important to someone reading the diagram, then it
can be conveyed as shown in (b). However, splitting the block to show individual
components as in (c) is generally incorrect.

A bus is a collection of two or more related signal lines. In a block diagram,
buses may be drawn with a double or heavy line, as in Figure 4-1. A slash and a
number may indicate how many individual signal lines are contained in a bus.
Alternatively, size may be denoted in the bus name (e.g., INBUS[31:0] or
INBUS[31-0]). Active levels (defined later) and inversion bubbles may or may
not appear in block diagrams; in most cases, they are unimportant at this level of
detail. However, important control signals and buses should have names, usually
the same names that appear in the more detailed schematic.

The flow of control and data in a block diagram should be indicated clearly.
Schematic diagrams are generally drawn with signals flowing from left to right,
but in block diagrams this ideal is more difficult to achieve. Inputs and outputs
may be on any side of a block, and the direction of signal flow may be arbitrary.
Arrowheads are often used on buses and ordinary signal lines to eliminate any
ambiguity.

block diagram

bus

DDPP5.book Page 136 Tuesday, March 28, 2017 5:33 PM

4.1 Documentation Standards 137

Figure 4-1
Block diagram for a
digital design project.

R/W

ADDR

BYTE EN

IN

OUT

16-word x 32-bit
RAM

CONTROL

RESET

LOAD

RUN

DISPLAY

LDA LDB

4

32

32

32 32 32

A REGISTER B REGISTER

direct left right

INBUS

2

32

32 32

SEL MULTIPLEXER
4 to 1

CARRY LOOKAHEAD ADDER

OUTBUS

SHIFT-AND-ADD MULTIPLIER

Figure 4-2
A 32-bit register block:
(a) realization
unspecified;
(b) chips specified;
(c) too much detail.

32

32

32

8

8

8

8

8

8

8

8

32-BIT REGISTER

32

32

32-BIT REGISTER

32

4 x REG8

(a)

(c)

(b)

REG8 REG8 REG8 REG8

DDPP5.book Page 137 Tuesday, March 28, 2017 5:33 PM

138 Chapter 4 Digital Design Practices

4.1.2 Gate Symbols
We introduced logic gates in Chapters 1 and 3, and the symbol shapes for AND
and OR gates are shown again in Figure 4-3(a). The figure also shows a buffer,
sometimes called a noninverting buffer, which is a circuit that simply converts
an electrically “weak” logic signal into a “strong” one with the same logic value.
To draw logic gates with more than a few inputs, we expand the AND and OR
symbols as shown in (b). A small circle, called an inversion bubble, denotes
logical inversion or complementing and is used in the symbols for NAND and
NOR gates and inverters in (c).

As shown in Section 3.1.4, we can use DeMorgan’s theorem to manipulate
the logic expressions for gates with complemented outputs. For example, if X
and Y are the inputs of a NAND gate with output Z, then we can write

This gives rise to two different but equally correct symbols for a NAND gate, as
we demonstrated in Figure 3-3 on page 98. In fact, this sort of manipulation may
be applied to gates with uncomplemented outputs as well. For example, consider
the following equations for an AND gate:

Thus, an AND gate may be symbolized as an OR gate with inversion bubbles on
its inputs and output.

Equivalent symbols for standard gates that can be obtained by these
manipulations are summarized in Figure 4-4. Even though both symbols in a
pair represent the same logic function, the choice of one symbol or the other in a
logic diagram is not arbitrary, at least not if we are adhering to good documenta-
tion standards. As we’ll show in the next few subsections, proper choices of gate

Figure 4-3 Shapes for basic logic gates: (a) AND, OR, and buffers; (b) expansion of inputs;
(c) inversion bubbles.

AND

OR

BUFFER

(a)

NAND

NOR

INVERTER
(NOT)

(c)(b)

buffer
noninverting buffer

inversion bubble

Z X Y⋅()′=

X′ Y′+=

Z X Y⋅=

X Y⋅()′()′=

X′ Y′+()′=

DDPP5.book Page 138 Tuesday, March 28, 2017 5:33 PM

4.1 Documentation Standards 139

symbols can make logic diagrams much easier to use and understand. In addi-
tion, corresponding choices of signal names can make both logic diagrams and
HDL code more understandable.

4.1.3 Signal Names and Active Levels
Each input and output signal in a logic circuit should have a descriptive alpha-
numeric label, the signal’s name. HDLs and most EDA programs for drawing
logic circuits also allow certain special characters, such as *, _, and $, to be
included in signal names. In the analysis and synthesis examples in Chapter 3,
we used mostly single-character signal names (X, Y, etc.) because we were still
thinking in terms of switching algebra and the circuits didn’t do much. However,
in a real system, well-chosen signal names convey information the same way
that variable names in a software program do. A signal’s name indicates an
action that is controlled (GO, PAUSE), a condition that it detects (READY,
ERROR), or data that it carries (INBUS[31:0]).

Each signal name should have an active level associated with it. A signal is
active high if it performs the named action or denotes the named condition when

AND

NAND

OR

NOR INVERTER
(NOT)

BUFFER

Figure 4-4
Equivalent gate symbols
under the generalized
DeMorgan’s theorem.

IEEE STANDARD
LOGIC SYMBOLS

Together with the American National Standards Institute (ANSI), the Institute of
Electrical and Electronics Engineers (IEEE) has developed a standard set of logic
symbols. The most recent revision of the standard is ANSI/IEEE Std 91-1984, IEEE
Standard Graphic Symbols for Logic Functions, and it allows both rectangular- and
distinctive-shape symbols for logic gates.

We have been using, and we’ll continue to use, traditional distinctive-shape
symbols in this book. The rectangular-shape symbols are described in this book’s
second edition, as well as at various sites on the Web.

active level
active high

DDPP5.book Page 139 Tuesday, March 28, 2017 5:33 PM

140 Chapter 4 Digital Design Practices

it is HIGH or 1. (Under the positive-logic convention, which we use throughout
this book, “HIGH” and “1” are equivalent.) A signal is active low if it performs
the named action or denotes the named condition when it is LOW or 0. A signal
is said to be asserted when it is at its active level. A signal is said to be negated
(or, sometimes, deasserted) when it is not at its active level.

The active level of each signal in a circuit is normally specified as part of its
name, according to some convention. Examples of several different active-level
naming conventions are shown in Table 4-1. The choice of one of these or other
signal-naming conventions is sometimes just a matter of personal preference,
but more often it is constrained by the engineering environment. Since the
active-level designation is part of the signal name, the naming convention must
be compatible with the input requirements of any EDA tools that will process the
signal names, such as schematic editors, HDL compilers, and simulators.

In this text, we’ll use the last convention in the table, which is compatible
with modern HDLs: An active-low signal name has a suffix of _L, and an active-
high signal has no suffix. The _L suffix may be read as if it were a prefix “not.”

It’s extremely important for you to understand the difference between
signal names, expressions, and equations. A signal name is just a name—an
alphanumeric label. A logic expression combines signal names using the opera-
tors of switching algebra—AND, OR, and NOT—as we explained and used
throughout Chapter 3. A logic equation is an assignment of a logic expression to
a signal name—it describes one signal’s function in terms of other signals.

The distinction between signal names and logic expressions can be related
to a concept used in computer programming languages: The lefthand side of an
assignment statement contains a variable name, and the righthand side contains
an expression whose value will be assigned to the named variable (for example,
Z = -(X+Y)). In a programming language, you can’t put an expression on the
lefthand side of an assignment statement. In logic design, you can’t use a logic
expression as a signal name.

Logic signals may have names like X, READY, and GO_L. The “_L” in
GO_L is just part of the signal’s name, like an underscore in a variable name in a
C program. There is no signal whose name is READY′—this is an expression,

active low
assert
negate
deassert

active-level naming
convention

Table 4-1
Each line shows a
different naming
convention for active
levels.

Active Low Active High

READY– READY+

ERROR.L ERROR.H
ADDR15(L) ADDR15(H)

RESET* RESET

ENABLE~ ENABLE
~GO GO

/RECEIVE RECEIVE

TRANSMIT_L TRANSMIT

_L suffix

signal name
logic expression

logic equation

DDPP5.book Page 140 Tuesday, March 28, 2017 5:33 PM

4.1 Documentation Standards 141

since ′ is an operator. However, there may be two signals named READY and
READY_L such that READY_L = READY′ during normal operation of the
circuit.

We are very careful in this book to distinguish between signal names,
which are always printed in black, and logic expressions, which are always
printed in color when they are written near the corresponding signal lines.

In HDL models, most signals are active-high. It’s just easier to manage and
understand a model and corresponding circuit when signals perform or denote
their named operations or conditions when they are 1.

However, when chips or functions are interconnected on a printed circuit
board or in a system, some signals, especially control signals, may be active low.
This occurs because certain signals, including ones on larger-scale devices, are
active low for compatibility with other devices with which they are frequently
paired, or for better electrical performance in areas like noise immunity.

Examples of typical active-low signals include chip-select inputs on
memories (compatibility) and reset inputs on all sorts of devices (compatibility,
noise immunity, and safe operation during power-on and power-off). Thus, in
HDL-based designs, you are mostly likely to see and use active-low signals only
on the external pins of a targeted FPGA, ASIC, or PLD.

4.1.4 Active Levels for Pins
When we draw the outline of an AND or OR symbol, or a rectangle representing
a larger-scale logic element, we think of the given logic function as occurring
inside that symbolic outline. In Figure 4-5(a), we show the logic symbols for an
AND and an OR gate and for a larger-scale element with an ENABLE input. The
AND and OR gates have active-high inputs—they require 1s on their input pins
(or other “wires,” depending on the technology) to assert their outputs.

Likewise, the larger-scale element has an active-high ENABLE input,
which must be 1 to enable the element to do its thing. In Figure 4-5(b), we show
the same logic elements with active-low input and output pins. Exactly the same
logic functions are performed inside the symbolic outlines, but the inversion
bubbles indicate that 0s must now be applied to the input pins to activate the
logic functions, and that the outputs are 0 when they are “doing their thing.”

Figure 4-5 Logic symbols: (a) AND, OR, and a larger-scale logic element; (b) the same elements
with active-low inputs and outputs.

ENABLE

. . .

. . .

. . .

DO

MY

THING

. . .

. . .

ENABLE

. . .

. . .

. . .

DO

MY

THING

. . .

. . .

(a) (b)

DDPP5.book Page 141 Tuesday, March 28, 2017 5:33 PM

142 Chapter 4 Digital Design Practices

Thus, we associate active levels with the input and output pins of gates and
larger-scale logic elements. We use an inversion bubble to indicate an active-low
pin and the absence of a bubble to indicate an active-high pin. For example, the
AND gate in Figure 4-6(a) performs the logical AND of two active-high inputs
and produces an active-high output: if both inputs are asserted (1), the output is
asserted (1). The NAND gate in (b) also performs the AND function, but it pro-
duces an active-low output. Even a NOR or OR gate can be construed to perform
the AND function using active-low inputs and perhaps output, as shown in (c)
and (d). All four gates in the figure can be said to perform the same function: the
output of each gate is asserted if both of its inputs are asserted.

Figure 4-7 shows the same idea for the OR function: The output of each
gate is asserted if either of its inputs is asserted.

Sometimes a noninverting buffer is used simply to boost the fanout of a
logic signal without changing its function. Figure 4-8 shows the possible logic
symbols for both inverters and noninverting buffers. In terms of active levels, all
of the symbols perform exactly the same function: Each asserts its output signal
if and only if its input is asserted.

4.1.5 Constant Logic Signals
Sometimes, a logic signal with a constant-0 or constant-1 value is needed. For
example, a larger-scale logic element may need to be “always enabled,” or one
or more inputs of discrete gate may be unused but the rest of the gate needs to
function. A few examples are shown in Figure 4-9. Here, the little triangle

(a) (b) (c) (d)

Figure 4-6 Four ways of obtaining an AND function: (a) AND gate; (b) NAND gate;
(c) NOR gate; (d) OR gate.

Figure 4-7 Four ways of obtaining an OR function: (a) OR gate; (b) NOR gate;
(c) NAND gate; (d) AND gate.

(a) (b) (c) (d)

(a) (b) (c) (d)

Figure 4-8 Alternate symbols: (a, b) inverters; (c, d) noninverting buffers.

DDPP5.book Page 142 Tuesday, March 28, 2017 5:33 PM

4.1 Documentation Standards 143

pointing down is the traditional electronic symbol for “ground” or 0 volts, which
is logic 0 for CMOS with a positive-logic convention. The horizontal bar is the
traditional symbol for the power-supply voltage, which may vary depending on
the logic family, but which is always a logic 1 for CMOS with a positive-logic
convention. Ground and the power supply voltage are often called the power-
supply rails. Note that some logic families and some design practices may
require that connections to the rails be made through resistors instead of directly,
for reliability or testing reasons.

*4.1.6 Bubble-to-Bubble Logic Design
Experienced logic circuit designers formulate their circuits in terms of the logic
functions performed inside the symbolic outlines. Whether you’re designing
with discrete gates or in an HDL, it’s easiest to think of logic signals and their
interactions using active-high names. However, once you’re ready to realize
your circuit, you may have to deal with active-low signals because of various
requirements in the circuit’s environment.

When you design with discrete gates, either at board or ASIC level, a key
requirement is often speed. As we’ll show in Section 14.1.6, inverting gates are
typically faster than noninverting ones, so there’s often a performance payoff in
generating some signals in active-low form.

When you design with larger-scale elements, many of them may be off-
the-shelf chips or other existing components that already have some inputs and
outputs fixed in active-low form. The reasons that they use active-low signals
may range from performance improvement to backwards compatibility to years
of ingrained tradition, but in any case, you still have to deal with it.

Bubble-to-bubble logic design is the practice of choosing logic symbols
and signal names, including active-level designators, that make the function of a
logic circuit easier to understand. Usually, this means choosing signal names and
gate types and symbols so that most of the inversion bubbles “cancel out” and
the design can be analyzed as if most of the signals were active high.

* Throughout this book, optional sections are marked with an asterisk.

Figure 4-9 Constant 0 and 1 inputs for unused inputs: (a) with larger-scale logic element;
(b) with individual gates.

ENABLE

. . .

. . .

. . .

DO

MY

THING

. . .

. . .

ENABLE

. . .

. . .

. . .

DO

MY

THING

. . .

. . .

(b)(a)

power-supply rails

bubble-to-bubble logic
design

DDPP5.book Page 143 Tuesday, March 28, 2017 5:33 PM

144 Chapter 4 Digital Design Practices

For example, suppose we need to produce a signal that tells a device to
“GO” when we are “READY” and we get a “REQUEST.” Clearly from the prob-
lem statement, an AND function is required; in switching algebra, we would
write GO = READY ⋅ REQUEST. However, we can use different gates to perform
the AND function, depending on the active level required for the GO signal and
the active levels of the available input signals.

Figure 4-10(a) shows the simplest case, where GO must be active-high and
the available input signals are also active-high; we use an AND gate. If, on the
other hand, the controlled device requires an active-low GO_L signal, we can use
a NAND gate as shown in (b). If the available input signals are active-low, we can
use a NOR or OR gate as shown in (c) and (d).

The active levels of available signals don’t always match the active levels
of available gates. For example, suppose we are given input signals READY_L
(active-low) and REQUEST (active-high). Figure 4-11 shows two different ways
to generate GO using an inverter to generate the active level needed for the AND
function. The second way is generally preferred, since inverting gates like NOR
are generally faster than noninverting ones like AND. We drew the inverter
differently in each case to make the output’s active level match its signal name.

To understand the benefits of bubble-to-bubble logic design, consider the
circuit in Figure 4-12(a). What does it do? In Section 3.2 we showed several
ways to analyze such a circuit, and we could certainly obtain a logic expression
for the DATA output using these techniques. However, when the circuit is
redrawn in Figure 4-12(b), the output function can be read directly from the
logic diagram: the DATA output a copy of A if ASEL is asserted, else it is a copy
of B. In more detail, the mental process in arriving at this result is as follows:

(a) (b)

(c) (d)

READY
GO

REQUEST

READY_L
GO_L

REQUEST_L

READY_L
GO

REQUEST_L

READY
GO_L

REQUEST

Figure 4-10 Many ways to GO: (a) active-high inputs and output;
(b) active-high inputs, active-low output; (c) active-low
inputs, active-high output; (d) active-low inputs and output.

Figure 4-11 Two more ways to GO, with mixed input levels: (a) with an AND gate; (b) with a NOR gate.

(a) (b)

READY_L
GO

REQUEST

READY_L
GO

REQUEST

READY

REQUEST_L

DDPP5.book Page 144 Tuesday, March 28, 2017 5:33 PM

4.1 Documentation Standards 145

• If ASEL is asserted, then ADATA_L is asserted if and only if A is asserted;
that is, ADATA_L is a copy of A.

• If ASEL is negated, BSEL is asserted and BDATA_L is a copy of B.

• The DATA output is asserted when either ADATA_L or BDATA_L is
asserted.

Even though the logic diagram has five inversion bubbles, we mentally had to
perform only one negation to understand the circuit—that BSEL is asserted if
ASEL is not.

If we wish, we can write an algebraic expression for the DATA output. We
use the technique of Section 3.2, simply propagating expressions through gates
toward the output. In doing so, we can ignore pairs of inversion bubbles that
cancel, and directly write the expression shown in color in the figure.

Another example is shown in Figure 4-13. Reading directly from the logic
diagram, we see that ENABLE_L is asserted if READY_L and REQUEST_L are
asserted or if TEST is asserted. The HALT output is asserted if READY_L and
REQUEST_L are not both asserted or if LOCK_L is asserted. Once again, this
example has only one place where a gate input’s active level does not match the
input signal level, and this is reflected in the verbal description of the circuit.

We can, if we wish, write algebraic equations for the ENABLE_L and HALT
outputs. As we propagate expressions through gates toward the output, we
obtain expressions like READY_L′ ⋅ REQUEST_L′. However, we can use our

Figure 4-12
A 2-input multiplexer:
(a) cryptic logic
diagram; (b) proper
logic diagram with
named active levels
and alternate logic
symbols.

A

SEL

B

DATA

DATA

(a)

A

ASEL

B

(b)

BSEL

ADATA_L

BDATA_L
= ASEL · A + ASEL′ · B

Figure 4-13 Another properly drawn logic diagram.

READY_L

REQUEST_L

TEST

LOCK_L

 GO = READY_L′ · REQUEST_L′

= READY · REQUEST ENABLE_L = (TEST + (READY · REQUEST))′

HALT = LOCK + (READY · REQUEST)′

ENABLE = TEST + (READY · REQUEST)

DDPP5.book Page 145 Tuesday, March 28, 2017 5:33 PM

146 Chapter 4 Digital Design Practices

active-level naming convention to simplify terms like READY_L′. The circuit
contains no signal with the name READY; but if it did, it would satisfy the rela-
tionship READY = READY_L′ according to the naming convention. This allows
us to write the ENABLE_L and HALT equations as shown. Complementing both
sides of the ENABLE_L equation, we obtain an equation that describes a hypo-
thetical active-high ENABLE output in terms of hypothetical active-high inputs.

We’ll see more examples of bubble-to-bubble logic design in Chapter 6, in
both the internals of some larger-scale combinational-logic building blocks and
the interconnection of multiple blocks.

4.1.7 Signal Naming in HDL Models
We have already emphasized two important aspects of proper signal naming—
picking names that correspond to the function of a signal, and indicating the
signal’s active level. There are additional aspects to consider when signal names
will be used in HDL models and with various EDA tools.

Probably the most important aspect to consider is compatibility of signal
names among a collection of different EDA tools. Each tool has its own rules on
what it accepts as legal identifiers, and what other characters it might interpret as
giving special commands or information to the tool, such as macros, compiler
directives, and so on. Therefore, it’s important to construct your signal names
only from a restricted, “least-common-denominator” set of characters, accepted
by all tools. The safest such set is usually letters, digits, and the underscore “_”,
and that’s what we use in this book.

Tools may also differ in what characters may be used to begin an identifier;
for example, some may allow a leading digit, and others may not. Thus, it’s also
best to begin each signal name with a letter. Some or perhaps even all of the tools
that you use may also allow a leading underscore. But such signal names may, by
convention, have special meaning or significance in some environments; for

BUBBLE-TO-
BUBBLE LOGIC
DESIGN RULES

The following rules are useful for performing bubble-to-bubble logic design:

• The signal name on a device’s output should have the same active level as the
device’s output pin—that is, active-low if the device symbol has an inversion
bubble on the output pin, and active-high if not.

• If the active level of an input signal is the same as that of the input pin to which
it is connected, then the logic function inside the symbolic outline is activated
when the signal is asserted. This is the most common case in a logic diagram.

• If the active level of an input signal is the opposite of the input pin’s, then the
logic function inside the symbolic outline is activated when the signal is
negated. This case should be avoided if possible because it forces us to mentally
keep track of a logical negation to understand the circuit.

DDPP5.book Page 146 Tuesday, March 28, 2017 5:33 PM

4.1 Documentation Standards 147

example, they may be used for signal names that are created by the compiler or
synthesizer. So, it is still best to begin your own signal names with letters.

There is also the issue of case for letters—upper or lower. In some HDLs,
including Verilog, case is significant—sig, Sig, and SIG are three different sig-
nals. In others (like VHDL), it is not. So, it’s best not to define multiple signal
names that differ only in case; the distinction may be lost on some of the people
who need to understand your design.

There’s another aspect to the use of case, as it affects the readability of
programs. Historically, software programming languages have used various case
conventions to distinguish different language elements. A popular convention in
HDL code is to use UPPERCASE for constants and other definitions, lowercase
for signal names, and color for reserved words. Using color is easy because
typical modern, programming-language aware text editors recognize reserved
words and automatically render them in color. In fact, they may also recognize
the syntax for comments and render them in another color.

We’ve shown many examples of using the suffix “_L” to denote an active-
low signal. But now if you consider the use of lowercase signal names, this suffix
loses a bit of its appeal because the need either to shift when typing the suffix or
to suffer eyestrain to distinguish between “_l” and “_1”. So, some design envi-
ronments may use a different suffix, like “_n”, to denote an active-low signal.

Some design environments may have conventions for additional suffixes,
before or after the active-level suffix, to convey additional information. For
example, suffixes “_1”, “_2”, and so on might be used to name multiple copies
of a signal that has been replicated for fanout purposes.

NAME THAT
SIGNAL!

Although it is absolutely necessary to name only a circuit’s main inputs and outputs,
most logic designers find it useful to name internal signals as well. During circuit
debugging, it’s nice to have a meaningful name to use when pointing to an internal
signal that’s behaving strangely.

Most EDA tools automatically generate labels for unnamed signals, but a user-
chosen name is preferable to a computer-generated one like XSIG1057.

JUST IN CASE We use a couple of case conventions in this book, just to keep you flexible. In source-
code listings, we use lowercase color for reserved words. We normally give signal
names in UPPERCASE in small examples typically with accompanying logic diagrams
or equations that also have signal names in UPPERCASE. Later in the book, we’ll
have some larger Verilog examples with signal names in lowercase—as is typical
in industry for HDL models—and we may define constant names in UPPERCASE. So,
overall in this book, you can’t rely on case as denoting anything special.

DDPP5.book Page 147 Tuesday, March 28, 2017 5:33 PM

148 Chapter 4 Digital Design Practices

Signal names that are used in an HDL model have limited “scope,” just like
variables in a software programming language. So, it’s possible for the same sig-
nal name to be reused in multiple modules, and for it to denote completely
independent signals. Just as in software programs, though, one must be careful.

In large projects with multiple hardware designers, it’s difficult to ensure
that designers use unique names for commonly needed functions. For example,
each module may have a reset input signal named “reset”. It’s true that because
of scope rules, the tools can keep everything straight when different modules
happen to use the same signal names for internal signals. But it may be difficult
for designers to do the same when identical names are used on different
modules’ inputs and outputs, especially if they are defined or used differently.
Therefore, large projects may adopt a convention to guarantee signal-name
uniqueness. Each high-level module is assigned a two- or three-letter designator
corresponding to the module name (e.g., “sam” for “ShiftAddMultiplier”).
Then, all signals connected to the module can use its designator as a prefix (e.g.,
“sam_reset”).

4.1.8 Drawing Layout
Logic diagrams and schematics should be drawn with gates in their “normal”
orientation with inputs on the left and outputs on the right. The logic symbols
for larger-scale logic elements are also normally drawn with inputs on the left
and outputs on the right.

A complete schematic page should be drawn with system inputs on the left
and outputs on the right, and the general flow of signals should be from left to
right. If an input or output appears in the middle of a page, it should be extended
to the left or right edge, respectively. In this way, a reader can find all inputs and
outputs by looking at the edges of the page only. All signal paths on the page
should be connected when possible; paths may be broken if the drawing gets
crowded, but breaks should be flagged in both directions, as described later.

Sometimes block diagrams are drawn without crossing lines for a neater
appearance, but this is never done in logic diagrams. Instead, lines are allowed to
cross, and connections are indicated clearly with a dot. Still, some EDA tools
(and some designers) can’t draw legible connection dots. To distinguish between
crossing lines and connected lines, they adopt the convention that only “T”-type
connections are allowed, as shown in Figure 4-14. This is a good convention to
follow in any case.

CHOOSING
CONVENTIONS

The bottom line for all of this is that there are many good signal-naming conventions,
and you should follow the particular ones that have been established in your current
environment, so that your designs will be maintainable by you and by others in the
long term.

DDPP5.book Page 148 Tuesday, March 28, 2017 5:33 PM

4.1 Documentation Standards 149

Schematics that fit on a single page are the easiest to work with. The largest
practical size for a paper schematic might be E-size (44"×34"). Although its
drawing capacity is great, such a large paper size is unwieldy. Probably the best
compromise of drawing capacity and practicality is B-size (17"×11"). A dis-
played version fits well on a typical computer screen with a 16×9 aspect ratio,
and a printed schematic can be easily folded for storage and quick reference in
standard 3-ring notebooks (for example, for use in the lab during debugging).
Regardless of paper size, schematics come out best when the page is used in
landscape format, that is, with its long dimension oriented from left to right, the
direction of most signal flow.

Schematics that don’t fit on a single page should be broken up into individ-
ual pages in a way that minimizes the connections (and confusion) between
pages, and may have a “flat” structure. As shown in Figure 4-15, each page is
carved out from the complete schematic and can connect to any other page as if
all the pages were on one large sheet. Each page may also use a 2-dimensional

Figure 4-14
Line crossings and
connections.

Hand drawn

Machine drawn

crossing connection connection

not allowed

flat schematic structure

Figure 4-15 Flat schematic structure.

Page 1

Page 4

Page 2

Page 5

Page 3

Page 6

DDPP5.book Page 149 Tuesday, March 28, 2017 5:33 PM

150 Chapter 4 Digital Design Practices

coordinate system, like that of a paper road map (used one of those lately?), to
flag the sources and destinations of signals that travel from one page to another.
An outgoing signal should have flags referring to all of the destinations of that
signal, while an incoming signal should have a flag referring to the source only.
That is, an incoming signal should be flagged to the place where it is generated,
not to a place somewhere in the middle of a chain of destinations that use the
signal.

Much like programs and block diagrams, schematics can also be construct-
ed hierarchically, as illustrated in Figure 4-16. In this approach, the “top-level”
schematic is just a single page that may even take the place of the top-level block
diagram. Typically, the top-level schematic contains no gates or other logic ele-
ments; it only shows blocks corresponding to the major subsystems, and their
interconnections. The blocks or subsystems are in turn defined on lower-level
pages, which may contain ordinary gate-level descriptions, or which themselves
may use blocks defined in lower-level hierarchies. If a particular lower-level

signal flags

hierarchical schematic
structure

Figure 4-16 Hierarchical schematic structure.

Page 1

Page 3

Page 5

Page 4

Page 6

Page 2

DDPP5.book Page 150 Tuesday, March 28, 2017 5:33 PM

4.1 Documentation Standards 151

hierarchy needs to be used more than once, it may be reused (instantiated, or
“called” in the programming sense) multiple times by the higher-level pages.

The hierarchical approach is inherent in HDLs like Verilog; for example, a
module can instantiate another module. In an overall hierarchical design, it’s
possible for some modules (or “hierarchical schematic pages”) to be specified
by gate-level logic diagrams, while others are specified by HDL models. In such
a “mixed” environment, a given schematic page may contain gates, other off-
the-shelf MSI and LSI hardware components, and blocks that represent HDL
modules or other schematic pages.

Most EDA environments support both flat and hierarchical schematics. As
in HDLs, proper signal naming is very important in both styles, since there are a
number of common errors that can occur, such as:

• Like any other program, a schematic-entry program does what you say, not
what you mean. If you use slightly different names for what you intend to
be the same signal on different pages, they won’t be connected.

• Conversely, if you inadvertently use the same name for different signals on
different pages of a flat schematic, many programs will dutifully connect
them together, even if you haven’t connected them with an off-page flag.
(In a hierarchical schematic, reusing a name at different places in the
hierarchy is generally OK, because the program qualifies each name with
its position in the hierarchy, that is, based on its scope.)

• In a hierarchical schematic, you have to be careful in naming the external
interface signals on pages in the lower levels of the hierarchy. These are the
names that will appear inside the blocks corresponding to these pages
when they are used at higher levels of the hierarchy. It’s very easy to
transpose signal names or use a name with the wrong active level, yielding
incorrect results when the block is used.

• This is not usually a naming problem, but many schematic programs have
quirks in which signals that appear to be connected are not, or vice versa.
Using the “T” convention in Figure 4-14 can help minimize this problem.

Fortunately, most schematic programs have error-checking facilities that
can catch many of these errors, for example, by searching for signal names that
have no inputs, no outputs, or multiple outputs associated with them. But most
logic designers learn the importance of careful, manual schematic double-
checking only through the bitter experience of building a printed-circuit board or
an ASIC based on a schematic containing some silly error.

4.1.9 Buses
As defined previously, a bus is a collection of two or more related signal lines.
For example, a microprocessor system might have an address bus with 16 lines,
ADDR0–ADDR15, and a data bus with 8 lines, DATA0–DATA7. The signal
names in a bus are not necessarily related or ordered as in these first examples.

DDPP5.book Page 151 Tuesday, March 28, 2017 5:33 PM

152 Chapter 4 Digital Design Practices

For example, a microprocessor system might have a control bus containing five
signals, ALE, MIO, RD_L, WR_L, and RDY.

Logic diagrams use special notation for buses to reduce the amount of
drawing and to improve readability. As shown in Figure 4-17, a bus has its own
descriptive name, such as ADDR[15:0], DATA[7:0], or CONTROL. A bus name
might use brackets and a hyphen or colon to denote a range. Buses may be drawn
with different or thicker lines than ordinary signals. Individual signals are put
into or pulled out of the bus by connecting an ordinary signal line to the bus and

Microprocessor

A15

A14

A13

A12

A11

A10

A9

A8

A7

A6

A5

A4

A3

A2

A1

A0

ALE

ADDR15

ADDR14

ADDR13

ADDR12

ADDR11

ADDR10

ADDR9

ADDR8

ADDR8

ADDR7

ADDR6

ADDR5

ADDR4

ADDR3

ADDR2

ADDR1

ADDR0

ALE

ALE

ADDR15 LA15

LA14

LA13

LA12

LA11

LA10

LA9

LA8

ADDR14

ADDR13

ADDR12

ADDR11

ADDR10

ADDR9

D7
DATA7

DATA6

DATA5

DATA4

DATA3

DATA2

DATA1

DATA0

D6

D5

D4

D3

D2

D1

D0

MIORDY
MEMIO

RD_L
READ

WR_L

RD_L

WR_L
WRITE

CONTROL

DATA[7:0]

ADDR[15:0]

LA[15:0]

DB[7:0]

DATA7

DATA6

DATA5

DATA4

DATA3

DATA2

DATA1

DATA0

DB7

DB6

DB5

DB4

DB3

DB2

DB1

DB0

READY

LA7

LA6

LA5

LA4

LA3

LA2

LA1

LA0

ADDR7

ADDR6

ADDR5

ADDR4

ADDR3

ADDR2

ADDR1

ADDR0

2,3

2

2

Figure 4-17 Examples of buses.

range in bus name

DDPP5.book Page 152 Tuesday, March 28, 2017 5:33 PM

4.1 Documentation Standards 153

writing the signal name. Often a special connection dot is also used, as in the
example. Different environments may use different conventions.

An EDA system keeps track of the individual signals in a bus. When it
actually comes time to build a circuit from the schematic, signal lines in a bus are
treated just as if they had all been drawn individually.

The symbols at the righthand edge of Figure 4-17 are interpage signal
flags. They indicate that LA goes out to page 2, DB is bidirectional and connects
to page 2, and CONTROL is bidirectional and connects to pages 2 and 3.

4.1.10 Additional Schematic Information
Complete schematic diagrams indicate IC types, reference designators, and pin
numbers, as shown in Figure 4-18 for a very simple circuit that uses old-style
SSI ICs. The IC type is a part number identifying the component that performs
a given logic function. For example, a 2-input NAND gate might be identified as
a 74HCT00 or a 74AC00.

The reference designator for an IC identifies a particular instance of that
IC type installed in the system. In conjunction with the system’s mechanical
documentation, the reference designator allows a particular IC to be located
during assembly, test, and maintenance of the system. Traditionally, reference
designators for ICs begin with the letter U (for “unit”). Some ICs have multiple
instances of a function in the same package, so a schematic might have multiple
logic symbols with the same reference designator (like the NAND gates in ICs
U1 and U2 in Figure 4-18).

Once a particular IC is located, pin numbers are used to locate individual
logic signals on its pins. The pin numbers are written near the corresponding
inputs and outputs of the standard logic symbol, as shown in Figure 4-18.

IC type

reference designator

pin number

Figure 4-18
Schematic diagram
for a circuit using
several SSI parts.

A

B

C

74HCT04
74HCT00

1

3

U3 U1

U1

2

1

2
3

74HCT00

U1

10

9
8

74HCT04

U3

4

B_L
M1_L

M3_L

M2_L
A_L

74HCT00

74HCT00

74HCT00

4

5
6

U1

13

12
11

U2

1

2
3

74HCT00

U2

4

5
6

M4_L

X

Y

DDPP5.book Page 153 Tuesday, March 28, 2017 5:33 PM

154 Chapter 4 Digital Design Practices

In the rest of this book, we’ll omit reference designators and pin numbers
in most examples. Our examples are typically targeted to be implemented inside
a programmable device or an ASIC, so they wouldn’t have pin numbers anyway.
Even in “real-world” board-level design, the components and pins have gotten to
be so small that it is very difficult to probe and debug them except with very
specialized tools. And when you do get out into the “real world” and prepare a
schematic diagram for a board-level design using a schematic drawing program,
the program automatically provides the pin numbers for the devices that you
select from its component library.

Note also that elements that serve the same purposes as the schematic
information just described also exist in HDL-based designs, as we’ll see later in
many Verilog examples:

• The equivalent of an IC type is a Verilog component or module name.

• A unique reference designator for each component or module in a Verilog
design is provided by the designer or generated by the tools.

• Logic signals are normally connected to inputs and outputs of components
by pairing them with the components’ alphanumeric port names. (Or, they
may be hooked up according to position in a list of connected signals, but
using this error-prone alternative is discouraged.)

4.2 Circuit Timing
“Timing is everything”—in comedy, in investing, and yes, in digital design. As
you’ll learn in Section 14.4, the outputs of real circuits take time to react to their
inputs, and many of today’s circuits and systems are so fast that even the speed-
of-light delay in propagating an output signal to an input on the other side of a
board or chip is significant.

Most digital systems are sequential circuits that operate step-by-step under
the control of a periodic clock signal, and the speed of the clock is limited by the
worst-case time that it takes for the operations in one step to complete. Thus,
digital designers need to be keenly aware of timing behavior in order to build fast
circuits that operate correctly under all conditions.

The past decades have seen great advances in the number and quality of
EDA tools for analyzing circuit timing. Still, quite often the greatest challenge in
completing a board-level or especially an FPGA-based or ASIC design is to get
the required timing performance. In this section, we start with the basics so you
can understand what the tools are doing when you use them, and figure out how
to improve your circuits when their timing isn’t quite making it.

4.2.1 Timing Diagrams
A timing diagram illustrates the logical behavior of signals in a digital circuit as
a function of time. Timing diagrams are an important part of the documentation
of any digital system. They can be used both to explain the timing relationships

timing diagram

DDPP5.book Page 154 Tuesday, March 28, 2017 5:33 PM

4.2 Circuit Timing 155

among signals within a system and to define the timing of external signals that
are applied to and produced by a module (also known as timing specifications).

Figure 4-19(a) is the block diagram of a simple combinational circuit with
two inputs and two outputs. Assuming that the ENB input is held at a constant
value, (b) shows the delay of the two outputs with respect to the GO input. In
each waveform, the upper line represents a logic 1 and the lower line a logic 0.
Signal transitions are drawn as slanted lines to remind us that they do not occur
in zero time in real circuits.

The time it takes for a signal to change from one state to the other is called
the transition time; more specifically, the time to go from LOW to HIGH is called
the rise time, and from HIGH to LOW the fall time. For simplicity’s sake in many
timing diagrams, including most of the ones in this book, time is measured from
the centerpoints of transitions. We’ll have more to say about signal transitions in
Section 14.4.

Arrows are sometimes drawn, especially in complex timing diagrams, to
show causality—which input transitions cause which output transitions. In
any case, the most important information provided by a timing diagram is a
specification of the delay between transitions.

timing specifications

Figure 4-19
Timing diagrams for a
combinational circuit:
(a) block diagram of circuit;
(b) causality, propagation
delay; (c) minimum and
maximum delays.

GO

READY

DAT

(b)

GO

READY

DAT

(c)

(a)

t

GO

ENB

READY

DAT

DAT

RDY

RDYmin

DATmax

DATmin

RDYmax

DAT

RDY

t

t

t

t

t t

t

transition time
rise time
fall time

causality

delay

DDPP5.book Page 155 Tuesday, March 28, 2017 5:33 PM

156 Chapter 4 Digital Design Practices

Different paths through a circuit may have different delays. For example,
Figure 4-19(b) shows that the delay from GO to READY is shorter than the delay
from GO to DAT. Similarly, the delays from the ENB input to the outputs may
vary, and could be shown in another timing diagram. Furthermore, as we’ll show
in Section 4.2.3, the delay through any given path may vary depending on
whether the output is changing from LOW to HIGH or from HIGH to LOW (this
phenomenon is not shown in the figure).

A single timing diagram may contain many different delay specifications.
Each different delay is marked with a different identifier, like tRDY and tDAT in
the figure. In large timing diagrams, the delay identifiers are often numbered for
easier reference (e.g., t1, t2, …, t42). In either case, the timing diagram would
normally accompanied by a timing table that specifies each delay amount and
the conditions under which it applies.

Since the delays of real digital components can vary depending on many
factors, delay is seldom specified as a single number. Instead, a timing table may
specify a range of values as discussed in the next subsection. The idea of a range
of delays is sometimes carried over into the timing diagram itself by showing the
transitions to occur at uncertain times, as in Figure 4-19(c).

For some signals, the timing diagram needn’t show whether the signal
changes from 1 to 0 or from 0 to 1 at a particular time, only that a transition
occurs then. Any signal that carries a bit of “data” has this characteristic—the
actual value of the data bit varies according to circumstances but, regardless of
value, the bit is transferred, stored, or processed at a particular time relative to
“control” signals in the system. Figure 4-20(a) is a timing diagram that
illustrates this concept. The “data” signal is normally at a steady 0 or 1 value, and
transitions occur only at the times indicated. The idea of an uncertain delay time
can also be used with “data” signals, as shown for the DATAOUT signal.

timing table

Figure 4-20
Timing diagrams for “data”
signals: (a) certain and
uncertain transitions;
(b) sequence of values on
an 8-bit bus.

tOUTmax

WRITE_L

DATAIN

DATAOUT

(a)

STEP[7:0]

(b)

tOUTmin

must be stable

tsetup thold

new dataold

00FF 01 02 03

COUNT

CLEAR

DDPP5.book Page 156 Tuesday, March 28, 2017 5:33 PM

4.2 Circuit Timing 157

Quite often in digital systems, a group of data signals in a bus is processed
by identical circuits. In this case, all signals in the bus have the same timing, and
they can be represented by a single line in the timing diagram and corresponding
specifications in the timing table. If the bus bits are known to take on a particular
combination at a particular time, this is sometimes shown in the timing diagram
using binary, octal, or hexadecimal numbers, as in Figure 4-20(b).

4.2.2 Propagation Delay
The propagation delay of a signal path is the time that it takes for a change at the
input of the path to produce a change at the output of the path; this may be
designated by a symbol like tpX, where the label “X” qualifies the path. Propa-
gation delay depends on the internal, analog design of a circuit, as well as on
many operational characteristics of the circuit, including the following:

• Power-supply voltage. Many CMOS circuits are designed to work over a
range of supply voltages, and they usually run slower at lower voltages.
Even at a particular, “nominal” supply voltage, the actual voltage at any
time will vary due to component tolerances, noise, and other factors, and
delay will increase or decrease with these variations.

• Temperature. The speed of a circuit varies with its operating temperature,
which varies with the environment and with the heat generated by both the
circuit itself and the larger system that contains it.

• Output loading. A circuit’s output must continuously supply current to the
other component inputs, from a small to a large amount, depending on the
electrical characteristics of those inputs. It must also provide extra current
during transitions to charge and discharge the electrical capacitance that is
associated with inputs and wiring. This affects signal rise and fall times,
which affect total delay even if we are just measuring from the centerpoints
of the transitions.

• Input rise and fall times. Similarly, if input transition times are slow, it will
take longer for resulting output transitions to “get started.”

• Transition direction. The propagation delay when an output changes from
LOW to HIGH (tpLH) may be different from the delay when it changes from
HIGH to LOW (tpHL). This effect may occur because of circuit internals,
direction-dependent driving capabilities of the circuit’s output, or both.

• Speed-of-light delays. The propagation delay of electrical signals is about
5 ns/meter (or 50 ps/cm) in typical wiring, a significant number between
ICs in board-level circuits that are physically large, and on-chip in circuits
that are very fast.

• Noise and crosstalk. Signal voltages can be affected by electrical noise in
general and by transitions occurring on nearby, adjacent signal lines. As a
result, the input switching thresholds may be reached a little sooner or a
little later, making the path delay correspondingly shorter or longer.

propagation delay

DDPP5.book Page 157 Tuesday, March 28, 2017 5:33 PM

158 Chapter 4 Digital Design Practices

• Manufacturing tolerances. Although IC manufacturing processes are con-
trolled to a high degree of precision, there is still some variation, and
circuit speed will vary among different batches of a component, and even
among different instances of a component taken from the same wafer.

With all these different sources of timing variation, it’s not practical to calculate
a circuit’s exact timing in a particular application and environment, but luckily,
we don’t have to. Instead, we can make good engineering estimates based on
“maximum,” “typical,” and “minimum” propagation delays specified by IC
manufacturers, and throw in a little “engineering margin” just for good measure.

On top of all of the timing variations listed above for a given signal path,
there is another whole dimension: a combinational circuit with many inputs and
outputs may have many different internal signal paths, and each one may have a
different propagation delay. Thus, an IC’s manufacturer normally specifies a
delay for each of its internal signal paths. We’ll see this when we look at a few
example MSI parts in the next subsection.

A logic designer who combines ICs in a larger circuit can use individual
device specifications to analyze the overall circuit timing. In simple designs, this
can be done by hand; in more complex designs, a timing analysis program can be
used. In either case, the delay of a path through the overall circuit is computed as
the sum of the delays through the individual devices on the path, plus speed-of-
light delays if they are not negligible.

In ASIC-, FPGA-, and CPLD-based design, delay analysis can be a lot
more involved, and the EDA tools normally handle most of it. While delays can
be highly dependent on signal routing within these chips, the final routing is not
known until the design has been completed, targeted to a chip, and actually laid
out. So, timing is typically analyzed at two different stages in the design.

First, the timing can be estimated once the logic design is complete, using
known timing for the individual logic elements and an estimate of the routing
delays based on factors that are already known at that stage, such as approximate
chip size and the number of inputs driven by each output. At this point, the
designer can decide if the top-level design approach is likely to be capable of
meeting timing goals, or whether more work must be done to develop a speedier
approach, or to cut back on project goals, which takes a different kind of work!

Later, once the logic elements have been placed on the chip and their
connections have been routed, it is possible to calculate the expected delays
more precisely, based on details of the placed elements, wire lengths, and other
factors. At that point, it is also possible to identify the worst-case paths within

GLITCHES As we showed in Section 3.4, a combinational-circuit output can sometimes exhibit
a short pulse at a time when steady-state analysis predicts that the output should not
change, depending on actual propagation delays in an instance of the circuit.

DDPP5.book Page 158 Tuesday, March 28, 2017 5:33 PM

4.2 Circuit Timing 159

the design, and it’s possible to change the chip design and layout to do a little
better. For example, one could instruct the tools to place critical-path elements
closer to each other, to use stronger drivers on critical-path outputs, to use faster
“wires” on the critical path, to make multiple copies of high-fanout signals so
each copy has a lighter load, and so on. All of this may be possible without
changing the basic logic design.

4.2.3 Timing Specifications
A manufacturer’s timing specification for a device may give minimum, typical,
and maximum values for each propagation-delay path and transition direction:

• Maximum. This specification is the one most often used by experienced
designers, since a path “never” has a propagation delay longer than the
maximum. However, the definition of “never” varies among logic families
and manufacturers. For example, “maximum” propagation delays of Texas
Instruments’ old 74LS and 74S TTL bipolar devices are specified with
supply voltage (VCC) 5.0 V, ambient temperature (TA) 25°C, and very little
capacitive load (15 pF). If the voltage or temperature is different, or if the
capacitive load is larger, the delay may be longer. On the other hand, a
“maximum” propagation delay for 74AC devices at 5.0 V “nominal” is
specified more conservatively with a supply-voltage range of 4.5–5.5 V, a
temperature range of –25°C to 85°C, and a capacitive load of 50 pF.

• Typical. This specification is the one most often used by designers who
don’t expect to be around when their product leaves the friendly environ-
ment of the engineering lab and is shipped to customers. The “typical”
delay is what you see from a device that was manufactured on a good day
and is operating under near-ideal conditions. Perhaps because of the
danger of relying on “typical” specifications, manufacturers have stopped
using them for many newer, advanced CMOS logic families.

• Minimum. This is the smallest propagation delay that a path will ever
exhibit. Most well-designed circuits don’t depend on this number; that is,
they will work properly even if the delay is zero. That’s good, because
manufacturers don’t specify minimum delay in some moderate-speed logic
families. However, in very high-speed families, a nonzero minimum delay
is specified to help the designer ensure that hold-time requirements of
latches and flip-flops, to be discussed in Section 10.2, are met.

maximum delay

typical delay

HOW TYPICAL IS
TYPICAL?

Most ICs, perhaps 99%, really are manufactured on “good” days and exhibit delays
near the “typical” specifications. However, if you design a system that works only if
all of its 100 ICs meet the “typical” timing specs, probability theory suggests that
63% (1 − .99100) of the systems won’t work and you’ll quickly detect the problem in
the lab. But see the next box

minimum delay

DDPP5.book Page 159 Tuesday, March 28, 2017 5:33 PM

160 Chapter 4 Digital Design Practices

*4.2.4 Sample Timing Specifications
This subsection gives you some real delay numbers to think about and to use to
work out sample delay calculations by hand, as in the Exercises. The purpose is
to give you a “feel” for the complexity of delay calculations. But for simplicity,
delays are given only for a selection of individual gates and MSI parts in older
discrete CMOS logic families as published by device manufacturers.

Table 4-2 lists minimum, typical, and maximum delays of several 74-series
CMOS gates. The 74AC CMOS family operates with a supply voltage of 1.5 V
to 5.5 V, and delay specifications in the table are for nominal 5.0-V operation
(VCC = 4.5 V to 5.5 V) over a temperature range of –25°C to 85°C, with a capac-
itive load of 50 pF. Note that no typical delays are specified for 74AC parts, only
minimums and maximums.

All inputs of a CMOS SSI gate have the same specification for propagation
delay to the output (this is not necessarily true for gates in an ASIC). Also,

A COROLLARY OF
MURPHY’S LAW

Murphy’s law states, “If something can go wrong, it will.” A corollary to this is, “If
you want something to go wrong, it won’t.”

In the previous boxed comment, you might think that you have a 63% chance
of detecting the potential timing problems in the engineering lab. The problems
aren’t spread out evenly, though, since all ICs from a given batch tend to behave
about the same. Murphy’s corollary says that all of the engineering prototypes will
be built with ICs from the same, “good” batches. Therefore, everything works fine
for a while, just long enough for the system to get into volume production and for
everyone to become complacent and self-congratulatory.

Then, unbeknownst to the manufacturing department, a “slow” batch of some
IC type arrives from a supplier and gets used in every system that is built, so that
nothing works. The manufacturing engineer scurries around trying to analyze the
problem (not easy, because the designer is long gone and didn’t bother to write a
circuit description), and in the meantime, the company loses big bucks because it is
unable to ship its product.

ASIC AND FPGA
TIMING SPECS

The timing specifications for gates and larger blocks within an ASIC or FPGA are
typically not published in tables like the ones in this subsection. Instead, they are
embedded in an EDA tool for analyzing the timing in a device. Rather than using
simple minimum and maximum delays, a typical EDA tool uses a more detailed elec-
trical model to get a more precise delay range for each gate instance based on loading
and other factors previously mentioned. It also accounts for capacitive and perhaps
speed-of-light delays of wiring, plus the significant circuit delays through program-
mable interconnect in FPGAs. The overall delay calculation in these devices is so
involved that you would never attempt do it by hand.

DDPP5.book Page 160 Tuesday, March 28, 2017 5:33 PM

4.2 Circuit Timing 161

CMOS outputs have a very symmetrical output driving capability, so the delays
for LOW-to-HIGH and HIGH-to-LOW output transitions are usually the same.
There are just a few cases in the 74AC columns of Table 4-2 where a difference
may be seen between tpLH and tpHL.

The delays in the 74HC CMOS SSI family are specified a little differently.
These devices can be operated with VCC anywhere between 2.0 V and 6.0 V, and
manufacturers specify delays at three possible voltages: 2.0, 4.5, and 6.0 V. In
the table, we have given the delays for VCC = 2.0 V and 4.5 V. Note that unlike
74AC, 74HC specifies its maximum delays at the stated supply voltage, not over
a range. Also, no minimum delays are given. Finally, the delays for rising and
falling transitions on each device are equal, or near enough to equal, that the
manufacturers specify only a single propagation delay tpd that applies to both
transition directions.

The first 74HC column of Table 4-2 gives typical delays, which are for a
“typical” device operating with an ambient temperature of 25°C, a capacitive
load of 50 pF, and the stated supply voltage. The worst-case maximum delay
under those operating conditions, given in the second column, can be twice as
long or more, depending on the device. As specified in the third column, the

Table 4-2 Propagation delay in nanoseconds of selected CMOS SSI parts.

74AC @ 5.0V 74HC @ 2.0V 74HC @ 4.5V

Minimum Maximum Typ. Maximum Typ. Maximum

Part
Number Function tpLH tpHL tpLH tpHL

25°C
tpd

25°C
tpd

85°C
tpd

25°C
tpd

25°C
tpd

85°C
tpd

’00 2-input NAND 1.9 1.9 6.6 6.6 45 90 115 9 18 23

’02 2-input NOR 3.0 3.0 10.4 10.4 45 90 115 9 18 23

’04 Inverter 1.7 1.7 5.9 5.9 45 95 120 9 19 24

’08 2-input AND 1.0 1.0 8.5 7.5 50 100 125 10 20 25

’10 3-input NAND 1.0 1.0 8.0 6.5 35 95 120 10 19 24

’11 3-input AND 1.0 1.0 8.5 7.5 35 100 125 10 20 25

’20 4-input NAND 1.5 1.5 8.0 7.0 45 110 140 14 22 28

’21 4-input AND 1.5 1.5 6.5 7.0 44 110 140 14 22 28

’27 3-input NOR 1.5 1.5 8.5 8.5 35 90 115 10 18 23

’30 8-input NAND 1.0 1.0 9.5 9.5 41 130 165 15 26 33

’32 2-input OR 1.5 1.0 10.0 9.0 50 100 125 10 20 25

’86 2-input XOR 1.0 1.0 9.0 9.5 40 100 125 12 20 25

DDPP5.book Page 161 Tuesday, March 28, 2017 5:33 PM

162 Chapter 4 Digital Design Practices

delay can be even higher at other points in the full allowed temperature range of
–45°C to 85°C, though normally this would occur at the high end of 85°C, so
that’s how the column is labeled. With a 4.5-V supply voltage, as shown in the
next three columns, almost all of the delays are shorter by a factor of five.

Table 4-3 gives the delay specs for CMOS MSI versions of some of the
combinational logic building blocks that will be introduced in Chapter 6. Here,
the delay from an input transition to the resulting output transition depends on
which input is causing a change in which output, as noted in the “From” and
“To” columns. The delay may also depend on the internal path taken by the
changing signal, but not for any of the devices listed in the table.

To permit a simplified “worst-case” analysis, board-level designers often
use a single worst-case delay specification that is the maximum of tpLH and tpHL
specifications under worst-case conditions of voltage and temperature. The
worst-case delay through a path is then computed as the sum of the worst-case
delays through the individual components, independent of the transition direc-
tion and other circuit conditions. This may give an pessimistic view of the
overall circuit delay, but it saves analysis time and it always works.

4.2.5 Timing Analysis Tools
To accurately analyze the timing of a circuit containing more than a few gates
and other components, a designer may have to study its logical behavior in
excruciating detail. A moderate-size circuit can have many different paths from
a set of input signals to a set of output signals. To determine the minimum and
maximum delays through the circuit, you must look at every possible path.

A combinational circuit potentially has a path between every input and
every output. so the number of paths to examine may be at least the product of
the number of inputs and the number of outputs. On some paths, a signal may fan
out to multiple internal paths, only to have those paths come together at a single
output (for example, as in Figure 3-5 on page 105), further increasing the total

worst-case delay

ESTIMATING
MINIMUM DELAYS

If the minimum delay of an IC is not specified, a conservative designer assumes that
it has a minimum delay of zero.

Some circuits won’t work if the propagation delay actually goes to zero, but
the cost of modifying a circuit to handle the zero-delay case may be unreasonable,
especially since this case is expected never to occur. To show that a design always
works under “reasonable” conditions, logic designers may estimate that ICs have
minimum delays of one-fifth to one-fourth of their published typical delays.

It is also possible to determine minimum delays by performing analog analysis
of the circuit as it is actually used in a physical design, considering factors like load
capacitance and wiring delay. Even if the IC delay is near zero, these external factors
will contribute something to create a minimum delay.

DDPP5.book Page 162 Tuesday, March 28, 2017 5:33 PM

4.2 Circuit Timing 163

Table 4-3 Propagation delay in nanoseconds of selected CMOS MSI parts.

74AC @ 5.0V 74HC @ 2.0V 74HC @ 4.5V

Min. Max. Typ. Maximum Typ. Maximum

Part Function From To tpd tpd

25°C
tpd

25°C
tpd

85°C
tpd

25°C
tpd

25°C
tpd

85°C
tpd

’138 3-to-8 binary
decoder

any select output 2.8 10.0 67 180 225 18 36 45

G2A, G2B output 2.6 9.1 66 155 195 18 31 39

G1 output 2.8 10.0 66 155 195 18 31 39

’139 dual
2-to-4 binary
decoder

any select output 2.8 9.5 47 175 220 14 35 44

enable output 2.8 9.5 39 175 220 11 35 44

’148 8-to-3
priority
encoder

I1-I7 A0-A2 69 180 225 23 36 45

I0-I7 EO 60 150 190 20 30 38

I0-I7 GS 75 190 240 25 38 48

EI A0-A2 78 195 245 26 39 49

EI GS 57 145 180 19 29 36

EI EO 66 165 205 22 33 41

’151 8-to-1
multiplexer

any select Y 4.7 16.5 94 250 312 30 50 63

any select Y 5.1 17.8 94 250 312 30 50 63

any data Y 3.5 12.3 74 195 244 23 39 49

any data Y 3.8 13.5 74 195 244 23 39 49

enable Y 3.1 11.1 49 127 159 15 25 32

enable Y 3.5 12.3 49 127 159 15 25 32

’157 2-to-4
multiplexer

select output 3.8 13.2 145 180 12 29 36

any data output 2.2 7.7 125 155 10 25 31

enable output 3.6 12.3 135 170 11 27 34

’280 9-input parity
circuit

any input EVEN 5.2 18.2 200 250 17 40 50

any input ODD 5.4 19.1 200 250 17 40 50

’283 4-bit adder C0 any Si 4.5 16.0 230 290 19 46 58

any Ai, Bi any Si 4.7 16.5 210 265 18 42 53

any input C4 4.5 16.0 195 245 16 39 49

’682 8-bit comp. any input output 130 275 344 26 55 69

DDPP5.book Page 163 Tuesday, March 28, 2017 5:33 PM

164 Chapter 4 Digital Design Practices

number of paths to be examined. On the other hand, in larger circuits, multiple
inputs or outputs may have similar functions and timing paths, allowing them to
be “grouped” by function and analyzed together; for example, in Figure 3-15 on
page 112, all of the “number” inputs have similar timing paths. In any case, ana-
lyzing all of the different delay paths in a large circuit is typically practical only
with the assistance of automated tools.

EDA environments for board-level logic design have component libraries
that typically contain not only logic symbols and functional models for various
logic elements, but also their timing models. Likewise, EDA tools for ASICs and
FPGAs have timing models for their internal elements.

Timing is important enough that it is a fundamental capability of the HDLs
Verilog and VHDL. As we will show in Chapter 5 for Verilog, these HDLs have
facilities for specifying expected delay at the component or module level. A sim-
ulator allows you to apply input sequences to an HDL model and observe how
and when outputs are produced in response. You may be able to control whether
minimum, typical, maximum, or some combination of delay values are used.

Even with a simulator, you’re not off the hook, though. It’s up to the
designer to supply the input sequences for which the simulator should produce
outputs, for example, using a test bench. Thus, you still need to have a good feel
for what to look for and how to stimulate your circuit to produce and observe the
worst-case delays.

Instead of using a simulator and supplying your own input sequences, you
can use a timing analysis program (or timing analyzer). Based on the topology of
a synthesized circuit, such a program can automatically find all possible delay
paths and print out a sorted list of them, starting with the slowest. These results
may be overly pessimistic, however, as some paths may not actually be used in
normal operation of the circuit; the designer must still use some intelligence and
experience to interpret the results properly.

5.0 V VS. 4.5 V The old bipolar logic family, TTL, uses a nominal 5-V % power supply, and
several CMOS logic families, including 74AC and 74AC, were designed to provide
some compatibility with TTL when operated with a 5-V supply.

So, it may seem odd that 74AC timing is specified with a 5.0-V V supply,
while 74HC is specified only with a 4.5-V supply. However, since the maximum
delay for CMOS occurs at the low end of a stated voltage range, 74HC’s 4.5-V spec
actually does yield an appropriate worst-case delay number when interfacing with
nominal 5-V devices that specify a 4.5–5.5-V supply range, including 74AC as well
as TTL.

Still, you need to be careful when using “typical” numbers. For 74HC parts,
some manufacturers state their typical delays at 4.5 V and a 50-pF load, while others
use 5.0 V and 15 pF, which makes them look faster.

10±

0.5±

timing-analysis
program

timing analyzer

DDPP5.book Page 164 Tuesday, March 28, 2017 5:33 PM

4.3 HDL-Based Digital Design 165

Also, timing may have to be examined during two or more stages of project
development, especially if the design will be realized in an ASIC, FPGA, or
CPLD. This is true whether the design is done using schematics at the gate and
block level or using an HDL.

In the early stages of a design, it’s easy enough for the timing analyzer to
estimate worst-case path delays in a preliminary realization by finding all the
signal paths and adding up the known delays of individual logic elements.
However, the final circuit realization is not determined until later in the design,
when the complete design is fitted into an FPGA or CPLD, or physically laid out
in a ASIC. At that time, other elements of delay will be known, due to capacitive
loads, larger buffers inserted to handle heavier-than-expected loads, speed-of-
light delays on long wires, and other differences between the estimates made in
the early stages and the actual realized circuit.

On the first try, the timing results for the “final” realized circuit may not
meet the design’s requirements—the circuit may be too slow, or parts of it may
be too fast, such that flip-flops’ hold-time requirements are not met (in which
case, the circuit will not work even at slow speeds; see Section 10.2). When that
happens, the designer must change parts of the circuit, adding or changing buff-
ers and other components, reworking the internal design of individual modules
to get better timing performance, changing signaling between modules, or even
talking to the boss about relaxing the performance goals for the project (this is a
last resort!). Then, the circuit must be resynthesized and the timing results must
be checked again, and the process must be repeated until the performance goals
are met. This is called timing closure and can take several months in large ASIC
and FPGA projects.

4.3 HDL-Based Digital Design
4.3.1 HDL History
Forty years ago, the primary tools of a digital designer included a logic-drawing
template, like in Figure 1-7 on page 13, a ruler, and a pencil, all for drawing
schematic diagrams. In the 1980s, schematics were still the primary means of
describing digital circuits and systems, but at least schematic creation and main-
tenance had been simplified by the introduction of schematic editor tools. That
decade also saw limited use of hardware description languages (HDLs), mainly
to describe logic equations to be realized in the first generation of programmable
logic devices.

In the 1990s, HDL usage by digital system designers accelerated as PLDs,
CPLDs, and FPGAs became inexpensive and commonplace. At the same time,
as ASIC densities continued to increase, it became increasingly more difficult to
describe large circuits using schematics alone, and many ASIC designers turned
to HDLs as a means to design individual modules within a system-on-a-chip.
Today, HDLs are by far the most common way to describe both the top-level and

timing closure

DDPP5.book Page 165 Tuesday, March 28, 2017 5:33 PM

166 Chapter 4 Digital Design Practices

the detailed module-level design of an ASIC, FPGA, or CPLD. Schematics are
often used only to specify the board-level interconnections among these devices
and other LSI components like memories and microprocessors, and SSI/MSI
“glue” logic if any.

The first HDL to enjoy widespread commercial use was PALASM (PAL
Assembler) from Monolithic Memories, Inc., inventors of the first-generation
PLD, the so-called PAL device. Introduced in the early 1980s, PALASM was
used to specify logic equations for realization in PAL devices. Comparing with
computer programming languages, the first version of PALASM was like
assembly language—it provided a text-based means to specify the information
to be programmed (in PALASM’s case, logic equations), but little else. Subse-
quent developments in PALASM and in competing languages, such as CUPL
(Compiler Universal for Programmable Logic) and ABEL (Advanced Boolean
Equation Language), yielded more capabilities. These included logic minimiza-
tion, “high-level” statement constructs like “if-then-else” and “case”, and
the ability to derive logic equations from these high-level constructs. Previous
editions of this book included the ABEL language and design examples.

The next important innovations in HDLs occurred in the mid-1980s, and
were the developments of Verilog and VHDL. Both languages support modular,
hierarchical coding, like C and other high-level computer programming lan-
guages, and both have a rich variety of high-level constructs, including arrays,
procedure and function calls, and conditional and iterative statements.

Both Verilog and VHDL started out as simulation languages, allowing a
digital system’s hardware to be modeled and its operations to be simulated on a
computer. Thus, many of these languages’ features have roots in their original
simulation-only application. However, later developments in the language tools
allowed actual hardware designs, based on real components, to be synthesized
from the language-based descriptions. You might even think of the “D” in
“HDL” changing its meaning from “Description” to “Design.” ABEL, on the
other hand, started as a synthesizable design language specifically targeted to
PAL devices, and simulation capability was added later.

4.3.2 Why HDLs?
As we stated in Chapter 1, digital design activity is moving to ever higher levels
of abstraction. This move has been both enabled and necessitated by decreasing
cost per function and the ever higher level of functionality and integration that
can be achieved on a single chip.

In traditional software design, high-level programming languages like C,
C++, and Java have raised the level of abstraction so that programmers can
design larger, more complex systems, albeit with some sacrifice in performance
compared to handcrafted assembly-language programs for the lowest-level
functions. But you would have no performance in today’s complex software

DDPP5.book Page 166 Tuesday, March 28, 2017 5:33 PM

4.3 HDL-Based Digital Design 167

systems if they had to be written completely in assembly language—they never
could have been finished! Beyond the languages themselves, accompanying
software libraries allow commonly used functions, like creating and managing
interactive display windows, to be performed easily without requiring the pro-
grammer to build such functions from scratch.

The situation for hardware is now similar for the most complex and highest
performance devices and systems. Verilog and VHDL allow designers to
describe hardware at a high level, and then interconnect multiple modules in a
hierarchy to perform a higher-level function. Moreover, commonly used func-
tions and subsystems, from specialized register files and memories, to serial
interfaces like USB and Ethernet, to memory and graphics interfaces, can be
licensed from an IP (intellectual property) provider and combined with the
designer’s custom circuits that provide the “secret sauce” for a new application.
This frees the designer from the need to recreate the commonly used functions,
while still allowing everything to be integrated in a single ASIC or FPGA.

The circuit produced by a Verilog or VHDL synthesis tool may not be as
small or fast as one designed and tweaked by hand by an experienced designer—
or team of designers—but in the right hands these tools can support much larger
system designs. This is, of course, a requirement if we’re to continue to take
advantage of the tens of millions of gates offered by most advanced FPGA and
ASIC technologies, or even the tens of thousands offered by the inexpensive
components of today.

4.3.3 EDA Tool Suites for HDLs
Typically, a single integrated tool suite handles several different aspects of an
HDL’s use. We might informally call this “the HDL compiler,” but an EDA tool
suite for design with HDLs really includes many different tools with their own
names and purposes:

• A text editor allows you to write, edit, and save an HDL source file. Since
the editor is coupled to the rest of the HDL development system, it often
contains HDL-specific features such as recognizing specific filename
extensions associated with the HDL, and recognizing HDL reserved words
and comments and displaying them in different colors (as you’ll see for
reserved words in the Verilog models in this book).

• The compiler is responsible for parsing the HDL source file, finding syntax
errors, and figuring out what the model really “says.” A typical HDL com-
piler creates a file in an intermediate, technology-neutral digital-design
description language typically called an RTL (register-transfer language).
The RTL file is an unambiguous description of the interconnections and
logic operations, both combinational and sequential, implied by the HDL
model. However, this is still not a hardware version of the model.

text editor

compiler

register-transfer
language (RTL)

DDPP5.book Page 167 Tuesday, March 28, 2017 5:33 PM

168 Chapter 4 Digital Design Practices

• A synthesizer (or synthesis tool) targets the RTL design to a specific hard-
ware technology, such as an ASIC, FPGA, or CPLD. In doing so, it refers
to one or more libraries containing details of the targeted technology, such
as the features and limitations of FPGA macrocells, or the kinds of gates
and flip-flops available as basic building blocks in an ASIC. Libraries may
also contain larger-scale components such as multibit adders, registers, and
counters. By analyzing the RTL description, a sophisticated synthesizer
can “infer” opportunities to convert portions of the design efficiently into
available larger-scale library components. Synthesis typically has multiple
phases, and these phases may be broken out into separate tools, or at least
be visible and controllable by the user:

– The first phase is mapping the RTL design into a set of hardware ele-
ments that are available in the target technology.

– The second phase is placement of the needed elements onto a physical
substrate, usually a chip layout. In FPGA- and CPLD-based designs,
this means assigning each needed element to a specific instance or set
of instances of a programmable resource on the targeted chip. In ASIC
design, this means creating and spatially packing together instances of
gates, flip-flops, and other basic building blocks as needed.

– In FPGA- and ASIC-based design, the third phase is routing: finding
or creating paths between the inputs and outputs of placed elements. In
CPLD design, the interconnect is usually fixed, and resources were
selected in the first place based on the available connections.

• The inputs to a simulator are the HDL model and a timed sequence of
inputs for the hardware that it describes. The input sequence can be con-
tained in or generated algorithmically by another program, called a test
bench, usually written in the same HDL; or it can be described graphically,
using another tool called a waveform editor. The simulator applies the
specified input sequence to the modeled hardware, and then determines the
values of the hardware’s internal signals and its outputs over a specified

REGISTER-
TRANSFER

LANGUAGE
(RTL)

HDL usage took off with when synthesis tools became available in the late 1980s,
but non-synthesizable hardware description languages were around a while before
then. Most prominent are register-transfer languages, which have been used for
decades to describe the operation of synchronous systems. Such a language com-
bines the control-flow notation of a state-machine description language with a means
for defining and operating on multibit registers. Register-transfer languages have
been especially useful in computer design, where individual machine-language
instructions are defined as a sequence of more primitive steps involving loading,
storing, combining, and examining the contents of registers.

synthesizer
synthesis tool
libraries

mapping

placement

routing

simulator

test bench
waveform editor

DDPP5.book Page 168 Tuesday, March 28, 2017 5:33 PM

4.3 HDL-Based Digital Design 169

period of time. The outputs of the simulator can include waveforms to be
viewed using the waveform editor, text files that list signal values over sim-
ulated time, and error and warning messages that highlight unusual
conditions or deviations of signal values from what’s expected.

Several other useful programs and utilities may be found in a typical EDA
tool suite for an HDL, including the following:

• A template generator creates a text file with the outline of a commonly
used HDL structure, so the designer can “fill in the blanks” to create source
code for a particular purpose. Templates may include input and output
declarations; commonly used logic structures like decoders, adders, and
registers; and test benches.

• A schematic viewer may create a schematic diagram corresponding to an
HDL model, based on the RTL output of the compiler. Such a schematic is
an accurate representation of the function performed by the final, synthe-
sized circuit, but beware. If the compiler output has not yet been targeted
to a particular technology and optimized, the depicted circuit structure may
be quite different from the final synthesized result, especially after optimi-
zation. However, a schematic viewer may also be able to view a schematic
based on the final, synthesized result, as we’ll show for a few FPGA-based
circuit realizations in Chapter 6 and later.

• A chip viewer lets the designer see how the synthesis tool has physically
placed and routed a design on the chip. This is important for devices like
FPGAs and ASICs where layout can profoundly affect the electrical and
timing performance of the final chip.

• A constraints editor lets the user define instructions and preferences to be
used by the synthesizer and other tools as they do their jobs. Examples of
constraints include placement and routing instructions, identification of
important timing requirements, and selection among different top-level
strategies available to the synthesis tool—should it optimize device speed,
resource utilization, its own run time, or something else?

• A timing analyzer calculates the delays through some or all of the signal
paths in the final chip, and produces a report showing the worst-case paths
and their delays.

• A back annotator inserts delay clauses or statements into the original HDL
source code, corresponding to the delays calculated by the timing analyzer.
This allows subsequent simulations to include expected timing, whether
the source code is simulated by itself or as part of a larger system.

The best way to learn about all these kinds of tools, and more, is to get
some hands-on experience with an actual HDL tool suite, like the Vivado suite
for Xilinx FPGAs which is available in a free student edition, and was used to
create and debug all of the Verilog examples in this book.

template generator

schematic viewer

chip viewer

constraints editor

timing analyzer

back annotator

DDPP5.book Page 169 Tuesday, March 28, 2017 5:33 PM

170 Chapter 4 Digital Design Practices

4.3.4 HDL-Based Design Flow
It’s useful to understand the overall HDL design environment before jumping
into Verilog itself. There are several steps in an HDL-based design process, often
called the design flow. These steps are applicable to any HDL-based design
process, and are outlined in Figure 4-21.

The so-called “front end” begins with a functional specification of what’s
to be designed, and figuring out the basic approach for achieving that function at
the block-diagram level. Large logic designs, like software applications, are
hierarchical, and Verilog provides a good framework for modeling hardware
modules and their interfaces and filling in the details later.

The next step is the actual writing of HDL code for the modules, their
interfaces, and their internal details. Although you can use any text editor for this
step, the editor included in the HDL’s tool suite can make the job a little easier.
HDL editor features may include highlighting of keywords, automatic indent-
ing, templates for frequently used code structures, built-in syntax checking, and
one-click access to the compiler.

Once you’ve written some code, you will want to compile it, of course. The
HDL compiler analyzes your code for syntax errors and also checks it for
compatibility with other modules on which it relies. It also creates the internal
information that is needed for the simulator to process your design later. As in
other programming endeavors, you probably shouldn’t wait until the very end of
coding to compile all of your code. Doing a piece at a time can prevent you from
proliferating syntax errors, inconsistent names, and so on, and can certainly give
you a much-needed sense of progress when the project end is far from sight!

Perhaps the most satisfying step comes next—simulation. The HDL simu-
lator allows you to define and apply inputs to your design, and to observe its
outputs, without ever having to build the physical circuit. In small projects, the
kind you might do as homework in a digital-design class, you might generate
inputs and observe outputs manually. But for larger projects, it is essential to
create “test benches” that automatically apply inputs and compare them with
expected outputs.

design flow

Figure 4-21 Steps in an HDL-based design flow.

specification/
hierarchy/

block diagram

mapping
fitting/

place+route
timing

verification

front-end
steps

back-end
steps

(very painful!)

coding

(painful, but not uncommon)

simulation/
verification

compilation

specification, block
diagram, and
hierarchy

coding

compilation

simulation

DDPP5.book Page 170 Tuesday, March 28, 2017 5:33 PM

171

Actually, simulation is just one piece of a larger step called verification.
Sure, it is satisfying to watch your simulated circuit produce simulated outputs,
but the purpose of simulation is larger—it is to verify that the circuit works as
desired. In a typical large project, a substantial amount of effort is expended both
during and after the coding stage to define test cases that exercise the circuit over
a wide range of logical operating conditions. Finding bugs at this stage has a
high value; otherwise, all of the “back-end” steps might have to be repeated.

Note that there are at least two dimensions to verification. In functional
verification, we study the circuit’s logical operation independent of timing
considerations; gate delays and other timing parameters are considered to be
zero or otherwise ideal. In timing verification, we study the circuit’s operation
including estimated delays, and we verify that the setup, hold, and other timing
requirements for sequential devices like flip-flops are met.

It is customary to perform thorough functional verification before starting
the back-end steps. However, our ability to do accurate timing verification
before doing the back end is often limited, since timing may be quite dependent
on the results of synthesis of the complete design. Still, it can be useful to do
preliminary synthesis and timing verification of a subset of the complete design,
just to get a feel for whether that subset’s timing performance will be adequate to
support the overall timing requirements—it can only get worse later. This gives
us a chance to rethink the overall design approach or the specifications if the
subset’s timing is unexpectedly poor at this early stage.

After verification, we are ready to move into the back-end stage. The
nature of and tools for this stage vary depending on the target technology for the
design, but there are three basic steps. As mentioned previously, the first phase in
synthesis is mapping or converting the RTL description into a set of primitives or
components that can be assembled in the target technology.

For example, with PLDs or CPLDs, the synthesis tool may generate two-
level sum-of-products equations for combinational logic. With FPGAs, the tool
converts all combinational functions with more than a few inputs into an inter-
connected set of smaller functions that each fit within the FPGA’s lookup tables.
With ASICs, the tool may generate a list of gates and flip-flops and a netlist that
specifies how they should be interconnected. The designer may “help” the
synthesis tool by specifying certain technology-specific constraints, such as the
maximum number of logic levels or the strength of logic buffers to use.

In the fitting step, a fitter assigns the mapped primitives or components
onto available device resources. For a PLD or CPLD, this may mean assigning
equations to available AND-OR elements. For an FPGA or ASIC, it may mean
selecting macrocells or laying down individual gates in a pattern, then finding
ways to connect them within the physical constraints of the FPGA or ASIC die;
this is called the place-and-route process. The designer can specify additional
constraints for this stage, such as the placement of modules within a chip and the
pin assignments of external input and output pins.

verification

functional verification

timing verification

back end

mapping

netlist

fitting

place and route

DDPP5.book Page 171 Tuesday, March 28, 2017 5:33 PM

172 Chapter 4 Digital Design Practices

The “final” step is post-fitting timing verification of the fitted circuit. It is
only at this stage that the actual circuit delays due to wire lengths, electrical
loading, and other factors can be calculated with reasonable precision. It is usual
during this step to apply the same test cases that were used in functional verifica-
tion, but in this step they are run against the circuit as it will actually be built.

As in any other creative process, you may occasionally take two steps
forward and one step back (or worse!). As we suggested in Figure 4-21, during
coding you may encounter problems that force you to go back and rethink your
hierarchy, and you will almost certainly have compilation and simulation errors
that force you to rewrite parts of the code. After timing verification, it is common
to have to go back to the fitting and place-and-route processes after establishing
physical constraints to help these processes achieve better results.

The most painful problems are the ones that you encounter in the back end
of the design flow, because they can force you to take the most steps back. For
example, if the synthesized design doesn’t fit into an available FPGA or doesn’t
meet timing requirements, you may have to go back as far as rethinking your
whole design approach. That’s worth remembering—excellent tools are still no
substitute for careful thought at the outset of a design.

References
Digital designers who want to improve their writing should start by reading the
classic Elements of Style, by William Strunk, Jr., E. B. White, and R. Angell
(Pearson, 1999, fourth edition). Probably the most inexpensive and concise yet
very useful guide to technical writing is The Elements of Technical Writing, by
Gary Blake and Robert W. Bly (Pearson, 2000). For a more encyclopedic treat-
ment, see Handbook of Technical Writing, by G. J. Alred, C. T. Brusaw, and
W. E. Oliu (Bedford/St. Martin’s, 2015, 11th edition).

Real logic devices are described in data sheets and user manuals published
by the manufacturers. Hardcopy editions of data-sheet compilations (“data

post-fitting timing
verification

IT WORKS!? As a long-time logic designer and system builder, I always thought I knew what it
meant when a circuit designer said, “It works!” It meant you could go into the lab,
power-up a prototype without seeing smoke, and push a reset button and use an oscil-
loscope or logic analyzer to watch the prototype go through its paces.

But over the years, the meaning of “It works” has changed. When I took a new
job in the late 1990s, I was very pleased to hear that several key ASICs for an impor-
tant new product were all “working.” But just a short time later, I found out that the
ASICs were working only in simulation, and that the design team and I still had to
endure many arduous months of synthesizing, fitting, verifying timing, and repeating
before they could even order any prototypes. “It works!”—sure. Just like my kids’
homework—“It’s done!”

DDPP5.book Page 172 Tuesday, March 28, 2017 5:33 PM

References 173

XILINX FPGA
DESIGN FLOW

In Chapter 6 and beyond, we will give many examples of Verilog modules, and we
often target them to Xilinx 7-series FPGAs using their Vivado tool suite. So, it is
useful here to introduce the nomenclature used by Xilinx for their design flow:

• In the elaboration step, the compiler reads the model’s HDL file(s) and checks
for syntax errors and the like. Finding none, it creates a corresponding,
technology-independent RTL description of the model, using “generic”
elements such as gates, multiplexers, latches, and flip-flops. Using Vivado, it
is possible to view a schematic of the elaborated design.

• The synthesis step converts the RTL description of the model into a hardware
design using the specific hardware resources that are available in the targeted
FPGA, including LUTs (lookup tables for combinational logic), specific latch
and flip-flop types, and specialized elements like carry chains for adders. In
Vivado, it is also possible to view a schematic of the synthesized design.

• The implementation step has three phases:

– The first is optimization, which checks for errors (like multiple outputs
driving the same signal line) and then manipulates the synthesized logic in
order to reduce resource requirements, for example by combining LUTs .

– The second phase is placement , where the synthesized elements like LUTs
and flip-flops are assigned to physical locations on the FPGA device.

– The third phase is routing, where the placed elements’ inputs and outputs
are hooked up to each other using the device’s programmable interconnect.
Vivado cannot generate a schematic of the implemented design, but it does
offer a view of the layout of placed elements and their interconnections.

• The last step, which Xilinx calls program and debug, has utilities like “write
bitstream” which generates a device programming pattern to be loaded into the
FPGA for debugging in the lab or shipping the final product.

At any step along the way, it is possible to run the simulator. After elaboration,
only a functional simulation is available, which assumes zero delay or otherwise
ideal timing behavior. After synthesis or implementation, both functional and timing
simulation are available. Both simulate the circuit’s operation using the actual FPGA
elements that were created in synthesis, including optimizations in the case of post-
implementation simulation. When run after synthesis, timing simulation uses a rough
estimate of expected delays. After implementation, it uses more accurate estimates
based on the actual placement and routing results.

The tool suite also allows various “constraints” to be applied at any of the
steps. In synthesis, for example, the overall strategy can be set to optimize area, per-
formance, or the run time of the tool itself. The synthesizer can be set to “flatten” the
design’s hierarchy, which allows elements to be moved, shared, or otherwise opti-
mized between the outputs of one module and the inputs of another, or to preserve
the hierarchy for ease of debugging or other reasons. In implementation, various
options for placement, routing, and power consumption can be enabled and disabled.

elaboration

synthesis

implementation

optimization

placement

routing

program and debug

DDPP5.book Page 173 Tuesday, March 28, 2017 5:33 PM

174 Chapter 4 Digital Design Practices

books”) used to be published every few years, but they have been mostly elimi-
nated in favor of always up-to-date information on the Web. Among the better
sites for logic-family data sheets and application notes are www.ti.com (Texas
Instruments) and www.onsemi.com (formerly Fairchild Semiconductor).

For a given logic family such as 74AHCT, all manufacturers list generally
equivalent specifications, so you can usually get by with just one set of data
sheets per family. Some specifications, especially timing, may vary slightly
between manufacturers, so when timing is tight it’s best to check a couple of
different sources and use the worst case. That’s a lot easier than convincing your
manufacturing department to buy a component only from a single supplier.

Lots of textbooks cover digital design principles, but few cover practices.
More useful for the active designer are articles written by other engineers in
trade publications like EDN, and sometimes collected in anthologies like Clive
Maxfield’s books in EDN’s Series for Design Engineers.

Drill Problems
4.1 What documents contain reference designators? Pin numbers? Arrowheads?

4.2 Draw the DeMorgan equivalent symbol for an 8-input NAND gate.

4.3 Draw the DeMorgan equivalent symbol for a 3-input NOR gate.

4.4 What’s wrong with the signal name READY′ ?

4.5 You may find it annoying to have to keep track of the active levels of all the
signals in a logic circuit. Why not use only noninverting gates, so all signals are
active high?

4.6 In bubble-to-bubble logic design, why would you connect a bubble output to a
non-bubble input?

4.7 True or false: Either all inputs to a logic gate must have a bubble, or none may
have a bubble. Justify your answer.

4.8 Redesign the alarm circuit of Figure 3-16, substituting inverting gates for the non-
inverting ones and adding or deleting inverters as needed. Draw a logic diagram
for your circuit using the ideas of bubble-to-bubble logic design and name all the
signals.

4.9 A digital communication system is being designed with twelve identical network
ports. Which type of schematic structure is most appropriate for the design?

4.10 Search the Web to find Texas Instruments datasheets with information to create
columns for Table 4-2 for 74AHC parts operating at 3.3 V with a 15-pF capacitive
load. Provide the values needed for the first four rows in the new columns.

4.11 Determine the exact maximum propagation delay from IN to OUT of the circuit
fragment in Figure X4.11 for both LOW-to-HIGH and HIGH-to-LOW transitions,
using the timing information given in Table 4-2. Repeat, using a single worst-case
delay number for each gate, and compare and comment on your results.

4.12 Repeat Drill 4.11, substituting 74AC00s operating at 4.5 V for the 74AC08s.

DDPP5.book Page 174 Tuesday, March 28, 2017 5:33 PM

Drill Problems 175

4.13 Repeat Drill 4.11, substituting 74AC21s (with three inputs at constant 1) for the
74AC08s.

4.14 Repeat Drill 4.11, substituting 74AC32s with constant 0 instead of 1 inputs.

4.15 Estimate the minimum propagation delay from IN to OUT for the circuit shown in
Figure X4.15. Justify your answer.

4.16 Determine the exact maximum propagation delay from IN to OUT of the circuit
in Figure X4.15 for both LOW-to-HIGH and HIGH-to-LOW transitions, using the
timing information given in Table 4-2. Repeat, using a single worst-case delay
number for each gate, and compare and comment on your results.

4.17 Repeat Drill 4.15, substituting 74HC86s operating at 4.5 V for the 74AC86s.

4.18 Estimate the minimum propagation delay from IN to OUT for the circuit shown in
Figure X4.18. Justify your answer.

4.19 Determine the exact maximum propagation delay from IN to OUT of the circuit
in Figure X4.18 for both LOW-to-HIGH and HIGH-to-LOW transitions, using the
timing information given in Table 4-2. Repeat, using a single worst-case delay
number for each gate, and compare and comment on your results.

4.20 Repeat Drill 4.19, substituting 74HC parts operating at 4.5 V.

4.21 What is the minimum number of different delay paths in a combinational circuit
with n inputs and m outputs?

4.22 Timing specifications rarely give different specifications for LOW-to-HIGH vs.
HIGH-to-LOW transitions (tpLH vs. tpHL) on outputs that are considered to be
“data” outputs. Why?

4.23 Suppose that the microprocessor chip in your smartphone has a clock frequency
of 2 Ghz, and the chip is 1 cm square. Assuming the on-chip wiring runs only on
the X and Y axes, what fraction of the clock period is the speed-of-light delay for
a signal transition to propagate between opposite corners of the chip?

74AC08
74AC08

74AC08
74AC08

74AC08
74AC08

IN
1

1
1

1
1

1
OUT

Figure X4.11

Figure X4.15

74AC86
74AC86

1

0
0

IN

74AC86
74AC86

1
OUT

74AC00
74AC32

74AC00
74AC32

74AC08
74AC08

IN
1

0
1

0
1

1
OUT

Figure X4.18

DDPP5.book Page 175 Tuesday, March 28, 2017 5:33 PM

176 Chapter 4 Digital Design Practices

4.24 Which CMOS circuit would you expect to be faster, a 3-to-8 decoder with gate-
level design similar to Figure 6-17 as shown with active-low outputs, or one with
active-high outputs?

4.25 Using the information in Table 4-3 for the 74HC682 operating at 4.5 V, determine
the maximum propagation delay from any input to any output in the 22-bit com-
parator circuit of Figure 7-27.

4.26 Repeat Drill 4.25 for the 64-bit comparator circuit of Figure 7-28.

Exercises
4.27 For what testing reasons do you think that a constant-0 or constant-1 input would

be connected to the corresponding power-supply rail through a resistor rather
than directly?

4.28 How many different input-to-output delay paths exist in the 5-to-32 decoder
circuit of Figure 6-19? Based on the information in Table 4-3 for the 74AC138,
how many paths would you actually have to analyze to determine the delays for
these paths? Hint: Some input and output signals can be handled by group.

4.29 Using the information in Table 4-3 for the 74AC138, determine the maximum
propagation delay from any input to any output in the 5-to-32 decoder circuit of
Figure 6-19. Use the results of Exercise 4.28 to minimize your task.

4.30 Repeat Exercise 4.29, using 74AHCT timing with 15-pF loads, using a Texas
Instruments datasheet obtained from the Web.

4.31 Using the information in Tables 4-2 and 4-3 for the 74AC139, 74AC151, and
74AC32 components, determine the maximum propagation delay from any input
to any output in a 32-to-1 multiplexer circuit similar to Figure 6-33. To simplify
the analysis, group inputs and outputs as appropriate.

4.32 Repeat Exercise 4.31, using the 74AC20 and the Y output of the 74AC151s.

4.33 Using the information in Tables 4-2 and 4-3 for the 74HC20 and the 74HC148
operating at 2.0 V, determine the maximum propagation delay from any input to
any output in a 32-to-5 priority encoder similar to Figure 7-13. A 74HC148 has
active-low inputs and outputs and replaces each “cascadable priority encoder,”
and you will also need to pick appropriate parts for the OR functions. Note that
for this exercise you don’t need to understand how the circuit works; you just
need to find and analyze all of the delay paths. Hint: You don’t have to compute
the delay on every possible path, even after grouping the input and output signals.
You should be able to “eyeball” the circuit structure to recognize only a handful
of paths that may be able to produce the worst-case delay.

4.34 Using the information in Tables 4-2 and 4-3 for 74HC operating at 2.0 V, deter-
mine the maximum propagation delay from any input to any output in an error-
correcting circuit similar to Figure 7-18. Note that the available 3-to-8 decoder
has active-low outputs, and you will have to compensate by adding inverters.
Show how to do this without increasing the overall maximum delay of the circuit.

4.35 Using the information in Table 4-3 for 74AC parts, determine the maximum
propagation delay from any input to any output in the 16-bit adder of Figure 8-7.

DDPP5.book Page 176 Tuesday, March 28, 2017 5:33 PM

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

177

c h a p t e r 5
Verilog Hardware Description
Language

erilog HDL, or simply Verilog, was introduced by Gateway Design
Automation in 1984 as a proprietary hardware description and
simulation language. The introduction of Verilog-based synthesis
tools in 1988 by then-fledgling Synopsys, and the 1989 acquisi-

tion of Gateway by Cadence Design Systems, were important events that led
to widespread use of the language.

Verilog synthesis tools can create logic-circuit structures directly from
Verilog behavioral models and target them to a selected technology for real-
ization. Using Verilog, you can design, simulate, and synthesize just about
any digital circuit, from a handful of combinational logic gates to a complete
microprocessor-based system on a chip.

One thing led to another, and in 1993 the IEEE was asked to formally
standardize the language as it was being used at that time. So, the IEEE
created a standards working group which produced IEEE 1364-1995, the
official Verilog standard published in 1995 (Verilog-1995). By 1997, the
Verilog community, including users and both simulator and synthesizer sup-
pliers, wanted to make several enhancements to the language, and an IEEE
standards group was reconvened. The result was a superset of Verilog-1995,
IEEE standard 1364-2001 (Verilog-2001).

A few years later, the IEEE standards group made some spec correc-
tions and clarifications and added a few new language features (not used in
this book) in publishing standard 1364-2005, also known as Verilog-2005.

V

module ButGate
 (A, B, C, D, Y, Z);
input A, B, C, D;
output reg Y, Z;

always @ (A, B, C, D)
 begin
 if ((A==B)&&(C!=D))
 Y = 1;
 else Y = 0;
 if ((C==D)&&(A!=B))
 Z = 1;
 else Z = 0;
 end
endmodule

DDPP5.book Page 177 Tuesday, March 28, 2017 5:33 PM

178 Chapter 5 Verilog Hardware Description Language

Language development then continued in a new working group which created
IEEE standard 1800-2009, also known as SystemVerilog. The 2009 standard has
Verilog-2001/2005 as a subset, and includes significant new functionality for
specifying, designing, and verifying the correctness of larger systems. If you
continue in digital system design, you will undoubtedly use SystemVerilog at
some point.

Important features of Verilog-2001/2005 include the following:

• Designs may be decomposed hierarchically.

• Each design element has both a well-defined interface (for connecting it to
other elements) and a precise functional specification (for simulating it).

• Functional specifications can use either a behavioral algorithm or an actual
hardware structure to model an element’s operation. For example, an ele-
ment can be modeled initially by an algorithm to allow design verification
of higher-level elements that use it. Later, the algorithmic model can be
replaced by a preferred hardware structure.

• Concurrency, timing, and clocking can all be modeled. Verilog handles
asynchronous as well as synchronous sequential-circuit structures.

• The logical operation and timing behavior of a design can be simulated.

In summary, Verilog started out as a documentation and modeling language,
allowing the behavior of digital-system designs to be fairly accurately modeled
and simulated. But the availability of synthesis tools that translate a Verilog
model into an actual hardware realization are what led to its widespread use.

VERILOG
AND VHDL

Today, Verilog and VHDL both enjoy widespread use and share the logic synthesis
market perhaps 60/40. Verilog has its syntactic roots in C and is in some respects an
easier language to learn and use, while VHDL is more like Ada (a DoD-sponsored
software programming language). Verilog initially had fewer features than VHDL to
support large project development, but with new features added in 2001, and espe-
cially with SystemVerilog, it has caught up and gone beyond VHDL.

Comparing the pros and cons of starting out with one language versus the
other, David Pellerin and Douglas Taylor probably put it best in their book, VHDL
Made Easy! (Prentice Hall, 1997):

Both languages are easy to learn and hard to master. And once you have
learned one of these languages, you will have no trouble transitioning to
the other.

While writing an older Verilog/VHDL edition of this book, I found their
advice to be generally true. But it was hard to go back and forth between the two on
a daily or even weekly basis. Since you have this book in hand, my advice to you is
to learn Verilog well, and to tackle VHDL later.

DDPP5.book Page 178 Tuesday, March 28, 2017 5:33 PM

5.1 Verilog Models and Modules 179

Today, virtually all commercial Verilog compilers and related tools support
Verilog-2001, as opposed to only the Verilog-1995 feature subset, and that’s
what we use in this book.

In this chapter, we focus mainly on Verilog’s general language structure
and its use in combinational logic design. Towards the end, we will introduce the
one additional feature that is needed to support sequential logic design, which
we’ll use for the first time towards the end of Chapter 9.

5.1 Verilog Models and Modules
The basic unit of design and programming in Verilog is a module—a text file
containing declarations and statements, as shown in Figure 5-1(a). A typical
Verilog module may correspond to a single piece of hardware, in much the same
sense as a “module” in traditional hardware design. The hardware is said to be
modeled by a single module or by a collection of modules working together.

A Verilog module has declarations that describe the names and types of the
module’s inputs and outputs, as well as local signals, variables, constants, and
functions that are used strictly internally to the module, and are not visible out-
side. The rest of the module contains statements that specify or “model” the
operation of the module’s outputs and internal signals.

Verilog statements can specify a module’s operation behaviorally; for
example, by making assignments of new values to signals based on tests of logi-
cal conditions, using familiar constructs like if and case. They can also specify
the module’s operation structurally. In this formulation, the statements define
instances of other modules and individual components to be used (like gates and
flip-flops) and specify their interconnections, equivalent to a logic diagram.

JUST-IN-TIME
VERILOG

This chapter aims to be a well organized and complete reference as well as a concise
tutorial on the most commonly used Verilog language elements. However, people
have different learning styles, and it is a bit of a slog to try to learn Verilog or any
language at one sitting, especially if you don’t have to build anything with it yet.

Therefore, on the assumption that you may very well want to jump ahead to
the “good stuff” soon, I’ve written boxed comments titled “Just-in-Time Verilog” in
Chapters 6 and 7, whenever a Verilog concept or feature is used in an example for
the first time. I’ve tried to give enough information there to let you work through the
examples without having to come back here. In most cases, however, you’ll eventu-
ally want to look up many of the features here for precise and complete definitions,
especially as you begin to write your own models and things aren’t quite working as
you expect them to.

For now, I would recommend that you take the time to read at least the first
two or three sections in this chapter, or if you’re really impatient, just the first.

module

hardware model
declarations

statements

behavioral model

structural model

DDPP5.book Page 179 Tuesday, March 28, 2017 5:33 PM

180 Chapter 5 Verilog Hardware Description Language

Verilog modules can use a mix of behavioral and structural models, and
may do so hierarchically as shown in Figure 5-1(b). Just as procedures and func-
tions in a high-level software programming language can “call” others, Verilog
modules can “instantiate” other modules. A higher-level module may use a

declarations

statements

declarations

statements

declarations

statements

module module A

module B module C module D

(a) (b)

module E module F

declarations

statements

declarations

statements

declarations

statements

declarations

statements

Figure 5-1 Verilog modules: (a) one module; (b) modules instantiating other modules hierarchically.

INSTANCES AND
INSTANTIATION

It’s very important for you to understand what we mean by instantiation, especially
if you have a software background. To put it simply, to instantiate is to create an
instance, and an instance is a physical piece of hardware (or an emulation of it).

While a Verilog model will typically describe a module only once and create
only one copy of the software code that emulates the module’s operation, physical
hardware is created in synthesis. In the synthesized design, each instance of a module
is a separate piece of hardware that has the inputs and outputs specified in its instan-
tiation, and that performs the operations specified in the module’s definition. Each
instance of a given module operates independently of and in parallel with other
instances of the same module. So, as much as a module might remind you of a
software procedure or subroutine, it’s really quite different.

DDPP5.book Page 180 Tuesday, March 28, 2017 5:33 PM

5.1 Verilog Models and Modules 181

lower-level module multiple times, and multiple top-level modules may use the
same lower-level one. In the figure, modules B, E, and F stand alone; they do not
instantiate any others. In Verilog, the scope of signal, constant, and other defini-
tions remains local to each module; values can be passed between modules only
by using declared input and output signals.

Verilog’s modular approach provides a great deal of flexibility in designing
large systems, especially when multiple designers and design phases are
involved. For example, a given module can be specified with a rough behavioral
model during the initial phase of system design, so that overall system operation
can be checked. Later, it can be replaced with a more intricate behavioral model
for synthesis, or perhaps with a hand-tuned structural model that achieves higher
performance than one synthesized from the behavioral model.

Now we’re ready to talk about some of the details of Verilog syntax and
model structure. A simple example module is shown in Program 5-1. Like other
high-level languages, Verilog mostly ignores spaces and line breaks, which may
be used as desired for readability. Short comments begin with two slashes (//)
anywhere in a line and stop at the line’s end. Verilog also allows C-style, multi-
line long comments that begin anywhere with /* and end anywhere with */.

scope

ONE MODULE PER
FILE, PLEASE

The Verilog language specification allows multiple modules to be stored in a single
text file, often named with a suffix of “.v”. However, most designers put just one
module in each file, with the filename based on the module name, for example,
adder.v for module adder. This just makes it easier to keep track of things.

MODULE NAMES
IN THIS BOOK

Most of the module names in this book begin with the letters “Vr”. That’s a practice
that I started to conveniently distinguish them and their files from VHDL modules
in an earlier edition of this book, and perhaps in a future edition. You don’t have to
use this prefix in your own modules, of course, but if you ever create HDL models
in a commercial environment, you will undoubtedly be required to follow some other
local naming practices.

Program 5-1 Verilog model for an “inhibit” gate.

module VrInhibit(X, Y, Z); // also known as 'BUT-NOT'
 input X, Y; // as in 'X but not Y'
 output Z; // (see [Klir, 1972])

 assign Z = X & ~Y;
endmodule

comments

DDPP5.book Page 181 Tuesday, March 28, 2017 5:33 PM

182 Chapter 5 Verilog Hardware Description Language

Verilog defines many special character strings, called reserved words or
keywords. Our example includes a few—module, input, output, assign, and
endmodule. Following the practice of typical Verilog text editors, we use color
for keywords in Verilog code in this book.

User-defined identifiers begin with a letter or underscore and can contain
letters, digits, underscores (_), and dollar signs ($). (Identifiers that start with a
dollar sign refer to built-in system functions.) Identifiers in the example are
VrInhibit, X, Y, and Z. Unlike VHDL, Verilog is sensitive to case for both key-
words (lowercase only) and identifiers (XY, xy, and Xy are all different). Case
sensitivity can create problems in projects containing modules in both lan-
guages, when the same identifier must be used in both Verilog and VHDL, but
most compilers provide renaming facilities to deal with it in large projects. Still,
it’s best not to rely on case alone to distinguish two different identifiers.

The basic syntax for a Verilog module declaration is shown in Table 5-1. It
begins with the keyword module, followed by an identifier for the module’s
name and a list of identifiers for the module’s input and output ports. The input
and output ports are signals that the modules uses to communicate with other
modules. Think of them as wires, since that’s what they usually are in the mod-
ule’s realization.

Next comes a set of optional declarations that we describe in this and later
sections. These declarations can be made in any order. Besides the declarations
shown in Table 5-1, there are a few more that we don’t use in this book and have
therefore omitted. Concurrent statements, introduced in Section 5.7, follow the
declarations, and a module ends with the endmodule keyword.

CONFIGURATION
MANAGEMENT

When one Verilog module instantiates another, the compiler finds the other by
searching the current workspace, as well as predefined libraries, for a module with
the instantiated name. Verilog-2001 actually allows you to define multiple versions
of each module, and it provides a separate configuration management facility that
allows you to specify which one to use for each different instantiation during a par-
ticular compilation or synthesis run. This lets you try out different approaches
without throwing away or renaming your other efforts. Still, we won’t use or further
discuss that facility in this text.

reserved words
keywords

identifiers

OPTIONAL? We said that the declarations in Table 5-1 are optional, and that’s true even for input,
output, and inout declarations if the module does not have the corresponding port
types. For example, most modules do not have inout ports. A module that generates
a clock signal would have an output port but might have no inputs. And a test-bench
module, discussed later, has no inputs or outputs.

module declaration
module keyword
input and output ports

endmodule keyword

DDPP5.book Page 182 Tuesday, March 28, 2017 5:33 PM

5.1 Verilog Models and Modules 183

Each port that is named at the beginning of the module, in the input/output
list, must have a corresponding input, output, or inout declaration. The simplest
form of these declarations is shown in the first three lines of Table 5-2. The key-
word input, output, or inout is followed by a comma-separated list of the
identifiers for signals (ports) of the corresponding type. The keyword specifies
the signal direction as follows:

input The signal is an input to the module.

output The signal is an output of the module. Note that the value of such
a signal cannot necessarily be “read” inside the module architec-
ture, only by other modules that use it. A “reg” declaration,
shown in the next section, is needed to make it readable.

inout The signal can be used as a module input or output. This mode is
typically used for three-state input/output pins.

An input/output signal declared as described above is one bit wide. Multi-
bit or “vector” signals can be declared by including a range specification,
[msb:lsb], in the declaration as in the last three lines of Table 5-2. Here, msb
and lsb are integers that indicate the starting and ending indexes of the individual
bits within a vector of signals. The signals in a vector are ordered from left to
right, with msb giving the index of the leftmost signal. A range can be ascending
or descending; that is, [7:0], [0:7], and [13:20] are all valid 8-bit ranges.
We’ll have more to say about vectors in Section 5.3.

module module-name (port-name, port-name, ..., port-name);
 input declarations
 output declarations
 inout declarations
 net declarations
 variable declarations
 parameter declarations
 function declarations
 task declarations

 concurrent statements
endmodule

Table 5-1
Syntax of a Verilog
module declaration.

input, output, and inout
declarations

input identifier, identifier, ..., identifier;
output identifier, identifier, ..., identifier;
inout identifier, identifier, ..., identifier;

input [msb:lsb] identifier, identifier, ..., identifier;
output [msb:lsb] identifier, identifier, ..., identifier;
inout [msb:lsb] identifier, identifier, ..., identifier;

Table 5-2
Syntax of Verilog
input/output
declarations.

input keyword

output keyword

inout keyword

range specification

vector

DDPP5.book Page 183 Tuesday, March 28, 2017 5:33 PM

184 Chapter 5 Verilog Hardware Description Language

5.2 Logic System, Nets, Variables, and Constants
Verilog uses a simple, four-valued logic system. A 1-bit signal can take on one
of only four possible values:

0 Logical 0, or false

1 Logical 1, or true

x An unknown logical value
z High impedance, as in three-state logic (see Section 7.1)

Verilog has built-in bitwise boolean operators, shown in Table 5-3. The
AND, OR, and XOR operators combine a pair of 1-bit signals and produce the
expected result, and the NOT operator complements a single bit. The XNOR
operation can be viewed either as the complement of XOR, or as XOR with the
second signal complemented, corresponding to the two different symbols shown
in the table. (XOR and XNOR were introduced in Exercises 3.30 and 3.31.)

In Verilog’s boolean operations, if one or both of the input signals is x or z,
then the output is x unless another input dominates. That is, if at least one input
of an OR operation is 1, then the output is always 1; if at least one input of an
AND operation is 0, then the output is always 0. Verilog’s boolean operations can
also be applied to vector signals, as discussed in Section 5.3.

LESS ANTSY
DEFINITIONS

Verilog-2001 introduced a second way for module ports to be defined, so-called
“ANSI-style” declarations, similar to the function definition style used in ANSI C.
In this style, the signal direction, optional range specification, and name of each port
is given in the parenthesized, comma-separated list following the module name,
instead of in separate declarations. As a simple example, the first three lines in
Program 5-1 on page 181 become:

 module VrInhibit(input X, Y,
 output Z);

One benefit of ANSI-style declarations is that they avoid the redundancy and error
potential of writing each signal name twice, in the module’s port-name list and in
subsequent declarations. Another benefit is that if they are written one per line, as
below, they provide room for and encourage the use of separate comments that
explain the purpose of each signal:

 module VrInhibit (// also known as 'BUT-NOT'
 input X, // noninverting input
 input Y, // inverting input
 output Z // output 'X but not Y'
);

That’s a second declaration style that we’ll use occasionally in this book. Note that
if the port type is not mentioned, it still defaults to wire.

bitwise boolean
operators

DDPP5.book Page 184 Tuesday, March 28, 2017 5:33 PM

5.2 Logic System, Nets, Variables, and Constants 185

Up until now, we’ve used the word “signal” somewhat loosely. Verilog
actually has two classes of signals—nets and variables. A net corresponds
roughly to a wire in a physical circuit, and provides connectivity between mod-
ules and other elements in a Verilog structural model. The signals in a Verilog
module’s input/output port list are often nets. We’ll come back to variables later.

Verilog provides several kinds of nets, which can be specified by type
name in net declarations. The default net type is wire—any signal name that
appears in a module’s input/output port list but not declared to be some other
type is assumed to be type wire. A wire net provides basic connectivity, but no
other functionality is implied.

Verilog also provides several other net types, shown in Table 5-4. The
supply0 and supply1 net types are considered to be permanently wired to the
corresponding power-supply rail, and provide a source of constant logic-0 and
logic-1 signals. The remaining types allow modeling of three-state and wired-
logic connections in a board-level system. They are seldom used inside an ASIC,
FPGA, or CPLD design, except for modeling external-pin connections to other
three-state devices. Note that the net types are all reserved words.

The syntax of Verilog net declarations is similar to an input/output decla-
ration, as shown in Table 5-5 for wire and tri net types. A list of identifiers
follows the keyword for the desired net type. For vector nets, a range specifica-
tion precedes the list of identifiers.

Keep in mind that net declarations have two uses: to specify the net type of
a module’s input/output ports, if not wire; and to declare signals (nets) that will
be used to establish connectivity in structural descriptions inside a module.
We’ll see many examples of the latter in Sections 5.7 and 5.8.

Operator Operation

& AND

| OR

^ Exclusive OR (XOR)

~^, ^~ Exclusive NOR (XNOR)

~ NOT

Table 5-3
Bitwise boolean
operators in Verilog’s
logic system.

net

wire keyword

wire trior trireg supply0
tri tri0 wand supply1
triand tri1 wor

Table 5-4
Verilog net types.

net declaration

wire identifier, identifier, ..., identifier;
wire [msb:lsb] identifier, identifier, ..., identifier;

tri identifier, identifier, ..., identifier;
tri [msb:lsb] identifier, identifier, ..., identifier;

Table 5-5
Syntax of Verilog
wire and tri
net declarations.

DDPP5.book Page 185 Tuesday, March 28, 2017 5:33 PM

186 Chapter 5 Verilog Hardware Description Language

Verilog variables store values during a Verilog model’s execution, and they
need not have physical significance in a circuit. They are used only in
“procedural code,” discussed in Section 5.9. A variable’s value can be used in an
expression and can be combined with and assigned to other variables, as
in conventional software programming languages. The most commonly used
Verilog variable types are reg and integer.

A reg variable is a single bit or a vector of bits, declared as shown in the
first two lines of Table 5-6. The value of a 1-bit reg variable is always 0, 1, x,
or z. The main use of reg variables is to store values of bits in procedural code.

An integer variable is declared as shown in the last line of Table 5-6. Its
value is a signed, two’s-complement number of 32 bits or more, depending on
the word length used by the Verilog tools. An integer variable is typically used
to control a repetitive statement, like a for loop, in Verilog procedural code.
Integers in an actual circuit are normally modeled using multibit vector signals,
as discussed in Section 5.3.

The difference between Verilog’s nets and variables is subtle. A variable’s
value can be changed only by procedural code within a module; it cannot be
changed from outside. Thus, input and inout ports cannot have a variable type;
they must have a net type like wire. Output ports, however, can have either a net
or a reg type, and can drive the input and inout ports of other modules.

Another important difference, as we’ll see later, is that procedural code can
assign values only to variables, not nets. If an output port is declared with type
reg, the module’s procedural code can use it like any other reg variable, but its
value is always present on the output port for connection to other modules.

variable

variable declaration
reg keyword

reg identifier, identifier, ..., identifier;
reg [msb:lsb] identifier, identifier, ..., identifier;

integer identifier, identifier, ..., identifier;

Table 5-6
Syntax of Verilog reg
and integer variable
declarations.

integer keyword

A reg IS NOT
A FLIP-FLOP

The variable-type name “reg” in Verilog has nothing to do with the flip-flops and
registers found in sequential circuits. If you already know what those are, please
disassociate them with “reg” right now or you risk being confused for a long time!

Remember, Verilog was originally designed for simulation only, and when its
designers came up with “reg,” they were thinking in terms of storage registers, or
variables, that are used during the simulator’s program execution to keep track of
modeled values. So, reg variables can be used to model sequential or combinational
circuit outputs. A reg variable may contain a bit or a vector of bits. It’s too bad that
Verilog’s designers didn’t use a better keyword, like “var” or “bitvar”.

Sequential-circuit latches, flip-flops, and registers are defined in Verilog by an
entirely different mechanism, to be introduced in Section 10.3.2.

DDPP5.book Page 186 Tuesday, March 28, 2017 5:33 PM

5.2 Logic System, Nets, Variables, and Constants 187

The result of all this is that if you want to write procedural Verilog code to
specify the value of a module output, you have basically two ways to do it:

1. Declare the output port to have type reg, and use procedural code to assign
values to it directly.

2. If for any reason the port must be declared as a net type (like tri), define
an internal “output” reg variable and specify its value procedurally. Then
assign the value of the internal reg variable to the module output net.

Verilog has its own particular syntax for writing numeric literals, tailored
to its use in describing digital logic circuits. Literals that are written as a
sequence of decimal digits, with no other frills except an optional minus sign,
are interpreted as signed decimal numbers, as you would expect. Verilog also
gives you the ability to write numeric literals in a specific base and number of
bits, using the format n'Bdd...d, where:

• n is a decimal number that specifies the size of the literal in bits. This is the
number of bits represented, not the number of digits dd...d.

• B is a single letter specifying the base, one of the following: b or B (binary),
o or O (octal), h or H (hexadecimal), or d or D (decimal).

• dd...d is a string of one or more digits in the specified base. Hexadecimal
digits a-f may be typed in upper or lower case. If the digits provide more
than n nonzero bits, unneeded bits are discarded on the left. If they provide
fewer than n nonzero bits, zeroes are appended on the left as needed.

Examples of literals are given in Table 5-7. A question mark “?” used in a
literal is equivalent to “z”. Sized literals are interpreted as multibit vectors, as
shown in examples in the next section. Literals written without a size indicator
default to 32 bits or the word width used by the simulator or compiler; this may
cause errors or ambiguity, so you must be careful with unsized literals.

literals

Literal Meaning

1'b0 A single 0 bit

1'b1 A single 1 bit

1'bx A single unknown bit

8'b00000000 An 8-bit vector of all 0 bits

8'h07 An 8-bit vector of five 0 and three 1 bits

8'b111 The same 8-bit vector (0-padded on left)

16'hF00D A 16-bit vector that makes me hungry

16'd61453 The same 16-bit vector, with less hunger

2'b1011 Tricky or an error, leftmost “10” ignored

4'b1?zz A 4-bit vector with three high-Z bits

8'b01x11xx0 An 8-bit vector with some unknown bits

Table 5-7
Examples of literals
in Verilog.

?, question mark
in literal

DDPP5.book Page 187 Tuesday, March 28, 2017 5:33 PM

188 Chapter 5 Verilog Hardware Description Language

Verilog provides a facility for defining named constants within a module,
to improve the readability and maintainability of code. A parameter declaration
has the syntax shown in Table 5-8. An identifier is assigned a constant value that
will be used in place of the identifier throughout the current module. Multiple
constants can be defined in a single parameter declaration by a comma-separated
list of assignments. Some examples are shown below:

parameter BUS_SIZE = 32, // width of bus
 MSB = BUS_SIZE-1, LSB = 0; // range of indices
parameter ESC = 7'b0011011; // ASCII escape character

The value in a parameter declaration can be a simple constant, or it can be
a constant expression—an expression involving multiple operators and con-
stants, including other parameters, that yields a constant result at compile time.
Note that the scope of a parameter is limited to the module in which it is defined.

 TYPING WITH
LESS TYPING

You’ll sometimes see a separate declaration of the net or variable type of an input or
output port (like the common case of an output port having type reg). In Verilog-
1995, that was the only way to do it. Verilog-2001 lets you identify the type within
the port declaration, as in the example below:

 module Vr3to8deca(G1, G2, G3, A, Y);
 input wire G1, G2, G3;
 input wire [2:0] A;
 output reg [0:7] Y;

You can do the same in ANSI-style declarations.

NOTHING TO
DECLARE?

Verilog allows you to use nets that have not been declared. In structural code, you
can use an undeclared identifier in a context where the compiler would allow a net
to be used. In such a case, the compiler will define the identifier to be a wire, local
to the module in which it appears.

But to experienced programmers, using undeclared identifiers seems like a bad
idea. In a large module, declaring all the identifiers in one place gives you a greater
opportunity to document and ensure consistency among names. Whether or not you
declare all identifiers, if you mistype an identifier, the compiler will usually notice
and warn you that the accidental wire (or, in some cases, the intended wire) is not
being driven by anything.

parameter declaration
parameter keyword

parameter identifier = value;
parameter identifier = value,
 identifier = value,
 ...
 identifier = value;

Table 5-8
Syntax of Verilog
parameter
declarations.

constant expression

DDPP5.book Page 188 Tuesday, March 28, 2017 5:33 PM

5.3 Vectors and Operators 189

5.3 Vectors and Operators
As shown earlier, Verilog allows individual 1-bit signals to be grouped together
in a vector. Nets, variables, and constants can all be vectors. Verilog provides a
number of operations and conventions related to vectors. In general, Verilog
does “the right thing” with vectors, but it’s important to know the details.

Table 5-9 gives some example definitions of vectors that are used in this
section. In a vector definition, you should think of the first (left) index in the
definition as corresponding to the bit on the left end of the vector, and the second
(right) index as corresponding to the bit on the right. Thus, the rightmost bit in
byte1 has index 0, and the leftmost bit in Zbus has index 1. As shown in the
examples, index numbers can be ascending or descending from left to right.

Verilog provides a natural bit-select syntax to select an individual bit in a
vector, using square brackets and a constant (or constant expression). Thus,
byte1[7] is the leftmost bit of byte1, and Zbus[16] is the rightmost bit of
Zbus. The part-select syntax is also natural, using the same range-specification
syntax that is used in declarations. Thus, Zbus[1:8] and Zbus[9:16] are the
left and right bytes of Zbus, and byte1[5:2] is the middle four bits of byte1.
Note that the indices in a part-select should be in the same order as the range
specification in the original definition.

Just as bits and parts can be extracted from vectors, so can bits and parts be
put together to create larger vectors. Concatenation uses curly brackets {} to
combine two or more bits or vectors into a single vector. Thus, {2'b00,2'b11}
is equivalent to 4'b0011, and {byte1,byte1,byte2,byte2} is a 32-bit vector
with two copies of byte1 on the left, and two copies of byte2 on the right.
Verilog also has a replication operator n{} that can be used within a concatena-
tion to replicate a bit or vector n times. Thus, {2{byte1},2{byte2}} is the
same 32-bit vector that we defined two sentences ago. If N is a constant (like a
parameter), then {N{1'b1}} is an N-bit vector of all 1s.

The bitwise boolean operators listed in Table 5-3 also work (surprise,
surprise) “bitwise” on vectors. For example, the expression (byte1 & byte2)

vector

reg [7:0] byte1, byte2, byte3;
reg [15:0] word1, word2;

reg [1:16] Zbus;

Table 5-9
Examples of Verilog
vectors.

[], bit-select

[:], part-select

“OOPS” VECTOR
OPERATIONS

If you try to reference (read) part of a vector using an index in a bit-select or part-
select that is outside of the vector’s defined range, a value of “x” (unknown) is
returned for any bits that are out of range. Conversely, if you try to write a value into
part of a vector partially or completely outside of its defined range, the out-of-range
portion of the assignment is ignored, but the rest of it works.

{}, concatenation
operator

n{}, replication
operator

DDPP5.book Page 189 Tuesday, March 28, 2017 5:33 PM

190 Chapter 5 Verilog Hardware Description Language

yields an 8-bit vector where each bit is the logical AND of the bits in the corre-
sponding position of byte1 and byte2; the value of (4'b0011 & 4'b0101) is
4'b0001; and the value of ~3'b011 is 3'b100.

Vectors of different sizes also can be combined by the bitwise boolean
operators. The vectors are aligned on their rightmost bits, and the shorter vector
is padded on the left with 0s. Thus, the value of 2'b11 & 4'b1101 is equivalent
to 4'b0011 & 4'b1101 and has the value 4'b0001.

Zero-padding also applies in general to literals. Thus, 16'b0 is a 16-bit
constant in which all the bits are zero. However, if the literal’s leftmost specified
bit is x or z, then the vector is padded with x or z. Thus, 8'bx is an 8-bit vector
of all x’s, and 8'bz00 is equivalent to 8'bzzzzzz00.

Later, we’ll see assignment statements where the value of a vector expres-
sion is assigned to a vector net or variable. If the vector expression’s result size is
smaller than the size of the net or variable, then it is padded on the left with 0s. If
the result size is wider than the net or variable, then its rightmost bits are used.
However, if the result of the expression is an integer, and the system’s integer
width is narrower than the net or variable, then the integer value is sign extended
before being assigned to the vector net or variable, so be careful!

Verilog has built-in arithmetic operators, shown in the first six rows of
Table 5-10, that treat vectors as unsigned integers by default; but they can also be
treated as signed, two’s-complement integers as described in the boxed com-
ment. An unsigned integer value is associated with a vector in the “natural” way.
The rightmost bit has a weight of 1, and bits to the left have weights of succes-
sive powers of two. This is true regardless of the index range of the vector. Thus,
if the constant 4'b0101 is assigned to the Zbus[1:16] variable that we defined
earlier, the integer value of Zbus is 5.

Addition and subtraction are the most often used arithmetic operators, and
Verilog synthesis tools know how to synthesize adders and subtractors; for
example, see Section 8.1.8. Unary plus and minus are also allowed. Multiplica-

padding

arithmetic operators

Operator Operation

+ Addition

- Subtraction

* Multiplication

/ Division

% Modulus (remainder)

** Exponentiation

<< (Logical) shift left

>> (Logical) shift right

<<< Arithmetic shift left

>>> Arithmetic shift right

Table 5-10
Arithmetic and shift
operators in Verilog.

DDPP5.book Page 190 Tuesday, March 28, 2017 5:33 PM

5.3 Vectors and Operators 191

tion is also handled by most synthesis tools, although the multiplier’s size and
speed may not be as good as what you would get from a hand-tuned design (see
Section 8.3.2). Depending on the tool, division and modulus might not be syn-
thesizable unless the divisor is a constant power of two. In that case, the
operation is equivalent to shifting the dividend to the right (division) or selecting
the rightmost bits of the dividend (modulus). Exponentiation is used primarily in
test benches.

Verilog also has explicit shift operators, for vectors, shown in the next two
rows of Table 5-10. These are sometimes called logical shift operators to distin-

SIGNED
ARITHMETIC

Verilog-2001 provides for signed as well as unsigned arithmetic. A reg variable, a
net, or a function output can be declared as signed by including the keyword signed
in the declaration, for example, “reg signed [15:0] A”. Likewise, a module’s ports
may be declared as signed, for example, “output reg signed [15:0] T”.

Integer variables, as well as plain integer literals, are always considered to be
signed. Other numeric literals are signed if the letter “s” or “S” is included before the
base, for example, 8'sb11111111 is an 8-bit two’s-complement number, with an
integer value of . The sign bit of a signed literal is its leftmost bit at its specified
width. So, the sign bit of 4'sb1101 is 1 and its integer value is . But the sign bit
of 5'sb1101 is 0 (after 0-padding one bit on the left) and its integer value is 13.

Signed operations and comparisons follow the rules for two’s-complement
arithmetic, in both simulation and synthesis. However, signed operations are used
only if all of an expression’s operands are signed. Otherwise, its signed operands are
converted to unsigned before the expression is evaluated. For example, if you wrote
“4'sb1101 + 1'b1”, the integer value of the sum would be 14 (decimal), not

 as you might have intended, since 1'b1 is unsigned. To get a signed
interpretation, you could write, for example, “4'sb1101 + 1,” since integers are
always considered to be signed.

In another example, suppose you wrote “(4'sb1110 << 1) + 1”. This expres-
sion appears to shift the first operand left yielding 1100, the signed representation of

, and add 1 to that for a final result of . But its actual integer result is 13
decimal—how can that be? The problem is that the shift operator << is a logical shift,
so its result is interpreted as unsigned, or +12 decimal. To preserve the signed type
of the shifted result, you must use the arithmetic shift operator <<<.

In yet another seemingly simple but actually complicated scenario, suppose
you assign the value of an integer variable I to a wide, unsigned vector W. In this
special case, if W is wider than the system’s integer width, then I is sign-extended to
W’s width for the assignment. But suppose that I is first assigned to a vector V with
the same width as integers, and then V is assigned to W. In that case, a standard vector
assignment occurs; V is 0-extended regardless of its MSB’s value.

As you’ve seen, signed operations can be error-prone, given Verilog’s rules
that often convert operands and results as explained above, often without warning.
So, if you need to use signed operations, be careful!

1–
3–

13 1+
3– 1+ 2–=

4– 3–

shift operators
logical shift operators

DDPP5.book Page 191 Tuesday, March 28, 2017 5:33 PM

192 Chapter 5 Verilog Hardware Description Language

guish them from the arithmetic shift operators discussed in a moment. The first
operand is shifted by a number of positions given by the second operand, and
vacated positions are filled with 0s. Thus, the value of 8'b11010011<<3 is
8'b10011000. In a right shift, the leftmost bits are always filled with 0s as well;
so the value of 8'b11010011>>3 is 8'b00011010.

The results produced by the arithmetic shift operators, in the last two rows
of the table, depend on the type of their first operand, unsigned or signed. If the
first operand is unsigned, the result is the same as with the corresponding logical
shift operator; 0s are shifted into the vacated positions and the result is consid-
ered to be unsigned. If the first operand of a right arithmetic shift is signed, then
the sign (leftmost) bit of the operand is shifted into the vacated positions. If the
first operand of a left arithmetic shift is signed, then the vacated positions are
filled with 0s, which would appear to give the same result as a left logical shift.
But there is a subtle difference, discussed in the box on signed arithmetic.

Besides its frequently used bitwise boolean operators, Verilog also has
infrequently used boolean reduction operators. These operations use the same
operator symbols as in the first four rows of Table 5-3 on page 185, but they take

arithmetic shift
operators

NOT MY TYPE Unsigned operands in expressions can be converted to signed using Verilog’s built-
in type-casting function $signed(). So, if A is a signed vector and B is an unsigned
vector, then “A+$signed(B)” is their signed sum. Similarly, signed operands may
be converted to unsigned using the built-in function $unsigned().

Note that the type-casting functions don’t do anything if you’re casting to a
narrower bit width; the high-order bits of the wider operand are merely discarded in
the usual way.

You must be careful when working with signed operands because there are
several Verilog operations which, when applied to a signed operand, produce an
unsigned result:

• Logical shifts (<<, >>): Only the arithmetic shifts produce signed results.

• Part-selects: Even if a vector is signed, a selected part is unsigned, even if it
includes the original sign bit, for example, writing A[15:8] to select the high-
order byte of signed variable A in the example in the previous boxed comment.

• A single bit is always unsigned. Including a bit in an arithmetic expression
involving other, signed operands still yields an unsigned result. For example,
the result of “A+1'b1” is unsigned, as is the result of “A+CIN” if CIN is a 1-bit
variable (carry-in).

You can convert a single unsigned bit to signed using $signed, but still you
must be very careful. The integer value of 1'sb1 is , not +1, since its leftmost bit
is treated as the sign bit and is sign-extended. Changing the example in the last bullet
to “A+$signed(CIN)” still yields an unexpected result. The carry-in must be at least
two bits wide with a sign bit of 0 to get the expected signed result; for example,
“A+$signed({1'b0,CIN})”.

1–

boolean reduction
operators

DDPP5.book Page 192 Tuesday, March 28, 2017 5:33 PM

5.4 Arrays 193

a single vector operand. They combine all of the bits in the vector using the cor-
responding operation, and return a 1-bit result. Thus, the value of &Zbus is 1'b1
if all the bits of Zbus are 1; else it is 1'b0. Similarly, the value of ̂ byte1 is 1'b1
if byte1 has an odd number of 1s; else it’s 1'b0. (To be precise, the results may
be 1'bx if any operand bit is z or x, unless another input dominates.)

5.4 Arrays
Verilog-1995 had a limited capability to define and use one-dimensional arrays
of reg and integer variables. Verilog-2001 extended this capability to allow
multidimensional arrays and to allow net-type array elements like wire.

An array is an ordered set of variables of the same type, where each ele-
ment is selected by an array index. The basic array declaration formats are
shown in the first three rows of Table 5-11, and have been supported ever since
Verilog-1995. Here, the reg or integer identifier is followed by an array-index
range in square brackets. In the range, start and end are integer constants or con-
stant expressions that define the possible range of the array index and hence the
total number of array elements.

Array elements can be bits (first line of the table), vectors (second line), or
integers (third line). In Verilog-2001, elements can also be net types like wire
or vectors of them (fourth and fifth lines). Multiple variables of the same type
and size, including arrays of different sizes, can be defined in a single declara-
tion, for example:

reg [7:0] byte1, recent[1:5], mem1[0:255], cache[0:511];

Here, byte1 is an 8-bit vector, and the other variables are arrays containing 5,
256, and 512 8-bit vectors, respectively.

Individual array elements are accessed using the array name followed by
the index of the desired element, enclosed in square brackets. For example,
recent[1] is the first 8-bit-vector element in the recent array, and recent[i]
is the ith element, assuming that i is an integer variable and its value is in the
range 1 to 5. Verilog-1995 did not provide a means to directly access individual
bits of a vector array element; you had to first copy the array element to a like-
size reg variable or net, and then access the desired bit(s) using a bit or part-
select. For example, to read bit 5 of mem1[117], you could copy mem1[117] to
byte1, and then access byte1[5]. Verilog-2001 is more capable—you can use
a part-select as a second index and write mem1[117][5] in the previous exam-
ple, or write mem1[i][3:0] to access the low-order nibble of byte i.

array
array index

reg identifier [start:end];
reg [msb:lsb] identifier [start:end];
integer identifier [start:end];
wire identifier [start:end];
wire [msb:lsb] identifier [start:end];

Table 5-11
Syntax of Verilog
array declarations.

DDPP5.book Page 193 Tuesday, March 28, 2017 5:33 PM

194 Chapter 5 Verilog Hardware Description Language

5.5 Logical Operators and Expressions
Verilog has several operators and statements that rely on the concept of true/false
values (“truth values”). In Verilog, a 1-bit value of 1'b1 is considered to be true,
and 1'b0 or any “unknown” value (x or z) is considered to be false. With multi-
bit “known” values (no x or z), any nonzero value is considered true, and only a
zero value is considered false; thus, 4'b0100 is just as true as 4'b1111; among
possible 4-bit “known” values , only 4'b0000 is false (but see Exercise 5.32).

True and false values can be created and combined in expressions by the
logical operators, shown in Table 5-12. A logical operation yields a value of
1'b1 or 1'b0, depending on whether the result is true or false. If such a value is
assigned to a wider variable or net, it is extended on the left with 0s.

Keep in mind that in the first three logical operations, the truth or falsehood
of each operand is evaluated before the operands are logically combined. For
example, the expression 4'b0100 && 4'b1011 evaluates as “true && true” and
yields the value true in a logical expression. But the corresponding bitwise

MULTI-
DIMENSIONAL

ARRAYS

Verilog-2001 supports multidimensional arrays. In the declaration, a [start:end]
index range for each additional dimension is written after the array name; and to
access an element, an index must be provided for each dimension. Thus, you could
declare a two-dimensional array of bytes, “reg [7:0] mem3 [1:10] [0:255]” and
access the lower nibble of the byte in row 5, column 7 as mem3[5][7][3:0].

With the availability of multidimensional arrays, you have an alternate way to
declare a one-dimensional array of vectors, namely, as a two-dimensional array of
bits. For example, the mem1 example in the text could instead be declared as

 reg mem2[0:255][7:0];

This stores exactly the same information as in the mem1 declaration, but the capabil-
ities for accessing it are more limited. You might think that you could copy a row of
mem2 into the corresponding vector of mem1 by writing

 mem1[i] = mem2[i][7:0];

But that’s not legal. I wrote [7:0] as if it were a part-select for a vector, but I actually
need to select an 8-bit subarray of the two-dimensional array. And Verilog doesn’t
provide for that, even though the syntax above looks good. To copy a row of bits into
a vector, you need to do it one bit at a time. So, the decision of whether to declare as
a one-dimensional array of vectors as such, or as a two-dimensional array of bits,
depends on how you expect to access it in your code.

We give an example that uses two-dimensional arrays of bits in Program 8-17
on page 420. Near the end of a later version, Program 8-20, we need to treat two
array rows as vectors in order to add them, and to do that, we use a loop to copy the
individual bits into a vector variable that was declared only for that purpose. An
alternative, given in Exercise 8.46, is declare the arrays as one-dimensional arrays of
vectors, so the array elements (vectors) can be added directly.

true
false

logical operators

DDPP5.book Page 194 Tuesday, March 28, 2017 5:33 PM

5.5 Logical Operators and Expressions 195

boolean operation 4'b0100 & 4'b1011 has the value 4'b0000, which would be
considered false in a logical expression.

The logical equality and inequality operators do a bit-by-bit comparison of
their operands, and consider them equal only if corresponding bits are equal.
The magnitude comparisons in the last four rows of Table 5-12 consider their
operands to be unsigned numbers if either operand is unsigned.

In all six of the comparison operations, if the operand sizes are unequal and
either one is unsigned, the shorter operand is extended on the left with 0s before
the (unsigned) comparison is made. Thus, the expression 2'b11 < 4'b0100 is
true, 8'h0a < 4'b1001 is false, and 8'h05==4'b0101 is true.

If both operands are signed, the shorter operand is signed extended—its
leftmost bit is replicated on the left before the (signed) comparison is made.
Thus, the expression 2'bs11 < 4'bs0100 is true, 8'hs08 < 4'bs1001 is false,
and 2'bs11==4'bs1111 is true.

In synthesis, the last six operators can create comparators which may be
expensive, as discussed in the box on page 213 and in Section 7.4.6.

Operator Operation

&& logical AND

|| logical OR

! logical NOT

== logical equality

!= logical inequality

> greater than

>= greater than or equal

< less than

<= less than or equal

Table 5-12
Verilog logical
operators.

LOGICAL VS.
BOOLEAN

It is very important to understand the difference between logical operations and the
corresponding bitwise boolean operations, and to use the one that is appropriate
according to the circumstances. Logical operations normally should be used only
when the result is used as a conditional expression with the conditional operator “?:”
or a procedural statement (both introduced later). Bitwise boolean operations should
be used to combine bits and vectors to produce a value in combinational logic.

Because of the way Verilog defines true and false, when operands are one bit
wide, logical operators have the same effect as the corresponding bitwise boolean
operators. Especially in the case of NOT, you sometimes see sloppy code that mixes
! with & and |, when what is really meant is ~. Although this may seem OK to C
programmers, it’s a bad idea, because the ! operation will produce unintended results
if those 1-bit operands are ever changed to multibit vectors.

DDPP5.book Page 195 Tuesday, March 28, 2017 5:33 PM

196 Chapter 5 Verilog Hardware Description Language

Verilog’s conditional operator ?: selects one of two alternate expressions
depending on the value of a logical expression: the first alternative if the logical
expression is true, and the second if it is false.

The conditional operator’s syntax and a few examples are given in
Table 5-13. In the first example, the value of the expression is Y if X is true, else
it’s Z. The second example selects the maximum of two vector operands, A and B.
The last example shows how conditional operations can be nested. For complex
conditional operations, parenthesization is recommended for both readability
and correctness. A design example is shown in Program 5-7 on page 204.

There’s an important subtlety to understand when Verilog’s comparison
operators are used in test benches, that is, in simulation. There, it is possible for
one or more of an operand’s bits to have a value of “x” or “z”—unknown or
high-impedance. If any bit of any operand is x or z, the operators in Table 5-12
return a value of x. And x is treated as false by the conditional operator above

EXPRESSIONS
AND OPERATOR

PRECEDENCE
(OR, ALWAYS

OBEY YOUR
PARENS!)

So far, we’ve introduced a bunch of Verilog net and variable types, and operators
that combine them; and there are a few more to come. All of these can be combined
in expressions that yield a value.

As in other programming languages, each Verilog operator has a certain
precedence that determines the order in which operators are applied in a non-
parenthesized expression. For example, the NOT operator ~ has higher precedence
(is applied sooner) than AND and OR (& and |), so ~X&Y is the same as (~X)&Y. Also,
& has higher precedence than | (but see the potential trap discussed in Section 3.1.5
on page 100). Therefore, W&X|Y&Z is the same as (W&X)|(Y&Z). But W|X & Y|Z does
not mean what you might think from the spacing—it’s the same as W|(X&Y)|Z.

Verilog reference manuals can show you the detailed pecking order that is
defined for operator precedence. However, it’s not a good idea to rely on this. You
can easily slip up, especially if you move frequently among different programming
languages with different operators and precedence orders. Also, others who read
your code may interpret your expressions incorrectly. So, although W|X&Y|Z is the
same as W|(X&Y)|Z, if that’s what you want, you should write it the second way.

The best policy is to parenthesize expressions fully, except for the very com-
mon case of negating a single variable. With parentheses, there can be no confusion.

?:, conditional
operator

logical-expression ? true-expression : false-expression

X ? Y : Z

(A>B) ? A : B;

(sel==1) ? op1 : (
 (sel==2) ? op2 : (
 (sel==3) ? op3 : (
 (sel==4) ? op4 : 8'bx)))

Table 5-13
Syntax and examples
of the Verilog
conditional operator.

DDPP5.book Page 196 Tuesday, March 28, 2017 5:33 PM

5.6 Compiler Directives 197

and in statements like if and for, introduced later, whose behaviors depend on
the value of a logical expression.

When comparisons are performed in test benches on operands that may
have unknown values (likely in testing!), it is usually more appropriate to use
one of Verilog’s so-called case equality operators in Table 5-14. These operators
compare their operators bit-by-bit and consider them equal only if 0, 1, x, and z
bits match in every position. They always return a value of true or false (1'b1 or
1'b0), never x. However, these operators should not be used in the definition of
a synthesizable module, since there are no corresponding circuit elements that
distinguish x and z from “real” 0s and 1s.

5.6 Compiler Directives
A Verilog compiler provides several directives for controlling compilation; we’ll
introduce two of them here. All compiler directives begin with an accent grave
(`). First is the `include compiler directive, with the syntax below:

`include filename

The named file is read immediately and processed as if its contents were part of
the current file. This facility is typically used to read in definitions that are com-
mon to multiple modules in a project. Nesting is allowed; that is, an include’d
file can contain `include directives of its own.

Next is the `define compiler directive, with the syntax below:

`define identifier text

Notice that there is no ending semicolon. The compiler textually replaces each
appearance of identifier in subsequent code with text. Keep in mind that the sub-
stitution is textual; no expression evaluation or other processing takes place.
Also, it is important to know that the definition is in effect not only in the current
file, but in subsequent files that are processed during a given compiler run (for
example, in files that are include’d by this one).

A `timescale compiler directive will be described in Section 5.11.

case equality

Operator Operation

=== case equality

!== case inequality

Table 5-14
Verilog “case
equality” operators.

`include

`define

`define VS.
parameter

Although ̀ define can be used to define constants, such as bus sizes and range start-
ing and ending indexes, in general it’s better to use parameter declarations for such
definitions, unless the constant is truly a global one. With `define, you run the risk
that unbeknownst to you, another module or include’d file will change the con-
stant’s definition. Parameter definitions are local to a module.

DDPP5.book Page 197 Tuesday, March 28, 2017 5:33 PM

198 Chapter 5 Verilog Hardware Description Language

5.7 Structural Models
We’re finally ready to look at the part of a Verilog model that actually specifies
digital-logic operation, from which a realization is synthesized. This is the set of
concurrent statements in the module declaration of Program 5-1 on page 183.
The most important of the concurrent-statement types are instance, continuous-
assignment, and always statements. They lead to three distinct styles of circuit
design and description, which we cover in this and the next two sections.

Statements of these three types, and corresponding design styles, can be
freely intermixed within a Verilog module. In Section 5.13, we’ll cover one
more concurrent-statement type, initial, that’s used in test benches.

In the structural style of circuit description or modeling, individual gates
and other components are instantiated and connected to each other using nets.
This is a language-based equivalent of a logic diagram, schematic, or net list.

Verilog has several built-in gate types, shown in Table 5-15. The names of
these gates are reserved words. The and, or, and xor gates and their comple-
ments may have any number of inputs. A buf gate is a 1-input noninverting
buffer, and a not gate is an inverter.

The remaining four gates are 1-input buffers and inverters with three-state
outputs. They drive the output with the data input (or its complement) if the
enable input is 0 or 1, as in the gate’s name; else the output is z. For example,
bufif0 drives its output with its data input if the enable input is 0.

A typical design environment has libraries that provide many other pre-
defined components such as input/output buffers for external pins, flip-flops,

concurrent statement

structural model
structural description

built-in gate types

and xor bufif0

nand xnor bufif1

or buf notif0

nor not notif1

Table 5-15
Verilog built-in gates.

CONCURRENT
STATEMENTS

AND SIMULATION

Each concurrent statement in a Verilog module “executes” simultaneously with the
other statements in the same module declaration. This behavior is markedly different
from that of statements in conventional software programming languages, which
execute sequentially. Concurrent operation is necessary to simulate the behavior of
hardware, where connected elements affect each other continuously, not just at par-
ticular, ordered time steps.

Consider a module whose last concurrent statement updates a signal that is
used by the first concurrent statement. When the module’s operation is simulated, the
simulator will go back to that first statement and update its results using the signal
that just changed. In fact, it will keep propagating changes and updating results until
the model stabilizes; we’ll discuss this in more detail in Section 5.12. This behavior
is needed to emulate real hardware, where outputs affect inputs continuously.

DDPP5.book Page 198 Tuesday, March 28, 2017 5:33 PM

5.7 Structural Models 199

and higher-complexity functions such as decoders and multiplexers. Each of
these components has a corresponding module declaration in a library.

Gates and other components are instantiated in an instance statement with
two syntax variants shown in Table 5-16. The statement gives the name of the
component, like and, followed by an optional identifier for this particular
instance, followed by a parenthesized list that associates component ports
(inputs and outputs) with an expression (expr). In the case of an inout or output
port, the associated expr must be the name of a local net to which the port
connects. In the case of an input port, the expr can be a net name, a reg variable,
or an expression that evaluates to a value compatible with the input-port type.

 Note that instance identifiers (like “U1”) must be unique within a module,
but may be reused in different modules. The compiler creates a longer, globally
unique identifier for each instance based on its position in the overall design
hierarchy, which identifies the instance in system-level simulation and synthesis.
Also, if the instance identifier is completely omitted, the compiler creates one.

As shown in Table 5-16, two different formats are allowed for the port-
association list. The first format depends on the order in which port names
appear in the original component definition. The local expressions are listed in
the same order as the ports to which they connect. Built-in gates can only be
instantiated using the first format, and their defined port-name order is (output,
input, input, . . .). The order among the multiple inputs doesn’t matter when all
inputs affect a gate’s output in the same way. For the built-in three-state buffers
and inverters, the defined order is (output, data-input, enable-input).

Using the first format, Program 5-2 shows a module that uses structural
code and built-in gates to define an “inhibit” gate—basically an AND gate with
one inverted input. Note in the third line of the module that the type of the output
port out is not declared, and is therefore defined to be a wire by default. We

instance statement

component-name instance-identifier (expr, expr, ..., expr);

component-name instance-identifier (.port-name(expr),
 .port-name(expr),
 ...
 .port-name(expr));

Table 5-16
Syntax of Verilog
instance statements.

Program 5-2 Structural Verilog model for an “inhibit” gate.

module VrInhibit(in, invin, out); // also known as 'BUT-NOT'
 input in, invin; // as in 'in but not invin'
 output out; // (see [Klir, 1972])
 wire notinvin;

 not U1 (notinvin, invin);
 and U2 (out, in, notinvin);
endmodule

DDPP5.book Page 199 Tuesday, March 28, 2017 5:33 PM

200 Chapter 5 Verilog Hardware Description Language

could have instead written “output wire out” with exactly the same effect. In
this book, we’ll sometimes include the “wire” keyword just to make it perfectly
clear that we really want the default wire, not a reg.

As another example, Program 5-3 defines a module for an alarm circuit
with the same inputs, output, and function as the logic diagram in Figure 3-16 on
page 113. Note how we defined local wires for internal signals, including three
that weren’t named in the logic diagram.

Library components and user-defined modules can be instantiated with
either the first or the second format. In the second format, each item in the port-
association list gives the port name preceded by a period and followed by a
parenthesized expression. For example, Program 5-4 instantiates two inverters
and three copies of the inhibit-gate module of Program 5-2 to create a 2-input
XOR gate, albeit in a very roundabout way. A corresponding logic diagram is
shown in Figure 5-2.

The best coding practices use the second format only, since simple errors
like transposing inputs can occur easily in the first format and can be hard to
find. In the second format, port associations can be listed in any order, since they
are written out explicitly.

Program 5-3 Structural Verilog model for an alarm circuit.

module VrAlarmCkt (// Note ANSI-style port declarations
 input panic, enable, exiting, window, door, garage,
 output alarm
);
 wire secure, notsecure, notexiting, otheralarm;

 or U1 (alarm, panic, otheralarm);
 and U2 (otheralarm, enable, notexiting, notsecure);
 not U3 (notexiting, exiting);
 not U4 (notsecure, secure);
 and U5 (secure, window, door, garage);
endmodule

Program 5-4 Structural Verilog model for an XOR function.

module VrSillyXOR(in1, in2, out);
 input in1, in2;
 output out;
 wire inh1, inh2, notinh2, notout;

 VrInh U1 (.out(inh1), .in(in1), .invin(in2));
 VrInh U2 (.out(inh2), .in(in2), .invin(in1));
 not U3 (notinh2, inh2);
 VrInh U4 (.out(notout), .in(notinh2), .invin(inh1));
 not U5 (out, notout);
endmodule

DDPP5.book Page 200 Tuesday, March 28, 2017 5:33 PM

5.7 Structural Models 201

Remember that the instance statements in the example modules, Programs
5-2 through 5-4, execute concurrently. In each module, even if the statements
were listed in a different order, the same circuit would be synthesized, and the
simulated circuit operation would be the same.

Parameters, introduced at the end of Section 5.2, can be put to good use to
parameterize structural modules that can handle inputs and outputs of any width.
For example, consider a 3-input majority function, which produces a 1 output if
at least two of its inputs are 1. That is, OUT = I0 ⋅ I1 + I1 ⋅ I2 + I0 ⋅ I2. A module
that performs a bitwise majority function on corresponding bits of input and
output vectors of any width can be defined as shown in Program 5-5.

When the Maj module is used with the instance-statement syntax in the
previous examples, the parameter WID takes on its default value of 1, and the
module works on 1-bit vectors (bits). However, instance-statement syntax has an
option for overriding the instantiated module’s parameter definitions. In the
instance statement, the component name is followed by # and a parenthesized,
comma-separated list of values that are substituted for the default parameter
values given in the module definition. These values appear in the same order that
the parameters are defined in the module. Thus, if W, X, Y, and Z are all 8-bit

in1

in2

inh1

inh2 notinh2

notout
out

U1

U5
U4

U3
U2

Figure 5-2 Logic diagram corresponding to the VrSillyXOR module.

parameterized module

majority function

Program 5-5 Parameterized Verilog module for a 3-input majority function.

module Maj(OUT, I0, I1, I2);
 parameter WID = 1;
 input [WID-1:0] I0, I1, I2;
 output [WID-1:0] OUT;

 assign OUT = I0 & I1 | I0 & I2 | I1 & I2 ;
endmodule

SERIOUS
SYNTHESIS

A competent synthesizer can analyze the VrSillyXOR and VrInh modules together
and reduce the circuit realization down to a single 2-input XOR gate, or equivalent
realization in the target technology. Such a synthesizer typically also has an option
to turn off global optimization and force synthesis of each module individually.

parameter substitution
#

DDPP5.book Page 201 Tuesday, March 28, 2017 5:33 PM

202 Chapter 5 Verilog Hardware Description Language

vectors, the following instance statement creates an 8-bit majority function for X,
Y, and Z:

Maj #(8) U1 (.OUT(W), .I0(X), .I1(Y), .I2(Z));

The parameter substitution method above works alright when a module has
just one parameter, but it’s not so great for modules with more parameters. The
need to list parameters in order obviously makes it error-prone. Worse, if you
need to change only one of the parameters from its default value, you still have
to provide values for all the ones before it in the list. Therefore, Verilog-2001
provides an ANSI-style mechanism to specify the values of any or all parame-
ters, called named parameter redefinition. Instead of a list of parameter values,
an instance statement may now contain a list that defines new values for one or
more named parameters, in much the same style as the port-name/expression list
later in the statement. With this method, the previous example becomes

Maj #(.WID(8)) U1 (.OUT(W), .I0(X), .I1(Y), .I2(Z));

Or, consider a more complex module Cmaj with the same inputs and output, but
three parameters PARM1, PARM2, and PARM3. We could change the values of just
two of them with an instance statement like the following:

Cmaj #(.PARM3(8), .PARM1(4)) U2 (.OUT(F), .I0(A), .I1(B), .I2(C));

Any parameters that don’t appear in the list retain their default values.
Note that parameters can be defined in modules that are coded in any

style—included dataflow and procedural which will be discussed in the next two
sections. But parameters can be substituted as shown above only when a module
is instantiated structurally. Verilog provides another parameter definition and
substitution mechanism, using the defparam keyword, but this mechanism is
easily misused, leading to errors, and its use is not generally recommended.

named parameter
redefinition

defparam keyword

VERILOG’S
GENERATE

In some applications, it is necessary to create multiple copies of a particular structure
within a model, and Verilog-2001 addresses this need. Keywords generate and
endgenerate begin and end a “generate block.” Within a generate block, certain
“behavioral” statements introduced later (if, case, and for) can be used to control
whether or not instance and dataflow-style statements are executed. Instances can be
generated in iterative loops (for), where the loop is controlled by a purpose-specific
integer variable type (genvar).

The Verilog compiler takes care of generating unique component identifiers
and, if necessary, net names for all instances and nets that are created within a for
loop in a generate block, so they can be tracked during simulation and synthesis. We
will give our first generate example in Program 7-5 on page 311, and more in
Chapter 8 starting with Program 8-9 on page 393.

DDPP5.book Page 202 Tuesday, March 28, 2017 5:33 PM

5.8 Dataflow Models 203

5.8 Dataflow Models
If Verilog had only instance statements, then it would be nothing more than a
hierarchical net-list description language. “Continuous-assignment statements”
allow Verilog to model a combinational circuit in terms of the flow of data and
operations in the circuit. This style is called a dataflow model or description.

Dataflow models use continuous-assignment statement, with the basic
syntax shown in the first line of Table 5-17. The keyword assign is followed by
the name of a net, then an = sign, and finally an expression giving the value to be
assigned. As shown in the remaining lines of the table, the lefthand side of the
statement may also specify a bit or part of a net vector, or a concatenation using
the standard concatenation syntax shown earlier. The syntax also has options
that allow a drive strength and a delay value to be specified, but they aren’t often
used in design for synthesis, and we don’t discuss or use them in this book.

A continuous-assignment statement evaluates the value of its righthand
side and assigns it to the lefthand side, well, continuously. In simulation, the
assignment occurs in zero simulated time, unless the delay option is used.

As with instance statements, the order of continuous assignment state-
ments in a module doesn’t matter. If the last statement changes a net value used
by the first statement, then the simulator will go back to that first statement and
update its results according to the net that just changed, as discussed in more
detail in Section 5.12. So, if a module contains two statements, “assign X = Y”
and “assign Y = ~X”, then a simulation of it will loop “forever” (until the simu-
lator times out). The corresponding synthesized circuit would be an inverter with
its input connected to its output; if you actually built it, it would oscillate at a rate
dependent on the signal propagation delay of the inverter.

Program 5-6 shows a Verilog module for a prime-number detector circuit
(see Figure 3-24(c) on page 120) written in dataflow style. In this style, we don’t
show the explicit gates and their connections; rather, we use Verilog’s bitwise-
boolean operators to write the logic equation directly.

dataflow model
dataflow description
continuous-assignment

statement

assign net-name = expression;
assign net-name[bit-index] = expression;
assign net-name[msb:lsb] = expression;
assign net-concatenation = expression;

Table 5-17
Syntax of continuous-
assignment statements.

assign keyword

Program 5-6 Dataflow Verilog model for a prime-number detector.

module Vrprimed (N, F);
input [3:0] N;
output F;
 assign F = (~N[3] & N[0]) | (~N[3] & ~N[2] & N[1])
 | (~N[2] & N[1] & N[0]) | (N[2] & ~N[1] & N[0]);
endmodule

DDPP5.book Page 203 Tuesday, March 28, 2017 5:33 PM

204 Chapter 5 Verilog Hardware Description Language

Verilog’s continuous-assignment statement is unconditional, but different
values can be assigned if the righthand side uses the conditional operator (?:).
For example, Program 5-7 codes the same prime-number detection function
using a completely different approach with a conditional operator. This operator
corresponds very naturally to a 2-input multiplexer (introduced in Section 1.13
on page 29), a device that selects one of two possible data inputs based on the
value of a select input. Thus, in an ASIC design, a synthesizer could realize the
assignment in Program 5-7 using the circuit structure in Figure 5-3.

A dataflow-style example in which the conditional operator’s use is more
natural and intuitive is shown in Program 5-8. This module transfers one of three
input bytes to its output depending on which of three corresponding select inputs
is asserted. The order of the nested conditional operations determines which
byte is transferred if multiple select inputs are asserted—input A has the highest
priority, and C has the lowest. If no select input is asserted, the output is 0.

WHERE DID THAT
COME FROM?

You may be wondering how I got the conditional expression in Program 5-7. It
results from Shannon decomposition on variable N3. See Theorem T15 on page 97.

Program 5-7 Prime-number-detector code using a conditional operator.

module Vrprimec (N, F);
input [3:0] N;
output F;

assign F = N[3] ? (N[0] & (N[1]^N[2])) : (N[0] | (~N[2]&N[1])) ;
endmodule

2-input multiplexer

SEL
D0

D1
OUT F

N3

N[0] | (~N[2]&N[1])

N[0] & (N[1]^N[2])

Figure 5-3
Logic circuit
corresponding to a
conditional operator.

Program 5-8 Verilog module for selecting an input byte.

module Vrbytesel (A, B, C, selA, selB, selC, Z);
input [7:0] A, B, C;
input selA, selB, selC;
output [7:0] Z;

 assign Z = selA ? A : (
 selB ? B : (
 selC ? C : 8'b0)) ;
endmodule

DDPP5.book Page 204 Tuesday, March 28, 2017 5:33 PM

5.9 Behavioral Models (Procedural Code) 205

5.9 Behavioral Models (Procedural Code)
As we saw in the last example, it may be possible to model a desired logic-circuit
behavior directly using a continuous-assignment statement and a conditional
operator. This is a good thing, because the ability to create a behavioral model
or description is one of the key benefits of hardware description languages in
general and of Verilog in particular. However, for most behavioral models, we
need to use some additional language elements that allow us to write “procedural
code,” as described in this section.

5.9.1 Always Statements and Blocks
The key element of Verilog behavioral modeling is the always statement, with
syntax options shown in Table 5-18. An always statement is followed by one or
more “procedural statements,” introduced shortly. The syntax in the table shows
only one procedural statement. But as we’ll show later, one type of procedural
statement is a “begin-end block” that encloses a list of other procedural state-
ments. That’s what is used in all but the simplest always statements, and that’s
why we often call it an always block.

Procedural statements in an always block execute sequentially, as in
software programming languages. However, the always block itself executes
concurrently with other concurrent statements in the same module (instance,
continuous-assignment, and always). Thus, if one of the procedural statements
changes the value of a net or variable that is used in another concurrent state-
ment, it may cause that statement to be re-executed (more on this to follow).

In the first three forms of an always statement, the @ sign is followed by a
parenthesized list of signal names, called a sensitivity list, which should specify
all the signals whose values may affect results in the always block. The first
form of always statement in Table 5-18 was the only one allowed in Verilog-
1995, where individual signal names were separated by the keyword or. Given
that this “or” has nothing to do with the logical operation, Verilog-2001 allows a
comma to be used instead. In either case, a Verilog simulator reevaluates the pro-
cedural statement each time that any signal in the sensitivity list changes.

The third form of the sensitivity list (*), also introduced in Verilog-2001,
is a shorthand for “every signal that might change a result,” and puts the burden

behavioral model
behavioral description

always statement
always keyword

always block

always @ (signal-name or signal-name or ... or signal-name)
 procedural-statement
always @ (signal-name, signal-name, ... , signal-name)
 procedural-statement
always @ (*) procedural-statement

always @ (posedge signal-name) procedural-statement
always @ (negedge signal-name) procedural-statement

always procedural-statement

Table 5-18
Syntax of Verilog
always blocks.

sensitivity list

or keyword

sensitivity wildcard

DDPP5.book Page 205 Tuesday, March 28, 2017 5:33 PM

206 Chapter 5 Verilog Hardware Description Language

on the compiler to determine which signals should be in the list—basically all
signals whose values may be read within the procedural statement. In this text,
we often use this form (see the boxed comment below for why we do this).

The fourth and fifth forms of sensitivity list in Table 5-18 are used in
sequential circuits, and will be discussed in Section 5.14. The last form of an
always statement does not have a sensitivity list. Such an always statement
starts running at time zero in simulation and keeps looping forever. This is not a
good thing in synthesis, but can be very useful in a test bench. By coding explicit
delays within the always statement, you can generate a repetitive waveform like
a clock signal. See, for example, Program 12-6 on page 619.

An instance or continuous-assignment statement also has a sensitivity list,
an implicit one. All of the input signals in an instantiated component or module
are on the instance statement’s implicit sensitivity list. Likewise, all of the
signals on the righthand side of a continuous-assignment statement are on its
implicit sensitivity list.

In simulation, a Verilog concurrent statement such as an always block is
always either executing or suspended. A concurrent statement initially is sus-
pended; when any signal in its sensitivity list changes value, it resumes
execution. A resumed always block starts with its first procedural statement and
continues executing them sequentially all the way until its end. If any signal in
the sensitivity list changes value as a result of executing the concurrent state-
ment, it executes again. This continues until the statement executes without any

YOU SHOULD BE
MORE SENSITIVE

(*)

A Verilog simulator executes the procedural statements within an always block only
when one or more of the signals in its sensitivity list changes. It is very easy to inad-
vertently write a “combinational” always block with an incomplete sensitivity list—
one in which not all of the signals that affect the outcomes of the procedural state-
ments are listed. Typically, you might forget to include one or more signals that
appear on the righthand side of an assignment statement, especially after revising the
model and adding new signals to it.

Faced with such an error, the simulator still follows the definition and does not
execute the always block until one of the listed signals changes. Thus, the block’s
behavior will be partially sequential, rather than combinational as intended. A typi-
cal synthesizer, however, does not attempt to create logic with this weird behavior.
Instead, it ignores your error and synthesizes your intended combinational logic.

No problem then, right? Wrong. Now the behaviors of the simulator and the
synthesized logic don’t match. The “incorrect” simulated behavior may mask other
errors and give you the intended and expected results at the system level, while the
synthesized circuit may not work properly in all cases.

One solution to this problem is always to pay close attention to warning
messages from the synthesizer—most will flag this condition. A better solution is to
use the wildcard “*” as the sensitivity list.

executing statement
suspended statement

DDPP5.book Page 206 Tuesday, March 28, 2017 5:33 PM

5.9 Behavioral Models (Procedural Code) 207

of these signals changing value at the current time. In simulation, all of this hap-
pens in zero simulated time.

Upon resumption, a properly written concurrent statement will suspend
after one or a few executions. However, it is possible to write a statement that
never suspends. For example, consider the instance statement “not(X,~X)”.
Since X changes on every execution pass, the statement will execute forever in
zero simulated time—not very useful! In practice, simulators have safeguards
that normally can detect such unwanted behavior, terminating the misbehaving
statement after a thousand or so passes.

5.9.2 Procedural Statements
Verilog has several different procedural statements that are used within an
always block. They are assignment, begin-end blocks, if, case, while, and
repeat; we’ll describe them soon. There are a few other seldom-used types;
they are not synthesizable and we don’t cover them in this book.

Procedural statements are written in a style similar to software program-
ming languages like C. Every value assigned to a variable is preserved until it is
changed in the current or in a subsequent execution of an always block. This
behavior is natural in software programming languages, but with Verilog models
you can get unwanted behavior in both simulation and synthesis if you stray
from recommended coding guidelines, as discussed in the next subsection.

5.9.3 Inferred Latches
Consider an always block which is intended to create combinational logic and
assigns a value to a variable X. As we’ll soon see, besides unconditional assign-
ments, Verilog has conditional procedural statements like if and case that can
control whether other statements, including assignments, are executed. So, X
might appear on the lefthand side of several different assignments, and in a given
pass through the always block, zero, one, or more of them might actually be
executed, depending on current condition values.

There’s no problem if one or even if multiple values are assigned to X
during a given pass through the always block. Since the block executes in zero
simulated time, and procedural statements are executed sequentially, the last
value assigned dominates. But suppose that no value is assigned to X. Since this
is procedural code, the simulator “infers” that you don’t want this pass to change
the value of X from what it had during the previous pass. And so the synthesizer
infers a latch—it creates a storage element to retain the previous value of X if
conditions are such that no new value is assigned. This is rarely the designer’s
intent when modeling combinational logic.

The solution to this problem is to ensure that a value is assigned to X (and
to every other variable on the lefthand side of an assignment statement) in every
possible execution path through an always block. Although nothing is fool-
proof, we’ll show a pretty reliable way to do this in the box on page 216.

procedural statement

latch inference

DDPP5.book Page 207 Tuesday, March 28, 2017 5:33 PM

208 Chapter 5 Verilog Hardware Description Language

5.9.4 Assignment Statements
The first two procedural statements we need are blocking and nonblocking
assignment, with the syntax shown in Table 5-19. The lefthand side of either
procedural assignment statement must be a variable, but the righthand side can
be any expression that produces a compatible value and can include both nets
and variables.

A blocking assignment looks and acts like an assignment statement in any
other procedural language, like C. A nonblocking assignment looks and acts a
little different—it evaluates its righthand side immediately, but it does not assign
the resulting value to the lefthand side until an infinitesimal delay after the entire
always block has been executed. Thus, the “old” value of the lefthand side con-
tinues to be available for the rest of the always block. You can read a
nonblocking assignment as “variable-name eventually gets expression.”

If you think too hard about the subtle differences between the two types of
assignment statements, your head may hurt or you may get confused. But
fortunately, if you follow a basic, consistent coding style for synthesis as
practiced in this book, it’s easy to know which one to use—just follow the simple
rules at the bottom of the next page. Still, we’ll give some examples later in this
section and in Section 10.3 that shed more light on the reasons for the rules.

blocking assignment
statement, =

nonblocking
assignment statement,
<=

WHY
“BLOCKING”?

Blocking assignments get their name because they block the execution of subsequent
procedural statements in the same always block until the assignment has actually
been made. Well, duh, that’s what you’d expect in any procedural programming
language like C or Java, right?

What you don’t know yet is that Verilog also allows a procedural assignment
statement to specify a delay. Although such delays can be used in modeling actual
hardware delays, they are not synthesizable, and we don’t describe or use them in
this book. But if you did specify such a delay, it would block the execution of the rest
of the always block until the delay had passed.

AND WHY
“NONBLOCKING”?

Nonblocking assignments, whether a delay is specified or not, allow execution of the
always block to continue. But they’re still not the same as assignments in typical
procedural programming languages like C or Java.

As noted in the main text above, a nonblocking-assignment statement evalu-
ates its righthand side immediately, but even if no delay is specified (typical in
design-for-synthesis) it does not assign this value to the lefthand side until an infin-
itesimal delay after the entire always block has completed execution.

DDPP5.book Page 208 Tuesday, March 28, 2017 5:33 PM

5.9 Behavioral Models (Procedural Code) 209

For instructional purposes, we’ve rewritten the dataflow Verilog module
for the prime-number detector in Program 5-6 on page 203 using an always
statement, in Program 5-9. There are a couple of things to notice about this code:

• The output signal F must be declared as a reg variable, since it appears on
the lefthand side of an assignment statement in an always block.

• The assignment statement is a blocking one, as recommended by our cod-
ing guidelines.

If we want an always statement to perform two or more assignments or other
operations when it executes, we need “begin-end” blocks, described next.

variable-name = expression ; // blocking assignment

variable-name <= expression ; // nonblocking assignment

Table 5-19
Procedural
assignment
statements.

Program 5-9 Prime-number detector using an always block.

module Vrprimea (N, F);
input [3:0] N;
output reg F;

 always @ (*)
 F = ~N[3] & N[0] | ~N[3] & ~N[2] & N[1]
 | ~N[2] & N[1] & N[0] | N[2] & ~N[1] & N[0] ;
endmodule

LEARN THE
RULES, YOU

BLOCKHEAD!

The two rules below are so important, it’s the only place that you’ll find boldface
roman font used in this book:

• Always use blocking assignments (=) in always blocks intended to create
combinational logic.

• Always use nonblocking assignments (<=) in always blocks intended to create
sequential logic. (See Section 10.3.2.)

• Do not mix blocking and nonblocking assignments in the same always block.

• Do not make assignments to the same variable in two different always blocks.

Once you’ve learned these rules, the only thing left is for you to remember is which
assignment operator symbol is which. But that’s easy, too. The < character in the
nonblocking assignment operator is a mirror image of the dynamic-input indicator
(>) used in an edge-triggered flip-flop’s logic symbol, as you’ll learn later. So, be
sure to use it in always blocks that are intended to create sequential logic.

DDPP5.book Page 209 Tuesday, March 28, 2017 5:33 PM

210 Chapter 5 Verilog Hardware Description Language

5.9.5 begin-end Blocks
The first part of Table 5-20 shows the basic syntax of a begin-end block, simply
a list of one or more procedural statements enclosed by the keywords begin and
end. As shown in the second part of the table, a begin-end block can have its
own local parameters or variables (typically integer or reg). In this case, the
block must be named so that these items can be tracked during simulation and
synthesis, using the name. Also, a begin-end block can be named even if it has
no local parameters or variables.

Note that the procedural statements within a begin-end block execute
sequentially, not concurrently like the instance, continuous-assignment, and
other always statements at the top level of a module. Of course, sequential exe-
cution is what you’d expect in procedural code.

A behavioral model of an alarm circuit using an always block is shown in
Program 5-10. The model uses the equations we originally showed on page 112,
including the definition of an intermediate signal secure. A few aspects of this
model are noteworthy:

• The intermediate signal is declared as reg variable local to the begin-end
block.

• Since a local variable is declared, the block must be named.

begin
 procedural-statement
 ...
 procedural-statement
end

begin : block-name
 variable declarations
 parameter declarations

 procedural-statement
 ...
 procedural-statement
end

Table 5-20
Syntax of Verilog
begin-end blocks.

begin-end block
begin keyword
end keyword

WHEN TO USE A
SEMICOLON

You might think of a begin-end block as being a list of procedural statements
separated by semicolons, but that’s not quite right; the syntax is just as we show it
above. A semicolon is already included in an assignment statement as defined in
Table 5-19. And the “end” in a begin-end block has the semicolon “built-in.” The
same is true of the “endcase” in a case statement, introduced later.

Still, Verilog defines a semicolon all by itself to be a null statement, so it
usually doesn’t hurt to put in extras.

DDPP5.book Page 210 Tuesday, March 28, 2017 5:33 PM

5.9 Behavioral Models (Procedural Code) 211

• The output alarm must be declared as a reg variable, since a value is
assigned to it by procedural code.

• Instead of putting “*” in the sensitivity list, we’ve listed all the inputs, just
to emphasize the fact that local reg variables may not be included. If you
did include secure, you’d actually get an error message, since it’s unde-
fined outside the scope of the begin-end block.

• In this simple example, there’s no particular reason for secure to be
defined local to the always block rather than at the top level of the module;
either way works. In a larger module, you might prefer it to be local so it
won’t be used inadvertently by other concurrent statements.

5.9.6 if and if-else Statements
Other procedural statements, beyond simple assignment and begin-end blocks,
give designers more powerful ways to model circuit behavior. An if statement,
with the syntax shown in Table 5-21, is probably the most familiar of these. In
the first and simplest form of the statement, a condition (a logical expression) is
tested, and a procedural statement is executed if the condition is true (that is, if
it evaluates to 1'b1).

In the if-else form, we’ve added an “else” clause with another proce-
dural statement that’s executed if the condition evaluates to anything but true
(including “x”, which may occur in a test bench). Note that although an if-else
statement may contain two semicolons—terminating its two procedural state-
ments—it is still just one statement. So if-else can be used anywhere that a
single statement can be used, for example, as the procedural statement for an
always statement or as the “else” clause of another if-else statement.

Program 5-10 Alarm-circuit module using procedural assignments in an always block.

module VrAlarmCktb (
 input panic, enable, exiting, window, door, garage,
 output reg alarm
);
 always @ (panic, enable, exiting, window, door, garage)
 begin : Ablk
 reg secure;
 secure = window & door & garage;
 alarm = panic | (enable & ~exiting & ~(window & door & garage));
 end
endmodule

if statement
if keyword

if (condition) procedural-statement

if (condition) procedural-statement
else procedural-statement

Table 5-21
Syntax of Verilog
if statements.

condition

if-else statement
else keyword

DDPP5.book Page 211 Tuesday, March 28, 2017 5:33 PM

212 Chapter 5 Verilog Hardware Description Language

As in other languages, if and if-else statements can be nested, since any
of the “procedural-statements” in Table 5-21 can be if statements. Also as in
other languages, an if statement that is nested immediately after the condition
in an if-else should be enclosed in a begin-end block to eliminate any ambi-
guity about which “if” the “else” goes with. Even if your mind works as
perfectly as a Verilog parser, someone else who reads your code might make an
incorrect association.

Program 5-11 is a version of the prime-number-detector module that uses a
nested if statement. It defines a parameter that you can change depending on
whether or not you believe that 1 is prime. The first if clause handles the special
case, and the second one separates the remaining cases into even and odd. Notice
the use of begin-end around the if statement that is nested immediately after
the condition expression in its parent.

Also notice in Program 5-11 that a value is assigned to F in every possible
execution path through the always block. Suppose that we inadvertently left out
the first “else F = 0” clause. Then, for the reasons discussed on page 207, the
synthesizer would infer a latch to hold the previous value of F whenever N is even
but not 2. One way to avoid latch inference is to ensure that every if statement
has an else clause, and that every variable that is assigned a value in one if or
else clause is also assigned a value in every other clause. Another method is
discussed in the box on page 216.

Program 5-11 Prime-detector module using an if statement.

module Vrprimei (N, F);
input [3:0] N;
output reg F;
parameter OneIsPrime = 1; // Change this to 0 if you
 // don't consider 1 to be prime.
 always @ (*)
 if (N == 1) F = OneIsPrime;
 else if ((N % 2) == 0)
 begin if (N == 2) F = 1; else F = 0; end
 else if (N <= 7) F = 1;
 else if ((N==11) || (N==13)) F = 1;
 else F = 0;
endmodule

PRIME TIME
AGAIN

When introducing the prime-detector example in Chapter 3, I explained that mathe-
maticians don’t consider “1” to be a prime number. So, to accommodate them, I
included the parameter in Program 5-11. It also makes the example more interesting.

DDPP5.book Page 212 Tuesday, March 28, 2017 5:33 PM

5.9 Behavioral Models (Procedural Code) 213

5.9.7 case Statements
When two or more variables must be tested to determine different outcomes, a
nested series of if statements is usually the right coding approach. However, if
all of the if statements would be testing the same variable, as in Program 5-11,
it is often more clear to use a case statement, described next.

Table 5-22 shows the syntax of a Verilog case statement. It begins with the
keyword case and a parenthesized “selection expression,” usually one that eval-
uates to a bit-vector value of a certain width. Next is a series of case items, each
of which has a comma-separated list of “choices” and a procedural statement. (If
there is only one choice in a particular case item, then the comma is omitted.) A
single “default” case item may be included as discussed shortly. The statement
ends with the endcase keyword.

The operation of case statement is simple—it evaluates the selection
expression, finds the first one of the choices that matches the expression’s value,
and executes the corresponding procedural statement. Again, the case statement
executes just one procedural statement, corresponding to the first match.

Choices in a case statement are typically just constant values compatible
with the selection expression, but they can also be more complex expressions.
This leads to the possibility that some of the choices may overlap; that is, some
values of the selection expression may match multiple choices, and again, only

EXPENSIVE
COMPARATORS?

When compiled, the Verilog code in Program 5-11 can lead to the creation of up to
five RTL 4-bit comparators corresponding to conditional expressions. For example,
with Xilinx Vivado tools, the logic diagram for the elaborated RTL has two equality
comparators (for “N==11” and “N==13”) and one magnitude comparator (for
“N<=7”). Should we worry about synthesizing “expensive comparators”?

No. One operand in each comparison is a constant, and the other operand is the
same in all of them. Even though the RTL shows three comparators plus other oper-
ations, the synthesis tool converts the comparators into equivalent boolean equations
and combines them, ultimately creating a 4-input combinational function to map into
the target technology. This example is small enough that all versions of the prime-
number-detector function in this section should yield the same synthesized result,
regardless of the RTL starting point.

case (selection-expression)
 choice , ... , choice : procedural-statement
 ...

 choice , ... , choice : procedural-statement
 default : procedural-statement
endcase

Table 5-22
Syntax of a Verilog
case statement.

case statement
case keyword

endcase keyword

DDPP5.book Page 213 Tuesday, March 28, 2017 5:33 PM

214 Chapter 5 Verilog Hardware Description Language

the first matching choice is executed. When the choices do not overlap, they are
said to be “mutually exclusive.” This is called a parallel case. The best Verilog
coding practices avoid nonparallel case statements.

Quite often, the listed choices in a case statement are not “all-inclusive.”
That is, they may not include all possible values of the selection expression. The
keyword default can be used in the last case item to denote all selection values
that have not yet been covered. (Syntactically, the colon after “default” is
optional.) Even if you’re sure that your listed choices are all-inclusive, it’s a
good practice to include a default choice in your case statements.

A case statement in which the listed choices are all-inclusive is called a
full case. In a nonfull case, the synthesizer infers latches to retain the previous
values of outputs for any cases that are not covered. This is usually not desired,
so the best Verilog coding practices use full case statements only.

Program 5-12 is yet another version of the prime-number detector, this
time coded with a case statement. In this very simple example, the case state-
ment has, in effect, written out the truth table for the output function F.

A slightly more complex use of case is shown in Program 5-13. This mod-
ule transfers one of three 8-bit inputs to its output depending on the value of a
2-bit select code, sel. If sel is 3, the 8-bit output is set to 0. A couple of aspects
of this code are worth noting:

parallel case

NONPARALLEL
case STATEMENTS

When the choices in a case statement are not mutually exclusive (nonparallel case),
only the first matching choice has its corresponding procedural statement executed.
To ensure this, a synthesizer must infer expensive “priority-encoder” logic to
guarantee proper operation.

However, if the synthesizer can determine that the choices are mutually
exclusive, it can use faster and less expensive multiplexer logic. So, you should gen-
erally avoid writing nonparallel case statements. If you need a priority encoder, you
should write one explicitly, for example using nested if statements or as shown in
Section 7.2.2.

default keyword

full case

Program 5-12 Prime-detector module using a case statement.

module Vrprimecs (N, F);
input [3:0] N;
output reg F;

 always @ (*)
 case (N)
 4'd1, 4'd2, 4'd3, 4'd5, 4'd7, 4'd11, 4'd13 : F = 1;
 default : F = 0;
 endcase
endmodule

DDPP5.book Page 214 Tuesday, March 28, 2017 5:33 PM

5.9 Behavioral Models (Procedural Code) 215

• A default choice is coded, even though the choices that precede it are all-
inclusive. This is a good coding practice, especially for simulation. It
ensures that if sel contains any x or z bits, then x’s will be propagated to
the output. You can also use a Verilog $display command here (discussed
in Section 5.10) to flag this case in simulation if you wish; the $display
command is ignored in synthesis.

• The choices are coded as 2-bit-wide vectors. With most Verilog compilers,
we could have gotten away simply with “0, 1, 2, 3,” but see the box below.

Verilog has two other case statements, identical in syntax to the first, but
introduced by the keywords casex and casez. The casez statement allows z
or ? to be used in one or more bit positions in a binary choice constant in, for
example, 4'b10??. These characters are interpreted as “don’t-cares” when the
choice constant is matched with the selection expression. Both characters mean
the same thing, but ? is preferred; it won’t be confused with the high-impedance

MIXING INTEGERS
AND VECTORS IN

case CHOICES

The values of the selection expression and the choices in a case statement should
normally be vectors of the same width. If the widths don’t match, the narrower ones
are extended on the left with 0s.

If the choices are integers, they will be converted to a vector with a compiler-
dependent width, typically 32 bits. If the selection expression is a 4-bit vector, as in
Program 5-12, you would expect the Verilog compiler to figure out that you’re only
interested in the low-order four bits of the integers, and most will. However, in more
complex situations where the vector widths don’t match, some compilers may pro-
duce unexpected results. Therefore, their suppliers recommend that integer choices
be written with explicit widths as in Program 5-12.

Program 5-13 Bus-selector module using a case statement.

module Vrbytecase (A, B, C, sel, Z);
input [7:0] A, B, C;
input [1:0] sel;
output reg [7:0] Z;

 always @ (*)
 case (sel)
 2'd0 : Z = A;
 2'd1 : Z = B;
 2'd2 : Z = C;
 2'd3 : Z = 8'b0;
 default : Z = 8'bx;
 endcase
endmodule

casex keyword
casez keyword
? in choice

DDPP5.book Page 215 Tuesday, March 28, 2017 5:33 PM

216 Chapter 5 Verilog Hardware Description Language

state. The casex statement allows x also to be used as a “don’t-care,” but it is not
recommended, since in simulation it can hide the existence of unknown (x)
values generated upstream. Even casez is tricky to use, and should be avoided
when possible; but we will give an example at the end of Section 7.2.2.

5.9.8 Looping Statements
Another important class of procedural statements are looping statements. The
most commonly used of these is the for statement or for loop, with the syntax
in Table 5-23. Here the loop-index is a register variable, typically an integer or a
bit vector that’s being used like one, and first-expr is an expression giving a
value that is assigned to loop-index when the for loop begins execution.

casex statement

AVOIDING
INFERRED
LATCHES

By now you know that to avoid inferring unwanted latches, you must assign a value
to a variable in every possible execution path through an always block. The easiest
way to do this is to unconditionally assign default values to variables at the beginning
of the always block. This approach works with the if and case statements that
we’ve covered so far, as well as with the looping statements that are coming next.

In some situations, the appropriate default assignment will be to a value of “x”
(unknown). This is good if you intend your subsequent code to cover all cases, but
you’d like to catch inadvertent omissions in simulation. In other situations, you’d
like the default to assign the most commonly needed result, so an assignment need
not be repeated in all the subsequent cases. Program 5-14 shows an example of each.

You may say, “But, the signals F and special now may have values assigned
to them twice. Can’t this cause glitches in the realized circuit?” No. These statements
execute in zero simulated time, and the last assignment in an always block prevails.
And the synthesizer uses the last assigned value, too.

Program 5-14 Prime-detector module with default assignments.

module Vrprimef (N, F, ignore); // Special prime detector
input [3:0] N; // for mathematicians, tells
output reg F, ignore; // them when to ignore F.

 always @ (*) begin
 F = 1'bx; ignore = 1'b0; // defaults
 if (N == 1) begin F = 1; ignore = 1; end
 else if ((N % 2) == 0)
 begin if (N == 2) F = 1; else F = 0; end
 else if (N <= 7) F = 1;
 else if ((N==11) || (N==13)) F = 1;
 else F = 0;
 end
endmodule

looping statement
for statement
for loop
for keyword

DDPP5.book Page 216 Tuesday, March 28, 2017 5:33 PM

5.9 Behavioral Models (Procedural Code) 217

After initializing the loop-index, a for loop executes procedural-statement
for a certain number of iterations. At the beginning of each iteration, it evaluates
logical-expression. If the value is false, the for loop stops execution. If the value
is true, it executes procedural-statement, and at the end of the iteration it assigns
next-expr to loop-index. Iterations continue until logical-expression is false.

For synthesis, the kinds of expressions that can be used for iteration control
are limited. Typically, first-expr must be a constant expression, it must be possi-
ble to determine the value of logical-expression at compile time, and next-expr
may be limited to simple incrementing and decrementing. Thus, the last two
lines of Table 5-23 show a typical syntax of a for loop as it is used for synthesis.
The single procedural statement in a for loop is often a begin-end block, so that
a series of other procedural statements may be executed in each iteration.

A simple example using a for loop is shown in Program 5-15. The module
compares two 8-bit inputs X and Y and asserts its gt output if X is greater than Y.
Rather than use Verilog’s built-in operator, it illustrates a for loop by doing the
comparison bit by bit, starting with the LSB. Prior to the loop, gt is initialized
to 0. In the loop, if (X[i],Y[i]) is (1,0), then X>Y so far. If it’s (0,1), then X<Y so
far. If X and Y are equal, gt keeps whatever value it had at the previous iteration.

The for loop looks very “sequential,” but keep in mind that it’s modeling
combinational logic. In simulation, the entire loop executes in zero simulated
time. And the intermediate values that gt has during the loop’s execution don’t
appear on the synthesized circuit’s output. The value that gt acquires in response
to an input combination is merely being specified sequentially.

for (loop-index = first-expr ; logical-expression ; loop-index = next-expr)
 procedural-statement

for (loop-index = first; loop-index <= last; loop-index = loop-index + 1;)
 procedural-statement

Table 5-23
Syntax of a Verilog
for statement.

Program 5-15 An 8-bit comparator module using a for loop.

module Vrcomp (X, Y, gt);
input [7:0] X, Y;
output reg gt; // Will be 1 if X > Y
integer i;

 always @ (X, Y) begin
 gt = 0; // starts out as 'not greater'
 for (i=0 ; i<=7 ; i=i+1)
 if (X[i] & ~Y[i]) gt = 1;
 else if (~X[i] & Y[i]) gt = 0;
 // otherwise, X[i]==Y[i], and there’s no change to gt
 end
endmodule

DDPP5.book Page 217 Tuesday, March 28, 2017 5:33 PM

218 Chapter 5 Verilog Hardware Description Language

Another statement is sometimes seen in conjunction with Verilog looping
statements, but it is not synthesizable by all tools and should be avoided. The
disable statement can be used anywhere within a named begin-end block. It
consists of the disable keyword, followed by the name of the block, followed
by a semicolon. When executed, it immediately terminates execution of the
block; subsequent statements in the block are not executed. For example,
Program 5-16 is a version of the 8-bit comparator that checks X and Y bit-by-bit
starting with the MSB. It executes a disable statement at the first iteration
where X[i] and Y[i] are different, since the result is then certain.

AYE, AYE, SIR! Some designers like to use variable names like ii, jj, and kk for loop control, rather
than the more traditional i, j, and k. Among other things, the former are easier find
in text searches during code rewrites and debugging.

disable statement
disable keyword

Program 5-16 An 8-bit comparator module using for and disable.

module Vrcompdis (X, Y, gt);
input [7:0] X, Y;
output reg gt; // Should be 1 if X > Y
integer i;

 always @ (*) begin : COMP
 gt = 0; // default is 'not greater'
 for (i=7 ; i>=0 ; i=i-1)
 if (X[i] & ~Y[i])
 begin gt = 1; disable COMP; end
 else if (~X[i] & Y[i])
 begin gt = 0; disable COMP; end
 end
endmodule

COMPARING
COMPARATORS

As we’ve implied, the purpose of our comparator examples was to illustrate the use
of for statements, not to build the world’s best comparators. Verilog has built-in
comparison operations, and the simplest equivalent of the Vrcomp model would have
a single dataflow statement, “assign gt = (X>Y);”.

Most tools will do a better job synthesizing circuits to perform commonly used
operations, too. For example, when Program 5-15 or 5-16 is targeted to a Xilinx
7-series FPGA using Vivado tools, it uses four LUTs in four levels of logic and has
a maximum internal delay of 2.505 ns. When synthesizing a built-in comparison as
in the assignment statement above, Vivado knows how to use specialized FPGA
resources that optimize comparators and adders. The result still uses four LUTs, but
now in only two levels of logic and has a maximum delay of 1.526 ns.

DDPP5.book Page 218 Tuesday, March 28, 2017 5:33 PM

5.9 Behavioral Models (Procedural Code) 219

The other Verilog looping statements are repeat, while, and forever,
with syntax shown in Table 5-24; each controls a single procedural statement. A
repeat statement repeats it a number of times given by integer-expression. A
while statement repeats it until logical-expression is false. And a forever
statement repeats it “forever.” As always, the procedural statement may be a
begin-end block containing a series of other procedural statements.

IN ITS PRIME Our good old prime-number detector is coded one more time in Program 5-17, this
time using a for loop. This is truly a behavioral model—we have actually modeled
combinational hardware that divides N by all odd numbers that are less than its square
root. We’ve also increased the width of N to 16 bits, just for fun.

A bad thing about this design is that it may not be synthesizable. The for loop
is fine, but as mentioned previously, the modulo operation (%) may be synthesizable
only if its divisor is a power of two, corresponding to a right shift. For other divisors,
combinational divider circuits are needed and not all synthesizers can create them.
To “unroll” the for loop, the synthesizer would have to create over 100 such com-
binational dividers. Xilinx Vivado tools can actually do it, though, using 8,362 LUTs
in 23 levels of logic with a maximum delay of about 50 ns. “Don’t try this at home.”

Program 5-17 Prime-number detector using a for statement.

module Vrprimebv (N, F);
input [15:0] N;
output reg F;
reg prime;
integer i;

 always @ (*) begin
 prime = 1; // initial values
 if ((N==1) || (N==2)) prime = 1; // Special cases
 else if ((N % 2) ==0) prime = 0; // Even, not prime
 else for (i = 3 ; i <= 255 ; i = i+2)
 if (((N % i) == 0) && (N != i))
 prime = 0; // Set to 0 if N is divisible by any i
 if (prime==1) F = 1; else F = 0;
 end
endmodule

repeat (integer-expression)
 procedural-statement

while (logical-expression)
 procedural-statement

forever
 procedural-statement

Table 5-24
Syntax of Verilog
repeat, while, and
forever statements.

repeat statement
while statement
forever statement

DDPP5.book Page 219 Tuesday, March 28, 2017 5:33 PM

220 Chapter 5 Verilog Hardware Description Language

5.10 Functions and Tasks
Like a function in a high-level programming language, a Verilog function
accepts a number of inputs and returns a single result. The inputs may be bits or
bit vectors, and they may be any variable type, including integer and reg
variables, and a few other types that we don’t cover in this book.

The syntax of a Verilog function definition is shown in Table 5-25. It
begins with the keyword function, followed by an optional specification of the
result type—integer, a bit-vector [msb:lsb], or blank for a single-bit result,
the default. Next are the function name and a semicolon.

The inputs of a function are listed in order in input declarations. These are
declared using the input keyword, similar to input declarations in a module
declaration, and are single bits or bit vectors. A function may not have any
output or inout declarations. However, as shown in the table, a function may
declare its own local variables and parameters. But it may not declare any nets or
nested functions and tasks.

The “executable” part of a function is a single procedural statement.
Usually this is a begin-end block containing a series of procedural statements.
The function name is implicitly defined to be a local reg variable of the declared
result type, and somewhere in the function, a value must be assigned to this vari-
able. This value is returned to the function’s caller. The function definition ends
with the endfunction keyword.

As implied by the format of a module definition, Table 5-1 on page 183, a
function can be defined only within a module. That is, its definition is local to the
module. If you have a commonly needed function to use in multiple modules,

WHERE THE
WHILE THINGS

ARE

The repeat, while, and forever statements cannot be used to synthesize combina-
tional logic, only sequential logic, and then only if the procedural statement is a
begin-end block that includes timing control that waits for a signal edge. This is not
covered here, since the most predominant Verilog coding practices consistently use
other means (discussed in Sections 10.3.2 and 10.8.4) to create sequential-circuit
behavior. These statements can also be used in advanced test-bench code, but that’s
not covered in this text.

function

function definition

function result-type function-name ;
 input declarations
 variable declarations
 parameter declarations

 procedural-statement
endfunction

Table 5-25
Syntax of a Verilog
function definition.

function keyword

endfunction keyword

DDPP5.book Page 220 Tuesday, March 28, 2017 5:33 PM

5.10 Functions and Tasks 221

you could define it by itself in a file, and then use an `include compiler direc-
tive to include it in each module where it’s needed.

A function is invoked or called by writing the function name followed by a
parenthesized list of expressions. The expressions are evaluated and assigned to
the function’s inputs in the order that they appear in the function definition. A
function name can be used in an expression, and thus the function can be called,
anywhere that a signal of the same type could be used—in always blocks, in
continuous assignments, and in other functions in the same module.

A function executes in zero simulated time, and therefore cannot contain
any delay or other timing-related statements. Also, the values of any local
variables are lost from one function call to the next. So, functions are primarily a
mechanism to reduce typing and thinking, to minimize inconsistency, and to
improve the readability, modularity, and maintainability of Verilog code.

As an example, the module in Program 5-18 is a behavioral version of the
SillyXOR module (see Program 5-4 on page 200). It defines the function
Inhibit that acts like a 2-input inhibit gate, and it calls Inhibit three times
within an always block to perform the module’s specified function (a rather
roundabout XOR operation). The names of the local variables and the structure
of the function calls match the logic diagram in Figure 5-2 on page 201 exactly.

function call

MULTIPLE-
OUTPUT

FUNCTIONS

A function can have only one output. But a simple trick lets you to create a function
with multiple outputs—you just concatenate the needed outputs before assigning to
the function name, and then use part-selects in the caller to pull out the individual
values. If you use this trick, you must be extremely careful—the size and order of the
concatenated signals in the function and in the caller must match perfectly.

Program 5-18 Verilog model for an XOR gate using an “inhibit” function.

module VrSillierXOR(in1, in2, out);
 input in1, in2;
 output reg out;

 function Inhibit ;
 input In, invIn;
 Inhibit = In & ~invIn;
 endfunction

always @ (*) begin : IB
 reg inh1, inh2;
 inh1 = Inhibit(in1,in2);
 inh2 = Inhibit(in2,in1);
 out = ~Inhibit(~inh2,inh1);
 end
endmodule

DDPP5.book Page 221 Tuesday, March 28, 2017 5:33 PM

222 Chapter 5 Verilog Hardware Description Language

A Verilog task is similar to a function, except it does not return a result.
Table 5-26 shows the syntax of a task definition. It begins with the keyword
task, followed by the task name. Unlike functions, tasks can also have inout and
output arguments, which are declared in the same way as input arguments, but
using the keywords inout and output. Like a function, a task contains a single
procedural statement, which is typically a begin-end block. A task ends with
the endtask keyword.

While a function call can be used in the place of an expression, a task call
(sometimes called a task enable) can be used in the place of a statement. Like a
function, a task is called using its name and a parenthesized list of expressions.
These expressions are associated in the order written with the input, inout, and
output declarations in the task definition. Note that a task need not have any
inputs and outputs declared, so the parenthesized list may be missing or empty.
When present, expressions corresponding to inputs are evaluated when the task
is called, and their values are assigned to the corresponding input arguments of
the task. When task execution completes, its local inout and output variables are
copied to the corresponding “expressions” in the calling code, which must be
individual signal names or concatenations.

While they are useful in test benches, tasks are not usually recommended
in synthesizable Verilog modules. Although delays can be specified within
tasks, they are not synthesizable; a task is synthesized as combinational logic.
Some Verilog synthesizers can’t handle tasks at all. When the synthesizer does
support them, user-defined tasks can be useful in structuring larger module
designs, but we won’t discuss that application further in this book.

RECURSIVE
FUNCTION CALLS

Theoretically, you could replace the always block in Program 5-18 with a single
continuous-assignment statement:

 assign out = ~Inhibit(~Inhibit(in2,in1), Inhibit(in1,in2));

However, most Verilog tools do not support recursive function calls; that is, they do
not let a function call itself. In practice, the utility of this sort of program construction
is quite limited anyway, and should be avoided even if the tools do support it.

task

task task-name ;
 input declarations
 inout declarations
 output declarations
 variable declarations
 parameter declarations

 procedural-statement
endtask

Table 5-26
Syntax of a Verilog
task definition.

task definition
task keyword

endtask keyword
task call
task enable

DDPP5.book Page 222 Tuesday, March 28, 2017 5:33 PM

5.10 Functions and Tasks 223

Verilog has many built-in system tasks and functions that are used in test
benches and simulation, including the following:

• $display. This task is used to print formatted signal values and text to the
“standard output,” the system console in simple simulation environments.
The arguments to this task are a formatting string, similar to what’s used in
C’s printf function, and a list of signals to be printed. This task and other
tasks can be called anywhere in a module, and it immediately prints the list
of signals in the specified format, followed by a newline character.

• $write. This task is the same as $display, except that it does not auto-
matically append a newline character at the end.

• $monitor. This task is similar to $display, except that it remains active
continuously, and prints the listed signals whenever any one of them
changes. Although multiple $monitor calls may be made within a simula-
tion, only one can be active at a time; calling $monitor cancels the
monitoring specified by any previous call.

• $monitoroff and $monitoron. These tasks turn off and on the monitor-
ing specified by the most recent $monitor call.

• $fflush. This task flushes any pending file output, including anything
sent to the “standard output.” This is worth including at the end of a test
bench in some environments, to ensure that you always see the last of the
results before the simulation process terminates and the OS ruthlessly
throws away any still pending output.

• $time. This function has no arguments, and simply returns the value of the
current simulated time.

• $random. This function returns a pseudorandom 32-bit signed integer to
the caller, a different one on each subsequent call, useful for generating
“random” inputs in test benches. The simulator’s pseudo-random number
generator algorithm is fully specified in Verilog-2001, so any simulator
will return the same sequence of results. To make different starting points
possible, the function has one optional argument, a 32-bit signed integer
seed, which sets the starting value to be used to get the next pseudorandom
result. So, you can get a different pseudorandom sequence by including a
value for seed on the first call of $random.

• $stop. This task suspends simulation and returns control to the user. If
called with the optional argument “(1)”, it displays the simulated time and
the location in the code.

We’ll see example uses of some of these tasks and functions in test benches
in Section 5.13 and subsequent chapters. For more details on these functions,
including formatting-string options for $display and $write, consult a Verilog
reference manual. There, you can also find information on many other built-in

DDPP5.book Page 223 Tuesday, March 28, 2017 5:33 PM

224 Chapter 5 Verilog Hardware Description Language

tasks and functions. These include file input/output tasks that are very useful in
test benches for larger real-world designs, allowing expected inputs to be read
from a file, and output results to be written to another file. This allows great flex-
ibility in creating test-bench inputs and analyzing results, since you can use any
convenient programming language to do it.

5.11 The Time Dimension
None of the examples we’ve shown so far model the time dimension of circuit
operation—everything happens in zero simulated time. However, Verilog has
very good facilities for modeling time, and it is indeed another significant
dimension of the language. In this book, we won’t go into great detail on this
subject, but we’ll introduce just a few ideas here.

Verilog allows you to specify a time delay in a continuous assignment by
following the keyword assign with a pound sign (#) and a real number, which
may include a decimal point. This number indicates the delay in units of the time
scale then in effect. The default may be 1 ns but can vary by tool, so you should
specify it using the `timescale compiler directive, with the syntax below:

`timescale time-unit / time-precision

Here the “time-unit” indicates the new default units that will be associated with
all delay numbers until the next `timescale, as well as with time values used
by $time and other system functions and tasks. Although you could specify
“100 ps”, typically single units like “1 ps” and “1 ns” are specified to avoid con-
fusion. The “time-precision,” on the other hand, is often given in less round
numbers. It specifies the time granularity with which the simulator will operate.

The smallest time unit or precision that can be specified is 1 femtosecond
(fs)—or 10–15 s. Chips aren’t fast enough to require that yet. But even with
nanosecond time units (10–9 s), a 32-bit timer would “roll over” in about four
seconds of simulated time (232 ps). Therefore, time is maintained in Verilog as a
64-bit integer, and 64-bit integer variables can be declared using the keyword
time. Such variables can be useful in simulation. Recall that the width of ordi-
nary integer variables is compiler-dependent, and may be as small as 32 bits.

Program 5-19 is a Verilog module with continuous-assignment statements
that use delays. It specifies a time-unit of 1 ns and a time-precision of 100 ps.
The assignment statements correspond to the individual AND and OR operations
in the prime-number detector of Figure 3-24(c) on page 120, including a delay
of 2 ns for AND operations and 3.5 ns for the OR operation. In synthesis, these
delays are ignored, but in simulation, the outputs will be produced only after the
specified delays.

Delays may be specified in procedural assignments, too, by writing the
sign and a delay number after the = or <= symbol. Yet another way to invoke
the time dimension within a block of procedural code is with a delay statement,

(delay specifier)

time scale
`timescale

time keyword

delay statement

DDPP5.book Page 224 Tuesday, March 28, 2017 5:33 PM

5.12 Simulation 225

which is simply a # sign and a delay number. A following semicolon is optional.
This statement can be used to suspend the procedural block for the specified
time period. In Section 5.13, we’ll see how delay statements are used in Verilog
test benches.

5.12 Simulation
Once you have a Verilog model whose syntax and semantics are correct, you can
use a simulator to observe its operation. Although we won’t go into great detail,
it’s useful to have a basic understanding of how such a simulator works.

Simulator operation begins at a simulation time of zero. At this time, the
simulator initializes all signals to a default value of “x”. It also initializes any
signals or variables for which initial values have been declared explicitly (see a
Verilog reference manual for how to do this). Next, the simulator begins the exe-
cution of all the concurrent statements in the design.

Of course, the simulator can’t really simulate all of the concurrent state-
ments simultaneously, but it can pretend that it does, using a time-based event
list and a sensitivity matrix based on all of their individual sensitivity lists. Each
concurrent statement—continuous assignment, instance, always, or initial—
gives rise to at least one software process in the simulator. Module instantiations
give rise to one or more additional processes, depending on the module’s defini-
tion (e.g., a module containing five continuous assignment statements, like in
Program 5-19, gives rise to five software processes).

At simulation time zero, all of the software processes are scheduled for
execution, and one of them is selected. If it corresponds to an always or
initial block, all of its procedural statements are executed, unless and until a
delay specification or delay statement is encountered, in which case the process
is suspended. Execution of procedural statements includes any looping behavior
that is specified. When the execution of the selected process is either completed

Program 5-19 Verilog model for a prime-number detector, with delays.

`timescale 1 ns / 100 ps
module Vrprimedly (N, F);
input [3:0] N;
output F;
wire N3L_N0, N3L_N2L_N1, N2L_N1_N0, N2_N1L_N0;

 assign #2 N3L_N0 = ~N[3] & N[0];
 assign #2 N3L_N2L_N1 = ~N[3] & ~N[2] & N[1] ;
 assign #2 N2L_N1_N0 = ~N[2] & N[1] & N[0];
 assign #2 N2_N1L_N0 = N[2] & ~N[1] & N[0];
 assign #3.5 F = N3L_N0 | N3L_N2L_N1 | N2L_N1_N0 | N2_N1L_N0;
endmodule

simulation time

event list
sensitivity matrix

process

DDPP5.book Page 225 Tuesday, March 28, 2017 5:33 PM

226 Chapter 5 Verilog Hardware Description Language

or suspended, another one is selected, and so on, until all of the processes have
been executed. This completes one simulation cycle.

During its execution, a process may assign new values to nets and vari-
ables. In blocking assignments with no delay specification, the new values are
assigned immediately. If a blocking or nonblocking assignment has a delay
specification, then a new entry is scheduled on the event list to make the assign-
ment effective after the specified delay.

A nonblocking assignment with no delay specification is supposed to take
place in zero simulated time, but it is actually scheduled to occur at the current
simulation time plus one “delta delay.” The delta delay is an infinitesimally short
time, such that the current simulation time plus any number of delta delays still
equals the current simulation time. This concept allows software processes to
execute multiple times if necessary, in zero simulated time.

After a simulation cycle completes, the event list is scanned for the signal
or signals that change at the next earliest time on the list. This may be as little as
one delta delay later, or it may be a real circuit delay later, in which case the
simulation time is advanced to this time. In any case, the scheduled signal
changes are made. Some processes may be sensitive to the changing signals, as
indicated by their sensitivity lists. The sensitivity matrix indicates, for each
signal, which processes have that signal in their sensitivity list. All of the
processes that are sensitive to a signal that just changed are scheduled for
execution in the next simulation cycle, which now begins.

The simulator’s two-phase operation of a simulation cycle followed by
scanning the event list and making the next scheduled assignments goes on
indefinitely, until the event list is empty. At this point the simulation is complete.

The event-list mechanism makes it possible to simulate the operation of
concurrent processes even though the simulator may run on a single computer
with a single thread of execution. The delta-delay mechanism ensures correct
operation even though a process or a set of processes may require multiple
executions, spanning several delta delays, before changing signals settle down to
a stable value. This mechanism is also used to detect runaway processes (such as
implied by “assign X = ~X”); if a thousand simulation cycles occur over a
thousand delta delays without advancing simulation time by any “real” amount,
it’s most likely that something’s amiss.

5.13 Test Benches
A test bench specifies a sequence of inputs to be applied by the simulator to an
HDL model, such as a Verilog module. The entity being tested is often called the
unit under test (UUT), in accordance with traditional parlance in the hardware
testing field, even though the UUT in this case is not a device, but an HDL model
that specifies the behavior of a device.

simulation cycle

delta delay

unit under test (UUT)

DDPP5.book Page 226 Tuesday, March 28, 2017 5:33 PM

5.13 Test Benches 227

A while ago, we promised to introduce one more kind of Verilog concur-
rent statement, which is typically used in test benches. An initial block has the
syntax shown in Table 5-27. Like an always block, it contains one or more pro-
cedural statements, but it does not have a sensitivity list. An initial block
executes just once, beginning at simulated time zero. As in an always block, the
begin-end block can be named and can have its own variable and parameter
declarations.

Program 5-20 is a test bench for our prime-number-detector modules. Just
in case, it sets a default time scale of 1 ns. Like all test benches, the module has
no inputs or outputs. It begins by declaring local signals Num and Prime, which
are used to apply stimuli and observe the outputs of the UUT. Next, it instanti-
ates the UUT (module Vrprimed in Program 5-6 on page 203). By changing just
the module name in the instance statement, this test bench could instantiate any
of this chapter’s prime-number detectors, except for Program 5-14 (which has
an extra output) and Program 5-17 (whose input vector has more bits).

The test bench uses an initial block and delay statements within a for
loop to apply all 16 possible input combinations to the UUT. This is just about
the simplest possible test bench—it merely applies inputs and does not check
them in any way. When a simulator runs the test bench, it produces the output
waveforms shown in Figure 5-4, which includes both the decimal value and the
individual bits of the 4-bit vector Num, as well as the output value Prime, for the

initial block
initial keyword

initial
 procedural-statement

initial begin
 procedural-statement
 ...
 procedural-statement
end

Table 5-27
Syntax of Verilog
initial blocks.

Program 5-20 Verilog test bench for a prime-number-detector circuit.

`timescale 1 ns / 100 ps
module Vrprime_tb1 () ;
reg [3:0] Num;
wire Prime;

Vrprimed UUT (.N(Num), .F(Prime));

 initial begin : TB
 integer i;
 for (i = 0; i <=15; i = i+1) begin #10 Num = i;
 end
endmodule

DDPP5.book Page 227 Tuesday, March 28, 2017 5:33 PM

228 Chapter 5 Verilog Hardware Description Language

16 input combinations that are applied. It’s up to the user to look at the wave-
forms and determine if they make sense—a useful but tedious exercise.

It’s normally worth expending a little more effort when writing a test bench
to make its output more user friendly. For example, we can rewrite the previous
test bench as shown in Program 5-21. It calls the $write and $display tasks to
print the result for each iteration, typically to the “system console,” or perhaps
redirected to a file, depending on the system environment. In any case, instead of
analyzing a timing diagram, we can now see the UUT’s outputs displayed in text
as in Table 5-28, which is much easier to check than a timing diagram. Also note
the test bench’s use of the case equality operator === to check the UUT output
for 1 or 0 while flagging situations where the output is x or z.

Another approach is often used for test benches that evaluate a large num-
ber of input combinations, where it is not dependable or even feasible for an
interactive user to examine a large number of input/output results. Instead, we
can write a self-checking test bench, which compares the UUT’s outputs against
what’s expected, keeping track of the number of errors if any, and displaying the
discrepancies only when they occur.

Figure 5-4 Timing waveforms produced by the Vrprime_tb1 test bench.

Program 5-21 Improved test bench for a prime-number-detector circuit.

`timescale 1 ns / 100 ps
module Vrprime_tb2 () ;
reg [3:0] Num;
wire Prime;

Vrprimed UUT (.N(Num), .F(Prime));

initial begin : TB
 integer i;
 for (i = 0; i <=15; i = i+1) begin
 Num = i; #10 // Wait 10 ns per iteration
 $write ("Time: %3d Number: %2d Prime? ", $time, Num);
 if (Prime===1) $display ("Yes");
 else if (Prime===0) $display("No");
 else $display("Not sure");
 end
end
endmodule

self-checking test bench

DDPP5.book Page 228 Tuesday, March 28, 2017 5:33 PM

5.13 Test Benches 229

Most of the test-bench examples in this book are self-checking. Such a test
bench for the prime-number detector is shown in Program 5-22. Here we use a
case statement within the for loop to enumerate the expected value of the
UUT’s output for each input combination. And we define a “helper” task,
Check, to print an error message if the UUT’s output is different from what we
expect. This test bench has the same compile-time option as some of our prime-
detector modules—the value of parameter OneIsPrime should match the
assumption that is used in the UUT.

Table 5-28 First few lines of output displayed by Program 5-21.

Time: 10 Number: 0 Prime? No
Time: 20 Number: 1 Prime? Yes
Time: 30 Number: 2 Prime? Yes
Time: 40 Number: 3 Prime? Yes
Time: 50 Number: 4 Prime? No
Time: 60 Number: 5 Prime? Yes
...

Program 5-22 Self-checking test bench for prime-number detectors.

`timescale 1 ns / 100 ps
module Vrprime_tbc () ;
reg [3:0] Num;
wire Prime;
integer i, errors;
parameter OneIsPrime = 1; // Change to 0 if 1 is not prime.

task Check;
input xpect;
 if (Prime !== xpect) begin
 $display("Error: N = %b, expect %b, got %b",Num,xpect,Prime);
 errors = errors + 1;
 end
endtask

Vrprimedly UUT (.N(Num), .F(Prime));

initial begin
 errors = 0;
 for (i = 0; i <= 15; i = i+1) begin
 Num = i; #10 ;
 case (Num)
 4'd1 : Check(OneIsPrime);
 4'd2, 4'd3, 4'd5, 4'd7, 4'd11, 4'd13 : Check(1);
 default Check(0);
 endcase
 end
 $display("Test ended, %2d errors", errors); $stop(1);
end
endmodule

DDPP5.book Page 229 Tuesday, March 28, 2017 5:33 PM

230 Chapter 5 Verilog Hardware Description Language

In Program 5-22, we embedded the expected output values into the test-
bench code, which is no fun if there are a lot of them. It is much more effective
to calculate the expected output values algorithmically if at all possible. Verilog
is used in test benches for programming, not modeling, and you can do many
things with it that you could not or would not do in a synthesizable model.

For example, Program 5-23 shows an algorithmic, self-checking test bench
for the 16-bit prime-number detector of Program 5-17. The test bench has its
own local array of 216 bits, indexed by 16-bit integer values, where a bit is 1 if
and only if its index is prime. These bits are precomputed and stored in the array
using the “Sieve of Eratosthenes” method when the test bench runs. After that, it
is a simple matter for the test bench to apply all 216 possible input combinations
to the UUT and compare each resulting output with the correct value.

Partway between these approaches, designers in large projects may write
test benches that read their inputs from and write their outputs to files, using
Verilog’s file I/O capabilities. This allows a designer to use any convenient and
familiar programming language to create the test inputs and to check the outputs.
After achieving satisfactory functional performance, a designer may even save
the test bench’s output file as a “golden” reference, which may be used subse-
quently in “regression testing” to ensure that subsequent modifications of the
design (usually for performance, not functionality) do not change its functional
output behavior.

Every test-bench module in this section and throughout this book is stored
in a single text file with the following structure:

• Declare the module name, UUT’s input and output signals, and any local
variables that are used in testing.

• Instantiate one or more UUTs, each of which is defined in its own file(s).

 ROLLOVER
ACCIDENTS

Notice in Program 5-22 that we use an integer variable i to control the for loop,
and then assign the lower four bits of this integer to Num inside the loop. You may
ask, “Why not just use Num to control the loop directly?” You’d have a subtle, unex-
pected problem if you did this. Since reg variable Num is only four bits wide, when
it’s 15 and you add 1 to it, it rolls over to 0 and the for loop keeps going forever.

DON’T KNOW
WHEN TO $STOP?

Some of our test benches use $stop at the end; others don’t. In interactive testing (as
you’d likely be doing with the test benches in this book), it doesn’t matter if there’s
no $stop. Upon reaching the end of the test bench, the simulator is still running, but
there are no “events” left for it to process. It should return control to the system
console after simulating no activity until the end of the simulation interval that was
specified when it was invoked.

DDPP5.book Page 230 Tuesday, March 28, 2017 5:33 PM

5.13 Test Benches 231

• Define helper tasks as needed.

• Create one or more code blocks (always and initial) for generating
clocks and stimulus patterns and for checking results if applicable.

However, some designers or their companies prefer an alternative file structure
that splits the above items into two files:

• The “top-level” test-bench file is a module that declares the UUT’s input
and output signals, instantiates one or more UUTs, and has an `include
statement to fetch a stimulus file that contains the bulk of the test-bench
code.

• The stimulus file contains Verilog code that defines local variables and
helper tasks as needed, generates clocks and stimulus patterns, and checks
results as applicable.

This alternative structure makes it easier to manage projects where different
modules have the same inputs and outputs and can be checked with the same test

Program 5-23 Self-checking test bench that creates values for comparison algorithmically.

`timescale 1 ns / 100 ps
module Vrprimebv_tb ();
reg [15:0] N;
wire F;
reg prime [0:65535]; // Array to precompute primes; prime[i] = 1 if i is prime
integer i, try, errors;
parameter OneIsPrime = 1; // Change to 0 if 1 is not prime.

Vrprimebv UUT (.N(N), .F(F));

initial begin
 for (i=0; i<=65535; i=i+1) prime[i] = 1; // All integers are potentially prime
 prime[0] = 0; prime[1] = OneIsPrime; // except 0 and maybe 1
 for (try=2; try<=255; try=try+1) // Init array using "Sieve of Eratosthenes" method
 if (prime[try]) // Mark off multiples of primes; they're nonprimes
 for (i=try+try; i<=65535; i=i+try) prime[i] = 0;//
 // prime array is now initialized; check UUT operation
 errors = 0;
 for (i=0; i<=65535; i=i+1) begin
 N = i; #10;
 if (F !== prime[i]) begin
 errors = errors + 1;
 $display("Error: i=%5d, prime=%b, F=%b", i, prime[i], F);
 end
 end
 $display("Test complete, %d errors", errors); $stop(1);
end
endmodule

stimulus file

DDPP5.book Page 231 Tuesday, March 28, 2017 5:33 PM

232 Chapter 5 Verilog Hardware Description Language

patterns—which can now be written and modified in just one place. It’s also
useful if modules have slightly different signal names or definitions, or have
signals that are unused or tied connected to constant values in a particular
application—a small amount of code can be used in the top-level module to
adapt the UUT’s inputs and outputs to the existing stimulus code, without having
to change the stimulus file (which could break it for another application).

5.14 Verilog Features for Sequential Logic Design
Just one more Verilog language feature is used to describe common sequential-
circuit behavior. We introduce it here, and will come back to it in later chapters.

Most Verilog-based digital design is directed to clocked, synchronous
systems that use edge-triggered flip-flops. Like combinational behavior, edge-
triggered behavior in Verilog is specified using always blocks. The difference
between the two is governed by the sensitivity list of the always block.

Normally, an always block is executed upon any change in a signal named
in the sensitivity list. When keyword posedge or negedge is placed in front of a
signal name, the block is executed only upon the positive (rising) or negative
(falling) edge of the named signal, as indicated. For the compiler to effectively
map sequential always blocks into available RTL elements for synthesis, they
must also match certain “templates.” We’ll show many examples of sequential
behaviors starting in Section 10.3.2 and continuing through Chapter 13.

5.15 Synthesis
As we discussed at the beginning of this chapter, Verilog was originally designed
as a logic circuit description and simulation language, and it was only later
adapted to synthesis. Thus, the language has several features and constructs that
cannot be synthesized. However, the subset of the language and the style of
models that we’ve presented in this chapter are synthesizable by modern tools.

 TABS VS.
SPACES

Colleagues have told me that the choice of which test bench structure to use has
become a religious issue for some designers. It’s like the common “tabs vs. spaces”
arguments about how best to indent code, which amusingly led to the end of a
budding relationship in an episode of the TV series Silicon Valley.

In any programming language, there are many ways to express and accomplish
the same thing—or sometimes almost the same thing, which is what often leads to
the arguments. You’ll see many examples of such alternatives throughout this book.
In the end, you should learn and use whatever style is dictated in your work environ-
ment. At that point, the choice is not so much about “religion,” but rather about the
efficiencies that are facilitated by having everyone be “on the same page.”

posedge keyword
negedge keyword

DDPP5.book Page 232 Tuesday, March 28, 2017 5:33 PM

References 233

Still, the code that you write can affect the size and performance of circuits
that are synthesized from your models. A few examples are listed below:

• “Serial” control structures like if, else if, else if, ... else can result
in a corresponding serial chain of logic gates to test conditions. Sometimes
it’s better to use a case statement, especially if the conditions are mutually
exclusive, thereby suggesting a potentially more efficient multiplexer to
select among alternatives.

• Loops in procedural code are generally “unwound” to create multiple
copies of combinational logic, one copy for each iteration of the statements
in the loop. If you want to use just one copy, then you have to design a
sequential circuit, as described in later chapters.

• When you use conditional statements in procedural code, failing to code
an outcome for some input combination will cause the synthesizer to create
an inferred latch to hold the old value of a signal that might otherwise
change. Such latches are generally not intended and affect performance.

In addition, some language features and constructs may just be unsynthesizable,
depending on the tool. Naturally, you have to consult the documentation to find
out what’s disallowed, allowed, and recommended for a particular tool. A tool’s
synthesis manual also typically recommends templates for modeling various
behaviors and hardware structures.

For the foreseeable future, digital designers will need to pay reasonably
close attention to their coding style in order to obtain good synthesis results. And
for the moment, the definition of “good coding style” depends somewhat on both
the synthesis tool and the target technology. The examples in the rest of this
book, while syntactically and semantically correct, barely scratch the surface of
coding methods for large HDL-based designs, where art and practice are still
evolving.

References
Verilog and VHDL are used every day by thousands of digital designers, and
their associated compilers and other tools are well supported by many different
suppliers. Both HDLs have active user communities, and there are frequent
workshops and conferences devoted to applications and enhancements of the
languages and tools. Because of all this activity, you can easily find up-to-date
HDL references, examples, and tutorials on the Web. For example, searching for
“Verilog tutorial” yields many solid hits.

There are good print references, too. If you’re struggling with my concise
introduction to Verilog, try Starter’s Guide to Verilog 2001 by Michael D. Ciletti
(Pearson, 2003). Also consider Digital Design and Verilog HDL Fundamentals
by Joseph Cavanaugh (CRC Press, 2008) which, like the book you’re reading,
covers general topics using Verilog as the design language, but is twice as thick.

DDPP5.book Page 233 Tuesday, March 28, 2017 5:33 PM

234 Chapter 5 Verilog Hardware Description Language

Verilog HDL is defined in the IEEE Standard Verilog Hardware Descrip-
tion Language, IEEE Std 1364-2001. If you like to read specs, you can buy the
complete standard document from the IEEE, but Stuart Sutherland wrote an
excellent Verilog Quick Reference Guide for Verilog-2001 based on the standard
and published it on his company’s website, sutherland-hdl.com.

As the Verilog-2001 standard was published, various companies continued
to extend Verilog’s HDL-based design capabilities. After several years of work,
IEEE Std 1364-2005 was published with a few extensions of Verilog-2001. But
at the same time, over 100 substantial enhancements were made to Verilog’s
design and verification capabilities to create a superset of the language, called
“SystemVerilog,” formally defined in IEEE Std 1800-2005. The “plain” 1394
version of Verilog was eventually merged with SystemVerilog to create a unified
IEEE Std 1800-2008, which supersedes IEEE 1364. The latest unified standard
is IEEE 1800-2012. All of the Verilog features used in this book exist in Verilog-
2001 and later.

Keep in mind that the IEEE standards are specifications, not tutorials. For
an introduction to SystemVerilog, you can consult a text like Logic Design and
Verification Using SystemVerilog by Donald Thomas (CreateSpace, 2016).

As mentioned previously, there’s a lot of good HDL reference material on
the Web. But the practical and insightful articles by Clifford E. Cummings and
his colleagues on Verilog features, usage, and coding styles are especially worth
reading (go to www.sunburst-design.com or search for ‘Cummings Verilog’).
For example, our discussion of the rules for blocking versus nonblocking assign-
ments on page 209 is based on one of his articles.

All of the Verilog examples in this chapter and throughout this book were
compiled and simulated using the free “WebPack” edition of the Xilinx Vivado
tool suite (Xilinx, Inc., San Jose, CA 95124, www.xilinx.com). Like most other
digital-design tools, it runs on a PC using the Windows operating system.

Drill Problems
5.1 Write a structural Verilog module corresponding to the NAND-gate based logic

circuit in Figure 4-18.

5.2 Write a structural Verilog module for the combinational circuit in Figure 6-15.

5.3 Write a dataflow-style Verilog module for the alarm circuit in Figure 3-16.

5.4 Can Verilog’s built-in and and or components be used with just one input?

 WHAT IS “LRM”? The IEEE Std 1364-2001 document is 791 pages long and is commonly known as a
language reference manual (LRM). The document uses the acronym “LRM” in a few
places but never gives its definition; to get that, you have to read this box or look in
the 1315-page IEEE 1800-2012 SystemVerilog standard.

DDPP5.book Page 234 Tuesday, March 28, 2017 5:33 PM

Exercises 235

5.5 Write a Verilog module for the alarm circuit in Figure 3-16 using an always
block and a behavioral description style.

5.6 Write a structural Verilog module Vr3inckt_s for the logic circuit in Figure 3-5.

5.7 Write a dataflow-style Verilog module Vr3inckt_d for the logic circuit in
Figure 3-5.

5.8 Write a Verilog module Vr3inckt_b for the logic circuit in Figure 3-5, using an
always block and a behavioral description style.

5.9 Write a Verilog test bench that instantiates all three modules from Drills 5.6
through 5.8, and applies all eight possible input combinations to them, at 10 ns
per step. Your test bench should display the output value for each input combina-
tion, but need not check them. Instead, you should manually compare the outputs
with the values shown in Figure 3-6.

5.10 Write a Verilog test bench that instantiates all three modules from drills 5.6
through 5.8, and applies all eight possible input combinations to them, comparing
the results and displaying an error message if any of the results differ. Introduce
a bug into each module to ensure that your error detection and display code is
working properly.

5.11 Rewrite the module of Program 5-2, 5-6, or 5-8 using ANSI-style declarations.

5.12 Which assignment operator should you use in Verilog always blocks intended to
synthesize combinational logic, = or <=?

5.13 If multiple values are assigned to the same signal in a Verilog combinational
always block, what is the signal’s value when the always block completes
execution: (a) the AND of all values assigned; (b) the OR of all values; (c) the last
value assigned; or (d) it depends?

5.14 Assume that A, B and C are 2-bit reg vectors with values 2'b01, 2'b10, and
2'b11, respectively, when an always block is entered. The block executes a
sequence of three assignment statements, “C=B; A=C; B=A;”. What are the final
values of A, B and C?

5.15 Repeat Drill 5.14 with the statement sequence, “C<=B; A<=C; B<=A;”.

5.16 Write a test bench to check your answers for Drills 5.14 and 5.15.

5.17 Synthesize the VrSillyXOR Verilog module in Program 5-4, targeting your favor-
ite programmable device. Determine whether the synthesizer is smart enough to
realize the module using a single XOR gate.

5.18 A possible definition of a BUT gate (Exercise 3.37) is “Y1 is 1 if A1 and B1 are 1
but either A2 or B2 is 0; Y2 is defined symmetrically.” Write a behavioral-style
Verilog model for such a BUT gate.

5.19 Run the test bench in Program 5-22 with and without the $stop statement. What
difference does it make in your environment?

Exercises
5.20 Verilog-2001 has a syntax option for defining parameters and their default values

as part of an ANSI-style module declaration. Look it up online, and rewrite the
declarations in the Maj module of Program 5-5 using this option.

DDPP5.book Page 235 Tuesday, March 28, 2017 5:33 PM

236 Chapter 5 Verilog Hardware Description Language

5.21 Find a situation where adding an extra semicolon (treated as a null statement) in
Verilog procedural code creates a syntax error.

5.22 The logical expression “(N % 2) == 0” in Program 5-14 can be written more con-
cisely using only five characters and still yield the same result. Show the alternate
formulation, and comment on its pros and cons.

5.23 Write a Verilog module VrM35dec for a logic function with six inputs N5–N0 rep-
resenting an integer between 0 and 63, and two outputs M3 and M5 indicating
whether the integer is a multiple of 3 or 5, respectively. Target your design to an
available programmable device and determine how many resources it uses.

5.24 After completing the preceding exercise, write a Verilog test bench that compares
the outputs of your module for all possible input combinations against results
computed by the simulator using its own arithmetic. The test bench should stop
and display the actual and computed outputs if there is a mismatch. Test your test
bench by putting a bug in your original Verilog model and running the test bench.
You get extra credit (in your own mind, at least) if you already had an uninten-
tional bug in your initial module and detected it!

5.25 Write a structural Verilog model that instantiates a single 2-input OR gate and the
BUT gate component of Drill 5.18 to realize the 4-input logic function F =
ΣW,X,Y,Z(5,7,10,11,13,14). Write a test bench that checks your circuit’s output for
all 16 possible input combinations and displays a message if there’s an error.

5.26 Modify the Vrprimebv module in Program 5-17 to find 8-bit primes. Then use
this module in a test bench to print all the primes between 0 and 255.

5.27 Write a dataflow-style Verilog module corresponding to the full-adder circuit in
Figure 8-1. Then instantiate multiple copies of it to create a structural Verilog
model for a 4-bit ripple adder using the structure of Figure 8-2.

5.28 After doing Exercise 5.27, write a Verilog test bench that tests the adder for all
possible pairs of 4-bit addends. The test bench should stop and display the actual
and expected outputs if there is any mismatch.

5.29 Using the module that you defined in Exercise 5.27, write a structural Verilog
model for a 16-bit ripple adder along the lines of Figure 8-2. Research and then
use a generate statement to create the 16 full adders and their connections.

5.30 After doing Exercise 5.29, write a Verilog test bench that tests the adder for a
subset of the 232 possible pairs of 16-bit addends, using the $random function.
The test bench should stop and display the actual and expected outputs if there is
any mismatch.

5.31 Write a Verilog test bench to prove that W|X&Y|Z is the same as W|(X&Y)|Z.

5.32 Do some Verilog research, and determine how Verilog handles “ambiguous” log-
ical values and expressions that may be either true or false, such as 4'bxx00.
Write a small test bench program that demonstrates that they are handled as you
say they are.

5.33 Do some Verilog research, and learn about Verilog file I/O. Then write a test
bench that checks the output of one of the prime modules (such as Program 5-6,
5-7, or 5-9) for all possible inputs, reading the expected output values from a file.

DDPP5.book Page 236 Tuesday, March 28, 2017 5:33 PM

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

237

EN

S

D0

D1

D −1

Y

c h a p t e r 6
Basic Combinational
Logic Elements

he theoretical principles used in combinational logic design were
described previously in Chapter 3. Now, we’ll build on that foun-
dation and describe many of the devices, structures, and methods
used by engineers to solve practical digital design problems. We’ll
give examples using individual gates and drawing logic diagrams

as we did in Chapter 4, and we’ll also give examples using the hardware
description language Verilog from Chapter 5.

A practical combinational circuit may have dozens of inputs and
outputs, and could require hundreds, thousands, even millions of terms to
describe as a sum of products, and billions of rows to describe in a truth
table. Thus, most real combinational logic design problems are too large to
solve by the “brute-force” application of theoretical techniques.

But wait, you say, “How could any human being conceive of such a
complex logic circuit in the first place?” Large, complex systems such as
software applications, communication networks, and transportation net-
works are usually described hierarchically, and digital systems are no
exception. The key is hierarchical thinking. A complex circuit or system is
conceived as a collection of smaller subsystems, each of which has a much
simpler description.

In combinational logic design, there are several common operations—
decoding, selecting, comparing, and the like—that turn up quite regularly,
and there are corresponding structures for performing these operations with

T

C06.fm Page 237 Sunday, April 9, 2017 2:33 PM

238 Chapter 6 Basic Combinational Logic Elements

gate-level circuits, functional building blocks, or Verilog models. These struc-
tures may be combined with each other and with sequential-circuit structures to
build larger systems, as we’ll show in later chapters.

Digital systems are hardware, and when they were simpler and smaller,
they would be designed and specified at the high level using block diagrams, and
at the low level using schematic diagrams that show physical components and
their wired interconnections. Nowadays, it is much more common for lower-
level elements in the hierarchy to be specified using HDLs, either by instantiat-
ing predefined library components that perform the needed functions, or by
defining purpose-specific modules that perform the functions. And as you know,
HDLs themselves are hierarchical, allowing much more than just the bottom
level of the digital system’s hierarchy to be specified in the HDL.

Although modern HDLs like Verilog and VHDL allow a digital system or
subsystem to be specified structurally—by defining a collection of physical
components and their interconnections—they are used much more often to
describe a system or subsystem behaviorally. A synthesis tool then translates the
behavioral description into a physical structure that has the described behavior.

Either way, when the time comes to create a physical realization of the
overall design, an EDA tool “flattens” the hierarchy and specifies its implemen-
tation as cells and interconnections in an ASIC, or in a programmable device like
an FPGA, perhaps also including off-the-shelf components to be interconnected
at the printed-circuit-board level.

With combinational circuits, there are several different, traditional ways to
describe or specify a given function or behavior. Each of these happens to corre-
spond to an implementation approach that works well with one or more modern
technologies, so it’s useful for you to be familiar with them:

• Truth tables are the most basic and the most exhaustive way of specifying
a combinational logic function, and can be programmed into a read-only
memory (ROM) to implement any such function—as long as the ROM has
enough inputs and outputs. Once considered a slow and inefficient way of
implementing combinational logic, truth tables and ROMs have become
very important in the past two decades because of the relentless increases
in the size and performance of FPGAs where they are used. Even when a
function is too big to fit in a single ROM, as most are, modern tools can
decompose the function to fit into multiple, interconnected ROMs.

• Two-level sum-of-products and product-of-sums expressions and resulting
gate-level circuits (AND-OR/NAND-NAND and OR-AND/NOR-NOR) were
the focus of traditional logic design in the days of discrete SSI gates. Auto-
mated tools have long been available to minimize the size of such circuits,
starting with a functional specification such as a truth table or a non-mini-
mized logic expression. These structures continue to be important for
arbitrary logic functions implemented using either discrete gates in an

C06.fm Page 238 Sunday, April 9, 2017 2:33 PM

239

ASIC or in a programmable logic device which contains a programmable
AND-OR array. Even when a logic expression is too large to be implement-
ed in just two levels of logic or in a single FPGA LUT, experience has
shown that a minimized two-level expression is still a good starting point
for factoring and other transformations that can “fit” the function into the
available logic structures.

• Building blocks for many commonly used logic operations were offered as
individual chips in the days of board-level logic design using MSI devices,
and comparable building blocks are still available in many ASIC and other
component libraries. Such building blocks are still important because
many designs are conveniently modeled in terms of the operations they
perform and designers may structure their designs using these operations.

Building-block logic typically performs a function that is easily described
in words, often coming directly from the way we think about the problem it’s
solving in the first place, such as:

• Recognizing an input value and activating a corresponding output.

• Converting a set of input values into a corresponding but different set of
output values.

• Selecting one of multiple input buses to send to an output bus.

• Comparing input buses for equality or other relationships (e.g., arithmetic
less-than).

• Combining inputs to produce an output (as in addition and subtraction).

It is usually possible to describe these functions behaviorally in an HDL in a way
that is well-structured and quite succinct, using language features that have been
provided for just such purposes. As you’ll see, the hardware circuit for realizing
one of these functions typically has a regular and easily recognizable structure.

Still, there are many design problems that don’t match the common build-
ing blocks. Combinational logic is often used to evaluate a set of conditions or
other inputs, and to activate one or more outputs as a function of them. We
showed a few functions of that kind in Chapter 3; for example, Figure 3-16 on
page 113 showed the circuit for a combinational function that activates an alarm
signal based on the values of six different condition inputs. We’ll give a much
more elaborate example in Section 7.5. Such logic is sometimes called “random
logic,” but there’s really nothing “random” about it; it almost always has a defi-
nite, non-random purpose! A better name would be “arbitrary logic.” Still, such
logic circuits often appear, like Figure 3-16, to be a collection of logic gates that
have been randomly thrown together (which is surely how “random logic” got its
name in the first place!).

We’ll start this chapter by describing two “universal” structures for combi-
national logic, ROMs and PLAs/PLDs, that can implement arbitrary logic

building-block logic

random logic

C06.fm Page 239 Sunday, April 9, 2017 2:33 PM

240 Chapter 6 Basic Combinational Logic Elements

functions including random logic. Then we describe decoders and multiplexers,
the most commonly used combinational-logic building blocks. We’ll describe
where each might be used, show how it can be created at the gate level, and also
show how its behavior can be specified using Verilog. Chapter 7 does the same
for other combinational building blocks and concludes with a “random logic”
example. Chapter 8 focuses on combinational structures for arithmetic opera-
tions like addition and multiplication.

6.1 Read-Only Memories (ROMs)
You may already be familiar with read-only memories (ROMs), or at least their
application in computers and portable devices where very large ROMs store
programs and data. You may know them as “flash memories.” Although these
memories can be written, at least at initialization, they are mostly read-only;
we’ll talk about that in Section 15.1. In any case, here we will focus on the use
of ROMs, usually much smaller ones, as combinational logic elements.

A basic ROM is a combinational circuit with n inputs and b outputs, as
shown in Figure 6-1. Like other memories, internally the ROM is a two-dimen-
sional array where each row or “location” stores a b-bit “word” of data. The
inputs are called address inputs and are traditionally named An–1, An–2, …, A1,
A0, and the bit-vector A[n–1:0] is typically interpreted as an unsigned n-bit inte-
ger. Each of the 2n binary combinations of A[n–1:0] selects a corresponding
location in the ROM. The outputs are called data outputs, and they are typically
named Db–1, Db–2, … , D1, D0.

Figure 6-2 shows the basic timing diagram for a ROM’s operation. Signal
values are applied to the address inputs [An–1:A0]. Once they are stable, the data
outputs D[b–1:0] are stable after a propagation delay time, tpd, and equal the data
value stored at the applied address. Even though the word “memory” is in its
name, a ROM is a combinational circuit, because its output is always (except for
propagation delay) a function of its current input.

So, you can treat a ROM like any other combinational logic element. A
ROM is called a “memory” mainly because of the organizational paradigm that

read-only memory
(ROM)

Figure 6-1
Basic structure of
a 2n × b ROM.

 2 × ROM

A0
A1 D0

A2 D1

An–2 Db–1
An–1

address
inputs

data
outputs

address input

data output

C06.fm Page 240 Sunday, April 9, 2017 2:33 PM

6.1 Read-Only Memories (ROMs) 241

describes its operation. Also, you can think of information as being “stored” in
the ROM when it’s programmed—we’ll discuss how that’s done in Section 15.1.

Although we think of ROM as being a type of memory, it has an important
difference from many other types of integrated-circuit memory. A true ROM is
nonvolatile memory; that is, its contents are preserved even when no power is
applied.

6.1.1 ROMs and Truth Tables
It’s perhaps even more clear that a ROM is a combinational circuit when we real-
ize that it can “store” the truth table of an n-input, b-output combinational
logic function. For example, Table 6-1 is the truth table of a 3-input, 4-output
combinational function; it could be stored in a 23 × 4 (8 × 4) ROM. Except for
signal propagation delay, a ROM’s data outputs at all times equal the output bits
in the truth-table row selected by the address inputs.

6.1.2 Using ROMs for Arbitrary Combinational Logic Functions
Table 6-1 is actually the truth table of a 2-to-4 decoder with an output-polarity
control, a simple variant of a commonly used logic function that we’ll describe
in Section 6.3. This function can be built using discrete gates, as shown in
Figure 6-3. Thus, there are at least two different ways to build the decoder—with

Figure 6-2
Basic ROM timing.

A[n−1:0]

D[b−1:0]

tpd

stable stable

validvalid

tpd

nonvolatile memory

Inputs Outputs

Table 6-1
Truth table for a
3-input, 4-output
combinational logic
function.

A2 A1 A0 D3 D2 D1 D0

0 0 0 1 1 1 0

0 0 1 1 1 0 1

0 1 0 1 0 1 1

0 1 1 0 1 1 1

1 0 0 0 0 0 1

1 0 1 0 0 1 0

1 1 0 0 1 0 0

1 1 1 1 0 0 0

C06.fm Page 241 Sunday, April 9, 2017 2:33 PM

242 Chapter 6 Basic Combinational Logic Elements

discrete gates, or with an 8 × 4 ROM that contains its truth table, as shown in
Figure 6-4.

When constructing a ROM to store a given truth table, we normally assign
input and output signals, reading from right to left in the truth table, to ROM
address inputs and data outputs with ascending labels. Each address or data
combination may then be read as a corresponding binary integer with the bits
numbered in the “natural” way. A data file is typically used to specify the truth
table to be stored in the ROM when it is programmed. The data file may give the

Figure 6-3
A 2-to-4 decoder
with output-polarity
control.

I0

(A0)

(A1)

(A2)

I1

POL

Y0
(D0)

(D1)

(D2)

(D3)

Y1

Y2

Y3

Figure 6-4
Connections to
build the 2-to-4
decoder using an
8 × 4 ROM that
stores Table 6-1.

8 × 4 ROM

A0

A1

D0

A2

I0

I1

POL

D1

D2

D3

Y0

Y1

Y2

Y3

LET ME COUNT
THE WAYS

The assignment pattern of decoder inputs and outputs to ROM inputs and outputs in
Figure 6-4 is a consequence of the way that the truth table in Table 6-1 is construct-
ed. Thus, the physical ROM realization of the decoder is not unique. That is, we
could write the rows or columns of the truth table in a different order and use a phys-
ically different ROM to perform the same logic function, simply by assigning the
decoder signals to different ROM inputs and outputs. Another way to look at this is
that we can rename the individual address inputs and data outputs of the ROM.

Because there are 3! ways to arrange the inputs, and 4! ways to arrange the out-
puts, there are 3! × 4! or 144 possible assignments of inputs and outputs to the ROM
pins, each with a corresponding arrangement of the truth table in the ROM.

C06.fm Page 242 Sunday, April 9, 2017 2:33 PM

6.1 Read-Only Memories (ROMs) 243

address and data values as hexadecimal numbers. For example, a data file may
specify Table 6-1 by saying that ROM addresses 0–7 should store the values E, D,
B, 7, 1, 2, 4, 8, respectively.

Another simple example of a combinational logic function that can be built
with ROM is a 4 × 4 unsigned binary multiplication. As we’ll see in Section 8.3,
multipliers are fairly complex combinational circuits, and they can be slow,
requiring many levels of logic to get the job done. Alternatively, we can realize a
4 × 4 multiplier using a 28 × 8 (256 × 8) ROM with the connections shown in
Figure 6-5. Table 6-2 is a hexadecimal listing of the 4 × 4 multiplier ROM con-
tents. Each row gives a starting address in the ROM, and specifies the 8-bit data
values stored at 16 successive addresses. A nice thing about ROM-based design
is that you can usually write a simple program in a high-level language to calcu-
late the values to be stored in the ROM (see Exercise 6.20).

Chapter 15 has several Drills and Exercises on the subject of using ROMs
for larger combinational logic functions.

Figure 6-5
Connections to
perform a 4 × 4
unsigned binary
multiplication using
a 256 × 8 ROM.

A0

A1

D0

A2

A3

A4

A5

A6

A7

P0

P1

P2

P3

P4

P5

P6

P7

D1

D2

D3

D4

D5

D6

D7

Y0

Y1

Y2

Y3

X0

X1

X2

X3

multiplicand

multiplier

product

256 × 8 ROM

00: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
10: 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F
20: 00 02 04 06 08 0A 0C 0E 10 12 14 16 18 1A 1C 1E
30: 00 03 06 09 0C 0F 12 15 18 1B 1E 21 24 27 2A 2D
40: 00 04 08 0C 10 14 18 1C 20 24 28 2C 30 34 38 3C
50: 00 05 0A 0F 14 19 1E 23 28 2D 32 37 3C 41 46 4B
60: 00 06 0C 12 18 1E 24 2A 30 36 3C 42 48 4E 54 5A
70: 00 07 0E 15 1C 23 2A 31 38 3F 46 4D 54 5B 62 69
80: 00 08 10 18 20 28 30 38 40 48 50 58 60 68 70 78
90: 00 09 12 1B 24 2D 36 3F 48 51 5A 63 6C 75 7E 87
A0: 00 0A 14 1E 28 32 3C 46 50 5A 64 6E 78 82 8C 96
B0: 00 0B 16 21 2C 37 42 4D 58 63 6E 79 84 8F 9A A5
C0: 00 0C 18 24 30 3C 48 54 60 6C 78 84 90 9C A8 B4
D0: 00 0D 1A 27 34 41 4E 5B 68 75 82 8F 9C A9 B6 C3
E0: 00 0E 1C 2A 38 46 54 62 70 7E 8C 9A A8 B6 C4 D2
F0: 00 0F 1E 2D 3C 4B 5A 69 78 87 96 A5 B4 C3 D2 E1

Table 6-2
Hexadecimal text
file specifying the
contents of a 4 × 4
multiplier ROM.

C06.fm Page 243 Sunday, April 9, 2017 2:33 PM

244 Chapter 6 Basic Combinational Logic Elements

6.1.3 FPGA Lookup Tables (LUTs)
FPGAs use small read-only memories called lookup tables (LUTs) to perform
logic functions. By storing a truth table as explained in the preceding subsec-
tions, a 2n × 1 LUT can perform any 1-output logic function of up to n inputs,
where n is typically in the range of 4 to 6. So, a key task of any FPGA synthesis
tool is to “decompose” logic functions with more than 4–6 inputs into an inter-
connected collection of smaller ones, each of which fits within an available LUT.

The LUTs in one of the more advanced FPGA families, the Xilinx 7 series,
have six inputs; thus, each LUT can be thought of as being a 64 × 1-bit ROM as
shown in Figure 6-6(a). However, each LUT is actually built as two 32 × 1-bit
ROMs sharing the same low-order address bits A4-A0 as shown in (b). The most
significant input bit, A5, selects whether the output named D6 is taken from one
or the other of the two 32 × 1-bit ROMs, thus providing the overall functionality
of a 64 × 1-bit ROM.

lookup table (LUT)

64 × 1 ROM

A0

A1

D0
A2

A0

A1

D0
A3

A4

A5

A2

A3

A4

A5

32 × 1 ROM

A0

A1

D0A2

D6

A3

A4

32 × 1 ROM

A0

A1

D0A2

A0

A1

D5

A3

A4

A2

A3

A4

A5

(a) (b)

Figure 6-6 Xilinx 7-series 6-input LUT: (a) simple model; (b) actual structure.

Figure 6-7
Shannon
decomposition of
a 7-input function
using two LUTs.

64 × 1 ROM

D0A[0:5] F0X[2:7]

LUT1

64 × 1 ROM

D0A[0:5] F1

X[1]

LUT2

A

B

S

F

MUX

C06.fm Page 244 Sunday, April 9, 2017 2:33 PM

6.1 Read-Only Memories (ROMs) 245

The structure in Figure 6-6(b) provides an optional way for the LUT to
implement any 2-output logic function of five inputs, A4-A0. When the sixth
input, A5, is held at a constant 1 value, the top 32 × 1-bit ROM generates any
desired function of the five inputs, A4-A0, and places it on the D6 output. At the
same time, the bottom 32 × 1-bit ROM independently generates any desired
function of the same five inputs, and places it on the output named D5.

AT LEAST IT
ACTS LIKE A ROM

When we say that a lookup table is stored in ROM, we are talking about how it is
used in normal operation—as a read-only table. However, the lookup table must be
programmed into this “ROM” at some point, and there are different ways to do this,
depending on the particular FPGA device. Often, the read-only configuration data
for all of the FPGA’s lookup tables is stored in an external ROM chip, and that data
is written into small RAM-based lookup tables in the FPGA at system power-up.
That’s how it’s done in the Xilinx 7 series.

Some FPGA devices include an erasable, programmable ROM such as flash
memory right on the same chip. This eliminates the external ROM chip, but the now
on-chip configuration data is still written into small RAM-based lookup tables at
system power-up or initialization.

In yet another variation, some FPGAs actually do contain small on-chip
ROMs, one per lookup table, which are programmed just once, when the device is
installed in a system. Unlike the other variations, these do not have to be repro-
grammed every time the FPGA is powered up.

OUT OF LUT? What happens if we need to implement a combinational logic function with say,
seven inputs, and the LUTs in our FPGA have only six inputs? Are we out of luck?

To solve this problem, the 7-input function, or any logic function, can be
“decomposed” into two or more functions which have six or fewer inputs each,
according to a well- known theory of functional decomposition. One straightforward
way to do this is using Shannon’s decomposition theorem, shown in Table 3-3 on
page 97. According to T15, any 7-input function F(X1, X2, …, X7) may be realized as
shown in Figure 6-7 using two 6-input LUTs and a 2-input multiplexer (“MUX”),
which selects one or the other of its left-hand inputs depending on the value of the
top input.

Shannon decomposition can be repeated, for example, to realize an 8-input
function as two 7-bit functions, and then further decomposing each of those. Xilinx
6-series and later FPGAs actually have such muxes (called “F7MUX” and “F8MUX”)
and connections built in. Similarly, Altera Stratix-IV and later FPGAs have LUT-
combining logic to build larger functions from smaller LUTs. FPGA synthesis tools
can use Shannon decomposition and other approaches to realize even larger combi-
national logic functions using multiple LUTs.

C06.fm Page 245 Sunday, April 9, 2017 2:33 PM

246 Chapter 6 Basic Combinational Logic Elements

*6.2 Combinational PLDs
*6.2.1 Programmable Logic Arrays
Historically, the first programmable logic devices (PLDs) were programmable
logic arrays (PLAs), and they form an important basis for understanding later
PLDs. A PLA is simply a combinational, two-level AND-OR device that can be
programmed to realize any sum-of-products logic expression, subject to the size
limitations of the device. Limitations are:

• the number of inputs (n),

• the number of outputs (m), and

• the number of product terms (p).

We might describe such a device as “an n × m PLA with p product terms.” In
general, p is far less than the number of n-variable minterms (2n). Thus, unlike
a LUT, a PLA cannot perform arbitrary n-input, m-output logic functions; its
usefulness is limited to functions that can be expressed in sum-of-products form
using p or fewer product terms.

An n × m PLA with p product terms contains p 2n-input AND gates, and m
p-input OR gates. Figure 6-8 shows a small PLA with four inputs, six AND
gates, and three OR gates and outputs. Each input connects to a buffer/inverter
that produces both a true and a complemented version of the signal for use
within the array. Potential connections in the array are indicated by X’s; the
device is programmed by making only the connections that are actually needed.

*Throughout this book, optional sections are marked with an asterisk.

programmable logic
array (PLA)

inputs

outputs

product terms

I2

I3

I1

I4

P1 P2 P3 P4

O2

O3

O1

P5 P6

Figure 6-8 A 4 × 3 PLA with six product terms.

C06.fm Page 246 Sunday, April 9, 2017 2:33 PM

6.2 Combinational PLDs 247

The selected connections are made by fuses, which in newer devices typically
are not actually fuses, but are nonvolatile memory cells that can be programmed
to make a connection or not. Thus, each AND gate’s inputs can be any subset of
the primary input signals and their complements. Similarly, each OR gate’s
inputs can be any subset of the AND-gate outputs.

As shown in Figure 6-9, a more compact diagram can be used to represent
a PLA. Moreover, the layout of this diagram more closely resembles the actual
internal layout of a PLA on-chip.

The PLA in Figure 6-9 can perform any three 4-input combinational logic
functions that can be written as sums of products using a total of six or fewer
distinct product terms, for example:

O1 = I1 ⋅ I2 + I1′ ⋅ I2′ ⋅ I3′ ⋅ I4′

O2 = I1 ⋅ I3′ + I1′ ⋅ I3 ⋅ I4 + I2

O3 = I1 ⋅ I2 + I1 ⋅ I3′ + I1′ ⋅ I2′ ⋅ I4′

PLA fuses

Figure 6-9
Compact
representation of
a 4 × 3 PLA with
six product terms.

I2

I3

I1

I4

P1 P2 P3 P4 P5 P6

O3

O2

O1

PLA diagram

Figure 6-10
A 4 × 3 PLA
programmed with
a set of three
logic equations.

I2

I3

I1

I4

P1 P2 P3 P4 P5 P6

O3

O2

O1

C06.fm Page 247 Sunday, April 9, 2017 2:33 PM

248 Chapter 6 Basic Combinational Logic Elements

These equations have a total of eight product terms, but the first two terms in the
O3 equation are the same as the first terms in the O1 and O2 equations. The
programmed connection pattern in Figure 6-10 matches these logic equations.

Our example PLA has too few inputs, outputs, and AND gates (product
terms) to be very useful. An n-input PLA could conceivably use as many as 2n

product terms to realize all possible n-variable minterms. The actual number of
product terms in typical commercial PLAs is far fewer, on the order of 4 to 16
per output, regardless of the value of n.

*6.2.2 Programmable Array Logic Devices
A special case of a PLA, and the basis of the most commonly used PLDs, is the
programmable array logic (PAL) device. Unlike a PLA, in which both the AND
and OR arrays are programmable, a PAL device has a fixed OR array.

The first PAL devices were introduced in the late 1970s and used bipolar
transistors technology, not today’s CMOS technology. Key innovations in the
first PAL devices, besides the introduction of a catchy acronym, were the use of
a fixed OR array and bidirectional input/output pins.

These ideas are well illustrated by the PAL16L8 device, which is shown in
Figure 6-11. Its programmable AND array has 64 rows and 32 columns, so there
are 64 × 32 = 2048 fuses. Each of the 64 AND gates in the array has 32 inputs,
accommodating 16 variables and their complements. The device has up to 16
inputs and 8 outputs; hence the “16” and the “8” in “PAL16L8”.

Eight AND gates are associated with each output pin. Seven of them are
inputs to a fixed 7-input OR gate. The eighth connects to the three-state enable
input of an inverting output buffer; the buffer is enabled and drives its output pin
only when the eighth AND gate has a 1 output. Thus, a PAL16L8 output can
perform only logic functions that can be written as inverted sums of seven or
fewer product terms. Each product term can be a function of any or all 16 inputs,
but only seven product terms are available per output.

Although the PAL16L8 has up to 16 inputs and up to 8 outputs, it comes in
a package that has only 18 input/output pins. This pin-count savings is achieved
because of six bidirectional pins that may be used as inputs or outputs or both.
Modern programmable devices still use this idea to provide lots of application
flexibility without dedicating a package pin to every possible input and output.

programmable array
logic (PAL) device

PAL16L8

COMBINATIONAL,
NOT

COMBINATORIAL!

A step backward in the introduction of PAL devices was the manufacturer’s use and
popularization of the word “combinatorial” to describe combinational circuits. Com-
binational circuits have no memory—their output at any time depends on the current
input combination. For well-rounded computer engineers, the word “combinatorial”
should conjure up vivid images of binomial coefficients, problem-solving complex-
ity, and computer-science-great Donald Knuth.

C06.fm Page 248 Sunday, April 9, 2017 2:33 PM

6.2 Combinational PLDs 249

Figure 6-11
Logic diagram
of the PAL16L8.

(2)

(19)

(18)

(17)

(16)

(15)

(14)

(13)

(12)

(11)

(1)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

I1

I2

I3

I4

I5

I6

I7

I8

I9

O1

IO2

IO3

IO4

IO5

IO6

IO7

O8

I10

C06.fm Page 249 Sunday, April 9, 2017 2:33 PM

250 Chapter 6 Basic Combinational Logic Elements

6.3 Decoding and Selecting
Many applications require a combinational circuit that activates one or more
other circuits, elements, or operations based on the value of inputs that specify
the desired operation. For example, a computer might have four USB ports,
each of which is activated by an “enable” input. A program on the computer
might provide a 2-bit “select” value to denote which of the four USB ports is to
be used at a particular time. As shown in Figure 6-12, a circuit could receive the
2-bit “port-select” value from a program instruction, and provide four outputs
connected to the four USB ports’ enable inputs. This circuit is said to “decode”
the port-select value, and is called a decoder. The decoder in this example is
called a 2-to-4 binary decoder,

The decoder in this example is designed so that no more than one output is
asserted at any time, and only if the corresponding port-select value appears on
the input. Most decoders also have one or more enable inputs, like EN_USB in
Figure 6-12, so the selected output is asserted only if the enable input is asserted.

A decoder’s input code-word bits are often called address bits. One of the
most common applications of decoders is to decode addresses, to selectively
enable memories and other components and devices as in our earlier example,
and in a computer’s memory system, as shown next.

Consider a 64-bit desktop computer system that is capable of addressing
up to 1 terabyte (TB) or 240 bytes of RAM memory. Suppose an “entry-level”
version of the system is built with only 4 gigabytes (GB) or 232 bytes of memory,
using four inexpensive modules of 1 GB (230 bytes) each. Note that in a typical
64-bit computer, each memory module is actually 8 bytes wide; in this case, each
1-GB module stores 227 8-byte values sometimes known as longwords.

2

USB
Port 3

enable

USB
Port 2

enable

USB
Port 1

enable

USB
Port 0

enable

Decoder

0

1

2

3

sel

program instruction

select value

EN_USB

Figure 6-12 Typical decoder application in a computer.

decoder
2-to-4 binary decoder

enable input

address bits

C06.fm Page 250 Sunday, April 9, 2017 2:33 PM

6.3 Decoding and Selecting 251

Based on these considerations, the memory in our entry-level system may
be addressed as shown in Figure 6-13. To select a location in the memory
system, the computer processor supplies a 40-bit “physical address” ADDR
shown at the top of the figure. The 8 high-order bits must be all 0s to select the
lowest 4 GB of the total 1-TB physical-address space; an 8-input NOR gate
asserts EN_MEM when this is true. The next two bits select which of the four
modules contains the addressed longword. A 2-to-4 decoder is enabled by
EN_MEM and decodes address bits 30 and 31 to assert one of its four outputs,
each of which enables a corresponding 1-GB memory module. Note that the
decoder has active-low outputs to match the modules’ EN inputs. The next 27
address bits are connected to all four modules, to select the addressed longword
within the enabled module.

Beyond this point, the design is a little more complicated than the previous
example. For 1-byte operations, it is necessary to select which of the eight bytes
within the selected longword is to be accessed. Each module has eight “Byte
Enable” (BE) inputs for this purpose. So another circuit, a 3-to-8 decoder, is used
to create the byte-enable inputs BE[7:0] which are connected to all modules to
select a byte based on the three low-order bits of the supplied memory address.

But wait, there’s more! In addition to longwords and single bytes, some
computer instructions may access 16-bit halfwords or 32-bit words. Therefore,
the computer processor provides (and the 3-to-8 decoder uses) two additional
input bits to indicate the size of the operation: 00–11 for sizes 1, 2, 4, or 8 bytes,
respectively. The decoder must assert multiple byte-enable outputs, depending

Figure 6-13
Memory-module
decoding in a
computer system.

EN

EN

EN

2

2-to-4
Binary

Decoder

ADDR

EN_MEM

3 0122931 303239

27

A[29:3]EN BE0BE7 ...

3-to-8
Decoder

3

Size

... ...

2

1 GB Memory Module

1 GB Memory Module

1 GB Memory Module

1 GB Memory Module

C06.fm Page 251 Sunday, April 9, 2017 2:33 PM

252 Chapter 6 Basic Combinational Logic Elements

on the size of the operation, and it must assert the appropriate ones depending on
the three low-order address bits; for example, BE3 and BE2 for a 2-byte opera-
tion at any address ending in 010. So, this decoder is somewhat more complex
than the 2-to-4 binary decoders in this and the previous example. Also, it has the
special characteristic that multiple outputs may be asserted simultaneously.

*6.3.1 A More Mathy Decoder Definition
We can define decoders using the idea of “codes” that we introduced in Sections
2.10 through 2.13. In this definition, a decoder is any multiple-input, multiple-
output combinational logic circuit that converts or “maps” an input code word
into an output code word, where the input and output codes are different. With
this definition, the general structure of a decoder circuit is shown in Figure 6-14.
The enable inputs, if present, must be asserted for the decoder to perform its nor-
mal mapping function. Otherwise, the decoder maps all input code words into a
single, “disabled,” output code word.

The most commonly used input code is an n-bit binary code, where an n-bit
word represents one of 2n different coded values, normally the integers from 0
through 2n−1, as in our USB and memory examples. Sometimes an n-bit binary
code is truncated to represent fewer than 2n values. For example, a computer
with five USB ports might use a 3-bit “select” value, with binary values 001
through 101 for USB ports 1 through 5, and other values unused. In another
example, the BCD code uses 4-bit combinations 0000 through 1001 to represent
the decimal digits 0–9, and combinations 1010 through 1111 are not used.

The most commonly used output code is a 1-out-of-n code, which has n
bits, one of which is asserted at any time, as in the 2-to-4 decoders in our USB
and memory examples. Note that n need not be a power of 2, but often is. In a
1-out-of-4 code with active-high outputs, the normal code words are 0001, 0010,
0100, and 1000, with 0000 serving as the “disabled” code word. With active-low
outputs, the code words are 1110, 1101, 1011, and 0111, with 1111 as the
“disabled” code word.

6.3.2 Binary Decoders
A simple decoder, like the 2-to-4 binary decoder, is pretty easy to design at the
gate level, which is what we’ll look at here. Later, we’ll go on to HDL-based
models of both simple and more complex decoders.

decoder

Figure 6-14
Decoder circuit
structure.

Decoder

input
code word

enable
inputs

output
code word

map

C06.fm Page 252 Sunday, April 9, 2017 2:33 PM

6.3 Decoding and Selecting 253

The most common decoder circuit is an n-to-2n binary decoder; it has an
n-bit binary input code and a 1-out-of-2n output code. Such a decoder is used
when you need to activate exactly one of 2n outputs based on an n-bit input
value.

For example, Table 6-3 is the truth table, and Figure 6-15(a) shows the
inputs and outputs, of a 2-to-4 decoder that could be used in our USB and mem-
ory examples. The input code word A1,A0 represents an integer in the range 0–3.
The output code word Y3,Y2,Y1,Y0 has Yi equal to 1 if and only if the input
code word is the binary representation of i and the enable input EN is 1. If EN
is 0, then all of the outputs are 0. A gate-level circuit for the 2-to-4 decoder is
shown in Figure 6-15(b). Expressions for the signals on each vertical line are
shown in color at the top of the diagram; each is either an input signal or its
complement. Each AND gate is said to decode one combination of the input code
word A1,A0.

The binary decoder’s truth table introduces a “don’t-care” notation for
input combinations. If one or more input values do not affect the output values
for some combination of the remaining inputs, they are marked with an “x” for
that input combination, denoting “don’t-care.” This convention can often greatly

Inputs Outputs

Table 6-3
Truth table for a 2-to-4
binary decoder.

EN A1 A0 Y3 Y2 Y1 Y0

 0 x x 0 0 0 0

 1 0 0 0 0 0 1

 1 0 1 0 0 1 0

 1 1 0 0 1 0 0

 1 1 1 1 0 0 0

Figure 6-15
A 2-to-4 decoder:
(a) inputs and outputs;
(b) logic diagram.

2-to-4
decoder

A0

A1

EN

Y0

Y1

Y2

Y3

(a) (b)

A0 ′ A0 A1 EN

A0

A1

EN

Y0

Y1

Y2

Y3

A1′

decode

C06.fm Page 253 Sunday, April 9, 2017 2:33 PM

254 Chapter 6 Basic Combinational Logic Elements

reduce the number of rows in the truth table, as well as make the functions of the
inputs more clear.

Extrapolating from the 2-to-4 decoder’s truth table and logic diagram, you
can pretty easily create and understand binary decoders with more inputs and
outputs, and in some cases different active levels for their signals. For example,
Table 6-4 is the truth table for a 3-to-8 binary decoder with active-low outputs
and three enable inputs, all of which must be asserted to enable the selected
output. A circuit with this truth table was sold as a very popular MSI decoder
part, the 74x138, and has the logic symbol shown in Figure 6-16(a) and the inter-
nal logic diagram in Figure 6-17. Note that the decoder’s truth table matches the
logic diagram and specifies the logic function in terms of the external pins of the
device, that is, the signals in Figure 6-16(b). A truth table for the function per-
formed inside the symbol outline would be different (see Drill 6.6).

Table 6-4 Truth table for a 74x138 3-to-8 decoder.

Inputs Outputs

G1 G2A_L G2B_L C B A Y7_L Y6_L Y5_L Y4_L Y3_L Y2_L Y1_L Y0_L

0 x x x x x 1 1 1 1 1 1 1 1

x 1 x x x x 1 1 1 1 1 1 1 1

x x 1 x x x 1 1 1 1 1 1 1 1

1 0 0 0 0 0 1 1 1 1 1 1 1 0

1 0 0 0 0 1 1 1 1 1 1 1 0 1

1 0 0 0 1 0 1 1 1 1 1 0 1 1

1 0 0 0 1 1 1 1 1 1 0 1 1 1

1 0 0 1 0 0 1 1 1 0 1 1 1 1

1 0 0 1 0 1 1 1 0 1 1 1 1 1

1 0 0 1 1 0 1 0 1 1 1 1 1 1

1 0 0 1 1 1 0 1 1 1 1 1 1 1

FUNCTION VS.
TRUTH TABLES

The truth tables in some manufacturers’ data books use L and H to denote the input
and output signal voltage levels, so there can be no ambiguity about the electrical
function of the device; a truth table written this way is sometimes called a function
table. However, since we use positive logic throughout this book, we can use 0 and
1 without ambiguity.

C06.fm Page 254 Sunday, April 9, 2017 2:33 PM

6.3 Decoding and Selecting 255

It is not necessary to use all of the outputs of a decoder, or even to decode
all possible input combinations. For example, a decimal or BCD decoder
decodes only the first ten binary input combinations 0000–1001 to produce
outputs Y0–Y9.

Also, the input code of an n-bit binary decoder need not represent the inte-
gers from 0 through 2n−1. For example, Table 6-5 shows the 3-bit Gray-code

(a)

Y0_L

Y1_L

Y2_L

Y3_L
G2B_L

A

B

74x138

G2A

G1

G2B

Y0

Y1

Y2

Y3

B

A

C

Y4

Y5

Y6

Y7

(b)

74x138

G2A

G1

G2B

Y0

Y1

Y2

Y3

B

A

C

Y4

Y5

Y6

Y7

Y4_L

Y5_L

Y6_L

Y7_L

G2A_L

G1

C

Figure 6-16 Logic symbol for the 74x138 3-to-8 decoder: (a) conventional
symbol; (b) default signal names associated with external pins.

Figure 6-17
Logic diagram for the
74x138 3-to-8
decoder.

Y0_L

Y1_L

Y2_L

Y3_L

C

B

Y4_L

Y5_L

Y6_L

Y7_L

A

G2B_L

G2A_L

G1

decimal decoder
BCD decoder

C06.fm Page 255 Sunday, April 9, 2017 2:33 PM

256 Chapter 6 Basic Combinational Logic Elements

output of a mechanical encoding disk with eight positions, as in Figure 2-6 on
page 61. The eight disk positions can be decoded with a 3-bit binary decoder by
using the appropriate assignment of signals to the decoder outputs, as shown in
Figure 6-18.

6.3.3 Larger Decoders
It’s easy to write the logic equations for a binary decoder with any desired num-
ber of binary inputs and enable inputs. Each decoder output is simply the AND
(perhaps inverted) of the enable inputs and the minterm for the decoded input
combination. However, more inputs require wider AND gates, which typically
cannot be realized in one “level” of transistors

It’s also possible to design a decoder for more inputs by cascading (con-
necting in series) multiple small decoders. For example, see Figure 6-19 for a
5-to-32 decoder built from 3-to-8 decoders. The widest gates in each 3-to-8
decoder have only four inputs.

Table 6-5
Position encoding for
a 3-bit mechanical
encoding disk.

Disk
Position A2 A1 A0

Binary
Decoder
Output

0° 0 0 0 Y0

45° 0 0 1 Y1

90° 0 1 1 Y3

135° 0 1 0 Y2

180° 1 1 0 Y6

225° 1 1 1 Y7

270° 1 0 1 Y5

315° 1 0 0 Y4

Figure 6-18
Using a 3-to-8 binary
decoder to decode a
Gray code.

DEG225

DEG180

DEG90

3-to-8
decoder

A0

A1

A2

EN

Y0

Y1

Y2

Y3

Y4

Y5

Y6

Y7

SHAFTI0

SHAFTI1

SHAFTI2

ENABLE

DEG0

DEG45

DEG135

DEG270

DEG315

cascading

C06.fm Page 256 Sunday, April 9, 2017 2:33 PM

6.3 Decoding and Selecting 257

Figure 6-19
Cascading 3-to-8
decoders to make
a 5-to-32 binary
decoder.

74x138

G2A

G1

G2B

Y0

Y1

Y2

Y3

B

A

C

Y4

Y5

Y6

Y7

74x138

G2A

G1

G2B

Y0

Y1

Y2

Y3

B

A

C

Y4

Y5

Y6

Y7

DEC0_L

DEC1_L

DEC2_L

DEC3_L

DEC4_L

DEC5_L

DEC10_L

DEC11_L

DEC12_L

DEC13_L

DEC14_L

DEC15_L

DEC6_L

DEC7_L

DEC8_L

DEC9_L

N0

N1

N2

N3

EN3_L

N4

EN2_L

EN1

74x138

G2A

G1

G2B

Y0

Y1

Y2

Y3

B

A

C

Y4

Y5

Y6

Y7

DEC18_L

DEC19_L

DEC20_L

DEC21_L

DEC22_L

DEC23_L

DEC16_L

DEC17_L

74x138

G2A

G1

G2B

Y0

Y1

Y2

Y3

B

A

C

Y4

Y5

Y6

Y7

DEC26_L

DEC27_L

DEC28_L

DEC29_L

DEC30_L

DEC31_L

DEC24_L

DEC25_L

EN0X7_L

EN8X15_L

EN16X23_L

EN24X31_L

74x138

G2A

G1

G2B

Y0

Y1

Y2

Y3

B

A

C

Y4

Y5

Y6

Y7

EN4

C06.fm Page 257 Sunday, April 9, 2017 2:33 PM

258 Chapter 6 Basic Combinational Logic Elements

In ASICs and custom VLSI, it’s often necessary to build decoders with an
even larger number of inputs and outputs. For example, the decoders in memory
chips can easily have ten or more address inputs and over a thousand outputs.
These applications use a method called predecoding to accommodate the target
technology’s practical limit on the number of gate inputs, while also optimizing
the chip area used by the gates’ transistors and the wiring that connects the gates
to each other. Predecoding structures are also designed to minimize circuit
delays, which are affected not only by the number of gates in a signal path, but
also by the number of gate inputs that are connected to each gate output.

Figure 6-20 shows a possible predecoding structure for a 6-to-64 binary
decoder. The idea is to break up the overall address into two or more groups with
an equal or near equal number of bits in each group, and decode those groups
individually. The example has three 2-bit groups: A5–4, A3–2, and A1–0. Each
n-bit group has its own first-level n-to-2n binary decoder, so the example has
three 2-to-4 decoders. The overall decoded outputs can then be obtained by
using AND gates at the next level to combine appropriate predecoded signals,
one from each predecoder, corresponding to the input combination for each
overall decoded output.

For example, in Figure 6-20 you can see that the AND gate for output Y2
combines the predecoded outputs for A5–4=00, A3–2=00, and A1–0=10. The
AND gate for output Y61 combines predecoded outputs for A5–4=11, A3–2=11,
and A1–0=01.

Notice in the figure that the overall enable input EN is needed in only one
of the 2-to-4 predecoders. So, the bottom predecoder uses 3-input AND gates
internally, while the others need to use only 2-input AND gates. The maximum
AND-gate width in the design is therefore 3.

As you know, inverting gates are generally faster than noninverting ones,
so in Figure 6-20 you might consider using 2-to-4 predecoders with active-low
outputs, and changing the output AND gates to NOR gates to compensate. How-
ever, also note that each predecoder output drives 16 inputs. In a chip design, the
predecoder outputs would probably be faster if they were implemented with
NAND gates followed by inverters sized appropriately to drive the 16 inputs and
the long wires that connect to them.

Other predecoder structures for a 6-to-64 decoder, besides the one shown
in Figure 6-20, are possible. For example, the input address could be divided
into just two 3-bit groups, so two 3-to-8 predecoders would be used. This
increases the width of the AND gates in the predecoders, and it increases the
number of vertical interconnect lines from 12 to 16, neither of which is desir-
able. However, this alternative structure also halves the number of inputs driven
by each predecoder output, and it saves an input on the final AND gates, which
means in a chip design they are smaller and can be packed more tightly in the

predecoding

C06.fm Page 258 Sunday, April 9, 2017 2:33 PM

6.3 Decoding and Selecting 259

vertical dimension. This alternative might better match the vertical dimension of
the predecoders, yielding a smaller rectangular area for the overall decoder.

In larger decoders, the number of groups may be greater than the number
of inputs on an AND gate, in which case the structure can be extended horizon-
tally to additional levels (see Exercise 6.24). Based on the discussion here, you
can understand how a chip designer would have a very rich set of alternatives
and trade-offs to explore when designing a much larger decoder.

In the next subsection, we’ll see how decoders can be modeled in Verilog,
and then we’ll look at some more complex decoder examples and applications,
including the byte-enable decoder from our earlier memory example.

Figure 6-20
Predecoding
structure for a 6-to-64
binary decoder.

Y60

Y61

Y62

Y63

Y4

Y0

Y1

Y2

Y3

2-to-4
decoder

A0

A1

EN

Y0

Y1

Y2

Y3

EN

A0

A1

A2

A3

A4

A5

2-to-4
decoder

A0

A1

EN

Y0

Y1

Y2

Y3

2-to-4
decoder

A0

A1

EN

Y0

Y1

Y2

Y3

EN · A5 · A4 A1′ · A0′
A1′ · A0
A1 · A0′
A1 · A0

EN · A5 · A4′
EN · A5′ · A4
EN · A5′ · A4′

A3 · A2′
A3′ · A2′

A3′ · A2
A3 · A2

C06.fm Page 259 Sunday, April 9, 2017 2:33 PM

260 Chapter 6 Basic Combinational Logic Elements

6.3.4 Decoders in Verilog
Decoding-type logic is often incorporated in a larger Verilog module, along with
other functions. However, instead of dealing with large, complex examples, in
this subsection we’ll show how to define and test standalone decoder modules
with explicit decoded outputs, as in the gate-level building-block examples of
the previous subsection.

There are several ways to model standalone decoders in Verilog, the most
primitive being to write a structural equivalent of a gate-level decoder circuit.
Just for practice in structural Verilog modeling, this is done in Program 6-1 for
the 2-to-4 binary decoder of Figure 6-15 on page 253. The design uses Verilog’s
built-in components not and and. The port list of each component begins with
its output, and is followed by its one or more inputs. Figure 6-21 is a logic dia-
gram of the circuit as it is modeled in the Verilog module.

Program 6-1 Structural-style Verilog module for the decoder in Figure 6-15.

module Vr2to4dec_s(A0, A1, EN, Y0, Y1, Y2, Y3);
 input A0, A1, EN;
 output Y0, Y1, Y2, Y3;
 wire NOTA0, NOTA1;

 not U1 (NOTA0, A0);
 not U2 (NOTA1, A1);
 and U3 (Y0, NOTA0, NOTA1, EN);
 and U4 (Y1, A0, NOTA1, EN);
 and U5 (Y2, NOTA0, A1, EN);
 and U6 (Y3, A0, A1, EN);
endmodule

Figure 6-21
Logic diagram for
structural model
of 2-to-4 decoder.

A0

A1

EN

Y0

Y1

Y2

Y3

NOTA0

NOTA1

input ports output ports

internal
wires

U1

U2

U3

U4

U5

U6

C06.fm Page 260 Sunday, April 9, 2017 2:33 PM

6.3 Decoding and Selecting 261

The approach just shown, designing a gate-level logic diagram and then
mechanically converting it into the equivalent of a netlist, would usually defeat
the purpose of using Verilog to create a design that’s understandable and main-
tainable. Probably the only reason to use the structural approach for a decoder

JUST-IN-TIME
VERILOG FOR
PROGRAM 6-1

In case you haven’t studied Chapter 5, this box and others with similar titles intro-
duce Verilog concepts the first time they are used in this chapter. You can find more
details in Chapter 5.

A Verilog model begins with the keyword module and a parenthesized list of
the module's “port” names, which are just signal names. Note that case is significant
in Verilog names, and only letters, digits, and special characters _ and $ are allowed.

Verilog has a couple of syntax styles for declaring the type of each module
port, but in this book we mostly use the syntax where each signal type is defined in
an input or output declaration at the beginning of the module. Input ports are defined
using the input keyword followed by optional size and net-type specifications and
the names of the ports being defined; likewise for output ports, using the output
keyword. The input and output declarations in this example have no optional speci-
fications, so the signals have the default size and type, “1-bit wire.”

A Verilog “wire” corresponds to a signal wire in a physical circuit, and pro-
vides one bit of connectivity between modules or between modeled elements inside
a module. For the latter case, local signals are declared using the wire keyword as in
the example. All local names declared within a module have a limited scope, local to
the module, as in most programming languages.

Verilog uses a four-valued logic system; a 1-bit signal like a wire can be only
0, 1, z (high-impedance), or x (unknown, meaningful only in simulation).

Declarations and statements in Verilog must be terminated with a semicolon,
unless they end with a terminating keyword that has the semicolon “built in,” like
end, endcase, or the like, which we'll see later.

Verilog supports a few different styles of modeling logic, the first of which is
structural. Using text-based statements, the language specifies the wired intercon-
nections among primitive gates as well as larger elements. Several gates types are
built in and have corresponding keywords, including not, and, nand, or, nor, xor,
and xnor.

The first statement in the body of Program 6-1 “instantiates” a built-in logic
gate by listing its corresponding keyword, not, followed by a reference designator
selected by the designer, followed by a parenthesized list containing the signal names
of its output wire and its one or more inputs, in that order.

The second statement instantiates another not gate, and the remaining four
instantiate 3-input and gates, each one listing the output wire name followed by three
input-signal names. Together, these six statements model the gate components and
their wired interconnections shown in Figure 6-15 on page 253.

A module ends with the endmodule keyword.

module

input

output

wire

0, 1, z, x

not, and, nand
or, nor, xor, xnor

endmodule

C06.fm Page 261 Sunday, April 9, 2017 2:33 PM

262 Chapter 6 Basic Combinational Logic Elements

would be to model and test a large structure prior to eventual implementation in
an ASIC using cascading or predecoding.

Instead of using the structural style, we would normally create a Verilog
module that makes our decoder design more understandable and maintainable.
One possibility is to use the dataflow style of Verilog to show what’s going on, as
in Program 6-2. Here, we have used a continuous assignment statement for each
output wire, setting it to 0 if EN is 0. If EN is 1, the output’s value is determined by
a conditional expression that is 1 only if the current value of the 2-bit vector
{A1,A0} selects that output.

Another way to specify the decoder, and arguably the most readable and
maintainable, is to use the behavioral style of Verilog. Actually, there are several
different ways that Verilog can model the decoder’s behavior. One way is shown

CASCADING AND
PREDECODING

We showed an example of cascading decoders in Figure 6-19, and predecoding in
Figure 6-20. When such a decoder is designed for and targeted to an ASIC or a cus-
tom VLSI chip, a Verilog model can be created to mimic its structure. The outputs
of this structure can then be checked in a test bench, either algorithmically or by
comparing against the outputs of a simpler behavioral design, to ensure that are no
errors in the hookups specified in the structure, as explored in Exercises 6.23, 6.25,
and 6.26.

JUST-IN-TIME
VERILOG FOR

PROGRAM 6-2,
PART 1

This model has a different module name but the same input and output names as the
first, so it should be possible to use it anywhere that the first one is used. Of course,
it’s up to the designer to ensure that its function is the same, or at least correct.

As in the first model, the inputs and outputs are declared as 1-bit wires, the
default. However, no additional, internal wires are defined, since none are used.

This module uses the “dataflow” style of modeling. The value of each combi-
national output is specified by a “continuous assignment statement,” introduced by
the keyword assign. The statement gets its name because in the model, and in any
synthesized circuit derived from the model, the value on the righthand side of the =
sign is continuously assigned to the signal named on the left. That is, any time that
anything changes on the righthand side, the signal on the lefthand side may respond
and change immediately, subject to propagation delays in the real circuit, or in sim-
ulation subject to delays specified in the model (none in this example).

Note that continuous assignment statements “execute” concurrently. In a cor-
responding physical circuit, all of the gates or other components that calculate the
righthand side operate in parallel. And a simulator performs all of the assignments at
the same simulated time.

assign

C06.fm Page 262 Sunday, April 9, 2017 2:33 PM

6.3 Decoding and Selecting 263

Program 6-2 Dataflow-style Verilog module for a 2-to-4 binary decoder.

module Vr2to4dec_d(A0, A1, EN, Y0, Y1, Y2, Y3);
 input A0, A1, EN;
 output Y0, Y1, Y2, Y3;

 assign Y0 = EN ? ({A1,A0}==2'b00) : 0;
 assign Y1 = EN ? ({A1,A0}==2'b01) : 0;
 assign Y2 = EN ? ({A1,A0}==2'b10) : 0;
 assign Y3 = EN ? ({A1,A0}==2'b11) : 0;
endmodule

JUST-IN-TIME
VERILOG FOR

PROGRAM 6-2,
PART 2

Now we can talk about what's actually being calculated on the righthand side of each
continuous assignment statement in Program 6-2, using Verilog’s so-called “condi-
tional operator” which has the syntax logical-expr ? T-expr : F-expr. This operator
produces a result equal to either T-expr or F-expr depending on whether logical-expr
is true or false. In this example, logical-expr is just one signal wire which has a value
of 0 or 1. In Verilog, a 1-bit value of 1 is “true,” and 0 is “false.”

The T-expr and F-expr on either side of the : must produce values that match
or are at least compatible with the signal on the lefthand side of the = sign. In this
example, the F-expr in each statement is simply 0, which is an integer constant, and
it’s being assigned to a 1-bit wire. When an integer is assigned to or compared with
a wire, Verilog uses the LSB of the integer, which in this case is of course 0.

The T-expr in this example is a parenthesized logical expression, which has a
value of true or false. In Verilog, when a logical value is assigned to or compared
with a wire, Verilog uses a 1-bit value of 1 for true, and 0 for false.

The parenthesized logical expression introduces a couple more new things.
Verilog supports vectors, which are one-dimensional arrays of 1-bit elements, like
wires. Braces may be used to concatenate multiple bits into a vector, so {A1,A0} is
a 2-bit vector with MSB equal to A1 and LSB equal to A0.

Verilog also supports vector literals, indicated by '. In the example, 2 is the
number of bits in the literal, ' indicates the literal, and b is the base of the digits that
follow, binary in this example. So the literals in the four statements are 2-bit vectors
with binary values of 00 through 11. Other bases can be used for digits, so the literal
2'b11 could also be written 2'd3 (decimal), 2'h3 (hexadecimal), or 2'o3 (octal).
Regardless of the base, the leading number (2) is always the number of bits, and is
always written in decimal.

The parenthesized logical expression in each statement is an equality compar-
ison. As in C and some other languages, the == operator performs an equality
comparison. In each statement, the comparison is a 2-bit vector {A1,A0} corre-
sponding to the decoder's address inputs and the righthand side is a 2-bit literal. The
assignment statement sets each output signal Yi to 1 if the address inputs match the
corresponding output-signal number i, else 0.

?:

vectors
{}

vector literals

C06.fm Page 263 Sunday, April 9, 2017 2:33 PM

264 Chapter 6 Basic Combinational Logic Elements

in Program 6-3. Here, we use an always statement whose sensitivity list has all
of the decoder’s inputs. Notice that the output variables are now declared to have
type reg so their values can be assigned in procedural statements. An if state-
ment tests the enable input. If EN is 0, then all of the outputs are set to 0. When EN
is asserted, the decoder’s functionality translates very nicely into HDL code that
activates one output based on the current input combination: a case statement
checks the address inputs and assigns the output values accordingly.

The default choice is included in the case statement to handle the possi-
bility of A0 or A1 being x or z in simulation; it may be advisable to set the outputs
to 4'bxxxx in this case to propagate the error.

The procedural statements in Program 6-3 in some ways simply mimic the
truth table for the decoder. To model a larger decoder with this approach, we
would have to write more cases and longer literals for the assignments, which
would be error-prone. We can capture the decoder’s behavior more succinctly
using the approach shown in Program 6-4. While it’s a simple module, several
aspects are worth noting:

Program 6-3 Behavioral-style Verilog module for a 2-to-4 binary decoder.

module Vr2to4dec_b1(A0, A1, EN, Y0, Y1, Y2, Y3);
 input A0, A1, EN;
 output reg Y0, Y1, Y2, Y3;

 always @ (A0, A1, EN)
 if (EN==1)
 {Y3,Y2,Y1,Y0} = 4'b0000;
 else
 case ({A1,A0})
 2'b00: {Y3,Y2,Y1,Y0} = 4'b0001;
 2'b01: {Y3,Y2,Y1,Y0} = 4'b0010;
 2'b10: {Y3,Y2,Y1,Y0} = 4'b0100;
 2'b11: {Y3,Y2,Y1,Y0} = 4'b1000;
 default: {Y3,Y2,Y1,Y0} = 4'b0000;
 endcase
endmodule

A reg IS NOT
A REGISTER

In Program 6-3 and others, outputs like Y0 are declared as reg variables so their
values can be set procedurally within an always block. But keep in mind that despite
the name, a Verilog reg declaration does not create a hardware register (a set of flip-
flops for storage). It simply creates an internal variable used by the simulator and the
synthesizer. Mechanisms for creating actual flip-flops in Verilog modules will be
discussed in Section 10.3.

C06.fm Page 264 Sunday, April 9, 2017 2:33 PM

6.3 Decoding and Selecting 265

JUST-IN-TIME
VERILOG FOR
PROGRAM 6-3

The behavioral style of Verilog modeling uses “procedural code” to define logical
behaviors that may be later synthesized into hardware. A key requirement of logical
modeling for synthesis is to use code “templates” that the compiler knows how to
translate into RTL structures for subsequent targeting into real hardware.

A very important concept for understanding Verilog behavioral modeling is
the use of reg variables. Only reg variables, not wires, can be assigned values in
procedural code. Despite the poorly named keyword, a reg is not a hardware regis-
ter! A reg is a software variable that is used within a module, and it is assigned
values by statements in procedural code. A reg may or may not have physical sig-
nificance in a circuit depending on how it is used in the Verilog module.

In the model in Program 6-3, the keyword reg in the output declaration indi-
cates that the named outputs are to be used as reg variables within the module.
However, the current value of each such reg variable in the module is continuously
assigned to the named output-port signal, a wire for connection to other modules.
Local reg variables can also be declared for use inside the module only, but there are
none in this example.

The always keyword introduces procedural code. It is followed by a parenthe-
sized list of signal names, called the “sensitivity list.” If the value of one or more of
the listed signals changes, the statement following the list is executed, in zero simu-
lated time. Hardware synthesized from the model also mimics this behavior. If
execution of the statement causes a further change in a listed signal, the statement is
run again, still in zero simulated time. Execution continues until all of the listed sig-
nals have stabilized, but will happen again if any listed signal changes later.

In the example, the procedural statement following the sensitivity list is an if-
else statement, introduced by the if keyword. It tests a parenthesized logical
expression, which is followed by a statement that is then executed if the expression
was true. If the optional else keyword is present, then the next statement is executed
if the logical expression was false.

In the example, if EN is 0, then the output variables {Y3,Y2,Y1,Y0} (another
concatenation) are set to constant 0s. Otherwise, the “case” statement that follows is
executed.

The keyword case introduces a Verilog case statement. It is followed by a
parenthesized “selection expression,” whose value is an integer or a vector in most
uses of this statement. Next is a sequence of case items, five in the example. Each
case item begins with a “choice” followed by a colon and a single procedural state-
ment. The case statement finds the first choice whose value matches that of the
selection expression and executes the corresponding procedural statement. If no
match is found, then the optional default choice is executed, if present.

In the example, the selection expression is a 2-bit vector {A1,A0} and the case
items enumerate all four of its possible binary values, setting the output variables
{Y3,Y2,Y1,Y0} to a corresponding constant bit pattern in each case.

The case statement ends with the endcase keyword, which has a “built-in”
statement-terminating semicolon. The module ends with endmodule as usual.

procedural code
variables

reg

always

sensitivity list

if

else

case

default

endcase

C06.fm Page 265 Sunday, April 9, 2017 2:33 PM

266 Chapter 6 Basic Combinational Logic Elements

• An “internal” version of the outputs, IY, is declared as a 4-bit vector reg
variable to facilitate setting an individual, numbered bit selected by an
integer variable i in the code.

• Although the code may look very “sequential,” with IY being initialized
and possibly then having one of its bits set later in the for loop, this all
happens in zero simulated time when it’s simulated.

• Likewise, in synthesis, the for loop is merely an instruction to the tool to
synthesize a combinational logic structure that compares {A1,A0} against
each of the four possible values of i in the loop, and sets bit i of IY upon
a match. Think of it as the combinational logic equations for the IY[i]
outputs being specified sequentially.

JUST FOR
VARIETY

There are many different stylistic choices that can be made in Verilog coding,
everything from indentation and spacing to syntax for constants. Sometimes a par-
ticular style is required by an employer, just to maintain consistency among design
teams. Still, we’ll use a few different styles in different examples in this book, just
to expose you to and remind you of the different syntactic options that are available.

For example, in this section, you’ll sometimes see a sensitivity list with indi-
vidual signal names separated by “or” or a comma, and sometimes see the wildcard
“*” instead, which means “all signals that might affect this block.”

You’ll sometimes see a 1-bit logic 1 value written very precisely as “1'b1,”
and sometimes as simply “1,” which is technically an integer constant but which the
Verilog compiler will interpret as “1'b1” when it matches it up with any 1-bit signal
or variable that it is comparing it with or assigning it to.

And you’ll see the “choices” of a case statement written as literals in either
binary or decimal as in Programs 6-3 and 6-12, respectively, but never as integers,
to avoid the problem explained in the box on page 215.

Program 6-4 Another behavioral-style module for the 2-to-4 binary decoder.

module Vr2to4dec_b2(A0, A1, EN, Y0, Y1, Y2, Y3);
 input A0, A1, EN;
 output reg Y0, Y1, Y2, Y3;
 reg [3:0] IY;
 integer i;

 always @ (A0 or A1 or EN) begin
 IY = 4'b0000; // Default, outputs all 0
 if (EN==1) // If enabled...
 for (i=0; i<=3; i=i+1) // set output bit i where i={A1,A0}
 if (i == {A1,A0}) IY[i] = 1;
 {Y3,Y2,Y1,Y0} = IY; // Copy internal variable to outputs
 end
endmodule

C06.fm Page 266 Sunday, April 9, 2017 2:33 PM

6.3 Decoding and Selecting 267

• The last statement in the always block assigns IY to the module’s output
variables. We could have avoided this extra work (and the concatenation
{A1,A0}) if we had declared the module’s inputs and outputs in the first
place as a vectors A[1:0] and Y[3:0], but we’ll do that later in another
example.

Yet another behavioral model for the decoder is shown in Program 6-5.
This is the most succinct version of all. After initializing the output bits to all 0s,
it simply sets the bit of IY with index {A1,A0} to 1.

JUST-IN-TIME
VERILOG FOR
PROGRAM 6-4

This module has declarations similar to those of the first behavioral module, but it
also declares an internal reg variable IY, a vector of four bits that’s ultimately copied
to the four output-port bits. As specified by “[3:0]” in the declaration, the vector’s
elements are numbered from 3 down to 0 from left to right. Vector elements can also
be numbered in ascending order, and any starting and ending indices may be used.

The module declares reg variable IY is so that the decoder’s behavior can be
specified later by certain vector operations which aren't available for the individually
named output-port bits. The module also declares an integer i that it uses to control
a for loop, as explained shortly.

The sensitivity list in the always statement uses the or keyword as the sepa-
rator, instead of a comma. This has nothing to do with an OR function or Verilog's
built-in or component. It's just optional syntax from the original Verilog-1995.

Like many other languages, Verilog supports block-structured coding, where
a list of statements may be used in the place of a single statement. In Verilog, a block
begins with the keyword begin, contains a list of procedural statements, and ends
with the keyword end. The block’s procedural statements are executed sequentially,
in order. In the example, the begin-end block is treated as the single procedural
statement that follows the always statement, creating an “always block”.

This example introduces Verilog’s for loop, which begins with the keyword
for. Next comes a parenthesized list with three elements that manipulate a loop-
index variable, typically an integer (i in this example), to control the looping behav-
ior. The first element assigns an initial value to loop-index; the second is a logical
expression that is evaluated prior to executing the body of the loop and must be true
for execution to proceed; and the third assigns a next value to loop-index each time
after the body is executed. The body of the loop is a single procedural statement,
which in this example is an if statement, used here without an else clause.

Another Verilog feature that appears for the first time in this module is the use
of brackets [] to select one bit of a vector as specified by a “bit-select.” The bit-select
is an expression whose value is an integer or can be converted to one. The integer
value of course denotes the bit number to be selected. We could also select a range
of bits, by instead using a “part-select” which is two integer values separated by a
colon; these denote the starting and ending indices of a contiguous group of bits
within the vector, as we’ll see in later examples.

[:], vectors

begin

end

always block

for

[], bit-select

[:], part-select

C06.fm Page 267 Sunday, April 9, 2017 2:33 PM

268 Chapter 6 Basic Combinational Logic Elements

Program 6-5 Yet another behavioral-style module for the 2-to-4 decoder.

module Vr2to4dec_b3(A0, A1, EN, Y0, Y1, Y2, Y3);
 input A0, A1, EN;
 output reg Y0, Y1, Y2, Y3;
 reg [3:0] IY;

 always @ (A0, A1, EN) begin
 IY = 4'b0000; // Default, outputs all 0
 if (EN==1) IY[{A1,A0}] = 1; // Set selected output if enabled
 {Y3,Y2,Y1,Y0} = IY; // Copy internal var to output
 end
endmodule

JUST-IN-TIME
VERILOG FOR
PROGRAM 6-5

There’s nothing really new in this module, but something is used in a slightly tricky
way; can you spot it? Remember, the syntax IY[p] is looking for a “part-select” p
which specifies part of a vector. In the present example, the concatenation {A1,A0}
is a 2-bit vector that the compiler treats as an integer for the part-select. So, the
expression IY[{A1,A0}] denotes bit {A1,A0} of the vector IY.

Program 6-6 Test bench for a 2-to-4 decoder.

`timescale 1 ns / 100 ps
module Vr2to4dec_tb () ;
 reg A0s, A1s, ENs;
 wire Y0s, Y1s, Y2s, Y3s;
 integer i, errors;
 reg [3:0] expectY;

 Vr2to4dec_s UUT (.A0(A0s),.A1(A1s),.EN(ENs), // Instantiate unit under test (UUT)
 .Y0(Y0s),.Y1(Y1s),.Y2(Y2s),.Y3(Y3s));
 initial begin
 errors = 0;
 for (i=0; i<=7; i=i+1) begin
 {ENs, A1s, A0s} = i; // Apply test input combination
 #10 ;
 expectY = 4'b0000; // Expect no outputs asserted if EN = 0
 if (ENs==1) expectY[{A1s,A0s}] = 1'b1; // Else output {A1,A0} should be asserted
 if ({Y3s,Y2s,Y1s,Y0s} !== expectY) begin
 $display("Error: EN A1A0 = %b %b%b, Y3Y2Y1Y0 = %b%b%b%b",
 ENs, A1s, A0s, Y3s, Y2s, Y1s, Y0s);
 errors = errors + 1;
 end
 end
 $display("Test complete, %d errors",errors);
 end
endmodule

C06.fm Page 268 Sunday, April 9, 2017 2:33 PM

6.3 Decoding and Selecting 269

Even though the decoder designs are very simple, we should write a test
bench to make sure they’re right. Program 6-6 is a self-checking test bench that
does the job. With only three inputs, the decoder has only eight different input
combinations, and the test bench uses a variable i to step through all of them.
However, rather than check the decoder’s Y outputs against its truth table in
Table 6-3 on page 253, the test bench instead embeds the functionality of the
decoder’s enable and address inputs in its if statements. This serves as a sort of
“two-way check” on the designer’s logic in creating both the decoder and its test
bench. Since all five of our decoder modules have the same inputs, outputs, and
functionality, this test bench can be used with any of them by changing just one
line of code—the one that instantiates the UUT.

JUST-IN-TIME
VERILOG FOR

PROGRAM 6-6,
PART 1

A Verilog test bench does not model hardware. Rather, it is a program that a simula-
tor executes to apply inputs to and observe outputs of a hardware model, often called
the “unit under test” (UUT). A test bench normally has no inputs and outputs per se,
hence the null list following the module name.

The test bench instantiates the UUT by listing its name, a designer-selected
reference designator (UUT in the example), and a list of input/output associations.
Each association has a dot, followed by the name of the UUT input or output signal,
followed by parentheses enclosing the name of the local signal that should be
“connected” to that UUT input or output. UUT outputs must be connected to signals
with type wire, hence the declaration of Y1s–Y4s as that type.

The first declaration in the test bench declares three reg variables A0s, A1s,
and ENs which are used as the UUT inputs. The test bench assigns values to these
variables and hence to the UUT inputs using procedural code.

The initial keyword introduces procedural code that is executed by the sim-
ulator once, beginning when the module begins at time zero. It is followed by one
procedural statement, usually a begin-end block, creating an “initial block.”

The main body of the initial block sets an error count to 0, and then a for loop
executes a begin-end block on each iteration. The block’s first statement assigns
values to the UUT's inputs. Its lefthand side is a 3-bit vector, and the righthand side
is an integer. In the case of such a “mismatched” assignment, Verilog truncates the
value of the integer, using as many bits as needed starting from the LSB to match the
vector length. Thus, the assigned values will range from 000 to 111 binary.

The next statement, “#10;”, instructs the simulator to delay simulated time by
10 units, the unit being the first listed value (1 ns) in the ̀ timescale directive at the
beginning of the module. A new input will be applied to the UUT every 10 ns.

The next statement sets expectY to all 0s, and if ENs is 1, the if statement sets
the expectY bit selected by {A1s,A0s} to 1. The second if statement compares the
output values {Y3s,Y2s,Y1s,Y0s} with what’s expected. A fine point is that this
comparison uses the “case inequality operator” !==, which properly handles x or z
values that might occur on the Yi outputs in simulation. If there is any mismatch, the
begin-end block is executed to display the error and increment the error count.

initial

`timescale

C06.fm Page 269 Sunday, April 9, 2017 2:33 PM

270 Chapter 6 Basic Combinational Logic Elements

In a simple design like this, it is quite possible that the test bench will find
no errors, even on its very first run. However, it is always possible and advisable
to insert an error or two in the UUT just to make sure that the test bench is really
able to detect errors. Drill 6.8 is a bit of a riddle on how to very easily “test the
test bench” in this example.

When a module may be reused in different designs, it may make sense to
parameterize it so key characteristics can be readily changed without rewriting
the whole thing. In the case of the decoder, the number of address bits and the
number of output bits are key. Based on our preceding behavioral design,
Program 6-7 shows an n-to-s binary decoder, where n is the number of address
bits and s is the number of output bits, usually 2n. In this version, we have
declared both A and Y as vectors to make it easy to parameterize the code, with a
default of 3 bits for A and 8 bits for Y. This also simplifies the code, since we no
longer need the temporary variable IY. A couple of other things are noteworthy:

• We initialize Y to 0, which is an integer constant. However, the compiler,
as usual, converts this into a bit vector, extending with 0 bits on the left to
match the width of the vector it’s assigned to, Y. This shortcut wouldn’t
work if we were trying to initialize to all 1s.

JUST-IN-TIME
VERILOG FOR

PROGRAM 6-6,
PART 2

Errors are displayed by the built-in $display system task, which displays a line of
text (terminated by a “newline”) on the system console. The syntax of its arguments
is similar to that of formatted I/O in C. The first argument is a text formatting string
(delimited by ") that specifies what is to be printed. Within that string, each %f is a
placeholder for another argument that is to be printed in the format specified by a
letter f, where b means binary. Other options include d, h, and o. After the formatting
string, the current values of the additional arguments are substituted, in order, for the
% f placeholders. The number of placeholders and additional arguments must match.

The last statement of the initial block announces the test completion and
displays the number of errors found. The module ends with endmodule as usual.

$display

Program 6-7 Parameterized N-to-S binary decoder module.

module VrNtoSbindec(A, EN, Y);
parameter N=3, S=8;
 input [N-1:0] A;
 input EN;
 output reg [S-1:0] Y;

 always @ (*) begin
 Y = 0; // Default, outputs all 0
 if (EN==1) Y[A] = 1; // Set selected output bit if enabled
 end
endmodule

C06.fm Page 270 Sunday, April 9, 2017 2:33 PM

6.3 Decoding and Selecting 271

• As before, everything happens in zero simulated time. Even though a value
may be assigned to Y in two places, only the final value shows up in the
simulated or synthesized circuit output.

We can also write a new test bench, based on the previous one, to test the
parameterized binary decoder, as shown in Program 6-8. Notice that it passes its
own parameter values, which happen to be the same but could be changed, to the

JUST-IN-TIME
VERILOG FOR

PROGRAMS 6-7
AND 6-8

A declaration introduced by the keyword parameter assigns constant values to
named parameters for later use in the module. Multiple assignments, separated by
commas, can be made in one declaration. New constant values may be assigned to
parameters in a module when it is instantiated in a test bench or other module, similar
to the way that signals themselves are assigned. After the module name, a # sign is
followed by a parenthesized list of parameter names and their new values.

In Program 6-7, the wildcard “*” in the sensitivity list means “all signals that
might affect this always block.” This puts the burden on the compiler to figure out
which signal changes should cause the block to be re-executed. In Program 6-8,
exponentiation in the “control” part of the for statement is denoted by “**”.

parameter

#

*

**

Program 6-8 Parameterized test bench for the n-to-s-bit binary decoder module.

`timescale 1 ns / 100 ps
module VrNtoSbindec_tb () ;
parameter N=3, S=8;
 reg [N-1:0] A;
 reg EN;
 wire [S-1:0] Y;
 integer i, errors;
 reg [S-1:0] expectY;

 VrNtoSbindec #(.N(N),.S(S)) UUT (.A(A),.EN(EN),.Y(Y)); // Instantiate the UUT
 initial begin
 errors = 0;
 for (i=0; i<(2**(N+1)); i=i+1) begin
 {EN, A} = i; // Apply test input combination
 #10 ;
 expectY = 0; // Expect no outputs asserted if EN = 0
 if (EN==1) expectY[A] = 1'b1; // Else output A should be asserted
 if (Y !== expectY) begin
 $display("Error: EN A = %b %b, Y = %b", EN, A, Y);
 errors = errors + 1;
 end
 end
 $display("Test complete, %d errors",errors);
 end
endmodule

C06.fm Page 271 Sunday, April 9, 2017 2:33 PM

272 Chapter 6 Basic Combinational Logic Elements

decoder module when it instantiates it as the UUT. Also notice the use of the
parameter N in computing the bounds of the for loop, whose body is executed

 times. Finally, notice that we used the same names for signals in the test
bench as in the UUT—because of the scope rules, the compiler keeps everything
straight. We do that in many other test benches, but the choice is up to you.

Once a “generic” module like VrNtoSbindec has been defined, it can be
used as a building block in other designs. For example, suppose we needed a
3-to-8 decoder module with functionality like that of the 74x138 MSI part—two
active-low and one active-high enable inputs, and active-low outputs. Such a
module Vr74x138 can be defined hierarchically based on VrNtoSbindec. The
hierarchical relationship between the modules is shown in Figure 6-22, and the

2N 1+

AN UNEXPECTED
NON-BUG

The code in Program 6-7 works even if S is not the power of 2 corresponding to N.
For example, suppose you set S to 6 to get a 3-to-6 decoder, with outputs Y[5:0] and
with address-input combinations 110 and 111 selecting nothing. It would appear that
when A is 110 or 111, the code has an error because it attempts to set a nonexistent
bit of Y[A] to 1. However, the Verilog language reference manual (LRM) is clear
that out-of-range assignments in vectors are simply ignored (see box on page 189).
The test bench in Program 6-8 works properly in this case for the same reason.

module VrNtoSbindec

A[2:0]

Y[7:0]
EN~

~
~

Y[7:0]

G1

G2A_L

G2B_L
Y_L[7:0]

A[2:0]

module Vr74x138

A[2:0]

G1 Y_L[7:0]

G2A_L

G2B_L

module Vr74x138

(a) (b)

&
EN

(N,S = 3,8)

U1

Figure 6-22 Verilog module Vr74x138: (a) top level; (b) internal structure with VrNtoSbindec.

Program 6-9 Hierarchically defined 74x138-like 3-to-8 decoder.

module Vr74x138(G1, G2A_L, G2B_L, A, Y_L);
 input G1, G2A_L, G2B_L;
 input [2:0] A;
 output [7:0] Y_L;
 wire [7:0] Y;

 assign EN = G1 & ~G2A_L & ~G1A_L; // Convert, combine enables
 assign Y_L = ~Y; // Convert outputs
 VrNtoSbindec #(.N(3),.S(8)) U1 (.EN(EN),.A(A),.Y(Y));
endmodule

C06.fm Page 272 Sunday, April 9, 2017 2:33 PM

6.3 Decoding and Selecting 273

corresponding Verilog code is shown in Program 6-9. The top-level module,
Vr74x138, instantiates VrNtoSbindec, specifying both the signals that are to be
connected to its input and output ports and the constant values to be assigned to
its parameters. The top-level module also has continuous-assignment statements
to combine the enable signals and to perform active-level conversions as needed.

6.3.5 Custom Decoders
Decoders can be customized in many different ways. In HDL-based design, such
customization would normally be done in the context of a larger module design
where decoding functionality is included among other things. Customizations
are usually easy to do, and may include any of the following:

• Having different numbers of inputs and data outputs, in some cases fewer
than 2n data outputs and with different unused address-input combinations.

• Having active-low inputs (especially enables) or outputs.

• Asserting an output for two or more address-input combinations.

• Asserting multiple outputs for an input combination.

An interesting example is the memory-module decoding arrangement that
we described in connection with Figure 6-13 on page 251. Before proceeding
with the Verilog design, let us make one simplifying assumption: when the oper-
ation size is larger than a byte, the operand’s address will be “aligned” on a
boundary corresponding to that size. That is, operations on halfwords, words,
and longwords will have addresses that are multiples of 2, 4, and 8, respectively.

MATCHING UP
NAMES

In Figure 6-22, the port names of a module are drawn inside the corresponding box.
The names of the signals that are connected to the ports when the module is used are
drawn on the signal lines. Notice that the signal names may match, but they don’t
have to. The Verilog compiler keeps everything straight, associating a scope with
each name. The situation is completely analogous to the way variable and parameter
names are handled in hierarchically structured, procedural programming languages
like C.

JUST-IN-TIME
VERILOG FOR
PROGRAM 6-9

For the first time in our examples, Program 6-9 uses Verilog “bitwise boolean” oper-
ators to combine signals. The NOT, AND, and OR operations for individual bits or
multibit vectors are denoted by symbols ~, &, and |, respectively. When applied to
vectors, these operations act bit-by-bit in corresponding positions.

Verilog has a different set of operations for combining truth values in logical
expressions, denoted by !, &&, and ||, as we’ll show in another example soon. The
difference is subtle but very important.

~, &, |

C06.fm Page 273 Sunday, April 9, 2017 2:33 PM

274 Chapter 6 Basic Combinational Logic Elements

A Verilog module that creates the memory-module enables (EN_L[3:0])
and the byte enables (BE_L[7:0]) is shown in Program 6-10. Its inputs are the ten
high-order and the three low-order bits of the memory address, and the 2-bit
operation size. It uses reg vectors EN and BE for the enable signals internally, and
it creates the required external active-low outputs at the very end of the module

Program 6-10 Verilog model for the memory-module decoder of Figure 6-13.

module Vrmemdec (HADDR, LADDR, SIZE, EN_L, BE_L);
 input [39:30] HADDR;
 input [2:0] LADDR;
 input [1:0] SIZE;
 output [3:0] EN_L; // Active-low outputs
 output [7:0] BE_L;
 reg EN_MEM; // Internal master enable
 reg [3:0] EN; // Active-high internal versions of outputs
 reg [7:0] BE;
 integer i;

 parameter BYTE = 2'b00, // Encoding for operation size
 HWORD = 2'b01,
 WORD = 2'b10,
 LWORD = 2'b11;

 always @ (*) begin
 EN = 4'b0000; BE = 8'h00; // Default, outputs not enabled
 EN_MEM = (HADDR[39:32] == 8'h00); // Check first whether mem is enabled
 if (EN_MEM) begin
 for (i=0; i<=3; i=i+1) // Enable module addressed by HADDR
 if (HADDR[31:30] == i) EN[i] = 1'b1;
 if (SIZE == LWORD) BE = 8'hFF; // Longword, enable all bytes
 else if (SIZE == WORD) begin // Word (4 bytes)
 if (LADDR == 3'b000) BE = 8'h0F; // LADDR is aligned, enable bytes
 else if (LADDR == 3'b100) BE = 8'hF0;
 end // else no enables
 else if (SIZE == HWORD) // Halfword (2 bytes)
 case (LADDR)
 3'b000: BE = 8'b00000011; // Four cases of aligned LADDR
 3'b010: BE = 8'b00001100;
 3'b100: BE = 8'b00110000;
 3'b110: BE = 8'b11000000;
 default BE = 8'b00000000; // No enables if LADDR not aligned
 endcase
 else // SIZE == BYTE
 for (i=0; i<=7; i=i+1)
 if (LADDR == i) BE[i] = 1'b1;
 end
 end

 assign EN_L = ~EN; assign BE_L = ~BE; // Create the active-low module outputs
endmodule

C06.fm Page 274 Sunday, April 9, 2017 2:33 PM

6.3 Decoding and Selecting 275

using continuous-assignment statements. A parameter statement defines the
encoding for the operation size.

The module uses an always block to model the decoder behaviorally. First
it checks the eight high-order address bits to determine if the memory is enabled
at all. If so, a for loop asserts the bit of EN corresponding to the memory module
selected by address input bits HADDR[31:30]. Next comes the calculation of the
byte enables, which is done separately for each of the four possible operation
sizes. Just for illustrative purposes, four different methods are used. For long-
word operations, BE is unconditionally set to all 1s. For word operations, an if
statement sets the appropriate bits of BE to enable the low-order or high-order
four bytes depending on the value of the low-order address bits LADDR[2:0].
For halfword operations, a case statement is used to enable the appropriate pair
of bytes. And for byte operations. a for loop compactly decodes the three low-
order address bits to enable the corresponding single byte, in much the same way
as a for loop decoded HADDR[31:30] at the beginning of the always block.

A self-checking test bench for the decoder module is shown in two parts in
Program 6-11. The first part has the declarations; defines a task displayerrors
to count errors and display the UUT’s inputs and outputs when one is detected;
and instantiates the UUT. The second part contains the main body of the test
bench, an initial block.

Program 6-11 Test bench module for the Vrmemdec module of Program 6-10 (part 1).

module Vrmemdec_tb();
 reg [39:30] HADDR;
 reg [2:0] LADDR;
 reg [1:0] SIZE;
 wire [3:0] EN_L;
 wire [7:0] BE_L;
 reg [3:0] EN, ENMASK; // Active-high internal versions of outputs
 reg [7:0] BE, BEMASK;;
 reg [1:0] MADDR; // Gets set to module addr (HADDR[31:30])
 integer i, ahi, alo, sz, errors;

 parameter BYTE = 2'b00, // Encoding for operation size
 HWORD = 2'b01,
 WORD = 2'b10,
 LWORD = 2'b11;

 task displayerror;
 begin
 errors = errors+1;
 $display("Error: HADDR=%10b, LADDR=%3b, SIZE=%2b, EN=%4b, BE=%8b",
 HADDR, LADDR, SIZE, EN, BE);
 end
 endtask

 Vrmemdec UUT (.HADDR(HADDR), .LADDR(LADDR), // Instantiate the UUT
 .SIZE(SIZE), .EN_L(EN_L), .BE_L(BE_L));

C06.fm Page 275 Sunday, April 9, 2017 2:33 PM

276 Chapter 6 Basic Combinational Logic Elements

As shown, the test bench uses a triple nested for loop to apply all possible
combinations on HADDR, LADDR, and SIZE to the UUT. For each combination, it
first checks to see if it’s one that enables the memory at all. If not, it ensures that
all of the enables are negated. Otherwise, it goes on to check whether the
module-enable and byte-enable signals (EN[3:0] and BE[7:0]) have the correct
values for the current input combination. For the module enable, it checks that
the EN bit corresponding to the current value of HADDR[31:30] (MADDR) is 1, and

Program 6-11 (part 2)

 initial begin
 errors = 0;
 for (ahi=0; ahi<1024; ahi=ahi+1) for (alo=0; alo<8; alo=alo+1)
 for (sz=0; sz<4; sz=sz+1) begin
 HADDR = ahi; LADDR = alo; SIZE = sz; // Set up UUT inputs
 MADDR = HADDR[31:30]; // Set module-select part of HADDR
 #10 ; // Wait for valid decoder outputs
 EN = ~EN_L; BE = ~BE_L; // Get active-high versions
 ENMASK = ~(2**(MADDR)); // All 1s except selected module enable bit
 if (HADDR[39:32]!=8'b0) begin // Memory not enabled
 if (EN!==4'b0000) displayerror;
 end else begin // Memory enabled
 if ((EN[MADDR] !== 1'b1) || ((EN & ENMASK)!==4'b0000)) // Check for EN errors
 displayerror;
 if (SIZE==BYTE) // Check for BE errors according to SIZE
 begin
 BEMASK = ~(2**(LADDR)); // All 1s except selected byte's BE bit
 if ((BE[LADDR] !== 1'b1) || ((BE & BEMASK)!==8'h00)) displayerror;
 end
 else if (SIZE==HWORD)
 case (LADDR)
 3'b000: if (BE !== 8'b00000011) displayerror;
 3'b010: if (BE !== 8'b00001100) displayerror;
 3'b100: if (BE !== 8'b00110000) displayerror;
 3'b110: if (BE !== 8'b11000000) displayerror;
 default if (BE !== 8'b00000000) displayerror;
 endcase
 else if (SIZE==WORD)
 case (LADDR)
 3'b000: if (BE !== 8'b00001111) displayerror;
 3'b100: if (BE !== 8'b11110000) displayerror;
 default if (BE !== 8'b00000000) displayerror;
 endcase
 else // SIZE == LWORD
 if ((LADDR==3'b000) && (BE !== 8'b11111111)) displayerror;
 else if ((LADDR!=3'b000) && (BE !== 8'b00000000)) displayerror;
 end
 end
 end
endmodule

C06.fm Page 276 Sunday, April 9, 2017 2:33 PM

6.3 Decoding and Selecting 277

that the others are all 0. Notice how the code constructs the 4-bit variable ENMASK
to be all 1s except in the bit position that should be 1, and “knocks out” that bit in
EN using an AND operation, so the remaining EN bits can be compared against 0.

After checking the module enables, the test bench checks the byte enables,
using different code depending on SIZE. For byte operations, it uses a method
similar to one in the module-enable code to ensure that the BE bit for the selected
byte is 1 and all others are 0. For the other operation sizes, it compares the BE
vector against its expected value as a function of the low-order address bits.

Note that the test bench expects operations of all sizes normally to be
“aligned” on corresponding address boundaries, as we indicated in the original
problem statement. If they are not aligned, then it expects the BE bits to all be 0.
Running the test bench against the Verilog module in Program 6-10 shows that
the module is not quite correct—we failed to check for proper alignment for
longword operations. Correcting this error is left as Exercise 6.29.

The next subsection gives another, classic example of a decoder that asserts
multiple outputs at a time.

6.3.6 Seven-Segment Decoders
Look at your wristwatch and you may see a seven-segment display. This type of
display, which normally uses light-emitting diodes (LEDs) or liquid-crystal
display (LCD) elements, is used in watches, calculators, and instruments to
display decimal data. A digit is displayed by illuminating a subset of the seven
line segments shown in Figure 6-23(a).

JUST-IN-TIME
VERILOG FOR

PROGRAM 6-11

Declared at the beginning of a module, Verilog “tasks” are used primarily in test
benches, to automate repetitive tasks or otherwise improve the module’s structure
and readability. A task begins with the keyword task, followed by the task name and
a semicolon. A task may have input and output arguments, and they are declared just
after the task name with the input and output keywords as in a module; there are
none in the example. A task may also declare local variables (reg or integer but
not wire), whose values are not preserved from one invocation of the task to another.
The task declarations are followed by a single procedural statement, usually a begin-
end block, and the keyword endtask.

Besides boolean operators for combining signals, which we’ve already seen,
Verilog has different operators for combining truth values in logical expressions that
are used to control if and for statements and the like. Similar to the C programming
language, Verilog uses !, &&, and || for NOT, AND, and OR, respectively. If a truth
value is assigned to a signal, it uses a 1-bit value of 1 (1'b1) for true and 0 for false.
Conversely, if a signal is used as a truth value in a logical expression, a bit or vector
that has any 1s is interpreted as true; only a 0 bit or a vector of all 0s is false. This
can lead to some frustrating bugs if you’re sloppy in your use of logical operators;
see the discussion in Section 5.5 beginning on page 194.

task

endtask

!, &&, ||

seven-segment display

C06.fm Page 277 Sunday, April 9, 2017 2:33 PM

278 Chapter 6 Basic Combinational Logic Elements

A seven-segment decoder has 4-bit BCD as its input code and the “seven-
segment code,” which is graphically depicted in Figure 6-23(b), as its output
code. This is perhaps the best example of a decoder that is not a binary decoder.

Program 6-12 is a Verilog model for a seven-segment decoder with 4-bit
BCD digit input DIG, active-high enable input EN, and segment outputs SEGA–
SEGG. Note the use of concatenation and an auxiliary variable SEGS to make the
model more readable. The model can be easily modified for different encodings
and features, for example, to add “tails” to digits 6 and 9 (in Exercise 6.37) or to
display hexadecimal digits A–F instead of treating these input combinations as
“don’t-cares” (in Exercise 6.38).

seven-segment decoder

(a) (b)

Figure 6-23 Seven-segment display: (a) segment identification; (b) decimal digits.

Program 6-12 Verilog module for a seven-segment decoder.

module Vr7segdec(DIG, EN, SEGA, SEGB, SEGC, SEGD,
 SEGE, SEGF, SEGG);
 input [3:0] DIG;
 input EN;
 output reg SEGA, SEGB, SEGC, SEGD, SEGE, SEGF, SEGG;
 reg [1:7] SEGS;

 always @ (DIG or EN or SEGS) begin
 if (EN)
 case (DIG)
 // Segment patterns abcdefg
 4'd0: SEGS = 7'b1111110; // 0
 4'd1: SEGS = 7'b0110000; // 1
 4'd2: SEGS = 7'b1101101; // 2
 4'd3: SEGS = 7'b1111001; // 3
 4'd4: SEGS = 7'b0110011; // 4
 4'd5: SEGS = 7'b1011011; // 5
 4'd6: SEGS = 7'b0011111; // 6 (no 'tail')
 4'd7: SEGS = 7'b1110000; // 7
 4'd8: SEGS = 7'b1111111; // 8
 4'd9: SEGS = 7'b1110011; // 9 (no 'tail')
 default SEGS = 7'bxxxxxxx;
 endcase
 else SEGS = 7'b0000000;
 {SEGA, SEGB, SEGC, SEGD, SEGE, SEGF, SEGG} = SEGS;
 end
endmodule

C06.fm Page 278 Sunday, April 9, 2017 2:33 PM

6.3 Decoding and Selecting 279

I DON’T CARE Note that the SEGS output in default case in the seven-segment decoder module of
Program 6-12 has been specified as seven bits of x, which some synthesizers inter-
pret as “don’t-care.” If nondecimal input values never occur in normal operation,
don’t-cares may allow the synthesizer to reduce the number of gates needed in a
gate-level realization, for example, in an ASIC. On the other hand, if the decoder is
realized using a table lookup as in an FPGA, the don’t- cares will not provide any
savings, and the designer may prefer to specify a value like all 0s or all 1s instead.

A TRICKY
TEST BENCH

A test bench for the seven-segment decoder is shown in Program 6-13. The test
bench merely steps through the 16 possible input combinations on DIG, and displays
the output for each one. However, this test bench is rather unusual in that, rather than
printing out a list of output values, it actually reproduces the visual appearance of the
seven-segment display by writing out spaces, underscores, vertical bars, and new-
lines corresponding to each segment output. Study it, or better yet, try it!

Program 6-13 Verilog test bench for a seven-segment decoder.

`timescale 1ns / 100ps
module Vr7seg_tb ();
 reg EN;
 reg [3:0] DIG;
 wire SEGA, SEGB, SEGC, SEGD, SEGE, SEGF, SEGG;
 integer i;

 Vr7segdec UUT (.DIG(DIG),.EN(EN),.SEGA(SEGA),.SEGB(SEGB),
 .SEGC(SEGC),.SEGD(SEGD),.SEGE(SEGE),.SEGF(SEGF),.SEGG(SEGG));
 initial begin
 EN = 1; // Enable all
 for (i=0; i<16; i=i+1)
 begin
 DIG = i;
 #5 ;
 $write("Iteration %0d\n", i);
 if (SEGA) $write(" __\n"); else $write("\n");
 if (SEGF) $write("|"); else $write(" ");
 if (SEGG) $write("__"); else $write(" ");
 if (SEGB) $write("|\n"); else $write("\n");
 if (SEGE) $write("|"); else $write(" ");
 if (SEGD) $write("__"); else $write(" ");
 if (SEGC) $write("|\n"); else $write("\n");
 #5 ;
 end
 $write("Done\n");
 end
endmodule

C06.fm Page 279 Sunday, April 9, 2017 2:33 PM

280 Chapter 6 Basic Combinational Logic Elements

6.3.7 Binary Encoders
In Section 6.3.1, we defined a decoder to be any multiple-input, multiple-

output combinational logic circuit that converts an input code word into an out-
put code word in a different code. With that definition, a circuit that converts in
the opposite direction as a binary decoder is also a decoder, but it’s usually called
a binary encoder. As shown in Figure 6-24(a), its input code is the 1-out-of-2n

code and its output code is n-bit binary. The equations for an 8-to-3 encoder with
inputs I0–I7 and outputs Y0–Y2 are given below:

The corresponding logic circuit is shown in (b). In general, a 2n-to-n encoder can
be built from n 2n−1-input OR gates. Bit i of the input code is connected to OR
gate output j if bit j in the binary representation of i is 1.

A standard binary encoder’s output is meaningful only if exactly one input
is asserted; after all, it expected a 1-out-of-2n coded input. Its output is pretty
much useless if two or more of its inputs are asserted—the output code word is
the bit-by-bit logical OR of the code words corresponding to all of the asserted
inputs. In situations where multiple inputs may be asserted simultaneously, a
designer can use a “priority encoder,” where the output code word corresponds
to the asserted input with the highest priority, where “priority” is based on the
input numbering. We’ll show how these are designed later, in Section 7.2.

Y0 = I1 + I3 + I5 + I7

Y1 = I2 + I3 + I6 + I7

Y2 = I4 + I5 + I6 + I7

JUST-IN-TIME
VERILOG FOR

PROGRAM 6-13

This test bench uses Verilog’s built-in $write task, which behaves exactly the same
as $display, except it does not append a newline at the end of its output. The facil-
itates the construction of the displayed digits, segment by segment.

The “logical expression” in each if statement is just a 1-bit wire, which is not
technically a truth value. A “proper” logical expression would be “SEGA==1'b1”.
However, the compiler will treat a 1-bit value of 1 as “true.” In simple cases like this,
it seems more clear to use the terse formulation of the condition expression.

$write

binary encoder

Figure 6-24
Binary encoder:
(a) general structure;
(b) 8-to-3 encoder.

Binary
encoder

Y0

Y1I1

I0

I2

I(2 1)

Y(1)

2
 inputs outputs

(a) (b)

I0

I1

I2

I3

I4

I5

I6

I7

Y0

Y1

Y2

C06.fm Page 280 Sunday, April 9, 2017 2:33 PM

6.4 Multiplexing 281

6.4 Multiplexing
In the preceding section, we saw that decoding and selecting are basic require-
ments in many applications, and there are specific circuits—decoders—to
match. A common selecting operations is to pick a source of data which is to be
transferred to a destination across a shared medium; this operation is common
enough to have a name—multiplexing. In digital applications, a typical medium
is a wire or bus, though it could be a fiber-optic cable or even a radio channel.

A multiplexer is a digital switch—it connects data from a one of n sources
to its output, as depicted in Figure 6-25. A select input S selects which of the
n data inputs is to be transferred to the output, and an optional enable input EN
may be provided to allow or block the transfer. If the S input has s bits, then n
may be as large as 2s. The individual data sources and the output may each be
one bit wide as in the figure, or they may be b-bit-wide buses, where the 1-bit
switches are simply replicated and controlled by the same S and EN inputs, as
we’ll show later. By the way, a multiplexer is often called a mux for short.

Multiplexers have an affinity with binary decoders since they perform a
selection function, plus they perform a transfer based on the selection. Thus, a
multiplexer can be thought of (and actually implemented as) a collection of indi-
vidual switches controlled by a binary decoder, as shown in Figure 6-26. The
multiplexer’s enable and select inputs are connected to the decoder’s enable and

multiplexing

multiplexer

Figure 6-25
A multiplexer as a
multi-position switch.

D0

D1

D −1

Y

S EN

mux

Figure 6-26
Implementing a
multiplexer with
a decoder and
switches.

binary
decoder

EN Y0

D0

Y

S0

EN

A0

A1

A −1 Y −2

Y2

Y1

Y −1

D 2

D2

D1

D −1

S −1

S1

C06.fm Page 281 Sunday, April 9, 2017 2:33 PM

282 Chapter 6 Basic Combinational Logic Elements

address inputs. The decoder’s outputs are connected to individual switches cor-
responding to the like-numbered data sources. With a standard binary decoder,
at most one switch will be activated at a time, transferring the connected data
source to the Y output.

CMOS circuits often implement multiplexers in exactly the way shown in
the figure, because they have a component—the transmission gate—that acts
just like a switch and has very little propagation delay (see Section 14.5.1). For
example, the CMOS transistor-level circuit for a 2-input, 1-bit wide mux is
shown in Figure 6-27. The leftmost pair of transistors is a CMOS inverter, and
each of the other two pairs is a transmission gate. When S is 1, the path from D1
to Y is enabled, and when it’s 0, the path from D0 to Y is enabled. The inverter
and the transmission gates require typical CMOS delays to change when S
changes state, but once they have settled, the delay through the enabled transmis-
sion gate is extremely fast, almost as fast as a wire in advanced CMOS
technologies.

6.4.1 Gate-Level Multiplexer Circuits
A gate-level implementation of a multiplexer is different, since we have no
switches to work with. Instead, we can use the decoder outputs to enable AND
gates, one per data source, and combine their outputs with an OR gate, as shown
in Figure 6-28. If you compare this circuit carefully with a standard binary
decoder circuit, you realize that the AND functions performed by the n AND
gates can actually be subsumed into the n AND gates that are already present in
the s-to-n binary decoder. This adds one input—the corresponding data source—
to each of the AND gates, and one more for the EN input, and yields the classic
gate-level multiplexer circuit of Figure 6-29 when s=2 and n=4.

Similarly, the logic diagram for an 8-input, 1-output multiplexer is shown
in Figure 6-30(a), with its traditional logic symbol in (b). The multiplexer’s logic
function is probably obvious to you from the word description of muxes, but we

Figure 6-27
Two-input multiplexer using
CMOS transmission gates.

D0

D1

S

VCC

Y

8-input, 1-bit
multiplexer

C06.fm Page 282 Sunday, April 9, 2017 2:33 PM

6.4 Multiplexing 283

have written its truth table in Table 6-6 to illustrate another extension of our
truth-table notation. Up until now, our truth tables have specified an output of 0
or 1 for each input combination. In Table 6-6, only the “control” inputs are listed
under the “Inputs” heading. The output is specified as a constant (in this case, 0)
or as a simple logic function of the “data” inputs (e.g., D0). This notation saves
eight columns and eight rows in the table, and presents the logic function more
clearly than a larger table would.

Figure 6-28
Multiplexer circuit using
a decoder and gates.

binary
decoder

EN Y0

D0

YS0

EN

A0

A1

A −1 Y −2

Y2

Y1

Y −1

D −2

D2

D1

D −1

S −1

S1

Figure 6-29
Four-input multiplexer
circuit using gates.

S0

S1

EN

D0

D1

D2

D3

Y

S0 ′ S0 S1 ENS1′

C06.fm Page 283 Sunday, April 9, 2017 2:33 PM

284 Chapter 6 Basic Combinational Logic Elements

(a) (b)

S0′
S0

S1′
S1

S2 ′
S2

D0

D1

D2

D3

D4

D5

D6

D7

S0

S1

S2

EN_L

Y

8-input, 1-bit
multiplexer

D0

D1

D2

D3

D4

D5

D6

D7

EN

Y

S0

S1

S2

Figure 6-30 An 8-input, 1-bit multiplexer: (a) logic diagram; (b) traditional logic symbol.

EXTRA
INVERTERS

Notice that the logic diagram in Figure 6-30 has some extra inverters in it. Depend-
ing on the circuit implementation, especially in an ASIC, performance may suffer if
more than a few gate inputs are driven by any given input signal, as discussed in
Section 14.4. The extra inverters on EN_L (which is now active-low) and the S inputs
provide extra electrical buffering which hides the load of the mux’s eight internal
AND gates from the circuit that drives it and perhaps other logic.

In most modern design environments, the synthesis tools automatically take
care of adding extra buffering where it’s needed for performance. The logic diagram
in Figure 6-30 is taken from an MSI 8-input multiplexer component, which had such
buffering built into every chip.

C06.fm Page 284 Sunday, April 9, 2017 2:33 PM

6.4 Multiplexing 285

Going back to the general case, a multiplexer’s data inputs and output may
be (and usually are) more than one bit wide. An n-input, b-bit multiplexer has the
inputs and outputs shown in Figure 6-31(a). There are n sources of data, each of
which is b bits wide, and there are b output bits. In many applications, n = 2, 4, 8,
or 16, and b = 1, 2, 4, 8, 16, 32, or more. There are s inputs that select among the
n sources, so s = (the ceiling of log2 n, i.e., the smallest integer greater
than or equal to log2 n). An enable input EN allows the selected source to be
transferred to the output; when EN = 0, all of the outputs are 0.

Inputs Output

Table 6-6
Truth table for an
8-input, 1-bit
multiplexer.

EN_L S2 S1 S0 Y

1 x x x 0

0 0 0 0 D0

0 0 0 1 D1

0 0 1 0 D2

0 0 1 1 D3

0 1 0 0 D4

0 1 0 1 D5

0 1 1 0 D6

0 1 1 1 D7

multiplexer

EN

S

enable

select

D0

D1

D −1

 data
sources

(a)

(b)

data
outputY

D0[1]

D1[1]

D −1[1]

Y[1]

Y[2]

Y[]

S EN

D0[2]

D1[2]

D −1[2]

D0[]

D1[]

D −1[]

Figure 6-31
General multiplexer
structure: (a) inputs
and outputs;
(b) functional
equivalent.

log2 n

C06.fm Page 285 Sunday, April 9, 2017 2:33 PM

286 Chapter 6 Basic Combinational Logic Elements

Figure 6-31(b) shows a switch circuit that is roughly equivalent to the
multiplexer. However, unless otherwise stated, a multiplexer is a unidirectional
device: information flows only from inputs (on the left) to outputs (on the right).
Information flows bidirectionally only in actual switches. Notice that the b bits
from a particular input source, say D0, are spread out across b switches, each of
which has n inputs to accommodate the n different sources.

A multiplexer may have as few as two inputs. Figure 6-32 shows the gate-
level circuit for a 2-input, 4-bit multiplexer which selects between two 4-bit
inputs, again with an active-low enable input. Our extended truth-table notation
makes the device’s description very compact and understandable, as shown in
Table 6-7. (The figure and table have a change in signal naming compared to
Figure 6-31(b), matching the original MSI naming for this function.)

Multiplexers are obviously useful devices in any application in which data
must be switched from multiple sources to a destination. One common use in
microprocessor systems is in input/output (I/O) devices that have several regis-
ters for storing data and control information, where any one of those registers
may be selected periodically to be read by software. Suppose there are eight 32-
bit registers, and a 3-bit field in the I/O address selects which one to read. This
3-bit field is connected to the select inputs of an 8-input, 32-bit multiplexer. The
multiplexer’s data inputs are connected to the eight registers, and its data outputs
are connected to the microprocessor’s data bus to read the selected register.

HAVING IT
BOTH WAYS

When a multiplexer is realized with gate-level circuits, as in Figures 6-29 and 6-30,
information flows unidirectionally from inputs to outputs. However, some technol-
ogies, in particular CMOS transmission gates, actually can implement bidirectional,
logic-controlled switches to mimic the structure shown in Figure 6-26. Multiplexer-
like devices using such technologies are often called “multiplexers/demultiplexers,”
since they can select one of multiple data sources on the left to connect to a single
destination on the right, like a multiplexer, or connect a single data source on the
right to a selected one of multiple destinations on the left, like a demultiplexer. They
are also sometimes simply called “switches.”

2-input, 4-bit
multiplexer

Table 6-7
Truth table for a
2-input, 4-bit
multiplexer.

Inputs Outputs

EN_L S 1Y 2Y 3Y 4Y

1 x 0 0 0 0

0 0 1D0 2D0 3D0 4D0

0 1 1D1 2D1 3D1 4D1

C06.fm Page 286 Sunday, April 9, 2017 2:33 PM

6.4 Multiplexing 287

6.4.2 Expanding Multiplexers
As we’ll see in the next subsection, the size of a multiplexer in an HDL model
can be modified at will to match the characteristics of the problem at hand, by
simply by changing the appropriate parameters in the multiplexer’s definition.
However, in ASIC design, optimized multiplexer cells may be provided only in
a few fixed sizes, and it may be necessary for the designer to construct a large
multiplexer from a collection of smaller ones.

For example, we suggested earlier that an 8-input, 32-bit multiplexer might
be used in the design of a computer processor. This function could be performed
by 32 8-input, 1-bit multiplexers or equivalent ASIC cells, each one handling
one bit of all the inputs and the output. The appropriate 3-bit field of the I/O
address would be connected to the S2–S0 inputs of all 32 muxes, so they would
all select the same register source at any given time.

(a) (b)

1D0

1D1

2D0

2D1

3D0

3D1

4D0

4D1

S

EN_L

2-input, 4-bit
multiplexer

1D0

1D1

2D0

2D1

3D0

3D1

4D0

4D1

EN

1Y

2Y

3Y

4Y

S

1Y

2Y

3Y

4Y

Figure 6-32 A 2-input, 4-bit multiplexer: (a) logic diagram; (b) traditional logic symbol.

C06.fm Page 287 Sunday, April 9, 2017 2:33 PM

288 Chapter 6 Basic Combinational Logic Elements

D0

D1

D2

D3

D4

D5

D6

D7

EN

Y

S0

S1

S2

XS3

XS4

XS0

XS2

XS1

X0

X2

X1

X3

X4

X5

X7

X6

EN3_L

EN2_L

EN1_L

EN0_L

8-input
multiplexer

D0

D1

D2

D3

D4

D5

D6

D7

EN

Y

S0

S1

S2

X10

X12

X11

X13

X14

X15

X9

X8

D0

D1

D2

D3

D4

D5

D6

D7

EN

Y

S0

S1

S2

D0

D1

D2

D3

D4

D5

D6

D7

EN

Y

S0

S1

S2

X16

X18

X17

X19

X20

X21

X23

X22

X24

X26

X25

X27

X28

X29

X31

X30

XOUT

XO0

XO1

XO2

XO3

U1

U5

U4

U3

U2

U6

2-to-4 decoder

A0

EN

A1

Y0

Y1

Y2

Y3

XEN
8-input
multiplexer

8-input
multiplexer

8-input
multiplexer

Figure 6-33
Combining 8-input
multiplexers to make a
32-input multiplexer.

C06.fm Page 288 Sunday, April 9, 2017 2:33 PM

6.4 Multiplexing 289

Another dimension in which multiplexers can be expanded is the number
of data sources. For example, suppose we needed a 32-input, 1-bit multiplexer.
Figure 6-33 shows one way to build it. Five select bits are required. A 2-to-4
decoder with active-low outputs is connected to the two high-order select bits to
enable one of four 8-input, 1-bit multiplexers of the types we showed in
Figure 6-30 on page 284. Since only one 8-input multiplexer is enabled at a
time, their outputs can simply be ORed to obtain the final output.

6.4.3 Multiplexers, Demultiplexers, and Buses
A multiplexer can be used to select one of n sources of data to transmit on a bus.
At the far end of the bus, a demultiplexer can be used to route the bus data to one
of m destinations. Such an application, using a 1-bit bus, is depicted in terms of
our switch analogy in Figure 6-34(a). In fact, block diagrams for logic circuits
often depict multiplexers and demultiplexers using the wedge-shaped symbols
in (b), to suggest visually how a selected one of multiple data sources is directed
onto a bus and is then routed to a selected one of multiple destinations.

The function of a demultiplexer is just the inverse of a multiplexer’s. For
example, a 1-bit, n-output demultiplexer has one data input and s inputs to select
one of n = 2s data outputs. In normal operation, all outputs except the selected
one are 0; the selected output equals the data input. This definition may be
generalized for a b-bit, n-output demultiplexer; such a device has b data inputs,
and its s select inputs choose one of n = 2s sets of b data outputs.

A binary decoder with an enable input can be used as a demultiplexer, as
shown in Figure 6-35. The decoder’s enable input is connected to the data line,
and its select inputs determine which of its output lines is driven with the data
bit. The remaining output lines are negated.

demultiplexer

(a)

(b)

SRCA

SRCB

SRCC

SRCZ

SRCA

SRCB

SRCC

SRCZ

BUS

BUS

DSTA

DSTB

DSTC

DSTZ

SRCSEL DSTSEL

multiplexer demultiplexer

MUX DMUX

DSTA

DSTB

DSTC

DSTZ

SRCSEL DSTSEL

Figure 6-34
A mux driving a bus
and a demultiplexer
receiving the bus:
(a) switch equivalent;
(b) block-diagram
symbols.

C06.fm Page 289 Sunday, April 9, 2017 2:33 PM

290 Chapter 6 Basic Combinational Logic Elements

6.4.4 Multiplexers in Verilog
Multiplexers can be described easily in Verilog in several different ways. In the
dataflow style, a series of conditional operators (?:) can provide the required
functionality, as shown in Program 6-14, a dataflow-style Verilog module for a
2-input, 8-bit multiplexer.

There are a couple options for coding multiplexers in behavioral style. One
approach is to use a series of nested if statements, one for each value of the

WORTHLESS? One of the reviewers of this book “curses every author who has ever mentioned a
demultiplexer—possibly the most worthless element ever created.” I get the point.
After all, why waste gates to send data selectively to one of n different destinations,
when you could just hook the destination wires together and send the data to all n
destinations? Let the ones who don’t want or need the data ignore it!

Well, there are sometimes reasons to prefer the demultiplexer, both in ASICs
and in large multimodule systems. The key difference between n demultiplexer
outputs and n wires hooked together is that the n–1 unselected demultiplexer outputs
are inactive. So, no power is used driving data that won’t get used, which may be sig-
nificant if the driven wires are many (as in wide backplane buses) or long (and may
radiate a lot of electrical noise). Also, there’s no chance of the unused data being
snooped or triggering unwanted activity. Some of these factors may be particularly
relevant in systems that use serial communication, where commands and data are
sent between subsystems using just a single wire.

Figure 6-35
Using a 3-to-8 binary
decoder as a 1-bit,
8-output demultiplexer.

3-to-8 decoder

A0

EN

A1

Y0

Y1

Y2

Y3

DST0DATA

DST1DATA

DST2DATA

DST3DATA

SRCDATA

DSTSEL0

DSTSEL1

A2DSTSEL2 Y4

Y5

Y6

Y7

DST4DATA

DST5DATA

DST6DATA

DST7DATA

Program 6-14 Dataflow Verilog module for a 2-input, 8-bit multiplexer.

module Vrmux2in8b_d(EN_L, S, D0, D1, Y);
 input EN_L, S;
 input [1:8] D0, D1;
 output [1:8] Y;

 assign Y = (~EN_L == 1'b0) ? 8'b0 : (
 (S == 1'd0) ? D0: (
 (S == 1'd1) ? D1: 8'bx));
endmodule

C06.fm Page 290 Sunday, April 9, 2017 2:33 PM

6.4 Multiplexing 291

select input, as shown in Program 6-15 for the 2-input, 8-bit multiplexer. How-
ever, this approach quickly becomes awkward because of the deep nesting when
there are more than a few select values.

A more natural approach is to use a case statement with one case for each
value of the select input, as shown in Program 6-16. This approach is much more
readable and maintainable, especially when there are a lot of cases (values of the

Program 6-15 Behavioral Verilog for the mux using nested if statements.

module Vrmux2in8b_b(EN_L, S, D0, D1, Y);
 input EN_L, S;
 input [1:8] D0, D1;
 output reg [1:8] Y;

 always @ (*) begin
 if (~EN_L == 1'b0) Y = 8'b0;
 else if (S == 1'b0) Y = D0;
 else if (S == 1'b1) Y = D1;
 else Y = 8'bx;
 end
endmodule

JUST-IN-TIME
VERILOG FOR

PROGRAM 6-14

If a Verilog vector has fewer bits than a vector it is assigned to or combined with, it
is padded on the left with 0s to match lengths. Thus, the literal 8'b0 is equivalent to
8'b00000000. However, if its leftmost bit before padding is x or z, then that bit is
used; so 8'bx is equivalent to 8'bxxxxxxxx.padding

Program 6-16 Behavioral Verilog for a 4-input, 8-bit multiplexer using case.

module Vrmux4in8b(EN_L, S, A, B, C, D, Y);
 input EN_L;
 input [1:0] S;
 input [1:8] A, B, C, D;
 output reg [1:8] Y;

 always @ (*) begin
 if (~EN_L == 1'b0) Y = 8'b0;
 else case (S)
 2'd0: Y = A;
 2'd1: Y = B;
 2'd2: Y = C;
 2'd3: Y = D;
 default: Y = 8'bx;
 endcase
 end
endmodule

C06.fm Page 291 Sunday, April 9, 2017 2:33 PM

292 Chapter 6 Basic Combinational Logic Elements

select input). This code also flows very naturally from the multiplexer’s truth
table, if it’s written in the extended, compact style of Table 6-6 or 6-7.

As you might imagine, it is very straightforward to extend the case-based
behavioral multiplexer with additional cases or specialized cases. For example,
consider a specialized 4-input, 18-bit multiplexer with the selection criteria in
Table 6-8. Program 6-17 is a case-based module for such a multiplexer.

In each example module in this subsection, if the select inputs are not valid
(e.g., contain z’s or x’s), the output bus is set to “unknown” to help catch errors
during simulation.

A self-checking test bench for the 2-input, 8-bit multiplexers is shown in
Program 6-18; it can be used with either module, since they have the same input/
output signals and function. Notice that this test bench has a user-defined task
displayerror which saves typing and unclutters the main body of the code,
allowing us to focus on the test cases, as we’ll discuss next.

Table 6-8
Function table for a
specialized 4-input,
18-bit multiplexer.

S2 S1 S0 Input to Select

0 0 0 A

0 0 1 B

0 1 0 A

0 1 1 C

1 0 0 A

1 0 1 D

1 1 0 A

1 1 1 B

Program 6-17 Behavioral Verilog for a specialized 4-input, 18-bit multiplexer.

module Vrmux4in18b(S, A, B, C, D, Y);
 input [2:0] S;
 input [1:18] A, B, C, D;
 output reg [1:18] Y;

 always @ (*)
 case (S)
 3'd0, 3'd2, 3'd4, 3'd6: Y = A;
 3'd1, 3'd7: Y = B;
 3'd3: Y = C;
 3'd5: Y = D;
 default: Y = 18'bx;
 endcase
endmodule

C06.fm Page 292 Sunday, April 9, 2017 2:33 PM

6.4 Multiplexing 293

With any n-input combinational logic circuit, it is always at least theoreti-
cally possible to devise test cases that exercise the circuit and check its outputs
for all 2n possible input combinations. But if n is large, this is not practical. For
the 2-input, 8-bit multiplexer, n is 18 (about 250,000 input combinations), and
an exhaustive test can run in a few seconds. With a 16-bit version (34 inputs), we
might have to wait all night or longer, and circuits with even more inputs or more
complicated functions might be impossible to test in this way. So, as a method
that can be applied to any of these examples, the test bench in Program 6-18
uses Verilog’s built-in $random function (described on page 223) to generate a
smaller number of pseudorandom inputs.

In any circuit where there are both “control” and “data” inputs, it is most
important to test all combinations of the control inputs, since the corresponding
module’s use of such inputs is where the most variation and likely errors occur.

Program 6-18 Verilog test bench for 2-input, 8-bit multiplexer.

`timescale 1 ns / 100 ps
module Vrmux2in8b_tb ();
 reg EN, S;
 reg [1:8] D0, D1;
 wire [1:8] Y;
 integer i, errors;

 task displayerror;
 begin
 errors = errors+1;
 $display("Error: EN=%b, S=%b, D0=%b, D1=%b, Y=%b", EN, S, D0, D1, Y);
 end
 endtask

 Vrmux2in8b_b UUT (.EN_L(~EN), .S(S), .D0(D0), .D1(D1), .Y(Y));

 initial begin
 errors = 0;
 for (i=0; i<2500; i=i+1) begin
 EN = 0; S = 0; #10 ;
 if (Y !== 0) displayerror;
 S = 1; #10 ;
 if (Y !== 0) displayerror;
 EN = 1; D0 = $random % 256; D1 = $random % 256;
 S = 0; #10 ;
 if (Y !== D0) displayerror;
 S = 1; #10 ;
 if (Y !== D1) displayerror;
 end
 $display("Test done, %d errors",errors);
 end
endmodule

C06.fm Page 293 Sunday, April 9, 2017 2:33 PM

294 Chapter 6 Basic Combinational Logic Elements

The data inputs should also be checked with multiple values, but if data buses are
handled uniformly, typically using Verilog vectors, then the circuit’s functional
correctness can normally be assured using a relatively small number of random
data-input combinations. If there are any special “corner cases” that are handled
differently or are otherwise likely to cause problems in the circuit, those should
be coded in the test bench explicitly; there are no such cases in our multiplexer.

So, the Vrmux2in8_tb test bench in Program 6-18 tests 2,500 random
combinations of the multiplexer’s 8-bit data inputs D0 and D1 (even 25 might be
enough, but why skimp if you don’t have to?). For each data-input combination,
it tests all four combinations for the control inputs—disabled or enabled with
either value of the select input S.

We’ll continue with more combinational-logic elements in Chapter 7.

References
The first PAL devices were invented at Monolithic Memories, Inc. (MMI) in
1978 by John Birkner and H. T. Chua. The inventors earned a U.S. patent for
their invention, and MMI rewarded them by buying them a brand new Porsche
and Mercedes, respectively! Seeing value in this technology (PAL devices, not
fast cars), Advanced Micro Devices (AMD) acquired MMI in the early 1980s
and became a leading developer and supplier of new PLDs and CPLDs. AMD
eventually sold its PLD operations to former competitor Lattice Semiconductor.

Meanwhile, FPGA architectures were created and evolved, featuring key
innovations from and fierce competition between Xilinx, Inc. and Altera Corpo-
ration, which was acquired by Intel in 2015. In recent years, new CPLD
development has ended, primarily because FPGA architectures have scaled
more effectively. However, many suppliers continue to offer “legacy” PLDs and
CPLDs, since they continue to find use in lower-density applications, especially
where low cost or low power consumption are important considerations.

Probably the best resources for learning about programmable devices are
provided by their manufacturers. Xilinx, Inc. publishes a comprehensive set of
FPGA and CPLD data books, user guides, and application notes on their website
(www.xilinx.com). Other comprehensive websites include those of GAL
inventor Lattice Semiconductor (www.latticesemi.com), and Intel’s “Pro-
grammable Solutions Group,” still at its original URL (www.altera.com).

SAVING CASE In the multiplexer test bench in Program 6-18, you may ask, why test both values of
S when the multiplexer is disabled? In that case, S is a don’t-care. That’s right—if
the multiplexer has been modeled correctly. There are simple coding errors and typos
where that may not be true, and that’s exactly what we’re trying to detect (see
Exercise 6.43).

C06.fm Page 294 Sunday, April 9, 2017 2:33 PM

Drill Problems 295

Drill Problems
6.1 Give three examples of combinational logic circuits that require billions of rows

to describe in a truth table. For each circuit, describe its inputs and output(s) and
indicate exactly how many rows the truth table contains; you need not write out
the truth table. (Hint: You can find several such circuits in Chapters 6–8.)

6.2 What logic element is pictured on the first page of this chapter? Describe its
inputs, outputs, associated parameters, and function.

6.3 Which CMOS circuit would you expect to be faster: a decoder with active-high
outputs, or one with active-low outputs?

6.4 Why do you think that the Xilinx 7-series LUT outputs in Figure 6-6 are named
“D5” and “D6” instead of “D0” and “D1”?

6.5 Prove that an active-high output function of the PAL16L8 in Figure 6-11 can be
any product of up to seven sum terms involving the available inputs.

6.6 In the style of Table 6-4, write the truth table for the logic function performed
inside the 74x138 symbol outline.

6.7 Show how to build each of the following logic functions using one or more
74x138 binary decoders and NAND gates. (Hint: Each realization should be
equivalent to a sum of minterms.)

6.8 Run the test bench of Program 6-6 for the 2-to-4 decoder module Vr2to4dec_s
in Program 6-1, showing that there are no errors. Then do three more runs, each
time inserting or deleting just one character in Vr2to4dec_s, resulting in the test
bench reporting 2, 4, and 8 errors.

6.9 When the author ran the test bench of Program 6-6 for his initial version of the
2-to-4 decoder module Vr2to4dec_d in Program 6-2, it detected a big error in a
most interesting way. The author had inadvertently typed {Y1,Y0} instead of
{A1,A0} in four places, and the module compiled OK—no syntax errors. Try it.
What does the simulator do when it runs the test bench, and why?

6.10 Write a structural-style Verilog module Vr2to4decp_s corresponding to the
2-to-4 binary decoder with polarity control shown in Figure 6-3. Use individual
signal names as in the logic diagram, not vectors.

6.11 Write a dataflow-style Verilog module Vr2to4decp_d corresponding to the
2-to-4 binary decoder with polarity control shown in Figure 6-3. Use a vector
I[1:0] for the select inputs, and a vector Y[0:3] for the outputs.

6.12 Write a behavioral-style Verilog module Vr2to4decp_b for the 2-to-4 binary
decoder with polarity control shown in Figure 6-3. Use a vector I[1:0] for the
select inputs, and a vector Y[0:3] for the outputs. Be sure that your code does not
create an “inferred latch.”

(a) F = ΣX,Y,Z(2,5,7) (b) F = ∏A,B,C(2,4,5,6,7)

(c) F = ΣA,B,C,D(0,6,10,14) (d) F = ΣW,X,Y,Z(1,4,5,6,11,12,13,15)

(e) F = ΣW,X,Y,Z(0,2,4,7) (f) F = ΣA,B,C,D(8,11,12,15)

 G = ΣW,X,Y(1,2,3,5)

C06.fm Page 295 Sunday, April 9, 2017 2:33 PM

296 Chapter 6 Basic Combinational Logic Elements

6.13 Write a test bench Vr2to4dec_tb that instantiates all three of the 2-to-4 binary
decoders in Exercises 6.10, 6.11, and 6.12 and verifies that they produce identical
outputs for all input combinations, displaying the input combination and outputs
if any are different. If you don’t detect any mismatch, insert an error of some kind
into one of the modules to verify that your error messages are working.

6.14 Write a structural-style Verilog module Vr8to3enc_s that corresponds to the
binary encoder of Figure 6-24.

6.15 Write a Verilog module Vr3to8dec_bc for a 3-to-8 binary decoder with active-
low outputs Y_L[7:0] and four enable inputs where G1, G2, or both G3_L and
G4_L must be asserted to enable the selected output. Your module should instan-
tiate the VrNtoSbindec of Program 6-7 and use other statements to satisfy the
above design requirements.

6.16 Write a Verilog module Vrluckyprime for a “lucky/prime encoder” with an 8-bit
input representing an unsigned binary integer, and two output bits indicating
whether the number is prime or divisible by 7.

6.17 After completing the preceding exercise, write a Verilog test bench that compares
the outputs of your module for all possible input combinations against results
computed by the simulator using its own arithmetic, and display all mismatches.
Test your test bench by putting a bug in your original Verilog model.

6.18 Write a behavioral Verilog module Vrmux2in4b for a 2-input, 4-bit multiplexer
with the function table shown in Table 6-7. Name the data input and output
vectors D0, D1, and Y, and index them from 1 to 4.

6.19 Write a Verilog test bench Vrmux2in4b_tb that tests for correct functioning of
the Vrmux2in4b module in Drill 6.18. For each value of the function inputs, it
should check that the output is correct for all combinations of data-input values,
and display an informative error message if it is incorrect. Insert one or more
errors into Vrmux2in4b to verify that your error messages are working.

Exercises
6.20 Write code in your favorite programming language that generates the contents of

a 4 × 4 multiplier ROM in the same format as Table 6-2.

6.21 Suppose that advances in silicon technology allow a 64 × 4-bit “ROM” to be fit
into the same chip area that now holds a 64 × 1-bit LUT ROM that can realize any
logic function of 6 variables. Design extra circuitry and write the user instructions
for using a 64 × 4-bit ROM to perform any logic function of 8 inputs A0-A7 on
output D8, any two functions of 7 inputs A0-A6 on outputs D7 and D8, or any four
functions of 6 inputs A0-A5 on outputs D5 through D8.

6.22 In the previous exercise, without adding any more inputs or outputs, can you
devise user instructions, and add circuitry as necessary, for the ROM also to per-
form any function of 7 inputs A0-A6 plus any two functions of 6 inputs A0-A5?
Show how to do it, or explain why it can’t be done.

6.23 Write a Verilog module Vr6to64decpre for a 6-to-64 binary decoder, using a
generate statement to create a predecoding structure equivalent to Figure 6-20.
Also write a self-checking test bench to test it for proper operation.

C06.fm Page 296 Sunday, April 9, 2017 2:33 PM

Exercises 297

6.24 Sketch the design of an 8-to-256 binary decoder, with no enable input, using a
multi-level predecoding structure. Assume the maximum number of inputs in an
AND gate is two, so your design must divide the address inputs into four 2-bit
groups, and the first level of your design will use 2-to-4 decoders. Show the num-
ber of elements vertically in each level and the number of vertical wires between
levels. Also show a few typical logic equations for the signals at each level.

6.25 Write a Verilog module Vr9to512decpre for a 9-to-512 binary decoder with one
enable input, using a generate statement to create a predecoding structure similar
to Figure 6-20. You should instantiate Vr3to8decb decoder modules at the first
level, and use only 3-input AND gates beyond that. Also write a simple behavioral
module Vr9to512decb for the same decoder function, and write a test bench
Vr9to512dec_tb2 that compares the outputs of the two decoders.

6.26 Write a Verilog module Vr8to256decpre for a 8-to-256 binary decoder with a
multi-level predecoding structure as described in Exercise 6.24, using a generate
statement. Also write a simple behavioral module Vr8to256decb for the same
decoder function, and write a test bench Vr8to256dec_tb2 that compares the
outputs of the two decoders.

6.27 Design a Verilog module Vrmultidec8 for a customized decoder that has the
function table in Table X6.27. Use a coding style that is easy to write and check
against the function table.

6.28 Write another function table for the customized decoder in Table X6.27, one that
includes all eight rows where CS_L is 0 (no don’t-care inputs). In the last column,
write a list of all the outputs that are asserted for each input combination. As a
double check on your answer, write a test bench that instantiates Vrmultidec8
and displays the names of asserted output signals for each input combination.

6.29 Modify the Verilog memory decoder module of Program 6-10 so that it properly
handles alignment errors during longword operations. Test your new module
using the test bench in Program 6-11.

6.30 Not all computers require shorter-sized memory operations to be aligned on cor-
responding address boundaries. Modify the Verilog memory decoder module of
Program 6-10 for use in such an environment, where any halfword or word oper-
ation is legal as long as the entire addressed halfword or word fits within the same
longword. For example, a word operation at address 3 would select bytes 3–6 of
the first longword in memory, while word operations at addresses 5–7 would be

CS_L A2 A1 A0 Output to Assert

Table X6.27

1 x x x none
0 0 0 x BILL
0 0 x 0 MARY
0 0 1 x JOAN
0 0 x 1 PAUL
0 1 0 x ANNA
0 1 x 0 FRED
0 1 1 x ATIF
0 x 1 1 KATE

C06.fm Page 297 Sunday, April 9, 2017 2:33 PM

298 Chapter 6 Basic Combinational Logic Elements

illegal. Also provide a new output, AERR, which is asserted if an illegal operation
is attempted, and ensure that all BE output bits are negated in that situation.

6.31 Modify the test bench in Program 6-11 to work with the unaligned memory
decoder of Exercise 6.30.

6.32 Show how to build all four of the following functions using one 3-to-8 decoder
with active-low outputs and four 2-input NAND gates:

6.33 A certain system has a 3-bit output N[2:0] which represents an integer in the range
0–7. The designer has decided to display its value seven in LEDs driven by active-
high signals L[1:7] where the number of lit LEDs corresponds to the value of N
(the first LED to be lit is driven by L[1]). Draw a logic diagram for an encoder
circuit that converts from N[2:0] to L[1:7] (sometimes called a unary code or a
thermometer code), using a 3-to-8 decoder with active-high outputs and no more
than eight 2-input OR gates.

6.34 Write a Verilog module Vrbin3una7 for the 3-to-7 binary-to-unary converter in
Exercise 6.33, and write a test bench Vrbin3una7_tb to check its operation.

6.35 Write a Verilog module Vrbin3una7_g for the 3-to-7 binary-to-unary converter
described in Exercise 6.33 using a generate statement. If you haven’t already,
write a test bench Vrbin3una7_tb that checks your module’s operation.

6.36 Based on the description in Exercise 6.33, write a parameterized Verilog module
VrbinBunaM for a B-bit to M-bit binary-to-unary converter using a generate
statement. If M is less than the maximum value of a B-bit number, your circuit
should light all of the LEDs when the value of N[B-1:0] is greater than M. Write
a test bench VrbinBunaM_tb that algorithmically checks the module’s operation.

6.37 Starting from Program 6-12, write a new Verilog seven-segment-decoder module
Vr7segE where the digits 6 and 9 have. tails, as shown in Figure X6.37. Also,
display the character “E” for nondecimal inputs 1010 through 1111. Check your
module with the test bench in Program 6-13.

6.38 Starting from Program 6-12, write a new Verilog module Vr7segx for a seven-
segment decoder with the following enhancements:

• Two new inputs, ENHEX and ERRDET, control segment-output decoding.
• If ENHEX = 0, the outputs match the behavior of Program 6-12.
• If ENHEX = 1, then the outputs for digits 6 and 9 have tails, and the outputs for

digits A–F are controlled by ERRDET.
• If ENHEX = 1 and ERRDET = 0, then the outputs for digits A–F look like the

letters A–F, as in shown in Figure X6.38.
• If ENHEX = 1 and ERRDET = 1, then digits A–F look like a question mark

without its period, also shown in Figure X6.38.

F1 = X′ ⋅ Y′ ⋅ Z′ + X ⋅ Y ⋅ Z′ F2 = X′ ⋅ Y′ ⋅ Z + X′ ⋅ Y ⋅ Z′
F3 = X′ ⋅ Y ⋅ Z′ + X ⋅ Y′ ⋅ Z F4 = X ⋅ Y′ ⋅ Z′ + X′ ⋅ Y ⋅ Z

unary code
thermometer code

Figure X6.37

Figure X6.38

C06.fm Page 298 Sunday, April 9, 2017 2:33 PM

Exercises 299

6.39 Update and then use the test bench in Program 6-13 to test the enhanced seven-
segment decoder of Exercise 6.38.

6.40 Write behavioral Verilog code for a module Vr1of8check with eight inputs, I[0:7]
and one output, VALID. The output should be 1 if and only if the input is a valid
codeword in the 1-out-of-8 code.

6.41 Draw the logic diagram for a 16-to-4 encoder using just four 8-input NAND gates.
What are the active levels of the inputs and outputs in your design?

6.42 Design a gate-level circuit 10-to-4 encoder with inputs in the 1-out-of-10 code
and outputs in a code like normal BCD except that input lines 8 and 9 are encoded
into “E” and “F”, respectively.

6.43 Delete the second if statement in the test bench of Program 6-18. Then insert a
simple typo into the 2-input, 8-bit multiplexer module of Program 6-15 that
makes it work incorrectly in some cases, but where the modified test bench
doesn’t detect the error. Hint: Change just one string to a different string.

6.44 Suppose you are working in a technology that implements 4-input multiplexers
of any width very efficiently using a native cell, while custom multiplexers are
slower and larger. Show how to implement the functionality of Table 6-8 using a
4-input, 18-bit multiplexer in this technology, and a “code converter” with inputs
S[2:0] and outputs CC[1:0] such that CC = 00,01,10,11 when S[2:0] selects
A,B,C,D, respectively. Write the logic equations for the code converter.

6.45 Write a Verilog module Vrmux4in18b_cc with the same inputs as Program 6-17,
but uses the code converter of Exercise 6.44. Use a hierarchical coding style that
is easy to understand, easy to change if a different conversion pattern is needed,
and easy to modify to instantiate the native 4-input multiplexer cells if the syn-
thesis tool fails to infer them automatically.

6.46 Continuing Exercise 6.45, synthesize your Vrmux4in18b_cc module as well as
the original in Program 6-17, targeting your favorite FPGA. Determine how
many LUTs are required in each of the two realizations, and explain the cause of
the difference, if any.

6.47 Write a Verilog module Vrabcdemux for a customized multiplexer with five 8-bit
input buses A, B, C, D, and E, selecting one of the buses to drive a 8-bit output bus
T according to Table X6.47. Synthesize the module for your favorite FPGA and
determine how many internal resources it uses.

S2 S1 S0 Input to Select

Table X6.47

0 0 0 A
0 0 1 B
0 1 0 B
0 1 1 C
1 0 0 C
1 0 1 D
1 1 0 E
1 1 1 A

C06.fm Page 299 Sunday, April 9, 2017 2:33 PM

300 Chapter 6 Basic Combinational Logic Elements

6.48 Write a Verilog module Vrabcdemux2 for a customized multiplexer similar to the
previous exercise, but selecting which bus to drive T according to Table X6.48.
Synthesize the module for your favorite FPGA and determine how many internal
resources it uses. Compare with Exercise 6.47 and if the resource requirements
are different, explain why.

6.49 Continuing from Exercise 6.48, rewrite the module hierarchically to create a
module Vrabcdemux3 that uses fewer resources when LUTs have six inputs and
up to two outputs as in the configuration of Figure 6-6 for Xilinx 7-series FPGAs.
Hint: You should be able to get it down to 12 LUTs.

6.50 Write a behavioral Verilog module Vrpqrtmux for a customized multiplexer with
four 8-bit input buses P, Q, R, T, and three select inputs S[2:0] that choose one of
the buses to drive an 8-bit output bus Y according to Table X6.50.

6.51 Repeat Exercise 6.50, creating a new module Vrpqrtmuxc with two more control
inputs C[1:0] such that the output bus Y is the selected input bus, its complement,
all 0s, or all 1s, depending on whether C[1:0] is 00, 01, 10, or 11 respectively.

6.52 Synthesize the module in Exercise 6.51, targeting it to your favorite programma-
ble device, and determine how many internal resources it uses. Then change the
selection encoding used in C[1:0] and determine whether the resource utilization
changes. If it stays the same, try other encodings or coding approaches. Then
explain why the resource utilization changes or stays the same.

6.53 The 74H87 is an ancient TTL zero/one/true/complement element having a 4-bit
output equal to all 0s, all 1s, its 4-bit input, or the complement of its 4-bit input,
depending on the value a 2-bit control input. Write a parameterized Verilog mod-
ule that does the same thing for an n-bit input vector.

Table X6.48

S2 S1 S0 Input to Select

0 0 0 A
0 0 1 B
0 1 0 A
0 1 1 C
1 0 0 A
1 0 1 D
1 1 0 A
1 1 1 E

Table X6.50

S2 S1 S0 Input to Select

0 0 0 P
0 0 1 Q
0 1 0 Q
0 1 1 P
1 0 0 R
1 0 1 P
1 1 0 R
1 1 1 T

C06.fm Page 300 Sunday, April 9, 2017 2:33 PM

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

301

comparator

mux

mux

mux

X > Y

min (X, Y)

max (X, Y)

c h a p t e r 7
More Combinational
Building Blocks

his chapter continues our discussion of combinational building
blocks. We start with three-state devices that can “disconnect”
their outputs from the signal lines that they would otherwise be
driving with 0s and 1s. Then we describe priority encoders, just
the thing for anyone who wants to “pick a winner.” Next we cover

Exclusive OR gates and parity functions, which are essential building blocks
for error-detecting and -correcting circuits in digital systems.

We then have a fairly lengthy a discussion of equality and magnitude
comparators. You might think of magnitude comparison as being an arith-
metic function, which is fair, because two numbers can be compared by
subtracting one from the other. However, comparison can also be done with-
out subtraction, and that’s the method we’ll show in this chapter, deferring
arithmetic circuits to Chapter 8. Moreover, because comparator circuits can
be fairly large, they are nontrivial synthesis examples and they give us an
opportunity to study the synthesis results that are obtained when different
Verilog models are targeted to FPGAs.

We will close the chapter with a fairly large “random logic” example—
large enough that you probably wouldn’t attempt it to do it without the
benefit of an HDL like Verilog.

You may prefer to skip ahead to Chapter 9 on state machines, to begin
your study of sequential circuits. That’s OK, but the topics here and in
Chapter 8 are important, so you should plan to come back at some point.

T

DDPP5.book Page 301 Tuesday, March 28, 2017 5:33 PM

302 Chapter 7 More Combinational Building Blocks

7.1 Three-State Devices
In Section 14.5.3, we’ll describe the electrical design of CMOS devices whose
outputs may be in one of three states—0, 1, or high impedance (“Hi-Z”). In the
third state, they behave as if they’re not even connected to the circuit, except for
some small analog effects that we can ignore in digital analysis. This is a good
place to introduce three-state devices, because at the printed-circuit-board level,
they are a widely used alternative to multiplexers for selecting one of multiple
data sources to send to one or more destinations.

7.1.1 Three-State Buffers
The most basic three-state device is a three-state buffer, often called a three-state
driver. The logic symbols for four physically different three-state buffers are
shown in Figure 7-1. The basic symbol is that of a noninverting buffer [(a), (b)]
or an inverter [(c), (d)]. The extra signal at the top of the symbol is a three-state
enable input, which may be active high or active low. When the enable is assert-
ed, a three-state buffer behaves like an ordinary buffer or inverter. When the
enable is negated, the device output “floats”; that is, it goes to a high-impedance
(Hi-Z) disconnected state and functionally behaves as if it weren’t even there.

Three-state devices allow multiple sources to share a single “party line,”
as long as only one device “talks” on the line at a time. Figure 7-2 gives an
example of how this can be done. Three input bits, SSRC2–SSRC0, select one
of eight sources of data that may drive a single line, SDATA. A 3-to-8 decoder
with active-low outputs ensures that only one of the eight SEL lines is asserted at
a time, enabling only one three-state buffer to drive SDATA. However, if the EN
line is negated, then none of the three-state buffers is enabled. The logic value on
SDATA is undefined in this case.

Typical three-state devices are designed so that they go into the Hi-Z state
faster than they come out of the Hi-Z state. In terms of the specifications on a
data sheet, tpLZ and tpHZ are both less than tpZL and tpZH. This means that if the
outputs of two three-state devices are connected to the same party line, and we
simultaneously disable one and enable the other, the first device will get off the
party line before the second one gets on. This is important because, if both
devices were to drive the party line at the same time, and if both were trying to
maintain opposite output values (0 and 1), then excessive current would flow and
create noise in the system, as will be discussed in Section 14.5.7. This is often
called fighting.

three-state buffer
three-state driver

Figure 7-1
Various three-state buffers:
(a,b) noninverting;
(c,d) inverting;
(a,c) active-high enable;
(b,d) active-low enable.

(a) (b)

(c) (d)

three-state enable

fighting

DDPP5.book Page 302 Tuesday, March 28, 2017 5:33 PM

7.1 Three-State Devices 303

Unfortunately, delays and timing skews in control circuits make it difficult
to ensure that the enable inputs of different three-state devices change “simulta-
neously.” Even when this is possible, a problem arises if three-state devices from
different-speed logic families (or even different ICs manufactured on different
days) are connected to the same party line. The turn-on time (tpZL or tpZH) of a
“fast” device may be shorter than the turn-off time (tpLZ or tpHZ) of a “slow” one,
and the outputs may still fight.

Figure 7-2
Eight sources sharing
a three-state party line.

SELP_L

SELQ_L

SELR_L

SELS_L

SELT_L

SELU_L

SELV_L

SELW_L

SDATAEN1

SSRC0

SSRC1

SSRC2

P

1-bit party line

Q

R

S

T

U

V

W

EN

Y0

Y1

Y2

Y3

B

A

C

Y4

Y5

Y6

Y7

3-to-8 decoder

THREE-STATE
DEVICE

APPLICATIONS

Three-state outputs are rarely used on-chip, that is, inside ASICs and FPGAs.
Although multiplexers require more chip area for both gates and wires, using them
to select data sources usually provides higher performance than on-chip three-state
outputs. Also, they don’t suffer from some of the problems of using on-chip three-
state devices, like the possibility of excessive power consumption when buses are
floating, electrical noise when the driving sources are changing, the inability of many
EDA tools to properly model their electrical performance, and difficulties in circuit
testing.

Three-state outputs and buses are widely used off-chip, however. On printed-
circuit boards, they are almost always used in the interconnections among micro-
processors, memories, and all kinds of coprocessors and interface chips, including
custom ASICs and FPGAs, which often have one or more three-state output ports.
At the system level, three-state is often used in the connections among modules, like
the individual network interfaces in a large network router, and the DIMMs that fill
the expansion-memory slots in a desktop or laptop computer.

DDPP5.book Page 303 Tuesday, March 28, 2017 5:33 PM

304 Chapter 7 More Combinational Building Blocks

The only really safe way to use three-state devices is to design control logic
that guarantees a dead time on the party line during which no one is driving it.
The dead time must be long enough to account for the worst-case differences
between turn-off and turn-on times of the devices, and for skews in the three-
state control signals. A timing diagram that illustrates this sort of operation for
the party line of Figure 7-2 is shown in Figure 7-3. This timing diagram also
illustrates a drawing convention for three-state signals—when in the Hi-Z state,
they are shown at an “undefined” level halfway between 0 and 1.

*7.1.2 Standard MSI Three-State Buffers
Like logic gates, several independent three-state buffers may be packaged in a
single SSI IC, but such chips are rarely used in new designs. Most party-line
applications use a bus with more than one bit of data anyway. For example, in an
8-bit microcontroller system, the data bus is eight bits wide, and peripheral
devices normally place data on the bus eight bits at a time. Thus, a peripheral
device enables eight three-state drivers to drive the bus, all at the same time.
Independent enable inputs, as in the application in Figure 7-2, are not necessary.

So, to reduce the package size in wide-bus applications, MSI three-state
buffers are typically set up with all of the buffers, or sometimes groups of them,
having common enable inputs. For example, Figure 7-4 shows the logic diagram

* Throughout this book, optional sections are marked with an asterisk.

dead time

Figure 7-3
Timing diagram for
the three-state
party line.

07SSRC[2-0] 1 2 3

SDATA P Q R SW

max(tpLZmax, tpHZmax) min(tpZLmin, tpZHmin)

dead time

DEFINING
“UNDEFINED”

The actual voltage level of a floating signal depends on circuit details, like resistive
and capacitive load, and may vary over time. Also, its interpretation by other circuits
depends on their characteristics, so it’s best not to count on a floating signal as being
anything other than “undefined.”

Sometimes a pull-up resistor is used on three-state party lines to ensure that a
floating value is pulled to a HIGH voltage and interpreted as logic 1. Otherwise,
CMOS devices whose input voltage is halfway between logic 0 and 1 may consume
excessive current. An alternative in CMOS-based systems is to use a “bus-holder,”
a sequential circuit that actively holds the last value on the party line when no other
device is actively driving it, as described in Section 10.5.2.

DDPP5.book Page 304 Tuesday, March 28, 2017 5:33 PM

7.1 Three-State Devices 305

and symbol for a 74x541 octal noninverting three-state buffer. Octal means that
the part contains eight individual buffers. Both enable inputs, G1_L and G2_L,
must be asserted to enable the device’s three-state outputs. The little rectangular
symbols inside the buffer symbols indicate hysteresis, an electrical characteristic
of the inputs that improves noise immunity, as we’ll explain in Section 14.5.2.
The 74x541 inputs typically have up to 0.4 volts of hysteresis.

Many other varieties of octal three-state buffers are available. For example,
the 74x540 is identical to the 74x541 except it contains inverting buffers. There
are also 16-bit and even 32-bit three-state buffers, such as the 74x16541 and the
74x32244, respectively. The first part has the same functionality as two 74x541s
in one package, while the second has a separate enable input for each of eight
independent groups of four bits. These parts come in larger packages with more
pins, of course.

Figure 7-5 on the next page shows part of a microcontroller system with an
8-bit data bus, DB[0–7], and a 74x541 used as an input port. The microcontroller
selects Input Port 1 by asserting INSEL1, and it requests a read operation by
asserting READ. The selected 74x541 responds by driving the microcontroller
data bus with user-supplied input data. Other input ports may be selected when a
different INSEL line is asserted along with READ.

A bus transceiver has pairs of three-state buffers connected in opposite
directions between each pair of pins, which are now “I/O” pins where data can
transfer in either direction. For example, Figure 7-6 shows the logic diagram and

Figure 7-4
The 74x541 octal
three-state buffer:
(a) logic diagram;
(b) traditional logic
symbol.

74x541

G2

G1

Y1

Y2

Y3

(b)(a)

A1

A2

A3

A4

A5

A6

A7

A8

Y4

Y5

Y6

Y7

Y8

Y1

Y2

Y3

Y4

Y5

Y6

Y7

Y8

G1_L

G2_L

A1

A2

A3

A4

A5

A6

A7

A8

74x541
octal

hysteresis

74x540
74x16541
74x32244

bus transceiver

DDPP5.book Page 305 Tuesday, March 28, 2017 5:33 PM

306 Chapter 7 More Combinational Building Blocks

Figure 7-5 Using a 74x541 as a microprocessor input port.

74x541

G2

G1

Y1

Y2

Y3

DB0

DB1

DB2

DB3

DB4

DB5

DB6

DB0

DB1

DB2

DB3

DB4

DB5

DB6

DB7DB7

DB0

DB1

DB2

DB3

DB4

DB5

DB6

DB7

A1

A2

A3

A4

A5

A6

A7

A8

Y4

Y5

Y6

Y7

Y8

Microprocessor

READ

INSEL1

INSEL2D0

D1

D2

D3

D4

D5

D6

DB[0:7]

D7

INSEL3

74x541

G2

G1

Y1

Y2

Y3

A1

A2

A3

A4

A5

A6

A7

A8

Y4

Y5

Y6

Y7

Y8

Input Port 1 Input Port 2

User
 Inputs

User
 Inputs

RD_L

SEL1_L

SEL2_L

Figure 7-6
The 74x245 octal
three-state
transceiver:
(a) logic diagram;
(b) traditional logic
symbol.

74x245

DIR

G

B1

B2

B3

(b)(a)

A1

A2

A3

A4

A5

A6

A7

A8

B4

B5

B6

B7

B8

B1

G_L
DIR

A1

B2A2

B3A3

B4A4

B5A5

B6A6

B7A7

B8A8

DDPP5.book Page 306 Tuesday, March 28, 2017 5:33 PM

7.1 Three-State Devices 307

symbol for a 74x245 octal three-state transceiver. The DIR input determines the
direction of transfer, from A to B (DIR = 1) or from B to A (DIR = 0). The three-
state buffer for the selected direction is enabled only if G_L is asserted.

A bus transceiver is typically used between two bidirectional buses, as
shown in Figure 7-7. Three different modes of operation are possible, depending
on the values of G_L and DIR, as shown in Table 7-1 on the next page. As usual,
it is the designer’s responsibility to ensure that neither bus is ever driven simul-
taneously by two devices. However, independent transfers where both buses are
driven at the same time may occur when the transceiver is disabled, as indicated
in the last row of the table.

74x245

bidirectional bus

Figure 7-7
Bidirectional buses
and transceiver
operation.

74x245

DIR

G

B1

B2

B3

A1

A2

A3

A4

A5

A6

A7

A8

B4

B5

B6

B7

B8

Bus B

Bus A

Control
Circuits

ENTFR_L

ATOB

DDPP5.book Page 307 Tuesday, March 28, 2017 5:33 PM

308 Chapter 7 More Combinational Building Blocks

7.1.3 Three-State Outputs in Verilog
Verilog has built-in bit-data value ‘z’ for the high-impedance state, so it is very
easy to specify three-state outputs. For example, Program 7-1 shows a Verilog
module for an 8-bit noninverting three-state buffer similar to the 74x541. With
the conditional operator (?:), it takes just one continuous-assignment statement
to specify the output—a copy of the input if the device is enabled, and eight bits
of “z” otherwise.

The Vr74x541 module uses its three-state port for output only, but output
ports can be used as inputs as well if they are declared as type “inout”. This
capability can be used in a transceiver application with functionality similar to
the MSI 74x245 transceiver in Figure 7-6 on page 306. The Verilog version is
shown in Program 7-2.

Another example Verilog application of inout ports is in a four-way, 8-bit
bus transceiver with the following specifications:

• The transceiver handles four 8-bit bidirectional buses, A[1:8], B[1:8],
C[1:8], and D[1:8].

• Each bus has its own active-low output enable input, AOE_L–DOE_L, and
a “master” enable MOE_L must also be asserted for any bus to be driven.

• The same source of data is driven to all the buses, as selected by three select
inputs, S[2:0]. If S2 is 0, the buses are driven with a constant value equal
to the low-order select inputs S[1:0], replicated four times. If S2 is 1, they
are driven with one of the other buses A–D, depending on the value of
S[1:0], 00–11.

• When the selected source is a bus, the selected source bus cannot be driven,
even if it is output-enabled.

Table 7-1 Modes of operation for a pair of bidirectional buses.

ENTFR_L ATOB Operation

0 0 Transfer data from a source on bus B to a destination on bus A.

0 1 Transfer data from a source on bus A to a destination on bus B.

1 x Transfer data on buses A and B independently.

Program 7-1 Verilog module for a 74x541-like 8-bit three-state driver.

module Vr74x541(G1_L, G2_L, A, Y);
 input G1_L, G2_L;
 input [1:8] A;
 output [1:8] Y;

 assign Y = (~G1_L & ~G2_L) ? A : 8'bz;
endmodule

DDPP5.book Page 308 Tuesday, March 28, 2017 5:33 PM

7.1 Three-State Devices 309

This functionality is provided by the Verilog module in Program 7-3, using
a mix of procedural and continuous assignments. The procedural assignments
appear in an always block that sets an internal variable, ibus, to the value that
should be driven onto any output-enabled port. Notice the use of concatenation
to make four copies of the two low-order bits of S[2:0] when a constant source is
selected. The continuous assignments at the end of the module drive the output
buses when enabled, and include logic to ensure that the selected source bus is
not driven, even if otherwise output-enabled.

ZZZZzzzz . . .” Recall that while Verilog sized literals like 8'b1 are normally padded on the left with
0s, if the leftmost specified bit is x or z, that value is used for the padding.

Program 7-2 Verilog module for a 74x245-like 8-bit transceiver.

module Vr74x245(G_L, DIR, A, B);
 input G_L, DIR;
 inout [1:8] A, B;

 assign A = (~G_L & ~DIR) ? B : 8'bz;
 assign B = (~G_L & DIR) ? A : 8'bz;
endmodule

Program 7-3 Verilog module for a four-way, 8-bit bus transceiver.

module VrXcvr4x8(A,B,C,D, S, AOE_L, BOE_L, COE_L, DOE_L, MOE_L);
 input [2:0] S;
 input AOE_L, BOE_L, COE_L, DOE_L, MOE_L;
 inout [1:8] A, B, C, D;
 reg [1:8] ibus;

 always @ (A or B or C or D or S) begin
 if (S[2] == 0) ibus = {4{S[1:0]}};
 else case (S[1:0])
 2’b00: ibus = A;
 2’b01: ibus = B;
 2’b10: ibus = C;
 2’b11: ibus = D;
 endcase
 end

 assign A = ((~AOE_L & ~MOE_L) && (S[2:0]!=3'b100)) ? ibus:8'bz;
 assign B = ((~BOE_L & ~MOE_L) && (S[2:0]!=3'b101)) ? ibus:8'bz;
 assign C = ((~COE_L & ~MOE_L) && (S[2:0]!=3'b110)) ? ibus:8'bz;
 assign D = ((~DOE_L & ~MOE_L) && (S[2:0]!=3'b111)) ? ibus:8'bz;
endmodule

DDPP5.book Page 309 Tuesday, March 28, 2017 5:33 PM

310 Chapter 7 More Combinational Building Blocks

7.1.4 Three-State Outputs in FPGAs
While some older FPGA devices provided three-state elements to drive

internal buses, modern FPGAs do not. Selecting one of multiple sources to drive
an internal bus is done with multiplexers, as described in Section 6.4. However,
all FPGA, CPLD, and ASIC libraries provide three-state input/output cells for
driving external pins. Three-state buses are still used quite commonly in board-
level design to minimize the wiring needed for multiple components (such as
microprocessors, memories, and input/output interfaces) to communicate with
each other, as in the examples of Figures 7-5 and 7-7.

Figure 7-8 shows an input/output buffer cell in a typical FPGA. In Xilinx
libraries, this cell is a predefined component named IOBUF. It contains an input
buffer whose output is on the lefthand side of the diagram and is named “O”. It
also contains a three-state buffer with input “I” and three-state disable input “T”.
(The output is Hi-Z when T is 1.) The signal on the righthand side of the compo-
nent is named “IO” and connects directly to an I/O pin of the FPGA IC package.

Like any other library component, an FPGA IOBUF may be instantiated
explicitly using a instance statement. (Note that this will lead to a synthesis error
if the signal connected to IO has not been defined to be an external pin.) The
synthesis engine is also able to “infer” an IOBUF if an external three-state output
is specified in procedural code, as in our previous examples, if each is specified
to be the “top-level” module in the design.

Modules targeted to be used inside FPGAs and ASICs do not use three-
state outputs, and they instead define separate buses for their inputs and their
outputs, as in Program 7-4. However, sometimes we may need to use an existing
“internal” module design and hook up its inputs and outputs directly to an exter-

Figure 7-8
IOBUF input/
output buffer
component.

IO
to/from device pin

T
3-state disable

I
input from FPGA

O
output to FPGA

IOBUF

Program 7-4 Declarations in module with 8-bit input and output buses.

module VrmyModule(CLK, I1, I2, IBUS, O1, O2, OBUS);
 input CLK, I1, I2;
 input [7:0] IBUS;
 output O1, O2;
 output [7:0] OBUS;
 ...

DDPP5.book Page 310 Tuesday, March 28, 2017 5:33 PM

7.1 Three-State Devices 311

nal three-state bus. Instead of modifying the module code to use three-state
outputs, we can hook it up to an external three-state bus by “wrapping” it in a
top-level module like Program 7-5. The top-level module instantiates the origi-
nal module as-is, and then uses a generate block (see box) to instantiate eight
IOBUF cells for the external I/O. Internal wires IBUS and OBUS are declared to
make the connections between VrmyModule and the IOBUF cells.

Figure 7-9 shows a schematic of the resulting synthesized design as it is
generated by the tools but omitting the I/O buffers for bits 1–6. We’ve also
expanded the topmost IOBUF component to show what’s inside—just what you
would expect: an input buffer and a three-state output buffer.

GENERATE
BLOCKS

Verilog-2001 supports the creation of generate blocks which create a structural or
dataflow model using algorithmic statements. A generate block begins with the key-
word generate and ends with endgenerate. Within the block, if, case, and for
statements may be used to control whether or not other statements are executed.

The most common examples of generate blocks use an iterative loop (for) to
create a repetitive hardware structure, which is how we use it in this book. Such a
for loop must be controlled by a new integer variable type (genvar), and its paren-
thesized control list is typically followed by a named begin-end block containing
one or more instance and continuous-assignment statements. Using the block’s
name, the compiler can generate unique component identifiers and, if needed, net
names for all instances and nets that are created within the loop, so they can be
tracked during simulation and synthesis.

Program 7-5 Top-level Verilog module wrapped around VrmyModule.

module VrmyDesign_top(CLK, IN1, IN2, OUT1, OUT2, IOBUS, IOBUS_OE);
 input CLK, IN1, IN2, IOBUS_OE;
 inout [7:0] IOBUS;
 output OUT1, OOT2;
 wire [7:0] INBUS, OUTBUS;
 genvar g;

 Vrmymodule U1 (.CLK(CLK), .I1(IN1), .I2(IN2), .O1(OUT1),
 .O2(OUT2), .IBUS(INBUS), .OBUS(OUTBUS));
 generate
 for (g=0; g<=7; g=g+1) begin: io
 IOBUF U2 (.I(OUTBUS[g]), .O(INBUS[g]),
 .IO(IOBUS[g]), .T(~IOBUS_OE));
 end;
 endgenerate
endmodule

DDPP5.book Page 311 Tuesday, March 28, 2017 5:33 PM

312 Chapter 7 More Combinational Building Blocks

7.2 Priority Encoding
In typical shared-bus systems like the examples in the preceding section, differ-
ent devices may request to drive the bus at different times, and some mechanism
must be provided to ensure that only one at a time gets access. In other applica-
tions, multiple entities may request a resource or service that can be granted to
only one entity at a time; in a microprocessor input/output subsystem, these
might be interrupt requests. In these systems and applications, there are typically
up to 2n inputs, each of which indicates a request for service (as in Figure 7-10)
and it is quite possible for multiple requests to be made simultaneously.

We saw in Section 6.3.7 (binary encoders) how an asserted signal on one
out of 2n inputs could be easily converted into the corresponding binary number,
but what if multiple inputs are asserted simultaneously? The solution is to assign

Figure 7-9 Schematic diagram of the VrmyDesign_top module as synthesized.

io[0].U2

IOBUF

IO

O

I

T

CLK_IBUF_BUFG_inst

BUFG

OI
CLK_IBUF_inst

IBUF

OI

IN1
IN1_IBUF_inst

IBUF

OI

IN2
IN2_IBUF_inst

IBUF

OI

IOBUS[7:0]

IOBUS_OE
IOBUS_OE_IBUF_inst

IBUF

OI

OUT1OUT1_OBUF_inst

OBUF

OI

OUT2OUT2_OBUF_inst

OBUF

OI

U1

VrmyModule

CLK

I1

I2

O1

O2

IBUS[7:0]

OBUS[7:0]

io[7].U2

IOBUF

IO

O

I

T

io[0].U2_i_1

LUT1

OI0

IBUF

IBUF

OI

OBUFT

OBUFT

OI

T

CLK

7

0

0

77

0

Figure 7-10
A system with 2n
requestors, and a
“request encoder”
that indicates which
request signal is
asserted at any time.

Request
encoder

Requests
for service

Requestor's
number

REQ1

REQ2
REQ3

REQN

DDPP5.book Page 312 Tuesday, March 28, 2017 5:33 PM

7.2 Priority Encoding 313

priority to the input lines, so when multiple requests are asserted, the identifying
number of the highest-priority requestor is output. A device that does this is
called a priority encoder.

The logic symbol for an 8-input priority encoder is shown in Figure 7-11.
Input I7 is defined to have the highest priority; others have lower priority in
decreasing numerical order. Outputs A2–A0 contain the number of the highest-
priority asserted input, if any. The IDLE output is asserted if no inputs are
asserted.

Priority encoders can be specified quite easily and naturally using some of
the language constructs in HDLs like Verilog, but for better understanding, let’s
look at them first using logic equations. To develop equations for the priority
encoder’s outputs, we first define eight intermediate variables H0–H7, such that
Hn is 1 if and only if input In is the highest priority 1 input:

Note that because of the way these signals are defined, at most one of them can
be asserted at any time. Using them, the equations for the A2–A0 outputs are
similar to the ones for a simple binary encoder:

The IDLE output is 1 if no inputs are 1:

H7 = I7

H6 = I6 ⋅ I7′
H5 = I5 ⋅ I6′ ⋅ I7′

…
H0 = I0 ⋅ I1′ ⋅ I2′ ⋅ I3′ ⋅ I4′ ⋅ I5′ ⋅ I6′ ⋅ I7′

A2 = H4 + H5 + H6 + H7

A1 = H2 + H3 + H6 + H7

A0 = H1 + H3 + H5 + H7

IDLE = (I0 + I1 + I2 + I3 + I4 + I5 + I6 + I7)′
= I0′ ⋅ I1′ ⋅ I2′ ⋅ I3′ ⋅ I4′ ⋅ I5′ ⋅ I6′ ⋅ I7′

priority

priority encoder

Figure 7-11
Logic symbol for a
generic 8-input
priority encoder.

Priority
encoder

I7

I6

I5
I4

I3

I2

I1

I0

A2

A1

A0

IDLE

DDPP5.book Page 313 Tuesday, March 28, 2017 5:33 PM

314 Chapter 7 More Combinational Building Blocks

7.2.1 Cascading Priority Encoders
It is straightforward to extend the equations and approach on the previous page
to create a priority encoder with any desired number of inputs. However, there
may be occasions where the inputs are distributed among two or more sub-
systems, and the subsystems themselves are to be arranged in priority order, so
the highest priority active input in the highest priority subsystem is recognized.
In this situation, it is possible to combine or cascade the information among
multiple subsystems, using an individual cascadable priority encoder for the
inputs in each subsystem, and then combining their outputs.

Figure 7-12 is the logic symbol for an 8-input cascadable priority encoder
that could be used within each subsystem. Besides the usual request inputs I7–I0
and outputs A2–A0, the device has an enable input EI, an enable output EO, and
a “group select” output GS. The complete truth table of this device is given in
Table 7-2.

The EI input must be asserted for any of the outputs to be asserted. The GS
output is asserted when the device is enabled and one or more of the request
inputs are asserted. The EO output is used for cascading—it is designed to be
connected to the EI input of another device that handles lower-priority requests.
EO is asserted if EI is asserted but no request input is asserted, thus enabling the
lower-priority device.

Figure 7-13 on page 316 shows how four of these cascadable priority
encoders can be connected to accept 32 request inputs and produce a 5-bit out-
put, RA4–RA0, indicating the highest-priority requestor. Since the A2–A0
outputs of at most one device may be asserted at any time, the outputs of the
individual devices can be ORed to produce RA2–RA0. Likewise, the individual
GS outputs can be combined in a 4-to-2 encoder to produce RA4 and RA3. The
RGS output is asserted if any GS output is asserted.

cascade
cascadable priority

encoder

Figure 7-12
Logic symbol for a
cascadable 8-input
priority encoder.

Cascadable
priority encoder

I7

I6

I5

I4

I3

I2

I1

I0

A2

A1

A0

GS

EI

EO

DDPP5.book Page 314 Tuesday, March 28, 2017 5:33 PM

7.2 Priority Encoding 315

7.2.2 Priority Encoders in Verilog
There are many ways to model the behavior of priority encoders in Verilog. One
way is to use a nested series of Verilog if statements, as shown in Program 7-6.
This nicely matches with our understanding of the priority encoder’s behavior.
However, this approach is unwieldy and error-prone if there are a lot of inputs.

Table 7-2 Truth table for a cascadable 8-input priority encoder.

Inputs Outputs

EI I0 I1 I2 I3 I4 I5 I6 I7 A2 A1 A0 GS EO

0 x x x x x x x x 0 0 0 0 0

1 x x x x x x x 1 1 1 1 1 0

1 x x x x x x 1 0 1 1 0 1 0

1 x x x x x 1 0 0 1 0 1 1 0

1 x x x x 1 0 0 0 1 0 0 1 0

1 x x x 1 0 0 0 0 0 1 1 1 0

1 x x 1 0 0 0 0 0 0 1 0 1 0

1 x 1 0 0 0 0 0 0 0 0 1 1 0

1 1 0 0 0 0 0 0 0 0 0 0 1 0

1 0 0 0 0 0 0 0 0 0 0 0 0 1

Program 7-6 Verilog module for an 8-input priority-encoder, using nested ifs.

module Vr8inprior2(I, A, IDLE);
 input [7:0] I;
 output reg [2:0] A;
 output reg IDLE;

 always @ (*) begin
 IDLE = 0;
 if (I[7]) A = 3'd7;
 else if (I[6]) A = 3'd6;
 else if (I[5]) A = 3'd5;
 else if (I[4]) A = 3'd4;
 else if (I[3]) A = 3'd3;
 else if (I[2]) A = 3'd2;
 else if (I[1]) A = 3'd1;
 else if (I[0]) A = 3'd0;
 else begin A = 3'd0; IDLE = 1; end;
 end
endmodule

DDPP5.book Page 315 Tuesday, March 28, 2017 5:33 PM

316 Chapter 7 More Combinational Building Blocks

REQ31

REQ30

REQ29

REQ28

REQ27

REQ26

REQ25

REQ24

REQ23

REQ22

REQ21

REQ20

REQ19

REQ18

REQ17

REQ16

REQ15

REQ14

REQ13

REQ12

REQ11

REQ10

REQ9

REQ8

REQ0

REQ1

REQ2

REQ3

REQ4

REQ5

REQ6

REQ7

G3A2

G3A1

G3A0

G3GS

G3EO

G2A2

G2A1

G2A0

G2GS

G2EO

G1A2

G1A1

G1A0

G1GS

G1EO

G0A2

G0A1

G0A0

G0GS

Cascadable
priority encoders

I7

I6

I5

I4

I3

I2

I1

I0

A2

A1

A0

GS

EI

EO

I7

I6

I5

I4

I3

I2

I1

I0

A2

A1

A0

GS

EI

EO

I7

I6

I5

I4

I3

I2

I1

I0

A2

A1

A0

GS

EI

EO

I7

I6

I5

I4

I3

I2

I1

I0

A2

A1

A0

GS

EI

EO

RGS

RA0

RA1

RA2

RA3

RA4

1

4-to-2 encoder

Figure 7-13
Four 8-input priority
encoders cascaded to
handle 32 requests.

DDPP5.book Page 316 Tuesday, March 28, 2017 5:33 PM

7.2 Priority Encoding 317

Another possible behavioral model of a priority encoder uses a for loop,
as shown in Program 7-7. The first two statements in the always block initialize
the outputs as if no asserted input will be found. Then the for loop looks for an
asserted input, working from the lowest priority to the highest. In the end, A will
be set to the number of the last (and therefore highest priority) asserted input that
was found, if any. This module is easily modified to use a different priority order
or a different number of inputs, or to add more functionality such as finding a
second-highest-priority input, as requested in Exercise 7.27.

This is a good place to mention priority in the Verilog case statement: it
has a prioritizing behavior built-in because it finds the first one of its choices that
matches the selection expression’s value, and then executes the corresponding
procedural statement. Thus, a case statement can specify a priority encoder as
shown in Program 7-8. Two aspects of the case statement are worth noting:

• The selection expression is a literal, 1'b1. This may seem a little odd, but
it’s perfectly legal. The first choice that matches it is executed.

• Verilog evaluates the choices in exactly the order in which they’re written.
To make I[0] the highest priority, reverse the order of the statements. You
can even scramble the priority order, which may be very useful when the
inputs are named functionally, not numerically, providing excellent docu-
mentation of the priority of the named functions.

Program 7-7 Verilog module with a for loop for an 8-input priority encoder.

module Vr8inprior3(I, A, IDLE);
 input [7:0] I;
 output reg [2:0] A;
 output reg IDLE;
 integer j;

 always @ (*) begin
 IDLE = 1; A = 0; // default output values
 for (j=0; j<=7; j=j+1) // check low priority first
 if (I[j]==1) begin IDLE = 0; A = j; end
 end
endmodule

UPS AND DOWNS Another possible strategy for the for loop in Program 7-7 would be to start with the
highest-priority input (I[7]) and search down until an asserted input is found. Once
one was found, a disable statement would be used to exit the for loop, so A would
be set to the number of the first (and therefore highest-priority) asserted input.
However, the Verilog disable statement is not supported by all synthesis tools,
while the version in Program 7-7 always works.

DDPP5.book Page 317 Tuesday, March 28, 2017 5:33 PM

318 Chapter 7 More Combinational Building Blocks

A self-checking test bench for the 8-input priority encoders is shown in
Program 7-9. It loops through all 256 possible combinations of the inputs and
has a single if statement that checks multiple potential error conditions for each
combination, displaying the input combination and outputs when there’s an
error. The first two conditions check the value of IDLE, which should be 1 when
the input vector I is zero. The next two check the value of A when I is nonzero.

The conditions checked by the test bench make use of the fortuitous rela-
tionship between the bit-numbering and numerical value of I and the definition
of A. For a given value of A, input bit A is 1, so the integer value of I must be at
least 2**A (2A). However, for A to be the highest priority bit, no higher numbered
bit may be set, so the integer value of I must be less than 2**(A+1). The logic in
these conditions is quite different from what is modeled in any of the priority-
encoder modules, which is actually good. If the test bench simply parrotted the
same condition tests that are used in the module(s), then it could easily miss any
errors in the designer’s thinking. (But see Exercise 7.17.)

Program 7-8 Verilog module for an 8-input priority encoder using case.

module Vr8inprior4(I, A, IDLE);
 input [7:0] I;
 output reg [2:0] A;
 output reg IDLE;

 always @ (*) begin
 IDLE = 1; A = 0; // default output values
 case (1'b1)
 I[7]: begin IDLE = 0; A = 7; end // Highest priority
 I[6]: begin IDLE = 0; A = 6; end // (as first choice
 I[5]: begin IDLE = 0; A = 5; end // in case statement)
 I[4]: begin IDLE = 0; A = 4; end
 I[3]: begin IDLE = 0; A = 3; end
 I[2]: begin IDLE = 0; A = 2; end
 I[1]: begin IDLE = 0; A = 1; end
 I[0]: begin IDLE = 0; A = 0; end
 endcase
 end
endmodule

MISSING AN
ERROR

The test bench in Program 7-9 doesn’t catch errors where A contains any x or z bits.
If that happens, the two comparisons involving I and A each return a value of x,
which is not considered true, so the error is not counted.

So, the list of error cases needs one more to detect whether A contains any x or
z bits. An easy way to check A is with the expression “^A===1'bx”. If any bit of A is
x or z, the reduction XOR operator will return a value of x.

DDPP5.book Page 318 Tuesday, March 28, 2017 5:33 PM

7.2 Priority Encoding 319

Program 7-9 Test bench for the 8-input priority-encoder modules.

`timescale 1 ns / 100 ps
module Vr8inprior_tb();
 reg [7:0] I;
 wire [2:0] A;
 wire IDLE;
 integer ii, errors;

 Vr8inprior1 UUT (.I(I), .A(A), .IDLE(IDLE));

 initial begin
 errors = 0;
 for (ii=0; ii<256; ii=ii+1) begin
 I = ii;
 #10 ;
 if (// Identify all error cases
 ((I==8'b0) && (IDLE!=1'b1)) // Should be idle
 || ((I>8'b0) && (IDLE==1'b1)) // Should not be idle
 || ((I>8'b0) && (I<2**A)) // I should be at least 2**A
 || ((I>8'b0) && (I>=2**(A+1)))) // but less than 2**(A+1)
 begin
 errors = errors+1;
 $display("Error: I=%b, A=%b, IDLE=%b", I, A, IDLE);
 end
 end
 $display("Test done, %d errors\n",errors);
 end
endmodule

GET OFF
MY CASE!

There’s still another way to use the priority of Verilog’s case statements to model a
priority encoder, this time using casez. I put the description in this box so you can
ignore it if you’ve already had enough!

The occasionally used casez statement allows “don’t-cares” to be used in its
choices; a don’t-care bit is denoted by “?”. The 8-input priority encoder is modeled
using casez in Program 7-10. This case statement feels a little more natural when
the input I, rather than a constant, is used in the selection expression. But like
Program 7-8, it still has the requirement (and the documentation benefit) that the
choices are written in the order of their priority. So, writing and understanding either
version requires you to remember the prioritizing behavior that is built into the
Verilog case statements. Still, my favorite way to model a priority encoder using a
case statement does not have this requirement; you are invited to discover it in
Exercise 7.19.

casez

DDPP5.book Page 319 Tuesday, March 28, 2017 5:33 PM

320 Chapter 7 More Combinational Building Blocks

7.3 Exclusive-OR Gates and Parity Functions
This section introduces Exclusive OR (XOR) and related functions, which are
important in four primary applications:

• Comparison. An XOR gate can compare two bits for equality, and the
outputs of multiple gates may be combined to perform multibit equality
comparisons.

• Parity generation and checking. A multibit XOR function calculates the
“sum modulo 2” or parity of its inputs, providing a way to detect and cor-
rect errors in data transmission and storage as explained in Section 2.15.

• Addition. XOR functions are used to form the sum bits in addition.

• Counting. Sequential circuits called binary counters use XOR to form the
next value of each bit when counting, either as part of a T flip-flop or as an
explicit function in their next-state logic.

We give examples of the first two applications in this section, and the third in
Chapter 8. We’ll see them again in T flip-flops in Section 10.2.6, and in binary
counters in Section 11.1.3.

7.3.1 Exclusive-OR and Exclusive-NOR Gates
An Exclusive-OR (XOR) gate is a 2-input gate whose output is 1 if exactly one
of its inputs is 1. It gets its name because it’s an OR function that excludes the
case where both inputs are 1. Stated another way, an XOR gate produces a 1 out-

Program 7-10 Verilog module an 8-input priority encoder using casez.

module Vr8inprior5(I, A, IDLE);
input [7:0] I;
 output reg [2:0] A;
 output reg IDLE;

always @ (*) begin
 IDLE = 1; A = 0; // default output values
 casez(I)
 8'b1???????: begin IDLE = 0; A = 7; end
 8'b?1??????: begin IDLE = 0; A = 6; end
 8'b??1?????: begin IDLE = 0; A = 5; end
 8'b???1????: begin IDLE = 0; A = 4; end
 8'b????1???: begin IDLE = 0; A = 3; end
 8'b?????1??: begin IDLE = 0; A = 2; end
 8'b??????1?: begin IDLE = 0; A = 1; end
 8'b???????1: begin IDLE = 0; A = 0; end
 endcase
 end
endmodule

Exclusive OR (XOR)

DDPP5.book Page 320 Tuesday, March 28, 2017 5:33 PM

7.3 Exclusive-OR Gates and Parity Functions 321

put if its inputs are different. An Exclusive NOR (XNOR) or Equivalence gate is
just the opposite—it produces a 1 output if its inputs are the same. A truth table
for these functions is shown in Table 7-3. The XOR operation is sometimes
denoted by the symbol “⊕”, that is,

While Exclusive OR is not one of switching algebra’s basic functions, discrete
XOR gates are often used as a component in larger functions like parity trees and
comparators, as we’ll see later.

Most switching technologies cannot perform the XOR function directly;
instead, they use multigate designs like the ones shown in Figure 7-14(a) and
(b). The design in (c) or a variant of it often appears in CMOS ASIC device
libraries, since the 2-input, 1-bit multiplexer can be implemented with a small
number of transistors configured as a pair of CMOS transmission gates to pass

X ⊕ Y = X′ ⋅ Y + X ⋅ Y′

Exclusive NOR (XNOR)
Equivalence

X Y
X ⊕ Y
(XOR)

(X ⊕ Y)′
(XNOR)

Table 7-3
Truth table for XOR
and XNOR functions.

0 0 0 1

0 1 1 0

1 0 1 0

1 1 0 1

⊕

X

Y

X

Y

F

F

= X ⊕ Y(a)

(b) = X ⊕ Y

X

Y

F(c) = X ⊕ YXN

2-input, 1-bit
multiplexer

D0

D1

SEL

OUT

Figure 7-14
Multigate designs for
the 2-input XOR
function: (a) AND-OR;
(b) three-level NAND;
(c) multiplexer-based.

DDPP5.book Page 321 Tuesday, March 28, 2017 5:33 PM

322 Chapter 7 More Combinational Building Blocks

either the true or the complemented value of X, depending on whether Y is 0 or 1,
respectively (see Exercise 7.32).

The logic symbols for XOR and XNOR functions are shown in Figure 7-15.
There are four equivalent symbols for each function. All of these alternatives are
a consequence of a simple rule:

• Any two signals (inputs or output) of an XOR gate or XNOR gate may be
complemented without changing the resulting logic function.

In bubble-to-bubble logic design, we can choose the symbol that is most expres-
sive of the logic function being performed.

PLDs and CPLDs typically connect each output to an XOR gate whose
other input is programmable, for output-polarity selection. Also, many FPGAs
provide XOR gates in their configurable logic blocks for polarity selection of
clock and reset inputs, typically implementing them as shown in Figure 7-14(c)
and using the SEL input for programming. The 2-input multiplexer is typically
implemented using transmission gates as in Figure 6-27 for high speed. The
logic blocks in some of these devices also include XOR gates whose inputs are
product terms or LUT outputs to support efficient realizations of adders and
counters. XOR and XNOR gates are also readily available in FPGA and ASIC
component libraries and as primitives in HDLs.

7.3.2 Parity Circuits
As shown in Figure 7-16(a), n XOR gates may be cascaded to form a circuit with
n + 1 inputs and a single output. This is called an odd-parity circuit, because its
output is 1 if an odd number of its inputs are 1. The circuit in (b) is also an odd-
parity circuit, but it’s faster because its gates are arranged in a treelike structure,
sometimes called a parity tree, yielding a shorter worst-case delay path. If the
output of either circuit is inverted, we get an even-parity circuit, whose output is
1 if an even number of its inputs are 1.

7.3.3 Parity-Checking Applications
In Section 2.15, we described error-detecting codes that use an extra bit, called
a parity bit, to detect errors in the transmission and storage of data. In an even-
parity code, the parity bit is chosen so that the total number of 1 bits in a code
word is even. Parity circuits are used both to generate the correct value of the
parity bit when a code word is stored or transmitted, and to check the parity bit
when a code word is retrieved or received.

(a)

(b)

Figure 7-15
Equivalent symbols
for (a) XOR gates;
(b) XNOR gates.

odd-parity circuit

parity tree
even-parity circuit

DDPP5.book Page 322 Tuesday, March 28, 2017 5:33 PM

7.3 Exclusive-OR Gates and Parity Functions 323

Figure 7-17 shows how parity circuits might be used to detect errors in the
memory of a microprocessor system. The memory stores 8-bit bytes, plus a
parity bit for each byte. The memory chips have two separate buses DATAIN[0:7]
and DATAOUT[0:7] for data transfers in and out, respectively. Two control lines,
RD and WR, are used to indicate whether a read or write operation is desired, and

I1

I2

I3

I4

I1

I2

I3

I4

IN

IM

IN

ODD

ODD

(a)

(b)

Figure 7-16
Cascading structures
for XOR gates:
(a) daisy chain;
(b) tree.

8-input
parity circuit

D

E

F

G

H

ODD

A

B

C

0

1

2

3

4

5

6

7

DATAIN[0:7]

Memory Chips

DIN3

DIN4

DIN5

DIN6

DIN7

PIN

DIN0

READ

WRITE

DIN1

DIN2

DOUT3

DOUT4

DOUT5

DOUT6

DOUT7

POUT

DOUT0

DOUT1

DOUT2

ERROR

PI

PO

RD

WR

9-input
parity circuit

D

E

F

G

H

I

ODD

A

B

C

PE

DATAOUT[0:7]

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

Figure 7-17
Parity generation and
checking for an 8-bit-
wide memory.

DDPP5.book Page 323 Tuesday, March 28, 2017 5:33 PM

324 Chapter 7 More Combinational Building Blocks

an ERROR signal is asserted to indicate parity errors during read operations.
Complete details of the memory chips, like addressing inputs, are not shown;
memory chips will be described in detail in Chapter 15. For parity checking, we
are concerned only with the data connections to the memory.

To store a byte into the memory chips, we specify an address (not shown),
place the byte on DATAIN[0–7], and assert WR. The 8-input parity circuit asserts
its ODD output if the byte has odd parity, placing the value on PI. This value is
stored into the memory at the same address as the 8-bit data.

To retrieve a byte, we specify an address and assert RD; the byte value
appears on DATAOUT[0–7], and its parity appears on PO. The 9-input parity
circuit asserts its ODD output if the 9-bit value has odd parity, indicating that an
error has occurred. Thus, at the AND-gate output, ERROR is asserted if RD is
asserted and the retrieved 9-bit value has odd parity.

Parity circuits are also used with most error-correcting codes such as the
Hamming codes described in Section 2.15.3. We showed the parity-check
matrix for a 7-bit Hamming code in Figure 2-13 on page 72. We can correct
errors in this code as shown in Figure 7-18. A 7-bit word, possibly containing an
error, is presented on DU[1–7]. Three 4-input parity circuits check the parity of

D

ODD

A

B

C

DU7

DU5

DU3

DU1

4-input
parity circuit

D

ODD

A

B

C

DU7

DU6

DU3

DU2

D

ODD

A

B

C

DU7

DU6

DU5

DU4

3-to-8
decoder

EN
Y0

Y1

Y2

Y3

B

A

C

Y4

Y5

Y6

Y7

1

SYN0

SYN1

SYN2

DU1
DC1

E1

DU2
DC2

E2

DU3
DC3

E3

DU4
DC4

E4

DU5
DC5

E5

DU6
DC6

E6

DU7
DC7

DU[1:7]

DC[1:7]

NOERROR4-input
parity circuit

4-input
parity circuit

E7

Figure 7-18 Error-correcting circuit for a 7-bit Hamming code.

DDPP5.book Page 324 Tuesday, March 28, 2017 5:33 PM

7.3 Exclusive-OR Gates and Parity Functions 325

the three bit-groups defined by the parity-check matrix, each producing a 1
output if its group has odd parity. These outputs form the syndrome, which is the
bit number of the erroneous input bit, if any. A 3-to-8 decoder is used to decode
the syndrome. If the syndrome is zero (000), the NOERROR signal is asserted.
Otherwise, the erroneous bit is corrected by complementing it. The corrected
code word appears on the DC bus.

7.3.4 Exclusive-OR Gates and Parity Circuits in Verilog
In Verilog code, the XOR and XNOR functions are specified by the ^ and ~^
operators, respectively. For example, Program 7-11 is a dataflow-style module
for a 3-input XOR device using the XOR operator. It’s also possible to specify
XOR or parity functions behaviorally, as Program 7-12 does for a 9-input parity
function similar to the circuit we used in the preceding subsection.

USING IT
BOTH WAYS

In an 8-bit memory system where both read and write data use the same bidirectional
bus, a single 9-bit parity circuit can be connected to the bus and be used to both
generate and check parity, as shown in Figure 7-19. During write operations, control
logic forces the ninth input of the parity circuit to 0 to generate the proper parity
value for writing. During read operations, it connects the parity output of the memory
to the ninth input so the parity circuit checks the overall 9-bit parity.

9-input
parity circuit

D

E

F

G

H

I

EVEN

ODD

A

B

C

D0

D1

D2

D3

D4

D5

D6

D7

D[0:7]

RP

Memory Chips

DIN3

DIN4

DIN5

DIN6

DIN7

PIN

DIN0

READ

WRITE

DIN1

DIN2

DOUT3

DOUT4

DOUT5

DOUT6

DOUT7

POUT

DOUT0

DOUT1

DOUT2

D0

D1

D2

D3

D4

D5

D6

D7

D4

D5

D0

D1

D2

D3

D6

D7

three-state
buffer

G2

G1

Y1

Y2

Y3

A1

A2

A3

A4

A5

A6

A7

A8

Y4

Y5

Y6

Y7

Y8

DO0

DO1

DO2

DO3

DO4

DO5

DO6

DO7

ERROR

RD_L

PI

PO

RD

WR

Figure 7-19 Parity generation and checking for an 8-bit-wide memory with shared I/O bus.

DDPP5.book Page 325 Tuesday, March 28, 2017 5:33 PM

326 Chapter 7 More Combinational Building Blocks

Typical ASIC libraries provide two- and three-input XOR and XNOR func-
tions as primitives. These primitives are usually realized very efficiently in
CMOS at the transistor level using transmission gates, as shown for example in
Exercise 7.32. Fast and compact XOR trees can be built using these primitives.

When a Verilog module containing large XOR functions is synthesized, the
synthesis tool will do the best it can to realize the function in the targeted device
technology. However, some synthesis tools may not smart enough to create an
efficient tree structure from a behavioral model like Program 7-12. Instead, we
can use a structural model to get exactly what we want.

For example, Program 7-13 is a structural Verilog module for a 9-input
XOR function implemented as a two-level tree of 3-input XORs. In this example,
we’ve used the previously defined Vrxor3 module as the basic building block of

Program 7-11 Dataflow-style Verilog module for a 3-input XOR device.

module Vrxor3(A, B, C, Y);
 input A, B, C;
 output Y;

 assign Y = A ^ B ^ C;
endmodule

Program 7-12 Behavioral Verilog module for a 9-input parity circuit.

module Vrparity9(I, ODD);
 input [1:9] I;
 output reg ODD;
 integer j;

 always @ (*) begin
 ODD = 1'b0;
 for (j =1; j <= 9; j = j+1)
 if (I[j]) ODD = ~ODD;
 end
endmodule

Program 7-13 Structural Verilog module for a 9-input parity circuit.

module Vrparity9s(I, ODD);
 input [1:9] I;
 output ODD;
 wire Y1, Y2, Y3;

 Vrxor3 U1 (I[1], I[2], I[3], Y1);
 Vrxor3 U2 (I[4], I[5], I[6], Y2);
 Vrxor3 U3 (I[7], I[8], I[9], Y3);
 Vrxor3 U4 (Y1, Y2, Y3, ODD);
endmodule

DDPP5.book Page 326 Tuesday, March 28, 2017 5:33 PM

7.3 Exclusive-OR Gates and Parity Functions 327

the XOR tree. In an ASIC, we would replace the Vrxor3 module with a 3-input
XOR primitive from the ASIC library.

Our final parity example is a behavioral Verilog module for the Hamming
decoder circuit of Figure 7-18, and is shown in Program 7-14. The function
syndrome is defined to return the 3-bit syndrome of a 7-bit data input vector D.
In the main always block, the corrected data output vector DC is initially set
equal to the uncorrected data input vector DU. The syndrome function is then
called to get the 3-bit syndrome. If the syndrome is zero, either no error or an
undetectable error has occurred and the output NOERROR is set to 1. If the syn-

Program 7-14 Behavioral Verilog module for Hamming error correction.

module Vrhamcorr(DU, DC, NOERROR);
 input [7:1] DU;
 output reg [7:1] DC;
 output reg NOERROR;
 integer i;

 function [2:0] syndrome;
 input [7:1] D;
 begin
 syndrome[0] = D[1] ^ D[3] ^ D[5] ^ D[7];
 syndrome[1] = D[2] ^ D[3] ^ D[6] ^ D[7];
 syndrome[2] = D[4] ^ D[5] ^ D[6] ^ D[7];
 end
 endfunction

 always @ (*) begin
 DC = DU;
 i = syndrome(DU);
 if (i == 3'b0) NOERROR = 1'b1;
 else begin
 NOERROR = 1'b0; DC[i] = ~DU[i];
 end
 end
endmodule

JUST-IN-TIME
VERILOG FOR

PROGRAM 7-14

A Verilog module may declare a local function that returns a result to a caller. Its
declaration begins with the keyword function, followed by a result-type, function
name, and semicolon. It has one or more inputs and local variables. Its declarations
are followed by a single procedural statement, usually a begin-end block, and the
keyword endfunction. The function name is implicitly defined to be a local reg
variable of the declared result type, and somewhere in the function, a value must be
assigned to this variable. This value is returned to the function’s caller. A function is
called in a module by writing its name followed by a parenthesized list of expres-
sions which are assigned to its inputs, and its procedural statement is executed.

function

endfunction

DDPP5.book Page 327 Tuesday, March 28, 2017 5:33 PM

328 Chapter 7 More Combinational Building Blocks

SOMETIMES,
THEY JUST

DON’T LISTEN

The basic combinational-logic building block in Xilinx 7-series FPGAs is a 6-input,
1-output lookup table (LUT), that can realize any logic function of six inputs, includ-
ing a 6-input parity function. Therefore, using seven LUTs, a Xilinx 7-series FPGA
should be able to realize a 36-input parity tree analogous to the structure in
Program 7-13 (Vrparity9s), with a maximum delay path that goes through just two
levels of logic (LUTs).

So, I wrote code for Vrparity36s (a structural module) incorporating VrXOR6
(a behavioral module), and tried it. Sure enough, the synthesized design was a tree
with seven LUTs, six at the first level implementing 6-input XORs, with outputs
combined by a single-LUT-based 6-input XOR at the second level. Curiously,
though, the inputs of the first-level LUTs were scrambled—the first six inputs were
not hooked up to the first first-level LUT as specified in Vrparity36s, and so on.

Next, I tried synthesizing a behaviorally specified 36-input XOR module,
Vrparity36, created by changing all instances of “9” to “36” in Program 7-12. As
you might expect, before optimization, the tool showed the circuit to be a 36-gate-
long daisy chain of XOR gates in the style of Figure 7-16(a). With optimization,
however, the synthesizer still came up with a tree with seven LUTs, and still with
scrambled input connections as in the structurally specified design. Modern synthe-
sis tools are very good, and we have to give this one credit for finding the most
efficient available structure for a behaviorally specified design. But why didn’t it fol-
low the specified input hookup pattern in the first, structurally specified case?

As it turns out, by default a good synthesis tool will “flatten” a hierarchically
specified design like Vrparity36s to give itself more opportunities to optimize the
synthesized design—to get what the EDA industry calls “higher QoR” (quality of
results). When doing this, it loses some or all of any structural information that is
present, and it simply optimizes the logic function at the top-level output (ODD in the
case of Vrparity36 and Vrparity36s).

Since the behavioral and the structural code both ultimately specify the same
output function, in this example the synthesizer was able to come up with the same
optimized circuit structure in both cases. But its definition of optimization did not
include making the input connection order pretty for the professor.

There are many reasons that a designer may prefer to maintain the hierarchy
specified in a large Verilog model, regardless of whether its individual modules are
specified structurally or behaviorally. Besides convenience of understanding the
synthesized circuit structure, reasons may include ease of timing analysis and debug-
ging. Therefore, typical synthesis tools include many options for constraining the
synthesizer’s behavior and its use of optimizations.

Using the Xilinx Vivado tools, I was able to insert the keep_hierarchy syn-
thesis constraint in the definition of my Vrxor6 module, which forces the synthesizer
to keep all of the module’s logic in a dedicated set of one or more LUTs (in this case,
one). This made the synthesized circuit be just what I wanted it to be—so pretty that
I just had to show it to you, in Figure 7-20.

keep_hierarchy

DDPP5.book Page 328 Tuesday, March 28, 2017 5:33 PM

7.3 Exclusive-OR Gates and Parity Functions 329

I_IBUF[1]_inst

IBUF

OI
I[1:36]

I_IBUF[2]_inst

IBUF

OI

U1

Vrxor6__1

A

B

C

D

E

F

Y

I_IBUF[3]_inst

IBUF

OI

I_IBUF[4]_inst

IBUF

OI

I_IBUF[5]_inst

IBUF

OI

I_IBUF[6]_inst

IBUF

OI

I_IBUF[7]_inst

IBUF

OI

I_IBUF[8]_inst

IBUF

OI

U2

Vrxor6__2

A

B

C

D

E

F

Y

I_IBUF[9]_inst

IBUF

OI

I_IBUF[10]_inst

IBUF

OI

I_IBUF[11]_inst

IBUF

OI

I_IBUF[12]_inst

IBUF

OI

I_IBUF[13]_inst

IBUF

OI

I_IBUF[14]_inst

IBUF

OI

U3

Vrxor6__3

A

B

C

D

E

F

Y

U7

Vrxor6

A

B

C

D

E

F

Y

I_IBUF[15]_inst

IBUF

OI

ODD_OBUF_inst

OBUF

OI
ODDI_IBUF[16]_inst

IBUF

OI

I_IBUF[17]_inst

IBUF

OI

I_IBUF[18]_inst

IBUF

OI

I_IBUF[19]_inst

IBUF

OI

I_IBUF[20]_inst

IBUF

OI
U4

Vrxor6__4

A

B

C

D

E

F

Y
I_IBUF[21]_inst

IBUF

OI

I_IBUF[22]_inst

IBUF

OI

I_IBUF[23]_inst

IBUF

OI

I_IBUF[24]_inst

IBUF

OI

I_IBUF[25]_inst

IBUF

OI

I_IBUF[26]_inst

IBUF

OI
U5

Vrxor6__5

A

B

C

D

E

F

Y
I_IBUF[27]_inst

IBUF

OI

I_IBUF[28]_inst

IBUF

OI

I_IBUF[29]_inst

IBUF

OI

I_IBUF[30]_inst

IBUF

OI

I_IBUF[31]_inst

IBUF

OI

I_IBUF[32]_inst

IBUF

OI
U6

Vrxor6__6

A

B

C

D

E

F

Y
I_IBUF[33]_inst

IBUF

OI

I_IBUF[34]_inst

IBUF

OI

I_IBUF[35]_inst

IBUF

OI

I_IBUF[36]_inst

IBUF

OI

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

 (b)

I_IBUF[12]_inst

IBUF

OI

I_IBUF[13]_inst

IBUF

OI

I_IBUF[14]_inst

IBUF

OI

U3

Vrxor6__3

A

B

C

D

E

F

Y

U7

Vrxor6

A

B

C

D

E

F

Y

I_IBUF[15]_inst

IBUF

OI

ODD_OBUF_inst

OBUF

OI
ODDI_IBUF[16]_inst

IBUF

OI

I_IBUF[17]_inst

IBUF

OI

I_IBUF[18]_inst

IBUF

OI

I_IBUF[19]_inst

IBUF

OI

12

13

14

15

16

17

18

19

(a)

Figure 7-20
EDA-tool-generated logic
diagram of the Vr36paritys
module as synthesized:
(a) complete;
(b) middle section.

DDPP5.book Page 329 Tuesday, March 28, 2017 5:33 PM

330 Chapter 7 More Combinational Building Blocks

drome is nonzero, the corresponding bit of DC is complemented to correct the
assumed 1-bit error, and NOERROR is cleared to 0.

A self-checking test bench for the Hamming correction module is shown in
Program 7-15. This test bench takes a high-level functional approach. For each
possible combination of data bits (there are only 16), it calculates the three check
bits, creating a 7-bit vector DI. Then it applies DI as well as seven variants of it,
each with a 1-bit error, to the DU input of the Hamming correction module. For
each of these, it checks that a properly corrected result DC is returned and that
NOERROR has the correct value. The same testing approach could be applied to
Hamming correction modules for much wider data buses, except that the data
values would be selected randomly instead of exhaustively to make the testing
time feasible.

Program 7-15 Test bench for the Hamming error-correction module.

`timescale 1 ns / 100 ps
module Vrhamcorr_tb();
 reg [7:1] DI, DU;
 wire [7:1] DC;
 wire NOERR;
 reg [3:0] DATA;
 integer nib, i, errors;

Vrhamcorr UUT (.DU(DU), .DC(DC), .NOERROR(NOERR));

initial begin
 errors = 0;
 for (nib=0; nib<=15; nib=nib+1) begin
 DATA[3:0] = nib;
 DI[7:5] = DATA[3:1]; DI[3] = DATA[0]; // Merge in data value
 DI[4] = DI[7] ^ DI[6] ^ DI[5]; // Merge in check bits
 DI[2] = DI[7] ^ DI[6] ^ DI[3];
 DI[1] = DI[7] ^ DI[5] ^ DI[3];
 DU = DI; #10 ; // Check no-error case
 if ((DC!==DI) || (NOERR!==1'b1)) begin
 errors = errors + 1;
 $display("Error, DI=%b, DU=%b, DC=%b, NOERR=%b",DI,DU,DC,NOERR);
 end
 for (i=1; i<=7; i=i+1) begin // Insert error in each bit position
 DU = DI; DU[i] = ~DI[i]; #10 ; // and check that it's corrected
 if ((DC!==DI) || (NOERR!==1'b0)) begin
 errors = errors + 1;
 $display("Error, DI=%b, DU=%b, DC=%b, NOERR=%b",DI,DU,DC,NOERR);
 end
 end
 end
 $display("Test completed, %0d errors",errors);
end
endmodule

DDPP5.book Page 330 Tuesday, March 28, 2017 5:33 PM

7.4 Comparing 331

7.4 Comparing
Comparing two binary words for equality is a commonly used operation in com-
puter systems, device interfaces, and many other applications. For example, in
Figure 2-7(a) on page 65, we showed a system structure in which devices are
enabled by comparing a “device select” word with a predetermined “device ID.”
A circuit that compares two binary words and indicates whether they are equal
is called a comparator. Some comparators interpret their input words as signed
or unsigned numbers and also indicate an arithmetic relationship (greater or less
than) between the words. These devices are often called magnitude comparators

All of the magnitude comparators in this section are for unsigned numbers.
When their inputs are signed two’s-complement numbers, they produce correct
greater-than and less-than results when the signs of the operands are identical.
But when the signs are different, they produce the opposite of the correct result.
Any unsigned number whose MSB is 1 is greater than one whose MSB is 0. But
in the signed interpretation, any number whose MSB is 1 is negative and there-
fore less than any positive one (MSB=0). Table 7-4 shows examples using 4-bit
vectors, including the corresponding decimal numbers.

7.4.1 Comparator Structure
Exclusive-OR and Exclusive-NOR gates may be viewed as 1-bit comparators.
Figure 7-21(a) shows an interpretation of a 2-input XOR gate as a 1-bit compar-
ator. The active-high output, DIFF, is asserted if the inputs are different. The
outputs of four XOR gates are ORed to create a 4-bit comparator in (b). The DIFF

comparator

magnitude comparator

Unsigned

interpretation
Signed

interpretation Table 7-4
Comparisons
of signed and
unsigned
4-bit vectors.

0101 > 0001 (5 > 1) 0101 > 0001

1110 > 1001 (14 > 9) 1110 > 1001

1111 > 0000 (15 > 0) 1111 < 0000

1011 > 0100 (11 > 4) 1011 < 0100

5 1>()
2– 7–>()
1– 0<()
5– 4<()

A0

B0

A0

B0

A1

B1

A2

B2

A3

B3

DIFF DIFF

(a)

(b) DIFF0

DIFF1

DIFF2

DIFF3

Figure 7-21
Comparators using
XOR gates:
(a) 1-bit comparator;
(b) 4-bit comparator.

DDPP5.book Page 331 Tuesday, March 28, 2017 5:33 PM

332 Chapter 7 More Combinational Building Blocks

output is asserted if any of the input-bit pairs are different. We can build an n-bit
comparator using n XOR gates and an n-input OR gate.

Comparators can also be built using Exclusive-NOR (XNOR) gates, which
are sometimes called Equivalence gates for that reason. A 2-input XNOR gate
produces a 1 output if its two inputs are equal. A multibit comparator can be con-
structed using one XNOR gate per bit, and ANDing all of their outputs together.
The output of the AND function is 1 if all of the individual bits are pairwise
equal.

WIDE GATES FOR
COMPARATORS

There is a practical limit to the width of an individual AND or OR gate in any tech-
nology. Wider functions can be obtained by cascading individual gates, as we did for
wider XOR functions in Figure 7-16 on page 323. As in that example, arranging the
gates in a tree-like structure rather than a linear cascade makes for a faster circuit.

For a wide AND or OR function, there is an opportunity to make the circuit
even faster. At the transistor level, inverting gates are typically faster and smaller
than noninverting ones. For example, an AND-gate circuit is typically designed as a
NAND gate followed by an inverter, in the style of Figure 14-15 on page 743. With
this in mind, Figure 7-22 shows two different approaches to building a 16-input OR
function. In (a), we use two levels of OR gates, which really yields four levels of gate
delay at the transistor level with “typical” transistor-level noninverting gate design.
In (b), we use one level of NOR gates followed by a NAND gate, resulting in only two
levels of gate delay and a smaller circuit at the transistor level, too.

The above analysis assumes “typical” internal gate circuit design. In a specific
application, circuit area and delay may vary depending on arcane details of the tech-
nology. So, in HDL-based design of ASICs, FPGA, and PLDs, you’re usually best
served by ignoring these details and just letting the synthesis tool figure out the best
realization. Just be aware that logic functions that require very wide gates will typi-
cally be not only larger, but also slower than ones that use only narrow gates.

D1

D4

OR16

(a)OR1

OR2

OR3

OR4

D2
D3

D5

D8

D6
D7

D9

D12

D10
D11

D13

D16

D14
D15

D1

D4

OR16

(b)OR1_L

OR2_L

OR3_L

OR4_L

D2
D3

D5

D8

D6
D7

D9

D12

D10
D11

D13

D16

D14
D15

Figure 7-22 16-input OR functions: (a) using OR gates; (b) using NOR and NAND gates.

DDPP5.book Page 332 Tuesday, March 28, 2017 5:33 PM

7.4 Comparing 333

The n-bit comparators in this subsection are sometimes called parallel
comparators because they look at each pair of input bits simultaneously and
deliver the 1-bit comparison results in parallel to an n-input OR or AND function.
It is also possible to design an “iterative comparator” that looks at its bits one at
a time using a small, fixed amount of logic per bit. Before looking at an iterative
comparator design, we’ll describe the general class of “iterative circuits” in the
next subsection. This class of circuits also includes adders, which we’ll cover in
Chapter 8.

7.4.2 Iterative Circuits
An iterative circuit is a special type of combinational circuit, with the structure
shown in Figure 7-23. The circuit contains n identical modules, each of which
has both primary inputs and outputs and cascading inputs and outputs. The left-
most cascading inputs are called boundary inputs and are connected to fixed
logic values in many iterative circuits. The rightmost cascading outputs are
called boundary outputs and usually provide important information.

Iterative circuits are well-suited to problems that can be solved by a simple
iterative algorithm:

1. Set C0 to its initial value and set i to 0.

2. Use Ci and PIi to determine the values of POi and Ci+1.

3. Increment i.

4. If i < n, go to step 2.

In an iterative circuit, the loop of steps 2–4 is “unwound” by providing a separate
combinational-circuit module that performs step 2 for each value of i.

parallel comparator

iterative circuit

primary inputs

primary outputs

moduleCI CO

PI
C2C1C0 C 1 C

PO 1

PI 1

PO

moduleCI CO

PI

PO

moduleCI CO

PI

PO

PI1

PO1PO0

PI0 cascading
input

cascading
output

boundary
inputs

boundary
outputs

Figure 7-23 General structure of an iterative combinational circuit.

primary inputs and
outputs

cascading inputs and
outputs

boundary inputs
boundary outputs

DDPP5.book Page 333 Tuesday, March 28, 2017 5:33 PM

334 Chapter 7 More Combinational Building Blocks

Examples of iterative circuits are the comparator circuit in the next
subsection and the ripple adders in Sections 8.1.2 and 8.1.5. In Section 11.3,
we’ll explore the relationship between iterative circuits and corresponding
sequential circuits that execute the previous page’s 4-step algorithm in discrete
time steps.

7.4.3 An Iterative Comparator Circuit
Two n-bit values X and Y can be compared one bit at a time in n steps using a
single bit EQi at each step to keep track of whether all of the bit-pairs so far have
been equal, as follows:

1. Set EQ0 to 1 and set i to 0.

2. If EQi is 1 and Xi and Yi are equal, set EQi + 1 to 1. Else set EQi+1 to 0.

3. Increment i.

4. If i < n, go to step 2.

Figure 7-24 shows a corresponding iterative circuit. Note that this circuit has no
primary outputs; the boundary output is all that interests us. Other iterative cir-
cuits, like the ripple adder of Section 8.1.2, have primary outputs of interest.

Given a choice between the iterative comparator circuit in this subsection
and one of the parallel comparators shown previously, you would probably
prefer the parallel comparator. The iterative comparator saves little if any cost,
and it’s very slow because the cascading signals need time to “ripple” from the
leftmost to the rightmost module. Iterative circuits with individual modules that
process more than one bit at a time, like the ones we’ll show for comparators in
the next subsection and for adders in Section 8.1.5, are much more likely to be
used in practical designs.

X
CMP

Y

X0 Y0

EQI EQO

X
CMP

Y

EQI EQO

X
CMP

Y

EQI EQO

X
CMP

Y

EQI EQO
EQ1

X1 Y1

EQ2

X2 Y2 X(N–1) Y(N–1)

EQ3 EQNEQ(N–1)

(b)

1

EQO

EQI

X Y
(a)

CMP

Figure 7-24 An iterative comparator circuit: (a) module for one bit; (b) complete circuit.

DDPP5.book Page 334 Tuesday, March 28, 2017 5:33 PM

7.4 Comparing 335

7.4.4 Magnitude Comparators
A binary magnitude comparator compares two binary numbers and indicates
whether one is less than, equal to, or greater than the other. One way to do this
is to subtract one number from the other and look at the results. The numbers are
equal if the difference is zero, of course. With unsigned numbers, the less-than/
greater-than relationship is indicated by the borrow out of the MSB—1 if the
subtrahend is greater than the minuend, 0 otherwise. With two’s-complement,
signed numbers, the sign bit of the difference is 1 if the subtrahend is greater
than the minuend, and 0 otherwise. So, a magnitude comparator can be made
easily from a subtractor; but we won’t describe adders and subtractors until
Section 8.1. In this section, we’ll discuss magnitude comparators that operate
“directly,” without looking at a subtraction result. Depending on their imple-
mentation, they may be smaller and faster than subtractor-based comparators,
since they don’t need any logic for an actual subtraction result.

Figure 7-25 is a logic symbol for a magnitude comparator for two 8-bit
unsigned numbers. It has three active-high outputs that indicate the comparison
relationship between 8-bit inputs P[7:0] and Q[7:0], with 7 being the most signif-
icant bit.

A logic diagram for the magnitude comparator is given in Figure 7-26. The
top half of the circuit checks the two 8-bit input words for equality. Each XNOR-
gate output is asserted if its inputs are equal, and the PEQQ output is asserted if
all eight input-bit pairs are equal. The bottom half of the circuit compares the
input words arithmetically and asserts PGTQ if P > Q. Each AND gate connects
to a pair of input bits (Pi,Qi) and zero or more of the XNOR outputs, forcing
PGTQ to 1 if (Pi,Qi) is (1,0) and all the higher-order bits are pairwise equal.

Figure 7-25
Logic symbol for an
8-bit magnitude
comparator.

P0

PEQQ

PGTQ

Q0

P1

Q1

P2

Q2

P3

Q3

P4

Q4

P5

Q5

P6

Q6

P7

Q7

PLTQ

8-bit
mag.
comp.

DDPP5.book Page 335 Tuesday, March 28, 2017 5:33 PM

336 Chapter 7 More Combinational Building Blocks

Q0

Q2

Q4

Q6

Q1

Q3

P3

Q5

Q7

P0

P2

P4

P6

P1

P5

P7

PEQQ

PGTQ

PLTQ

Figure 7-26
Logic diagram for
an 8-bit magnitude
comparator.

DDPP5.book Page 336 Tuesday, March 28, 2017 5:33 PM

7.4 Comparing 337

Although a similar idea could be used to create the “less-than” output, in
this circuit it’s done with just one 2-input NOR gate at the expense of a little extra
delay: PLTQ is asserted if both of the other two outputs are negated. It should be
evident that any two of the three outputs fully describe the comparison result.
The remaining one can be derived from the other two with a 2-input NOR gate,
since at all times exactly one out of the three outputs should be asserted.

The 8-bit magnitude comparator may be used as a building block to create
a larger comparator. In a purely iterative circuit with no other components,
n 8-bit comparators can be used to compare two 7n+1-bit numbers. Starting with
the LSBs of P and Q, input bits are assigned to the comparators. The PGTQ and
PLTQ outputs of each comparator are connected to the P0 and Q0 inputs, respec-
tively, of the next comparator, which handles the seven next more significant bits
of P and Q. This works because the 1-bit comparison made between P0 and Q0
by the second and successive comparators is a proxy for comparing all of the less
significant bits of P and Q, based on the following three possibilities:

• P = Q so far: P0,Q0 = 0,0.

• P > Q so far: P0,Q0 = 1,0.

• P < Q so far: P0,Q0 = 0,1.

Figure 7-27 illustrates the connections for a 22-bit comparator.
Using the above approach, we could build a 64-bit comparator using nine

8-bit comparators. Because the comparators would be connected in series, the
total delay from any of the LSBs to the overall 64-bit-comparison outputs would
be equal to nine times the delay of one 8-bit comparator.

U2U1

P[21:0]

Q[21:0]

LT0

GT0

P2

Q2

Q6

Q7

P6

P7

P1

Q1

P0

Q0

P3

Q3

P4

Q4

P5

Q5

P11

Q11

P12

Q12

P13

Q13

P14

Q14

P9

Q9

P10

Q10

Q8

P8

P0

PEQQ

PGTQ

Q0

P1

Q1

P2

Q2

P3

Q3

P4

Q4

P5

Q5

P6

Q6

P7

Q7

PLTQ

P0

PEQQ

PGTQ

Q0

P1

Q1

P2

Q2

P3

Q3

P4

Q4

P5

Q5

P6

Q6

P7

Q7

PLTQ

U3

P18

Q18

P19

Q19

P20

Q20

P21

Q21

P16

Q16

P17

Q17

Q15

P15

P0

PEQQ

PGTQ

Q0

P1

Q1

P2

Q2

P3

Q3

P4

Q4

P5

Q5

P6

Q6

P7

Q7

PLTQ

PEQQ

PGTQ

PLTQLT1

GT1

8-bit
mag.
comp.

8-bit
mag.
comp.

8-bit
mag.
comp.

Figure 7-27 Three 8-bit magnitude comparators cascaded to compare 22 bits.

DDPP5.book Page 337 Tuesday, March 28, 2017 5:33 PM

338 Chapter 7 More Combinational Building Blocks

But there’s a better way—the nine comparators could be configured in a
tree, with just two levels of 8-bit comparators. The 64 input bits P[63:0] and
Q[63:0] connect to eight first-level comparators. The PGTQ and PLTQ outputs
of these comparators connect to the P0-P7 and Q0-Q7 inputs of one second-level
comparator in order of significance, as shown in Figure 7-28. So the total delay
to the overall 64-bit-comparison outputs from any input bit will be just twice the
delay of a single 8-bit comparator.

U9

U1

P[63:0]

Q[63:0]

LT0

GT0

P2

Q2

Q6

Q7

P6

P7

P1

Q1

P0

Q0

P3

Q3

P4

Q4

P5

Q5

8-bit
mag.
comp.

P0

PEQQ

PGTQ

Q0

P1

Q1

P2

Q2

P3

Q3

P4

Q4

P5

Q5

P6

Q6

P7

Q7

PLTQ

P0

PEQQ

PGTQ

Q0

P1

Q1

P2

Q2

P3

Q3

P4

Q4

P5

Q5

P6

Q6

P7

Q7

PLTQ

PEQQ

PGTQ

PLTQ

U8

LT7

GT7

P58

Q58

Q62

Q63

P62

P63

P57

Q57

P56

Q56

P59

Q59

P60

Q60

P61

Q61

8-bit
mag.
comp.

P0

PEQQ

PGTQ

Q0

P1

Q1

P2

Q2

P3

Q3

P4

Q4

P5

Q5

P6

Q6

P7

Q7

PLTQ

LT0

GT1

LT1

GT4

LT4

GT6

LT6

GT7

LT7

GT3

LT3

GT2

LT2

GT5

LT5

GT0
8-bit
mag.
comp.

Figure 7-28
Comparator tree for
64 bits using 8-bit
comparators.

DDPP5.book Page 338 Tuesday, March 28, 2017 5:33 PM

7.4 Comparing 339

7.4.5 Comparators in HDLs
HDLs like Verilog have built-in operators for equality and magnitude compari-
son. So, you may think that comparators are easy to design in HDLs, because an
EDA tool does the heavy lifting for you. But, it’s better to think of comparators
as being easy only to specify in your design. With just a few simple relational
expressions in an HDL model, you can cause a lot of big, potentially slow com-
parators to be synthesized. Thus, it’s important for you to have a feel for what
kind of logic will be synthesized when you specify comparison operations in
your models.

Comparing two vectors of bits for equality or inequality is very easy to do
in an HDL model, in Verilog using the “==” and “!=” operators in relational
expressions. Thus, given the expression “(P==Q)”, where P and Q are bit vectors
each with n elements, the compiler can create the following logic expression:

Recall that “⊕” is the Exclusive OR operator. The logic expression for
“P!=Q” is just the complement of the one above, or

In the preceding logic expressions, it takes one 2-input XOR function to
compare each bit. Since a 2-input XOR function can be realized as a sum of two
product terms, the complete expression can be realized, for example in an ASIC
with discrete gates or in a PLD, as a relatively modest, possibly complemented
sum of 2n product terms:

Magnitude comparison is another story—there are at least three different
ways that HDL synthesis tools could create the logic for a greater-than or less-
than condition, and all of them result in a much larger circuit:

1. Use a subtractor to subtract one n-bit vector from the other, determine the
greater-than/less-than condition from the borrow out, and if needed, derive
the equals condition from the n-bit difference output. Prune off any part of
the circuit that does not contribute to the condition outputs.

2. Whether the equals condition is needed or not, check each bit pair for
equality using an XOR gate as in the equations above. Use and combine
their outputs with a set of AND gates, one per bit position and followed
by an OR gate, in the style of Figure 7-26, to determine the greater-than/
less-than condition.

3. Use an iterative approach to create a nested set of fixed-size equations, one
per bit position, and manipulate these equations in the best way possible to
obtain a structure suitable for the targeted implementation technology.

((P1 ⊕ Q1) + (P2 ⊕ Q2) + . . . + (Pn ⊕ Qn))′

(P1 ⊕ Q1) + (P2 ⊕ Q2) + . . . + (Pn ⊕ Qn)

(P1 ⋅ Q1′ + P1′ ⋅ Q1) + (P2 ⋅ Q2′ + P2′ ⋅ Q2) + . . . + (Pn ⋅ Qn′ + Pn′ ⋅ Qn)

DDPP5.book Page 339 Tuesday, March 28, 2017 5:33 PM

340 Chapter 7 More Combinational Building Blocks

All three approaches should ultimately yield the same logic expression, but
because the structures of the starting points are different, the final realizations
for that logic expression may also be different. Thus, an HDL tool that targets a
particular implementation technology will use an approach that is most likely to
yield an efficient circuit in that technology. As an example, equations for the
third approach are described below.

Consider the relational expression “(P>Q)”. To construct the correspond-
ing logic expression, the HDL compiler can first build n equations of the form

for i = 1 to n, and G0 = 0 by definition. This is, in effect, an iterative (some would
call it recursive) definition of the greater-than function, starting with the least
significant bit. Each Gi variable is asserted if, as of bit i, P is greater than Q. This
is true if Pi is 1 and either Qi is 0 or P was greater than Q as of the previous bit,
or if Pi and Qi are both 0 and P was greater than Q as of the previous bit.

The logic equation for “(P>Q)” is simply the expression for Gn. So, after
creating the n equations above, the HDL compiler can collapse them into a
single equation for Gn involving only elements of P and Q. It does this by substi-
tuting the Gn-1 equation into the righthand side of the Gn equation, then
substituting the Gn-2 equation into this result, and so on, until substituting 0 for
G0. In the case of a synthesis tool that targets a PLD or other sum-of-products
realization, the final step is to derive a minimal sum-of-products expression
from the Gn expression. In other cases, the tool may simply create a long chain
of logic, with length corresponding to the nesting in the Gn expression, and then
use its “standard” internal methods for optimizing long chains of logic based on
the limitations of the targeted technology (like number of inputs available per
ASIC gate or FPGA LUT).

Gi = (Pi ⋅ (Qi′ + Gi-1)) + (Pi′ ⋅ Qi′ ⋅ Gi-1)

COMPARING
COLLAPSED

COMPARATOR
CIRCUITS

Collapsing an iterative circuit into a two-level sum-of-products realization often
creates an exponential expansion of product terms. The greater-than and less-than
functions do this, requiring 2n-1 product terms for an n-bit comparator. Thus, com-
parators larger than a few bits cannot be realized practically as a two-level AND-OR
circuit in an ASIC or PLD; too many product terms are needed.

FPGA-based realizations are limited as well. A typical FPGA uses a LUT to
implement combinational logic functions, and a typical LUT has just six inputs,
enough for one output of just a 3-bit comparator.

For larger comparators, the compiler may synthesize a set of smaller compar-
ators, and then cascade or combine their outputs to obtain the larger comparison
result. Some FPGAs, like the Xilinx 7 series, have special “carry” logic blocks that
can be used to optimize the size and performance of adders and subtractors. When
these are available, the compiler’s best strategy for doing comparisons is usually just
to synthesize a subtractor, and to derive the comparison outputs from that.

DDPP5.book Page 340 Tuesday, March 28, 2017 5:33 PM

7.4 Comparing 341

7.4.6 Comparators in Verilog
Verilog has built-in comparison operators, >, >=, <, <=, ==, and !=, which can
be applied to bit vectors. The bit vectors are interpreted as unsigned numbers
with the most significant bit on the left, regardless of how they are numbered.
Verilog-2001 and later also supports signed arithmetic, using the language
extensions described in the box on page 191. When a Verilog module uses a
comparison, the compiler synthesizes corresponding comparator logic.

Verilog tries to do “the right thing” to match up operands of different
lengths. With unsigned operands, it adds zeroes on the left of the shorter one.
With signed operands, it may extend the sign of the shorter one to the left, but it
may not. (Again, see the box on page 191.) So, in complicated length mismatch
situations, it is better to pad out the shorter operand explicitly.

The size and speed of synthesized comparator logic depends on the target
technology and the optimization capabilities of the synthesis tool. Equality and
inequality checkers are fairly small and fast. As shown in the preceding subsec-
tion, they can be built from n XOR (or XNOR) gates and an n-input AND or OR
gate. The XOR or XNOR gates all operate in parallel, and a reasonably fast AND
or OR gate of any size can be built using a tree-like structure.

Checking for greater-than or less-than conditions requires a larger circuit.
As we discussed, there are several possible approaches that the compiler might
use depending on the targeted implementation technology.

Comparison operations usually are not standalone but are embedded into
larger Verilog modules. Still, we’ll present some standalone examples in the rest
of this subsection to explore the results and to give you some examples of differ-
ent Verilog coding approaches. But unless performance is critical, a designer
shouldn’t have to worry about picking a particular coding style or structure; and
as we’ll see, there’s no guarantee that a particular one will give the best results.

Program 7-16 is a first attempt at creating a behavioral Verilog module for
the 8-bit magnitude comparator in Figure 7-25 on page 335. It outputs indicate
whether P is greater than, less than, or equal to Q. But it has two problems.

Program 7-16 Verilog module for an 8-bit magnitude comparator.

module Vr8bitcmp_xi(P, Q, PGTQ, PEQQ, PLTQ);
 input [7:0] P, Q;
 output reg PGTQ, PEQQ, PLTQ;

 always @ (*)
 if (P == Q)
 begin PGTQ = 1'b0; PEQQ = 1'b1; PLTQ = 1'b0; end
 else if (P > Q)
 begin PGTQ = 1'b1; PEQQ = 1'b0; PLTQ = 1'b0; end
 else if (P < Q)
 begin PGTQ = 1'b0; PEQQ = 1'b0; PLTQ = 1'b1; end
endmodule

DDPP5.book Page 341 Tuesday, March 28, 2017 5:33 PM

342 Chapter 7 More Combinational Building Blocks

First, although the code has three if clauses that cover all of the possible
comparison outcomes perfectly, the Verilog compiler doesn’t know that. As far
as it knows, none of the if conditions may match, in which case no new value is
specified for the condition outputs. This is a classic situation where the compiler
will “infer a latch” to hold the old value of the condition outputs, which is not the
designer’s intention. You may think that no harm is done since the no-match case
will never really occur, but the inferred latches still add size and delay to the final
synthesized circuit, even though they are never used to store an old value.

The inferred latches in Program 7-16 can be avoided by making sure that a
value is assigned to the outputs in all situations. We do it in this example with a
final else clause as shown in Program 7-17. Since we actually know that this
else clause will never be reached (exactly one of the first three comparisons
will always be true), we really don’t care what output values are specified in it
and set them to “x”, since some tools interpret an “x” on the righthand side of an
assignment as a “don’t-care” and use it to optimize the synthesized circuit.

Program 7-17 Second attempt at an 8-bit magnitude comparator module.

module Vr8bitcmp_xc(P, Q, PGTQ, PEQQ, PLTQ);
 input [7:0] P, Q;
 output reg PGTQ, PEQQ, PLTQ;

 always @ (*)
 if (P == Q)
 begin PGTQ = 1'b0; PEQQ = 1'b1; PLTQ = 1'b0; end
 else if (P > Q)
 begin PGTQ = 1'b1; PEQQ = 1'b0; PLTQ = 1'b0; end
 else if (P < Q)
 begin PGTQ = 1'b0; PEQQ = 1'b0; PLTQ = 1'b1; end
 else
 begin PGTQ = 1'bx; PEQQ = 1'bx; PLTQ = 1'bx; end
endmodule

Program 7-18 Corrected 8-bit magnitude comparator module.

module Vr8bitcmp(P, Q, PGTQ, PEQQ, PLTQ);
 input [7:0] P, Q;
 output reg PGTQ, PEQQ, PLTQ;

 always @ (*)
 if (P == Q)
 begin PGTQ = 1'b0; PEQQ = 1'b1; PLTQ = 1'b0; end
 else if (P > Q)
 begin PGTQ = 1'b1; PEQQ = 1'b0; PLTQ = 1'b0; end
 else
 begin PGTQ = 1'b0; PEQQ = 1'b0; PLTQ = 1'b1; end
endmodule

DDPP5.book Page 342 Tuesday, March 28, 2017 5:33 PM

7.4 Comparing 343

But the new model still has a problem. A typical Verilog compiler is not
smart enough to know that the three comparison outcomes are mutually exclu-
sive, and that the third outcome always occurs if the first two don’t. Therefore, it
synthesizes two magnitude comparators, one for the P>Q case and the other for
P<Q, requiring significantly more chip resources. This problem is solved in
Program 7-18, where we have used our knowledge of comparator functionality
to set the outputs to the less-than condition if neither of the first two tests were
true, without doing a redundant less-than test. While this may add a little delay
(the less-than output is valid one gate- or LUT-delay after the two others), in
most applications the savings in chip resources is preferable.

Another approach to modeling the comparator is shown in Program 7-19,
using dataflow-style Verilog code. This module uses a continuous-assignment
statement to specify the value of each condition output. As in Program 7-17,
there is a good chance that the compiler will synthesize an extra comparator for
PLTQ. It doesn’t know that this condition can be derived from the greater-than
and equals conditions, so we do that explicitly in Program 7-20.

What about larger comparators? Any of the modules that we’ve shown can
be modified easily to make a comparator for bit vectors with any number of bits,
just by changing the definitions of P and Q at the beginning of the module. If
we’re using a lot of comparators with different widths, it could be useful to use a
parameter to set the width, so it can be specified when the module is instantiated.
A parameterized version of Program 7-20 is shown in Program 7-21, with a
default width (N) of 8.

Program 7-19 Comparator module using continuous assignments.

module Vr8bitcmp_dx(P, Q, PGTQ, PEQQ, PLTQ);
 input [7:0] P, Q;
 output PGTQ, PEQQ, PLTQ;

 assign PGTQ = ((P > Q) ? 1'b1 : 1'b0) ;
 assign PEQQ = ((P == Q) ? 1'b1 : 1'b0) ;
 assign PLTQ = ((P < Q) ? 1'b1 : 1'b0) ;
endmodule

Program 7-20 Comparator module using continuous assignments and
eliminating potential extra comparator.

module Vr8bitcmp_d(P, Q, PGTQ, PEQQ, PLTQ);
 input [7:0] P, Q;
 output PGTQ, PEQQ, PLTQ;

 assign PGTQ = ((P > Q) ? 1'b1 : 1'b0) ;
 assign PEQQ = ((P == Q) ? 1'b1 : 1'b0) ;
 assign PLTQ = ~PGTQ & ~PEQQ;
endmodule

DDPP5.book Page 343 Tuesday, March 28, 2017 5:33 PM

344 Chapter 7 More Combinational Building Blocks

While the module for a very wide comparator might “blow up” if it were
targeted to a PLD requiring a 2-level sum-of-products implementation, a high-
quality EDA tool for FPGAs and ASICs can synthesize a reasonably good
implementation using more levels of logic, even for a very large comparator
(say, 64 bits). As we discussed previously, a comparator design can be based on
a subtractor, and most EDA tools (and some FPGA and ASIC technologies) have
special facilities to optimize adders and subtractors, and therefore comparators.

However, there may be cases where you want to leave nothing to chance,
and in fact may be able to get a better result in terms of speed, size, or both, by
specifying and structuring a large-comparator design in more detail. The tree
structure that we described in the last paragraph of Section 7.4.4 is a good basis
for doing this.

Program 7-22 is a top-level structural model for a two-level hierarchy
based on our previous description, using eight 8-bit comparators (Vr8bitcmp) at

Program 7-21 Comparator module with a parameter for vector width.

module VrNbitcmp_d(P, Q, PGTQ, PEQQ, PLTQ);
 parameter N=8;
 input [N-1:0] P, Q;
 output PGTQ, PEQQ, PLTQ;

 assign PGTQ = ((P > Q) ? 1'b1 : 1'b0) ;
 assign PEQQ = ((P == Q) ? 1'b1 : 1'b0) ;
 assign PLTQ = ~PGTQ & ~PEQQ;
endmodule

Program 7-22 Hierarchical, structural Verilog module for a 64-bit magnitude
comparator using nine 8-bit magnitude comparators.

module Vr64bitcmp_sh(P, Q, PGTQ, PEQQ, PLTQ);
 input [63:0] P, Q;
 output PGTQ, PEQQ, PLTQ;
 wire [7:0] GT, EQ, LT;

 Vr8bitcmp U1(P[7:0], Q[7:0], GT[0], EQ[0], LT[0]);
 Vr8bitcmp U2(P[15:8], Q[15:8], GT[1], EQ[1], LT[1]);
 Vr8bitcmp U3(P[23:16], Q[23:16], GT[2], EQ[2], LT[2]);
 Vr8bitcmp U4(P[31:24], Q[31:24], GT[3], EQ[3], LT[3]);
 Vr8bitcmp U5(P[39:32], Q[39:32], GT[4], EQ[4], LT[4]);
 Vr8bitcmp U6(P[47:40], Q[47:40], GT[5], EQ[5], LT[5]);
 Vr8bitcmp U7(P[55:48], Q[55:48], GT[6], EQ[6], LT[6]);
 Vr8bitcmp U8(P[63:56], Q[63:56], GT[7], EQ[7], LT[7]);
 Vr8bitcmp U9(GT, LT, PGTQ, PEQQ, PLTQ);
endmodule

DDPP5.book Page 344 Tuesday, March 28, 2017 5:33 PM

7.4 Comparing 345

the first level and one at the second level. The module declares 8-bit wires GT, EQ,
and LT to connect the outputs of the first-level comparators to the second-level
comparator. Note that the EQ wires do not contribute to the output of
Vr64bitcmp_sh, but must be declared to carry the unused PEQQ outputs in the
instantiations of the first-level comparators U1-U8. The EQ wires and any logic
that is used only to create the signals on them are automatically pruned away by
the synthesis tool during optimization.

7.4.7 Comparator Test Benches
A comparator is so easy to describe behaviorally, you might wonder if there’s
even a need to write a test bench to make sure you got it right. Well, there’s
always the possibility of typing errors that yield a syntactically correct but func-
tionally incorrect description, especially when comparisons are embedded in
larger modules. And in a structural model, there are many more opportunities to
get it wrong. So, here we’ll look at a simple comparator test bench and then point
out some pitfalls that can occur when testing comparators as well as the arith-
metic elements in the next chapter.

IT’S JUST A
SUGGESTION

EDA tools may use a hierarchical specification only as a starting point for synthesis.
Advanced tools have the ability to combine or share logic near the output of one
module with logic near the input of another that it drives, with the goal of optimizing
delay or resource utilization or both. But in doing so, they may blur or eliminate the
boundaries between the originally specified modules. For example, in the module of
Program 7-22, the implemented circuit may not have any signals with the same func-
tionality (meaning the same logic expressions) as the GT and LT signals in the Verilog
code.

Despite the benefits of optimization, a designer may have good reasons, like
ease of debugging, to preserve the originally specified hierarchy and signals in the
implemented circuit, and advanced tools let the designer specify “constraints” to do
so. For example, Xilinx tools allow the keep_hierarchy constraint to be embedded
in a Verilog module definition to prevent the synthesis tool from combining any part
of that module with any others, thus forcing it to preserve input and output signals
exactly as originally defined in the code.

In a test run, I used the Xilinx Vivado tool to implement Program 7-22 in a
large, high-performance FPGA. With the keep_hierarchy constraint in place, the
tool yielded an implementation with 82 LUTs and about 17.4 ns of worst-case delay,
and the hierarchy and intermediate signals specified in the code were clearly visible
in the final schematic diagram and netlist. Removing the constraint yielded an imple-
mentation with the same delay and only 75 LUTs, but the original hierarchy and
intermediate signals were completely gone.

DDPP5.book Page 345 Tuesday, March 28, 2017 5:33 PM

346 Chapter 7 More Combinational Building Blocks

Program 7-23 is a self-checking test bench for the comparators of the pre-
vious subsection. It is parameterized so it can be used with a comparator of
different widths, not just 8 bits. Instead of checking all possible input combina-
tions, it uses Verilog’s $random task to generate random inputs—an exhaustive
test would run far too long if the comparator’s width were 16 bits or more. Such
a comparator would have double that number of inputs, and billions of unique
input combinations. As written, the test bench applies a modest 10,000 pseudo-
random input combinations to the UUT.

At each iteration of the for loop, the test bench generates two new random
numbers with $random and assigns them to P and Q. Recall that $random returns
a 32-bit signed integer result, regardless of the data width of the computer
system that is hosting the Verilog tools. The usual rules for assigning an integer
to an unsigned vector are followed, so the N low-order bits of the integer result
are copied into P and Q. We’ll come back to that point shortly.

The test bench works well enough with all of the comparators of Programs
7-16 through 7-21, providing some additional confidence that we got it right in
these simple comparator designs. However, two aspects of the test bench are
noteworthy. First, it does not detect the presence of the unnecessary inferred
latches in Program 7-16, because these latches never do anything functionally,

Program 7-23 Test bench for an N-bit comparator.

`timescale 1 ns / 100 ps
module VrNbitcmp_tb();
 parameter N = 8; // Input width of comparator UUT
 parameter SEED = 1; // Set a different pseudorandom seed here if desired
 reg [N-1:0] P, Q;
 wire PGTQ, PEQQ, PLTQ;
 integer ii, errors;

 Vr8bitcmp_sh UUT (.P(P), .Q(Q), .PGTQ(PGTQ), .PEQQ(PEQQ), .PLTQ(PLTQ));

 initial begin
 errors = 0;
 P = $random(SEED); // Set pattern based on seed parameter
 for (ii=0; ii<10000; ii=ii+1) begin
 P = $random; Q = $random;
 #10 ;
 if ((PGTQ !== (P>Q)) || (PLTQ !== (P<Q)) || (PEQQ !== (P==Q))) begin
 errors = errors + 1;
 $display("P=%b(%0d), Q=%b(%0d), PGTQ=%b, PEQQ=%b, PLTQ=%b",
 P, P, Q, Q, PGTQ, PEQQ, PLTQ);
 end
 end
 $display("Test done, %0d errors", errors);
 end
endmodule

DDPP5.book Page 346 Tuesday, March 28, 2017 5:33 PM

7.4 Comparing 347

as discussed previously. They just add size and delay to the synthesized circuit.
The only practical way to find such inferred latches is not through simulation
and test benches, but by noticing any warning messages that are produced in
synthesis. For example, Vivado warns “[Synth 8-327] inferring latch for
variable PGTQ_reg [Vr8bitcmp_xi.v:7] (2 more like this).”

The second aspect of the test bench shows up only if you think really hard
about it or, as I did, happen to look at the output waveforms produced by the
UUT when the test bench runs. One or the other of the UUT’s PGTQ and PLTQ
outputs gets asserted, quite unpredictably, on almost every test cycle, but PEQQ is
almost never asserted—only a few dozen times out of 10,000 test cycles! Once
you see this, the “Duh” moment comes quite quickly—since P and Q are pseudo-
random 8-bit numbers, they will be equal only one time out of 256 on the
average, and that’s assuming that $random even has the capability of producing
two equal low-order 8-bit values in a row (which is not true for all pseudo-
random number generators, depending on how they are constructed).

In this example, we tested 8-bit comparators; if we were testing 16-bit
comparators, the coverage of the PEQQ output would be far worse, with only one
of about 65,000 pseudorandom inputs asserting PEQQ. The fix for this deficiency
is to modify our test bench to generate equals-cases to check along with the more
typical cases that were easily generated above. The initial block and a helper
task in the new version, VrNbitcmp_tb2, are shown in Program 7-24. Here, we
generate just one random number but perform two tests per iteration of the for
loop. First, we apply the current random number to both P and Q to test an equal-
ity case. Then, we generate a new random number and apply it to Q to test what’s
likely a greater-than or less-than case.

Program 7-24 Body of an improved test bench for an N-bit comparator.

 task checkcmp;
 if ((PGTQ !== (P>Q)) || (PLTQ !== (P<Q)) || (PEQQ !== (P==Q))) begin
 errors = errors + 1;
 $display("P=%b(%0d), Q=%b(%0d), PGTQ=%b, PEQQ=%b, PLTQ=%b",
 P, P, Q, Q, PGTQ, PEQQ, PLTQ);
 end
 endtask

 initial begin
 errors = 0;
 P = $random(SEED); // Set pattern based on seed parameter
 for (ii=0; ii<10000; ii=ii+1) begin
 Q = P; #10 ; checkcmp; // lots of = cases
 P = $random; #10 ; checkcmp; // ... and mostly != cases
 end
 $display("Test done, %0d errors", errors);
 end
endmodule

DDPP5.book Page 347 Tuesday, March 28, 2017 5:33 PM

348 Chapter 7 More Combinational Building Blocks

This example goes to show that “random” test inputs, even on “data”
inputs, don’t necessarily provide uniform coverage of potential errors in data-
path logic. Going back to the gate-level comparator design of Figure 7-26 on
page 336, you can see that the PEQQ output is generated by logic that is
somewhat distinct from PGTQ and PLTQ logic, and it deserves a thorough test in
its own right. In a synthesized realization in an FPGA or other technology, and
especially in a structural design, there are ample opportunities for errors, like
misconnects in cascading, that affect PEQQ and not the other outputs and only for
a small subset of input combinations.

So, not just in comparators but in all “datapath” circuits, it is important for
the designer to recognize any input combinations that are handled specially or
that cause unusual outputs, and to devise test-bench inputs that exercise these
cases adequately.

After all this, we still haven’t tested the 64-bit comparator module in
Program 7-22. Either of the preceding two test benches with work with it, but
they won’t work very well. Recall once again that $random returns a 32-bit
signed integer result. If P and Q are wider than 32 bits, then before the Verilog
compiler assigns the random value to P or Q, it first sign-extends it to the required
width. So, the high order bits of P and Q (beyond bit 31) will be all 0s or all 1s,
not a very effective set of test inputs for those bits.

This problem can be remedied by enhancing the test bench further. The
new version, VrNbitcmp_tb3, replaces the “P=$random” statement with a
series of statements that calls $random multiple times to fill all of P if it is wider
than 32 bits:

P[31:0] = $random;
if (N>32) P[63:32] = $random;
if (N>64) P[95:64] = $random;
if (N>96) P[127:96] = $random;

The code above works for vector widths up 128 bits. You might think that to
eliminate the 128-bit width limitation, it would be better to write a more general
for loop that calls $random as many times as necessary for a particular value of
N. You would be right, except that the approach above would require a variable
to be used in P’s index for the assignment with $random, and most Verilog com-
pilers don’t support that, even in simulation.

It’s important to understand that the comparator designs in Programs 7-16
through 7-21 all work on arbitrarily wide vector operands, even if the vectors are
wider than the “native” integer width of the tools, which is always at least 32 bits
and more typically 64 bits nowadays. That’s true because modern Verilog tools
know how to simulate and synthesize comparison operations on the wider vec-
tors; the Verilog language reference manual (LRM) requires vector widths of at
least 64K bits to be supported.

DDPP5.book Page 348 Tuesday, March 28, 2017 5:33 PM

7.4 Comparing 349

Yet another approach to create a comparator test bench, or any test bench,
is to compare the outputs of the UUT with those of a reference design using an
appropriate set of inputs. In Program 7-25, we’ve used VrNbitcmp_d (U1) as the
reference design, based on our confidence that Verilog “does the right thing”
when comparing vectors, even wide ones, using its built-in operators. Then we
compare its outputs with those of the UUT, the 64-bit hierarchical module
Vr64bitcmp_sh, for a sequence of 10,000 equal and 10,000 mostly unequal
random inputs, much the same as in the other test benches in this section.

Program 7-25 N-bit comparator test bench using a reference UUT (U1).

`timescale 1 ns / 100 ps
module VrNbitcmp_tb4();
 parameter N = 64; // Input width of comparator UUT
 parameter SEED = 1; // Set a different pseudorandom seed here if desired
 reg [N-1:0] P, Q;
 wire PGTQ1, PEQQ1, PLTQ1, PGTQ2, PEQQ2, PLTQ2;
 integer ii, errors;

 task checkcmp;
 begin
 if ((PGTQ1 !== PGTQ2) ||
 (PLTQ1 !== PLTQ2) ||
 (PEQQ1 !== PEQQ2)) begin
 errors = errors + 1;
 $display("P=%b(%0d), Q=%b(%0d), PGTQ1=%b, PEQQ1=%b, PLTQ1=%b, PGTQ2=%b, PEQQ2=",
 "%b, PLTQ2=%b", P, P, Q, Q, PGTQ1, PEQQ1, PLTQ1, PGTQ2, PEQQ2, PLTQ2);
 end
 end
 endtask

 VrNbitcmp_d #(.N(N)) U1 (.P(P), .Q(Q), .PGTQ(PGTQ1), .PEQQ(PEQQ1), .PLTQ(PLTQ1));
 Vr64bitcmp_sh UUT (.P(P), .Q(Q), .PGTQ(PGTQ2), .PEQQ(PEQQ2), .PLTQ(PLTQ2));

 initial begin
 errors = 0;
 P = $random(SEED); // Set pattern based on seed parameter
 for (ii=0; ii<10000; ii=ii+1) begin
 Q = P; #10 ; checkcmp; // lots of = cases
 P[31:0] = $random;
 if (N>32) P[63:32] = $random;
 if (N>64) P[95:64] = $random;
 if (N>96) P[127:96] = $random;
 #10 ; checkcmp; // ... and mostly != cases
 end
 $display("Test done, %0d errors", errors);
 end
endmodule

DDPP5.book Page 349 Tuesday, March 28, 2017 5:33 PM

350 Chapter 7 More Combinational Building Blocks

*7.4.8 Comparing Comparator Performance
Now that we’ve presented many different comparator designs, we can compare
their relative speed and size in a particular technology. This exercise used the
Xilinx Vivado tools to target a large, high-performance FPGA. Each config-
urable logic slice in this FPGA has one “CARRY4” logic element alongside each
set of four LUTs. The CARRY4 element can be used to optimize the perfor-
mance of large adders and subtractors; and it is present and available in the slice
“for free” (except for delay) whether it’s used or not. Therefore, the Vivado syn-
thesis tool tries to implement magnitude comparators using subtractors—the
first comparator design method we listed in Section 7.4.5.

Each row of Table 7-5 shows key results for one of the 8-bit magnitude
comparator modules with different coding styles that we presented in Programs
7-16 through 7-20, as noted in the first four columns of the table. The last six
columns give the following information; delays are in nanoseconds:

• “# of LUTs” is the total number of LUTs used after optimization, including
“free” CARRY4 elements if any.

• “Logic Levels” is the number of logic levels in the worst-case path from
input to output, including LUTs, CARRY4 elements if any, and the input
and output buffers that drive the inputs and outputs on and off chip.

* Throughout this book, optional sections are marked with an asterisk.

TAKING A PASS You may very well want to skip the optional subsection below. It’s all about the per-
formance trade-offs that occur in different approaches to comparator design when
targeting to a particular example technology, a large high-performance FPGA. If
you’ll soon be rolling up your sleeves on a project that requires many or very high-
performance comparators, you may find the details and discussion illuminating. If
not, you should be able to get by with just these takeaways:

• Modern synthesis tools are very good at creating reasonably sized, high-perfor-
mance comparators that have been specified behaviorally, so you’re unlikely to
get more than a 10–15% improvement by “rolling your own” structural or
hierarchical designs.

• The results obtained with any given design are highly dependent on both the
targeted technology, which may or may not have elements for optimizing arith-
metic functions including comparators, and the capabilities of the synthesis tool.

• Hierarchical designs look good “on paper,” and typically yield the minimum
number of logic levels and the shortest “logic delay.” But again depending on
the targeted technology, “your mileage may vary.” In the FPGA-targeted exam-
ples in the next subsection, internal wiring and input/output buffer delays dom-
inate the total delay: 15.14 ns out of 15.64 ns in our large 81-bit hierarchical
comparator.

DDPP5.book Page 350 Tuesday, March 28, 2017 5:33 PM

7.4 Comparing 351

• “Delay (est.)” is the estimated worst-case delay after the tool synthesizes
the circuit but before it actually places and routes the circuit on the chip,
including connections to the chip’s input/output pins.

• “Delay (final)” is the actual worst-case delay as calculated after layout.

• “Logic Delay” is the portion of the delay resulting from LUTs, CARRY4
elements, and input/output buffers; it omits the delay of on-chip wiring.

• “Comp. Delay” is the delay of just the actual comparator logic—no on-
chip-wiring and no input/output buffers.

The first module, Vr8bitcmp_xi, has six logic levels in its worst-case sig-
nal path, an estimated delay of 8.57 ns, and a final delay of 10.50 ns calculated
after layout. It’s interesting that in this and all of these examples, about half or
more of the final delay is in the on-chip wiring—simply connecting the output of
one logic element to the input of another. In Vr8bitcmp_xi, only 5.10 ns of the
final delay is in logic elements—LUTs, CARRY4 elements, and input/output
buffers. Drilling down even further, it turns out that most of that delay is in the
input/output buffers; only 1.53 ns is in the four levels of LUTs and CARRY4
elements that implement the actual comparator function.

Despite the dominance of wiring and input/output in the speed of these five
comparator modules, we can still see differences. Clearly the unwanted, inferred
latch in Vr8bitcmp_xi is costly—eliminating it in Vr8bitcmp_xc saves both
delay and LUTs. In Vr8bitcmp, eliminating the extra comparator saves LUTs,
but it doesn’t have much effect on delay. In fact, logic delay goes down while
final delay goes up, perhaps due to quirks in the layout.

Comparing the Vr8bitcmp_dx dataflow module with Vr8bitcmp_xc, we
still have an extra comparator but the implementation has gotten smaller and
faster, with one less logic level. Eliminating the extra comparator in
Vr8bitcmp_dx further reduces the number of LUTs, but increases delay with
one more logic level—why? In this case, the compiler is faithfully implementing
PLTQ as a function of PEQQ and PGTQ as specified in Program 7-20, requiring one
more level of logic which the synthesis tool could not eliminate.

Table 7-5 Synthesis and implementation results for 8-bit comparators with various coding styles.

Module
Name Bits

Coding
Style Notes

of
LUTs

Logic
Levels

Delay
(est.)

Delay
(final)

Logic
Delay

Comp.
Delay

Vr8bitcmp_xi 8 behavioral inferred latch 18 6 8.57 10.50 5.10 1.53

Vr8bitcmp_xc 8 behavioral extra comp. 14 5 6.88 9.09 4.34 0.78

Vr8bitcmp 8 behavioral 10 5 6.88 9.21 4.21 0.63

Vr8bitcmp_dx 8 dataflow extra comp. 12 4 6.26 8.09 4.10 0.53

Vr8bitcmp_d 8 dataflow 9 5 6.88 9.23 4.30 0.73

DDPP5.book Page 351 Tuesday, March 28, 2017 5:33 PM

352 Chapter 7 More Combinational Building Blocks

In general, explicitly deriving one signal from others, specifying a more
“serial” design, may increase delay while reducing “redundant” logic. Keep in
mind that all of these Verilog modules specify the same 8-bit comparator logic
function, but even for a relatively small design like this, a synthesis tool cannot
explore all possible implementations and opportunities for optimization. So, the
synthesis result still depends on the starting point.

Among the five different 8-bit comparator module designs in Table 7-5,
Vr8bitcmp_dx has the fastest implementation, while Vr8bitcmp_d has the
smallest. As they say, “your mileage may vary,” in this case as a function of the
target technology, the synthesis tool, the overall coding style, and even small
details of the code, which may lead the synthesis tool down one implementation
path versus another. Two things we know for certain from these examples is that
inferred latches are bad, and there may be a size versus speed trade-off when out-
puts are specified independently rather than being derived from other outputs .

We can also explore results for comparator modules of different sizes and
add hierarchical implementations to the mix. A LUT in a typical FPGA technol-
ogy (including the Xilinx 7-series used for Table 7-5) has just six inputs, enough

P[8:6]

Q[8:6]

P[5:3]

Q[5:3]

P[2:0]

Q[2:0]
PGTQ, PLTQ

Vr9bitcmp_sh

Vr3bitcmp

Vr3bitcmp

Vr3bitcmp

P[17:9]

Q[17:9]

P[26:18]

Q[26:18]

PGTQ, PLTQ

Vr27bitcmp_sh

P[53:27]

Q[53:27]

P[80:54]

Q[80:54]

PGTQ, PLTQ

Vr9bitcmp_sh

Vr9bitcmp_sh

Vr27bitcmp_sh

Vr27bitcmp_sh

Vr3bitcmp

Vr3bitcmp

Vr3bitcmp

Vr81bitcmp_sh

PGTQ,PLTQ,PEQQ

Figure 7-29 Hierarchical structure for an 81-bit comparator using 3-bit comparators (1 LUT/output).

DDPP5.book Page 352 Tuesday, March 28, 2017 5:33 PM

7.4 Comparing 353

Program 7-26 Structural Verilog for the 81-bit comparator of Figure 7-29.

module Vr81bitcmp_sh(P, Q, PGTQ, PEQQ, PLTQ);
 input [80:0] P, Q;
 output PGTQ, PEQQ, PLTQ;
 wire GT0, EQ0, LT0, GT1, EQ1, LT1, GT2, EQ2, LT2;

 Vr27bitcmp_sh U3(P[80:54], Q[80:54], GT2, EQ2, LT2);
 Vr27bitcmp_sh U2(P[53:27], Q[53:27], GT1, EQ1, LT1);
 Vr27bitcmp_sh U1(P[26:0], Q[26:0], GT0, EQ0, LT0);
 Vr3bitcmp U4({GT2, GT1, GT0}, {LT2, LT1, LT0}, PGTQ, PEQQ, PLTQ);
endmodule

(* keep_hierarchy = "yes" *) module Vr27bitcmp_sh(P, Q, PGTQ, PEQQ, PLTQ);
 input [26:0] P, Q;
 output PGTQ, PEQQ, PLTQ;
 wire GT0, EQ0, LT0, GT1, EQ1, LT1, GT2, EQ2, LT2;

 Vr9bitcmp_sh U3(P[26:18], Q[26:18], GT2, EQ2, LT2);
 Vr9bitcmp_sh U2(P[17:9], Q[17:9], GT1, EQ1, LT1);
 Vr9bitcmp_sh U1(P[8:0], Q[8:0], GT0, EQ0, LT0);
 Vr3bitcmp U4({GT2, GT1, GT0}, {LT2, LT1, LT0}, PGTQ, PEQQ, PLTQ);
endmodule

(* keep_hierarchy = "yes" *) module Vr9bitcmp_sh(P, Q, PGTQ, PEQQ, PLTQ);
 input [8:0] P, Q;
 output PGTQ, PEQQ, PLTQ;
 wire GT0, EQ0, LT0, GT1, EQ1, LT1, GT2, EQ2, LT2;

 Vr3bitcmp U3(P[8:6], Q[8:6], GT2, EQ2, LT2);
 Vr3bitcmp U2(P[5:3], Q[5:3], GT1, EQ1, LT1);
 Vr3bitcmp U1(P[2:0], Q[2:0], GT0, EQ0, LT0);
 Vr3bitcmp U4({GT2, GT1, GT0}, {LT2, LT1, LT0}, PGTQ, PEQQ, PLTQ);
endmodule

(* keep_hierarchy = "yes" *) module Vr3bitcmp(P, Q, PGTQ, PEQQ, PLTQ);
 input [2:0] P, Q;
 output reg PGTQ, PEQQ, PLTQ;

 always @ (P or Q)
 if (P == Q)
 begin PGTQ = 1'b0; PEQQ = 1'b1; PLTQ = 1'b0; end
 else if (P > Q)
 begin PGTQ = 1'b1; PEQQ = 1'b0; PLTQ = 1'b0; end
 else
 begin PGTQ = 1'b0; PEQQ = 1'b0; PLTQ = 1'b1; end
endmodule

DDPP5.book Page 353 Tuesday, March 28, 2017 5:33 PM

354 Chapter 7 More Combinational Building Blocks

for one output of just a 3-bit comparator. The first row of Table 7-6 shows the
size and delay of such a 3-bit comparator. Each of the comparator’s three outputs
is produced by a single LUT having a delay of just 0.13 ns, as shown in the last
column of the table, but as in other examples, on-chip wiring and input/output
buffers add considerable delay to the overall circuit.

To build larger comparators, an efficient approach might be to model them
using a hierarchical, tree-based structure, as we explained at the end of
Section 7.4.4, starting with 3-bit comparators (one LUT per output) as the basic
building block. As illustrated in Figure 7-29 on page 352, a 9-bit comparator can
be built using three 3-bit comparators at the first level of the tree, and combining
their outputs using a single 3-bit comparator at the second level. A 27-bit com-
parator can be built using three such 9-bit comparators and again combining
their outputs with a single 3-bit comparator. And an 81-bit comparator can be
built by combining the outputs of three such 27-bit comparators. The Verilog
code for the top-level 81-bit comparator module and all the levels below it is
shown in Program 7-26 on page 353.

Table 7-6 Synthesis and implementation results for comparators with various sizes and coding styles.

Module
Name Bits

Coding
Style Notes

of
LUTs

Logic
Levels

Delay
(est.)

Delay
(final)

Logic
Delay

Comp.
Delay

Vr3bitcmp 3 behavioral 1 LUT/output 3 3 5.23 6.88 3.62 0.13

Vr9bitcmp_xc 9 behavioral extra comp. 14 6 7.04 9.93 5.05 1.30

Vr9bitcmp 9 behavioral 9 6 6.81 9.51 5.05 1.30

Vr9bitcmp_dx 9 dataflow extra comp. 13 5 6.37 8.43 4.67 0.91

Vr9bitcmp_d 9 dataflow 9 5 6.81 9.47 4.66 0.98

Vr9bitcmp_sh 9 hierarchical 9 4 6.48 8.26 3.82 0.25

Vr27bitcmp_xc 27 behavioral extra comp. 38 8 7.30 14.12 5.17 1.60

Vr27bitcmp 27 behavioral 24 7 7.05 14.00 5.22 1.65

Vr27bitcmp_dx 27 dataflow extra comp. 37 7 6.46 12.87 4.83 1.26

Vr27bitcmp_d 27 dataflow 24 7 7.02 13.54 4.95 1.38

Vr27bitcmp_sh 27 hierarchical 27 5 7.74 13.61 3.94 0.38

Vr81bitcmp_xc 81 behavioral extra comp. 110 15 8.01 16.66 5.96 2.39

Vr81bitcmp 81 behavioral 69 15 7.86 16.42 6.11 2.54

Vr81bitcmp_dx 81 dataflow extra comp. 109 14 7.42 15.40 5.64 2.07

Vr81bitcmp_d 81 dataflow 69 14 7.86 16.27 5.75 2.18

Vr81bitcmp_sh 81 hierarchical 81 6 8.99 15.64 4.15 0.50

DDPP5.book Page 354 Tuesday, March 28, 2017 5:33 PM

7.4 Comparing 355

Table 7-6 includes synthesis results for the structured hierarchical modules
(named with suffix “_sh”) and also includes corresponding results for other
design approaches, where we have simply changed the width to 9, 27, or 81 bits.

The table shows that when we triple the input width in a “_sh” hierarchical
design, we triple the number of LUTs but add just one level of logic delay for the
actual comparator function, about 0.13 ns per level. Yet the final delay for each
design is still dominated by input/output buffer and on-chip wiring delays.

A big jump in delay occurs between all of the 9-bit designs and the 27-bit
designs. This is not because there is anything particularly bad about a 27-bit
design, except that in the target technology, the number of input and output sig-
nals (57) is now large enough to use I/O pins on both sides of the physical FPGA
chip. As a result, some signal paths most cross the entire chip, which increases
the worst-case wiring delay.

Examining the 9-, 27-, and 81-bit behavioral- and dataflow-style designs,
the table shows results similar to what we saw in Table 7-5 for corresponding
8-bit designs. The designs with an extra comparator require more LUTs, though
in some but not all cases, the extra comparator results in a shorter final delay.
Where it does not, for example in Vr27bitcmp_xc versus Vr27bitcmp, the
extra comparator reduces logic delays, but increases wiring delays even more—
because there are more LUTs to interconnect, spanning a larger area of the chip.

Comparing each hierarchical design with the same-size behavioral and
dataflow designs, we see that the hierarchical designs have the most consistent
and predictable size and logic delay. However, the other designs, especially
because of their use of “free” CARRY4 elements, are sometimes smaller or faster
or both.

So, what does it all mean? In the targeted FPGA technology, wiring delay
is a large portion of overall delay and reduces the benefits of reducing levels of
logic, and “free” resources like CARRY4 reduce the relative advantages of the
efficient, hierarchical approach. If the same designs were targeted to a typical
ASIC technology, where every gate consumes chip area and wiring is non-
programmable and therefore faster, the results would likely be different.

MODELING
CHOICES AND

IMPLEMENTATION

As you can see from the examples in this section, it’s hard to predict whether a
particular Verilog modeling style will yield the best size or speed of a design’s
implementation in any given technology. As in other types of programming and
coding, a primary goal should be to assure understandability and maintainability,
focusing on performance (smaller size or higher speed) only when necessary.

Also as in other types of programming, the 80/20 rule (also known as the
Pareto principle) usually holds true: 20% of the code is responsible for 80% of the
performance. Thus, a designer should not worry unduly about performance tuning
until the parts of the design that most affect total performance can be identified.

DDPP5.book Page 355 Tuesday, March 28, 2017 5:33 PM

356 Chapter 7 More Combinational Building Blocks

*7.5 A Random-Logic Example in Verilog
It’s quite possible that the requirements for a combinational logic circuit do not
fit within the structure of the building-block functions of this or the previous
chapter, or the arithmetic functions of the next. And it may be quite challenging
to try to write logic equations for the circuit directly. Still, it may be quite
straightforward to write behavioral Verilog according to the requirements, and
then to synthesize a corresponding circuit.

Such a “random-logic” example is a combinational circuit that picks a
player’s next move in Tic-Tac-Toe, the traditional kids’ game of Xs and Os. The
circuit’s inputs encode the current state of the game’s 3 × 3 grid and the outputs
identify the cell for the next move. To avoid confusion between “O” and “0” later
in our Verilog code, we’ll call the second player “Y”.

There are many ways to code the state of one cell in the grid. Because the
game is symmetric, we’ll use a symmetric encoding that can help later:

00 Cell is empty.

10 Cell is occupied by X.

01 Cell is occupied by Y.

So, we can encode the 3 × 3 grid’s state in 18 bits—nine bits to indicate which
cells are occupied by X, and nine more to indicate which ones are occupied by
Y. Throughout the Verilog Tic-Tac-Toe modules in this subsection, we’ll use a
pair of 9-bit vectors X[1:9] and Y[1:9] to represent the Tic-Tac-Toe grid. A
vector bit is 1 if the like-named player has a mark in the corresponding cell.
Figure 7-30 shows the correspondence between signal names and cells in the
grid. To translate between two-dimensional (row, column) coordinates in the
grid and a bit number in X[1:9] or Y[1:9], we use the formula in the figure.

We also need an encoding for moves. A player has nine possible moves, so
the encoding should define nine values plus one for the case where no move is
possible. The parameter definitions in Program 7-27 correspond to one possible
4-bit move encoding. A name like “MOVE12” denotes a move to row 1, column 2
of the grid. Different encodings might lead to smaller, larger, faster, or slower
circuits. The parameter definitions in the table are stored in a file, TTTdefs.v,

TIC-TAC-TOE,
IN CASE YOU

DIDN’T KNOW

The game of Tic-Tac-Toe is played by two players on a 3 × 3 grid of cells that are
initially empty. One player is “X” and the other is “O”. The players alternate in
placing their mark in an empty cell; “X” always goes first. The first player to get three
of his or her own marks in the same row, column, or diagonal wins. Although the
first player to move (X) has a slight advantage, it can be shown that a game between
two intelligent players will always end in a draw; neither player will get three in a
row before the grid fills up.

DDPP5.book Page 356 Tuesday, March 28, 2017 5:33 PM

7.5 A Random-Logic Example in Verilog 357

which is include’d in the modules as needed. Thus, we can easily change the
move encoding later, in one place, without having to change the modules that
use it (for example, see Exercise 7.50).

Now we need a strategy for picking the next move, so we can create a
behavioral model that uses it. Let us try to emulate the typical human’s strategy
by following the decision steps below:

1. Look for a row, column, or diagonal that has two of my marks (X or Y,
depending on which player I am) and one empty cell. If one exists, place
my mark in the empty cell; I win!

2. Else, look for a row, column, or diagonal that has two of my opponent’s
marks and one empty cell. If one exists, place my mark in the empty cell
to block a potential win by my opponent.

Figure 7-30
Tic-Tac-Toe grid and
Verilog signal names.

X[1]

Y[1]
1

1

3

2

2

3
row

column

X[2]

Y[2]

X[3]

Y[3]

X[4]

Y[4]

X[5]

Y[5]

X[6]

Y[6]

X[7]

Y[7]

X[8]

Y[8]

X[9]

Y[9]

index = (row-1)*3 + column

Program 7-27 TTTdefs.v definition file for the Tic-Tac-Toe project.

parameter MOVE11 = 4'b1000,
 MOVE12 = 4'b0100,
 MOVE13 = 4'b0010,
 MOVE21 = 4'b0001,
 MOVE22 = 4'b1100,
 MOVE23 = 4'b0111,
 MOVE31 = 4'b1011,
 MOVE32 = 4'b1101,
 MOVE33 = 4'b1110,
 NONE = 4'b0000;

A VERILOG-2001
LIMITATION

It would be nice to declare the state of the Tic-Tac-Toe grid as two 2-dimensional
arrays, X[1:3][1:3] and Y[1:3][1:3]. Unfortunately, Verilog-2001 does not
allow arrays to be used as module ports, and in our hierarchical design of the Tic-
Tac-Toe circuit, we need to do that. Hence, we have declared X and Y as simple 9-bit
vectors and we translate from “i,j” to a bit number within a vector as shown in
Figure 7-30.

DDPP5.book Page 357 Tuesday, March 28, 2017 5:33 PM

358 Chapter 7 More Combinational Building Blocks

3. Else, pick a cell based on experience. For example, if the middle cell is
open, it’s usually a good bet to take it. Otherwise, the corner cells are good
bets. Intelligent players can also notice and block a developing pattern by
the opponent or “look ahead” to pick a good move.

Rather than try to design the Tic-Tac-Toe move-finding circuit as a single
monolithic module, it makes sense for us to try to partition it into smaller pieces.
In fact, partitioning it along the lines of the three-step strategy that we gave at the
beginning of this section seems like a good idea.

We note that steps 1 and 2 of our strategy are very similar; they differ only
in reversing the roles of the player and the opponent. A circuit that finds a
winning move for me can also find a blocking move for my opponent. Looking
at this characteristic from another point of view, a circuit that finds a winning
move for me can find a blocking move for me if the encodings for me and my
opponent are swapped. Here’s where our symmetric encoding pays off—we can
swap players merely by swapping signals X[1:9] and Y[1:9].

With this in mind, we can use two copies of the same module, TwoInRow,
to perform steps 1 and 2 as shown in Figure 7-31. Notice that signal X[1:9] is
connected to the top input of the first TwoInRow module, but to the bottom input
of the second; similarly for Y[1:9]. A third module, Pick, picks a winning move

X

Y

MOVE

TwoInRow

X[1:9]

Y[1:9]

Pick

WINMV

BLKMV

MOVE

X

Y

MOVE[3:0]

9

4

4

9

9

9

4U1

U2

U3

X

Y

MOVE

TwoInRow
Figure 7-31
Module partitioning
for the Tic-Tac-Toe
game.

Program 7-28 Top-level structural Verilog module for picking a move.

module GETMOVE (X, Y, MOVE);
 input [1:9] X, Y ;
 output [3:0] MOVE;
 wire [3:0] WIN, BLK;

 TwoInRow U1 (.X(X), .Y(Y), .MOVE(WIN));
 TwoInRow U2 (.X(Y), .Y(X), .MOVE(BLK));
 Pick U3 (.X(X), .Y(Y), .WINMV(WIN), .BLKMV(BLK), .MOVE(MOVE));
endmodule

DDPP5.book Page 358 Tuesday, March 28, 2017 5:33 PM

7.5 A Random-Logic Example in Verilog 359

if one is available from U1, else it picks a blocking move if available from U2,
else it uses “experience” (step 3) to pick a move.

Program 7-28 is structural Verilog code for the top-level module, GETMOVE.
It instantiates two other modules, TwoInRow and Pick, which will be defined
shortly. Its only internal signals are WIN and BLK, which pass winning and block-
ing moves from the two instances of TwoInRow to Pick, as in Figure 7-31. The
statement part of the module has just three statements to instantiate the three
blocks in the figure.

Now we need to design the individual modules in Figure 7-31. Let’s do a
“top-down” design and work on Pick next. In a top-down design, it’s usually
possible to “stub in” simplified versions of the lower-level modules in order to
test and refine the higher-level ones, though we won’t have to do that here. The
Pick module in Table 7-29 uses fairly straightforward, deeply nested if-else
statements to select a move. First priority is given to a winning move, followed
by a blocking move. Otherwise, function MT is called for each cell, from best
(middle) to worst (side), to find an available move.

Program 7-29 Verilog module to pick a winning or blocking Tic-Tac-Toe move
or else pick a move using “experience.”

module Pick (X, Y, WINMV, BLKMV, MOVE);
 input [1:9] X, Y;
 input [3:0] WINMV, BLKMV;
 output reg [3:0] MOVE;
 `include "TTTdefs.v"

 function MT; // Determine if cell i,j is empty
 input [1:9] X, Y;
 input [1:0] i, j;
 MT = ~X[(i-1)*3+j] & ~Y[(i-1)*3+j];
 endfunction

 always @ (X or Y or WINMV or BLKMV) begin // If available, pick:
 if (WINMV != NONE) MOVE = WINMV; // winning move
 else if (BLKMV != NONE) MOVE = BLKMV; // else blocking move
 else if (MT(X,Y,2,2)) MOVE = MOVE22; // else center cell
 else if (MT(X,Y,1,1)) MOVE = MOVE11; // else corner cells
 else if (MT(X,Y,1,3)) MOVE = MOVE13;
 else if (MT(X,Y,3,1)) MOVE = MOVE31;
 else if (MT(X,Y,3,3)) MOVE = MOVE33;
 else if (MT(X,Y,1,2)) MOVE = MOVE12; // else side cells
 else if (MT(X,Y,2,1)) MOVE = MOVE21;
 else if (MT(X,Y,2,3)) MOVE = MOVE23;
 else if (MT(X,Y,3,2)) MOVE = MOVE32;
 else MOVE = NONE; // else grid is full
 end
endmodule

DDPP5.book Page 359 Tuesday, March 28, 2017 5:33 PM

360 Chapter 7 More Combinational Building Blocks

The TwoInRow module requires more work, as shown in Program 7-30.
This module defines four functions, each of which determines whether there is a
winning move (from X’s point of view) in a particular cell i,j. A winning move
exists if cell i,j is empty and the other two cells in the same row, column, or

Program 7-30 Behavioral Verilog TwoInRow module.

module TwoInRow (X, Y, MOVE);
 input [1:9] X, Y;
 output reg [3:0] MOVE;
 reg G11, G12, G13, G21, G22, G23, G31, G32, G33;
 `include "TTTdefs.v"

 function R; // Find 2-in-row with empty cell i,j
 input [1:9] X, Y;
 input [1:0] i, j;
 integer jj;
 begin
 R = 1'b1;
 for (jj=1; jj<=3; jj=jj+1)
 if (jj==j) R = R & ~X[(i-1)*3+jj] & ~Y[(i-1)*3+jj];
 else R = R & X[(i-1)*3+jj];
 end
 endfunction

 function C; // Find 2-in-column with empty cell i,j
 input [1:9] X, Y;
 input [1:0] i, j;
 integer ii;
 begin
 C = 1'b1;
 for (ii=1; ii<=3; ii=ii+1)
 if (ii==i) C = C & ~X[(ii-1)*3+j] & ~Y[(ii-1)*3+j];
 else C = C & X[(ii-1)*3+j];
 end
 endfunction

 function D; // Find 2-in-diagonal with empty cell i,j
 input [1:9] X, Y; // This is for 11, 22, 33 diagonal
 input [1:0] i, j;
 integer ii;
 begin
 D = 1'b1;
 for (ii=1; ii<=3; ii=ii+1)
 if (ii==i) D = D & ~X[(ii-1)*3+ii] & ~Y[(ii-1)*3+ii];
 else D = D & X[(ii-1)*3+ii];
 end
 endfunction

DDPP5.book Page 360 Tuesday, March 28, 2017 5:33 PM

7.5 A Random-Logic Example in Verilog 361

diagonal contain an X. Functions R and C look for winning moves in cell i,j’s
row and column, respectively. Functions D and E look in the two diagonals.

Within the module’s always block, nine 1-bit variables G11–G33 are used
to indicate whether each of the cells has a winning move possible. Assignment
statements at the beginning of the block set each variable to 1 if there is such a
move, calling and combining all of the appropriate functions for cell i,j.

The rest of the module is a series of deeply nested if-else statements that
look in all possible cells for a winning move. If none is possible, the value NONE
is assigned. As we showed before, two instances of the TwoInRow module are
instantiated with Pick in Program 7-28 to complete the Tic-Tac-Toe model.

Program 7-30 (continued)

function E; // Find 2-in-diagonal with empty cell i,j
 input [1:9] X, Y; // This is for 13, 22, 31 diagonal
 input [1:0] i, j;
 integer ii;
 begin
 E = 1'b1;
 for (ii=1; ii<=3; ii=ii+1)
 if (ii==i) E = E & ~X[(ii-1)*3+4-ii] & ~Y[(ii-1)*3+4-ii];
 else E = E & X[(ii-1)*3+4-ii];
 end
 endfunction

 always @ (X or Y) begin
 G11 = R(X,Y,1,1) | C(X,Y,1,1) | D(X,Y,1,1);
 G12 = R(X,Y,1,2) | C(X,Y,1,2);
 G13 = R(X,Y,1,3) | C(X,Y,1,3) | E(X,Y,1,3);
 G21 = R(X,Y,2,1) | C(X,Y,2,1);
 G22 = R(X,Y,2,2) | C(X,Y,2,2) | D(X,Y,2,2) | E(X,Y,2,2);
 G23 = R(X,Y,2,3) | C(X,Y,2,3);
 G31 = R(X,Y,3,1) | C(X,Y,3,1) | E(X,Y,3,1);
 G32 = R(X,Y,3,2) | C(X,Y,3,2);
 G33 = R(X,Y,3,3) | C(X,Y,3,3) | D(X,Y,3,3);
 if (G11) MOVE = MOVE11;
 else if (G12) MOVE = MOVE12;
 else if (G13) MOVE = MOVE13;
 else if (G21) MOVE = MOVE21;
 else if (G22) MOVE = MOVE22;
 else if (G23) MOVE = MOVE23;
 else if (G31) MOVE = MOVE31;
 else if (G32) MOVE = MOVE32;
 else if (G33) MOVE = MOVE33;
 else MOVE = NONE;
 end
endmodule

DDPP5.book Page 361 Tuesday, March 28, 2017 5:33 PM

362 Chapter 7 More Combinational Building Blocks

ANOTHER CASE When I targeted the Tic-Tac-Toe model to a Xilinx 7-series FPGA using Vivado
tools, the synthesized design used 63 LUTs with a maximum delay path of 5 LUTs.

Since the nested if-else statements in TwoInRow create a priority encoder of
sorts, they can be replaced with a case statement in the style of Program 7-8 on
page 318. So, to try for a better synthesis result, I did that, using the new code in
Program 7-31. To my amazement, the new design used 668 LUTs! All by itself,
TwoInRow required 10 times as many LUTs (210 vs. 21)!

Since I couldn’t believe my eyes, I wrote a test bench to compare the outputs
of both versions of TwoInRow for all 218 input combinations, expecting find an error
or at least a difference in semantics that would have made one version’s function
more difficult than the other to synthesize. No, the functions performed by the two
models were exactly the same.

So, what is the moral of the story? Very large “random-logic” functions may
give seemingly random synthesis results, and you may get significantly better (or
worse!) results using a different model for the same thing.

Program 7-31 Two-in-a-row detection using a case statement.

 case (1'b1)
 (G11): MOVE = MOVE11;
 (G12): MOVE = MOVE12;
 (G13): MOVE = MOVE13;
 (G21): MOVE = MOVE21;
 (G22): MOVE = MOVE22;
 (G23): MOVE = MOVE23;
 (G31): MOVE = MOVE31;
 (G32): MOVE = MOVE32;
 (G33): MOVE = MOVE33;
 default MOVE = NONE;
 endcase

TIME FOR
A BREAK

More combinational logic functions will be discussed in Chapter 8, including gate-
level, building-block, and Verilog descriptions as in this chapter. All of those func-
tions are ones for which Verilog has built-in operators: comparing, adding, shifting,
multiplying, and dividing. Therefore, if you’re doing an HDL-based design, and
implementation size and performance are not critical, it is perfectly reasonable to use
Verilog’s operators and let the synthesis tool do the heavy lifting. In fact, it’s quite
common in HDL-based design to initially write, test, and synthesize behavioral code
in these and other areas, and come back to them with technology-targeted (perhaps
structural) modules only when size and performance are known to be issues.

For those reasons, it’s perfectly alright for you to skip Chapter 8 for now, and
move on to the “good stuff” on sequential circuits beginning in Chapter 9.

DDPP5.book Page 362 Tuesday, March 28, 2017 5:33 PM

Drill Problems 363

Drill Problems
7.1 What’s terribly wrong with the circuit in Figure X7.1? Suggest a change that

eliminates the terrible problem.

7.2 What is the function of the block labeled “LUT1” in Figure 7-9?

7.3 Write a behavioral-style Verilog module Vr32inprior3 for a 32-input priority
encoder with inputs, outputs, and functions similar to those of the 8-input priority
encoder in Program 7-7. Synthesize each module, targeting to an FPGA, and
compare their size and speed—number of LUTs and levels of LUT delay.

7.4 An odd-parity circuit with 2n inputs can be built with 2n−1 XOR gates. Describe
two different structures for this circuit, one of which gives a minimum worst-case
input to output propagation delay and the other of which gives a maximum. For
each structure, state the worst-case number of XOR-gate delays, and describe a
situation where that structure might be preferred over the other.

7.5 A certain parity circuit in the style of Figure 7-16(a) uses an odd number of
XNOR gates. Does it generate odd parity, even parity, or neither? If neither, what
function does it generate?

7.6 What is the maximum number of inputs of an even-parity function that can be
realized in a single Xilinx 7-series LUT with the structure shown in Figure 6-6?

7.7 Construct a table that shows the number of LUTs and speed (maximum number
of LUT delays) of an n-input even-parity tree built with Xilinx 7-series LUTs. In
each row, the first column of the table should give a range of values for n, and the
second and third columns give the number of LUTs required and the maximum

SELP_L

SELQ_L

SELR_L

SELS_L

SELT_L

SELU_L

SELV_L

SELW_L

SDATA

EN_L

ASRC0

ASRC1

BSRC0

BSRC1

P

1-bit party-line

Q

R

S

T

U

V

W

2-to-4 decoder

A0

G

A1

Y0

Y1

Y2

Y3

2-to-4 decoder

A0

G

A1

Y0

Y1

Y2

Y3

Figure X7.1

DDPP5.book Page 363 Tuesday, March 28, 2017 5:33 PM

364 Chapter 7 More Combinational Building Blocks

number of LUTs in the signal path from any input to output, respectively. Your
table should have enough rows to cover all values of n from 1 to 99. If you wish,
you may write and synthesize a Verilog module Vrbigxor to spot check a few of
your entries at key break points in the table.

7.8 Suppose you had to realize the Hamming error-correction circuit in Figure 7-18
using a 3-to-8 decoder with active-low outputs like the 74x138’s. What changes
could you make to the circuit to avoid adding eight inverters to flip the active level
of the decoder outputs?

7.9 Draw a logic diagram, in the style of Figure 7-21(b), for a 4-bit comparator using
XNOR and AND gates. Be sure to use logic symbols and signal names that make
sense in terms of active levels.

7.10 Starting with the magnitude-comparator logic diagram in Figure 7-26, write a
logic expression for the PEQQ output in terms of the inputs.

7.11 Write a parameterized behavioral Verilog module VrNbitcmp for a comparator
with n-bit input vectors P and Q and outputs PGTQ, PLTQ, and PEQQ. Test your
module with the test bench in Program 7-24 for values of N of 8 and 32.

7.12 Augment the magnitude-comparator logic diagram in Figure 7-26 to provide two
additional outputs, SPLTQ and SPGTQ, that give the comparison result for
signed, two’s-complement numbers. Do not redraw the whole logic diagram; just
show how additional logic gates should be connected to existing signals.

7.13 Concisely describe in words the function performed by the block diagram on
page 301, assuming the top input is named SEL, the n-bit input buses are, in order,
X and Y, and the n-bit output bus is Z.

7.14 Using the same assumptions as in Drill 7.13, write a dataflow-style Verilog
module corresponding to the block diagram, using continuous assignments to all
of the signals, including local wires corresponding to the internal signals named
in the block diagram. Use a parameter for n with a default value of 8.

7.15 Using the same assumptions as in Drill 7.13, write a concise dataflow-style
Verilog module that performs the same function as the block diagram using just
one continuous assignment statement and no local wires. Use a parameter for n
with a default value of 8.

7.16 After doing Drills 7.14 and 7.15, write a test bench that compares the outputs of
the two modules against the expected values and each other for all input values.

Exercises
7.17 This exercise is meant to show the importance of specifying desired behaviors. If

you don’t spec it, you may not test for it, and if you don’t test for it, you may not
always get it.

The specification of the A outputs in the 8-input priority encoder in Section 7.2 is
a little ambiguous: “Outputs A2–A0 contain the number of the highest-priority
asserted input, if any.” What value should they contain if no input is asserted, or
are they “don’t-cares”? Our logic equations and our subsequent Verilog modules
assumed they should be all 0s, so let’s add that to the spec now.

DDPP5.book Page 364 Tuesday, March 28, 2017 5:33 PM

Exercises 365

Show that if the statement “A = 3'd0” is not included in the last line of the begin-
end block in Program 7-6, the resulting priority encoder sometimes produces an
incorrect output even after it’s been running for a long time, but the test bench in
Program 7-9 fails to detect the error. Explain the nature of the error, and modify
the test bench so that it detects the error.

7.18 Twenty years ago, a famous logic designer decided to quit teaching and make a
fortune by licensing the circuit design shown in Figure X7.18.

(a) Label the inputs and outputs of the circuit with appropriate signal names,
including active-level indications.

(b) What does the circuit do? Be specific and account for all inputs and outputs.

(c) Draw the logic symbol that would go on the data sheet of this circuit.

(d) Write a behavioral Verilog model for the circuit.

(e) With what standard building blocks did the new circuit compete? Do you
think that it was successful as an MSI part?

7.19 Modify the 8-input priority encoder module of Program 7-10, which uses a casez
statement, so it does not require its case choices to be written in the order of their
priority. Use the test bench of Program 7-9 to check your new module for proper
operation, both as you originally write it and after scrambling the choices. Hint:
Fewer than three dozen characters in the original module must be changed.

Figure X7.18

DDPP5.book Page 365 Tuesday, March 28, 2017 5:33 PM

366 Chapter 7 More Combinational Building Blocks

7.20 Write a behavioral-style Verilog module Vr8inpriorcasc with the same inputs,
outputs, and functions as the cascadable 8-input priority encoder shown in
Figure 7-12. Synthesize the module, targeting to an FPGA, and determine its size
and speed—number of LUTs and levels of LUT delay.

7.21 Write a structural-style Verilog module Vr32inpriorcasc that uses four copies
of the cascadable 8-input priority encoder Vr8inpriorcasc in Exercise 7.20
using the structure of Figure 7-13 to create a 32-input priority encoder. Synthe-
size the module, targeting to an FPGA, and compare its size and speed with the
“simple” 32-input priority encoder of Drill 7.3—number of LUTs and levels of
LUT delay. Was the improvement, if any, worth the extra effort?

7.22 Modify the 32-input priority-encoder modules of Drill 7.3 and Exercise 7.21 to
have only 24 inputs. Then write a test bench that instantiates them and compares
their outputs for all 16 million input combinations. Are they always the same? If
not, explain. Naturally, the test bench must accommodate the modules’ different
signal names and the fact that IDLE in one module equals ~RGS in the other.

7.23 Draw the logic diagram for a circuit that uses the cascadable priority encoder of
Figure 7-12 to resolve priority among eight active-low inputs, I0_L–I7_L, where
I7_L has the highest priority. The circuit should produce active-low address out-
puts A2_L–A0_L to indicate the number of the highest-priority asserted input. If
no input is asserted, then A2_L–A0_L should be 111, and an active-low IDLE_L
output should be asserted. You may use discrete gates in addition to the priority
encoder. Be sure to name all signals with the proper active levels.

7.24 Draw the logic diagram for a circuit that uses the cascadable priority encoder of
Figure 7-12 to resolve priority among eight active-high inputs, I0–I7, where I0 has
the highest priority. The circuit should produce three active-low address outputs
A2_L–A0_L to indicate the number of the highest-priority asserted input. If at
least one input is asserted, then an AVALID output should be asserted. Be sure to
name all signals with the proper active levels. You may use discrete gates in addi-
tion to the priority encoder, but minimize the number of them. Be sure to name
all signals with the proper active levels.

7.25 A purpose of Exercise 7.24 was to demonstrate that it is not always possible to
maintain consistency in active-level notation unless you are willing to define
alternate logic symbols for building blocks that can be used in different ways. For
reference purposes, add pin numbers to the cascadable priority encoder symbol
in Figure 7-12, and then define an alternate symbol for the same device with the
same pin numbers that provides this consistency in Exercise 7.24.

7.26 Design a combinational circuit with eight active-high request inputs, R0–R7, and
eight outputs, A2–A0, AVALID, B2–B0, and BVALID, where the R7 input has the
highest priority, the “A” outputs identify the highest priority asserted input, and
the “B” outputs identify the second-highest priority. Your design may use discrete
gates, decoders, and the 8-input priority encoder of Figure 7-11.

7.27 Repeat Exercise 7.26 using Verilog, writing a behavioral module Vr2prior and
synthesizing it for your favorite programmable device. Hint: Use a for loop that
takes care of both the first and the second priorities within the same loop, working
from the highest priority to the lowest.

DDPP5.book Page 366 Tuesday, March 28, 2017 5:33 PM

Exercises 367

7.28 The approach suggested in Exercise 7.27 is easy to code but maybe better results
are possible. Write a new module Vr2priori that uses nested if statements to
determine the highest-priority input in the same fashion as Program 7-6, and then
uses a second set of nested if statements to find the second-highest-priority
input. Synthesize the new module and compare its size and delay with the first
version. Even if the synthesis results are better, was it worth the work?

7.29 Write a test bench that instantiates the two priority encoders in Exercises 7.27 and
7.28 and verifies that they produce identical outputs for all input combinations,
displaying the input combination and outputs if they are different. Insert an error
of some kind into one of the modules to verify that your display code works.

7.30 Starting with Program 7-7, write a priority-encoder module Vr8inprior_dis
where the for loop starts with the highest-priority input and searches down, using
the Verilog disable statement to exit the loop when an asserted input is found.
Synthesize and target both Program 7-7 and your module to your favorite pro-
grammable device and compare the synthesized results. (Note: disable is not
supported by all Verilog tools.)

7.31 Write the truth table and draw a logic diagram for the logic function performed
by the CMOS circuit in Figure X7.31. (The circuit contains transmission gates,
which were introduced in Figure 1-16.))

7.32 What logic function is performed by the CMOS circuit shown in Figure X7.32?

7.33 Add a three-state-output control input OE to the Verilog multiplexer module in
Program 6-16. Your solution should have only one always block.

Figure X7.31

A

B

S

Z

Figure X7.32

A

B

Z

DDPP5.book Page 367 Tuesday, March 28, 2017 5:33 PM

368 Chapter 7 More Combinational Building Blocks

7.34 A digital designer who built the circuit in Figure 7-19 accidentally used NAND
gates instead of AND gates in the circuit, and found that the circuit still worked,
except for a change in the active level of the ERROR signal. How was this
possible?

7.35 Write a Verilog module for a Hamming encoder with 4-bit data inputs DI[3:0]
and output bits DO[6:0], where DO[3:0] equals DI[3:0] and DO[6:4] corre-
sponds to check bits 421 in the Hamming matrix of Figure 2-13 when DI[3:0]
corresponds to bits 7653, maintaining all correspondences in left-to-right order.

7.36 Update the Hamming error-correction module of Program 7-14 with one more
input bit DU[8] and corresponding output bit DC[8], for use with a data bus where
eighth bit is even parity for the entire bus, creating a distance-4 code. Also add a
new output UCERR that indicates an uncorrectable error has occurred.

7.37 A set of parity-check equations for a distance-4 Hamming code with 64 data bits
and eight parity-check bits are specified by the eight 72-bit constants below, each
representing one row the parity-check matrix:

 C[1] = 72'h80000000000000007f; C[2] = 72'h400000003fffffff80;

 C[3] = 72'h20001fffc0007fff80; C[4] = 72'h100fe03fc07f807f80;

 C[5] = 72'h0871e3c3c78787878f; C[6] = 72'h04b66cccd9999999b3;

 C[7] = 72'h02dab5556aaaaaaad5; C[8] = 72'hffffffffffffffffff;

Assuming that bits are numbered D[71:0], bits D[71:64] are the check bits, and
D[63:0] are the data bits. Based on these parity-check equations, write a Verilog
model Vrhamenc64 for a Hamming encoder with 64-bit data inputs DI[63:0]
and a 72-bit encoded data output DO[71:0].

7.38 Using the same parity-check equations as in Exercise 7.37, write a Verilog model
for a Hamming error-correcting decoder for a 72-bit bus that uses this code, based
on Program 7-14 and including a UCERR output as in Exercise 7.36.

7.39 Write a test bench that connects the outputs of the module in Exercise 7.37 to the
inputs of the one in Exercise 7.38 and ensures that the overall 64-bit output and
input match for a random sequence of data inputs. That should be pretty easy.
Once that’s working, update your test bench to inject random 1-, 2-, and 3-bit
errors into the 72-bit connection between modules. Keep track of the number of
miscorrected errors of each size. There shouldn’t be any miscorrected 1- and 2-
bit errors.

7.40 Write a four-step iterative algorithm corresponding to the iterative comparator
circuit of Figure 7-24.

7.41 Write a Verilog module Vr16bitcmpg for a 16-bit iterative comparator using the
structure of Figure 7-24. Use the language’s “generate” capability. Write a test
bench Vr16bitcmpg_tb to test your module for random input combinations
against Verilog’s built-in comparison operation.

7.42 The VrNbitcmp_tb3 test bench suggested on page 348 works on comparators
with up to 128-bit inputs. Rewrite the statements that assign a random value to P
there to use a for loop, so the test bench will work with any width input vectors.
Does the modified test bench compile and run successfully in your environment?
If not, can you figure out a way to code it so it works with any vector width in

DDPP5.book Page 368 Tuesday, March 28, 2017 5:33 PM

Exercises 369

your environment, without writing out a long list of assignments as we did just to
get the width to 128, as we did on page 348?

7.43 Modify the Verilog module in Program 7-18 to create a new module Vr8bitscmp
that works with signed input vectors, using the Verilog signed declarations and
arithmetic. Write or modify a test bench to ensure that your modifications really
work. Then modify and test your modules for 80-bit comparisons, and be sure
that your results don’t depend on your system’s integer width or the result width
returned by $random.

7.44 Write a parameterized behavioral Verilog module VrNbitscmp for a comparator
with n-bit input vectors P and Q and outputs PGTQ, PLTQ, and PEQQ. Your module
should work on both signed and unsigned vectors, and have a control input SGN
that is asserted when the inputs should be interpreted as signed. Adapt the
VrNbitcmp_tb2 test bench to check your module’s operation with random input
vectors and both values of the SGN input. Does it make sense to use Verilog’s
signed declarations and arithmetic for this exercise?

7.45 A student mistakenly believed that the Verilog “>” and “<“ relational operators
only worked on integers, not vectors, and wrote the N-bit comparator module
VrNbitcmp_err in Program X7.45. The module could be synthesized without
errors, and yielded no errors when run in the VrNbitcmp_tb2 test bench of
Program 7-24 with N=8 or 16 or even 31. However, when run with N=32, it dis-
played errors in about half of the test iterations, over 5,000 errors total. Analyze
and explain the reason for this behavior, and point out what specific problems in
the module, the test bench, or both causes this behavior. Does the module as writ-
ten actually produce correct results for N=32?

7.46 Design a 24-bit comparator using three 8-bit comparators of the kind shown in
Figure 7-25 and a few discrete gates as required. Your circuit should compare two
24-bit unsigned numbers P and Q and produce two output bits that indicate
whether P = Q or P > Q.

Program X7.45

module VrNbitcmp_err(P, Q, PGTQ, PEQQ, PLTQ);
 parameter N = 8;
 input [N-1:0] P, Q;
 output reg PGTQ, PEQQ, PLTQ;
 integer IP, IQ;

 always @ (P or Q) begin
 IP = P; IQ = Q;
 if (IP == IQ)
 begin PGTQ = 1'b0; PEQQ = 1'b1; PLTQ = 1'b0; end
 else if (IP > IQ)
 begin PGTQ = 1'b1; PEQQ = 1'b0; PLTQ = 1'b0; end
 else
 begin PGTQ = 1'b0; PEQQ = 1'b0; PLTQ = 1'b1; end
 end
endmodule

DDPP5.book Page 369 Tuesday, March 28, 2017 5:33 PM

370 Chapter 7 More Combinational Building Blocks

7.47 A possible definition of a BUT gate (see Exercise 3.37) is “Y1 is 1 if A1 and B1
are 1 but either A2 or B2 is 0; Y2 is defined symmetrically.” Write the truth table
and find sum-of-products expressions for the BUT-gate outputs. Minimize the
expressions using Boolean algebra or Karnaugh maps. Draw the logic diagram
for a NAND-NAND circuit for the expressions; assume that only uncomplemented
inputs are available. You may use inverters and NAND gates with 2, 3, or 4 inputs.

7.48 If you’ve already studied Chapter 14 or equivalent, find a CMOS gate-level
design for the BUT gate defined in Exercise 7.47, using a minimum number of
transistors. You may use inverting gates with up to 4 inputs, AOI or OAI gates,
transmission gates, or other transistor-level tricks. Write the output expressions
(which need not be two-level sums of products), and draw the logic diagram.

7.49 Butify the function F = ΣW,X,Y,Z(5,7,10,11,13,14). That is, show how to perform F
with a single BUT gate as defined in Exercise 7.47 and a single 2-input OR gate.

7.50 Synthesize the Tic-Tac-Toe design of Section 7.5, targeting your favorite FPGA,
and determine how many internal resources it uses. Then try to reduce the
resource requirements by specifying a different encoding of the moves in the
TTTdefs.v file.

7.51 Write a test bench for the Tic-Tac-Toe TwoInRow module that compares the out-
puts of two different versions of the module for all 218 input combinations, as
discussed in the box on page 362. Optionally, write code that graphically displays
the state of the grid and the MOVE outputs from both modules when there is a mis-
match. To test your test bench, insert an error; the author made a doozy that was
hard to find, swapping X and Y in one of the UUT instantiations.

7.52 An awkward aspect of the Tic-Tac-Toe modules in Section 7.5 is its explicit,
error-prone, and ugly use of a formula to compute an index to reference the appro-
priate bit of a 9-bit vector corresponding to a grid location i,j, every time such a
bit value is retrieved. Write a Verilog function ix(i,j) that does this cleanly,
modify the modules to call the function, and test your modifications. Where is the
best place to declare this function?

7.53 The Tic-Tac-Toe module in Section 7.5 playing as Y against an intelligent first
player X will get to the grid state shown in Figure X7.53 if X’s first two moves are
(3,2) and (2,3). And from there it will lose. Write and run a test bench to prove
that this is true. Then modify the Pick module to avoid losing in this and similar
situations and verify your design using the test bench. Also, synthesize your new
top-level module and compare its resource requirements with the original. Are the
extra resources justified by the improved play?

butification

X

Y X

Figure X7.53

DDPP5.book Page 370 Tuesday, March 28, 2017 5:33 PM

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

371

comparator

mux

mux

mux

X > Y

min (X, Y)

max (X, Y)

c h a p t e r 8
Combinational
Arithmetic Elements

n this chapter, we introduce combinational logic elements that perform
arithmetic functions—adding, shifting, multiplying, and dividing. If
you’re doing an HDL-based design, it is usually quite reasonable to
use the built-in operators when you need one of these functions, and
let the synthesis tool do the heavy lifting. This chapter is meant to pre-

pare you for situations where you need to go beyond that.
In both full-custom VLSI and semi-custom ASICs, many structures

are available. Here, the designer can specify the exact configuration of gates
to perform a function, and even control their physical layout on the chip. In
many cases, however, the designer may not have to do this work. The VLSI
or ASIC component library may already contain preconfigured, perhaps
parameterized modules for common functions like addition and multiplica-
tion. In such cases, the designer’s main responsibility is to understand the
available options and to specify needed arithmetic functions in a way that
lets the synthesis tool to recognize that a preconfigured module can be used.

With FPGAs, on the other hand, the basic logic capabilities are set. For
combinational logic, there’s no way to do custom gate-level structures; there
are only programmable interconnections of LUTs. However, the FPGA may
also contain specialized internal structures that the synthesizer can use to
optimize arithmetic and other common functions. So, the best approach for
an FPGA is to let the synthesis tool figure out what to do. You only need to
“help it” to do something else if the results are inadequate.

I

DDPP5.book Page 371 Tuesday, March 28, 2017 5:33 PM

372 Chapter 8 Combinational Arithmetic Elements

Compared to what a good FPGA design tool can do, the structures in this
chapter rarely improve size and performance by more than 10–15%, and may
actually worsen them. Still, in the barrel-shifter design of Section 8.2.2, we were
actually able to reduce size by 50%, with a slight impact (plus or minus) on
speed. In ASIC designs, again “your results may vary,” depending on the quality
of both the synthesis tools and the available libraries for arithmetic functions.

8.1 Adding and Subtracting
Addition is the most commonly performed arithmetic operation in digital
systems. An adder combines two arithmetic operands using the addition rules
described in Chapter 2. As we showed in Section 2.6, the same addition rules
(and thus the same adders) are used for both unsigned and two’s-complement
numbers. An adder can perform subtraction as the addition of the minuend and
the complemented (negated) subtrahend, but you can also build subtractor
circuits that perform subtraction directly. Functional blocks and ASIC modules
called ALUs, described in Section 8.1.7, perform addition, subtraction, or any
of several other operations according to an operation code supplied to the device.

8.1.1 Half Adders and Full Adders
The simplest adder, called a half adder, adds two 1-bit operands A and B,
producing a 2-bit sum. The sum can range from 0 to 2 (base 10), which requires
two bits to express. The low-order bit of the sum may be named HS (half sum),
and the high-order bit may be named CO (carry-out). We can write the following
equations for HS and CO:

To add operands with more than one bit, we must provide for carries
between bit positions. The building block for this operation is called a full adder.
Besides the addend-bit inputs A and B, a full adder has a carry-bit input, CIN.
The sum of the three inputs can range from 0 to 3, which can still be expressed
with just two output bits, S and COUT, having the following equations:

Here, S is 1 if an odd number of the inputs are 1, and COUT is 1 if two or more
of the inputs are 1. These equations represent the same operation that was
specified by the binary addition table in Table 2-3 on page 42.

HS = A ⊕ B

= A ⋅ B′ + A′ ⋅ B
CO = A ⋅ B

S = A ⊕ B ⊕ CIN

= A ⋅ B′ ⋅ CIN′ + A′ ⋅ B ⋅ CIN′ + A′ ⋅ B′ ⋅ CIN + A ⋅ B ⋅ CIN

COUT = A ⋅ B + A ⋅ CIN + B ⋅ CIN

adder

subtractor

half adder

full adder

DDPP5.book Page 372 Tuesday, March 28, 2017 5:33 PM

8.1 Adding and Subtracting 373

One possible circuit that realizes the full-adder equations is shown in
Figure 8-1(a). The corresponding logic symbol is shown in (b). Sometimes the
symbol is drawn as shown in (c), so that cascaded full adders can be easily drawn
with carry signals flowing from right to left, as in the next subsection.

8.1.2 Ripple Adders
Two binary words, each with n bits, can be added using a ripple adder—a
cascade of n full-adder stages, each of which handles one bit. Figure 8-2 shows
the circuit for a 4-bit ripple adder. The carry input to the least significant bit (c0)
is normally set to 0, and the carry output of each full adder is connected to the
carry input of the next most significant full adder. The ripple adder is a classic
example of an iterative circuit as defined in Section 7.4.2.

A ripple adder is slow, since in the worst case, a carry must propagate from
the least significant full adder to the most significant one. This occurs if, for
example, one addend is 11 … 11 and the other is 00 … 01. Assuming that all of
the addend bits are presented simultaneously, the total worst-case delay is

where tABCout is the delay from A or B to COUT in the least significant stage,
tCinCout is the delay from CIN to COUT in each of the n−2 middle stages, and tCinS
is the delay from CIN to S in the most significant stage.

tADD = tABCout + (n − 2) ⋅tCinCout + tCinS

(a)

(b)

A

B

CIN

S

COUT

A

B

CIN

S

COUT

full adder

(c)

COUT CIN

A

S

B

Figure 8-1
Full adder: (a) gate-
level logic diagram;
(b) logic symbol;
(c) alternate logic
symbol suitable for
cascading.

ripple adder

SSS

COUT CIN

A

S

Y

COUT CIN

A Y

COUT CIN

A Y

COUT CIN

A Y

a2 b2 a1 b1 a0 b0

c3
c4

c2 c1

a3 b3

c0

s2 s1 s0s3

Figure 8-2
A 4-bit ripple adder.

DDPP5.book Page 373 Tuesday, March 28, 2017 5:33 PM

374 Chapter 8 Combinational Arithmetic Elements

A faster adder can be built by obtaining each sum output si with just two
levels of logic. This can be accomplished by writing an equation for si in terms
of x0–xi, y0–yi, and c0, a total of 2i + 3 inputs, “multiplying out” or “adding out”
to obtain a sum-of-products or product-of-sums expression, and building the
corresponding AND-OR or OR-AND circuit. Unfortunately, beyond s2 the result-
ing expressions have too many terms, requiring too many first-level gates and
more inputs than typically possible on the second-level gate. For example, even
assuming c0 = 0, a two-level AND-OR circuit for s2 requires 14 4-input ANDs,
four 5-input ANDs, and an 18-input OR gate; higher-order sum bits are even
worse. Nevertheless, it is possible to build adders with just a few levels of delay
using a more reasonable number of gates, as we’ll soon see in Section 8.1.4. But
first, let’s get subtractors out of the way.

8.1.3 Subtractors
A binary subtraction operation analogous to binary addition was also specified
in Table 2-3 on page 42. A full subtractor handles one bit of the binary subtrac-
tion algorithm, having input bits A (minuend), B (subtrahend), and BIN (borrow
in), and output bits D (difference) and BOUT (borrow out). We can write logic
equations corresponding to the binary subtraction table as follows:

These equations are very similar to equations for a full adder, which should not
be surprising. We showed in Section 2.6 that a two’s-complement subtraction
operation, A − B, can be performed by an addition operation, namely by adding
the two’s complement of B to A. The two’s complement of B is B + 1, where B
is the bit-by-bit complement of B. We also asked you to show in Exercise 2.38
that a binary adder can be used to perform an unsigned subtraction operation

 by performing the operation A + B + 1. We can now confirm that these
statements are true by manipulating the logic equations above:

For the first manipulation, recall that we can complement the two inputs of an
XOR gate without changing the function performed.

Comparing these with the equations for a full adder, the above equations
tell us that we can build a full subtractor from a full adder by using the comple-
ments of the subtrahend and the borrows (B′, BIN′, and BOUT′) or, equivalently,

D = A ⊕ B ⊕ BIN

BOUT = A′ ⋅ B + A′ ⋅ BIN + B ⋅ BIN

D = A ⊕ B ⊕ BIN

= A ⊕ B′ ⊕ BIN′ (complementing XOR inputs)

BOUT = A′ ⋅ B + A′ ⋅ BIN + B ⋅ BIN

BOUT′ = (A + B′) ⋅ (A + BIN′) ⋅ (B′ + BIN′) (generalized DeMorgan’s theorem)

= A ⋅ B′ + A ⋅ BIN′ + B′ ⋅ BIN′ (multiplying out and simplifying)

full subtractor

A B–

DDPP5.book Page 374 Tuesday, March 28, 2017 5:33 PM

8.1 Adding and Subtracting 375

substituting active-low versions of the corresponding signals as shown in the
equations below:

That is, the physical circuit that we usually call a full adder, which we’ve labeled
“FA circuit” in Figure 8-3(a), is also a full subtractor if its inputs and outputs are
renamed appropriately, with active-low subtrahend, borrow-in, and borrow-out
signals as shown in (c).

Thus, to build a ripple subtractor for two n-bit active-high operands, we
can use n FA circuits and inverters, as shown in Figure 8-3(d). Note that for the
subtraction operation, the least significant bit’s borrow input must be negated
(no borrow), which means that active-low physical input pin must be 1 or HIGH
for the “no borrow” condition. This behavior is just the opposite of addition’s,
where the same input pin is an active-high carry-in that is 0 or LOW for the “no
carry” condition. The borrow out of the most significant bit is also active-low,
again the opposite of the ripple adder’s built with the same FA circuits.

Using the math in Chapter 2, we can show that this sort of manipulation
works for all adder and subtractor circuits, not just ripple adders and subtractors.
That is, any n-bit adder circuit can function as a subtractor by complementing
the subtrahend and treating the carry-in and carry-out signals as borrows with

BOUT_L = A ⋅ B_L + A ⋅ BIN_L + B_L ⋅ BIN_L

D = A ⊕ B_L ⊕ BIN_L

br_L –1

COUT CIN

A

S

Y
FA circuit

BOUT BIN

A

D

Y

BOUT BIN

A

D

Y
FA circuit

BOUT BIN

A

D

B

a–1 b –1

d –1

br_L BOUT BIN

A

D

B

a –2 b –2

d –2

BOUT BIN

A

D

B

a0 b0

d0

br_L –2 br_L1 br_L0
1

(a) (b) (c)

(d)

full subtractor
BOUT_L BIN_L

A B_L

FA circuitFA circuitFA circuit

Figure 8-3 Subtractor design using adders: (a) “FA” full-adder circuit; (b) generic full subtractor;
(c) interpreting FA circuit as a full subtractor; (d) ripple subtractor.

DDPP5.book Page 375 Tuesday, March 28, 2017 5:33 PM

376 Chapter 8 Combinational Arithmetic Elements

the opposite active level. The rest of this section discusses addition circuits only,
with the understanding that they can easily be made to perform subtraction.

As discussed in Section 7.4.4, a magnitude comparator can be built from a
subtractor. Consider the operation . If this operation produces a borrow,
then . One way to build a somewhat smaller magnitude comparator is to
start with a subtractor, but eliminate all of the logic that is used only for generat-
ing difference bits (typically one XOR gate per bit); only the final borrow is
needed for the result. If you wanted to know whether , you could keep the
difference bits and check them for all zeroes for the “equals” case. But depend-
ing on the application, a more efficient design might be to swap the subtractor’s
operands in a second step to determine whether ; if not, then .

8.1.4 Carry-Lookahead Adders
Adders are very important logic elements, as we’ve said, so a lot of effort has
been spent over the years to improve their performance. In this subsection, we’ll
look at the most well known speedup method, called carry lookahead.

The logic equation for sum bit i of a binary adder can actually be written
quite simply:

While all of the addend bits are normally presented to an adder’s inputs and are
valid more or less simultaneously, the output of the above equation can’t be
determined until the carry input is valid too. And in a ripple-adder design, it
takes a long time for the most significant carry input bit to be valid.

In Figure 8-4, the block labeled “Carry-Lookahead Logic” calculates ci in
a fixed, small number of logic levels if i is not too large. Two definitions are the
key to carry-lookahead logic:

1. For a particular combination of inputs ai and bi , adder stage i is said to
generate a carry if it produces a carry-out of 1 (ci+1 = 1) independent of the
inputs on a0 – ai−1,b0 – bi−1, and c0.

2. For a combination of inputs ai and bi , adder stage i is said to propagate
carries if it produces a carry-out of 1 (ci+1 = 1) in the presence of an input
combination on the lower-order bits that causes a carry-in of 1 (ci = 1).

si = ai ⊕ bi ⊕ ci

A B–
B A>

B A≥

A B> B A≥

carry lookahead

Figure 8-4
Structure of one
stage of a carry-
lookahead adder.

Carry-
Lookahead

Logic

hsi

ci

ai

bi si

a0

bi–1

ai−1

b0

c0

carry generate

carry propagate

DDPP5.book Page 376 Tuesday, March 28, 2017 5:33 PM

8.1 Adding and Subtracting 377

Corresponding to the first definition, we can write a logic equation for a carry-
generate signal gi for each stage of a carry-lookahead adder:

That is, a stage unconditionally generates a carry if both of its addend bits are 1.
Corresponding to the second definition, we can write and use either of two

different equations for a carry-propagate signal pi. The first equation propagates
a carry if exactly one of the addend bits is 1:

The second equation recognizes that if both addend bits are 1, it’s still OK to
“propagate” a carry since we’re going to generate one anyway, so we can com-
bine the addend bits with OR instead of XOR:

This second version of the propagate signal is sometimes called a carry “alive”
signal, because one way or another, an incoming carry keeps going.

Depending on the implementation technology, OR and NOR gates may be
faster and smaller than XOR and the second version of pi would be preferred. On
the other hand, depending on the overall adder design, we may explicitly need
half sum signals (HSi) elsewhere in the design, and their equation happens to be
the same as the first pi equation above, so we would just use those signals in both
places. In either case, the carry output of a stage can now be written in terms of
the generate and propagate signals:

That is, a stage produces a carry if it generates a carry, or if it propagates a carry
and the carry input is 1. To eliminate carry ripple, we recursively expand the ci
term for each stage and multiply out to obtain a two-level AND-OR expression.
Using this technique, we can obtain the following carry equations for the first
four adder stages:

gi = ai ⋅ bi

pi = ai ⊕ bi

pi = ai + bi

ci+1 = gi + pi ⋅ ci

c1 = g0 + p0 ⋅ c0

c2 = g1 + p1 ⋅ c1

= g1 + p1 ⋅ (g0 + p0 ⋅ c0)

= g1 + p1 ⋅ g0 + p1 ⋅ p0 ⋅ c0

c3 = g2 + p2 ⋅ c2

= g2 + p2 ⋅ (g1 + p1 ⋅ g0 + p1 ⋅ p0 ⋅ c0)

= g2 + p2 ⋅ g1 + p2 ⋅ p1 ⋅ g0 + p2 ⋅ p1 ⋅ p0 ⋅ c0

c4 = g3 + p3 ⋅ c3

= g3 + p3 ⋅ (g2 + p2 ⋅ g1 + p2 ⋅ p1 ⋅ g0 + p2 ⋅ p1 ⋅ p0 ⋅ c0)

= g3 + p3 ⋅ g2 + p3 ⋅ p2 ⋅ g1 + p3 ⋅ p2 ⋅ p1 ⋅ g0 + p3 ⋅ p2 ⋅ p1 ⋅ p0 ⋅ c0

DDPP5.book Page 377 Tuesday, March 28, 2017 5:33 PM

378 Chapter 8 Combinational Arithmetic Elements

Each equation corresponds to a circuit with as few as three levels of delay—one
for the generate or propagate signal, and two for the sum of products shown. A
carry-lookahead adder uses three-level equations like these in each adder stage
for the block labeled “Carry-Lookahead Logic” in Figure 8-4. Each stage’s sum
output is produced by combining its carry bit above with two addend bits.

In any given technology, the carry equations beyond a certain bit position
cannot be implemented effectively in just three levels of logic; they require gates
with too many inputs. While wider AND and OR functions can be built with two
or more levels of logic, a more economical approach is to use carry lookahead
only for a small group where the equations can be implemented in three levels,
and then use ripple carry between groups. As shown in the next subsection,
legacy 4-bit MSI adders used this approach, and they may be used as the basis of
efficient gate-level designs in some ASIC libraries.

8.1.5 Group Ripple Adders
The 74x283 is an MSI 4-bit binary adder that forms its sum and carry outputs
with just a few levels of logic, using the carry-lookahead technique. Figure 8-5
is a logic symbol for the 74x283.

The logic diagram for the ’283, shown in Figure 8-6, has a few details
worth noting relative to the general carry-lookahead design described in the pre-
ceding subsection. First, it uses the “OR” version of the carry-propagate signal,
that is, pi = ai + bi. Second, it produces active-low versions of the carry-generate
(gi ′) and carry-propagate (pi ′) signals, since inverting gates are generally faster
than noninverting ones. Third, it uses an algebraic manipulation of the half-sum
equation:

hsi = ai ⊕ bi

= ai ⋅ bi′ + ai′ ⋅ bi

= ai ⋅ bi′ + ai ⋅ ai′ + ai′ ⋅ bi + bi ⋅ bi′
= (ai + bi) ⋅ (ai′ + bi′)
= (ai + bi) ⋅ (ai ⋅ bi)′
= pi ⋅ gi′

carry-lookahead adder

74x283

Figure 8-5
Traditional logic symbol
for the 74x283 4-bit
binary adder with
internal carry lookahead.

74x283

A0

C0

B0

S0

S1A1

B1

A2

B2

A3

B3

S2

S3

C4

DDPP5.book Page 378 Tuesday, March 28, 2017 5:33 PM

8.1 Adding and Subtracting 379

C0

S0

S1

S2

S3

C4

B0

A0

B1

A1

B2

A2

B3

A3

g3′

p3′

g2′

p2′

g1′

p1′

c1

hs1

c2

hs2

c3

hs3

c0

hs0

g0′

c0′

p0′

Figure 8-6
Logic diagram
for the 74x283
4-bit binary adder
with internal
carry lookahead.

DDPP5.book Page 379 Tuesday, March 28, 2017 5:33 PM

380 Chapter 8 Combinational Arithmetic Elements

Thus, an AND gate with an inverted input can be used instead of an XOR gate to
create each half-sum bit. That’s generally smaller and faster than an XOR gate.

Finally, the ’283 creates the carry signals using an INVERT-OR-AND
structure (the DeMorgan equivalent of an AND-OR-INVERT), which has about
the same delay as a single CMOS inverting gate, as we’ll show in Section 14.1.7.
Thus, the propagation delay from the C0 input to the C4 output of the ’283 is
very short, about the same as two inverting gates. As a result, fairly fast group-
ripple adders with more than four bits can be made simply by cascading the
carry outputs and inputs of ’283s, as shown in Figure 8-7 for a 16-bit adder. The
total propagation delay from C0 to C16 in this circuit is about the same as that of
eight inverting gates.

8.1.6 Group-Carry Lookahead
The preceding subsection showed how to ripple carries between individual
carry-lookahead adders—that’s easy. But we can actually take carry lookahead
to the next level, creating group-carry-lookahead outputs for each n-bit group,
and combining these in two levels of logic to provide the carry inputs for all of
the groups without rippling carries between them.

CARRY
MANIPULATIONS

A little insight and some algebraic manipulation is needed to see how the carry equa-
tions in the 74x283 work, compared to the generic carry lookahead equations in the
preceding subsection. First, the ci+1 equation uses the term pi ⋅ gi instead of gi. This
has no effect on the output, since pi is always 1 when gi is 1. However, it allows the
equation to be factored as follows:

ci+1 = pi ⋅ gi + pi ⋅
ci = pi ⋅ (gi + ci)

This leads to the following carry equations, which are used by the circuit:

c1 = p0 ⋅ (g0 + c0)

c2 = p1 ⋅ (g1 + c1)
= p1 ⋅ (g1 + p0 ⋅ (g0 + c0))
= p1 ⋅ (g1 + p0) ⋅ (g1 + g0 + c0)

c3 = p2 ⋅ (g2 + c2)
= p2 ⋅ (g2 + p1 ⋅ (g1 + p0) ⋅ (g1 + g0 + c0))
= p2 ⋅ (g2 + p1) ⋅ (g2 + g1 + p0) ⋅ (g2 + g1 + g0 + c0)

c4 = p3 ⋅ (g3 + c3)
= p3 ⋅ (g3 + p2 ⋅ (g2 + p1) ⋅ (g2 + g1 + p0) ⋅ (g2 + g1 + g0 + c0))
= p3 ⋅ (g3 + p2) ⋅ (g3 + g2 + p1) ⋅ (g3 + g2 + g1 + p0) ⋅ (g3 + g2 + g1 + g0 + c0)

If you’ve followed the derivation of these equations and can obtain the same ones by
reading the ’283 logic diagram, then congratulations, you’re up to speed on switch-
ing algebra! If not, you may want to review Sections 3.1 and 3.2.

group-ripple adder

group-carry lookahead

DDPP5.book Page 380 Tuesday, March 28, 2017 5:33 PM

8.1 Adding and Subtracting 381

Figure 8-8 shows the idea for four 4-bit groups. Each group adder has
group-carry-lookahead outputs Gg and Pg. The Gg output is asserted if the adder
generates a carry—that is, if it will produce a carry-out (C4 = 1) whether or not
there is a carry-in (i.e., even if C0 = 0). It can create Gg as a two-level sum of
products using the adder’s internal generate and propagate signals defined at the
bit level in Section 8.1.4:

That is, the adder generates a carry if the most significant bit position generates
a carry, or if a carry generated by a lower-order bit position is guaranteed to be
propagated to and through the most significant bit position. The Pi output is
asserted if the adder propagates a carry—that is, if the adder will produce a
carry-out if it has a carry-in:

As shown in the figure, these Gg and Pg signals from the groups are com-
bined in a 4-group lookahead carry circuit that determines the carry inputs of the

Gg = g3 + p3 ⋅ g2 + p3 ⋅ p2 ⋅ g1 + p3 ⋅ p2 ⋅ p1 ⋅ g0

Pg = p3 ⋅ p2 ⋅ p1 ⋅ p0

A0

A1

A2

A3

S0

S1

S2

S3

B0

B1

B2

B3

A4

A5

A6

A7

B4

B5

B6

B7

74x283

A0

C0

B0

S0

S1A1

B1

A2

B2

A3

B3

S2

S3

C4

74x283

A0

C0

B0

S0

S1A1

B1

A2

B2

A3

B3

S2

S3

C4

S4

S5

S6

S7

A[15:0]

B[15:0]

C0

C4

A8

A9

A10

A11

S8

S9

S10

S11

B8

B9

B10

B11

A12

A13

A14

A15

B12

B13

B14

B15

74x283

A0

C0

B0

S0

S1A1

B1

A2

B2

A3

B3

S2

S3

C4

74x283

A0

C0

B0

S0

S1A1

B1

A2

B2

A3

B3

S2

S3

C4

S12

S13

S14

S15

C12

C8
C16

S[15:0]

U1 U3

U2 U4

Figure 8-7
A 16-bit group-ripple
adder with 4-bit
groups.

lookahead carry circuit

DDPP5.book Page 381 Tuesday, March 28, 2017 5:33 PM

382 Chapter 8 Combinational Arithmetic Elements

three high-order groups, based on the carry into the low-order group and the
lookahead outputs. The carry equations used in this circuit can be obtained by
“adding out” the basic carry-lookahead equation of Section 8.1.4:

Expanding for the first three values of i, we obtain the following equations:

The carry lookahead scheme can be expanded to make even wider fast
adders. Notice that the lookahead carry circuit in Figure 8-8 has its own Gs and
Ps outputs; these are asserted if the 16-bit “supergroup” in the figure will respec-
tively generate or propagate a carry. Thus, to obtain a fast 64-bit adder,
Figure 8-8 may be replicated for four 16-bit supergroups, with the supergroup
lookahead outputs Gs0–3 and Ps0–3 connected to their own second-level look-

ci+1 = gi + pi ⋅ ci

Cg1 = Gg0 + Pg0 ⋅ Cg0

Cg2 = Gg1 + Pg1 ⋅ Gg0 + Pg1 ⋅ Pg0 ⋅ Cg0

Cg3 = Gg2 + Pg2 ⋅ Gg1 + Pg2 ⋅ Pg1 ⋅ Gg0 + Pg2 ⋅ Pg1 ⋅ Pg0 ⋅ Cg0

lookahead
carry
circuit

Cg1
Cg0

Gg0

Pg0

Gg1

Pg1

Gg2

Pg2

Gg3

Pg3

Cg2

Cg3

Gs

Ps

4-bit adder

C0

S[3:0]A[3:0]

B[3:0]

Pg

Gg

C4

A[3:0]

B[3:0]

C0

A[15:0]

B[15:0] S[3:0]

Gi0

Pi0

Gs0

Ps0

C4

C8

C124-bit adder

C0

S[3:0]A[3:0]

B[3:0]

Pg

Gg

C4

4-bit adder

C0

S[3:0]A[3:0]

B[3:0]

Pg

Gg

C4

4-bit adder

C0

S[3:0]A[3:0]

B[3:0]

Pg

Gg

C4

S[7:4]

Gi1

Pi1

S[11:8]

Gi2

Pi2

S[15:12]

Gi3

Pi3

S[15:0]

C16

Figure 8-8 A 16-bit group-carry-lookahead adder with 4-bit groups.

DDPP5.book Page 382 Tuesday, March 28, 2017 5:33 PM

8.1 Adding and Subtracting 383

ahead carry circuit to create the carry inputs to the high-order supergroups.
Compared to the 16-bit adder, this structure adds only the delay of the second-
level lookahead circuit, typically another two gate delays. A Verilog equivalent
of this structure will be shown later, in Program 8-9.

Also notice in Figure 8-8 that C16, the carry out of the 16-bit adder, is
taken from the high-order 4-bit group. It would also be possible for the look-
ahead carry circuit to create C16 (call the output Cg4) as a function of its inputs
in the same way that it creates Cg1, Cg2, and Cg3. Determining which way is
faster is left as Exercise 8.18.

*8.1.7 MSI Arithmetic and Logic Units
An arithmetic and logic unit (ALU) is a combinational circuit that can perform
any of a number of different arithmetic and logical operations on a pair of b-bit
operands. The operation to be performed is specified by a set of function-select
inputs. Legacy MSI ALUs have 4-bit operands and three to five function-select
inputs, allowing up to 32 different functions to be performed.

The logic symbols for the 74x381 and 74x382 legacy MSI ALUs are shown
in Figure 8-9(a) and (b), respectively. They each provide the eight different func-
tions as detailed in Table 8-1. Note that the identifiers A, B, and F in the table
refer to the 4-bit words A3–A0, B3–B0, and F3–F0; and the symbols ⋅, +, and ⊕
refer to bit-by-bit logical AND, OR and XOR operations.

The only difference between the two ALUs is that the ’381 provides active-
low group-carry-lookahead outputs, while the ’382 provides ripple carry and
overflow outputs. The 74x182, with the logic symbol shown in Figure 8-9(c), is
a lookahead carry circuit designed to be used with the ’381, with active-low
lookahead inputs and outputs.

*Throughout this book, optional subsections are marked with an asterisk.

arithmetic and logic
unit (ALU)

74x381

74x381

CIN

F0

S0

S1

S2

B1

A0

B0

A1

B3

A2

B2

A3

P

G

F1

F2

F3

(a) (b) 74x382

CIN

F0

S0

S1

S2

B1

A0

B0

A1

B3

A2

B2

A3

COUT

OVR

F1

F2

F3

74x182

C1

C0

G0

P0

G1

P1

G2

P2

G3

P3

C2

C3

G

P

(c)

Figure 8-9 Logic symbols for legacy ALU components: (a) 74x381; (b) 74x382; 74x182.

74x382

74x182

DDPP5.book Page 383 Tuesday, March 28, 2017 5:33 PM

384 Chapter 8 Combinational Arithmetic Elements

Historically, the two ALU variants were produced instead of a slightly
larger part with both sets of outputs because of the pin limitations of the 20-pin
IC package. Today, a typical FPGA or ASIC library would provide a component
with both sets of outputs, and a synthesis tool would automatically prune away
the extra logic for any outputs that weren’t being used in a given application.

8.1.8 Adders in Verilog
Verilog has built-in addition (+) and subtraction (-) operators for bit vectors. Just
about the simplest possible adder module is shown in Program 8-1, with a
parameter N to specify the width of the addends and sum. Since an n-bit addition
of unsigned numbers can produce an n+1-bit sum, the lefthand side of the
assignment statement concatenates carry-out bit COUT with the n-bit sum output
S to receive the n+1-bit sum.

In Verilog-2001, the bit vectors can actually be considered to be either
unsigned or two’s-complement signed numbers, as we’ve discussed. And as we
showed in Section 2.6, the actual addition or subtraction operation is exactly the
same for either interpretation of the bit vectors. Since exactly the same logic cir-
cuit is synthesized for either interpretation, the Verilog compiler doesn’t
necessarily need to know how you’re interpreting your bit vectors. Only the han-

Table 8-1
Functions performed
by the 74x381 and
74x382 4-bit ALUs.

Inputs Function

S2 S1 S0

0 0 0 F = 0000

0 0 1 F = B minus A minus 1 plus CIN

0 1 0 F = A minus B minus 1 plus CIN

0 1 1 F = A plus B plus CIN

1 0 0 F = A ⊕ B

1 0 1 F = A + B
1 1 0 F = A ⋅ B
1 1 1 F = 1111

Program 8-1 A simple Verilog adder module.

module VrNbitadder(A, B, CIN, S, COUT);
 parameter N=16; // Addend and sum width
 input [N-1:0] A, B;
 input CIN;
 output [N-1:0] S;
 output COUT;

 assign {COUT, S} = A + B + CIN;
endmodule

DDPP5.book Page 384 Tuesday, March 28, 2017 5:33 PM

8.1 Adding and Subtracting 385

dling of carry, borrow, and overflow conditions differs by interpretation (e.g., in
comparisons), and that’s done separately from the addition or subtraction itself.

For example, Program 8-2 is a module showing both interpretations. In the
first addition, 8-bit addends A and B and sum S are considered to be two’s-com-
plement numbers. In two’s-complement addition, any carry out of the high-order
bit is discarded, so the sum S is declared to have the same bit width as the
addends. Since the module does not use the carry out of the high-order bit, the
tools will not synthesize any logic circuits for it. (It would have been S[8] if we
had declared S as S[8:0], 9 bits wide.) However, we have declared an additional
output bit OVFL to indicate an overflow condition, which by definition occurs if
the signs of the addends are the same and the sign of the sum is different.

In the second addition, we are considering 8-bit addends C and D to be
unsigned numbers. The resulting sum may therefore take up to 9 bits to express,
and we could have declared sum T as a 9-bit vector to receive the full sum.
Instead, as in our first example we gave T the same width as the addends, and
declared a separate 1-bit output COUT to receive the high-order bit of the sum,
which is assigned to the 9-bit concatenation of COUT and T.

Addition and subtraction circuits are relatively large, so most compilers
will attempt to reuse adder blocks when possible. For example, Program 8-3 is a
module with two different additions. Figure 8-10(a) shows a circuit that might
be synthesized if the compiler follows the Verilog code literally. However, many

Program 8-2 Verilog module with addition of signed and unsigned numbers.

module Vradders(A, B, C, D, S, T, OVFL, COUT);
 input [7:0] A, B, C, D;
 output [7:0] S, T;
 output OVFL, COUT;

 // S and OVFL -- signed interpretation
 assign S = A + B;
 assign OVFL = (A[7]==B[7]) && (S[7]!=A[7]);
 // T and COUT -- unsigned interpretation
 assign {COUT, T} = C + D;
endmodule

Program 8-3 Verilog module that allows adder sharing.

module Vraddersh(SEL, A, B, C, D, S);
 input SEL;
 input [7:0] A, B, C, D;
 output reg [7:0] S;

 always @ (*)
 if (SEL) S = A + B;
 else S = C + D;
endmodule

DDPP5.book Page 385 Tuesday, March 28, 2017 5:33 PM

386 Chapter 8 Combinational Arithmetic Elements

compilers are clever enough to use the approach shown in (b). Rather than syn-
thesizing two adders and selecting one’s output with a multiplexer, the compiler
synthesizes just one adder and selects its inputs using multiplexers. This yields a
smaller circuit, since an n-bit 2-input multiplexer is smaller than an n-bit adder.

The module in Program 8-4 has the same functionality as Program 8-3,
this time using a continuous-assignment statement and the conditional operator;
a typical compiler should synthesize the same circuit for either module.

A more complicated Verilog module using addition and subtraction is
shown in Program 8-5. This module has the same functionality as a 74x381
ALU, including group generate and propagate outputs, except that it has n-bit
inputs and outputs as specified by a parameter N (default 8).

The module’s first for loop is used to create the internal carry-generate
G[i] and -propagate P[i] signals for each adder stage (i ranges from 0 to N-1);
note here how the bits of A and B are complemented if they are being subtracted.
The second for loop combines these signals to create the group carry-generate
G_L and -propagate P_L signals for the n-bit group. These signals are specified
iteratively (that is, by a for loop) in a natural way. At iteration i, the variable GG
indicates whether ALU will generate a carry as of adder stage i—that is, if the
stage generates a carry (G[i]=1) or if it will propagate a previously generated
carry (P[i]=1 and GG was 1 in the for-loop’s previous iteration). Note that since

(b)

2-input
mux

A

C

2-input
mux

B

D

SEL

Sadder

(a)

A

B

C

D

SEL

S

adder

adder

2-input
mux

Figure 8-10 Two ways to synthesize a selectable addition: (a) two adders and a selectable
sum; (b) one adder with selectable inputs.

Program 8-4 Alternate version of Program 8-3, using a continuous-
assignment statement.

module Vraddersc(SEL, A, B, C, D, S);
 input SEL;
 input [7:0] A, B, C, D;
 output [7:0] S;

 assign S = (SEL) ? A + B : C + D;
endmodule

DDPP5.book Page 386 Tuesday, March 28, 2017 5:33 PM

8.1 Adding and Subtracting 387

GG is a variable in an always block, the assignment to it in each iteration takes
effect immediately and is propagated to the next iteration. The output signal G_L
is just the complement of GG’s value after the last iteration.

In a similar way, at iteration i, the variable GP indicates whether ALU will
propagate a carry as of adder stage i, that is, if all the P[i] signals through that
stage are 1. The final value of GP is just the AND of the P[i] signals for all values
of i, and the output signal P_L is the complement of this value.

A case statement selects one of eight functions for the output function F.
Three of these functions involve addition or subtraction, and the code as written
relies on Verilog compiler to synthesize the adder and subtractor blocks.

Program 8-5 Verilog module for an n-bit 74x381-like ALU.

module VrNbitALU(S, A, B, CIN, F, G_L, P_L);
 parameter N = 8; // Operand widths
 input [2:0] S;
 input [N-1:0] A, B;
 input CIN;
 output reg [N-1:0] F;
 output reg G_L, P_L;
 reg GG, GP; // Accumulating vars for G and P outputs
 reg [N-1:0] G, P; // G and P at each bit position
 integer i;

 always @ (*) begin
 for (i = 0; i <= N-1; i = i + 1) begin
 G[i] = (A[i]^(S==3'd1)) & (B[i]^(S==3'd2)); // generate
 P[i] = (A[i]^(S==3'd1)) | (B[i]^(S==3'd2)); // propagate
 end
 GG = G[0]; GP = P[0]; // Accumulate G and P for N-bit group
 for (i = 1; i <= N-1; i = i + 1) begin
 GG = G[i] | (GG & P[i]);
 GP = P[i] & GP;
 end
 G_L = ~GG; P_L = ~GP; // Set outputs to accumulated values
 case (S) // Set F outputs as function of select
 3'd0: F = {N{1'b0}};
 3'd1: F = B - A - 1 + CIN;
 3'd2: F = A - B - 1 + CIN;
 3'd3: F = A + B + CIN;
 3'd4: F = A ^ B;
 3'd5: F = A | B;
 3'd6: F = A & B;
 3'd7: F = {N{1'b1}};
 default: F = {N{1'b0}};
 endcase
 end
endmodule

DDPP5.book Page 387 Tuesday, March 28, 2017 5:33 PM

388 Chapter 8 Combinational Arithmetic Elements

The test bench in Program 8-6 can be used to check the addition operation
of any n-bit adder with group carry lookahead outputs. For example, to test the
addition function of the n-bit ALU of Program 8-5, it instantiates VrNbitALU
with a constant value applied to the S function-select inputs to perform addition.
Because n should be relatively small (you’d be unlikely to use a carry lookahead
group wider than 8 bits), the test bench has nested for loops that go through all
possible combinations of the addend and carry inputs: 217 of them for the default
of 8-bit addends.

The test bench uses a task checkadd to check the results at each iteration
against the expected sum, generate, and propagate values. The expected sum is
calculated using Verilog’s built-in addition function; the calculated value should
be 1 if the sum of A and B, without an input carry, requires more than n bits; and
the propagate value is 1 if at every bit position at least one addend has a 1.

For large adders, for example with 16-bit or wider addends, it’s impractical
to check all possible input combinations. So, a test bench for wide adders,
regardless of their internal design, can use a test bench that generates random

BIG-ADDER
PERFORMANCE

In a “tweak” of the Verilog in Program 8-5, we could try to give the compiler some
help by writing code to define specify carry bits C[i] for each stage i, based on the
already-available GG and GP variables and the CIN signal. That is, the carry C[i] into
stage i is 1 if GG in the previous stage was 1, or if GP was 1 and CIN is 1. The output
function F can then be specified for the addition and subtraction cases without
Verilog’s built-in addition and subtraction operators; for example, F = A ^ B ^ C for
case 3 (addition), and F = ~A ^ B ^ C for case 1 (subtraction). (See Exercise 8.32.)

But does this really help? The answer depends on the target technology and the
compiler. For example, when targeted to the same 7-series FPGAs that we used for
comparator examples in Section 7.4.6 using Xilinx Vivado tools, the tweaked ver-
sion used slightly fewer chip resources—21 LUTs vs. 24 for the original. However,
it was actually slower (11.12 vs. 10.15 ns total delay), because the compiler did not
use the FPGA’s CARRY4 elements that optimize adder performance—the poor com-
piler didn’t even know it was synthesizing an adder.

When implementing high-level functions like ALUs in any given target tech-
nology, it usually helps the designer to look for a suitable library element that has
already been optimized by the technology provider. For example, a 74x381-like
ALU that has been hand-designed at the gate level in an ASIC “standard-cell” library
will usually be much smaller and faster than an ALU synthesized from behavioral
code by a compiler targeting any comparable FPGA or ASIC technology.

And what if a suitable library function is not available? As in this example, it
may still be better to let the compiler see the high-level function that you’re trying to
perform. It may very well know a better way than you to optimize its performance in
the target technology.

DDPP5.book Page 388 Tuesday, March 28, 2017 5:33 PM

8.1 Adding and Subtracting 389

inputs. However, just as we saw with comparator test benches, the “random”
inputs should be carefully selected or adjusted to exercise borderline cases.

Program 8-7 shows such a test bench for an n-bit adder with a carry output.
Several aspects of this test bench are worth noting:

• Like many of our test benches, it is parameterized for the operand width,
and it passes the width parameter to the UUT.

• The UUT is the simple n-bit adder module of Program 8-1, but any n-bit
adder can be tested.

Program 8-6 Test bench for N-bit group-carry-lookahead adder.

`timescale 1ns/100ps
module VrNbitgcladd_tb();
 parameter N = 8; // Operand widths
 reg [N-1:0] A, B;
 reg CIN;
 wire [N-1:0] S;
 wire G_L, P_L;
 integer ai, bi, ci, errors;
 reg xpectG, xpectP;
 reg [N-1:0] xpectS;

 VrNbitALU #(.N(N)) UUT (.S(3'b011),.A(A),.B(B),.CIN(CIN),.F(S),.G_L(G_L),.P_L(P_L));

 task checkadd ();
 begin
 xpectS = A+B+CIN; xpectG = ((A+B) >= 2**N);
 xpectP = (&(A|B)===1'b1); // P=1 if there's a 1 in every bit of (A|B)
 if ((xpectS !== S) || (xpectG !== ~G_L) || (xpectP !== ~P_L)) begin
 errors = errors + 1;
 $write("ERROR: CIN,A,B = %1b,%8b,%8b, S,G_L,P_L = %8b,%1b,%1b,");
 $display(" should be %8b,%1b,%1b", CIN,A,B, S,G_L,P_L, xpectS,~xpectG,~xpectP);
 end
 end
 endtask

 initial begin
 errors = 0;
 for (ci=0; ci<=1; ci=ci+1)
 for (ai=0; ai<2**N; ai=ai+1)
 for (bi=0; bi<2**N; bi=bi+1) begin
 A = ai; B = bi; CIN = ci; #10 ; // Apply test vector and wait
 checkadd; // check values
 end
 $display("Errors: %d", errors); $stop(1);
 end
endmodule

DDPP5.book Page 389 Tuesday, March 28, 2017 5:33 PM

390 Chapter 8 Combinational Arithmetic Elements

• The “checkadd” task in our previous group-carry-lookahead adder test
bench used the expression “(A+B) >= 2**N)” to determine whether the
adder would generate a carry. We got away with that for this narrow adder,
but it won’t work for wide adders. Notice that the righthand side of this
expression is an integer, which may be as narrow as 32 bits depending on
the Verilog tool environment. The addition on the lefthand side, on the
other hand, is performed on vectors, which in Program 8-7 may be as wide

Program 8-7 Adder test bench for wide adders using random test inputs.

`timescale 1ns/100ps
module VrNbitadder_tb();
 parameter N = 64; // Operand widths
 parameter SEED = 1; // Change for a different random sequence
 reg [N-1:0] A, B;
 reg CIN;
 wire [N-1:0] S;
 wire COUT;
 integer i, errors, msb;
 reg xpectCOUT;
 reg [N-1:0] xpectS;

 VrNbitadder #(.N(N)) UUT (.A(A), .B(B), .CIN(CIN), .S(S), .COUT(COUT));

 task checkadd;
 begin
 xpectS = A+B+CIN; xpectCOUT = ((A+B+CIN) >= {1'b1,{N{1'b0}}});
 if ((xpectCOUT!==COUT) || (xpectS!==S)) begin
 errors = errors + 1;
 $display("ERROR: CIN,A,B = %1b,%8b,%8b, COUT,S = %1b,%8b, should be %1b,%8b",
 CIN, A, B, COUT, S, xpectCOUT, xpectS);
 end
 end
 endtask

 initial begin
 errors = 0;
 A = $random(SEED); // Set pattern based on seed parameter
 for (i=0; i<10000; i=i+1) begin
 B = ~A; CIN = 0; #10 ; checkadd; // Apply test vector and comp., wait, check
 CIN = 1; #10 ; checkadd; // Check both values of CIN
 msb = 31; A[31:0] = $random; // Get random number, maybe > 32 bits wide
 while (msb < N-1) begin A = A<<32; A[31:0] = $random; msb = msb+32; end
 CIN = 0; #10 ; checkadd; // Check again
 CIN = 1; #10 ; checkadd; // Try both values of CIN
 end
 $display("Errors: %0d", errors); $stop(1);
 end
endmodule

DDPP5.book Page 390 Tuesday, March 28, 2017 5:33 PM

8.1 Adding and Subtracting 391

as 64K bits according to the Verilog LRM. Certainly adders of at least 64–
128 bits are found in many applications. So, for the righthand side, the new
test bench constructs an n+1-bit vector with a single leading 1 bit, so the
simulator carries out the comparison on n-bit vectors, not integers.

• Another width-related issue is the random test-input generation. Recall
that the result produced by the $random Verilog system function is a 32-bit
signed integer, which is sign-extended when assigned to a wider vector.
That doesn’t provide very full test coverage for adders wider than 32 bits.
Our test bench uses a while loop to build up an arbitrarily wide test vector
as needed, 32 bits at a time, using multiple calls to $random.

• Depending on the internal implementation of the UUT, some logic may be
tested only in a few cases. In particular carry-propagate logic, if present,
may be tested only if the A and B inputs of the propagate group are exactly
bit-by-bit complementary. Otherwise, carry propagation may be blocked
entirely or carry generation may be the dominating logic. Therefore, at
each iteration, the test bench applies a random value and its bit-by-bit com-
plement to the A and B inputs, with CIN values of both 0 and 1, which
should yield COUT values of 0 and 1. Then it generates an unrelated random
number to apply to A and checks that addition with both values of CIN.

In general, we should trust that the tools do “the right thing” when we spec-
ify an adder module using built-in Verilog language constructs. However, a test
bench like Program 8-7 is very useful to check our work if we do a custom,
structural design of an adder circuit. For example, Programs 8-8 and 8-9 are a set
of structured Verilog modules to perform a 16-bit addition using the group look-
ahead structure of Figure 8-8.

The first module, VrNbitGCLAadder, is a parameterized n-bit group carry
lookahead adder with a design identical to the adder portion of Program 8-5 on
page 387. The second module, Vr4iLACckt, is a 4-input lookahead carry circuit
with functionality similar to the 74x182.

The third module, Vr16bGCLAadder_s in Program 8-9, instantiates four
copies of VrNbitGCLAadder (with N=4) and one copy of Vr4iLACckt to create
a 16-bit group-carry-lookahead adder with its own supergroup lookahead out-
puts. Four instances of the 16-bit module may be further combined with another
instance of Vr4iLACckt to make a 64-bit adder, as requested in Exercise 8.25.

Notice that the Vr16bGCLAadder_s module creates the four instances of
the 4-bit adder and connects their inputs and outputs using a generate block (see
the box on page 311). An alternative is to use four separate component instanti-
ations, but there’s a trade-off. It might be clearer to write four instantiations, and
in fact there would be no avoiding this if the interconnections were individually
named signals rather than the bits of vectors indexed by g. With the generate
block, figuring out the correct index expressions may be a little more difficult,
but once it’s done, the model is probably less error-prone.

DDPP5.book Page 391 Tuesday, March 28, 2017 5:33 PM

392 Chapter 8 Combinational Arithmetic Elements

Program 8-8 Bottom-level modules for hierarchical group-carry-lookahead adder design.

module VrNbitGCLAadder(A, B, CIN, S, Gg, Pg);
 parameter N = 4; // Operand widths
 input [N-1:0] A, B;
 input CIN;
 output reg [N-1:0] S;
 output reg Gg, Pg;
 reg GGa, GPa; // Accumulating vars for Gg and Pg outputs
 reg [N-1:0] G, P, C; // G, P, and C at each bit position
 integer i;

 always @ (*) begin
 for (i = 0; i <= N-1; i = i + 1) begin
 G[i] = A[i] & B[i]; // per-bit generate and propagate
 P[i] = A[i] | B[i];
 end
 GGa = G[0]; GPa = P[0]; // Accumulate Gg and Pg for the N-bit group
 C[0] = CIN; // Carry in to LSB
 for (i = 1; i <= N-1; i = i + 1) begin
 C[i] = GGa | (CIN & GPa); // Carry in from previous bit
 GGa = G[i] | (GGa & P[i]);
 GPa = P[i] & GPa;
 end
 Gg = GGa; Pg = GPa; // Set outputs to final accumulated values
 S = A ^ B ^ C; // Compute sum
 end
endmodule

module Vr4iLACckt(C0, Gg, Pg, C, Gs, Ps);
 input C0;
 input [3:0] Gg, Pg; // Note, active-high G and P in and out in this version
 output reg [4:1] C;
 output reg Gs, Ps;

 always @ (C0 or Gg or Pg) begin
 C[1] = Gg[0] | (Pg[0] & C0); // Carry outputs go back to the groups
 C[2] = Gg[1] | (Pg[1] & C[1]);
 C[3] = Gg[2] | (Pg[2] & C[2]);
 C[4] = Gg[3] | (Pg[3] & C[3]); // and the final carry output
 Gs = Gg[3] | (Pg[3] & Gg[2]) | (Pg[3] & Pg[2] & Gg[1]) // Generate and propagate
 | (Pg[3] & Pg[2] & Pg[1] & Gg[0]); // for the supergroup
 Ps = &Pg;
 end

endmodule

DDPP5.book Page 392 Tuesday, March 28, 2017 5:33 PM

8.1 Adding and Subtracting 393

Program 8-9 Top-level module for a 16-bit group-carry-lookahead adder with four 4-bit groups.

module Vr16bGCLAadder_s(A, B, CIN, S, Gs, Ps, COUT);
 input [15:0] A, B;
 input CIN;
 output wire [15:0] S;
 output wire Gs, Ps, COUT; // Generate, propagate, carry out for 16-bit adder
 wire [3:0] Gi, Pi; // Generate, propagate outputs for the 4-bit groups
 wire [4:0] C; // Carry inputs for the 4-bit groups; 16-bit carry out
 genvar g;

 assign C[0] = CIN;

 generate
 for (g=0; g<=3; g=g+1) begin : a // Generate the four 4-bit adders
 VrNbitGCLAadder #(.N(4)) U1 (.A(A[(4*g+3):4*g]),.B(B[(4*g+3):4*g]),.CIN(C[g]),
 .S(S[(4*g+3):4*g]),.Gg(Gi[g]),.Pg(Pi[g]));
 end
 endgenerate
 // Now hook up the lookahead carry circuit
 Vr4iLACckt U2 (.C0(CIN), .Gg(Gi), .Pg(Pi), .C(C[4:1]), .Gs(Gs), .Ps(Ps));
 // If we need a carry output too, we can get it this way:
 assign COUT = C[4]; // or this way: assign COUT = Gs | (CIN & Ps);
endmodule

a[0].U1

VrNbitGCLAadder

CIN

Gg

Pg

A[3:0]

B[3:0]

S[3:0]

A[15:0]
B[15:0]

CIN

COUT
a[1].U1

VrNbitGCLAadder

CIN

Gg

Pg

A[3:0]

B[3:0]

S[3:0]

U2

Vr4iLACckt

C0

Gs

Ps

C[4:1]

Gg[3:0]

Pg[3:0]
Gs
Ps

S[15:0]a[2].U1

VrNbitGCLAadder

CIN

Gg

Pg

A[3:0]

B[3:0]

S[3:0]

a[3].U1

VrNbitGCLAadder

CIN

Gg

Pg

A[3:0]

B[3:0]

S[3:0]

3:0

7:4

3:0

7:4

2

1

4

0

1

2

3

0

1

2

3

3:0

3:0

11:8

15:12

3

11:8

11:8

15:12

15:12

Figure 8-11
Hierarchy of a
16-bit group-carry-
lookahead adder.

DDPP5.book Page 393 Tuesday, March 28, 2017 5:33 PM

394 Chapter 8 Combinational Arithmetic Elements

Figure 8-11 on the previous page shows the hierarchical schematic
produced by the compiler based on the Vr16bGCLAadder_s module definition.
Notice how the compiler used the begin-end block name and the genvar index
to name the generated components. Except for using bus notation for the carry
and lookahead signals, this schematic pretty much matches the structure in
Figure 8-8 on page 382.

*8.1.9 Parallel-Prefix Adders
The carry-lookahead adder structure in Section 8.1.4 is just one of a class of
structures known as parallel-prefix adders. The word “prefix” has a formal
meaning in mathematical descriptions of how these adders work, but it also just
refers to the results of a pre-computation using the adder’s inputs, normally the
creation of generate and propagate signals for each bit position. As we saw in
Section 8.1.4, this can be done in parallel for all bit positions in the addition,
hence the name.

The general structure of an n-bit parallel-prefix adder has three blocks as
shown in Figure 8-12. The topmost block receives the addends and calculates

parallel-prefix adder

a –1

Pre-computation
of initial prefixes

b –1

g –1 p –1

a –2 b –2

g –2 p –2

a1 b1

p1

a0 b0

g0 p0

HS1

g1

s1

= p1

CO0 HS0

s0

= p0

CO –2 HS –2

s –2

= p –2

CO –1 HS –1

s –1

= p –1

Carry lookahead
logic (prefix tree)

Post-computation
of sum bits

CIN

COUT

CO–1CO –3

Figure 8-12 General structure of a parallel-prefix adder.

DDPP5.book Page 394 Tuesday, March 28, 2017 5:33 PM

8.1 Adding and Subtracting 395

the initial prefixes—generate and propagate signals—in parallel. The next block
receives the initial prefixes and the carry CIN into the addition’s LSB position,
and calculates the individual carry-out signals out from all of the bit positions.
This block is where different parallel-prefix adders use different structures and
strategies, including the calculation of intermediate prefixes, to optimize delay,
circuit area, or some combination of the two. The bottom block receives the
carry-out signals and combines these with the half-sum signals from the top
block (shown routed “under” the middle block), one XOR gate per sum bit. Note
that VLSI and ASIC implementations generally use the “XOR” version of the
propagate signals as shown, since these are also the half-sum signals that are
used by the bottom block.

Going back to the logic diagram for the 74x283 4-bit carry lookahead
Figure 8-6 on page 379, it’s easy to draw three rectangles around the logic to see
how it corresponds to Figure 8-12. But at the same time, note the drawbacks of
the 74x283 structure: the gi and pi signals have high fanout, and the widths of the
gates that combine them increase as we go to higher-order bits.

The first parallel-prefix adder that was targeted to VLSI, the Kogge-Stone
adder (named after its inventors), avoids the drawbacks of the 74x283’s classic
lookahead structure. Regardless of the width of the addition, the Kogge-Stone
adder does not increase the width of the gates or the fanout needed to process
lookahead information, which is a great performance benefit for CMOS or
almost any other circuit implementation. The Kogge-Stone adder does add one
or more “levels” of lookahead logic as the addition width grows, but only slowly.
Specifically, each doubling of width adds just two gate delays—an AND-OR or
equivalently a NAND-NAND—to the worst-case carry path. We’ll see how that’s
accomplished when we look at the overall design.

The classic lookahead structure in Section 8.1.4 considered lookahead
information—generate and propagate—at each bit position. The Kogge-Stone
structure starts out the same way, considering each bit position in the first level
of lookahead logic. But at each successive level, it doubles the width of a bit
group that it considers—2, 4, 8 and more, up to the desired adder width. Before
showing how the overall structure does this, we must make a few definitions.

The Kogge-Stone adder represents lookahead information at bit position i
as a prefix that we’ll call GPNi , a signal pair with two components (GNi , PNi),
where GNi is asserted if a carry is generated and PNi is asserted if a carry is prop-
agated by a group of up to N adjacent bit positions. (We’ll elaborate on why “up
to” later.) With this definition, G1i and P1i are the classic generate and propagate
signals that we defined in Section 8.1.4 for one (N=1) bit position, that is,

G1i = ai ⋅ bi

P1i = ai ⊕ bi

GP1i = (G1i , P1i)

Kogge-Stone adder

DDPP5.book Page 395 Tuesday, March 28, 2017 5:33 PM

396 Chapter 8 Combinational Arithmetic Elements

For larger values of N, the group of bits in the definition of GPNi starts on the
left with bit i and continues to the right, that is, down to bit i–N+1. At each level
of the lookahead logic, we double the value of N, so N = 1, 2, 4, 8 and so on.

With this definition, we can design a simple, fixed-size “GPN reduction
circuit” (GPR) that combines the GPNi prefixes from two adjacent bit groups
into one GPMi prefix, where M=2N, and GPMi gives lookahead information for
the double-width group. The GPR circuit implements the following equations:

That is, the double-width group generates a carry if its lefthand half generates a
carry, or if its lefthand half propagates a carry and its righthand half generates
one. And the double-width group propagates a carry if both halves propagate a
carry. The function performed by the GPR circuit is sometimes called the
“fundamental carry operation (FCO).”

A logic diagram for the GPR circuit is shown in Figure 8-13(a). We’ve
drawn it with inputs at the top and outputs at the bottom to match the layout of
the prefix graphs that are used to describe carry generation and propagation
using this circuit in prefix adders. This same circuit is used at all levels of the
lookahead logic, with a little bit of pruning at the boundaries as we’ll see.

So, the basic idea of the Kogge-Stone adder is not all that difficult. At the
first level of the carry lookahead logic, we create the traditional generate and
propagate signals on all of the 1-bit groups—n GP1i generate/propagate pairs
for an n-bit adder. At the second level, we combine each GP1i pair with the one
to its right, creating the GP2i pairs. At the third level, we combine each GP2i pair

GMi = GNi + PNi ⋅ GNi–N

PMi = PNi ⋅ PNi–N

GPMi = (GMi , PMi)

prefix graph

(a)

GPN –GPN

GPM

GN PN GN – PN

GM PM

GPR
circuit

(b)

GPN

GN PN =CO –

GM
= CO

GPR
circuit
(< –1)

PN – =0

GPM

PM =0

GPN –

GN

Figure 8-13
GPN reduction circuit:
(a) full circuit; (b) as
pruned at boundaries.

DDPP5.book Page 396 Tuesday, March 28, 2017 5:33 PM

8.1 Adding and Subtracting 397

with the one to its right, creating the GP4i pairs, then combine these to get GP8i
pairs, and so on. But eventually we can stop.

Consider the case of a 16-bit adder. The GP1615 pair tells us whether the
16-bit group consisting of bits 15 down to 0 of the addition will generate or prop-
agate a carry. That’s all the bits of the addition, so we merely need to combine
that with the carry in to the LSB to determine whether there will be a carry out of
bit 15 of the addition. And it requires only 5 levels of GPR circuit (for input-
group widths 1, 2, 4, 8, 16 bits) to do it. In the general case of an n-bit adder, it
takes levels of GPR circuit.

This strategy is illustrated in Figure 8-14, the prefix graph (aka prefix tree)
for a 16-bit Kogge-Stone adder. This is what you would “plug in” to the general
parallel-prefix adder structure of Figure 8-12. The colored circles or “nodes” in
Figure 8-14 each represent an instance of the GPR circuit, with the GPN prefix
for two adjacent N-bit groups coming in at the top and the GPM prefix for the
corresponding 2N-bit group coming out at the bottom.

The inputs to the top row of GPR nodes are the conventional 1-bit generate
and propagate lookahead signals. This row’s outputs give lookahead information
for a 2-bit group, the next row for a 4-bit group, and so on. Note that the inputs to
the GPR circuits at each level of the tree become available more or less simulta-

log2 n 1+()
prefix tree

GP10GP11GP12GP13GP14GP15GP16GP17GP18GP19GP110GP111GP112GP113GP114GP115

GP20GP21GP22GP23GP24GP25GP26GP27GP28GP29GP210GP211GP212GP213GP214GP215

GP43GP44GP45GP47GP48GP49GP410GP411GP412GP413GP414GP415

GP87GP88GP89GP810GP811GP812GP813GP814GP815

GP41GP42

GP85GP86 GP83GP84

GP1615 GP1614 GP1613 GP1612 GP1611 GP1610 GP169 GP168 GP167

GP1−1=CIN

CO0CO1CO2CO3CO4CO5CO6CO7CO8CO9CO10CO11CO12CO13CO14CO15

GP3215

GP2−1

GP40 GP4−1

GP82 GP81 GP80 GP8−1

GP166 GP165 GP164 GP163 GP162 GP161 GP160 GP16−1

GP3214 GP3213 GP3212 GP3211 GP3210 GP329 GP328 GP327 GP326 GP325 GP324 GP323 GP322 GP321 GP320

GP46

Figure 8-14 Prefix graph of a 16-bit Kogge-Stone adder.

DDPP5.book Page 397 Tuesday, March 28, 2017 5:33 PM

398 Chapter 8 Combinational Arithmetic Elements

neously (earlier at boundaries), and they are processed in parallel, in keeping
with the name “parallel prefix adder.”

To understand the prefix graph, we also need to look at the boundary con-
ditions, starting with the top-right GPR circuit that calculates GP20. According
to the definition of GPMi, the righthand input of this circuit should be GP1–1 or
(G1–1, P1–1). By convention, and also according to common sense, G1–1 is the
carry that is “generated” in the bit position just to the right of bit-position 0; so,
it is in fact the carry in, CIN, to the LSB of the overall addition. On the other
hand, P1–1 is 0, since there are no bit positions further to the right that can
generate a carry to be propagated into bit-position 0. Since P1–1 is 0, we can
prune the GPR circuit for the boundary case as shown in Figure 8-13(b) on
page 396; we represent this pruned circuit in Figure 8-14 using a darker-color
circle. Note that the GMi output of the pruned GPR circuit is in fact the final
carry output COi for this bit position, while the PMi output is 0, since successive
levels will have no more generated or propagated carries coming in.

The easiest way to understand the remaining boundary conditions is to
start with the assumption that a GPR circuit may be needed at every bit position
at every level in the prefix graph, and see where that leads. Now consider the
second-level GPR circuit that computes GP40. Besides GP20 (G20, P20), its
other inputs should be GP2–2 (G2–2, P2–2). But there are no groups to the right of
group –1, so those “signals” if they existed would be always 0. Considering the
operation of Figure 8-13(a) with those 0 inputs, the circuit can be pruned to be a
buffer or even a wire that simply copies or renames GP20 to GP40. We represent
this buffer or wire in Figure 8-14 with a small colored triangle. In GP40 and all
of the subsequent GPN0 prefixes, the propagate component PN0 is 0 and the
generate component GNi is in fact CO0, the carry out of bit 0.

In the general case of GPR circuits that calculate GPMi from GPNi and
GPNi–N , similar reasoning applies:

• If i+1<N, then there is no possibility of a carry being generated N bits to
the right, and GPNi is simply copied to GPMi ; the propagate component is
0 and the generate component is a carry output COi .

• Else if i+1<M, then a carry may be generated by or propagated by the group
above, but nothing can be propagated from further to the right, so the
pruned GPR circuit of Figure 8-13(b) is used.

• Otherwise, the full GPR circuit of Figure 8-13(a) is used (that is, it’s not a
boundary case).

Looking at the overall prefix graph in Figure 8-14, as you would expect,
the shortest carry delay paths are for the least significant output bits. The longest
is for the carry out of the most significant bit, going through five levels of GPR
circuits with two gate delays each.

Remember that the lookahead carry logic represented by Figure 8-14 is
just the “middle” portion of the overall adder in Figure 8-12 on page 394. The

DDPP5.book Page 398 Tuesday, March 28, 2017 5:33 PM

8.1 Adding and Subtracting 399

bottom portion is a set of XOR gates that combine the carry out COi signals at
each bit position at the bottom of the figure with the corresponding half-sums
HSi = Ai ⊕ Bi . In typical ASIC implementations, the XOR version of the propa-
gate signals P1i is used in the prefix tree, so they are also used as the HSi signals
as shown in the figure.

In summary and as promised, the Kogge-Stone carry lookahead structure
adds just two gate delays—the GPR circuit—for each doubling of the addition
width. The number of inputs of each gate in the GPR circuit is fixed and small—
just 2. And the fanout of each logic signal in the overall structure is small—for
most cases, 2 for GNi and 3 for PNi; and for boundary cases, no more than the
number of levels in the prefix graph (5 in Figure 8-14) for CIN and less for the
other carry signals. (Optionally, also see the box on page 402.)

As we mentioned at the start of this subsection, different prefix graphs can
be used to make various trade-offs in parallel-prefix-adder performance. For
example, Figure 8-15 shows the prefix graph for a 16-bit Brent-Kung adder.
This lookahead structure uses a lot fewer GPR circuits and interconnections than
the Kogge-Stone adder, which makes for less circuit area in an ASIC. On the
other hand, its worst-case delay path is longer and most of the nodes along that
path have more fanout. which makes for slower performance. In between these
extremes, there are also hybrid structures that share some of the characteristics
of both and achieve an optimal balance between speed and size—depending on
the definition of “optimal” for a particular technology and application.

GP10GP11GP12GP13GP14GP15GP16GP17GP18GP19GP110GP111GP112GP113GP114GP115

GP20GP22GP24GP26GP28GP210GP212GP214

GP46GP410GP414

GP814

GP42

GP86

GP1614 GP1210

GP1−1=CIN

CO0CO1CO2CO3CO4CO5CO6CO7CO8CO9CO10CO11CO12CO13CO14CO15

GP1715 GP1614 GP1513 GP1412 GP1311 GP1210 GP119 GP108 GP97 GP86 GP75 GP64 GP53 GP42 GP11 GP20

GP1412 GP108 GP64

Figure 8-15 Prefix graph of a 16-bit Brent-Kung adder.

DDPP5.book Page 399 Tuesday, March 28, 2017 5:33 PM

400 Chapter 8 Combinational Arithmetic Elements

*8.1.10 FPGA CARRY4 Element
In our discussions of FPGA implementations of both comparators and adders,
we’ve mentioned a CARRY4 element which is used to optimize their perfor-
mance. We now know a few different ways to speed up an adder’s carry path, so
what is CARRY4? Is it group carry lookahead logic? No. Is it prefix-adder logic?
Nope. It’s just a 4-bit ripple-carry chain; moreover, in larger adders, carries are
also rippled between multiple CARRY4 elements. Despite the long carry chain,
CARRY4 enables very fast addition by using a clever signal topology and fast
technology both inside and between CARRY4 elements, yielding much lower
overall delay than you would get with a normal, programmable interconnection
of LUTs in an FPGA.

Figure 8-16 shows the environment and structure of the CARRY4 element
in a Xilinx 7-series FPGA. All of the FPGA’s 6-input LUTs are arranged in sets

CARRY4 element

DX

LUT

A6:A1

O6
O5

D6:1

CIN

COUT (to next slice)

(from previous slice)

CX

LUT

A6:A1

O6
O5

C6:1

BX

LUT

A6:A1

O6
O5

B6:1

AX

LUT

A6:A1

O6
O5

A6:1

to
output
logic

to
output
logic

to
output
logic

to
output
logic

S[3]

DI[3]

CO[3]

O[3]

A[3]

A[3],B[3]

=A[3]⊕B[3]

CI[3]

S[2]

DI[2]

CO[2]

O[2]

A[2]

A[2],B[2]

=A[2]⊕B[2]

S[1]

DI[1]

CO[1]

O[1]

A[1]

A[1],B[1]

=A[1]⊕B[1]

S[0]

DI[0]

CO[0]

O[0]

A[0]

A[0],B[0]

=A[0]⊕B[0]

CARRY4

=A[3]⊕B[3]

=A[2]⊕B[2]

=A[1]⊕B[1]

=A[0]⊕B[0]

CI[2]

CI[1]

CI[0]

Figure 8-16
CARRY4 logic
element.

DDPP5.book Page 400 Tuesday, March 28, 2017 5:33 PM

8.1 Adding and Subtracting 401

of four in a slice along with flip-flops and other logic (not shown until
Section 10.7). The logic in the figure includes:

• Four sections, named “A” through “D” in the Xilinx literature, each having
a LUT with six address inputs and two outputs that are functions of five or
six inputs, as we explained in Section 6.1.3.

• An auxiliary or “extra” input for each section, AX through DX.

• A programmable multiplexer in each section that selects between the extra
input and the LUT O5 output, programmed in this application always to
select the extra input.

• A multiplexer in each section that is controlled by the corresponding LUT
O6 output. This multiplexer is in the ripple-carry chain, which goes from
the bottom to the top of the slice.

• An XOR gate in each section that combines the section’s incoming carry
with its LUT O6 output.

• The shaded area is the CARRY4 element. Its inputs, shown in color, are
carry-select bits S[3:0], data inputs DI[3:0] (programmed in this application
to be DX–AX), and the slice carry input CIN. The CARRY4 outputs are
XOR outputs O[3:0], carry outputs CO[3:0], and slice carry output COUT.

A 4-bit addition is performed using the slice’s CARRY4 element and four
LUTs, as shown in color in the figure:

• One addend, say A[3:0], is applied to the slice’s extra inputs DX–AX.

• The first addend and a second addend, say B[3:0], is applied to the LUTs’
address inputs. Note that each bit of the second addend could be a combi-
national logic function of up to five independent signals, because six inputs
are available on each LUT.

• Each LUT combines its addend bits, A[i] and B[i]. The result, A[i]⊕B[i], is
the half sum for bit i and is further XOR’ed with the incoming carry for that
position to create a sum bit O[i]. And the result is also used as a propagate
signal, as described next.

• The propagate signal A[i]⊕B[i] controls the multiplexer in the carry chain
at bit position i. If it’s 1, the mux selects the incoming carry from below.
Otherwise, it selects A[i]. Why select A[i]? If a carry is to be generated at
this bit position, then both A[i] and B[i] must be 1. If none is to be generated,
then both must be 0. A[i] always has the correct value to generate a carry at
this bit position if one is needed.

• The carry out of each multiplexer is propagated both to the section or slice
above and to the output logic of the slice (for possible use elsewhere, but
not typically in this application of CARRY4).

7-series slice

DDPP5.book Page 401 Tuesday, March 28, 2017 5:33 PM

402 Chapter 8 Combinational Arithmetic Elements

So, why is CARRY4 so fast? There are two reasons. First, the connection
between the carry output of each bit position to the carry input of the next is fixed
using the fastest type of “wire” in the FPGA’s chip process (usually metal); this
is true for carries both inside and between 4-bit slices, which are arranged on the
FPGA chip in a “vertical” stack. Other, general connections between LUTs in
the FPGA go through programmable interconnect which is a lot slower.

Second, the two-input multiplexers in the carry chain can be implemented
using transmission gates, as described in Section 6.4 on page 282. Once a
transmission-gate mux’s select input has been set up by the LUT output (which
happens in parallel for all the LUTs in this application), the carry delay through
the selected mux path is extremely fast. In fact, in a typical 7-series FPGA, the
“vertical” delay from CIN through a slice’s entire CARRY4 ripple-carry chain
and to CIN for the slice above it is about the same as the “horizontal” delay for
any other signal from a LUT’s address input to and through the output logic,
where it needs to go to get to other LUTs; and at that point we haven’t even
included the substantial delay of programmable interconnect to the next LUT.

So, in a Xilinx 7-series FPGA, even a 64-bit ripple adder using CARRY4
elements is faster than a 64-bit group-carry-lookahead adder built using the
structure of Figure 8-8 on page 382 and Exercise 8.25—15.37 vs. 19.58 ns
worst-case delay. Moreover, the ripple adder is more compact—64 LUTs plus
17 “free” CARRY4 elements (1 LUT per bit), vs. 141 LUTs (over 2 LUTs per
bit). The moral of the story is that it usually behooves a designer to give the tool

PARALLEL-
PREFIX ADDERS

AGAIN

Sorry, there’s still something to say about parallel-prefix adders. In layout, I moved
the discussion here so I could keep most of the CARRY4 description together on the
two preceding pages.

So, does the adder circuit that results from plugging many instances of
Figure 8-13 into Figure 8-14, and then plugging that into Figure 8-12 really work?
This would be a great opportunity for you to find out by writing a hierarchical model
for the structure and then testing its the results against Verilog’s built-in addition
function using a test bench like Program 8-7 (see Exercise 8.33).

Actually, this sort of exercise is similar to what a designer would do when
designing a custom circuit block for an ASIC or commercial chip that requires high
performance in a particular, critical area, such as addition or multiplication. The
initial design may be specified behaviorally, but an optimized custom block could be
specified structurally and then translated into a gate-level implementation, which
may even be laid out by hand to optimize size and speed. Correct functioning of this
structural design would be checked using a test bench that compares its outputs
against the results obtained using the behavioral specification. In the case of the
parallel-prefix adders covered here, a correct behavioral specification is easy to
write, because addition is a built-in Verilog function.

DDPP5.book Page 402 Tuesday, March 28, 2017 5:33 PM

8.2 Shifting and Rotating 403

a chance to optimize a design for a given technology using its built-in methods,
before going off and trying to do better. The tool’s approach may be “good
enough,” or as in the present example, better than the designer’s best.

8.2 Shifting and Rotating
Shifting or rotating a word of data bits is a common operation in computer pro-
grams. Shifting means moving the bits one or more positions to the left or the
right, allowing the extra bit(s) to “fall off” at shift-direction end, and providing
new bits (usually 0) at the other end. Rotating is similar, except the bits that “fall
off” the shift-direction end are used to fill the vacated position on the other end.
Rotating is sometimes called circular shifting.

Shifting a word of data bits one position to the left, with a 0 going into the
vacated position on the right, is equivalent to multiplying by two if the word rep-
resents an unsigned integer. Shifting an unsigned data word to the right with a 0
entering on the left is equivalent to dividing by two, losing any remainder that
“falls off” the end (i.e., rounding the result towards 0). This is sometimes called
logical shifting, whether or not it’s intended to perform unsigned arithmetic.

If a data word represents a signed, two’s-complement integer, then the
operations are a little different and are called arithmetic shifting. A left arith-
metic shift still has a 0 shifted into the right and multiplies by two, but in a
computer the shift may record an “overflow” if the leftmost, sign bit changes
during the shift, because the range of representable numbers has been exceeded.
A right arithmetic shift sort-of divides by two (see box) and has a copy of the
leftmost bit shifted into the left end, preserving the sign of the data word.

8.2.1 Barrel Shifters
A barrel shifter is a combinational logic circuit with n data inputs, n data

outputs, and a set of control inputs that specify how to shift the data between
input and output. A barrel shifter that is part of a microprocessor CPU can
typically specify the direction of shift (left or right), the type of shift (circular,

shifting

rotating

circular shifting

logical shifting

arithmetic shifting

ROUNDING OUT
THE DISCUSSION

The formal definition of integer division in most computer languages provides that
non-integer quotients are rounded to the next integer towards zero. However, if you
try to use an arithmetic right shift to divide a negative, two’s-complement integer by
two, then the quotient will be rounded towards minus infinity. The simplest example
in which you can see that is with the two’s complement representation of –1, which
is all 1s. An arithmetic right shift on a word of all 1s yields all 1s, which still repre-
sents –1. According to the formal definition above, the correct result is 0 (with a
remainder of –1). So, you must be very careful and be aware of perhaps unexpected
consequences if you use right shifts to divide by powers of two.

barrel shifter

DDPP5.book Page 403 Tuesday, March 28, 2017 5:33 PM

404 Chapter 8 Combinational Arithmetic Elements

logical, or arithmetic), and the amount of shift (typically 0 to n – 1 bits, but
sometimes 1 to n bits).

In this subsection, we’ll look at the design of a simple 16-bit barrel shifter
that does left circular shifts only, using a 4-bit control input S[3:0] to specify the
amount of shift. For example, if the input word is ABCDEFGHIJKLMNOP
(where each letter represents one bit), and the control input is 0101 (5), then the
output word is FGHIJKLMNOPABCDE.

From one point of view, this problem is deceptively simple. Each output bit
can be obtained from a 16-input multiplexer controlled by the shift-control
inputs, where each multiplexer data input is connected to the appropriate data
bit. However, when we look at the details of the design, we’ll see that there are
trade-offs in the speed and size of the multiplexing circuit.

Let us first consider a gate-level design that uses 16 1-bit-wide 16-input
multiplexers, each one being a 16-input version of the 8-input multiplexer in
Figure 6-30 on page 284. That design can be adapted for the barrel shifter as
follows:

• The enable input is not needed.

• Four pairs of inverters may be used to create and buffer the true and com-
plemented versions of the control inputs S[3:0].

• Each AND gate at the first level needs five inputs—one for a data input and
four to decode the corresponding control-input value S[3:0].

• The output OR gate needs 16 inputs. Since it is impractical to build gates
that wide in one level, it would likely be implemented in the style of
Figure 7-22 on page 332.

• The AND-OR circuit can of course be realized as the equivalent NAND-
NAND circuit for optimal size and speed in CMOS technology.

The resulting multiplexer has the symbol shown in Figure 8-17(a).
The overall barrel shifter design uses 16 of these 16-input multiplexers

connected as shown in Figure 8-17(b). The select inputs of all of the muxes are
connected in common to the S[3:0] inputs, which specify the shift amount. The
data inputs listed for each mux are connected to D15 to D0 in the left-to-right
order listed on the input bus. In the top mux, for example, DIN[0] connects to
D15, DIN[15] to D14, and so on, until DIN[1] to D0.

Let us now consider the size and performance of this barrel-shifter design
as it might be implemented in an ASIC. Each 16-input multiplexer described
above requires eight inverters, 16 5-input NAND gates, and one 16-input NAND
gate (probably implemented as four 4-input NAND gates, a 4-input NOR gate,
and an inverter). As we’ll see in Chapter 14, in CMOS gates with a small number
of inputs (up to about four), the number of transistors needed is twice the number
of inputs. In the enumeration above, we have 8+80+16+4+1 = 109 inputs or 218
transistors per mux, or 3,488 total for 16 muxes. It would also be a good idea to

DDPP5.book Page 404 Tuesday, March 28, 2017 5:33 PM

8.2 Shifting and Rotating 405

provide a buffer for each signal in the DIN and S buses, since each drives 16
inputs (one in each mux). That brings the total to about 3,500 transistors.

16-input,
1-bit-wide
multiplexer

DIN[0,15:1] DOUT[0]

DIN[1:0,15:2] DOUT[1]

DIN[2:0,15:3] DOUT[2]

DIN[14:0,15] DOUT[14]

DIN[15:0] DOUT[15]

DIN[15:0]

S[3:0]

DOUT[15:0]

16-input,
1-bit-wide
multiplexer

16-input,
1-bit-wide
multiplexer

16-input,
1-bit-wide
multiplexer

16-input,
1-bit-wide
multiplexer

S0S1S2S3

D15
D14
D13
D12
D11

D2
D1
D0

16-input,
1-bit-wide
multiplexer

Y

(a) (b)

Figure 8-17 A 16-bit barrel-shifter design: (a) 16-input, 1-bit multiplexer component;
(b) hookup for left circular shifts.

BUFFER
TRANSISTORS

An inverting buffer (i.e., an inverter) in CMOS uses just two transistors, while a non-
inverting buffer uses four. We assumed inverting buffers in our transistor count.
That’s no problem for the S bus, because we can just rename the multiplexer data
inputs to match. For the DIN bus, we’ll now have complemented data going into the
mux, and rather than add an inverter to the output, we can simply delete the final
inverter in our implementation of the 16-input NAND gate, which also makes the
mux a little faster.

THE SIZE
MAY VARY

Counting transistors gives us only a rough approximation of the amount of area that
our barrel-shifter circuit will require in an ASIC. Larger transistor sizes may be used
in gates with more inputs or heavier loads in order to equalize their delay compared
to other gates. And we also have not considered the area needed for wiring, which is
relatively large in the present design because each data input connects to all 16
multiplexers.

DDPP5.book Page 405 Tuesday, March 28, 2017 5:33 PM

406 Chapter 8 Combinational Arithmetic Elements

This design is fairly speedy. Assuming that the DIN and S signals arrive at
the same time, the worst-case delay path is from S to DOUT, with a total of five
inverting-gate delays (see Drill 8.12).

Now let’s consider a design using a cascade of four 16-bit-wide 2-input
multiplexers, each of which is designed using gates similar to the 4-bit 2-input
multiplexer in Figure 6-32 on page 287, adapted to this problem as follows:

• The enable input is not needed and a simple pair of inverters is used to
create and buffer true and complemented versions of the select input S to
be used with all 16 bits.

• Each AND gate at the first level still has just two inputs—one for a data
input and one for the control input S or its complement.

• The output OR gate also has just two inputs.

• As usual, the AND-OR circuit can be realized as a NAND-NAND circuit.

The resulting multiplexer has the symbol shown in Figure 8-18. Either the A
inputs or the B inputs are copied to the corresponding Y outputs, depending on
whether S is 0 or 1, respectively.

Figure 8-19 shows the structure of the 16-bit barrel shifter using a cascade
of four of these muxes. The first mux rotates DIN by 0 or 1 bits depending on the
value of the S[0] input, putting the result on internal bus X. The next mux rotates
X by 0 or 2 bits depending on S[1]; the next rotates Y by 0 or 4 bits depending on
S[2]; and the last rotates Z by 0 or 8 bits depending on S[3]. The total number of
positions rotated will equal the unsigned integer represented by S[3:0].

Let’s now compare the size and performance of this barrel-shifter design
with the previous one. Each 2-input multiplexer described above requires two
inverters and 48 2-input NAND gates, a total of 98 inputs or 196 transistors per
mux, or 784 total for four muxes. We probably don’t need any buffers for the DIN
and S buses, since each bit of DIN drives only two inputs, and S only four. This
is a lot smaller than the previous design, which used about 3,500 transistors.

Figure 8-18
Logic symbol for a
2-input, 16-bit-wide
multiplexer.

S

A15
B15
A14
B14
A13
B13

A0
B0

2-input,
16-bit-wide
multiplexer

Y15

Y14

Y13

Y0

DDPP5.book Page 406 Tuesday, March 28, 2017 5:33 PM

8.2 Shifting and Rotating 407

The trade-off compared of this design compared to the first one is that it
appears not to be as speedy. The worst-case path has a total of ten inverting-gate
delays—four in the first multiplexer, and two in each of the others. Although
each of the gates may be a little faster than in the previous design because they
have fewer inputs, that’s probably not enough to make up for having twice as
many of them.

Another approach to building the 2-input multiplexers is to use CMOS
transmission gates, as we discussed in Section 6.4. Each bit of the multiplexer
requires just two transmission gates or four transistors, as shown in Figure 8-20.
The path to the output through each transmission gate is controlled by S and its
complement S_L. As in the gate-based multiplexer, a single pair of inverters can
be used to provide S and S_L to all 16 bits. Thus, this approach requires only 68
transistors per multiplexer.

Moreover, once enabled, the delay through a transmission gate is very
short, almost as fast as a wire in the most advanced CMOS technologies. When
transmission gates are placed in series, as they would be when these multiplexers
are used in Figure 8-19, additional buffers may be needed on the data lines to
ensure signal speed and integrity. Even allowing for these, an implementation of
Figure 8-19 using transmission-gate-based multiplexers is likely to at least as
fast as the NAND-gate implementation of Figure 8-17(b) in the same CMOS
technology, and as little as one tenth of the size. For that reason, this approach is
the one most commonly used in custom VLSI chips and ASICs.

DIN[15:12]

DIN[14:0,15]

DIN[15:0]
S0

S[3:0]

2-input,
16-bit-wide
multiplexer

X[15:0]

X[13:0,15:14]

S1

Y[15:0]

Y[11:0,15:12]

S2

Z[15:0]

Z[7:0,15:8]

S3

DOUT[15:0]
2-input,

16-bit-wide
multiplexer

2-input,
16-bit-wide
multiplexer

2-input,
16-bit-wide
multiplexer

Figure 8-19 A 16-bit barrel-shifter design for left circular shifts using 2-input multiplexers.

Figure 8-20
One bit of a 2-input
multiplexer using
transmission gates.

A[i]

B[i]

S

Y[i]S_L

DDPP5.book Page 407 Tuesday, March 28, 2017 5:33 PM

408 Chapter 8 Combinational Arithmetic Elements

8.2.2 Barrel Shifters in Verilog
In the preceding subsection, we showed how to design a simple barrel shifter
that performed only left circular shifts. In this section, we’ll show how Verilog
can be used to model both the behavior and structure of a more capable barrel
shifter for FPGA or ASIC realization.

Our target is a 16-bit barrel shifter that does six different types of shifts, as
specified by a 3-bit shift-mode input C[2:0] and detailed in Table 8-2. A 4-bit
shift-amount input S[3:0] specifies the amount of shift. For example, if C speci-
fies a right-logical shift and the input word is ABCDEFGHIJKLMNOP and S[3:0]
is 0110 (6), then the output word is 000000ABCDEFGHIJ.

As noted at the beginning of Section 8.2, left arithmetic and left logical
shifts actually shift their bits identically; in a computer processor or indeed even
in Verilog there may be different side effects depending on which version is
used. In the present barrel-shifter design, then, both shifts should do the same
thing and without two copies of the shifting circuitry, even though two different
codes on C[2:0] are used to specify them.

The shift types listed in the table are circular (rotate), logical, and arith-
metic, each with directions left and right. Program 8-10 is an excerpt from a
behavioral Verilog module for a 16-bit barrel shifter that performs any of the six
different combinations of shift type and direction. As shown in the module’s
declarations, a 4-bit control input S gives the shift amount, and a 3-bit control
input C gives the shift mode (type and direction). A parameter statement
defines the control coding in accordance with Table 8-2.

The complete Vrbarrel16 module must define six shifting functions,
listed in the “Function” column of Table 8-2, one for each kind of shift on a
16-bit vector. Each function has a 16-bit input D[15:0], a 4-bit input S[3:0] to
specify the amount of shift, and a 16-bit output.

Program 8-10 shows the details of only the first function (Vrol); the rest
are similar with only a one-line change (see Exercise 8.37). We define an integer
variable ii for controlling its loop and a variable N to hold the integer equivalent
of S for the loop-termination comparison. (See the box on page 230 for an expla-
nation of why we don’t like to use bit vectors like S in a for loop’s control

Table 8-2
Shift types, codings,
and function names
for a barrel shifter.

Shift Type Name Code Function Note

Left rotate Lrotate 000 Vrol Wrap-around

Right rotate Rrotate 001 Vror Wrap-around

Left logical Llogical 010 Vsll 0 into LSB

Right logical Rlogical 011 Vslr 0 into MSB

Left arithmetic Larith 100 Vsla 0 into LSB

Right arithmetic Rarith 101 Vsra Replicate MSB

DDPP5.book Page 408 Tuesday, March 28, 2017 5:33 PM

8.2 Shifting and Rotating 409

statement.) The input vector D is assigned to a local variable TMPD, which is
shifted N times within the for loop. The body of the for loop is just an
assignment statement that concatenates the 15 rightmost bits of the input data
(TMPD [14:0]) with the bit that “falls off” the left end in a left shift (TMPD[15]).

Other shift types can be created using similar operations in the five other
shift functions. For some of the shift types, it is possible to use Verilog’s built-in
shift operators (see Exercise 8.38). Note that these six shift functions might not
have to be defined in other, nonbehavioral versions of the Vrbarrel16 module,

Program 8-10 Verilog behavioral description of a 6-function barrel shifter.

module Vrbarrel16 (DIN, S, C, DOUT);
 input [15:0] DIN; // Data inputs
 input [3:0] S; // Shift amount, 0-15
 input [2:0] C; // Mode control
 output [15:0] DOUT; // Data bus output
 reg [15:0] DOUT;
 parameter Lrotate = 3'b000, // Define the coding of
 Rrotate = 3'b001, // the different shift modes
 Llogical = 3'b010,
 Rlogical = 3'b011,
 Larith = 3'b100,
 Rarith = 3'b101;

 function [15:0] Vrol;
 input [15:0] D;
 input [3:0] S;
 integer ii, N;
 reg [15:0] TMPD;
 begin
 N = S; TMPD = D;
 for (ii=1; ii<=N; ii=ii+1) TMPD = {TMPD[14:0], TMPD[15]};
 Vrol = TMPD;
 end
 endfunction
 ...

 always @ (DIN or S or C)
 case (C)
 Lrotate : DOUT = Vrol(DIN,S);
 Rrotate : DOUT = Vror(DIN,S);
 Llogical : DOUT = Vsll(DIN,S);
 Rlogical : DOUT = Vsrl(DIN,S);
 Larith : DOUT = Vsla(DIN,S);
 Rarith : DOUT = Vsra(DIN,S);
 default : DOUT = DIN;
 endcase
endmodule

DDPP5.book Page 409 Tuesday, March 28, 2017 5:33 PM

410 Chapter 8 Combinational Arithmetic Elements

like the structural version that we’ll describe later. Also, based on what we’ve
said about left logical and arithmetic shifts, the Vsll and Vsla functions should
be identical.

After the function declarations, the rest of the module is a single always
block. In it, a case statement assigns a result to DOUT by calling the appropriate
shift function based on the value of the mode-control input C.

The Verilog module in Program 8-10 is a nice behavioral description of the
barrel shifter, but most synthesis tools cannot synthesize a circuit from it. The
problem is that most tools require the range of a for loop to be static at the time
it is analyzed. The range of the for loop in the Vrol function is dynamic; it
depends on the value of input signal S when the circuit is operating.

We can rewrite the offending function and others like it with a one-line
change to the for loop:

for (ii=1; ii<=15; ii=ii+1) if (ii<=N) TMPD = {TMPD[14:0], TMPD[15]};

It’s not much of a difference, but the modified version (Vrbarrel16_f) can be
synthesized. When targeted to a Xilinx 7-series FPGA using Vivado tools, the
resulting implementation requires 146 LUTs and its worst-case delay paths have
three LUTs and a fast, dedicated multiplexer (an F7MUX, see box on page 245).
Still, we might be able to do better.

As a first step in optimizing the implementation, let’s do left circular shifts
using a cascade of four 16-bit, 2-input multiplexers, as shown in Figure 8-19 on
page 407. We can express the same kind of behavior and structure using the Ver-
ilog module in Program 8-11. Even though this module uses an always block
and is “behavioral” in style, we can be pretty sure that most synthesis tools will
generate a 2-input multiplexer for each “if” statement in the module, thereby
creating a similar cascade. With further optimization when targeting an FPGA,
the tools might do even better. For example, the Vivado tools create an elaborat-
ed design that looks very much like Figure 8-19, and after targeting that to LUTs

Program 8-11 Verilog for a 16-bit barrel shifter for left circular shifts only.

module Vrrol16 (DIN, S, DOUT);
 input [15:0] DIN; // Data inputs
 input [3:0] S; // Shift amount, 0-15
 output [15:0] DOUT; // Data bus output
 reg [15:0] DOUT, X, Y, Z;

 always @ (DIN or S) begin
 if (S[0] == 1'b1) X = {DIN[14:0], DIN[15]}; else X = DIN;
 if (S[1] == 1'b1) Y = {X[13:0], X[15:14]}; else Y = X;
 if (S[2] == 1'b1) Z = {Y[11:0], Y[15:12]}; else Z = Y;
 if (S[3] == 1'b1) DOUT = {Z[7:0], Z[15:8]}; else DOUT = Z;
 end

endmodule

DDPP5.book Page 410 Tuesday, March 28, 2017 5:33 PM

8.2 Shifting and Rotating 411

and optimizing, the synthesized result requires 32 LUTs and has just two LUTs
in the worst-case delay paths.

Of course, our problem statement requires a barrel shifter that can shift
both left and right. Program 8-12 revises the previous module to do circular
shifts in either direction. An additional input, DIR, specifies the shift direction:
0 for left, 1 for right. Each rank of shifting is specified by a case statement that
picks one of four possibilities based on the values of DIR and the bit of S that
controls that rank. The elaborated design looks much like the previous one
except with a 3-input mux at each rank, and the synthesized result uses 64 LUTs
with a worst-case delay path of two LUTs and an F7MUX.

Program 8-12 Verilog for a 16-bit barrel shifter for left and right circular shifts.

module Vrrolr16 (DIN, S, DIR, DOUT);
 input [15:0] DIN; // Data inputs
 input [3:0] S; // Shift amount, 0-15
 input DIR; // Shift direction, 0=>L, 1=>R
 output [15:0] DOUT; // Data bus output
 reg [15:0] DOUT, X, Y, Z;

 always @ (*) begin
 case ({S[0], DIR})
 2'b00, 2'b01 : X = DIN;
 2'b10 : X = {DIN[14:0], DIN[15]};
 2'b11 : X = {DIN[0], DIN[15:1]};
 default : X = 16'bx;
 endcase

 case ({S[1], DIR})
 2'b00, 2'b01 : Y = X;
 2'b10 : Y = {X[13:0], X[15:14]};
 2'b11 : Y = {X[1:0], X[15:2]};
 default : Y = 16'bx;
 endcase

 case ({S[2], DIR})
 2'b00, 2'b01 : Z = Y;
 2'b10 : Z = {Y[11:0], Y[15:12]};
 2'b11 : Z = {Y[3:0], Y[15:4]};
 default : Z = 16'bx;
 endcase

 case ({S[3], DIR})
 2'b00, 2'b01 : DOUT = Z;
 2'b10, 2'b11 : DOUT = {Z[7:0], Z[15:8]};
 default : DOUT = 16'bx;
 endcase
 end
endmodule

DDPP5.book Page 411 Tuesday, March 28, 2017 5:33 PM

412 Chapter 8 Combinational Arithmetic Elements

So, now we have a barrel shifter that will do left or right circular shifts, but
we’re not done yet—we need to take care of the logical and arithmetic shifts in
both directions. Figure 8-21 shows our strategy for completing the design. We
start out with the ROLR16 component that we just completed, and we use other
logic to control the shift direction as a function of C.

Next we must “fix up” some of the result bits if we are doing a logical or
arithmetic shift. For a left logical or arithmetic n-bit shift, we must set the
rightmost n–1 bits to 0. For a right logical or arithmetic n-bit shift, we must set
the leftmost n – 1 bits to 0 or the original leftmost bit value, respectively.

As shown in Figure 8-21, our strategy is to follow the circular shifter
(ROLR16) with a fix-up circuit (FIXUP) that plugs in appropriate low-order bits
for a left logical or arithmetic shift, and follow that with another fix-up circuit
that plugs in high-order bits for a right logical or arithmetic shift.

Program 8-13 is a behavioral Verilog module for the left-shift fix-up
circuit. The circuit has 16 bits of data input and output, DIN and DOUT. Its control
inputs are the shift amount S, an enable input FEN, and the new value FDAT to be
plugged into the fixed-up data bits. For each output bit DOUT[ii], the circuit
puts out the fixed-up bit value if ii is less than S and the circuit is enabled; else
it puts out the unmodified data input DIN[ii].

For right shifts, fix-ups start from the opposite end of the data word, so it
would appear that we need a second version of the fix-up circuit. However, we

FIXUP
(left shift)

FIXUP
(right shift)

ROUT[15:0] FOUT[15:0]
DOUT[15:0]ROLR16

other logic

FOUT[15]

DIN[15:0]

S[3:0]

C[2:0]

Figure 8-21
Barrel-shifter
components.

Program 8-13 Behavioral Verilog module for left-shift fix-ups.

module Vrfixup (DIN, S, FEN, FDAT, DOUT);
 input [15:0] DIN; // Data inputs
 input [3:0] S; // Shift amount, 0-15
 input FEN, FDAT; // Fixup enable and data
 output [15:0] DOUT; // Data bus output
 reg [15:0] DOUT;
 integer ii;

 always @ (DIN or S or FEN or FDAT)
 for (ii=0; ii<=15; ii=ii+1)
 if ((ii < S) && (FEN == 1'b1)) DOUT[ii] = FDAT;
 else DOUT[ii] = DIN[ii];
endmodule

DDPP5.book Page 412 Tuesday, March 28, 2017 5:33 PM

8.2 Shifting and Rotating 413

can use the original version if we just reverse the order of its input and output
bits, as we’ll soon see.

Program 8-14 is a structural Verilog module for the full 6-function, 16-bit
barrel shifter using the design approach of Figure 8-21. The module inputs,
output, and parameters for Vrbarrel16_s are unchanged from the original ones
in Program 8-10 on page 409. The module instantiates Vrrolr16 and two
instances of Vrfixup, and it has several assignment statements to create needed
control signals (the “other logic” in Figure 8-21).

The first assignment asserts DIR_RIGHT if C specifies one of the right
shifts. The next four assignments set the proper values for enable inputs

Program 8-14 Verilog structural module for the 6-function barrel shifter.

module Vrbarrel16_s (DIN, S, C, DOUT);
 input [15:0] DIN; // Data inputs
 input [3:0] S; // Shift amount, 0-15
 input [2:0] C; // Mode control
 output [15:0] DOUT; // Data bus output
 wire [15:0] DOUT;
 wire [15:0] ROUT, FOUT, RFIXIN, RFIXOUT; // Local wires
 wire DIR_RIGHT, FIX_RIGHT, FIX_RIGHT_DAT, FIX_LEFT, FIX_LEFT_DAT;
 genvar ii;
 parameter Lrotate = 3'b000, // Define the coding of
 Rrotate = 3'b001, // the different shift modes
 Llogical = 3'b010,
 Rlogical = 3'b011,
 Larith = 3'b100,
 Rarith = 3'b101,
 unused1 = 3'b110,
 unused2 = 3'b111;

 assign DIR_RIGHT = ((C==Rrotate) || (C==Rlogical) || (C==Rarith)) ? 1'b1 : 1'b0;
 assign FIX_LEFT = ((DIR_RIGHT==1'b0) && ((C==Llogical)||(C==Larith))) ? 1'b1 : 1'b0;
 assign FIX_RIGHT = ((DIR_RIGHT==1'b1) && ((C==Rlogical)||(C==Rarith))) ? 1'b1 : 1'b0;
 assign FIX_LEFT_DAT = (C == Larith) ? DIN[0] : 1'b0;
 assign FIX_RIGHT_DAT = (C == Rarith) ? DIN[15] : 1'b0;
 Vrrolr16 U1 (.DIN(DIN), .S(S), .DIR(DIR_RIGHT), .DOUT(ROUT));
 Vrfixup U2 (.DIN(ROUT), .S(S), .FEN(FIX_LEFT), .FDAT(FIX_LEFT_DAT), .DOUT(FOUT));
 generate
 for (ii=0; ii<=15; ii=ii+1)
 begin : U3 assign RFIXIN[ii] = FOUT[15-ii]; end
 endgenerate
 Vrfixup U4 (.DIN(RFIXIN),.S(S),.FEN(FIX_RIGHT),.FDAT(FIX_RIGHT_DAT),.DOUT(RFIXOUT));
 generate
 for (ii=0; ii<=15; ii=ii+1)
 begin : U5 assign DOUT[ii] = RFIXOUT[15-ii]; end
 endgenerate
endmodule

DDPP5.book Page 413 Tuesday, March 28, 2017 5:33 PM

414 Chapter 8 Combinational Arithmetic Elements

FIX_LEFT and FIX_RIGHT and fix-up data FIX_LEFT_DAT and FIX_RIGHT_DAT
for the left and right fix-up circuits, needed for logical and arithmetic shifts.

While all the statements in the module execute concurrently, they are listed
in Program 8-14 in the order of the actual dataflow to improve readability. First,
Vrrolr16 (U1) is instantiated to perform the basic left or right circular shift as
specified. Its outputs are hooked up to the inputs of the first Vrfixup component
(U2) to handle fix-ups for left logical and arithmetic shifts. Next is a generate
block that reverses the order of the data inputs for the next Vrfixup component
(U4), which handles fix-ups for right logical and arithmetic shifts. The final
generate block undoes the previous bit-reversing. Note that in synthesis, the two
generate blocks don’t generate any logic; they merely shuffle wires.

When targeted to a Xilinx 7-series FPGA using Vivado tools, the module in
Program 8-14 uses 131 LUTs and its worst-case delay paths go through three
LUTs and a fast, dedicated multiplexer. So, it’s about 10% smaller than, and
about the same speed as, our original behaviorally-specified design. Additional
changes can be made to knock at least 40% off that size, while yielding slightly
higher or lower worst-case delay paths (see Exercises 8.41 and 8.42).

A test bench for the barrel shifter is shown in Program 8-15. Not shown are
the parameter definitions for the 3-bit mode-control values applied to C, and the
behaviorally defined functions for performing the six shifts, the first of which
(Vrol) we showed in Program 8-10 on page 409. As discussed previously, these
functions are typically not synthesizable as written, but they work perfectly well
in simulation. And they satisfy our usual test-bench goal of using a different
approach than what is done in the unit under test, so conceptual errors as well as
“typos” are more likely to be detected.

In the test bench, a Verilog task checksh compares the output of the UUT
(DOUT) for each value of C with the shifted value produced by the corresponding
function, or the unshifted input (DIN) when one of the two unused values is
applied to C. As usual, a case (in)equality operator (!==) is used in checksh
rather than simple inequality (!=), so any x and z outputs produced by the UUT
will be detected as errors.

INFORMATION-
HIDING STYLE

Based on the encoding of C, you might like to replace the first assignment statement
in Program 8-14 with “DIR_RIGHT <= C[0]”, which would be guaranteed to lead to
a more efficient realization for that control bit—just a wire! However, this would
violate a programming principle of information hiding and lead to possible bugs.

We wrote the shift encodings using parameter definitions in the Vrbarrel16
module declaration. The rest of the module does not depend on the encoding details.
Suppose that we nevertheless made the coding change suggested above. If somebody
else (or we!) came along later and changed the parameter definitions to a different
encoding, the rest of the module would not use the new encodings!

DDPP5.book Page 414 Tuesday, March 28, 2017 5:33 PM

8.2 Shifting and Rotating 415

Lo and behold, the test bench in Program 8-15 does find errors in the barrel
shifter, Program 8-14; can you see the problem? In the test bench, we have
assumed that if C has one of the two “unused” values, then the UUT should copy
DIN to DOUT unchanged. But in the actual barrel-shifter design we made no such
provision, and our original word description of the function is silent about what

Program 8-15 Verilog test bench for the 6-function barrel shifter.

`timescale 1 ns / 100 ps
module Vrbarrel16_tb () ;
 reg [15:0] DIN; // Data inputs
 reg [3:0] S; // Shift amount, 0-15
 reg [2:0] C; // Mode control
 wire [15:0] DOUT; // Data bus output
 integer i, sh, errors;
 parameter SEED = 1;

 task checksh; // Task to compare UUT output (DOUT) with expected (WANT)
 input [15:0] WANT;
 begin
 if (WANT!==DOUT) begin
 errors = errors + 1;
 $display("Error: C=%3b, S=%4b, DIN=%16b, want %16b, got %16b",
 C, S, DIN, WANT, DOUT);
 end
 end
 endtask

 Vrbarrel16_s UUT (.DIN(DIN), .S(S), .C(C), .DOUT(DOUT));

 initial begin
 errors = 0; DIN = $random(SEED);
 for (i=0; i<2500; i=i+1) begin // Test 2500 random input data vectors
 DIN = $random; // Apply random data input
 for (sh=0; sh<=15; sh=sh+1) begin // Test all possible shift amounts
 S = sh; // Apply shift amount
 // And test all eight control values
 C = Lrotate; #10 ; checksh(Vrol(DIN,S));
 C = Rrotate; #10 ; checksh(Vror(DIN,S));
 C = Llogical; #10 ; checksh(Vsll(DIN,S));
 C = Rlogical; #10 ; checksh(Vsrl(DIN,S));
 C = Larith; #10 ; checksh(Vsla(DIN,S));
 C = Rarith; #10 ; checksh(Vsra(DIN,S));
 C = unused1; #10 ; checksh(DIN);
 C = unused2; #10 ; checksh(DIN);
 end
 end
 $display("Test done, %0d errors", errors);
 $stop(1);
 end
endmodule

DDPP5.book Page 415 Tuesday, March 28, 2017 5:33 PM

416 Chapter 8 Combinational Arithmetic Elements

should happen in these cases. Analyzing Program 8-14 or the test bench output,
you can see what actually happens: the input is rotated left by S bits.

So in this example, the test bench has discovered a “bug” in the problem
specification itself. Depending on the application, copying the input to the out-
put when an “unused” mode is selected may or may not be needed. If it is, then
the design must be modified (see Exercise 8.43). If it isn’t, then the test bench
should be updated. Either way, the ambiguity should be removed from the spec.

8.3 Multiplying
Multiplication is a common operation. It can be done by a sequential circuit, typ-
ically using the shift-and-add algorithm that we described briefly in Section 2.8.
But we’re not doing sequential circuits yet. It can also be done by combinational
circuits as we describe in this section. Verilog’s built-in multiplication operator
leads to the synthesis of a combinational multiplier.

8.3.1 Combinational Multiplier Structures
Although the shift-and-add algorithm multiplication algorithm emulates the way
that oldsters used to do paper-and-pencil multiplication of decimal numbers,
there is nothing inherently “sequential” or “time dependent” about multiplica-
tion. That is, given two n-bit input words X and Y, it is possible to write a truth
table that expresses the 2n-bit product P = X ⋅Y as a combinational function of X
and Y. A combinational multiplier is a logic circuit with such a truth table.

Many approaches to combinational multiplication are based on the paper-
and-pencil shift-and-add algorithm. Figure 8-22 illustrates the basic idea for an
8 × 8 multiplier for two unsigned integers, multiplicand X = x7x6x5x4x3x2x1x0 and
multiplier Y = y7y6y5y4y3y2y1y0. We call each row a product component, a shifted
multiplicand that is multiplied by 0 or 1 depending on the corresponding multi-
plier bit. Each small box represents one product-component bit yixj, the logical
AND of multiplier bit yi and multiplicand bit xj. The product P = p15p14.. .p2p1p0
has 16 bits and is obtained by adding together all the product components.

combinational
multiplier

y1x7 y1x6 y1x5 y1x4 y1x3 y1x2 y1x1 y1x0

y3x7 y3x6 y3x5 y3x4 y3x3 y3x2 y3x1 y3x0

y5x7 y5x6 y5x5 y5x4 y5x3 y5x2 y5x1 y5x0

y7x7 y7x6 y7x5 y7x4 y7x3 y7x2 y7x1 y7x0

y6x6 y6x5 y6x4 y6x3 y6x2 y6x1 y6x0y6x7

y4x6 y4x5 y4x4 y4x3 y4x2 y4x1 y4x0y4x7

y2x6 y2x5 y2x4 y2x3 y2x2 y2x1 y2x0y2x7

y0x6 y0x5 y0x4 y0x3 y0x2 y0x1 y0x0y0x7

p14 p13 p12p15 p10 p9 p8p11 p6 p5 p4p7 p2 p1 p0p3

Figure 8-22
Partial products in an
8 × 8 multiplier.

product component

DDPP5.book Page 416 Tuesday, March 28, 2017 5:33 PM

8.3 Multiplying 417

Figure 8-23 shows one way to add up the product components. Here, the
product-component bits have been spread out to make space, and each “+” box
is a full adder, equivalent to Figure 8-1(c) on page 373. The carries in each row
of full adders are connected to make an 8-bit ripple adder. Thus, the first ripple
adder combines the first two product components to produce the first partial
product, as defined in Section 2.8. Subsequent adders combine each partial
product with the next product component.

It is interesting to study the propagation delay of the circuit in Figure 8-23.
In the worst case, the inputs to the least significant adder (y0x1 and y1x0) can
affect the MSB of the product (p15). If we assume for simplicity that the delays
from any input to any output of a full adder are equal, say tpd, then the worst-case
path goes through 20 adders and its delay is 20tpd. If the delays are different, then
the answer depends on the relative delays (see Exercise 8.44).

Combinational multipliers in general are usually structured as an array of
full adders, and are thus often called array multipliers. Besides Figure 8-23,

y7x7 y7x6

y6x7

p14 p13p15

0

0

0

0

0

0

y5x7

y7x5

y6x6

p12

y5x6

y7x4

y6x5

y4x7

p11

y3x7

y5x5

y7x3

y6x4

y4x6

p10

y3x6

y5x4

y7x2

y6x3

y4x5

y2x7

p9

y1x7

y3x5

y5x3

y7x1

y6x2

y4x4

y2x6

p8

y1x6

y3x4

y5x2

y7x0

y6x1

y4x3

y2x5

y0x7

p7

y1x5

y3x3

y5x1

y6x0

y4x2

y2x4

y0x6

p6

y1x4

y3x2

y5x0

y4x1

y2x3

y0x5

p5

y1x3

y3x1

y4x0

y2x2

y0x4

p4

y1x2

y3x0

y2x1

y0x3

p3

y1x1

y2x0

y0x2

p2

y1x0

y0x1

p1

y0x0

p0

0
0Figure 8-23

Interconnections for an 8 × 8
combinational multiplier.

array multiplier

DDPP5.book Page 417 Tuesday, March 28, 2017 5:33 PM

418 Chapter 8 Combinational Arithmetic Elements

many other structures can be used, often with better performance and with
opportunities to optimize for a particular target technology. Here we’ll look at
just one other variation, originally inspired by a particular type of sequential-
circuit multiplier.

Sequential multipliers use a single adder and a register to accumulate the
partial products. The partial-product register is initialized to the first product
component, and for an n×n-bit multiplication, n − 1 steps are taken and the adder
is used n − 1 times, once for each of the remaining n − 1 product components to
be added to the partial-product register.

Some sequential multipliers use a trick called carry-save addition to speed
up multiplication. The idea is to break the carry chain of the ripple adder to
shorten the delay of each addition. This is done by applying the carry output
from bit i during step j to the carry input for bit i + 1 during the next step, j + 1.
After the last product component is added, one more step is needed in which the
carries are hooked up in the usual way and allowed to ripple from the least to the
most significant bit.

The combinational equivalent of an 8 × 8 multiplier using carry-save addi-
tion is shown in Figure 8-24. Notice that the carry out of each full adder in the
first seven rows is connected to an input of an adder below it. Carries in the
eighth row of full adders are connected to create a conventional ripple adder.
Although this adder uses exactly the same amount of logic as the previous one
(64 2-input AND gates and 56 full adders), its propagation delay is substantially
shorter. Its worst-case delay path goes through only 14 full adders. This design is
called a Braun multiplier and has many variations. For example, its delay can be
further improved by using a carry-lookahead or parallel-prefix adder for the last
row.

The regular structure of array multipliers makes them ideal for VLSI and
ASIC realization. The importance of fast multiplication in microprocessors,
digital video, and many other applications has led to much study and develop-
ment of structures and circuits for array multipliers (see the References).

*8.3.2 Multiplication in Verilog
Verilog has a built-in multiplication operator, “*”, that operates on two bit-
vectors that are interpreted as unsigned numbers. The width of the resulting
product is the sum of the widths of the two input vectors. Thus, it is very easy to
specify an unsigned multiplier in Verilog, as shown in Program 8-16 for two
8-bit inputs, producing a 16-bit product. However, multipliers should not be
specified casually, since this simple code, when targeted for example to a Xilinx
7-series FPGA, creates a combinational circuit that uses over 70 LUTs and has
about 10 levels of logic (LUTs and CARRY4 elements) in its worst-case input-
to-output path.

If an application requires a multiplier, then of course we should use one.
But if we specify the design in more detail, we might get smaller size or better

sequential multiplier

carry-save addition

Braun multiplier

DDPP5.book Page 418 Tuesday, March 28, 2017 5:33 PM

8.3 Multiplying 419

performance than what the synthesis tool creates. Or we might not. It takes engi-
neering judgment to decide whether optimizing this particular aspect of a larger
design could make enough of a difference to make the extra work worthwhile.
And it takes experience with the target technology and its tools to know whether
a handcrafted design might improve size or performance compared with what
the synthesis tool can do.

y7x7 y7x6

y6x7

p14 p13p15

y5x7

y7x5

y6x6

p12

y5x6

y7x4

y6x5

y4x7

p11

y3x7

y5x5

y7x3

y6x4

y4x6

p10

y3x6

y5x4

y7x2

y6x3

y4x5

y2x7

p9

y1x7

y3x5

y5x3

y7x1

y6x2

y4x4

y2x6

p8

y1x6

y3x4

y5x2

y7x0

y6x1

y4x3

y2x5

y0x7

p7

y1x5

y3x3

y5x1

y6x0

y4x2

y2x4

y0x6

p6

y1x4

y3x2

y5x0

y4x1

y2x3

y0x5

p5

y1x3

y3x1

y4x0

y2x2

y0x4

p4

y1x2

y3x0

y2x1

y0x3

p3

y1x1

y2x0

y0x2

p2

y1x0

y0x1

p1

y0x0

p0

0 000000

0

Figure 8-24
Interconnections
for a faster 8 × 8
combinational multiplier.

Program 8-16 Verilog module for an 8 × 8 combinational multiplier.

module Vrmul8x8i(X, Y, P);
 input [7:0] X, Y;
 output [15:0] P;

 assign P = X * Y;
endmodule

DDPP5.book Page 419 Tuesday, March 28, 2017 5:33 PM

420 Chapter 8 Combinational Arithmetic Elements

As an example, suppose the multiplier of Program 8-16 is on the critical
timing path for our application and needs to be fast, or perhaps many instances
of it are required, so it needs to be as small as possible. It may be worthwhile to
try to do better than the synthesis tool, perhaps by creating a handcrafted array-
multiplier design. In Figure 8-24 on page 419, we showed the structure of a

Program 8-17 Behavioral Verilog for an 8 x 8 combinational multiplier.

module Vrmul8x8p(X, Y, P);
 input [7:0] X, Y;
 output reg [15:0] P; // output variable for assignment
 reg PC [0:7][7:0]; // product-component bits (2-dim array)
 reg PCS [0:7][7:0]; // full-adder sum bits (2-dim array)
 reg PCC [0:7][7:0]; // full-adder carry output bits (ditto)
 reg [6:0] RAS; // ripple adder sum
 reg [7:0] RAC; // and carry bits
 integer i, j;

 function MAJ;
 input I1, I2, I3;
 MAJ = (I1 & I2) | (I1 & I3) | (I2 & I3);
 endfunction

 always @ (*) begin
 for (i=0; i<=7; i=i+1)
 for (j=0; j<=7; j=j+1)
 PC[i][j] = Y[i] ? X [j] : 1'b0; // Get product-component bits
 for (j=0; j<=7; j=j+1) begin
 PCS[0][j] = PC[0][j]; // Set up outputs of first-row "virtual"
 PCC[0][j] = 1'b0; // full adders (not shown in figure).
 end
 for (i=1; i<=7; i=i+1) begin // Do all "real" full adders.
 for (j=0; j<=6; j=j+1)
 PCS[i][j] = PC[i][j] ^ PCS[i-1][j+1] ^ PCC[i-1][j];
 PCC[i][j] = MAJ(PC[i][j], PCS[i-1][j+1], PCC[i-1][j]);
 end
 PCS[i][7] = PC[i][7];
 end
 RAC[0] = 1'b0; // No carry into final ripple adder.
 for (i=0; i<=6; i=i+1) begin // Final ripple-adder
 RAS[i] = PCS[7][i+1] ^ PCC[7][i] ^ RAC[i]; // sum
 RAC[i+1] = MAJ(PCS[7][i+1], PCC[7][i], RAC[i]); // and carry bits
 end
 for (i=0; i<=7; i=i+1) begin
 P[i] = PCS[i][0]; // first 8 product bits from full-adder sums
 end
 for (i=8; i<=14; i=i+1)
 P[i] = RAS[i-8]; // next 7 bits from ripple-adder sums
 P[15] = RAC[7]; // last bit from ripple-adder carry-out
 end
endmodule

DDPP5.book Page 420 Tuesday, March 28, 2017 5:33 PM

8.3 Multiplying 421

reasonably fast 8×8 Braun multiplier, and Program 8-17 is a behavioral Verilog
module Vrmul8x8p corresponding to it.

The module begins by declaring its inputs, output, and internal variables.
Two-dimensional arrays are used for internal variables PC, PCS, and PCC. Each of
these has eight rows indexed from 0 to 7 and eight columns indexed from 7 down
to 0. Variable PC holds the product-component bits, and variables PCS and PCC
hold the sum and carry outputs, respectively, of the main array of full adders.
The bit vectors RAS and RAC hold the sum and carry outputs of the final ripple
adder. Integer variables i and j are used as loop indexes for rows and columns.
Figure 8-25 shows the relationship between the signals in the multiplier circuit
on page 419 and the corresponding variable names in the Verilog module.

Next, the function MAJ is defined to perform the majority function on three
input bits; it is used for full-adder carry outputs later in the module.

In the main body of the module, the first nested for statements create the
64 product-component bits in 8 rows of 8 bits each. Each bit PC[i][j] equals
either the corresponding multiplicand bit X[j] or 0, depending on the value of
the corresponding multiplier bit, Y[i]. The next for loop initializes boundary
conditions at the top of the multiplier, using the notion of row-0 “virtual” full
adders, not shown in the figure, whose sum outputs equal the first row of PC bits
and whose carry outputs are 0.

The next nested for statements correspond to the main array of 49 adders
in Figure 8-24, but not the final ripple adder. Note how the index ranges (i from
1 to 7 and j from 0 to 6) correspond to the “shift” that is evident in the figure. In

y3x7 y3x6

y2x7

y1x7

y3x5

y2x6

y1x6

y3x4

y2x5

y0x7

y1x5

y3x3

y2x4

y0x6

y1x4

y3x2

y2x3

y0x5

y1x3

y3x1

y2x2

y0x4

y1x2

y3x0

y2x1

y0x3

y1x1

y2x0

y0x2

y1x0

y0x1 y0x0

0
0

00000

PCS[0][7:0]

PCS[1][7]

PCS[1][6]
PCC[1][6]

y7x7 y7x6

y6x7

p14 p13p15

y7x5

p12

y7x4

p11

y7x3

p10

y7x2

p9

y7x1

p8

y7x0

p7 p6 p5 p4 p3 p2 p1 p0

0

RAC[6] RAC[5] RAC[1] RAC[0]RAC[7] RAS[1]RAS[2]RAS[3]

PCS
[7][0]

PCS
[3][0]

PCS
[2][0]

PCS
[1][0]

PCS
[0][0]

PCC
[0][0]

PCC
[1][0]

PCS[7][7]

PCS[6][7]

PCS[2][7]

Figure 8-25 Verilog variable names for the 8 × 8 multiplier.

DDPP5.book Page 421 Tuesday, March 28, 2017 5:33 PM

422 Chapter 8 Combinational Arithmetic Elements

this way, the PCS[i][j] and PCC[i][j] full-adder outputs are properly derived
from the PCS and PCC row above. The leftmost sum output bit PCS[i][7] is
handled as a special case, setting it equal to bit PC[i][7], and PCC[i][7] is not
used and therefore is not computed.

The next for loop corresponds to the final ripple adder in Figure 8-24. The
last two for loops and the final statement assign the appropriate adder outputs to
the multiplier output signals.

Note that while the Verilog module in Program 8-17 attempts to illustrate
the logic that would be used in a faithful realization of Figure 8-24, a synthesizer
could legitimately create quite a different structure from this behavioral code—
and does, if it is targeting an FPGA rather than an ASIC. In an ASIC, the synthe-
sizer might follow the structure of the behavioral code, but it doesn’t have to. If
you want to control the structure, then you must use structural Verilog, as we’ll
soon show. But first, let’s check our work so far.

Program 8-18 is a test bench for 8 × 8-multiplier modules. The component
instantiation near the beginning of the code determines which version is tested,
either of the two shown so far, or the structural model coming up next. This test
bench uses the “brute-force” testing method, checking every possible input com-
bination against the expected result. There are a few details to note about it:

• The initial block is named so that its local variables i and j can be
declared.

• A pair of nested for loops are used to generate all 216 input combinations.

• A task, checkP, is defined to compare the circuit’s output with the expected
product, computed by the simulator as the product of i and j.

• The comparison in checkP uses !== rather than !=, so that any x’s in the
circuit’s output are detected. This was especially important for testing the
structural model; its complex topology provides many opportunities to
omit connections, which leads to x’s.

It’s impressive how quickly a simulator can simulate the synthesized modules
for all 65,536 input combinations—about three seconds on a 2-Ghz laptop
computer. Still, for larger designs, like 16 × 16 multiplication, we would want to
generate random input patterns as in some of our previous examples, rather than
use the exhaustive approach.

ONE-
DIMENSIONAL

THINKING

Program 8-17 can be rewritten to use one-dimensional arrays of vectors instead of
two-dimensional arrays of bits. If you are using ancient tools, this approach works
with Verilog-1995, which does not support multidimensional arrays. There are other
pros and cons (see Exercise 8.46).

DDPP5.book Page 422 Tuesday, March 28, 2017 5:33 PM

8.3 Multiplying 423

Next, we’ll show a structural Verilog model of the 8 × 8 Braun multiplier. It
will use a specialized full-adder component FAblk defined in Program 8-19,
which is like a full adder except that it ANDs two pairs of inputs before applying
to the full adder: A0 and A1 to get the usual A, and B0 and B1 to get the usual B.

Program 8-18 Verilog test bench for 8 × 8 combinational multipliers.

module Vrmul8x8_tb();
 reg [7:0] X, Y;
 wire [15:0] P;

 Vrmul8x8i UUT (.X(X), .Y(Y), .P(P)); // Instantiate the UUT

 task checkP;
 input i, j, P;
 integer i, j, prod;
 reg [15:0] P;
 begin
 prod = i*j;
 if (P !== prod) begin
 $display($time," Error: i=%d, j=%d, expected %d (%16b), got %d (%16b)",
 i, j, prod, prod, P, P); end;
 end
 endtask

 initial begin : TB // Start testing at time 0
 integer i, j;
 for (i=0; i<=255; i=i+1)
 for (j=0; j<=255; j=j+1) begin
 X = i; Y = j;
 #10; // wait 10 ns, then check result
 checkP (i, j, P);
 end
 $display($time," Test ended); // end test
 end
endmodule

Program 8-19 Full-adder module for optimized structural code.

(* keep_hierarchy = "yes" *) module FAblk(A0, A1, B0, B1, CIN, S, COUT);
 input A0, A1, B0, B1, CIN; // full adder with ANDed terms for A and B inputs
 output S, COUT;

 function MAJ;
 input I1, I2, I3;
 MAJ = (I1 & I2) | (I1 & I3) | (I2 & I3);
 endfunction

 assign S = (A0 & A1) ^ (B0 & B1) ^ CIN;
 assign COUT = MAJ ((A0 & A1), (B0 & B1), CIN) ;
endmodule

DDPP5.book Page 423 Tuesday, March 28, 2017 5:33 PM

424 Chapter 8 Combinational Arithmetic Elements

Because of this, the product-component terms PC[i][j] of Program 8-17 can
be handled right inside the FAblk. This is efficient when our structural module is
targeted to Xilinx 7-series and other FPGAs, where each two-output FAblk,
including product-component-bit generation, fits into just one 6-input LUT con-
figured as two 5-input LUTs (see Figure 6-6 on page 244). The module
definition also includes the keep_hierarchy constraint to force the tool to keep
the FAblk’s signals together in synthesis so its inputs and outputs remain present
and visible in the synthesized circuit in exactly the way they are defined in the
code. This approach gives the designer more control over the circuit structure
that is synthesized from the model, as might be desired in an ASIC realization.

Program 8-20 Structural Verilog for an 8 x 8 combinational multiplier.

module Vrmul8x8sho(X, Y, P);
 input [7:0] X, Y;
 output [15:0] P;
 wire PCS [0:7][7:0]; // full-adder sum bits
 wire PCC [0:7][7:0]; // full-adder carry output bits
 wire [6:0] PCSv, PCCV; // temp vectors used for final addition
 genvar i, j;

 generate
 for (j=0; j<=6; j=j+1) begin: FAgenrow1 // FA row 1 has two ANDed terms
 // per A and B input but no CIN (1'b0)
 FAblk U1 (.A0(Y[1]), .A1(X[j]), .B0(Y[0]), .B1(X[j+1]), .CIN(1'b0),
 .S(PCS[1][j]), .COUT(PCC[1][j]));
 end
 // remaining FA rows have two ANDed terms on A inputs, plus B and CIN inputs
 for (i=2; i<=7; i=i+1) begin: FAgenrow
 for (j=0; j<=5; j=j+1) begin: col // most FAs have two ANDed terms only on A inputs
 FAblk U2 (.A0(Y[i]), .A1(X[j]), .B0(PCS[i-1][j+1]), .B1(1'b1),
 .CIN(PCC[i-1][j]), .S(PCS[i][j]), .COUT(PCC[i][j]));
 end
 // leftmost FA of each row is special, uses ANDed terms on both A and B inputs
 FAblk U3 (.A0(Y[i]), .A1(X[6]), .B0(Y[i-1]), .B1(X[7]), .CIN(PCC[i-1][6]),
 .S(PCS[i][6]), .COUT(PCC[i][6]));
 end
 endgenerate

 // take care of boundary cases, do the final addition, and hook up the outputs
 assign PCS[7][7] = Y[7] & X[7]; assign PCC[7][7] = 1'b0;; // boundary cases
 assign P[0] = X[0] & Y[0]; // LSB of product
 for (i=1; i<=7; i=i+1) assign P[i] = PCS[i][0]; // next 7 bits come from FA sums
 for (j=0; j<=6; j=j+1) begin
 assign PCSV[j] = PCS[7][j+1]; // make vectors to use built-in add function
 assign PCCV[j] = PCC[7][j]; // for final 8-bit addition ...
 end
 assign P[15:8] = PCSV + PCCV; // ... to get 8 MSBs of product
endmodule

DDPP5.book Page 424 Tuesday, March 28, 2017 5:33 PM

8.3 Multiplying 425

Program 8-20 is the full structural module. It uses generate blocks to create
the actual two-dimensional structure of full-adder components (FAblk) and their
connections in the pattern shown in Figure 8-25. When used in the first row of
full adders, FAblk’s CIN input is set to 0; two inputs corresponding to a product-
component bit are applied to the A inputs; and another two to B. In most cases
when FAblk is used in the second and subsequent rows of Figure 8-25, only one
of the B inputs (B0) is used and receives a sum output from the row above; the
other B input (B1) is set to 1. However, in the leftmost FAblk in each row, both
the A and the B input pairs are used to form product-component bits.

Another interesting aspect of Program 8-20 is that it uses Verilog’s built-in
addition function, instead of specifying a ripple adder to do the final addition as
in Program 8-17. The last for loop extracts the needed bits from the two-dimen-
sional PCS and PCC arrays, creating a pair of vectors to combine using the built-
in addition operator. The idea is that when the synthesizer encounters an explicit
addition, a common operation, it should know an implementation that is well-
suited to the target technology, probably at least as good as a handcrafted design.
Compared to a ripple adder using FAblk modules, such an implementation is
likely to be smaller or faster or both. In the case of Xilinx 7-series FPGAs, we
know that the synthesizer does a good job creating compact and fast adders using
the 7-series CARRY4 elements, and in this example, the results are indeed smaller
and faster.

PERFORMANCE
RESULTS FOR

FPGA-OPTIMIZED
STRUCTURAL

VERILOG CODE

The multiplier structure in Figures 8-24 and 8-25 can be very effectively targeted to
Xilinx 7-series FPGAs. Recall that the 7-series LUT can perform any two logic func-
tions of five inputs. The enhanced full adder FAblk in Program 8-19 matches this
capability perfectly, so it fits into just one 7-series LUT.

For comparison purposes, I synthesized all of the Vrmul8x8 modules, target-
ing Xilinx 7-series FPGAs using Vivado tools. The truly behavioral architecture,
Vrmul8x8i in Program 8-16, had good QoR (quality of results), using 71 LUTs and
having a worst-case delay of 13.38 ns. The explicit behavioral architecture
Vrmul8x8p in Program 8-17, despite all my work in creating it, gave worse results,
75 LUTs and 14.83 ns. A structural version, Vrmul8x8s similar to Program 8-20 but
using a ripple adder for the final addition (without CARRY4 elements), used only 58
LUTs but had a worst-case delay of 20.49 ns. The optimized structural version in
Program 8-20, Vrmul8x8sho, used the fewest LUTs (only 57), and had a worst-case
delay at 16.96 ns, still much longer than the tool’s implementation of the easy-to-
write behavioral version, Vrmul8x8i.

As always, the relative QoR of the four versions could be quite different when
targeted to different technologies, like ASICs, and even using different releases of
the same software tools, since tools’ internal algorithms may get “tweaked.” In fact,
when I synthesized the same modules with an earlier tool release from a year before,
the handcrafted version Vrmul8x8sho won!

DDPP5.book Page 425 Tuesday, March 28, 2017 5:33 PM

426 Chapter 8 Combinational Arithmetic Elements

*8.4 Dividing
Division is a less common operation than multiplication in computers and digital
applications, but still, it happens. Like multiplication, division can be done by a
sequential circuit, typically based on a shift-and-subtract algorithm as we
discussed briefly in Section 2.9. Many variations of the algorithm have been
devised to improve performance.

In this section, we’ll describe the most basic bit-at-a-time shift-and-sub-
tract division algorithm, and then show how it can be modeled by a Verilog
module and synthesized into a combinational circuit. An easier way to divide is
just to use Verilog’s built-in division operator, which yields of a combinational
divider in synthesis, but depending on the application and the tools, you may get
a much more efficient circuit without too much effort by creating your own
model of a division circuit based on the basic algorithm.

*8.4.1 Basic Unsigned Binary Division Algorithm
As we discussed in Section 2.9, the division instructions in typical computers
divide a 2n-bit dividend by an n-bit divisor and produce an n-bit quotient and an
n-bit remainder, and setting an “overflow” condition if the divisor is 0 or if the
quotient would require more than n bits to represent. For simplicity’s sake, in
this section, we’ll divide an n-bit dividend by an n-bit divisor, so the quotient can
always be represented in n bits, and we won’t worry about the divide-by-0 case.

We’ll use four n-bit variables in the algorithm:

• DVND — dividend

• DVSR — divisor

• QUOT — quotient

• REM — remainder

The definitions of division is such that DVND = QUOT ⋅ DVSR + REM. Even
though the basic algorithm uses only n-bit inputs and outputs, it also uses a
2n-bit register or variable which we’ll call RDIV—the “reduced” dividend. To
begin the division, the left half of RDIV is initialized to 0 and the right half is
loaded with DVND. The algorithm calculates the quotient bits from left to right
with n repetitions of the following steps, with i equal to n–1 initially:

1. RDIV is shifted left by one bit.

2. DVSR is compared with the left half of RDIV. If DVSR is less than or equal
to RDIV[2n–1:n], then the difference (RDIV[2n–1:n] – DVSR) is loaded into
the left half RDIV[2n–1:n] and QUOT bit i is set to 1; otherwise, QUOT bit
i is set to 0. Then i is reduced by 1; the last repetition is with i = 0.

At the end of n steps, all of the bits of QUOT have been set to their proper values,
and the left half RDIV[2n–1:n] contains the value of REM.

DDPP5.book Page 426 Tuesday, March 28, 2017 5:33 PM

8.4 Dividing 427

The less-than-or-equal comparison in step 2 on the previous page can be
performed using subtraction—if (RDIV[2n–1:n] – DVSR) doesn’t cause a borrow
out of the MSB, then DVSR is less than or equal to RDIV[2n–1:n]. That’s conve-
nient, because we can put the subtraction result into a variable DIFF and use that
to load the left half of RDIV when there’s no borrow. Figure 8-26 shows how the
variables are used.

*8.4.2 Division in Verilog
It’s easy to specify integer division in Verilog using the language’s built-in
divide and modulo operators, / and %. Program 8-21 is a module for finding a
32-bit quotient and remainder using the built-in operators and the variables
defined in the preceding subsection. It also checks for the divide-by-0 case and
sets QUOT and REM to all-1s if that happens.

When Program 8-21 is targeted to a Xilinx 7-series FPGA using Vivado
2016.3 tools, the synthesized combinational circuit uses about 2200 LUTs. Even

Figure 8-26
Variables used by
division algorithm.

RDIV[2n–1:n]

[n][2n-1]

RDIV[n–1:0]

[0][n–1]

shift

– DVSR[n–1:0]

DIFF[n–1:0]

[0][n–1]

[0][n–1]

DVND[n–1:0]

[0][n–1]

QUOT[n–1:0]

[0][n–1]

Program 8-21 Verilog module for 32-bit division.

module Vrdiv32by32 (DVND, DVSR, QUOT, REM);
 input [31:0] DVND, DVSR;
 output reg [31:0] QUOT;
 output reg [31:0] REM;

 always @ (DVND, DVSR) begin
 if (DVSR==32'b0)
 begin QUOT = 32'hffffffff; REM = 32'hffffffff; end
 else begin
 QUOT = DVND / DVSR;
 REM = DVND % DVSR;
 end
 endmodule

DDPP5.book Page 427 Tuesday, March 28, 2017 5:33 PM

428 Chapter 8 Combinational Arithmetic Elements

though the algorithm in the preceding subsection creates the remainder as a
natural side effect of computing the quotient, the synthesis tool appears not to
take advantage of that in Program 8-21—synthesizing a circuit for only QUOT or
REM but not both requires only about 1100 LUTs.

We can also write a structural Verilog module that computes the quotient
and remainder together, using the algorithm and variables from the preceding
subsection, as shown in Program 8-22. This module computes the results combi-
nationally, using an array of 33 64-bit RDIV vectors for the initial value of RDIV
and the updated values after each of the 32 iterations of the for loop in the
generate block. Another array SDIV holds the shifted value of RDIV as computed
at the beginning of each iteration, and an array DIFF of 33-bit vectors holds the
results of the subtraction that occurs at each iteration. Note DIFF and the subtrac-
tion are set up as 33 bits wide to hold the borrow from bit 31 in the MSB (bit 32).

In synthesis, the first assign statement in the for loop doesn’t generate
any logic; in effect it’s just copying (renaming) signals for the current iteration.
The second assign statement does create a real 32-bit subtractor for each itera-
tion, and the third creates a 32-bit multiplexer which selects one of two inputs
based on the borrow bit DIFF[g][32]) and also does 32 bits of copying (renam-
ing). The last assign statement sets the value of one quotient bit according to
DIFF[g][32]. After the for loop, the remainder is copied (renamed) from the
left half of the last value of RDIV.

When Program 8-22 is targeted to a Xilinx 7-series FPGA using Vivado
2016.3 tools, the synthesized combinational circuit uses only about 1500 LUTs.
So, the handcrafted module is 25% smaller than the tools’ when both QUOT and

Program 8-22 Structural Verilog for a 32 × 32 combinational divider.

module Vrdiv32by32_s (DVND, DVSR, QUOT, REM); // Integer 32-bit divider
 input [31:0] DVND, DVSR; // 32-bit dividend and divisor
 output wire [31:0] QUOT, REM; // 32-bit quotient and remainder
 wire [63:0] RDIV[31:-1], SDIV[31:0]; // Reduced and shifted dividends
 wire [32:0] DIFF[31:0]; // Trial differences
 genvar g;

 assign RDIV[31] = {32'b0,DVND};
 generate
 for (g=31; g>=0; g=g-1) begin: SUB
 assign SDIV[g] = RDIV[g]<<1;
 assign DIFF[g] = {1'b0,SDIV[g][63:32]} - {1'b0,DVSR};
 assign RDIV[g-1] = {(DIFF[g][32]? SDIV[g][63:32] : DIFF[g][31:0]),SDIV[g][31:0]};
 assign QUOT[g] = DIFF[g][32] ? 0 : 1;
 end
 endgenerate
 assign REM = RDIV[-1][63:32];
endmodule

DDPP5.book Page 428 Tuesday, March 28, 2017 5:33 PM

8.4 Dividing 429

REM are needed. But the tools’ built-in method of synthesizing division is more
efficient when only one of the results is required.

A test bench for the divider is shown in Program 8-23. It uses Verilog’s
built-in $random function to generate 32-bit test inputs, and for each input pair
the DispResults task displays the dividend, the divisor, and the quotient and
remainder produced both by the UUT and by the Verilog simulator’s built-in /
and % functions, in the output’s first and second line, respectively. If desired, this
task can be easily modified to compare results and keep track of the number of
mismatches (see Drill 8.15).

The test bench’s first for loop begins by checking a few divide-by-0 cases.
If you study the logic in Program 8-22, you can figure out what the divide-by-0
results should be, but running the test bench confirms it (see Exercise 8.49). The
second for loop checks the UUT’s operation with random values for both oper-
ands. Since most of the randomly generated 32-bit operands will have some 1s in

Program 8-23 Test bench for a 32 × 32 combinational divider.

`timescale 1ns/100ps
module Vrdiv32by32_tb ();
 reg [31:0] DVND, DVSR;
 wire [31:0] QUOT;
 wire [31:0] REM;
 integer i;

 task DispResults;
 begin
 $display("DVND,DVSR,QUOT,REM: %010d,%010d,%010d,%010d", DVND, DVSR, QUOT, REM);
 $display("DVND/DVSR,DVND%%DVSR: %010d,%010d",
 DVND/DVSR, DVND%DVSR);
 end
 endtask

 Vrdiv32by32_s UUT (.DVND(DVND), .DVSR(DVSR), .QUOT(QUOT), .REM(REM));

 initial begin
 DVND = 0; DVSR = 0; #50 DispResults; // Check a few divide-by-0 results first
 for (i=1; i<=10; i=i+1) begin
 DVND = $random; DVSR = 0; #50 DispResults;
 end
 for (i=1; i<=100; i=i+1) begin // Test full 32-bit random DVND and DVSR
 DVND = $random; DVSR = $random ; #50 DispResults;
 end
 for (i=1; i<=1000; i=i+1) begin // Also test with 8-bit DVSR for bigger QUOTs
 DVND = $random; DVSR = $random & 8'hff; #50 DispResults;
 end
 $stop(1);
 end
endmodule

DDPP5.book Page 429 Tuesday, March 28, 2017 5:33 PM

430 Chapter 8 Combinational Arithmetic Elements

the high-order bits, the operands will usually be large numbers of the about the
same magnitude, and the quotients will usually be small—0 about half of the
time! The last for loop reduces the random divisor to 8 bits, so cases with larger
quotients and “interesting” divisors like 0 and 1 are more likely to be generated.

Dividing by a constant can be done more efficiently than dividing by a vari-
able, and there are applications where such division is required. A typical one is
in converting a binary number into a string of BCD digits; for example, for use
with a seven-segment display, using the algorithm described in Section 2.3. This
algorithm repeatedly divides a given binary number by 10, generating the BCD
digits from right to left, each one being the remainder from a division by 10.

Suppose we need to convert a 32-bit number to a sequence of BCD digits.
The largest value of an unsigned 32-bit number is 232−1 or 4,294,967,295, which
has 10 digits. So we’ll need nine instances of a divide-by-10 circuit if we do the
conversion with a combinational circuit, which we will later in this subsection.
With 10 instances, it behooves us to do a good job on the divide-by-10 circuit.

Program 8-24 is a very simple and straightforward divide-by-10 module
that uses Verilog’s built-in division and modulus operators. Its outputs are both a
32-bit quotient and a 4-bit remainder, since both will be needed in the binary-to-
BCD circuit. When targeted to a Xilinx 7-series FPGA using Vivado 2016.3
tools, the synthesized combinational circuit uses 614 LUTs. Note that in succes-
sive steps in the conversion algorithm, fewer and fewer of the Vrdiv10 module’s
high-order dividend and quotient bits will be needed, so we can expect the syn-
thesis tool to prune away any unneeded logic when it puts it all together. Still,
compared to the full 32×32 divider in Program 8-21 (1100 LUTs), it doesn’t
seem like we saved a lot by using a constant divisor; maybe we can do better.

We know that our structural 32×32 divider module in Program 8-22 was
smaller than one using the built-in Verilog operators when both quotient and
remainder were required, so maybe instantiating that with a constant divisor
would yield a better synthesized circuit. Program 8-25 shows how to do it. The
divisor is set to be a 32-bit constant decimal 10, and the remainder that we know
to be just four bits is returned to a 32-bit internal wire IWIRE for subsequent

Program 8-24 Verilog module to divide a 32-bit number by 10.

module Vrdiv10 (D, QUOT, REM); // Integer divide by 10
 input [31:0] D; // 32-bit dividend
 output reg [31:0] QUOT; // 32-bit quotient
 output reg [3:0] REM; // 4-bit remainder (<10)

 always @ (D) begin
 QUOT = D / 10;
 REM = D % 10;
 end
endmodule

DDPP5.book Page 430 Tuesday, March 28, 2017 5:33 PM

8.4 Dividing 431

assignment to REM. Unfortunately, the tool could do even less optimization on
this version of the circuit, and it synthesized a result with 747 LUTs. But we’re
not giving up!

Program 8-26 is a structural module for dividing by 10 that uses the same
basic division algorithm as our previous structural module, but it has several
optimizations:

• In concept, the 4-bit constant divisor is shifted to the right, under the 32-
bit dividend in RDIV which does not shift; in the more general algorithm,
the 0-padded dividend is shifted to the left in a 64-bit RDIV.

• Since the divisor is known to be four bits wide, it can be “lined up” under
RDIV[31:28] for the first trial subtraction, eliminating the first three trial
subtractions and all but one bit of the 0-initialized left half of RDIV in the
general algorithm (RDIV is now only 33 bits wide).

Program 8-25 Hierarchical module to divide a 32-bit number by constant 10.

module Vrdiv10_sf (D, QUOT, REM); // Integer divide by 10
 input [31:0] D; // 32-bit dividend
 output wire [31:0] QUOT; // 32-bit quotient
 output wire [3:0] REM; // 4-bit remainder (<10)
 wire [31:0] IREM; // Internal REM for assignment

 Vrdiv32by32_s U1 (.DVND(D),.DVSR(32'd10),.QUOT(QUOT),.REM(IREM));
 assign REM = IREM[3:0];
endmodule

Program 8-26 Optimized structural module to divide a 32-bit number by constant 10.

module Vrdiv10_so (D, QUOT, REM); // Integer divide by 10
 input [31:0] D; // 32-bit dividend
 output wire [31:0] QUOT; // 32-bit quotient
 output wire [3:0] REM; // 4-bit remainder (<10)
 wire [32:0] RDIV[28:-1]; // Reduced dividends (MSB unused except at g=28)
 wire [4:0] DIFF[28:0]; // Trial differences
 genvar g;

 assign RDIV[28] = {1'b0,D}; assign QUOT[31:29] = 3'b000;
 generate
 for (g=28; g>=0; g=g-1) begin: SUB
 assign DIFF[g] = RDIV[g][g+4:g] - 5'b01010;
 assign RDIV[g-1][g+3:g] = DIFF[g][4] ? RDIV[g][g+3:g] : DIFF[g][3:0];
 if (g>=1) assign RDIV[g-1][g-1:0] = RDIV[g][g-1:0]; // No copy on last iteration
 assign QUOT[g] = DIFF[g][4] ? 0 : 1;
 end
 endgenerate
 assign REM = RDIV[-1][3:0];
endmodule

DDPP5.book Page 431 Tuesday, March 28, 2017 5:33 PM

432 Chapter 8 Combinational Arithmetic Elements

• Also because of the known 4-bit divisor, the three leftmost quotient bits are
known to always be 0.

• The operands and results of the trial subtractions are explicitly formulated
to be only five bits wide—four bits for the divisor and the fifth bit on the
left to capture the borrow.

This version requires only 84 LUTs, such a big improvement that it’s hard
to believe that the design is correct! But we’ve got a test bench to prove it, in
Program 8-27. All three of the divide-by-10 modules in this subsection pass with
no errors.

Now that we have a pretty good divide-by-10 module, we can go ahead and
design the full 32-bit to BCD conversion circuit. It’s not too difficult using a
structural approach, as shown in Program 8-28. The module instantiates nine
copies of the Vrdiv10_so module, passing the QUOT output of each to the D input
of the next. The REM outputs are the BCD digits, generated from right to left, and
packed into a 40-bit vector to hold the ten 4-bit digits. The ninth, final divide-by-
10 is a special case, where the four low-order bits of its QUOT output are in fact
the most significant BCD digit.

When Program 8-28 is targeted to a Xilinx 7-series FPGA using Vivado
2016.3 tools, the synthesized combinational circuit uses 332 LUTs in 18 levels
and has a maximum delay of about 16 ns. If we resynthesize it using our original
Vrdiv10 module, the results are 5766 LUTs in 210 levels, and 88 ns of delay. So,
even when targeting an FPGA with tens of thousands of LUTs available, the
extra effort to optimize this design was well worth it.

Program 8-27 Test bench for divide-by-10 modules.

`timescale 1ns/100ps
module Vrdiv10_tb ();
 reg [31:0] D;
 wire [31:0] QUOT;
 wire [3:0] REM;
 integer i;

 Vrdiv10_so UUT (.D(D), .QUOT(QUOT), .REM(REM));

 initial begin
 for (i=1; i<=1000; i=i+1) begin
 D = $random; #10 ;
 $display ("Random number: %010d",D);
 $display ("DIV by 10, REM: %010d, %1d", QUOT, REM);
 if ((QUOT!==D/10) || (REM!==D%10)) $display("*****ERROR*****");
 end
 $stop(1);
 end
endmodule

DDPP5.book Page 432 Tuesday, March 28, 2017 5:33 PM

Drill Problems 433

References
Descriptions of algorithms for arithmetic operations appear in Digital Arith-
metic by Miloš Ercegovac and Tomas Láng (Morgan Kaufmann, 2003). A
thorough discussion of arithmetic techniques and floating-point number systems
can be found in Introduction to Arithmetic for Digital Systems Designers by
Shlomo Waser and Michael J. Flynn (Oxford University Press, 1995).

A detailed, comprehensive treatment of arithmetic algorithms and imple-
mentation is given by Behrooz Parhami in Computer Arithmetic (Oxford
University Press, 2009, second edition). For a book that focuses in particular on
Verilog implementations, see Computer Arithmetic and Verilog HDL Funda-
mentals by Joseph Cavanaugh (CRC Press, 2009).

Drill Problems
8.1 Write an algebraic expression for s3, the fourth sum bit of a binary adder, as a

function of inputs a0, a1, a2, a3, b0, b1, b2, and b3. Assume that c0 = 0, and do not
attempt to “multiply out” or minimize the expression.

Program 8-28 Verilog module for 32-bit binary to 10-digit BCD conversion.

module Vrbintodec32 (BIN, DEC);
 input [31:0] BIN;
 output wire [39:0] DEC;
 wire [31:0] quot [9:0];
 genvar g;

 assign quot[0] = BIN;
 generate
 for (g=0; g<=8; g=g+1) begin: DIV
 Vrdiv10_so U1 (.D(quot[g]), .QUOT(quot[g+1]), .REM(DEC[4*g+3:4*g]));
 end
 endgenerate
 assign DEC[39:36] = quot[9][3:0];
endmodule

UNNATURAL
SELECTION

The module in Program 8-28 uses a 40-bit vector to output ten BCD digits. It might
seem more natural to declare the output as an array of 4-bit vectors, for example,
“output wire [3:0] DIGITS [9:0]”, which would make it easier to select the indi-
vidual digits. But standard Verilog does not allow an array to be used as an input or
output port; you have to move to SystemVerilog for that capability. So the only
option is to pack the array into a vector as we have here, and unpack it inside the
module as needed.

DDPP5.book Page 433 Tuesday, March 28, 2017 5:33 PM

434 Chapter 8 Combinational Arithmetic Elements

8.2 Assume that an inverting gate has a delay of 1 unit, an AND-OR or OR-AND cir-
cuit with no complemented inputs has a delay of 2 units, and an XOR or XNOR
gate has a delay of 3 units. What is the worst-case delay from any input to any
sum output for the 4-bit ripple adder in Figure 8-2? What is the worst-case delay
to the carry output?

8.3 Using the same assumptions as in Drill 8.2, determine the worst-case delay from
any input to any sum output, as well as the worst-case delay to the carry output,
for the 4-bit carry lookahead adder in Figure 8-6.

8.4 Using the information in Table 4-3 for 74HC components operating at 4.5 V,
determine the maximum propagation delay from any input to any output of the
16-bit group ripple adder of Figure 8-7.

8.5 Suppose that the 4-bit carry lookahead adder in Figure 8-6 is augmented to pro-
vide group carry lookahead outputs using the equations in Section 8.1.6. Using
the same assumptions as in Drill 8.2, determine the worst-case delay from any
input to any group carry lookahead output.

8.6 Write a dataflow-style Verilog module Vradder8 for an adder with two 8-bit
inputs A and B, carry input CIN, 8-bit sum output S, and carry output COUT.

8.7 Write a dataflow-style Verilog module Vr74x182 that performs the same function
as the 74x182 lookahead carry circuit, but with active-high generate and propa-
gate signals.

8.8 Write a simple behavioral Verilog module Vraddbytes64 for a circuit that adds
the bytes in a 64-bit input longword D, considering each byte as an unsigned inte-
ger, and returning a 12-bit result S.

8.9 Write a test bench Vraddbytes64_tb that checks the module in Drill 8.8 for cor-
rect operation for 10,000 random input values on D.

8.10 Repeat Drills 8.8 and 8.9 for a module Vraddbytes64_g that uses generate.

8.11 Write a simple behavioral Verilog module Vrcnt1s for a 1s-counting circuit with
a 32-bit input D and a 5-bit output SUM which gives the number of 1 bits in D.

8.12 For the barrel-shifter design of Figure 8-17, and using the design assumptions in
the text, sketch the delay paths from DIN and S to DOUT and determine how many
inverting gates are on the worst-case path(s). Be sure to read the box on page 405.

8.13 Repeat Exercise 8.12 assuming that noninverting buffers are used on DIN and S.

8.14 Which 16-bit barrel-shifter design is likely to require more chip area for wiring,
Figure 8-17 or Figure 8-19?

8.15 Modify the test bench in Program 8-23 to compare the results produced by the
UUT and Verilog’s built-in functions for each test case, and to run a much larger
number of cases. Be sure your code handles divide-by-0 cases sensibly.

Exercises
8.16 Suppose that the 4-bit adders in Figure 8-8 do not have a C4 output. (This was the

case with some MSI adders with group-carry-lookahead outputs.) Write the logic
equation for the carry out of the overall addition (“C16”) as a function of the
existing signals in the logic diagram.

DDPP5.book Page 434 Tuesday, March 28, 2017 5:33 PM

Exercises 435

8.17 Assume that an inverting gate has a delay of 1 unit, an AND-OR or OR-AND
circuit with no complemented inputs has a delay of 2 units, and an XOR or XNOR
gate has a delay of 3 units. Determine the maximum delay from any input to any
sum output in the 16-bit group-carry-lookahead adder of Figure 8-8, further
assuming that the carry lookahead logic is implemented using the equations in
Section 8.1.6. Similarly, determine the delay to the carry output. You may build
on the results of Drills 8.3 and 8.5.

8.18 Suppose that the C16 output in Figure 8-8 is implemented inside the lookahead
carry circuit, using logic similar to its other carry outputs as suggested in the last
paragraph of Section 8.1.6. Using the same assumptions as in Exercise 8.17,
determine whether such a C16 output would have a shorter delay than the one
calculated in Exercise 8.17.

8.19 Repeat Drills 8.8 and 8.9, but considering each byte of D to be a signed integer,
and producing a 16-bit signed output.

8.20 Write a dataflow-style Verilog module Vr2bgcladder for a 2-bit group carry
lookahead adder with inputs A, B, and CIN, and outputs S, G, and P (note that the
generate and propagate signals are active high).

8.21 Write a structural Verilog module Vr8bgcladder_s for an 8-bit group carry
lookahead adder by instantiating the Vr74x182 module of Drill 8.7 and four
copies of Vr2bgcladder from Exercise 8.20. The 8-bit module should have the
same kinds of inputs and outputs as the 2-bit module.

8.22 Write a test bench module Vr8bgcladder_tb that instantiates the 8-bit adder in
Exercise 8.21 and checks for correct outputs for all 217 input combinations. If the
test passes the first time, insert one or more errors into your adder module(s) to
ensure that your error-detection and display code works properly.

8.23 Synthesize the 8-bit adder module Vr8bgcladder_s of Exercise 8.21, targeting
a Xilinx 7-series FPGA. Also synthesize the Vradder8 module of Drill 8.6 and
target it to the same FPGA. Compare the resources (number of LUTs) required
for the two designs and their speeds (worst-case delays). Comment on and
explain any significant differences. Based on your observations, should one
design approach be favored over the other for FPGA-based adders?

8.24 Find a way to delete a single character in Program 8-5 such that the Verilog com-
piler detects no errors and the synthesized module always produces the correct
sum output, but the test bench in Program 8-6 now detects tens of thousands of
errors. (The purpose of this exercise is to strengthen your belief in the usefulness
of test benches!)

8.25 Write a structural, hierarchical Verilog module Vr64bGCLAadder_s for a 64-bit
group-carry-lookahead adder by instantiating modules Vr16bGCLAadder_s and
Vr4iLACckt in Programs 8-8 and 8-9. Adapt the test bench in Program 8-7 to test
your module, including code to test the 64-bit adder’s super-supergroup look-
ahead outputs.

8.26 Starting with the logic diagram for the 74x283 in Figure 8-6, write a logic expres-
sion for the S2 output in terms of the inputs, and prove algebraically that it does
indeed equal the third sum bit in a binary addition as advertised. You may assume
that c0 = 0 (i.e., ignore c0).

DDPP5.book Page 435 Tuesday, March 28, 2017 5:33 PM

436 Chapter 8 Combinational Arithmetic Elements

8.27 Estimate the number of product terms in a minimal sum-of-products expression
for the c32 output of a 32-bit binary adder. Be more specific than “billions and
billions,” and justify your answer.

8.28 Draw the logic diagram for a 64-bit fast adder using sixteen 4-bit group-carry-
lookahead adders and five 4-group lookahead carry circuits. For the 4-bit adders,
you need show only the Gg and Pg outputs and the carry inputs and outputs.

8.29 Write a structural Verilog module Vr74x283_8s for an 8-bit carry-lookahead
adder, similar in structure to the 74x283 4-bit adder, using a generate statement.
Check your design with the test bench in Program 8-7.

8.30 Augment the Verilog module in Program 8-5 for a 74x381-like ALU by adding
COUT (carry-out) and OVFL (overflow) outputs. Write or adapt a test bench to
verify your design.

8.31 Which if any signals are produced differently in Figure 8-11 as compared to
Figure 8-8? Explain the reason for any differences.

8.32 Modify the Verilog module in Table 8-5 for a 74x381-like ALU by including an
n-bit variable C and computing the sum and differences using C, as discussed in
the box on page 388. Write or adapt a test bench to verify your design for addition
and both subtraction operations, for all input combinations.

8.33 Write a hierarchical Verilog module for a 16-bit Kogge-Stone adder based on
Figures 8-12, 8-13, and 8-14. Use generate statements and for loops to instan-
tiate all of the GPR circuits; do not hook up all their inputs and outputs “by hand.”
Check your module for correct operation using the test bench in Program 8-7.

8.34 The values of N in the GPN prefixes of the Brent-Kung prefix-adder graph in
Figure 8-15 are not all powers of 2. Why?

8.35 Write a hierarchical Verilog module for a 16-bit Brent-Kung adder based on
Figures 8-12, 8-13, and 8-15. Use generate statements and for loops to instan-
tiate the GPR circuits as best as you are able; do not hook up all their inputs and
outputs “by hand.” Check your module for correct operation using the test bench
in Program 8-7.

8.36 Write a structural Verilog module Vrcnt1s_s for a 1s-counting circuit with a 32-
bit input D and a 5-bit output SUM which gives the number of 1 bits in D. Your
structural module should break up D into b-bit chunks, where b is the number of
inputs in your favorite FPGA’s LUTs, for example 6 in the Xilinx 7 series. Define
a module CNTb, for example CNT6, that counts the number of 1s in a b-bit chunk.
Then instantiate CNTb multiple times in Vrcnt1s_s, and add those results to get
the final SUM value. Synthesize your design for the selected FPGA family, and
compare its size and speed of with that of the simple behavioral approach in
Exercise 8.11. (Hint: Depending on the version of the tools, the author was able
to achieve improvements of 10% and 5% in size and speed. You may also wish to
explore other hierarchical structures.)

8.37 Write the Verilog functions for Vror, Vsll, Vsrl, Vsla, and Vsra that are needed
in Program 8-10 using the corresponding shift operations defined in Table 8-2.

DDPP5.book Page 436 Tuesday, March 28, 2017 5:33 PM

Exercises 437

8.38 Determine which of the Verilog functions for Vror, Vsll, Vsrl, Vsla, and Vsra
in Table 8-10 can be easily coded using one of Verilog’s built-in shift operators
instead of a for loop, and write and test the new code.

8.39 Write a test bench Vrrolr16_tb for the Verilog left/right barrel shifter module in
Program 8-12 for random data inputs and all possible combinations of control
inputs, and use it to test the module.

8.40 Redesign the Verilog left/right barrel shifter module in Program 8-12, creating a
new module Vrrolr16_h that it simply instantiates the Vrrol16 module of
Program 8-11 using a value of S that is modified appropriately if DIR is 1. Use the
test bench of Exercise 8.39 to test your design. Assuming that the synthesizer
faithfully follows the structure implied by each module version, discuss the pros
and cons of each version. Then, target each module to your favorite programma-
ble device and determine whether the choice of design approach makes any
difference to the size and speed of the implementation.

8.41 Rewrite the Vrbarrel16_s module in Program 8-14 to make a new module
Vrbarrel16_sr using the structure shown in Figure X8.41. Use the existing
ROL16 and FIXUP modules; it’s up to you to come up with MAGIC and the other
logic. Compare the size and speed of the new synthesized module with the
original.

8.42 Rewrite the Vrbarrel16_s module of Program 8-14 using Vrrolr16_h from
Exercise 8.40 and target the new module to your favorite programmable device.
Compare the size and speed of the new synthesized module with the original and
optionally with Vrbarrel16_sr from Exercise 8.41.

8.43 Modify the Vrbarrel16_s module of Program 8-14 so its DOUT output is a copy
of the DIN input when either of the unused mode values is applied to C. Try to
minimize the impact on size and speed and compare with the original module.

8.44 Determine the worst-case propagation delay of the multiplier in Figure 8-23,
assuming that the propagation delay from any full-adder input to its sum output
is twice as long as the delay to the carry output. Repeat, assuming the opposite
relationship. If you were designing the adder cell from scratch, which path would
you favor with the shortest delay? Is there an optimal balance?

8.45 Repeat the preceding exercise for the multiplier in Figure 8-24.

8.46 Modify the Vrmul8x8p multiplier module of Program 8-17 to use one-dimen-
sional arrays of 1-byte-wide vectors for PC, PCS, and PCC. What are the pros and
cons of this approach? Test your module using the test bench in Program 8-18.
Optional: Are the synthesis results for the two versions identical?

ROUT[15:0] FOUT[15:0]
DOUT[15:0]ROL16

ROUT[0]

DIN[15:0]

S[3:0]

C[2:0]

MAGIC
MOUT[15:0]

other logic

MAGICFIXUP

Figure X8.41

DDPP5.book Page 437 Tuesday, March 28, 2017 5:33 PM

438 Chapter 8 Combinational Arithmetic Elements

8.47 When I synthesized the Vrmul8x8sho module of Program 8-20 using Xilinx
Vivado tools version 2016.3 and targeting a 7-series FPGA, the tools insisted on
using two separate 6-input LUTs for each FAblk regardless of the tools’ option
settings, even though it can clearly be implemented in one LUT configured as two
5-input LUTs as in Figure 6-6 on page 244. This forced me to do a workaround—
defining a new “FAblkLUT” module structurally, as a single instantiation of the
Xilinx 7-series LUT6_2 library component. To do this, I had to manually create
truth tables corresponding to the two output functions and then convert them into
a 64-bit string to initialize the LUT6_2 component’s lookup table using its INIT
parameter in the instantiation. Figure out how to do all this yourself and write
your own FAblkLUT module. Check your work by substituting your FAblkLUT
into the Vrmul8x8sho module and testing it with Vrmul8x8_tb.

8.48 Using the latest version of Xilinx Vivado tools, synthesize the Vrmul8x8sho
module of Program 8-20, targeting a 7-series FPGA. Determine whether Xilinx
has fixed the “limitations” (some would say bugs) that led to the creation of
Exercise 8.47. How many LUTs are used by the synthesized module?

8.49 Study the logic of the Verilog 32-bit structural divider module in Program 8-22,
and determine what results it produces when DVSR is 0, including the case where
DVND is also 0. Run the test bench in Program 8-23 to confirm your analysis, and
why these results occur. Modify the module so it produces the same results as
Program 8-21 in the divide-by-0 cases, and confirm by again running the test
bench against both modules. Compare the resource requirements of the modified
module with the original when targeted to your favorite FPGA.

8.50 Design a Verilog module Vrbcd10div3 whose input is a 10-digit BCD integer
packed into a 40-bit vector DIGS. The module’s output should be a single signal
DIV3 that is 1 if the input number is evenly divisible by 3. Use Verilog’s built-in
multiplication and addition operations to compute the binary equivalent of the 10-
digit number and to divide it by 3; do not attempt to design any custom circuits
for multiplication by 10 or division by 3. Synthesize the module for your favorite
FPGA and determine how many resources (LUTs) it uses and how many LUTS
are in its worst case delay path.

8.51 A well-known math trick is that a decimal number is evenly divisible by 3 if and
only if the sum of its digits is evenly divisible by 3. Use this trick in a new module
Vrbcd10div3t for the problem statement in Exercise 8.50. Also write a test
bench Vrbcd10div3_tb that compares the outputs of the two modules for 10,000
random 10-digit integers and ensures that they are equal. Synthesize your new
module and compare its resource requirements and delay with the original.

DDPP5.book Page 438 Tuesday, March 28, 2017 5:33 PM

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

439

c h a p t e r 9
State Machines

e’ve previously said that logic circuits are classified into two
types: combinational and sequential. A combinational logic
circuit’s outputs depend only on its current inputs, while a
sequential circuit’s output may also depend its past inputs,

possibly arbitrarily far back in time. In practice, almost all logic circuits
are sequential circuits, because almost all applications need the kind of
functionality that sequential circuits provide.

To describe the functionality of a combinational logic circuit, we can
use an input/output table—the truth table—that simply specifies the circuit’s
outputs for all possible input combinations. This approach is practical as
long as the number of input combinations is not too large.

With sequential circuits, you might think to extend this approach to use
an input/output table that lists output values as a function of the sequence of
input combinations that has been received up until the current time. But how
long of a sequence is needed? As we’ve said, a sequential circuit’s output
may depend on inputs received arbitrarily far back in time, and the circuit
may have been operating for a long time.

For example, in the introduction of Chapter 3 we described a fan-speed
control circuit operated by up/down pushbuttons. With this circuit, it’s not
possible to determine the current fan speed by looking only at a predeter-
mined number of previous up/down pushes, whether that number is 1, 10, or
1000; the circuit may have received even more up/down pushes.

W

c09.fm Page 439 Sunday, April 9, 2017 10:33 PM

440 Chapter 9 State Machines

9.1 State-Machine Basics
We can determine what the output of the fan-speed circuit should be in response
to an input (up/down push) if we know its current “state,” and this can be done
very concisely. After decades of digital-design experience, the best definition of
“state” that I’ve seen is still the one in Herbert Hellerman’s book on Digital
Computer System Principles (McGraw-Hill, 1967):

The state of a sequential circuit is a collection of state variables whose
values at any one time contain all the information about the past necessary
to account for the circuit’s future behavior.

In the fan-speed example, the fan’s current speed is the current state. Inside
a three-speed fan, this state might be stored as two binary state variables repre-
senting a decimal number between 0 and 3, with 0 corresponding to “off” and 3
to the highest speed. Given the current state (speed 0–3), we can always predict
the next state as a function of the inputs (presses of the up/down pushbuttons).

Of course, we need more than just the state variables to describe a sequen-
tial circuit’s operation—we need to know how the circuit will act in response to
a given input combination when it is in any given state. This information may be
formally specified in a set of tables that we’ll describe in detail in Section 9.2.

Another example of a simple sequential circuit would be a traffic-light
controller. (I say “would be” because nowadays they all use microprocessors to
run a program with the control algorithm, instead of using a hardwired circuit.)
Let’s consider a sequential circuit that controls North-South and East-West
directions of traffic flow, provides a double-red interval between direction
changes for safety, and also has a “flashing-red” mode of operation.

In the traffic-light example, the controller circuit’s current state cannot
necessarily be deduced just by looking at the outputs. For example, if the N-S
lights are green and E-W are red, we know the state. But if both directions are
red, what is the state? All the lights may be about to blink off, for flashing-red
operation. Or, the circuit may be in a double-red interval between direction
changes and if so, which direction will be green next, N-S or E-W? Drivers may
guess and hit the accelerator at their own peril. So, while the controller circuit’s
current state determines its current output, the current output does not always
imply the current state.

Instead, we must go back to the definition of state, and the idea of state
variables. In a digital circuit, state variables are binary values, corresponding to
certain logic signals in the circuit, as we’ll see in later sections. A circuit with n
binary state variables has 2n possible states. As large as it might be, 2n is always
finite, never infinite, so sequential circuits are sometimes called finite-state
machines (FSMs), or more often simply state machines.

State variables need not have direct physical significance, and there are an
unlimited number of ways to choose them to describe a particular sequential cir-
cuit, many of which make sense for one reason or another. For example, in the

state
state variable

finite-state machine
(FSM)

state machine

c09.fm Page 440 Sunday, April 9, 2017 10:33 PM

9.1 State-Machine Basics 441

traffic controller, and for simplicity assuming no yellow lights, we need six
states: two for N-S green and the double-red afterwards, a similar two for E-W,
and two for flashing-red (to loop between double-red and double-off). We could
encode these states in three bits and build a combinational circuit that turns on
lights as needed as a function of these three bits. Or, we could use six bits with
some physical significance: the N-S and E-W green and red outputs (four bits
that control lights directly), and two more bits to distinguish among the three
states where both green lights are off and both reds are on. While these six state
bits could encode up to 64 different states, in the traffic controller they would
take on only six different combinations for six states.

When do state changes happen? In most sequential circuits, they can occur
only at times specified by a free-running clock signal. Figure 9-1 gives timing
diagrams and nomenclature for typical clock signals. By convention, a clock sig-
nal is active high if state changes occur at the clock’s rising edge (transitioning
from LOW to HIGH), and active low if they occur at the falling edge. The edge at
which state changes occur may be called the active or triggering edge. The clock
period is the time between successive transitions in the same direction, and the
clock frequency is the reciprocal of the period. The triggering edge is often
called a clock tick. The duty cycle is the percentage of time that the clock signal
is at its asserted level (i.e., HIGH for an active-high clock). As indicated in the
figure, state changes occur only at the triggering clock edge. Between triggering
edges, the state remains stable.

NON-FINITE-
STATE MACHINES

A group of mathematicians recently proposed a non-finite-state machine, but they’re
still busy listing its states. . . . Sorry, that’s just a joke. There are mathematical
models for infinite-state machines, such as Turing machines. They typically contain
a small finite-state-machine control unit, and an infinite amount of auxiliary
memory, such as an endless tape.

clock

Figure 9-1
Clock signals:
(a) active high;
(b) active low.

CLK

tper

tHtL

tLtH
tper

state changes occur here(a)

state changes occur here

CLK_L

(b)

duty cycle = tH / tper

frequency = 1 / tper

period = tper

duty cycle = tL / tper

active edge
triggering edge
clock period
clock frequency
clock tick
duty cycle

c09.fm Page 441 Sunday, April 9, 2017 10:33 PM

442 Chapter 9 State Machines

Typical digital systems, from digital watches to supercomputers, use a
quartz-crystal oscillator to generate a free-running clock signal. Clock frequen-
cies might range from 32.768 kHz (for a watch) to 4 GHz (for a CMOS
microprocessor with a cycle time of 250 ps). At the PCB level, typical systems
using CMOS parts have clock frequencies in the 5–500 MHz range. The very
highest clock frequencies are normally achieved only on-chip by an internally
generated clock, as in the 4-GHz microprocessor example.

Most sequential circuits and almost all state machines use a particular type
of element to store their state variables, namely an edge-triggered D flip-flop.
The logic symbol for a positive-edge-triggered D flip-flop is shown in
Figure 9-2(a), and its “function table” is shown in (b). The circuit’s inputs are D
and CLK; its outputs are Q and optionally QN, which is the complement of Q.
The outputs may change only at the rising (“positive”) edge of the controlling
CLK signal. When CLK transitions from LOW to HIGH, the circuit samples its D
input and places the current value of D on the Q output, also placing the comple-
ment of that value on QN if present. Between LOW-to-HIGH clock transitions,
the flip-flop maintains the value previously stored on Q (and QN). Figure 9-3
shows this functional behavior for an example input sequence.

FAST CLOCKS A clock as fast as 4 GHz typically is not distributed at the PCB level. Rather, a slower
clock, say 200 MHz, is distributed to ICs such as microprocessors that run faster
internally. Each of these has an on-chip digital phase-locked loop (DPLL) that can
generate an internal clock at an integer multiple of the 200 MHz reference frequency.
The multiple can even be changed dynamically, for example to slow down a micro-
processor clock to save power when it doesn’t have a lot to do.

positive-edge-triggered
D flip-flop

Figure 9-2
Positive-edge-
triggered D flip-flop:
(a) logic symbol;
(b) function table.

(b)(a)

QD

CLK

CLK

0

1

D

0

1

Q

0x last Q

1

0

1x last Q

D Q

QCLK QN

QN

last QN

last QN

Figure 9-3 Functional behavior of a positive-edge-triggered D flip-flop.

D

CLK

Q

QN

c09.fm Page 442 Sunday, April 9, 2017 10:33 PM

9.2 State-Machine Structure and Analysis 443

This chapter focuses on state machines with D flip-flops as they are used in
the majority of practical designs, but there are other types of sequential circuits.
A feedback sequential circuit uses ordinary gates and feedback loops to obtain
memory in a logic circuit, thereby creating sequential-circuit building blocks
such as the D flip-flops themselves. Most digital designers never need to design
such circuits from scratch, because they already exist within a larger component
or device library. However, a basic understanding of feedback sequential circuits
is useful and we’ll give a short introduction to them in Section 10.8. Other
sequential circuit types, such as general fundamental mode, multiple-pulse
mode, and multiphase circuits, are sometimes useful in high-performance
systems and VLSI and are discussed in advanced papers and texts.

9.2 State-Machine Structure and Analysis
Historically, several different approaches and storage elements have been used
to create state machines, but the vast majority today are clocked synchronous
state machines that use edge-triggered D flip-flops. They are clocked because
their storage elements employ a clock input; and they are synchronous because
all of their flip-flops use the same clock signal. Such a state machine changes
state only when a triggering edge or “tick” occurs on the clock signal. Hence-
forth, we’ll just call them “state machines.”

9.2.1 State-Machine Structure
Figure 9-4 on the next page shows the general structure of a state machine. The
state memory is a set of n flip-flops that store the current state of the machine,
and it has 2n distinct states. The flip-flops are all connected to a common clock
signal that causes them to change state at each tick of the clock. What constitutes
a tick depends on the flip-flop type; the majority of state machines use positive-
edge-triggered D flip-flops, so a tick is the rising edge of the clock signal.

feedback sequential
circuit

LET’S NOT BE
NEGATIVE

There are also negative-edge-triggered D flip-flops which sample their inputs and
change their outputs on HIGH-to-LOW clock transitions. As a mathematician would
say, “without loss of generality” we’ll stick with positive-edge triggered D flip-flops
in our state-machine discussions.

However, you may eventually encounter a situation—almost certainly not in a
state machine—where both positive- and negative-edge triggered flip-flops are used
in the same circuit. This is done to achieve so-called “double data rate” (DDR) oper-
ation, where data is sampled and stored on both edges of the clock. The same result
could be achieved with positive-edge-triggered flip-flops and a double-frequency
clock, but there are certain electrical advantages using DDR. As you might expect,
there are drawbacks as well, but the trade-offs are such that DDR has been popular
in a number of very common applications, including the memory interfaces of PCs.

clocked synchronous
state machine

clocked
synchronous

state memory

tick

c09.fm Page 443 Sunday, April 9, 2017 10:33 PM

444 Chapter 9 State Machines

The next state of the state machine in Figure 9-4 is determined by the next-
state logic F as a function of the current state and input. The output logic G
determines the output as a function of the current state and input. Both F and G
are strictly combinational logic circuits. We can write

9.2.2 Output Logic
A sequential circuit whose output depends on both state and input as shown in
Figure 9-4 is called a Mealy machine. In some sequential circuits the output
depends on the state alone:

Such a circuit is called a Moore machine, and its general structure is shown in
Figure 9-5.

Next state = F(current state, input)

Output = G(current state, input)

Output = G(current state)

Figure 9-4 Mealy state-machine structure.

State
Memory

clock input

Next-State
Logic

Output
Logic

excitation current stateinputs

clock
signal

outputs

next-state logic
output logic

Mealy machine

Moore machine

Figure 9-5 Moore state-machine structure.

State
Memory

clock input

Output
Logic

excitation current stateinputs

clock
signal

outputs

Next-State
Logic

c09.fm Page 444 Sunday, April 9, 2017 10:33 PM

9.2 State-Machine Structure and Analysis 445

Obviously, the only difference between the two state-machine models is in
how outputs are generated. In practice, most state machines are categorized as
Mealy machines, because they have one or more Mealy-type outputs that depend
on input as well as state. However, many of these same machines also have one
or more Moore-type outputs that depend only on state.

In the design of high-speed circuits, it is often necessary to ensure that
state-machine outputs are available as early as possible and do not change during
each clock period. One way to get this behavior is to encode the state so that the
state variables themselves serve as outputs. We call this an output-coded state
assignment; it yields a Moore machine in which the output logic of Figure 9-5 is
nothing more than wires.

Another approach is to design the state machine so that the outputs during
one clock period depend on the state and inputs during the previous clock period.
We call these pipelined outputs, and they are obtained by attaching another stage
of memory (D flip-flops) to a machine’s outputs, as shown for a Mealy machine
in Figure 9-6.

With appropriate circuit or drawing manipulations, you can map one state-
machine model into another. For example, you could declare the flip-flops that
produce pipelined outputs from a Mealy machine to be part of its state memory,
and thereby obtain a Moore machine with an output-coded state assignment.

The exact classification of a state machine into one style or another is not a
big deal. What’s important is how you think about output structure and how it
satisfies your overall design objectives, including timing and flexibility. For
example, pipelined outputs are great for fast timing, but you can use them only in
situations where you can figure out the desired next output value one clock
period in advance. In any given application you may use different styles for
different output signals. We’ll see in Section 12.1.5 that different statement
structures can be used to specify different output styles in Verilog.

Mealy-type outputs

Moore-type outputs

output-coded state
assignment

pipelined outputs

Figure 9-6 Mealy machine with pipelined outputs.

State
Memory

clock input

Output
Logic

excitation current stateinputs

clock
signal

pipelined
outputs

Output
Pipeline
Memory

clock input

Next-State
Logic

c09.fm Page 445 Sunday, April 9, 2017 10:33 PM

446 Chapter 9 State Machines

9.2.3 State-Machine Timing
Figure 9-7 shows the timing relationships among the clock, inputs, and outputs
of a state machine that uses positive-edge-triggered D flip-flops. The shaded
areas show where signal values may be changing, and colored arrows indicate
causality, that is, which input transitions cause which output transitions. The
state-machine inputs must not change during a short interval before and after the
triggering clock edge; we’ll have more to say about that when we look at flip-
flop characteristics in detail in Section 10.2. Input changes during the rest of the
clock period have no effect on the machine’s state.

The state variables change just after the clock edge. Moore-type outputs,
which are functions of the state only, change after that. Pipelined outputs, on the
other hand, change at about the same time as state outputs, because they come
directly from flip-flop outputs, usually having the same speed as the state flip-
flops and of course clocked by the same clock.

Like Moore-type outputs, Mealy-type outputs change in response to
changes in the state variables. Since they are also functions of the state-machine
inputs, they also may change any time that the inputs change, depending on
details of the output equations.

9.2.4 Analysis of State Machines with D Flip-Flops
At some point you may need to predict the behavior of a state machine based on
its circuit, without the benefit of any other description. To do that, consider the
formal definition of a Mealy state machine that we gave previously:

Recalling our notion that “state” embodies all we need to know about the past
history of the circuit, the first equation tells us that what we next need to know
can be determined from what we currently know and the current input. The

Next state = F(current state, input)

Output = G(current state, input)

Figure 9-7
State-machine timing.

CLOCK

State

Inputs

Moore
Outputs

Mealy
Outputs

Pipelined
Outputs

c09.fm Page 446 Sunday, April 9, 2017 10:33 PM

9.2 State-Machine Structure and Analysis 447

second equation tells us that the current output can be determined from the same
information. The goal of sequential circuit analysis is to determine the next-state
and output functions F and G so that the circuit’s behavior can be predicted.

The analysis of a state machine has three basic steps:

1. Based on the logic diagram, determine the next-state and output functions
F and G.

2. Use F and G to construct a state/output table that completely specifies the
next state and output of the circuit for every possible combination of
current state and input.

3. (Optional) Draw a state diagram that presents the information from the
previous step in graphical form.

Figure 9-8 shows a simple state machine with two positive-edge-triggered
D flip-flops. To determine the next-state function F, we must first consider the
behavior of the state memory. At the rising edge of the clock signal, each D flip-
flop samples its D input and transfers this value to its Q output. Therefore, to
determine the next value of Q, which we denote as Q∗, we must first determine
the current value of D.

state/output table

state diagram

Figure 9-8 A state machine using positive-edge-triggered D flip-flops.

EN

CLK

D0 Q0

D1 Q1

MAX

D Q

QCLK

D Q

QCLK

current state

excitation

output

input

clock signal

Next-State Logic State Memory Output Logic

EN′

EN

Q0′

Q0

Q1′

Q1

or “Excitation Logic”

* suffix

c09.fm Page 447 Sunday, April 9, 2017 10:33 PM

448 Chapter 9 State Machines

In Figure 9-8, there are two D flip-flops, and we have named the signals on
their outputs Q0 and Q1. These two outputs are the state variables; their value is
the current state of the machine. The corresponding D-input signals, D0 and D1,
provide the excitation for the D flip-flops at each clock tick. The circuits that
create these signals as functions of the current state and input are usually called
excitation logic. They have excitation equations which can be derived from the
logic diagram:

As noted previously, the next value of a state variable after a clock tick is
denoted by appending a star to the state-variable name, for example, Q0∗ or
Q1∗. Since the value of a D flip-flop output after the clock tick is just the D input
value before the tick, we can describe the next-state function of the example
machine with equations for its state variables’ next values:

Substituting the excitation equations for D0 and D1, we can write

These equations, which express the next value of the state variables as a function
of current state and input, are called transition equations.

For each combination of current state and input value, the transition equa-
tions predict the next state. Each state is described by two bits, the current values
of Q0 and Q1: (Q1 Q0) = 00, 01, 10, or 11. The reason for “arbitrarily” picking
the order (Q1 Q0) instead of (Q0 Q1) in this example will become apparent
shortly. For each state, our example machine has just two possible input values,
EN = 0 or EN = 1, so there are a total of 8 state/input combinations. In general, a
machine with s state bits and i inputs has 2s+i state/input combinations.

Table 9-1(a) shows a transition table that is created by evaluating the tran-
sition equations for every possible state/input combination. Traditionally, a
transition table lists the states along the left and the input combinations along the
top of the table, as shown in the example.

The function of our example machine is evident from its transition table—
it is a 2-bit “counter” with an enable input EN. When EN = 0, the machine main-
tains its current count, but when EN = 1, the binary count advances by 1 at each
clock tick, rolling over to 00 when it reaches a maximum value of 11.

If we wish, we may assign alphanumeric state names to each state. The
simplest naming is 00 = A, 01 = B, 10 = C, and 11 = D. Substituting the state

D0 = Q0 ⋅ EN′ + Q0′ ⋅ EN

D1 = Q1 ⋅ EN′ + Q1′ ⋅ Q0 ⋅ EN + Q1 ⋅ Q0′ ⋅ EN

Q0∗ = D0

 Q1∗ = D1

Q0∗ = Q0 ⋅ EN′ + Q0′ ⋅ EN

 Q1∗ = Q1 ⋅ EN′ + Q1′ ⋅ Q0 ⋅ EN + Q1 ⋅ Q0′ ⋅ EN

excitation

excitation logic
excitation equation

transition equation

transition table

state names

c09.fm Page 448 Sunday, April 9, 2017 10:33 PM

9.2 State-Machine Structure and Analysis 449

names for combinations of Q1 and Q0 (and Q1∗ and Q0∗) in Table 9-1(a)
produces the state table in (b). Here “S” denotes the current state and “S∗”
denotes the next state of the machine. A state table is often easier to understand
than a transition table, because in complex machines we can use state names that
have meaning. However, a state table contains less information than a transition
table because it does not include the binary values of the state variables in each
named state.

After creating the state table, we have only the output logic of the machine
left to analyze. In the example machine there is only a single output signal, and
it is a function of both current state and input (this is a Mealy machine). So we
can write a single output equation:

The output behavior predicted by this equation can be combined with the next-
state information to produce a state/output table as shown in Table 9-1(c).

State/output tables for Moore machines are slightly simpler. For example,
in the circuit of Figure 9-8, suppose we removed the EN signal from the AND
gate that produces the MAX output, producing a Moore-type output MAXS. Since
MAXS is a function of the state only, the state/output table can list MAXS in one
column, independent of the input values. This is shown in Table 9-2.

MAX = Q1 ⋅ Q0 ⋅ EN

(a) EN (b) EN (c) EN

Table 9-1
Transition, state, and
state/output tables for
the state machine in
Figure 9-8.

Q1 Q0 0 1 S 0 1 S 0 1

00 00 01 A A B A A, 0 B, 0

01 01 10 B B C B B, 0 C, 0

10 10 11 C C D C C, 0 D, 0

11 11 00 D D A D D, 0 A, 1

Q1∗ Q0∗ S∗ S∗, MAX

state table

output equation

state/output table

EN

Table 9-2
State/output table for
a Moore machine.

S 0 1 MAXS

A A B 0

B B C 0

C C D 0

D D A 1

S∗

c09.fm Page 449 Sunday, April 9, 2017 10:33 PM

450 Chapter 9 State Machines

A state diagram presents the information from the state/output table in a
graphical format. It has one circle (or node) for each state and an arrow (or
directed arc) for each transition. Figure 9-9 shows the state diagram for our
example state machine. The letter inside each circle is a state name. Each arrow
leaving a given state points to the next state for a given input combination; it also
shows the output value produced in the given state for that input combination.

The state diagram for a Moore machine can be somewhat simpler. In this
case, the output values can be shown inside each state circle, since they are
functions of state only. A state diagram using this convention for the Moore
machine of Table 9-2 is shown in Figure 9-10.

The original logic diagram of our example state machine, Figure 9-8, was
laid out to match our conceptual model of a Mealy machine. However, nothing
requires us to group the next-state logic, state memory, and output logic in this
way. Figure 9-11 shows another logic diagram for the same state machine. To
analyze this circuit, the designer (or analyzer, in this case) can still extract the
required information from the diagram as drawn. The only circuit difference in

state diagram
node
directed arc

Figure 9-9
State diagram
corresponding to the
Mealy state machine
of Table 9-1.

A B

D C

EN = 1

(MAX = 0)

EN = 1

(MAX = 0)

EN = 1

(MAX = 0)

EN = 0

(MAX = 0)

EN = 0

(MAX = 0)

EN = 0

(MAX = 0)

EN = 0

(MAX = 0)

EN = 1

(MAX = 1)

LITTLE ARROWS,
LITTLE ARROWS

EVERYWHERE

Since there is only one input in our example Mealy machine, there are only two pos-
sible input combinations, and two arrows leaving each state. In a machine with n
inputs, we would have 2n arrows leaving each state. This is messy if n is large. Later,
in Figure 9-14, we’ll describe a convention whereby a state needn’t have one arrow
leaving it for each input combination, only one arrow for each different next state.

A CLARIFICATION The state-diagram notation for output values in Mealy machines is a little mislead-
ing. You should remember that the listed output value is produced continuously
when the machine is in the indicated state and has the input on an arrow leaving that
state, not just during the transition to the next state along that arrow.

c09.fm Page 450 Sunday, April 9, 2017 10:33 PM

9.2 State-Machine Structure and Analysis 451

the new diagram is that we have used the flip-flops’ QN outputs (which are
normally the complement of Q) to save a couple of inverters.

In summary, to analyze a state machine based on D flip-flops, the detailed
steps are as follows:

1. Based on the logic diagram or other description of the excitation logic,
determine the excitation equations for the flip-flop D inputs (D0, D1, etc.).

2. Substitute the symbol for each state variable’s next value (Q0∗, Q1∗, etc.)
into the lefthand side of the corresponding excitation equation to obtain
transition equations.

3. Use the transition equations to construct a transition table.

4. Determine the output equations.

5. Add output values to the transition table for each state (Moore) or state/
input combination (Mealy) to create a transition/output table.

6. (Optional) Name the states and substitute state names for state-variable
combinations in the transition/output table to obtain a state/output table.

7. (Optional) Draw a state diagram corresponding to the state/output table.

Figure 9-10
State diagram
corresponding to the
Moore state machine
of Table 9-2.

A B

D C

EN = 1
MAXS=0 MAXS=0

MAXS=1 MAXS=0

EN = 1

EN = 1 EN = 1

EN = 0

EN = 0

EN = 0

EN = 0

Figure 9-11 Redrawn logic diagram for a state machine.

EN

CLK

D0 Q0 D1 Q1

MAX

D Q

QCLK

D Q

QCLK

excitation equations

transition equations

transition table

output equations

transition/output table

state names
state/output table

state diagram

c09.fm Page 451 Sunday, April 9, 2017 10:33 PM

452 Chapter 9 State Machines

We’ll go through this complete sequence of steps to analyze another state
machine, shown in Figure 9-13. Reading the logic diagram, we find that the
excitation equations are as follows:

Substituting the symbol for each state variable’s next value, we get the following
transition equations:

D0 = Q1′ ⋅ X + Q0 ⋅ X′ + Q2

D1 = Q2′ ⋅ Q0 ⋅ X + Q1 ⋅ X′ + Q2 ⋅ Q1

D2 = Q2 ⋅ Q0′ + Q0′ ⋅ X′ ⋅ Y

Q0∗ = Q1′ ⋅ X + Q0 ⋅ X′ + Q2

Q1∗ = Q2′ ⋅ Q0 ⋅ X + Q1 ⋅ X′ + Q2 ⋅ Q1

 Q2∗ = Q2 ⋅ Q0′ + Q0′ ⋅ X′ ⋅ Y

SUGGESTIVE
DRAWINGS

Using the transition, state, and output tables, we can construct a timing diagram that
shows the behavior of a state machine for any desired starting state and input
sequence. For example, Figure 9-12 shows the behavior of our example machine
with a starting state of 00 (A) and a particular pattern on the EN input.

Notice that the value of the EN input affects the next state only at the rising
edge of the CLOCK input; that is, the counter counts only if EN = 1 at the rising edge
of CLOCK. On the other hand, since MAX is a Mealy-type output, its value is affected
by EN at all times. If we also provide a Moore-type output MAXS as suggested in the
text, its value depends only on state, as shown in the figure.

The timing diagram is drawn in a way that shows changes in the MAX and
MAXS outputs occurring slightly later than the state and input changes that cause
them, reflecting the combinational-logic delay of the output circuits. Naturally, the
drawings are merely suggestive; precise timing is normally indicated by a timing
table of the type described in Section 4.2.1.

Figure 9-12 Timing diagram for example state machine.

CLOCK

EN

Q1

Q0

MAX

STATE D A AC D DA A B C C

MAXS

c09.fm Page 452 Sunday, April 9, 2017 10:33 PM

9.2 State-Machine Structure and Analysis 453

A transition table based on these equations is shown in Table 9-3(a). Reading
the logic diagram, we can write two output equations:

Z1 = Q2 + Q1′ + Q0′

 Z2 = Q2 ⋅ Q1 + Q2 ⋅ Q0′

Figure 9-13 A state machine with three flip-flops and eight states.

Q0

Q1D1

D2 Q2

D Q

QCLK

D Q

QCLK

D0
D Q

QCLK

 Q0

 Q0

Q0′

Q0′

 Q1

 Q1

Q1′

X

X′

X

 Q2

 Q2

Y

 Q2′

 Q2′

X′

X′

X

Y

CLK

Z2

Z1

(a) X Y (b) X Y

Table 9-3
Transition/output
and state/output
tables for the
state machine in
Figure 9-13.

Q2 Q1 Q0 00 01 10 11 Z1 Z2 S 00 01 10 11 Z1 Z2

000 000 100 001 001 10 A A E B B 10

001 001 001 011 011 10 B B B D D 10

010 010 110 000 000 10 C C G A A 10

011 011 011 010 010 00 D D D C C 00

100 101 101 101 101 11 E F F F F 11

101 001 001 001 001 10 F B B B B 10

110 111 111 111 111 11 G H H H H 11

111 011 011 011 011 11 H D D D D 11

Q2∗ Q1∗ Q0∗ S∗

c09.fm Page 453 Sunday, April 9, 2017 10:33 PM

454 Chapter 9 State Machines

The resulting output values are shown in the last column of Table 9-3(a). After
assigning state names A–H, we obtain the state/output table shown in (b).

A state diagram for the example machine is shown in Figure 9-14. Since
our example is a Moore machine, the output values are written with each state.
This example introduces another, more efficient way of labeling transitions in a
state machine that has multiple inputs. Instead of drawing an arc for each transi-
tion in the state table (there are 32 of them in Table 9-3), we draw an arc for each
unique pair of starting and ending states. Each arc is labeled with a transition
expression; a transition is taken for input combinations for which the transition
expression is 1.

So, how did we come up with the transition expressions in Figure 9-14?
Starting with the state table, we write the transition expression for a particular
current state and next state as a sum of minterms corresponding to the input com-
binations that cause that transition. If desired, the expression can then be
minimized to give the information in a more compact form. For example, there
are three transitions out of state A:

Note that if all of the transitions leaving a particular state go to the same next
state, then the sum of minterms after minimization will be logic 1. Transitions
labeled “1” are always taken, of course.

A → A : X Y = 00 X′ ⋅ Y′
A → E : X Y = 01 X′ ⋅ Y
A → B : X Y = 10,11 X ⋅ Y′ + X ⋅ Y = X

Figure 9-14 State diagram corresponding to Table 9-3.

A X
Z1 Z2 = 10

B
Z1 Z2 = 10

C X
Z1 Z2 = 10

D
Z1 Z2 = 00

E 1
Z1 Z2 = 11

F
Z1 Z2 = 10

G 1
Z1 Z2 = 11

H
Z1 Z2 = 11

1

1

XX

X′ · Y′

X′ · Y

X′ · Y

X′ · Y′

X′

X′

transition expression

c09.fm Page 454 Sunday, April 9, 2017 10:33 PM

9.3 State-Machine Design with State Tables 455

9.3 State-Machine Design with State Tables
Aside from planning the overall architecture of a digital system, designing state
machines is probably the most creative task of a digital designer. There are a few
different ways to design a state machine, including writing its description from
the outset using an HDL like Verilog. However, the traditional way is to start
from an informal word description or specification, and then proceed to a state
table or a state diagram, performing just about the reverse of the analysis steps
that we used in the preceding section:

1. Construct a state/output table corresponding to the word description or
specification, using mnemonic names for the states. (It’s also possible to
start with a state diagram or an ASM chart; these methods will be discussed
in Sections 9.4 and 9.5.)

2. (Optional) Minimize the number of states in the state/output table.

3. Choose a set of state variables and assign state-variable combinations to
the named states.

4. Substitute the state-variable combinations into the state/output table to
create a transition/output table that shows the desired next state-variable
combination and output for each state/input combination.

5. Choose a flip-flop type for the state memory. In today’s implementation
technologies, there is almost never a choice—it is almost always an edge-
triggered D flip-flop, and that’s a good choice.

6. Construct an excitation table that shows the excitation values required to
obtain the desired next state for each state/input combination.

7. Derive excitation equations from the excitation table.

8. Derive output equations from the transition/output table.

9. Draw a logic diagram that shows the state-variable storage elements and
realizes the required excitation and output equations.

In this section, we’ll describe each of these basic steps in traditional state-
machine design. Step 1 is the most important, since it is here that the designer
really designs, going through the creative process of translating a (perhaps
ambiguous) English-language description of the state machine into a formal
tabular description. Step 2 is hardly ever performed by experienced digital
designers, but designers bring much of their experience to bear in step 3.

Once the first three steps are completed, all of the remaining steps can be
completed by “turning the crank,” that is, by following a well-defined synthesis
procedure. Steps 4 and 6–9 are the most tedious, but they are automated when
you design state machines using an HDL. Still, it’s useful for you to understand
the traditional synthesis procedure, both to give you an appreciation of the HDL
compiler’s function and to give you a chance of figuring out what’s really going

state/output table

state minimization

state assignment

transition/output table

excitation table

excitation equations

output equations

logic diagram

design

c09.fm Page 455 Sunday, April 9, 2017 10:33 PM

456 Chapter 9 State Machines

on when the compiler produces unexpected results. Therefore, all nine steps of
the traditional state-machine design procedure will be discussed in the rest of
this section.

9.3.1 State-Table Design Example
There are several different ways to describe a state machine’s state table. Later,
we’ll see how Verilog can be used to specify a state table indirectly. In this
section, however, we deal only with state tables that are specified directly, in the
same tabular format that we used in the previous section for analysis.

We’ll present the state-table design process here as well as the synthesis
procedure in later subsections, using the simple design problem below:

Design a state machine with two inputs, A and B, and a single output Z that
is 1 if:

– A had the same value at each of the two previous clock ticks, or
– B has been 1 since the last time that the first condition was true.

Otherwise, the output should be 0.

If the meaning of this specification isn’t crystal clear to you at this point, don’t
worry. Part of your job as a designer is to convert an informal specification into
a state table (or HDL equivalent) that is absolutely unambiguous. Even if the
state table doesn’t match what was originally intended, it at least forms a basis
for further discussion and refinement of the design. Or, during the development
of the state table, you may discover that the original problem statement is ambig-
uous or just plain wrong and must be adjusted.

As an additional “hint” or requirement, state-table design problems often
include timing diagrams that show the state machine’s expected behavior for one
or more sequences of inputs. Such a timing diagram is unlikely to specify
unambiguously the machine’s behavior for all possible sequences of inputs, but
it’s a good starting point for discussion and a benchmark against which proposed
designs can be checked. Figure 9-15 is such a timing diagram for our example
state-table design problem.

Figure 9-15 Timing diagram for example state machine.

CLOCK

A

B

Z

two 0s two 0stwo 1s

B=1 B=1
A diff.,
B=0

two 1s

A diff.,
B=0

c09.fm Page 456 Sunday, April 9, 2017 10:33 PM

9.3 State-Machine Design with State Tables 457

The first step in the state-table design is to construct a template. From the
word description, we know that our example is a Moore machine—its output
depends only on the current state, that is, what happened in previous clock
periods. Thus, as shown in Figure 9-16(a), we provide one next-state column for
each possible input combination, and a single column for the output values. The
order in which the input combinations are written doesn’t affect this part of the
process, but we’ve written them in Gray-code order, where only one input value
changes between successive columns. That’s out of habit from previous editions
of this book, where that order (the same one used in Karnaugh maps) simplified
the tedious process of deriving excitation equations by hand.

In a Mealy machine, we would omit the output column and write the output
values along with the next-state values under each input combination. The left-
most column is simply an English-language reminder of the meaning of each
state or the “history” associated with it.

STATE-MACHINE
DESIGN AS A

KIND OF
PROGRAMMING

Designing a state machine (using a state table, a state diagram, an ASM chart, or an
HDL) is a creative process that is like writing a computer program in many ways:

• You start with a fairly precise description of inputs and outputs, but a possibly
ambiguous description of the desired relationship between them, and usually no
clue about how to actually obtain the desired outputs from the inputs.

• During the design you may have to identify and choose among different ways
of doing things, sometimes using common sense, and sometimes arbitrarily.

• You may have to identify and handle special cases that weren’t included in the
original description.

• You will probably have to keep track of several ideas in your head during the
design process.

• Since the design process is not an algorithm, there’s no guarantee that you can
complete the state table or program using a finite number of states or lines of
code. However, unless you work for the government, you must try to do so.

• When you finally run the state machine or program, it will do exactly what you
told it to do—no more, no less.

• There’s no guarantee that the thing will work the first time; you may have to
debug it and iterate on the whole process.

• HDL models that specify state machines look a lot like computer programs, but
like other HDL models, they’re not!

Although state-machine design is a challenge, there’s no need to be intimidated. If
you’ve made it this far in your education, then you’ve written a few computer pro-
grams that worked, and you can become just as good at designing state machines.

c09.fm Page 457 Sunday, April 9, 2017 10:33 PM

458 Chapter 9 State Machines

The word description isn’t specific about what happens when this machine
is first started, so we’ll just have to improvise. We’ll assume that when power is
first applied to the system, the machine enters an initial state, called INIT in this
example. We write the name of the initial state (INIT) in the first row and leave
room for enough rows (states) to complete the design. We can also fill in the
value of Z for the INIT state; common sense says it should be 0 because there
were no inputs beforehand.

Next, we must fill in the next-state entries for the INIT row. The Z output
can’t be 1 until we’ve had at least two clock ticks and seen input values on A at
least twice, so we’ll provide two states, A0 and A1, that “remember” the value of
A on the previous clock tick, as shown in Figure 9-16(b). In both of these states
Z is 0, since we haven’t satisfied the conditions for a 1 output yet. The precise
meaning of state A0 is “Got A = 0 on the previous tick, A ≠ 0 on the tick before
that, and B ≠ 1 at some time since the previous pair of equal A inputs.” State A1
is defined similarly. At this point we know that our state machine has at least
three states, and we have created two more blank rows to fill in. Hmmmm, this
isn’t such a good trend! In order to fill in the next-state entries for one state
(INIT), we had to create two new states A0 and A1. If we kept going this way, we
could end up with 4,097 states by bedtime! Instead, we should be on the lookout
for existing states that have the same meaning as new ones that we might other-
wise create. Let’s see how it goes.

In state A0, we know that input A was 0 at the previous clock tick.
Therefore, if A is 0 again, we go to a new state OK with Z = 1, as shown in
Figure 9-16(c). If A is 1, then we don’t have two equal inputs in a row, so we go

Figure 9-16 Evolution of a state table.

A1 A1 A0 A0 OK OK 0

0

 00 S 01 11 10 Z

A B

S∗

INIT
 00 S 01 11 10 Z

A B

S∗

INIT A0 A0 A1 A1 0
A0
A1

 00 S 01 11 10 Z

A B

S∗

INIT A0 A0 A1 A1 0

0

A0 OK OK A1 A1 0

 00 S 01 11 10 Z

A B

S∗

INIT A0 A0 A1 A1 0
A0 OK OK A1 A1 0

0. . .

. . .

. . .

(a)

(c)

(b)

(d)
 Meaning

Initial state
Got a 0 on A
Got a 1 on A
Got two equal A inputs

 Meaning

Initial state
Got a 0 on A
Got a 1 on A
Got two equal A inputs

 Meaning

Initial state

Got a 0 on A
Got a 1 on A

 Meaning
Initial state

OK OK
0
1 1

initial state

c09.fm Page 458 Sunday, April 9, 2017 10:33 PM

9.3 State-Machine Design with State Tables 459

to state A1 to remember that we just got a 1. Likewise in state A1, shown in (d),
we go to OK if we get a second 1 input in a row, or to A0 if we get a 0.

Once we get into the OK state, the machine description tells us we can stay
there as long as B = 1, irrespective of the A input, as shown in Figure 9-17(a). If
B = 0, we have to look for two 1s or two 0s in a row on A again. However, we’ve
got a little problem in this case. The current A input may or may not be the
second equal input in a row, so we may still be “OK” or we may have to go back
to A0 or A1. We defined the OK state too broadly—it doesn’t “remember”
enough to tell us which way to go.

The problem is solved in Figure 9-17(b) by splitting OK into two states,
OK0 and OK1, that “remember” the previous A input. Now all of the next states
for OK0 and OK1 can be selected from existing states, as shown in (c) and (d).
For example, if we get A = 0 in OK0, we can just stay in OK0; we don’t have to
create a new state that “remembers” three 0s in a row, because the machine’s
description doesn’t require us to distinguish that case. Thus, we have achieved
“closure” of the state table, which now describes a finite-state machine. As a
sanity check, Figure 9-18 repeats the timing diagram of Figure 9-15, listing the
states that should be visited according to our final state table.

Figure 9-17 Continued evolution of a state table.

0

 00 S 01 11 10 Z

A B

S∗

INIT 0
0

OK1

(b)
 Meaning

Initial state

Two equal, A=1 last

A1 A0 A0 OK1 OK1

A0 A0 A1 A1
A0 OK0 OK0 A1 A1Got a 0 on A

Got a 1 on A
Two equal, A=0 last OK0 1

1

A1 A0 A0 OK OK
? OK OK ?

0

 00 S 01 11 10 Z

A B

S∗

INIT A0 A0 A1 A1 0
A0 OK OK A1 A1 0

(a)
 Meaning

Initial state
Got a 0 on A
Got a 1 on A
Got two equal A inputs OK 1

0

 00 S Meaning 01 11 10 Z

A B
(c)

S∗

INITInitial state 0
0

OK1Two equal, A=1 last

A1 A0 A0 OK1 OK1

A0 A0 A1 A1
A0 OK0 OK0 A1 A1Got a 0 on A

Got a 1 on A
Two equal, A=0 last OK0 OK0 OK0 OK1 A1 1

1

0

 00 S Meaning 01 11 10 Z

A B
(d)

S∗

INITInitial state 0
0

A0 OK0 OK1 OK1OK1Two equal, A=1 last

A1 A0 A0 OK1 OK1

A0 A0 A1 A1
A0 OK0 OK0 A1 A1Got a 0 on A

Got a 1 on A
Two equal, A=0 last OK0 OK0 OK0 OK1 A1 1

1

INITIAL VERSUS
IDLE STATES

The example state machine that we’ve been designing visits its initial state only
during reset. Many machines are designed instead with an “idle” state that is entered
both at reset and whenever the machine has nothing in particular to do.

c09.fm Page 459 Sunday, April 9, 2017 10:33 PM

460 Chapter 9 State Machines

*9.3.2 State Minimization
Figure 9-17(d) is a “minimal” state table for our original word description, in the
sense that it contains the fewest possible states. However, Figure 9-19 shows
other state tables, with more states, that also do the job. Formal procedures can
be used to minimize the number of states in such tables. If enough states are
eliminated, fewer state variables may be needed (e.g., going from nine states to
eight or less reduces the number of state flip-flops from four to three).

The basic idea of formal minimization procedures is to identify equivalent
states, where two states are equivalent if it is impossible to distinguish them by
observing only the current and future outputs of the machine (and not the inter-
nal state variables). A pair of equivalent states can be replaced by a single state.

Two states S1 and S2 are equivalent if and only if two conditions are true.
First, S1 and S2 must produce the same values at the state-machine output(s); in

 *Throughout this book, optional sections are marked with an asterisk.

Figure 9-18 Timing diagram and state sequence for example state machine.

CLOCK

A

B

Z

STATE A1 OK1 A0OK0 OK1 OK0A0INIT OK0 A1 OK1 A0

REALIZING
RELIABLE RESET

For proper system operation, the hardware design of a state machine should ensure
that it enters a known initial state on power-up, such as the INIT state in our design
example. Most systems have a RESET signal that is asserted during power-up.

With increasing levels of integration, reset circuits have gotten more sophisti-
cated over the years, and are often called “voltage supervisors.” During power-up,
such a circuit detects the power supply reaching a threshold close to its full voltage
(say, 3.0 V in a 3.3-V system), and follows that with a delay (say, 200 ms) to ensure
that all components have had time to stabilize before it “unresets” the system. The
circuit also detects the voltage falling below the threshold voltage and resets the
system immediately if that happens.

Besides power-supply voltage detection, a typical voltage supervisor also has
an input for a manual reset button, and a logic input for a “watchdog timer.” Used in
more complex systems, the watchdog timer resets the system if software or other
logic does not periodically change the signal value on the watchdog input.

equivalent states

c09.fm Page 460 Sunday, April 9, 2017 10:33 PM

9.3 State-Machine Design with State Tables 461

a Mealy machine, this must be true for all input combinations. Second, for each
input combination, S1 and S2 must have either the same next state or equivalent
next states.

Thus, a formal state-minimization procedure can shows that state OK00
and OKA0 in Figure 9-19(a) are equivalent because they produce the same
output and their next-state entries are identical. Since the states are equivalent,
state OK00 may be eliminated and its occurrences in the table replaced by OKA0,
or vice versa. Likewise, states OK11 and OKA1 are equivalent.

To minimize the state table in Figure 9-19(b), a formal procedure must use
a bit of circular reasoning. States OK00, A110, and AE10 all produce the same
output and have almost identical next-state entries, so they might be equivalent.
They are equivalent only if A001 and AE01 are equivalent. Similarly, OK11,
A001, and AE01 are equivalent only if A110 and AE10 are equivalent. In other
words, the states in the first set are equivalent if the states in the second set are,
and vice versa. So, let’s just go ahead and say they’re equivalent.

But is state minimization really necessary? Almost always, no. Unless
minimization lowers the number of states enough to reduce the number of bits
needed to encode them, it doesn’t even save a flip-flop. The excitation equations
may or may not be simpler, and that is irrelevant anyway for some implementa-
tion technologies. For example, there is no savings in an FPGA implementation
if the number of state variables is not reduced, since a LUT’s ability to realize a
logic equation depends only on the number of logic variables (primary inputs
plus state variables in an excitation equation), not the number of product terms.

By carefully matching state meanings to the requirements of the problem,
experienced digital designers produce state tables for small problems with a
minimal or near-minimal number of states, without ever using a formal minimi-
zation procedure. Also, there are situations where increasing the number of
states or state variables may simplify the design, reduce its cost, or increase its
performance, so even an automated state-minimization procedure doesn’t neces-
sarily help. A designer can do more to improve a state machine during the state-
assignment phase of the design, discussed in the next subsection.

Figure 9-19 Nonminimal state tables equivalent to Figure 9-17(d).

 00 S Meaning 01 11 10 Z

A B(a) (b)

S∗

 00 S Meaning 01 11 10 Z

A B

S∗

0

INITInitial state 0
0

OK11 OK11OK11Got 11 on A

A1 A0 A0 OK11 OK11

A0 A0 A1 A1
A0 OK00 OK00 A1 A1Got a 0 on A

Got a 1 on A
Got 00 on A OK00 OK00 OK00

A0 OKA0
OKA1 A1 1

1

OK11 OK11OKA1OK, got a 1 on A
OK, got a 0 on A OKA0 OK00 OK00

A0 OKA0
OKA1 A1 1

1

0

INITInitial state 0
0

OK11 OK11OK11Got 11 on A

A1 A0 A0 OK11 OK11

A0 A0 A1 A1
A0 OK00 OK00 A1 A1Got a 0 on A

Got a 1 on A
Got 00 on A OK00 OK00 OK00

A0 A110
A001 A1 1

1

AE01 A1A110Got 110 on A, B=1
Got 001 on A, B=1 A001 A0 AE10

OK00 OK00
OK11 OK11

OK11 OK11AE01Got bb...01 on A, B=1
Got bb...10 on A, B=1 AE10 OK00 OK00

A0 AE10
AE01 A1

1
1
1
1

c09.fm Page 461 Sunday, April 9, 2017 10:33 PM

462 Chapter 9 State Machines

9.3.3 State Assignment
The next step in the design process is to determine how many binary variables
are required to represent the states in the state table, and to assign a specific
combination to each named state. We’ll call the binary combination assigned to
a particular state a coded state. The total number of states in a machine with n
flip-flops is 2n, so the number of flip-flops needed to code s states is ,
the smallest integer greater than or equal to log2 s.

For reference, the state/output table of our example machine is repeated in
Table 9-4. It has five states, so it requires three flip-flops. Of course, three flip-
flops provide a total of eight states, so there will be 8 − 5 = 3 unused states. We’ll
discuss alternatives for handling the unused states at the end of this subsection.
Right now, we have to deal with lots of choices for the five coded states, a few of
which are shown in Table 9-5.

The simplest assignment of s coded states to 2n possible states is to use the
first s binary integers in binary counting order, as shown in the first assignment
column of the table. This is often a good choice, and certainly in the following
circumstances:

• You are using an HDL to design the state machine, and you want to get
something specified so you can test the machine’s functional behavior in
simulation.

coded state
log2 stotal number of states

Table 9-4
State and output table
for example problem.

A B

S 00 01 11 10 Z

INIT A0 A0 A1 A1 0

A0 OK0 OK0 A1 A1 0

A1 A0 A0 OK1 OK1 0

OK0 OK0 OK0 OK1 A1 1

OK1 A0 OK0 OK1 OK1 1

S∗

unused states

Table 9-5
Some possible state
assignments for the
state machine in
Table 9-4.

Assignment

State
Name

Simplest
Q1–Q3

Decomposed
Q1–Q3

One-Hot
Q1–Q5

Almost One-Hot
Q1–Q4

INIT 000 000 00001 0000

A0 001 100 00010 0001

A1 010 101 00100 0010

OK0 011 110 01000 0100

OK1 100 111 10000 1000

c09.fm Page 462 Sunday, April 9, 2017 10:33 PM

9.3 State-Machine Design with State Tables 463

• Only a single instance of this state machine will be used in your design, so
it is not critical to minimize its implementation cost.

• The timing performance of the state-machine (e.g, clock-to-output time,
maximum clock frequency, etc.) is not critical to system performance.

• Glitch-free decoding of the current state is not required, so it’s OK for mul-
tiple state variables to change on state transitions.

• In debugging, either in simulation or in actual hardware, it is not necessary
to be able to determine the current state by looking at just one signal.

However, the simplest state assignment does not always lead to the sim-
plest excitation equations, output equations, and resulting logic circuit, which
also may not be the most convenient to debug. In fact, the state assignment may
have a substantial effect on the state-machine circuit’s cost and performance,
and it may also affect the cost and convenience of using the state machine to
interact with other system elements, because of the encoding and timing of its
outputs.

So, how do we choose the best state assignment for a given problem? In
general, the only formal way to find the best assignment is to try all the assign-
ments. That’s too much work, even for students. Instead, most digital designers
rely on experience and several practical guidelines for making reasonable state
assignments:

• Choose a coded state into which the machine can easily be forced at ini-
tialization (often 00. . . 00 or 11. . . 11), typically by asserting a dedicated
“reset” input for one or more clock ticks.

• Minimize the number of state variables that change on each transition.

• Maximize the number of state variables that don’t change in a group of
related states (i.e., a group in which most transitions stay in the group).

COMBINATORIAL
MATH

The number of different ways to choose m coded states out of a set of n possible

states is given by a binomial coefficient, denoted , whose value is .

(We used binomial coefficients previously in Section 2.10 in the context of decimal

coding.) In our example, there are different ways to choose five coded states out

of eight possible states, and 5! ways to assign the five named states to each different

choice. So there are or 6720 different ways to assign the five states of

our example machine to combinations of three binary state variables. We don’t have

time to look at all of them.

n
m
 n!

m! n m–()!⋅
-

8
5

8!
5! 3!⋅

5!⋅

c09.fm Page 463 Sunday, April 9, 2017 10:33 PM

464 Chapter 9 State Machines

• Exploit symmetries in the problem specification and the corresponding
symmetries in the state table. That is, suppose that one state or group of
states means almost the same thing as another. Once an assignment has
been established for the first, a similar assignment, differing only in one
bit, can be used for the second.

• If there are unused states (i.e., if s < 2n where n =), then choose
the “best” of the available state-variable combinations to achieve the fore-
going goals. That is, don’t limit the choice of coded states to the first s n-bit
integers.

• Decompose the set of state variables into individual bits or fields, where
each bit or field has a well-defined meaning with respect to the input
effects or output behavior of the machine.

• Consider using more than the minimum number of state variables to make
a decomposed assignment possible.

Some of these ideas are incorporated in the decomposed state assignment
in Table 9-5. As before, the INIT state is 000, which is easy to force either asyn-
chronously (applying the RESET signal to the flip-flop CLR inputs) or
synchronously (by ANDing RESET′ with all of the D flip-flop inputs). In a
typical FPGA- or PLD-based implementation, one or both of these options may
be available more or less “for free.” The assignment uses one bit, Q1, to indicate
whether or not the machine has left the INIT state. When Q1 is 1, Q2 and Q3
distinguish among the four non-INIT states.

The non-INIT states in the “decomposed” column of Table 9-5 appear to
have been assigned in binary counting order, but that’s just a coincidence. State
bits Q2 and Q3 actually have individual meanings in the context of the state
machine’s inputs and output. Q3 gives the previous value of A, and Q2 indicates
that the conditions for a 1 output are satisfied in the current state. By decompos-
ing the state-bit meanings in this way, we can expect the next-state and output
logic to be simpler than in a “random” assignment of Q2,Q3 combinations to the
non-INIT states. We’ll continue the state-machine design based on this assign-
ment in the next subsection.

Sometimes the current state of a machine needs to be decoded for use in a
larger circuit, and in some cases the decoded output needs to be “glitch free”—
for example, if it is applied to the asynchronous input of a flip-flop,or if it is used
with a different clock. If multiple state variables change on a state transition,
then glitch-free decoding may not be possible. For example, in the “simplest”
state assignment in Table 9-5, a transition between states A0 (001) and A1 (010)
may briefly look like state OK0 (011) or INIT (000), depending on the Q2 and Q3
flip-flops’ output timing (e.g., if 0-to-1 transitions have timing different from
1-to-0). Thus, a 3-input AND gate that decodes the OK0 or the INIT state may
produce a short glitch during an A0–A1 transition.

log2 s

decomposed state
assignment

c09.fm Page 464 Sunday, April 9, 2017 10:33 PM

9.3 State-Machine Design with State Tables 465

Glitch-free decoding is possible if one state variable changes on each state
transition. State assignments that provide this property are sometimes called
Gray assignments, after the Gray codes which have a similar property. A poten-
tial Gray assignment for a given state table can be analyzed by means of a state
adjacency diagram, a simplified state diagram that omits self-loops and does not
show the direction of other transitions (A→B is drawn the same as B→A) or the
input combinations that cause them. The adjacency diagram for our example
state machine (see Table 9-4 on page 462) is shown in Figure 9-20(a). For
glitch-free decoding we would like the state assignments for each adjacent pair
of states to differ in only one bit.

As it turns out, quite fortuitously in this example, the “decomposed” state
assignment in Table 9-5 has the desired property for all of the “main” states—all
except INIT—as shown in Figure 9-20(b). And that’s really the best we can do
for this particular adjacency diagram. It’s a bit of a brain teaser, but you should
be able to convince yourself at least by trial and error that there’s no way to
assign coded states to INIT, A0, and A1 loop, or any loop with an odd number of
states for that matter, so that all state pairs differ in only one bit. In this example,
state A0 may be briefly decoded on the transition from INIT to A1. For success in
general, we must fit the nodes and arcs of the adjacency diagram onto corre-
sponding nodes and arcs of an n-cube (Figure 2-8 on page 67), without any gaps.

Fortunately, there’s another, simpler solution for glitch-free state decoding
that works for any state machine, namely to use a one-hot assignment as shown
in Table 9-5. This assignment may use a lot more than the minimum number of
state variables, since it uses one bit per state, but state decoding is trivial, of
course. In addition to being simple, a one-hot assignment has the advantage of
usually leading to small excitation equations, since each flip-flop must be set to
1 for transitions into only one state. It’s also a convenient state assignment for
debugging, because you can determine when the machine has entered a particu-
lar state by looking at just one signal.

Gray assignment

state adjacency
diagram

Figure 9-20
Adjacency diagram
for the state table of
Table 9-4.

A0 A1

OK1OK0

(a) (b)INIT

A0
100

A1
101

OK1
111

OK0
110

INIT
000

one-hot assignment

c09.fm Page 465 Sunday, April 9, 2017 10:33 PM

466 Chapter 9 State Machines

An obvious disadvantage of a one-hot assignment, especially for machines
with many states, is that it requires (a lot) more than the minimum number of
flip-flops. However, if timing performance is critical, and some other part of
your system needs to know as soon as possible that a particular state has been
entered, this encoding is ideal. No additional combinational logic is needed to
decode that particular state; the needed signal is available immediately after the
triggering clock edge on the state variable’s flip-flop output.

The last column of Table 9-5 is an “almost one-hot assignment” that uses
the “none-hot” combination for the initial state. This is useful for two reasons:
it’s easy to initialize most storage devices to the all-0s state, and the initial state
in this machine is never revisited once the machine gets going. Completing the
state-machine design using this state assignment is considered in Exercise 9.22.

Now let’s consider the disposition of unused states when the number of
states available with n flip-flops, 2n, exceeds the number of states required, s.
There are two reasonable approaches, depending on the design requirements:

• Minimal risk. This approach assumes that it is possible for the state
machine somehow to get into one of the unused (or “illegal”) states, per-
haps because of a hardware failure, an unexpected input, or a design error.
Therefore, all of the unused state-variable combinations are identified and
explicit next-state entries are made so that, for any input combination, the
unused states go to the “initial” state, the “idle” state, an explicitly named
“error” state, or some other “safe” state. This is an automatic consequence
of some design methodologies if the “safe” state is coded 00. . . 00.

• Minimal cost. This approach assumes that the machine will never enter an
unused state. Therefore, in the transition and excitation tables, the next-
state entries of the unused states can be marked as “don’t-cares.” In most
cases this simplifies the excitation logic. However, the machine’s behavior
if it ever does enter an unused state may be pretty weird.

GETTING EVEN We said that it’s not possible to encode the states with only a single-bit change on
every transition in a loop with an odd number of states if the length of the loop is odd.
However, if the length is even, it’s always possible to achieve this goal by starting
with a pure Gray code of length 2n that’s at least as great as the required length, and
then repeatedly removing pairs of code words until achieving the required length.

Since Gray code is a “reflected” code, we can remove the pair of code words
immediately above and below the “reflection line” halfway through the list of code
words, and the newly adjacent pair of code words will still differ in only one bit (the
MSB). You can see this in Table 2-8 on page 62. Alternatively, you can remove the
first and last states in the list of code words. In either case, you can repeat the process
until you reach the desired even number of code words.

unused states

c09.fm Page 466 Sunday, April 9, 2017 10:33 PM

9.3 State-Machine Design with State Tables 467

Given the low cost of excitation logic in modern implementation technologies,
it makes sense to prefer the minimal-risk approach, which may also reduce
engineering design time (because, for example, Verilog does not provide a
convenient way to specify “don’t-cares” in excitation logic). The only really
compelling reason to go for minimum cost would be if we were designing a chip
that contains a great many physical instances of the state machine.

*9.3.4 Synthesis Using D Flip-Flops
Once we’ve assigned coded states to the named states of a machine, the rest of
the design process is pretty much “turning the crank.” In this section, we’ll show
you a table-based method for doing this for small state machines, using the state
table as a starting point. But it’s far more convenient to design state machines
directly in an HDL, avoiding the error-prone process of working with tables
filled with 0s and 1s. We’ll show you a Verilog method in Section 9.6.

Once we have a state table and have selected a state encoding, the next step
is to substitute coded states for named states in the state table, thereby obtaining
a transition table. The transition table shows the next coded state for each com-
bination of current coded state and input. Table 9-6 shows the transition and
output table that is obtained from the example state machine of Table 9-4 on
page 462 using the “decomposed” assignment of Table 9-5.

Since our state memory uses D flip-flops, the values in the transition
table—the next values of the coded-state variables—are also the “excitation”
values that must be applied to their D inputs to go from each starting state to each
next state. We’ve reflected that fact in the alternate naming for the table’s entries,
shown at the bottom of the table, and we can call it a transition/excitation table.

The transition/excitation table is like a multiple-output truth table, in this
example for three combinational logic functions (D1, D2, D3) of five variables
(A, B, Q1, Q2, Q3). We now have a tabular description of the excitation logic that
we can hook up with the state memory (D flip-flops) to implement the state
machine. However, unless all 2n possible combinations of the state variables

transition table

A B

Table 9-6
Transition/excitation
and output table for
example problem.

Q1 Q2 Q3 00 01 11 10 Z

000 100 100 101 101 0

100 110 110 101 101 0

101 100 100 111 111 0

110 110 110 111 101 1

111 100 110 111 111 1

Q1∗ Q2∗ Q3∗
or D1 D2 D3

transition/excitation
table

c09.fm Page 467 Sunday, April 9, 2017 10:33 PM

468 Chapter 9 State Machines

appear as rows in the transition/excitation table, these logic functions are incom-
pletely specified. At this point, we must decide whether to do a minimal-risk or
a minimal-cost disposition of unused states:

• For a minimal-risk disposition, we pick a sensible default destination state,
like the reset or idle state, for all transitions out of unused states, and use
that as appropriate when synthesizing the excitation logic.

• For a minimal-cost disposition, we use “don’t-cares” for all transitions out
of unused states when synthesizing the excitation logic.

Depending on the implementation technology and the design environment,
there are at least two ways we could implement these logic functions:

1. For a gate-level design, whether in an ASIC or in a PLA or PLD, we can
derive a minimal two-level sum-of-products or product-of-sums expres-
sion for each function and implement the corresponding circuit (AND-OR,
NAND-NAND, etc.).

2. For an FPGA-based design, we can transfer the transition/excitation table
into a corresponding set of LUTs.

That brings us to the question of how we can convert a multiple-output
truth table like Table 9-6 to equations in the first method above, or to transfer it
into LUTs in the second. For small problems in the “bad old days,” this was
sometimes done by hand using Karnaugh maps (as you can see for this very
example in Section 7.4.4 of the fourth edition of this book if you’re really inter-
ested). However, a designer should really strive to use automated tools for such
tasks whenever possible, not only to reduce work, but also to eliminate errors.

A Verilog module that does the job for either disposition of the unused
states is shown in Program 9-1. It basically embodies the next-state entries of the
transition/excitation table into a case statement whose choices are selected by
the current state/input combination, the 5-bit value of {Q1,Q2,Q3,A,B}, with a

DON’T GET SO
EXCITED

In state-machine design with D flip-flops, the excitation table is a trivial renaming of
the transition table. That’s because a D flip-flop has an almost trivial characteristic
equation: Q∗ = D. With a D flip-flop, to go to a particular coded next state, you
simply apply that state’s encoded value to state flip-flops’ D inputs.

That’s not true with other flip-flop types. For example, if you somehow got
stuck building your state memory out of T flip-flops with enable, your excitation
table would have EN=1 for each entry where the next value of a state variable is dif-
ferent from the current, and EN=0 where it is the same. If you were using J-K flip-
flops, you would have two entries for each transition, one for the value of J, and
another for K. Yes, at one time state-machine designers really did have to deal with
this sort of thing, so consider yourself lucky!

c09.fm Page 468 Sunday, April 9, 2017 10:33 PM

9.3 State-Machine Design with State Tables 469

single statement per case that assigns the listed next-state value to {D1,D2,D3}.
We have set up for minimal risk by coding the default choice, which is taken
for the unspecified state/input combinations, to transition to the all-0s, or INIT
state.

For the second method, when Program 9-1 is targeted to an FPGA using
Xilinx Vivado tools, the compiler and synthesizer generate bit patterns corre-
sponding to the transition/excitation table to be downloaded into three LUTs
that implement D1, D2, and D3. As a bonus, if you know where to look, it also
derives and displays minimal sum-of-products equations for these three signals,
which can be used in the first method:

Thankfully, these equations precisely match the ones derived by the old-
fashioned Karnaugh-map-based minimization method mentioned earlier. (See
the box on page 471 for the minimal-cost approach using Verilog.)

Figure 9-21 shows the logic diagram with 3 LUTs for the FPGA-based
implementation in the first method, as derived by Vivado. Even though the
Xilinx 7-series LUT can implement any combinational logic function of up to
six variables, by minimizing the excitation equations the synthesis tool has
determined that the D1 and D3 outputs can be implemented using just 3-input and
4-input LUTs, respectively.

D1 = Q1 + Q2′ ⋅ Q3′

D2 = Q1 ⋅ Q3′ ⋅ A′ + Q1 ⋅ Q3 ⋅ A + Q1 ⋅ Q2 ⋅ B

D3 = Q1 ⋅ A + Q2′ ⋅ Q3′ ⋅ A

Program 9-1 Verilog module for the transition logic specified by Table 9-6.

module VrExTrantbl(Q1, Q2, Q3, A, B, D1, D2, D3);
 input Q1, Q2, Q3, A, B;
 output reg D1, D2, D3;
 reg [4:0] incomb;
 reg [2:0] d;

 always @ (*) begin
 incomb = {Q1, Q2, Q3, A, B};
 case (incomb)
 5'b00000:d=3'b100; 5'b00001:d=3'b100; 5'b00011:d=3'b101; 5'b00010:d=3'b101;
 5'b10000:d=3'b110; 5'b10001:d=3'b110; 5'b10011:d=3'b101; 5'b10010:d=3'b101;
 5'b10100:d=3'b100; 5'b10101:d=3'b100; 5'b10111:d=3'b111; 5'b10110:d=3'b111;
 5'b11000:d=3'b110; 5'b11001:d=3'b110; 5'b11011:d=3'b111; 5'b11010:d=3'b101;
 5'b11100:d=3'b100; 5'b11101:d=3'b110; 5'b11111:d=3'b111; 5'b11110:d=3'b111;
 default: d=3'b000;
 endcase
 {D1, D2, D3} = d;
 end
endmodule

c09.fm Page 469 Sunday, April 9, 2017 10:33 PM

470 Chapter 9 State Machines

Figure 9-21
Xilinx FPGA logic
diagram for the
excitation equations
derived from
Program 9-1.

g0_b0

LUT4

O

I0

I1

I2

I3

A_IBUF_inst

IBUF

OI
A

D1_OBUF_inst

OBUF

OI
D1g0_b1

LUT5

O

I0

I1

I2

I3

I4

B_IBUF_inst

IBUF

OI
B

D2_OBUF_inst

OBUF

OI
D2Q1_IBUF_inst

IBUF

OI
Q1

D3_OBUF_inst

OBUF

OI
D3Q2_IBUF_inst

IBUF

OI
Q2 g0_b2

LUT3

O

I0

I1

I2

Q3_IBUF_inst

IBUF

OI
Q3

FROM TABLE TO
EQUATIONS

“Turning the crank” to derive excitation equations from a transition/excitation table
is not a lot of fun. In the old days, we would painstakingly copy the specified exci-
tation values from the table onto Karnaugh maps, a tedious and error-prone process.
For unused states, in a minimal-risk disposition we would enter the coded value
needed to get to the default state from each unused state; at least that was easy if we
the default state was coded as all 0s or all 1s—just enter all 0s or all 1s. In a minimal-
cost disposition, we would enter “don’t-cares” as the excitation value in the unused
states. Then, in either case, we would use the maps to manually derive a minimized
logic expression which could finally be converted to a circuit.

Nowadays, we have logic-minimization software that can do minimization and
derive excitation equations somewhat painlessly; we coerced Verilog to do this for
us in Program 9-1 for the example. However, that does not eliminate the still error-
prone tedium of copying a transition/excitation table into a Verilog module, which
we had to do to create Program 9-1. We could have used a parameter statement
there to define the next-state encodings and eliminate some of the tedium (so we
could write in the case choices, for example, “5'b00000:d=A0”). But the best way
to eliminate that tedium is never to create a transition/excitation table in the first
place!

When we design a state machine using an HDL, the compiler internally derives
excitation equations based on our higher-level specifications of next-state behavior
and state encoding, minimizing them as appropriate, and the synthesis tool creates
an implementation of these equations in the target technology, whether it is discrete
ASIC gates, a PLD, or LUTs in an FPGA. We’ll see examples of this going forward.

c09.fm Page 470 Sunday, April 9, 2017 10:33 PM

9.3 State-Machine Design with State Tables 471

An output equation can easily be developed directly from the information
in Table 9-6. The output equation is simpler than the excitation equations in this
example, because the output is a function of state only. It’s easy to find the output
function algebraically, by writing it as the sum of the minterms for the two coded
states (110 and 111) in which Z is 1:

At this point, we’re just about done with the state-machine design. The
final step is to combine the excitation logic and the output logic with the state
memory as in the structure of Figure 9-5 on page 444, in a logic diagram or in an
HDL or other representation that can be used to synthesize or build the circuit.

This example has shown, in principle, how we could design and synthesize
a state machine, going from a word description to a state table to logic equations
for next-state and output logic. In this approach, the state table is both beneficial
and troublesome:

• The state table specifies, by definition, the next state for every possible
combination of current state and input. Constructing it forces the designer
to explicitly consider every possibility—this a benefit.

• The size of the state table, and the amount of work needed to construct it,
grows proportionally with the number of states. This is unavoidable.

• The size of the state table grows exponentially with the number of inputs,
doubling for each additional input. This makes it difficult and tedious to
design state machines that have more than a few inputs.

Z = Q1 ⋅ Q2 ⋅ Q3′ + Q1 ⋅ Q2 ⋅ Q3

= Q1 ⋅ Q2

MINIMAL-COST
SOLUTION

If we choose in our example to derive minimal-cost excitation equations, we write
“don’t-cares” in the next-state entries for the unused states. If we derive the resulting
excitation equations the old-fashioned way using Karnaugh maps (as shown in pre-
vious editions of this book), two of them are somewhat simpler than before:

The corresponding change in Program 9-1 would be to change the next-state
for the default case to “d = 3'bxxx”. Unfortunately, while the righthand side looks
like three don’t-care bits, it’s not. In Verilog, “x” means “unknown,” not “don’t-
care.” These x’s may or may not be treated as “don’t-cares” in synthesis, depending
on the tools. For example, Vivado treats them as 0s, and synthesizes exactly the same
excitation logic as in the original module. So, when designing and implementing
state machines using Verilog, we should just be content with the minimal-risk dispo-
sition of unused states, which is usually the best choice anyway.

D1 = 1

D2 = Q1 ⋅ Q3′ ⋅ A′ + Q3 ⋅ A + Q2 ⋅ B

D3 = A

c09.fm Page 471 Sunday, April 9, 2017 10:33 PM

472 Chapter 9 State Machines

9.3.5 Beyond State Tables
Since state-table size can grow exponentially with the number of inputs, we need
a method of state-machine design where the work is more in line with the com-
plexity of the next-state decisions that are made in each state, not the number of
inputs that are being examined. There are two other traditional descriptive struc-
tures for state machines that have the desired characteristic. The first is the state
diagram; we constructed examples of them in state-machine analysis at the end
of Section 9.2, and we’ll show how to design with them in Section 9.4.

As we’ll show in Section 9.4, the potential for creating ambiguities in state
diagrams leads to the second structure, the “Algorithmic State Machine” (ASM)
chart, which will be described in Section 9.5 and does not have this problem.
ASM charts are closely related to both early state-machine description languag-
es and modern HDLs that can use familiar programming constructs like if-
then-else and case along with boolean conditional expressions to describe
next-state behavior unambiguously. In fact, if you plan to design state machines
only using HDLs, you can skip the next two sections of this chapter, even though
they have some technical and historical interest. We’ll give a sneak preview of
state-machine design with Verilog in Section 9.6, and go on to a complete treat-
ment and lots of examples of Verilog state machines in Chapter 12.

*9.4 State-Machine Design with State Diagrams
Many people like to design visually, so state diagrams are often used to design
small- to medium-sized state machines; we’ll give an example in this section.
Once you have a state diagram, you can code the state diagram into a Verilog
model as we’ll show in Program 9-2 on page 485.

Recapping the definition, a state diagram has one circle (or node) for each
state and an arrow (or directed arc) for each transition. Each arc is labeled with a
transition expression; the labeled transition is taken for input combinations for
which the transition expression is 1.

Designing a state diagram is much like designing a state table, which, as
we showed in Section 9.3.1, is much like writing a program. However, state
tables and state diagrams are fundamentally different in a way that makes state
diagrams less tedious to construct but also more error-prone:

• A state table is an exhaustive listing of the next states for each state/input
combination. No ambiguity is possible.

• A state diagram contains a set of arcs labeled with transition expressions.
Even when there are many inputs, only one transition expression is
required per arc. However, when a state diagram is constructed, there is no
guarantee that the transition expressions written on the arcs leaving a
particular state cover all of the input combinations exactly once.

* Throughout this book, optional sections are marked with an asterisk.

state diagram
node
directed arc
transition expression

c09.fm Page 472 Sunday, April 9, 2017 10:33 PM

9.4 State-Machine Design with State Diagrams 473

In an improperly constructed (ambiguous) state diagram, some state/input com-
binations may have no next state specified, which is generally undesirable, while
others may have multiple next states, which is just wrong. Thus, considerable
care must be taken in the design of state diagrams.

We didn’t have any worries with state diagrams when we analyzed state
machines in Section 9.2. We derived transition equations from the logic diagram
of the circuit, and using the resulting state table we were able to derive transition
expressions to use in the corresponding state diagram. To design a state machine
using state diagrams, we work in the opposite direction, and there is one very
important rule that we must observe from the beginning to avoid creating an
ambiguous state diagram. The transition expressions on arcs leaving a particular
state must be mutually exclusive and all inclusive:

• No two transition expressions can equal 1 for the same input combination,
since a machine can’t have two next states for one input combination.

• For every possible input combination, some transition expression must
equal 1, so that all next states are defined.

We’ll keep this in mind in our state-diagram design example.

*9.4.1 T-Bird Tail Lights Example
Our example is a state machine that controls the tail lights of a 1965 Ford Thun-
derbird, shown in Figure 9-22. There are three lights on each side, and for turns
they operate in sequence to animate the turning direction, as illustrated in
Figure 9-23. The state machine has two input signals, LEFT and RIGHT, that
carry the driver’s request for a left turn or a right turn. It also has an emergency-
flasher input, HAZ, that requests the tail lights to be operated in hazard mode—
all six lights flashing on and off in unison. The state machine uses a free-running
clock signal whose frequency equals the desired flashing rate for the lights.

ambiguous state
diagram

mutual exclusion

all inclusion

Figure 9-22
T-bird tail lights.

ZOTTFFS
CALIFORNIA

RA RB RCLC LB LA

c09.fm Page 473 Sunday, April 9, 2017 10:33 PM

474 Chapter 9 State Machines

Given the foregoing specifications, we can design a state machine to con-
trol the T-bird tail lights. We will design a Moore machine, so that the state alone
determines which lights are on and which are off. For a left turn, the machine
should cycle through four states in which the righthand lights are off and 0, 1, 2,
or 3 of the lefthand lights are on. Likewise, for a right turn, it should cycle
through four states in which the lefthand lights are off and 0, 1, 2, or 3 of the
righthand lights are on. In hazard mode, only two states are required—all lights
on and all lights off.

Figure 9-24 shows our first cut at a state diagram for the machine. A
common IDLE state is defined in which all of the lights are off. When a left turn
is requested, the machine goes through three states in which 1, 2, and 3 of the
lefthand lights are on, and then back to IDLE; right turns work similarly. In the
hazard mode, the machine cycles back and forth between the IDLE state and a
state in which all six lights are on. Since there are so many outputs, we’ve
included a separate output table rather than writing output values on the state
diagram. Even without assigning coded states to the named states, we can write
output equations from the output table, if we let each state name represent a logic
expression that is 1 only in that state:

There’s one big problem with the state diagram of Figure 9-24—it doesn’t
properly handle multiple inputs asserted simultaneously. For example, what
happens in the IDLE state if both LEFT and HAZ are asserted? According to the
state diagram, the machine goes to two states, L1 and LR3, which is impossible.
In reality, the machine would have only one next state, which could be L1, LR3,
or a totally unrelated (and possibly unused) third state, depending on details of
the state machine’s realization (see Exercises 9.37 and 9.40).

LA = L1 + L2 + L3 + LR3 RA = R1 + R2 + R3 + LR3

LB = L2 + L3 + LR3 RB = R2 + R3 + LR3

LC = L3 + LR3 RC = R3 + LR3

Figure 9-23
Flashing sequence
for T-bird tail lights:
(a) left turn;
(b) right turn.

LC(a) LB LA RA(b) RB RC

c09.fm Page 474 Sunday, April 9, 2017 10:33 PM

9.4 State-Machine Design with State Diagrams 475

Figure 9-24 is an ambiguous state diagram, and it’s fixed in Figure 9-25,
where we have given the HAZ input priority. We’ve also enhanced the state
machine’s functionality to treat LEFT and RIGHT asserted simultaneously as a
hazard request, since the driver is clearly confused and needs help.

LR3

R1R3

R2

IDLE

L1

L2

LEFT1

1

RIGHT
1

1 1

HAZ

L3

(LEFT + RIGHT + HAZ)′

1 1

State

IDLE

L1

L2

L3

R1

R2

R3

LR3

LC

0

0

0

1

0

0

0

1

LB

0

0

1

1

0

0

0

1

LA

0

1

1

1

0

0

0

1

RA

0

0

0

0

1

1

1

1

RB

0

0

0

0

0

1

1

1

RC

0

0

0

0

0

0

1

1

Output Table

Figure 9-24
Initial state diagram
and output table for
T-bird tail lights.

Figure 9-25
Corrected state
diagram for T-bird
tail lights.

LR3

R1R3

R2

IDLE

L1

L2

1

1

1

1 1

L3

(LEFT + RIGHT + HAZ)′

1 1

HAZ + LEFT · RIGHT

LEFT · HAZ′
 · RIGHT′

RIGHT ·
HAZ′ · LEFT′

c09.fm Page 475 Sunday, April 9, 2017 10:33 PM

476 Chapter 9 State Machines

How do we know that the new state diagram is unambiguous, that is, that
the transition expressions on the arcs leaving each state are mutually exclusive
and all-inclusive? This can be confirmed algebraically for this or any other state
diagram by performing two steps:

1. Mutual exclusion. For each state, show that the logical product of each
possible pair of transition expressions on arcs leaving that state is 0. If there
are n arcs, then there are n(n − 1) / 2 logical products to evaluate.

2. All inclusion. For each state, show that the logical sum of the transition
expressions on all arcs leaving that state is 1.

That may sound like a lot of work, and in fact it is, for all but the simplest
state diagrams. In Figure 9-25, most of the states have a single arc with a transi-
tion expression of 1, so verification for those is trivial. Real work is needed only
to verify the IDLE state, which has four transitions leaving it. This can be done
on a sheet of scratch paper by listing the eight combinations of the three inputs
and checking off the combinations covered by each transition expression. Each
combination should have exactly one check. As another example, consider the
state diagram in Figure 9-14 on page 454; it can be verified mentally using fairly
basic switching algebra.

At this point, we can synthesize the T-bird tail lights state machine from the
state diagram. As in synthesis from a state table, the next step is to choose a state
encoding. There are eight states, and we’ll use the minimum of three flip-flops to
encode them. Obviously, many state assignments are possible (8! to be exact);
we’ll use the one in Table 9-7 for the following reasons:

1. An initial (idle) state of 000 is compatible with typical D flip-flops, which
are easily initialized to the 0 state.

2. Two state variables, Q1 and Q0, are used to “count” in Gray-code sequence
for the left-turn cycle (IDLE→L1→L2→L3→IDLE). This minimizes the
number of state-variable changes per state transition, which can often sim-
plify the excitation logic.

mutual exclusion

all inclusion

Table 9-7
State assignment
for the T-bird tail lights
state machine.

State Q2 Q1 Q0

IDLE 0 0 0

L1 0 0 1

L2 0 1 1

L3 0 1 0

R1 1 0 1

R2 1 1 1

R3 1 1 0

LR3 1 0 0

c09.fm Page 476 Sunday, April 9, 2017 10:33 PM

9.4 State-Machine Design with State Diagrams 477

3. Because of the symmetry in the state diagram, the same sequence on Q1
and Q0 is used to “count” during a right-turn cycle, while Q2 is used to
distinguish between left and right.

4. The remaining state-variable combination is used for the LR3 state.

The next step is to write a sort of transition table. However, we must use a
format different from the transition tables of Section 9.3.4, because transitions
in a state diagram are specified by expressions rather than by an exhaustive tab-
ulation of next states. We’ll call the new format a transition list, because it has
one row for each transition or arc in the state diagram.

Table 9-8 is the transition list for the state diagram of Figure 9-25 and the
state assignment of Table 9-7. Each row contains the current state, next state,
and transition expression for one arc in the state diagram. Both named and coded
versions of the current state and next state are shown in each row. Named states
are useful for reference purposes, while coded states are used when developing
transition equations.

Once we have a transition list, the rest of the synthesis steps are pretty
much just “turning the crank.” For each next-state variable V∗ we need a transi-
tion equation that defines its value in terms of the current state and input. The
transition list can be viewed as a sort of hybrid truth table in which the state-
variable combinations for the current state are listed explicitly, and input combi-
nations are listed algebraically. Reading down a V∗ column in a transition list,
we find a sequence of 0s and 1s, indicating the value of V∗ for various (if we’ve
done it right, all) state/input combinations.

A row’s transition p-term is defined to be the product of the current state’s
minterm and the transition expression in the row. The transition equation for V∗
has one transition p-term for each row of the transition list that has a 1 in the V∗

transition list

S Q2 Q1 Q0 Transition Expression S∗ Q2∗ Q1∗ Q0∗

Table 9-8
Transition list for
the T-bird tail lights
state machine.

IDLE 0 0 0 (LEFT + RIGHT + HAZ)′ IDLE 0 0 0

IDLE 0 0 0 LEFT ⋅ HAZ′ ⋅ RIGHT′ L1 0 0 1

IDLE 0 0 0 HAZ + LEFT ⋅ RIGHT LR3 1 0 0

IDLE 0 0 0 RIGHT ⋅ HAZ′ ⋅ LEFT′ R1 1 0 1

L1 0 0 1 1 L2 0 1 1

L2 0 1 1 1 L3 0 1 0

L3 0 1 0 1 IDLE 0 0 0

R1 1 0 1 1 R2 1 1 1

R2 1 1 1 1 R3 1 1 0

R3 1 1 0 1 IDLE 0 0 0

LR3 1 0 0 1 IDLE 0 0 0

transition p-term

c09.fm Page 477 Sunday, April 9, 2017 10:33 PM

478 Chapter 9 State Machines

column. Thus, the transition equation for Q2∗ can be written as the sum of the
p-terms for the four rows where Q2∗ is 1:

The equations for Q1∗ and Q0∗ have been left as an exercise (9.26).
Using D flip-flops for the state memory, the transition equations are also

the excitation equations for the D inputs, and we can synthesize them in the
target technology. Now we are almost done, with only the output logic left to do.
In this particular example, we already wrote equations on page 474 for its
Moore-type outputs in terms of its symbolic state names, so we need only to sub-
stitute the minterms corresponding to the named states, and we really are done.

More examples of designing state machines with state diagrams can be
found in Sections 7.6–7.7 of this book’s fourth edition. However, the extra worry
and work that is needed to create unambiguous state diagrams makes it worth
considering a more trouble-free method to define state machines graphically, as
described in the next section.

*9.5 State-Machine Design with ASM Charts
An algorithmic state machine (ASM) chart is a graphical specification of state-
machine behavior that looks more like a programmer’s flowchart than a state
diagram. Figure 9-26 shows the basic elements that appear in ASM charts:

• State box. An ASM chart has one state box per state, showing the state
name and optionally the state’s coding, and containing a list of Moore-type
outputs that are asserted in that state (unlisted outputs are negated in that
state). The most important difference between a state box and a node in a
state diagram is that the state box has just a single exit point representing
the next-state transition, shown by a single transition arrow leaving the
box. This arrow leads to another state box or to a decision box.

• Decision box. A single transition arrow is split into two alternative transi-
tions by a decision box, which contains a condition expression—a logic
expression involving the machine’s inputs. For input combinations where
the expression is 1, the exit path labeled 1 is taken; otherwise, the exit path
labeled 0 is taken. Each exit path leads to a state box or to another decision
box. Multiple decision boxes with different condition expressions may be
placed in series when a state has multiple next states.

• Conditional output box. This element is placed on top of the exit path of a
decision box to specify Mealy-type outputs. It lists outputs that are asserted
in the current state (which is determined by looking back along the path to

Q2∗ = Q2′ ⋅ Q1′ ⋅ Q0′ ⋅ (HAZ + LEFT ⋅ RIGHT)
+ Q2′ ⋅ Q1′ ⋅ Q0′ ⋅ (RIGHT ⋅ HAZ′ ⋅ LEFT′)
+ Q2 ⋅ Q1′ ⋅ Q0

+ Q2 ⋅ Q1 ⋅ Q0

ASM chart

state box

decision box
condition expression

conditional output box

c09.fm Page 478 Sunday, April 9, 2017 10:33 PM

9.5 State-Machine Design with ASM Charts 479

a state box), given an input combination that would cause the path to be
taken at the next clock tick. Like the state-diagram notation for Mealy-type
outputs, this is a little misleading, since the outputs are normally asserted
for the entire portion of the clock period in which the conditions are satis-
fied, not just at the clock tick when the transition is taken.

A few simple ASM charts are shown in Figure 9-27, including the names
of the state variables to be used in synthesis. The first chart, in (a), is for a free-
running “divide-by-4 counter.” Its state is encoded in two bits (Q1 Q0) and it has

state codestate name

conditional output list

 state entry path

state output list

 state exit path

(a)

(c)

 from decision-box
exit path

 exit path

condition
0 1

OR

condition false
exit path

condition true
exit path

condition
0 1

condition false
exit path

condition true
exit path

(b)

Figure 9-26 Elements of ASM charts: (a) state box; (b) decision box; (c) conditional output box.

(a)

A 00

B 01

C 10

D 11

MAX

(b)

A 00

B 01

C 10

D 11

MAX

0

1

EN

(c)

A 1000 B 0100

C 0010

D 0001

0 1
EN

0

1

EN

MAX

(Q1 Q0)

(Q1 Q0) (Q1-Q4)

Figure 9-27 ASM charts: (a) free-running modulo-4 counter; (b) modulo-4 counter with enable;
(c) modulo-4 counter with a Mealy-type output.

c09.fm Page 479 Sunday, April 9, 2017 10:33 PM

480 Chapter 9 State Machines

a single Moore-type output MAX which is asserted in state D. In (b), we have
provided an enable input, EN, which is tested only in state A. Finally, in (c) we
use a 1-hot state encoding, and MAX is now a Mealy-type output. Note that the
transition from state D to A is still unconditional; the bottom decision box affects
only whether the conditional output box is traversed.

*9.5.1 T-Bird Tail Lights with ASM Charts
Figure 9-28 shows an ASM chart for the T-bird tail lights example from the pre-
vious section. The IDLE state in the original state-diagram-based design has
several transitions leaving it, the ASM chart requires a few decision boxes in
series to define the transitions. Each state box contains a list of the outputs that
are asserted in that state. The drawing conventions are somewhat relaxed; for
example, exit paths leave the most convenient side of a decision box. You are
encouraged to study the ASM chart well enough to convince yourself that it does
the job.

The big advantage of designing with ASM charts is that a properly con-
structed chart is guaranteed to provide an unambiguous description of next-state
behavior. That is, in each state, every input combination leads to exactly one next
state in the chart. This is true because every input combination yields a definite
outcome in each decision box and, in a properly constructed chart, all exit paths
go to a single next state or to another decision box. Thus, the mutual-exclusion
and all-inclusion properties that we required for state diagrams are provided
automatically.

0 1
RIGHT

LR3 100

HAZ + LEFT · RIGHT

IDLE 000

0

1

LEFT

L1 001

L2 011

L3 010

LA, LB, LC

LA, LB

LA

R1 101

R2 111

R3 110

RA, RB, RC

RA, RB

RA

10

LA, LB, LC,
RA, RB, RC

(Q2 Q1 Q0)

Figure 9-28
ASM chart for
T-bird tail lights.

c09.fm Page 480 Sunday, April 9, 2017 10:33 PM

9.5 State-Machine Design with ASM Charts 481

For example, notice in Figure 9-28 that the LEFT and RIGHT condition
expressions leading out of the IDLE state are not mutually exclusive, but they
don’t have to be. The structure of the ASM chart guarantees that RIGHT would
have priority over LEFT, even if we hadn’t decided to interpret LEFT=RIGHT=1
as a hazard condition in the first decision box.

You can construct a transition list from an ASM chart by hand, if you really
want to. In a state diagram, each possible transition from a state has its own arc
leaving the state node. In an ASM chart, each state box itself has only one exit
path; the possible transitions correspond to all possible paths to next states going
through zero or more decision boxes. Each path yields one transition p-term and
row in the transition list. For example, in the T-bird tail lights machine, there are
four possible paths leaving the IDLE state, as shown in Figure 9-29.

The transition p-term corresponding to an ASM-chart path is the logical
product of the current state’s minterm and the condition expressions that appear
in the decision boxes along the chosen path. Each condition expression is com-
plemented if the chosen path goes through the “0” (false) exit path of its decision
box; otherwise it appears as-is. Thus, the IDLE state in Figure 9-28 has the
transition p-terms shown in Table 9-9. The remaining states have no condition
boxes; each has just one transition p-term, its current state’s minterm.

The transition p-terms in Table 9-9 are algebraically equal to the ones in
Table 9-8 on page 477 that we derived in the state-diagram based design for the
same state machine (you have to do a little Boolean algebra to show that; see
Exercise 9.29). Once you have all the transition p-terms, you can derive transi-
tion equations for all of the state variables in the same way that we described

0 1
RIGHT

LR3 100

HAZ + LEFT · RIGHT

IDLE 000

0

1

LEFT

L1 001

LA

R1 101

RA

10

LA, LB, LC,
RA, RB, RC

Figure 9-29
Paths leaving the
IDLE state in the
T-bird machine.

c09.fm Page 481 Sunday, April 9, 2017 10:33 PM

482 Chapter 9 State Machines

there: the transition equation for a variable has one transition p-term for each
row of the transition list where that variable is 1 in the next state.

The procedure for constructing for deriving p-terms and constructing a
transition list is similar to what an HDL compiler has to do to derive excitation
equations when nested if-else statements are used to define a state machine’s
behavior. So, even if you never need to construct an ASM chart, at least they
should have given you some insight into how an HDL compiler and synthesizer
can construct a working state machine from your behavioral description.

Table 9-9 Transition p-terms for the IDLE state in Figure 9-28.

Condition Expression Values

HAZ + LEFT⋅RIGHT RIGHT LEFT Transition p-term S∗

1 – – Q2′⋅Q1′⋅Q0′ ⋅ (HAZ + LEFT⋅RIGHT) LR3

0 1 – Q2′⋅Q1′⋅Q0′ ⋅ (HAZ + LEFT⋅RIGHT)′ ⋅ (RIGHT) R1

0 0 1 Q2′⋅Q1′⋅Q0′ ⋅ (HAZ + LEFT⋅RIGHT)′ ⋅ (RIGHT)′ ⋅ (LEFT) L1

0 0 0 Q2′⋅Q1′⋅Q0′ ⋅ (HAZ + LEFT⋅RIGHT)′ ⋅ (RIGHT)′ ⋅ (LEFT)′ IDLE

IMPROPERLY
CONSTRUCTED

ASM CHARTS
(AND VERILOG

STATE
MACHINES)

In this section, we’ve made a big deal about how a properly constructed ASM chart
yields an unambiguous description of a state machine’s behavior. So what is an
improperly constructed ASM chart?

Some ASM-chart authors allowed two or more exit paths from a state box, and
that is exactly the characteristic of a state diagram—multiple arcs leaving a node—
that can lead to ambiguity. With two or more exit paths from a state box, there can
be two or more parallel decision boxes. And if their condition expressions are not
mutually exclusive and all inclusive, we have an ambiguous ASM chart.

There is no such thing as an ambiguous Verilog behavioral state-machine
description, in the sense that the language’s behavior for any legal model is well
defined. For example, if the case for one state had multiple individual if statements,
rather than a single nested if-else, then two or more state-register assignments may
be executed for some input combination. However, only the last one takes effect,
both in simulation and in the synthesized circuit. Still, the model’s reader may not
understand what’s really going to happen; for example, they may be focused on the
first assignment.

Therefore, even in Verilog you should “properly construct” next-state behav-
iors so it is obvious to the reader (including yourself!) what is intended. Besides a
single nested if-else, analogous to a series of ASM-chart decision boxes, we’ll give
examples of some recommended styles that work, and caution against some that may
not work, in Chapter 12.

c09.fm Page 482 Sunday, April 9, 2017 10:33 PM

9.6 State-Machine Design with Verilog 483

9.6 State-Machine Design with Verilog
This section introduces state-machine design with Verilog; we’ll cover this topic
in the depth it deserves with a lot more variations and examples in Chapter 12.

In Section 9.3 we illustrated the state-table design process using the simple
design problem below:

Design a clocked synchronous state machine with two inputs, A and B, and
a single output Z that is 1 if:

– A had the same value at each of the two previous clock ticks, or
– B has been 1 since the last time that the first condition was true.

Otherwise, the output should be 0.

In a Verilog environment, there are many ways to create a module that meets the
stated requirements. We’ll look at just one here, and others in Chapter 12.

We already developed a state and output table for the above design problem
in Section 9.3.1, and doing that was more than just “turning the crank.” We had
to think about the problem requirements and evaluate different situations in the
state machine’s operation. So we’ll go ahead and use that state table as the basis
of a Verilog module that realizes the machine. In many situations we can design
a state machine without writing out a state table, but we’ll save that discussion
for Chapter 12. Here, we’ll show how to convert an existing state table into a
Verilog module without all the fuss of Sections 9.3.2 through 9.3.4.

We’ve written the state table again in Table 9-10. Even though we’re using
a manually constructed state table, the big difference here is that we don’t have
to construct a transition/excitation table by hand. Instead, we can convert the
state table directly into a corresponding Verilog module with five sections:

1. Declarations of inputs, outputs, and local variables. The output and local
variables will have “reg” types since we will use behavioral code to spec-
ify the machine’s operation.

2. A parameter statement to assign a state-variable combination to each
named state.

A B

Table 9-10
State and output table
for the example state
machine.

S 00 01 11 10 Z

INIT A0 A0 A1 A1 0
A0 OK0 OK0 A1 A1 0
A1 A0 A0 OK1 OK1 0

OK0 OK0 OK0 OK1 A1 1
OK1 A0 OK0 OK1 OK1 1

S∗

c09.fm Page 483 Sunday, April 9, 2017 10:33 PM

484 Chapter 9 State Machines

3. A first always block to create the state memory, corresponding to the state
memory of a generic Moore-machine structure in Figure 9-5 on page 444.

4. A second always block to define the next-state behavior, corresponding to
the next-state (excitation) logic F in the generic Moore-machine structure
in Figure 9-5.

5. A third always block to define the output logic, corresponding to the
output logic G in Figure 9-5.

Figure 9-30 shows how the three Verilog always blocks correspond to the
generic Moore-machine structure. The complete Verilog module corresponding
to the example state table is shown in Program 9-2.

As usual, the Verilog module declaration specifies its inputs and outputs—
CLOCK, A, B, and Z in this example. Next, the module declares reg variables Sreg
and Snext for the machine’s current and next states, respectively.

Significantly, the module uses a parameter statement to specify the state
assignment, defining a constant to associate each of the machines’s five states
with a unique multibit value. Here, we use the “simplest” state assignment of
Table 9-5 on page 462, using the first five of eight available 3-bit combinations.
However, we could have used any of the state assignments in the table, simply by
changing the definitions in the parameter statement and changing the width of
Sreg and Snext if more than three bits are used to encode the state. By using the
parameter statement in this way, we’re making the compiler do some of the
tedious and error-prone work for us, substituting state values for state names.

The first always block in the module is a “sequential always block” that
creates the state memory. Notably, this block’s sensitivity list uses Verilog’s
posedge keyword (see Section 5.14), so it executes only on the rising edge of
the named signal, CLOCK. At that time, it loads the next state Snext into the state

Figure 9-30 Moore state-machine structure implied by Verilog coding style.

CLOCK
Next-State Logic (combinational) State Memory (D flip-flops)

Output Logic (combinational)

Z

A, B
SregSnext

 @ (A, B, Sreg)

 (Sreg)

 INIT: (A==0) Snext = A0;

 Snext = A1;

 A0: ...

always begin

 case

 if

 else

 @ (CLOCK)

 Sreg <= Snext;

always posedge

 @ (Sreg)

 (Sreg)

 INIT, A0, A1: Z = 0;

 OK0, OK1: Z = 1;

 Z = 0;

always

 case

 default

 endcase

c09.fm Page 484 Sunday, April 9, 2017 10:33 PM

9.6 State-Machine Design with Verilog 485

flip-flops Sreg[2:0]. During synthesis, positive-edge-triggered D flip-flops
will be inferred for Sreg; in the next four chapters, we’ll see many examples of
sequential always blocks that create flip-flops in this way.

The second always block specifies the combinational next-state logic
using a case statement. It assigns a value to Snext in six cases, corresponding to
the five explicitly defined states and a default for other, undefined states. For
robustness (minimum risk), the default case sends the machine back to the
INIT state.

Program 9-2 Verilog module for state-machine example.

module VrSMex(CLOCK, A, B, Z);
 input CLOCK, A, B;
 output reg Z;
 reg [2:0] Sreg, Snext; // State register and next state

 parameter [2:0] INIT = 3'b000, // Define the states
 A0 = 3'b001,
 A1 = 3'b010,
 OK0 = 3'b011,
 OK1 = 3'b100;

 always @ (posedge CLOCK) // Create the state memory
 Sreg <= Snext;

 always @ (A, B, Sreg) begin // Next-state logic
 case (Sreg)
 INIT: if (A==0) Snext = A0;
 else Snext = A1;
 A0: if (A==0) Snext = OK0;
 else Snext = A1;
 A1: if (A==0) Snext = A0;
 else Snext = OK1;
 OK0: if (A==0) Snext = OK0;
 else if ((A==1) && (B==0)) Snext = A1;
 else Snext = OK1;
 OK1: if ((A==0) && (B==0)) Snext = A0;
 else if ((A==0) && (B==1)) Snext = OK0;
 else Snext = OK1;
 default Snext = INIT;
 endcase
 end

 always @ (Sreg) // Output logic
 case (Sreg)
 INIT, A0, A1: Z = 0;
 OK0, OK1: Z = 1;
 default Z = 0;
 endcase
endmodule

c09.fm Page 485 Sunday, April 9, 2017 10:33 PM

486 Chapter 9 State Machines

In each case-statement choice, we’ve used an “if” statement and a final
“else” to ensure that a value is always assigned to Snext. If there were any
state/input combinations in which no value was assigned Snext, the Verilog
compiler would infer a latch to hold the value of Snext for those combinations,
which is something we don’t want.

In formulating the if statements in Program 9-2 and the boolean condi-
tions that they test, we have not written separate clauses for all four possible
combinations of inputs A and B to mimic the four input-combination columns in
the state table. Instead, we have mentally simplified the conditions while going
along, in part by recalling the reasoning we used when we developed the state
table in the first place. For example, we know that the transition out of the INIT
state depends only on the value of A, and we don’t need separate tests depending
on whether B is 0 or 1.

The third and final always block in Program 9-2 handles the machine’s
single Moore output, Z, which is set to a value as a combinational function of the
current state. It would be easy to define Mealy outputs here as well, by making Z
be a function of the inputs as well as the state in each enumerated case. If this is
done, then the inputs would also be added to the sensitivity list of the always
block, either explicitly or by just using the “*” shorthand.

State machines can be specified in Verilog in many different ways, and
we’ll look at a few in Chapter 12, including direct coding without a state table or
diagram. Before we get there, we’ll spend some time in Chapter 10 looking at
the basic sequential elements like D flip-flops that are used in state machines and
other sequential circuits. All clocked sequential circuits are technically state
machines, but some are so common and so easily described that they have their
own names—counters and shift registers—and we’ll look at them and some of
their applications in Chapter 11. In Chapter 12, we’ll return to state machines in
Verilog, including both design and test benches.

References
The clocked synchronous state machines we discussed in this chapter are a spe-
cial case of a more general class of pulse-mode circuits. Such circuits have one
or more pulse inputs such that (a) only one pulse occurs at a time; (b) nonpulse
inputs are stable when a pulse occurs; (c) only pulses can cause state changes;
and (d) a pulse causes at most one state change. In clocked synchronous state
machines, the clock is the single pulse input, and a “pulse” is the triggering edge
of the clock. However, it is also possible to build circuits with multiple pulse
inputs, and it is possible to use storage elements other than the familiar edge-
triggered flip-flops. These possibilities are discussed thoroughly in Logic
Design Principles by Edward J. McCluskey (Prentice Hall, 1986).

pulse-mode circuit
pulse input

c09.fm Page 486 Sunday, April 9, 2017 10:33 PM

Drill Problems 487

A particularly important type of pulse-mode circuit that is discussed by
McCluskey and others is the two-phase latch machine. The rationale for a two-
phase clocking approach in VLSI circuits is discussed in the seminal VLSI book
by Carver Mead and Lynn Conway, Introduction to VLSI Systems (Addison-
Wesley, 1980). These machines eliminate the possibility of going to the wrong
state because of internal timing dependencies, called “essential hazards,” that
are present in all edge-triggered flip-flops, by using pairs of latches that are
enabled by nonoverlapping clocks.

Formal methods for minimizing state tables are described in advanced
logic design texts, including McCluskey’s 1986 book. A more mathematical dis-
cussion of these methods and other “theoretical” topics in sequential machine
design appears in Switching and Finite Automata Theory, by Zvi Kohavi and
Niraj K. Jha (Cambridge University Press, 2010, third edition).

ASM charts were pioneered at Hewlett-Packard by Thomas E. Osborne
and developed by his colleague Christopher R. Clare in a book, Designing Logic
Systems Using State Machines (McGraw-Hill, 1973). Design and synthesis
methods using ASM charts subsequently found a home in many digital design
texts, including the first two editions of the book you’re reading.

Drill Problems
9.1 A clock signal CLK is HIGH for 10 ns and LOW for 30 ns. What are its frequency

and duty cycle?

9.2 A clock signal CLK_L is HIGH for 8 ns and LOW for 12 ns. What are its frequency
and duty cycle?

9.3 How many states are there in a state machine with seven D flip-flops in its state
memory?

9.4 Analyze the state machine in Figure X9.4. Write excitation equations, excitation/
transition table, and state/output table (use state names A–D for Q1 Q2 = 00–11).

9.5 Repeat Drill 9.4, changing the AND gate to NAND and the OR gate to NOR in the
excitation logic. Is there any discernible relationship between the new state table
and the original?

9.6 Repeat Drill 9.4, swapping AND and OR gates in the logic diagram. Is the new
state/output table the “dual” of the original one? Explain.

two-phase latch
machine

D Q

QCLK

CLK

X

Z

Q2Q1
D Q

QCLK

Figure X9.4

c09.fm Page 487 Sunday, April 9, 2017 10:33 PM

488 Chapter 9 State Machines

9.7 Analyze the state machine in Figure X9.7. Write excitation equations and then
construct an excitation/transition table and a state/output table using state names
A–H for Q1 Q2 Q3 = 000–111).

9.8 Analyze a state machine with three flip-flops, two inputs A and B, output Z, and
excitation and output equations given below. Construct an excitation/transition
table and a state/output table, using state names A–H for Q1 Q2 Q3 = 000–111.

9.9 Analyze the state machine in Figure X9.9. Write excitation equations, excitation/
transition table, and state/output table (use state names A–H for Q1 Q2 Q3 = 000–
111).

9.10 Analyze the state machine in Figure X9.10. Write excitation equations and then
construct the excitation/transition table and a state/output table using state names
A–H for Q1 Q2 Q3 = 000–111).

9.11 The outputs of the state machine in Figure X9.10 are its state variables. Suppose
that instead, the machine has a single output with the equation Z = Q2 ⋅ Q3′. Find
the equivalent states in the machine and construct an equivalent state/output table
having fewer states.

Q1∗ = A

Q2∗ = Q1

Q3∗ = B ⋅ (Q3 + (Q2′ ⊕ Q1))

Z = Q3 + (Q2′ ⊕ Q1)

CLK

Y

X D Q

CLK

D Q

QCLK

D Q

CLK

Q1

Q2

Q3

Figure X9.7

CLK

Y

X D Q

CLK

D Q

QCLK

D Q

CLK

Q1

Q2

Q3

Figure X9.9

CLK

Y

X D Q

CLK

D Q

QCLK

D Q

CLK

Q1

Q2

Q3

Figure X9.10

c09.fm Page 488 Sunday, April 9, 2017 10:33 PM

Drill Problems 489

9.12 Analyze the state machine in Figure X9.12. Write excitation equations and then
construct the excitation/transition table and a state table using state names A–H
for Q2 Q1 Q0 = 000–111).

9.13 Draw a state diagram for the state machine described by Table 9-4.

9.14 Construct a state table equivalent to the state diagram in Figure X9.14. Note that
the diagram is drawn with the convention that the state does not change except for
input conditions that are explicitly shown.

9.15 Construct a state and output table equivalent to the state diagram in Figure X9.15.
Note that the diagram is drawn with the convention that the state does not change
except for input conditions that are explicitly shown.

Figure X9.12

CLK

D Q

CLK

D Q

CLK

D Q

CLK

Q2

Q1

Q0

Figure X9.14

A B

D C

E

X

X
X

X′

X′

X′ X′

X′

Figure X9.15

A X B

C X D

E Y F

G Y H

Z1 Z2 = 11 Z1 Z2 = 10

Z1 Z2 = 00 Z1 Z2 = 01

Z1 Z2 = 01 Z1 Z2 = 00

Z1 Z2 = 10 Z1 Z2 = 11

X

X

XX

X′ · Y

X′ · Y

c09.fm Page 489 Sunday, April 9, 2017 10:33 PM

490 Chapter 9 State Machines

9.16 Design a state machine that checks data words received on a serial data line for
even parity. The circuit should have two inputs, SYNC and DATA, in addition to
CLOCK. The number of bits per input data word is variable, but SYNC is asserted
during the clock period preceding the first data bit and during the last data bit.
SYNC is negated during the first data bit of the next word; if SYNC remains
asserted after the last bit, there is a gap between successive data words. The circuit
should have one Moore-type output, ERROR, which is asserted only for one clock
period after the last bit of a received word if that word had odd parity. You should
be able to do the job using fewer than eight states. Create a state table for your
design and provide a short description of the meaning or purpose of each state.

Exercises
9.17 You’ve studied Section 9.2 on state-machine analysis, and your professor has

handed you a logic diagram and asked you to derive the state/output table for a
machine with four edge-triggered D flip-flops with outputs Q3–Q0, four inputs
I3–I0, and one Moore output Z. You realize that the state table will have 16 rows
and 16 columns, and it is going to be a real pain to derive all 256 next-state
entries. However, you have a Verilog simulator available to you, and it wouldn’t
take you very long to create a structural or dataflow-style module VrSMtblckt
that does most of the work for you.

Write a test bench Vr4x4x1SMtbl_tb that instantiates VrSMtblckt and prints out
the resulting state and output table for you. Your test bench should work for any
state machine with the inputs and outputs specified above, where the details of the
specific state machine are embodied in VrSMtblckt. To make formatting easy,
use state names Q0–Q9,Qa–Qf for state values 0000–1111. To test your test
bench, write and instantiate a simple VrSMtblckt1 module where the next state
is the 4-bit sum of the current state Q[3:0] and I[3:0], and the Z output is asserted
only if the current state is 0000.

9.18 Admittedly, the state-table pattern created by the VrSMtblckt1 module that was
suggested in Exercise 9.17 is easy to write out by hand without the automated test
bench. But now it’s time for the real assignment. Derive the state and output table
for a state machine with the following next-state equations and output equations:

9.19 Draw a state diagram for a state machine with two inputs, INIT and X, and one
Moore-type output Z. As long as INIT is asserted, Z is continuously 0. Once INIT
is negated, Z should remain 0 until X has been 0 for two successive ticks and 1 for
two successive ticks, regardless of the order of occurrence. Then Z should go to
1 and remain 1 until INIT is asserted again. Your state diagram should be neatly
drawn and planar (no crossed lines). (Hint: No more than ten states are required.)

Q0∗ = Q3′ ⋅ Q1′ ⋅ I0′ + Q3 ⋅Q2 ⋅ Q1 ⋅ I1 + Q0 ⋅ I3′ ⋅ I2′
Q1∗ = (Q1′ + I0′ + I3 ⋅ I2) ⋅ (Q3 + Q2′ + Q0′ ⋅ I1′)
Q2∗ = Q2 ⋅ (I3′ ⋅ I1 ⋅ I0 + I3 ⋅ I2′ ⋅ I0 + Q3′ ⋅ I3 ⋅ I2′ + Q0 ⋅ I3 ⋅ I2)

Q3∗ = Q3′ ⋅ I3 + Q2′ ⋅ I2 + I3 ⋅ I2 ⋅ I1 ⋅ I0 + Q1 ⋅ Q0′ ⋅ I2 ⋅ I1′
Z = (Q3 + Q0′) ⋅ Q1 + Q2′ ⋅ Q1 ⋅ Q0 + Q1′ ⋅ (Q2 + Q0′) ⋅ (Q2′ + Q0)

c09.fm Page 490 Sunday, April 9, 2017 10:33 PM

Exercises 491

9.20 Synthesize a state machine with the state/output table shown in Table X9.20. Use
two state variables, Q1 Q2, with state assignment A = 00, B = 01, C = 11, D = 10.
Write out the excitation equations and draw the logic diagram using NAND gates
and D flip-flops with true and complemented outputs.

9.21 Write a new transition table and derive minimal-risk excitation and output
equations for the state table in Table 9-4 using the “simplest” state assignment in
Table 9-5 and D flip-flops. Compare the cost of your excitation and output logic
(when realized with a two-level AND-OR circuit) with the equations in the box on
page 471.

9.22 Repeat Exercise 9.21 using the “almost one-hot” state assignment in Table 9-5.

9.23 Determine the full 8-state table for the state machine with the excitation equations
in the box on page 471. Use the names U1, U2, and U3 for the states that are
unused in the original state table (001, 010, and 011). Draw a state diagram and
explain the behavior of the unused states.

9.24 List all of the ambiguities in the state diagrams in Figure X9.24.

X

Table X9.20

S 0 1 Z

A B D 0

B C B 0

C B A 1

D B C 0

S*

Figure X9.24

A B

C D

1X′ Y

X

1

(a)

X ⋅ Y

A B

C D

X′ ⋅ Z

W

X + Y

(b) W + X

W + Z

X + Z′

A B

C D

X ⋅ Y
Z X ⋅ Z′

X′ ⋅ Y′

Z′

(c) X ⋅ Z′

X + Y ′

X′ ⋅ Y

X

Z

(d)

A B

C D

X

Z

X′

Y ′Z′

X′ ⋅ Y′ ⋅ Z′ W′ ⋅ Y′ ⋅ Z′

W′ ⋅ X′ ⋅ Y′ W′ ⋅ X′ ⋅ Z′

W′

W Y

W ⋅ Z

′

c09.fm Page 491 Sunday, April 9, 2017 10:33 PM

492 Chapter 9 State Machines

9.25 Enhance the state diagram of Figure 9-25 or the ASM chart of Figure 9-28 so the
machine immediately goes to the hazard-flash state if a hazard condition is
detected during a turning sequence, and immediately goes to the idle state if the
turn signal request is negated during a turning sequence.

9.26 Derive the transition equations for Q1∗ and Q0∗ for the T-bird tail lights machine
based on the transition list in Table 9-8. Comment on whether and how the state-
assignment strategy for the machine did or did not pay off in the equations.

9.27 Synthesize a circuit for the state diagram of Figure 9-25 using six variables to
encode the state, where the LA–LC and RA–RC outputs equal the state variables
themselves. Write a transition list, a transition equation for each state variable as
a sum of p-terms, and simplified transition/excitation equations for a realization
using D flip-flops.

9.28 Repeat Exercise 9.27 for the enhanced diagram or chart of Exercise 9.25.

9.29 Using switching algebra, show that the transition p-terms for the IDLE state that
we derived in Table 9-9 from the T-bird tail lights ASM chart are equal to the cor-
responding ones in Table 9-8 that we derived from the state diagram.

9.30 Create an unambiguous state diagram or an ASM chart for a “sticky-counter”
state machine with eight states, S0–S7. Besides CLOCK, your machine should
have two inputs, RESET and ENABLE, and one output, DONE. The machine
should go to state S0 when RESET is asserted. When RESET is negated, it should
move to next-numbered state only if ENABLE is asserted. However, once it reach-
es state S7, it should stay there unless RESET is again asserted. The DONE output
should be 1 if and only if the machine is in state S7 and ENABLE is asserted.

9.31 Create an unambiguous state diagram or an ASM chart for a state machine with
one input X and one Moore-type output EDGE, which detects transitions on X.
The machine tests its X input at each tick of the clock and asserts EDGE if the
value of X at that tick is different from the value at the previous tick. Use state
names A, B, C, and so on as needed. Also create a state and output table corre-
sponding to the state diagram.

9.32 Create an unambiguous state diagram or an ASM chart for a state machine with
two inputs X and INIT and two Moore-type outputs EDGE and MISS, which
dependably detects transitions on X. The machine tests its X input at each tick of
the clock and asserts EDGE if the value of X at that tick is different from the value
at the previous tick. Once it is asserted, EDGE remains asserted until INIT is
asserted for at least one tick. The MISS output is asserted if one or more edges
were missed prior to INIT being asserted after EDGE was asserted, and it also
remains asserted until INIT is asserted.

9.33 In many applications, the outputs produced by a state machine during or shortly
after reset are irrelevant, as long as the machine begins to behave correctly a short
time after the reset signal is removed. If this idea is applied to Table 9-4, the INIT
state can be removed and only two state variables are needed to code the remain-
ing four states. Redesign the state machine using this idea. Write a new state table
and a transition/excitation table for D flip-flops. Derive the excitation and output
equations; you may do this algebraically or embed the new transition/excitation
table in a Verilog module like Program 9-1 and find the equations in the synthesis

c09.fm Page 492 Sunday, April 9, 2017 10:33 PM

Exercises 493

results. Draw a logic diagram for the state machine using D flip-flops and discrete
gates, assuming that flip-flops have both true and complemented outputs. Com-
pare the cost of the new design (gates and flip-flops) with the minimal-risk design
that was completed in Section 9.3.4.

9.34 The output of a finite-memory machine is completely determined by its current
input and its inputs and outputs during the previous n clock ticks, where n is a
finite, bounded integer. For example, Figure X9.34 shows the realization of a
finite-memory machine with one input and one output. Note that a finite-state
machine need not be a finite-memory machine; for example, a modulo-n counter
with an enable input and a “MAX” output has only n states, but its output may
depend on the value of the enable input at every clock tick since initialization.

Can the state-machine example of Section 9.3.1 be realized as a finite-memory
machine? If so, state how many flip-flops are required and show how they are
arranged, and if not, describe changes to the machine’s description that would
allow a finite-memory realization.

9.35 Synthesize a circuit for the ambiguous state diagram in Figure 9-24. Use the state
assignment in Table 9-7. Write a transition list, a transition equation for each state
variable as a sum of p-terms, and simplified transition/excitation equations for a
realization using D flip-flops. Determine the actual next state of the circuit, start-
ing from the IDLE state, for each of the following input combinations on (LEFT,
RIGHT, HAZ): (1,0,1), (0,1,1), (1,1,0), (1,1,1). Comment on the machine’s behav-
ior in these cases.

9.36 What does the personalized license plate in Figure 9-22 stand for? (Hint: It’s the
author’s old plate, a computer engineer’s version of OTTFFSS.)

9.37 Suppose that for a state SA and an input combination I, an ambiguous state
diagram indicates that there are two next states, SB and SC. The actual next state
SD for this transition depends on the state machine’s realization. If the state
machine is synthesized using the method of Section 9.4 (V∗ = sum of p-terms
where V∗ = 1) to obtain transition/excitation equations for D flip-flops, what is
the relationship between the coded states for SB, SC, and SD? Explain.

finite-memory machine

Q

CLK

IN

CK

D Q

CK

D Q

CK

D

combinational logic

Q

CK

D Q

CK

D Q

CK

D

OUT

 flip-flops

 flip-flops

Figure X9.34

c09.fm Page 493 Sunday, April 9, 2017 10:33 PM

494 Chapter 9 State Machines

9.38 Repeat Exercise 9.37, where the ambiguous state diagram specifies no next state
for state SA and input combination I. What is the coding of the actual next state
SD for this transition?

9.39 In state-machine synthesis method of Section 9.4, if there are fewer 0s than 1s in
the transition-list column for a particular variable V∗, it may be easier to derive
the complement of that variable’s transition equation, that is, V∗′ = sum of p-terms
where V∗ = 0. Explain why this method works.

9.40 Repeat Exercises 9.37 and 9.38, assuming that the machine is synthesized using
the method (V∗′ = sum of p-terms where V∗ = 0) for all state variables.

9.41 Suppose that for a state SA and an input combination I, an ambiguous state
diagram does not define a next state. The actual next state SD for this transition
depends on the state machine’s realization. Suppose that the state machine is
synthesized using the method (V∗ = Σ p-terms where V∗ = 1) to obtain transition/
excitation equations for D flip-flops. What coded state is SD? Explain.

9.42 Repeat Exercise 9.41, assuming that the machine is synthesized using the method
(V∗′ = Σp-terms where V∗ = 0).

9.43 Using the style of Program 9-2, write a Verilog module corresponding to the state
diagram of Figure 9-25. Write a test bench that graphically displays the state
machine’s output sequence for a typical input sequence. Suggestion: a sequence
of lamp states may be displayed using an “O” or “.” for each lamp depending on
whether it’s on or off; for example, in a left turn,
... ...
..O ...
.OO ...
OOO ...

9.44 Using the style of Program 9-2, write a Verilog module based on the state diagram
in Drill 9.14. Use the “simplest” state assignment.

9.45 Update the Verilog test bench from Exercise 9.17 to include a function writeS to
print state names as A–P instead of Q0–Qa. Test the test bench using the state
machine in the same exercise.

9.46 Write a Verilog module corresponding to the excitation logic in the state machine
of Drill 9.12. Use the test bench of Exercise 9.45 to print the machine’s state
table. Compare with your results from Drill 9.12; if they’re different, find and
correct your error(s).

9.47 Using the style of Program 9-2, write a Verilog module based on the state diagram
of the parity-checking state machine you designed in Drill 9.16. Write a test
bench that generates a typical input sequence for the machine, including different
word lengths, both even and odd parity, and sometimes gaps between successive
words. Suggestion: You may find it useful to write a task “Genser(N,W,P,G)”
that generates an N+1-bit serial pattern of an N-bit data word (W) plus odd or even
parity (P), followed by a gap of 0 or more clock periods (G), without having to
write out all the details for each different test pattern.

c09.fm Page 494 Sunday, April 9, 2017 10:33 PM

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

495

c h a p t e r10
Sequential Logic Elements

n the preceding chapter, we introduced edge-triggered D flip-flops,
which are the most commonly used elements for storing the state in
state machines. But there are other types of storage elements as well,
ones that are more convenient or efficient for non-state-machine appli-

cations. These include latches, which can be used to capture a condition or
information based on the level, not an edge, of a control input, with about
half of the cost of an edge-triggered flip-flop in terms of circuit area. There
are also edge-triggered devices that have multiple control inputs that are
useful in some applications. Finally, most elements also have variants with
separate initialization (reset) inputs to force their state to a desired value
when the circuit starts up, without regard to activity on the other inputs.

In this chapter, we’ll start with the very simplest sequential element
and work our way up to the more complex ones. In addition to functional
behavior, timing is very important for sequential elements, so we’ll take a
close look at both the timing requirements on their inputs and the timing
behaviors of their outputs. In preparation for actually using sequential ele-
ments in larger circuits, we’ll see how they may be grouped together and
combined with other elements in building-block components, FPGAs, and
PLDs, and how they can be invoked explicitly from component libraries or
“inferred” by behavioral HDL code. We’ll close the chapter with an optional
section on “feedback sequential circuits,” which helps to explain how these
sequential elements operate internally.

I

c10.fm Page 495 Thursday, April 6, 2017 9:17 PM

496 Chapter 10 Sequential Logic Elements

10.1 Bistable Elements
The simplest sequential circuit consists of a pair of inverters forming a feedback
loop, as shown in Figure 10-1. It has no inputs and two outputs, Q and Q_L.

10.1.1 Digital Analysis
The circuit of Figure 10-1 is often called a bistable, since a strictly digital anal-
ysis shows that it has two stable states. If Q is HIGH, then the bottom inverter has
a HIGH input and a LOW output, which forces the top inverter’s output HIGH as
we assumed in the first place. But if Q is LOW, then the bottom inverter has a
LOW input and a HIGH output, which forces Q LOW, another stable situation.
We could use a single state variable, the state of signal Q, to describe the state of
the circuit; there are two possible states, Q = 0 and Q = 1.

The bistable element is so simple that it has no inputs and therefore no way
of controlling or changing its state. When power is first applied to the circuit, it
randomly comes up in one state or the other and stays there forever. Still, it
serves our illustrative purposes very well, and we will actually show a common
application for a variant of it in Section 10.5.2.

10.1.2 Analog Analysis
The analysis of the bistable has more to reveal if we consider its operation from
an analog point of view. For the non-EE reader, we first introduce the notion of
the transfer function of a 1-input, 1-output analog circuit: it is a mathematical
function that gives the “steady-state” output voltage produced in response to a
given input voltage, that is, the final output voltage that is produced after any
dynamic effects have settled out. The transfer function can be calculated by
meticulous analog circuit analysis, but for our purposes it will be sufficient to
simply plot it on a graph, in what is sometimes called a voltage transfer diagram.

Figure 10-2(a) shows the transfer function for a typical CMOS inverter
using a 3.0-V power supply. The output voltage plotted on the vertical axis is a
function of input voltage, Vout = T(Vin). When the Vin is less than about 1 volt,
Vout is close to 3 volts; and when Vin is greater than about 2 volts, Vout is close to
0 volts. But when Vin is in the “no-man’s land” between 1 and 2 volts, the Vout
goes sharply lower as Vin goes higher and vice versa. From the analog point of
view, the inverter has very high gain in this region of the graph, because a small
change in its input voltage creates a much larger change in its output voltage.

Figure 10-1
A pair of inverters
forming a bistable
element.

Vin1 Vout1

Vout2Vin2

Q

Q_L

bistable

transfer function

voltage transfer
diagram

gain

c10.fm Page 496 Thursday, April 6, 2017 9:17 PM

10.1 Bistable Elements 497

With two inverters connected in a feedback loop as in Figure 10-1, we
know that Vin1 = Vout2 and Vin2 = Vout1; therefore, we can plot the transfer func-
tions for both inverters on the same graph labeling the axes appropriately. Thus,
in Figure 10-2(b), the black line is the transfer function is as before and applies
to the top inverter in Figure 10-1. The colored line is the transfer function for the
bottom inverter, plotted with its input on the vertical axis and its output on the
horizontal.

Considering only the steady-state behavior of the bistable’s feedback loop,
and not dynamic effects, the loop is in equilibrium if the input and output
voltages of both inverters are constant voltages consistent with the loop
connection and the inverters’ transfer functions. That is, we must have

Likewise, we must have

We can find these equilibrium points graphically from Figure 10-2(b); they are
the points at which the two transfer curves meet. Surprisingly, we find that there
are not two but three equilibrium points. Two of them, labeled stable, correspond
to the two states that our “strictly digital” analysis identified earlier, with Q
either 0 (LOW) or 1 (HIGH).

The third equilibrium point, called a metastable state, occurs with Vout1 and
Vout2 about halfway between a valid logic 1 voltage and a valid logic 0 voltage;
so Q and Q_L are not valid logic signals at this point. Yet the loop equations are
satisfied; if we can get the circuit to operate at the metastable point, it could
theoretically stay there indefinitely. This behavior is called metastability.

Vin1 = Vout2

= T(Vin2)

= T(Vout1)

= T(T(Vin1))

Vin2 = T(T(Vin2))

Figure 10-2
Transfer functions: (a)
for a single CMOS
inverter; (b) for a pair
of inverters in a
bistable feedback
loop.

Vout1

= Vout2Vin1

= V in2

stable

metastable

stable

Transfer functions:

 Vout1 = T(Vin1)

 Vout2 = T(Vin2)3.0

2.0

1.0

0.0
3.02.01.00.0

Vout

Vin

3.0

2.0

1.0

0.0
3.02.01.00.0

(a) (b)

Transfer function:

Vout = T(Vin)

stable

metastable state

metastability

c10.fm Page 497 Thursday, April 6, 2017 9:17 PM

498 Chapter 10 Sequential Logic Elements

10.1.3 Metastable Behavior
Closer analysis of the situation at the metastable point shows that it is aptly
named. It is not truly stable, because random noise will tend to drive a circuit
that is operating at the metastable point toward one of the stable operating
points, as we’ll now demonstrate.

Suppose the bistable is operating precisely at the metastable point in
Figure 10-2(b). Now let us assume that a small amount of circuit noise reduces
Vin1 by a tiny amount. This change causes Vout1 to increase by an even greater
amount because of the inverter’s high gain in this region. Since Vout1 produces
Vin2, we can follow the first horizontal arrow from near the metastable point to
the second transfer characteristic, which now demands a lower voltage for Vout2,
which is Vin1. Now we’re back where we started, except we have a much larger
change in voltage at Vin1 than the original noise produced, exacerbated by the
high gain of both inverters, and the operating point is still changing. This “regen-
erative” process continues until we reach the stable operating point at the upper
lefthand corner of Figure 10-2(b). However, if we perform such a “noise” analy-
sis for either of the stable operating points, we find that feedback brings the
circuit back towards the stable operating point, rather than away from it.

Metastable behavior of a bistable can be compared to the behavior of a ball
dropped onto a hill, as shown in Figure 10-3. If we drop a ball from overhead, it
will probably roll down immediately to one side of the hill or the other. But if it
lands right at the top, it may sit there precariously for a while before random
forces (wind, rodents, earthquakes) start it rolling down the hill. Like the ball at
the top of the hill, the bistable may stay in the metastable state for an unpredict-
able length of time before randomly settling into one stable state or the other.

If the simplest sequential circuit is susceptible to metastable behavior, you
can be sure that all sequential circuits are susceptible. And this behavior is not
something that only occurs at power-up.

Returning to the ball-and-hill analogy, consider what happens if we try to
kick the ball from one side of the hill to the other. Apply a strong force
(Superman), and the ball goes right over the top and lands in a stable resting
place on the other side. Apply a weak force (Clark Kent), and the ball falls back
to its original starting place. But apply a wishy-washy force (Charlie Brown),
and the ball goes to the top of the hill, teeters, and eventually falls back to one
side or the other.

Figure 10-3
Ball and hill analogy for
metastable behavior.

stable stable

metastable

c10.fm Page 498 Thursday, April 6, 2017 9:17 PM

10.2 Latches and Flip-Flops 499

This behavior is completely analogous to what happens to latches and flip-
flops under marginal triggering conditions. For example, we’ll soon study S-R
latches, where a pulse on the S input forces the latch from the 0 state to the 1
state. A minimum pulse width is specified for the S input. Apply a pulse of this
width or longer, and the latch immediately goes to the 1 state. Apply a very short
pulse, and the latch stays in the 0 state. Apply a pulse just under the minimum
width, and the latch may go into the metastable state. Once the latch is in the
metastable state, its operation depends on “the shape of its hill.” Latches and
flip-flops built from high-gain, fast transistors tend to come out of metastability
faster than ones built from low-performance technologies.

We’ll say more about metastability in the next section in connection with
specific latch and flip-flop types, and in Section 13.4 with respect to synchro-
nous design methodology and synchronizer failure.

10.2 Latches and Flip-Flops
Latches and flip-flops are the basic building blocks of most sequential circuits.
The latches and flip-flops in typical digital systems are functionally specified
devices already prepackaged in a standard integrated circuit. In ASIC design
environments, they are typically predefined cells specified by the ASIC vendor.
However, within a standard IC or an ASIC, each predefined latch or flip-flop cell
typically has been designed as a feedback sequential circuit using individual
logic gates and feedback loops. We’ll look at such discrete designs here to better
understand the behavior of the prepackaged elements.

All digital designers use the name flip-flop for a sequential device that nor-
mally samples its inputs and changes its outputs only when a clocking signal is
changing. On the other hand, most digital designers use the name latch for a
sequential device that watches its inputs continuously and can change its outputs
at any time (although in some cases requiring an enable signal to be asserted).
We follow this standard convention in this text. However, some textbooks and
digital designers may incorrectly use the name “flip-flop” for a device that we
call a “latch.”

In any case, because the functional behaviors of latches and flip-flops are
quite different, it is important for the logic designer to know which type is being
used in a design, from the device’s part number (e.g., 74x373 vs. 74x374), from
the FPGA or ASIC library-element name (e.g., TLAT vs. DFF), or from other
contextual information. We will discuss the most commonly used latch and flip-
flop types in the following subsections.

10.2.1 S-R Latch
The simplest sequential circuit that has control inputs can be built from just two
2-input NOR gates as shown in Figure 10-4(a). This is called an S-R (set-reset)
latch. The circuit has two inputs, S and R, and two outputs, labeled Q and QN,

flip-flop

latch

S-R latch

c10.fm Page 499 Thursday, April 6, 2017 9:17 PM

500 Chapter 10 Sequential Logic Elements

where QN is normally the complement of Q. Signal QN is sometimes labeled Q
or Q_L. An S-R latch is typically used to detect an event, using the S input to
“set” the latch when the event occurs, and using R to “reset” it later.

If S and R are both 0, the circuit behaves like the bistable element—we
have a feedback loop that retains one of two logic states, Q = 0 or Q = 1. As
shown in Figure 10-4(b), either S or R may be asserted to force the feedback
loop to a desired state. S sets or presets the Q output to 1; R resets or clears the
Q output to 0. After the S or R input is negated, the latch remains in the same
state. Figure 10-5(a) shows the functional behavior of an S-R latch for a typical
sequence of inputs. Colored arrows indicate causality, that is, which input transi-
tions cause which output transitions.

Four different logic symbols for the same S-R latch circuit are shown in
Figure 10-6. The symbols differ in the treatment of the complemented output.
Historically, the first symbol (a) was used, showing the active-low or comple-

Figure 10-4
S-R latch:
(a) circuit design
using NOR gates;
(b) function table.

R

S

Q
0 0

0 1

1 0

1 1

S R

0

0

1

last Q

Q

1

0

0
(a) (b)

QN

last QN

QN

set

preset

Figure 10-5 Typical operation of an S-R latch: (a) “normal” inputs; (b) S and R asserted simultaneously.

S

R

Q

(a) (b)

QN

reset
clear

Q VERSUS QN In most applications of an S-R latch, the QN (a.k.a. Q) output is always the comple-
ment of the Q output. However, the Q name is not quite correct, because there is one
case where this output is not the complement of Q. If both S and R are 1, as they are
in several places in Figure 10-5(b), then both outputs are forced to 0. Once we negate
either input, the outputs return to complementary operation as usual. However, if we
negate both inputs simultaneously, the latch goes to an unpredictable next state, and it
may in fact oscillate or enter the metastable state. Metastability may also occur if a 1
pulse that is too short is applied to S or R.

c10.fm Page 500 Thursday, April 6, 2017 9:17 PM

10.2 Latches and Flip-Flops 501

mented signal name inside the function rectangle. However, in bubble-to-bubble
logic design the second form (b) of the symbol is preferred, showing an inver-
sion bubble outside the function rectangle. The third form (c) of the symbol is
wrong because the bubble negates the already negated QN output. The fourth
form (d) appears in some ASIC libraries’ standalone descriptions of the same
circuit. It does not follow the usual convention of placing the input and output
names inside the rectangle, but it is technically correct; think of it as equivalent
to (a) but with the signal names written on the outside of a somewhat more evoc-
ative symbol shape.

Figure 10-7 defines timing parameters for an S-R latch. The propagation
delay is the time it takes for a transition on an input signal to produce a transition
on an output signal. A given latch or flip-flop may have several different
propagation-delay specifications, one for each pair of input and output signals.
Also, the propagation delay may be different depending on whether the output
makes a LOW-to-HIGH or HIGH-to-LOW transition. With an S-R latch, a
LOW-to-HIGH transition on S can cause a LOW-to-HIGH transition on Q, so a
propagation delay tpLH(SQ) occurs, as shown in transition 1 in the figure.
Similarly, a LOW-to-HIGH transition on R can cause a HIGH-to-LOW transition
on Q, with propagation delay tpHL(RQ) as shown in transition 2. Not shown in the
figure are the corresponding transitions on QN, which would have propagation
delays tpHL(SQN) and tpLH(RQN).

Figure 10-6 Symbols for S-R latch: (a) without bubble; (b) preferred for bubble-to-bubble design;
(c) incorrect because of double negation; (d) standalone symbol for an ASIC cell.

Q

QNR

(b) (c)(a)

S Q

QNR

S SQ

QR

(d)

S Q

QNR

Figure 10-7 Timing parameters for an S-R latch.

S

R

Q

tpHL(RQ)tpLH(SQ)

(2)

(1)

tpw(min)

propagation delay

c10.fm Page 501 Thursday, April 6, 2017 9:17 PM

502 Chapter 10 Sequential Logic Elements

Minimum-pulse-width specifications are usually given for the S and R
inputs. As shown in Figure 10-7, the latch may go into the metastable state and it
may remain there for a random length of time if a pulse shorter than the
minimum width tpw(min) is applied to S or R. Think of it as a wish-washy kick in
the ball-and-hill analogy. The latch can be deterministically brought out of the
metastable state only by applying a pulse to S or R that meets or exceeds the
minimum-pulse-width requirement.

10.2.2 S-R Latch
An S-R latch (read “S-bar-R-bar latch”), which has active-low set and reset
inputs, may be built from NAND gates as shown in Figure 10-8(a). In many
CMOS logic families and ASIC libraries, S-R latches are used more often than
S-R latches because NAND gates are preferred over NOR gates for reasons of
speed, size, or both.

As shown by the function table, Figure 10-8(b), operation of the S-R latch
is similar to that of the S-R, with two major differences. First, S and R are active
low, so the latch remembers its previous state when S = R = 1; the active-low
inputs are clearly indicated in the symbol in (c). Second, when both S and R are
asserted simultaneously, both latch outputs go to 1, not 0 as in the S-R latch.
Except for these differences, operation of the S-R is the same as the S-R,
including timing and metastability considerations.

HOW CLOSE
IS CLOSE?

As mentioned in the previous boxed comment, an S-R latch may go into the meta-
stable state if S and R are negated simultaneously. Often, but not always, a
commercial latch’s specifications define “simultaneously” (e.g., S and R negated
within 5 ns of each other). This parameter is sometimes called the recovery time, trec.
It is the minimum delay between negating S and R for them to be considered non-
simultaneous and it is closely related to the minimum-pulse-width specification.
Both specifications are measures of how long it takes for the latch’s feedback loop
to stabilize during a change of state.

minimum pulse width

S-R latch

Figure 10-8 S-R latch: (a) circuit design using NAND gates; (b) function table; (c) logic symbol.

S_L

R_L

Q
0 0

0 1

1 0
1 1 last Q

1

0

1

Q

0

1

1

(a) (b) (c)

S Q

QR

last QN

QN
or S

or R

QN

S_L R_L

c10.fm Page 502 Thursday, April 6, 2017 9:17 PM

10.2 Latches and Flip-Flops 503

10.2.3 D Latch
S-R latches are useful in control applications, where we often think in terms of
setting a flag in response to some condition and resetting it when the condition
changes. So, we control their set and reset inputs somewhat independently.
However, we often need latches simply to store bits of information—each bit is
arrives on a signal line, and we’d like to store it somewhere. A D latch may be
used in such a “data” application.

Figure 10-9 shows a D latch. The righthand side of its logic diagram is just
an S-R latch. Two additional NAND gates have been provided on the lefthand
side so that either S or R is asserted when the control input G is asserted, depend-
ing on the value of the single data input D. This eliminates the troublesome
situation in S-R latches where S and R may be asserted simultaneously. The
control input G is sometimes named ENABLE, CLK, or C. It is active low in some
D-latch designs, and it always has a minimum pulse-width requirement.

An example of a D latch’s functional behavior is given in Figure 10-10.
When the G input is asserted, the Q output follows the D input. In this situation,
the latch is said to be “open” and the view from the Q output back to the D input
is “transparent”; the circuit is often called a transparent latch for this reason.
When the G input is negated, the latch “closes”; the Q output retains its last value
and no longer changes in response to D, as long as G remains negated.

More detailed timing behavior of the D latch is shown in Figure 10-11.
Four different delay parameters are shown for signals that propagate from the G

D latch

Figure 10-9 D latch: (a) circuit design using NAND gates; (b) function table; (c) logic symbol.

(b) (c)(a)

Q

D

G 0

1

D

1

1

G

0

1

Q

x0 last Q

1

0

D Q

QG

QN

QN

last QN

(S)

(R)

Figure 10-10 Functional behavior of a D latch for various inputs.

D

G

Q

transparent latch

c10.fm Page 503 Thursday, April 6, 2017 9:17 PM

504 Chapter 10 Sequential Logic Elements

or D input to the Q output. For example, at transitions 1 and 4, the latch is initial-
ly “closed” and the D input is the opposite of Q output, so that when G goes to 1
the latch “opens up” and the Q output changes after delay tpLH(GQ) or tpHL(GQ).
At transitions 2 and 3, the G input is already 1 and the latch is already open, so
that Q transparently follows the transitions on D with delay tpHL(DQ) and
tpLH(DQ). Four more parameters specify the delay to the QN output, not shown.

Although the D latch eliminates the S = R = 1 problem of the S-R latch, it
does not eliminate the metastability problem. As shown in Figure 10-11, there is
a (shaded) window of time around the falling edge of G when the D input must
not change. This window begins at time tsetup before the falling (latching) edge
of G; tsetup is called the setup time. The window ends at time thold afterward; thold
is called the hold time. If D changes at any time during the setup- and hold-time
window, the output of the latch is unpredictable and may become metastable, as
shown for the last latching edge in the figure.

10.2.4 Edge-Triggered D Flip-Flop
We introduced the positive-edge-triggered D flip-flop in Chapter 9 as the most
commonly used sequential element for storing the state variables of a state
machine. A D flip-flop need not be part of a formal state machine; it may also
be used simply to store a bit of “data.” It is distinguished from a D latch by its
edge-triggered behavior: it samples its D input and changes its Q and QN outputs
only at the rising (positive) edge of a controlling CLK signal.

Figure 10-12 shows how a positive-edge-triggered D flip-flop can be built
from a pair of D latches. The first latch is called the master; it is open and follows
the input when CLK is 0. When CLK goes to 1, the master latch is closed and its
output is transferred to the second latch, called the slave. The slave latch is open
all the while that CLK is 1, but changes only at the beginning of this interval,
because the master is closed and unchanging during the rest of the interval.

The triangle on the D flip-flop’s CLK input indicates edge-triggered
behavior and is called a dynamic-input indicator. Examples of the flip-flop’s

Figure 10-11 Timing parameters for a D latch.

D

G

Q

thold
tsetuptpLH(DQ)tpLH(DQ)

tpHL(DQ)
tpLH(GQ)

tpHL(GQ)

(1) (2) (3) (5)(4)

setup time
hold time

positive-edge-triggered
D flip-flop

master

slave

dynamic-input
indicator

c10.fm Page 504 Thursday, April 6, 2017 9:17 PM

10.2 Latches and Flip-Flops 505

functional behavior for several input transitions are shown in Figure 10-13. The
QM signal shown is the output of the master latch. Notice that QM changes only
when CLK is 0. When CLK goes to 1, the current value of QM is transferred to Q,
and QM is prevented from changing until CLK goes to 0 again.

Figure 10-14 shows more detailed timing behavior for the D flip-flop. All
propagation delays are measured from the rising edge of CLK, since that’s the
only event that causes an output change. Different delays may be specified for
LOW-to-HIGH and HIGH-to-LOW output changes.

Figure 10-12 Positive-edge-triggered D flip-flop: (a) circuit design using D latches;
(b) function table; (c) logic symbol.

(b) (c)(a)

QD

CLK

CLK

0

1

D

0

1

Q

0x last Q

1

0

1x last Q

D Q

G

D Q

QG
D Q

QCLK

QM

QN

QN

last QN

last QN

Figure 10-13 Functional behavior of a positive-edge-triggered D flip-flop.

D

CLK

QM

Q

QN

Figure 10-14 Timing behavior of a positive-edge-triggered D flip-flop.

D

CLK

Q

thold
tsetuptpHL(CQ)tpLH(CQ)

c10.fm Page 505 Thursday, April 6, 2017 9:17 PM

506 Chapter 10 Sequential Logic Elements

Like a D latch, the edge-triggered D flip-flop has a setup- and hold-time
window during which the D inputs must not change. This window occurs around
the triggering edge of CLK, and is indicated by shaded color in Figure 10-14. If
the setup and hold times are not met, the flip-flop output will usually go to a
stable, though unpredictable, 0 or 1 state. In some cases, however, the output will
oscillate or go to a metastable state halfway between 0 and 1, as shown at the
second-to-last clock tick in the figure. If the flip-flop goes into the metastable
state, it will return to a stable state on its own only after a probabilistic delay, as
explained in Section 13.4. It can also be forced into a stable state by applying
another triggering clock edge with a D input that meets the setup- and hold-time
requirements, as shown at the last clock tick in the figure.

A negative-edge-triggered D flip-flop simply inverts the clock input, so
that all the action takes place on the falling edge of CLK_L; by convention, a
falling-edge trigger is considered to be active low. This flip-flop’s function table
and logic symbol are shown in Figure 10-15.

Some D flip-flops have asynchronous inputs that may be used to force the
flip-flop to a particular state independent of the CLK and D inputs. These inputs,
typically labeled PR (preset) and CLR (clear), behave like the set and reset

negative-edge-triggered
D flip-flop

Figure 10-15 Negative-edge triggered D flip-flop: (a) circuit design using D latches;
(b) function table; (c) logic symbol.

(b) (c)(a)

QD

CLK_L

CLK_L

0

1

D

0

1

Q

0x last Q

1

0

1x last Q

D Q

G

D Q

QG

D Q

QCLK

QN

QN

last QN

last QN

asynchronous inputs

Figure 10-16 Positive-edge-triggered D flip-flop with preset and clear: (a) logic symbol;
(b) circuit design using NAND gates.

(a)

D
PR

CLR

Q

QCLK

D

PR_L

CLK

CLR_L

Q

(b)

QN

preset
clear

c10.fm Page 506 Thursday, April 6, 2017 9:17 PM

10.2 Latches and Flip-Flops 507

inputs on an S-R latch. The logic symbol and a NAND-based circuit for an edge-
triggered D flip-flop with these inputs is shown in Figure 10-16. Although some
logic designers use asynchronous inputs to perform tricky sequential functions,
they are best reserved for initialization and testing purposes only, to force a
clocked circuit into a known starting state; we’ll have more to say about this
when we discuss synchronous design methodology in Section 13.2.

10.2.5 Edge-Triggered D Flip-Flop with Enable
A commonly desired function in D flip-flops is the ability to hold the last value
stored, rather than load a new value, at the clock edge. This is accomplished by
adding an enable input, called EN or CE (clock enable). While the name “clock
enable” may be descriptive, the extra input’s function usually is not obtained by
controlling the clock signal in any way whatsoever. Rather, as shown in
Figure 10-17(a), a 2-input multiplexer controls the value applied to the internal
flip-flop’s D input. If EN is asserted, the external D input is selected; if EN is
negated, the flip-flop’s current output is used. The resulting function table is
shown in (b). The flip-flop symbol is shown in (c); in some flip-flops, the enable
input is active low, denoted by an inversion bubble on the input.

10.2.6 T Flip-Flops
A T (toggle) flip-flop changes state on every tick of the clock. Figure 10-18
shows the symbol and illustrates the behavior of a positive-edge-triggered T flip-
flop. Notice that the signal on the flip-flop’s Q output has precisely half the fre-
quency of the T input. Figure 10-19(a) shows how to obtain a T flip-flop from a
D flip-flop. T flip-flops are most often used in counters and frequency dividers,
which we’ll describe in Section 11.1.

HOLD-TIME
VIOLATIONS

If a flip-flop or latch input does not satisfy its timing requirement relative to another
input such CLK or G, that’s called a setup- or hold-time violation. Microprocessor
architect John Chu has written a nice science-fiction short story with the same title
as this box; you can easily find the concept woven into it (see Exercise 10.59).

enable input
clock-enable input

Figure 10-17 Positive-edge-triggered D flip-flop with enable: (a) circuit design;
(b) function table; (c) logic symbol.

(b) (c)(a)

Q

D

CLK

CLK

0

1

D

0

1

Q

0x last Q

1

0

1x last Q

D Q

Q

D Q

QCLK
QN

QN

last QN

last QN

EN 1

1

EN

x

x

x 0 last Q last QN

EN

CLK

T flip-flop

c10.fm Page 507 Thursday, April 6, 2017 9:17 PM

508 Chapter 10 Sequential Logic Elements

In many applications of T flip-flops, the flip-flop need not be toggled on
every clock tick. Such applications can use a T flip-flop with enable. As shown
in Figure 10-20, the flip-flop changes state at the triggering edge of the clock
only if the enable signal EN is asserted. Like the D and CE inputs on other edge-
triggered flip-flops, the EN input must meet specified setup and hold times with
respect to the triggering clock edge. The circuit in Figure 10-19(a) is easily aug-
mented to provide the EN input as shown in (b).

10.3 Latches and Flip-Flops in Verilog
There are basically two ways to specify latches and flip-flops in Verilog, and the
choice of method depends on the design goals and methodology. If a design is
being targeted to an ASIC or other specific implementation technology, the
designer may want to ensure that the implementation uses specific flip-flops that
are provided in that technology’s component library. If the design is being tar-
geted to an FPGA or to a nonspecific technology, the designer will normally
specify the flip-flops, as well as most of the rest of the design, behaviorally, and
let the compiler “infer” the appropriate components. These two approaches are
described below.

A third approach would be to specify a latch or flip-flop by writing code in
the structural or dataflow style of Verilog equivalent to the various gate-level
implementations that we showed in Section 10.2. This is done so rarely, if ever,
that we won’t mention it further.

Figure 10-18 Positive-edge-triggered T flip-flop: (a) logic symbol; (b) functional behavior.

Q

Q
T

(a) (b)

T

Q

Figure 10-19
Circuits for T flip-flops
using D flip-flops:
(a) basic circuit;
(b) with enable.

QN

QD Q

QCLKT QN

QD Q

QCLK
T

EN

(a) (b)

T flip-flop with enable

Figure 10-20 Positive-edge-triggered T flip-flop with enable: (a) logic symbol; (b) functional behavior.

Q

QT

EN

(a) (b)

T

EN

Q

c10.fm Page 508 Thursday, April 6, 2017 9:17 PM

10.3 Latches and Flip-Flops in Verilog 509

10.3.1 Instance Statements and Library Components
In Section 5.7, we introduced instance statements that are used in the structural
style of coding to instantiate Verilog’s built-in gates in a design. We also showed
how these statements could be used to instantiate a module or component that
we designed ourselves. We can also instantiate a module from a library of com-
ponents provided by a supplier or designed by a colleague.

Depending on the design environment and the component, we may or may
not have to do anything special in our Verilog code for the compiler to “find” a
component that’s named in an instance statement. For example, the Xilinx
Vivado tool automatically searches its built-in “UNISIM” library for any com-
ponent name that is not already defined in one of the user’s modules. In other
environments, or for other libraries, a module that uses a library component must
specify the path and filename of the component’s definition, typically using an
`include compiler directive, for example,

`include "C:/Xilinx/Vivado/2016.2/ids/ISE/verilog/src/unisims/LDC.v"

In the Xilinx environment, the base filename for a component definition is
always the same as the component name (LDC in this example), followed by the
.v extension. Once a definition has been “included,” the component can be
named in an instance statement using one of the formats in Table 5-16 on
page 199, for example,

 LDC U1 (.G(myG), .D(myD), .CLR(myCLR), .Q(myQ));

A typical library provided by an ASIC supplier has many different latch
and flip-flop components. Most of types described in the Section 10.2 are usual-
ly offered, including variations that may have fewer or additional inputs—such
as a D flip-flop with a PR input but no CLR, and vice versa. When your structural
Verilog code is targeted to an ASIC, an instantiation like the example above may
yield a gate- or transistor-level realization that has exactly the specified func-
tionality, and no more.

Table 10-1 lists some of the latches and flip-flops in three different compo-
nent libraries. Different components may have different inputs and functions,
such as asynchronous clear and preset, synchronous set and reset, and synchro-
nous clock enabling. “Asynchronous” means that asserting the input has the
stated effect at all times; “synchronous” means that it has an effect only if it’s
asserted at the triggering clock edge. Note that the signal names and nomencla-
ture for similar functions, like “set” vs. “preset,” may vary among suppliers.

The first two columns of the table describe components in the “unified”
library that Xilinx provides with their ISE 8.1 tools, which are used with their
large catalog of FPGAs and CPLDs including many older “legacy” parts. The
first column is the component name, as it would appear in a Verilog instance
statement, and the second column gives the names of the components’ non-clock

c10.fm Page 509 Thursday, April 6, 2017 9:17 PM

510 Chapter 10 Sequential Logic Elements

inputs. In the Xilinx libraries, a flip-flop’s clock input is always named “C” and
a latch or flip-flop output is always named “Q”.

Very few of the component types in the unified library are available
“natively” in every Xilinx device—you must consult the Xilinx documentation
to determine if a given type is available in a particular device. If it is not, then the
synthesis tool will construct a circuit with equivalent functionality, but using
more internal device resources to achieve that functionality. For example, to
achieve T flip-flop functionality in an FPGA that has only D flip-flops, the
synthesis tool would combine a D flip-flop with some combinational logic in the
style of Figure 10-19 on page 508.

The next two columns of Table 10-1 show the latch and flip-flop compo-
nents provided by Xilinx Vivado tools in the UNISIM library for their 7-series
FPGAs. In this case, the library provides only flip-flop types that can be synthe-
sized within their configurable logic blocks (CLBs) using “free” resources—
without consuming other resources like LUTs, conserving those resources to
implement user-specified combinational logic within the same CLB.

Table 10-1 Some latches and positive-edge-triggered flip-flops in Xilinx and LSI Logic libraries.

Xilinx ISE 8.1
Name & Inputs

Xilinx 7-Series
Name & Inputs

LSI Logic ASIC
Name & Inputs Function

LSR0 S,R S-R latch

LDCE D,G,GE,CLR LDCE D,G,GE,CLR D latch w/ gate-enable, async clear

LDPE D,G,GE,PRE LDPE D,G,GE,PRE D latch w/ gate-enable, async preset

LD1 D,G D latch

LD3 D,G,CD D latch w/ async clear

FD D FD1 D D f-f

FDC D,CLR FD2 D,CD D f-f w/ async clear

FDCP D,CLR,PRE FD3 D,CD,SD D f-f w/ async clear, preset

FDE D,CE D f-f w/ clock enable

FDCE D,CLR,CE FDCE D,CLR,CE FDCE D,CLR,CE D f-f w/ async clear, clk enable

FDPE D,PRE,CE FDPE D,PRE,CE D f-f w/ async preset, clk enable

FDRE D,R,CE FDRE D,R,CE D f-f w/ sync reset, clk enable

FDSE D,S,CE FDSE D,S,CE D f-f w/ sync set, clk enable

FDR D,R FDS2 D,CR D f-f w/ sync reset

FDS D,S D f-f w/ sync set

FDSRE D,S,R,CE D f-f w/ sync set, reset, clk enable

FTC T,CLR T f-f w/ enable, async clear

FT2 CD T f-f w/ async clear

c10.fm Page 510 Thursday, April 6, 2017 9:17 PM

10.3 Latches and Flip-Flops in Verilog 511

The last two columns of the table show some latch and flip-flop compo-
nents from an LSI Logic ASIC library. Each of the listed devices in that library
provides a QN as well as a Q output.

Program 10-1 is a Verilog module that instantiates each of the 7-series
latch and flip-flop types in Table 10-1, with varying hookups. The two D latches
are connected to different G control inputs G1 and G2. The first latch’s “gate
enable” (GE) input, which is ANDed with the G input to open the latch, is con-
nected to an input signal GE, but the second one’s is set to a constant 1. Similarly,
two of the four D flip-flops use the GE input signal for their clock-enable (CE)
input, while the other two have their clocks always enabled.

All of the components’ asynchronous and synchronous clear and preset
inputs are connected to a common CLR signal; likewise the preset and set inputs
are connected to a common PR signal. At the module level, there are only four
unique D inputs, and the two D latches use the same ones as the first two D flip-
flops. But each component has a unique Q output—it has to!

Program 10-2 is a test bench for the VrFFandLatches module. It instanti-
ates the module, creates a free-running clock signal Tclk with a 20 ns period,
and also generates the other input signals used by the module. The PR and CLR
signals are negated early in the test so the effects of other inputs can be observed
afterwards. The other inputs—latch enables and data—are changed at regular

WORN-OUT
SHOES

The LSI Logic library components in the last two columns of Table 10-1 were used
to design some pretty old ASICs. I couldn’t easily give you a newer library example
because nowadays ASIC manufacturers treat their libraries as proprietary IP, and
they typically release details, even high-level descriptions like the ones in our table,
only to customers.

Program 10-1 Structural module that instantiates latches and flip-flops.

module VrFFandLatches(CLK, D[1:4], G1, G2, GE, CLR, PR, Q[1:6]);
 input CLK, G1, G2, GE, CLR, PR;
 input [1:4] D;
 output [1:6] Q;

 LDCE U1 (.G(G1), .GE(GE), .D(D[1]), .CLR(CLR), .Q(Q[1]));
 LDPE U2 (.G(G2), .GE(1'b1), .D(D[2]), .PRE(PR), .Q(Q[2]));
 FDCE U3 (.C(CLK), .CE(1'b1), .D(D[1]), .CLR(CLR), .Q(Q[3]));
 FDPE U4 (.C(CLK), .CE(GE), .D(D[2]), .PRE(PR), .Q(Q[4]));
 FDRE U5 (.C(CLK), .CE(1'b1), .D(D[3]), .R(CLR), .Q(Q[5]));
 FDSE U6 (.C(CLK), .CE(GE), .D(D[4]), .S(PR), .Q(Q[6]));

endmodule

c10.fm Page 511 Thursday, April 6, 2017 9:17 PM

512 Chapter 10 Sequential Logic Elements

intervals that are different from each other and different from the clock period,
so that a variety of timing situations can be observed. Figure 10-21 shows the
waveforms produced by the test bench in a behavioral simulation.

The module was targeted to a Xilinx FPGA which has an internal “global
reset” signal that holds all latches and flip-flops in an initial state as the device is
powered up and programmed. Although this reset signal does not appear in the

Program 10-2 Test bench for latches and flip-flops module.

`timescale 1 ns / 100 ps
module VrFFandLatchTB ();
reg Tclk, G1, G2, GE, CLR, PR, D1, D2;
wire Q1, Q2, Q3, Q4, Q5, Q6;

VrFFandLatches UUT (.CLK(Tclk), .D1(D1), .D2(D2),
 .G1(G1), .G2(G2), .GE(GE), .CLR(CLR), .PR(PR),
 .Q({Q1,Q2,Q3,Q4,Q5,Q6})); // instantiate UUT

always begin // create free-running test clock with 20 ns period
 #0.2 Tclk = 1; #10; // 10 ns high (tiny offset for
 Tclk = 0; #9.8; // 10 ns low waveform readability)
end

always begin // Change D1 and D2 on a 15 ns cycle
 #2 D1 = ~D1; D2 = ~D2; // offset 2 ns from Tclk edges
 #5 D2 = ~D2;
 #5 D1 = ~D1; #3 ;
end

always begin // Change G1 every 20 ns and G2 every 30 ns,
 #4 G1 = ~G1; G2 = ~G2; // offset 4 ns
 #20 G1 = ~G1; #10 G2 = ~G2; #10 G1 = ~G1; #16 ;
end

always begin // Change GE every 60 ns, offset 2 ns
 #2 GE = ~GE; #58 ;
end

initial begin // Here's what to do starting at time 0
 CLR = 1; PR = 1; // Apply clear and preset
 D1 = 0; D2 = 1; // Initialize D inputs for desired waveform
 GE = 0; G1 = 0; G2 = 0; // Latches are initially closed
 #100 // Wait 100 ns for FPGA global reset
 #15 // Nothing should happen yet
 CLR = 0; PR = 0; // Now negate clear and preset
 #300 // Run another 300 ns
 $stop(1); // End test
end
endmodule

c10.fm Page 512 Thursday, April 6, 2017 9:17 PM

10.3 Latches and Flip-Flops in Verilog 513

Verilog module, the Vivado tools mimic it by holding all simulated latches and
flip-flops in an initial state for the first 100 ns of simulated time. Therefore, the
“interesting” part of the waveforms produced by the test bench, as shown in
Figure 10-21, begins around 100 ns.

As can be seen in the waveforms, the component outputs Q1–Q6 remain at
their initial values until after the PR and CLR signals are negated at 115 ns. The Q1
output, coming from a D latch whose GE input is a constant 1, follows its input D1
as long as G1 is asserted (at 124, 164, and 204 ns), and latches its output when G1
is negated (at 144, 184, and 224 ns). The second latch’s output Q2 follows D2 as
long as G2 and GE are asserted (at 124 ns), and latches when either is negated (at
154 ns). The Q3–Q6 outputs are from the edge-triggered flip-flops in the module,
and therefore change only on a triggering (positive) edge of the Tclk signal, and
then only if the corresponding clock enable is asserted (Q3–Q4 have constant 1
clock-enables and Q5–Q6 use GE).

10.3.2 Behavioral Latch and Flip-Flop Models
Latches and flip-flops can be modeled behaviorally in Verilog, and in fact that is
the most common method of specifying them. Verilog compilers are designed to
recognize very specific coding patterns for these behaviors (see the box on
page 518), and the synthesis tools will “infer” either an appropriate component
or programmable-device resources to implement each behavior, depending on
the targeted technology. In this subsection, we’ll look at behavioral modules and
coding patterns corresponding to some of the common latch and flip-flop types
that we introduced in Section 10.2.

Figure 10-21 Timing waveforms created by test bench in behavioral simulation.

c10.fm Page 513 Thursday, April 6, 2017 9:17 PM

514 Chapter 10 Sequential Logic Elements

Program 10-3 gives behavioral Verilog code to model a basic D latch. The
output may be affected whenever D or G changes, so those inputs are in the sensi-
tivity list of the always block; we could also have just used “*” as the sensitivity
list. Notice that the if statement does not have a corresponding else clause.
You may find this disturbing, after writing behavioral Verilog for combinational
circuits, and having it beaten into you that conditional statements like if and
case should cover all alternatives to avoid generating inferred latches. Well, in
the present situation we want to infer a latch, so the alternative of G being 0 is left
out of the code. The simulator thereby recognizes that Q should not change if G
is 0, and the synthesis engine recognizes that a latch is needed here. However,
the code still works the same if we include a redundant “else Q<=Q;” clause.

Another way to specify the D latch uses dataflow code, with Q declared as
a wire: “assign Q = G ? D : Q;”. Most synthesis tools can recognize this pattern
as well, but we’ll stick with the behavioral version for the rest of our D latches.

The basic code can be augmented as shown in Program 10-4 to create a D
latch with asynchronous clear and gate-enable inputs, with the same functional-
ity as the Xilinx LDCE library component. It’s obvious from the structure of the
if statement that when asserted, the CLR input overrides the other inputs. It’s
also obvious from the code that the G and GE inputs have equivalent functions—
they are ANDed to open the latch. It’s just semantics calling one of them the
“gate” and the other “gate enable”; they could have been named G1 and G2.

Program 10-3 Behavioral model for a basic D latch.

module VrDlatch(D, G, Q);
 input D, G;
 output reg Q;

 always @ (D or G) begin
 if (G==1) Q <= D;
 end
endmodule

Program 10-4 Model for a D latch with gate enable and asynchronous clear.

module VrDlatchCE(D, G, GE, CLR, Q);
 input D, G, GE, CLR;
 output reg Q;

 always @ (D or G or GE or CLR) begin
 if (CLR==1) Q <= 0;
 else if ((G==1)&&(GE==1)) Q <= D;
 end
endmodule

c10.fm Page 514 Thursday, April 6, 2017 9:17 PM

10.3 Latches and Flip-Flops in Verilog 515

A nice aspect of the behavioral models is that you can easily specify other
logic within the model and combine it with the storage element. For example,
suppose you needed an n-to-s binary decoder like Program 6-7 on page 270, but
with a “latching” enable input. The new decoder’s outputs Y[S-1:0] should
decode the inputs when the enable input G is asserted. It should maintain the last
decoded output values on Y[S-1:0] when G is negated, and it negates all outputs
when a new, CLR input is asserted. Program 10-5 provides the required behavior.
Here, asserting CLR overrides the other inputs including G. When CLR is negated
and G is asserted, the outputs Y[S-1:0] decode the current input combination on
A[N-1:0], and the output values are held latched if G is negated.

Figure 10-22 shows the circuit that is synthesized by Xilinx Vivado tools
when Program 10-5 is targeted to a 7-series FPGA with n=3 and s=8. The left-
hand side of the logic diagram contains 8 LUTs to implement the 3-input AND
functions that decode A[2:0], and the righthand side has 8 D latches of the LDCE
variety, controlled by CLR and G as you would expect.

The next devices that we’ll cover are edge-triggered, and to model them in
Verilog, we need the posedge and negedge keywords that we introduced briefly
in Section 5.14. Recall that in the sensitivity list of an always block, one of these
keywords is placed in front of a signal name to indicate that the block should be
executed at the indicated edge of the named signal.

Thus, we can model a basic positive-edge-triggered D flip-flop very simply
as shown in Program 10-6. The always block is executed at the positive edge of
CLK, and Q gets set to D. Nothing happens at any other time, so Q is held at the
same value at least until the next positive edge.

Program 10-5 Behavioral code for an n-to-s-bit decoder with latched outputs.

module VrNtoSdec_latch(G, CLR, A, Y);
parameter N=3, S=8;
 input [N-1:0] A;
 input G, CLR;
 output reg [S-1] Y;
 integer i;

 always @ (*) begin
 if (CLR) Y <= 0;
 else if (G) begin
 Y <= 0;
 for (i=0; i<=S-1; i=i+1)
 if (i == A) Y[i] <= 1;
 end
 end
endmodule

c10.fm Page 515 Thursday, April 6, 2017 9:17 PM

516 Chapter 10 Sequential Logic Elements

Y_reg[0]

LDCE

Q

CLR

D

G

GE

Y_OBUF[0]_inst

OBUF

OI Y[0:7]Y_reg[0]_i_1

LUT3

O

I0

I1

I2

Y_reg[1]

LDCE

Q

CLR

D

G

GE

Y_reg[1]_i_1

LUT3

O

I0

I1

I2

Y_OBUF[1]_inst

OBUF

OI

Y_reg[2]_i_1

LUT3

O

I0

I1

I2

Y_reg[2]

LDCE

Q

CLR

D

G

GE

Y_OBUF[2]_inst

OBUF

OI

Y_reg[3]_i_1

LUT3

O

I0

I1

I2

Y_reg[3]

LDCE

Q

CLR

D

G

GE

Y_OBUF[3]_inst

OBUF

OI

Y_reg[4]_i_1

LUT3

O

I0

I1

I2

Y_reg[4]

LDCE

Q

CLR

D

G

GE

Y_OBUF[4]_inst

OBUF

OI

Y_reg[5]_i_1

LUT3

O

I0

I1

I2

Y_reg[5]

LDCE

Q

CLR

D

G

GE

Y_OBUF[5]_inst

OBUF

OI

Y_reg[6]_i_1

LUT3

O

I0

I1

I2

A_IBUF[0]_inst

IBUF

OIA[2:0]

Y_reg[6]

LDCE

Q

CLR

D

G

GE

A_IBUF[1]_inst

IBUF

OI Y_OBUF[6]_inst

OBUF

OIY_reg[7]_i_1

LUT3

O

I0

I1

I2

A_IBUF[2]_inst

IBUF

OI

Y_reg[7]

LDCE

Q

CLR

D

G

GE

CLR_IBUF_inst

IBUF

OI
Y_OBUF[7]_inst

OBUF

OICLR

G_IBUF_inst

IBUF

OI
G_IBUF_BUFG_inst

BUFG

OIG

0

1

2

0

1

2

3

4

5

6

7

Figure 10-22
Synthesized circuit
for the latching
3-to-8 decoder.

Program 10-6 Behavioral model for a basic D flip-flop.

module VrDff(CLK, D, Q);
 input CLK, D;
 output reg Q;

 always @ (posedge CLK)
 Q <= D;
endmodule

c10.fm Page 516 Thursday, April 6, 2017 9:17 PM

10.3 Latches and Flip-Flops in Verilog 517

It takes a little code and some explaining to add an asynchronous clear, as
shown in Program 10-7. The sensitivity list now includes the CLR input, which of
course can cause the output to change. But why is the posedge keyword used
with CLR, an asynchronous input? One answer is that this is a convenient way to
code the needed behavior. Whenever CLR begins to be asserted (positive edge),
the always block executes, and the if statement clears the Q output and exits.
On the other hand, if the always block is executing and CLR is not asserted, then
it must be executing because a positive edge occurred on CLK, and therefore Q is
set equal to D. By the way, it would be a mistake to omit “posedge” and execute
the always block on any change in CLR; on a 1-to-0 transition, the else clause
would execute and set Q equal to D even though no CLK edge had occurred.

Another answer to the question “why write it this way?” for the D flip-flop
with asynchronous clear in Program 10-7 is “because I say so.” (See the box on
page 518 for details.)

In a typical FPGA- or CPLD-based design environment, a flip-flop need
not have a QN output, since normally the next stage of combinational logic can
invert any input signal at no cost. However, suppose we wanted to model a QN
output anyway; Program 10-8 is a first attempt at providing one. Can you see the
error? Remember that the non-blocking assignment operator <= makes its
assignment an infinitesimal time after the always block completes. Therefore,
the value assigned to QN by “QN <= ~Q“ is the old value of ~Q; so in this model, QN
equals ~Q but delayed by one clock tick.

Program 10-7 Behavioral model for a D flip-flop with asynchronous clear.

module VrDffC(CLK, CLR, D, Q);
 input CLK, CLR, D;
 output reg Q;

 always @ (posedge CLK or posedge CLR)
 if (CLR==1) Q <= 0;
 else Q <= D;
endmodule

Program 10-8 Incorrect model for a D flip-flop with a QN output.

module VrDffCNoops(CLK, CLR, D, Q, QN);
 input CLK, CLR, D;
 output reg Q, QN;

 always @ (posedge CLK or posedge CLR) begin
 if (CLR==1) Q <= 0;
 else Q <= D;
 QN <= ~Q;
 end
endmodule

c10.fm Page 517 Thursday, April 6, 2017 9:17 PM

518 Chapter 10 Sequential Logic Elements

BAD BEHAVIOR This is a good time to remind you that Verilog was originally designed as a simula-
tion language, and that it was adapted for logic synthesis only later. While the
language and its simulation semantics are well-defined by IEEE standards 1364 and
1800, there is no fully implemented standard on how a Verilog module should be
synthesized into real hardware; there’s only general industry agreement on the most
widely used Verilog constructs. In synthesis, a Verilog tool examines modules for
predefined, commonly used patterns of code—templates—and matches those to
physical components like flip-flops. This is often called “inference,” but it can be
infernal!

It is very easy to write a Verilog model that can be simulated, but that cannot
be synthesized into real hardware by any tool. Similarly, it’s pretty easy to specify a
behavior that works as expected in simulation, but that works inefficiently or even
incorrectly in synthesized hardware, because the synthesis tool did not have a match-
ing template, and inferred inefficient or incorrect hardware.

Consider, for example, the D flip-flop with asynchronous clear as specified
behaviorally in Program 10-7. This is the syntax that Xilinx recommends for an FDCE
flip-flop to be inferred in its FPGAs, and it works. But suppose you flipped the con-
dition and the order of the if-else statement as follows:

 if (CLR==0) Q <= D;
 else Q <= 0;

There’s no difference in meaning, right? However, when Xilinx Vivado tools syn-
thesize the modified module, the circuit in Figure 10-23 results. Not only is this
much bigger, requiring an FDPE, an LDCE, and three LUTs, but worse, it doesn’t even
work correctly! What’s going on? Some research led me to the following statement
about sequential always blocks in the Xilinx UG901 Synthesis Guide:

If optional asynchronous control signals are modeled, the always
block is structured as follows:

 always @ (posedge CLK or posedge ACTRL)
 begin
 if (ACTRL)
 <asynchronous part>
 else
 <synchronous part>
 end

They should say “must be,” not “is” above. If the order of the asynchronous and
synchronous action parts is reversed, as in the present example, all bets are off!

The bottom line is that when you write behavioral Verilog code for synthesis,
you must write it in a style that matches the templates that are expected by the tools.
And to learn what’s expected, you’ll have to read the documentation. For the most
common elements, like the D flip-flop with asynchronous clear, there are “standard”
(but not formally standardized) templates. Thus, a post-synthesis simulation is just
about the only way to find out almost for sure whether your circuit will probably
work as you might have expected (the caveats are deliberate, sadly).

c10.fm Page 518 Thursday, April 6, 2017 9:17 PM

10.3 Latches and Flip-Flops in Verilog 519

There are a couple of different ways to correct the error. In Program 10-9,
begin-end blocks are used to set QN properly in each place that QN is set. This is
still a purely behavioral model. Another approach is to combine a dataflow-style
continuous assignment with the original behavioral code of Program 10-7, as
shown in Program 10-10, to make QN always be the complement of Q. That
works too; it’s also more convenient and would be preferred by most designers.

Q_reg_LDC_i_1

LUT2

OI0

I1

D_IBUF_inst

IBUF

OID
Q_reg_LDC

LDCE

Q

CLR

D

G

GE

Q_OBUF_inst_i_1

LUT2

OI0

I1

Q_OBUF_inst

OBUF

OI Q
CLR_IBUF_inst

IBUF

OICLR Q_reg_LDC_i_2

LUT2

OI0

I1

CLK_IBUF_inst

IBUF

OI
CLK_IBUF_BUFG_inst

BUFG

OICLK

Q_reg_P

FDPE

Q

C

CE

D

PRE

Figure 10-23 Incorrectly synthesized D flip-flop with asynchronous clear.

Program 10-9 Corrected behavioral model for a D flip-flop with a QN output.

module VrDffCN(CLK, CLR, D, Q, QN);
 input CLK, CLR, D;
 output reg Q, QN;

 always @ (posedge CLK or posedge CLR)
 if (CLR==1) begin Q <= 0; QN <= 1; end
 else begin Q <= D; QN <= ~D; end
endmodule

Program 10-10 Another correct model for a D flip-flop with a QN output.

module VrDffCN2(CLK, CLR, D, Q, QN);
 input CLK, CLR, D;
 output reg Q;
 output QN;

 always @ (posedge CLK or posedge CLR)
 if (CLR==1) Q <= 0;
 else Q <= D;
 assign QN = ~Q;
endmodule

c10.fm Page 519 Thursday, April 6, 2017 9:17 PM

520 Chapter 10 Sequential Logic Elements

ALWAYS USE
NONBLOCKING

ASSIGNMENTS IN
SEQUENTIAL

always BLOCKS

In all of our flip-flop examples, we used the nonblocking assignment operator “<=”
to assign a value to Q. These modules would have compiled and synthesized correctly
even if we had used the blocking assignment operator “=”, but there are subtle rea-
sons why nonblocking assignments should always be used in sequential always
blocks.

In models with multiple sequential always blocks using blocking assignments,
the simulation results can vary depending on the order in which the simulator choos-
es to execute those blocks. Using nonblocking assignments ensures that the
righthand sides of all assignments are evaluated before new values are assigned to
any of the lefthand sides. This makes the results independent of the order in which
the righthand sides are evaluated. More details are given in an excellent 1998 paper
by Clifford Cummings, titled “State-Machine Coding Styles for Synthesis.”

Old timers have a memory trick to remind them which assignment operator to
use. The logic symbol for an edge-triggered flip-flop has a little wedge, the dynamic
indicator, on the clock input. And the non-blocking assignment operator, used in
clocked always blocks, has a similar wedge in “<=”.

WHERE’S THE
S-R LATCH?

In this section, we did not show any behavioral Verilog code to model an S-R latch.
As simple as the basic latch can be—a pair of cross-coupled NAND or NOR gates—
modeling it behaviorally in Verilog can be very tricky. If you really need an S-R
latch, you’re better off specifying it with structural or dataflow code that synthesizes
directly into cross-coupled NAND or NOR gates in an ASIC (but be careful if you’re
targeting a programmable device; see Exercise 10.36.)

It’s easy enough to model an S-R latch behaviorally if it has only a Q output.
For example, consider the following module fragment:

 always @ (S or R)
 if (S==1) Q <= 1;
 else if (R==1) Q <= 0;

An S-R latch with this behavior, where set overrides reset, is called set-dominant.
Similarly, you can specify a reset-dominant S-R latch with this code:

 always @ (S or R)
 if (R==1) Q <= 0;
 else if (S==1) Q <= 1;

The problem occurs if you want to have a QN output too, and correctly model the
situation where Q and QN are both 0 or both 1 when S and R are asserted simulta-
neously. I challenge you to come up with synthesizable behavioral code yielding a
circuit that correctly produces this behavior as efficiently as a pair of cross-coupled
NAND or NOR gates does, especially when targeting the code to a programmable
device. (See Exercise 10.35.)

set-dominant latch
reset-dominant latch

c10.fm Page 520 Thursday, April 6, 2017 9:17 PM

10.3 Latches and Flip-Flops in Verilog 521

Our final example of a D flip-flop has a synchronous set input S and a
clock-enable input CE, the same as the Xilinx FDSE library component. A Verilog
model for that component is shown in Program 10-11. Notice that there is no
final else clause in the if statement. If neither S nor CE is asserted, then the pre-
vious value of Q is retained. Like the D latch in Program 10-3, this code may
seem to contradict our habit of using final else clauses in combinational logic to
avoid creating inferred latches, but it’s not needed or done in sequential logic
like this.

Creating behavioral modules for other edge-triggered flip-flop types is
straightforward and is left as a series of exercises for the reader (see Exercises
10.21–10.23, 10.37–10.38).

10.3.3 More about clocking in Verilog
In the test bench for a clocked circuit, one of things you need to do is to

generate a system clock signal. This can be done easily with an always block, as
shown in Program 10-12 for a 100-MHz clock with a 60% duty cycle. At time 0,
MCLK is set to 1 by the initial block. Then, the always block waits 6 ns, sets
MCLK to 0, waits 4 ns, sets MCLK to 1, and repeats forever. This gives a rising edge
every 10 ns. Note that the `timescale directive has been used to set up the
simulator with a default time unit of 1 ns and a precision of 100 ps.

Program 10-11 Behavioral model for a D flip-flop with clock enable and
synchronous set.

module VrDffSE(CLK, S, CE, D, Q);
 input CLK, S, CE, D;
 output reg Q;

 always @ (posedge CLK)
 if (S==1) Q <= 1;
 else if (CE==1) Q <= D;
endmodule

Program 10-12 Clock generation within a test bench.

`timescale 1 ns / 100 ps
module Vrmclkgen(MCLK);
 output reg MCLK;

initial begin
 MCLK = 1; // Start clock at 1 at time 0
end

always begin // Free-running clock with 10 ns period
 #6 MCLK = 0; // 6 ns HIGH
 #4 MCLK = 1; end // 4 ns LOW
endmodule

c10.fm Page 521 Thursday, April 6, 2017 9:17 PM

522 Chapter 10 Sequential Logic Elements

10.4 Multibit Registers and Latches
A collection of two or more D flip-flops with a common clock input is called a
register. Registers are often used to store a collection of related bits, like a byte
of data in a computer. In Section 9.6, we used Verilog to create registers to store
state variables in state machines. A single register can also be used to store unre-
lated bits of data or control information; the only real constraint is that all of the
bits are stored using the same clock signal.

10.4.1 MSI Registers and Latches
Many digital systems, including computers, telecommunications devices, and
audio/visual equipment, process information 8, 16, 32, or 64 bits at a time; as a
result, MSI ICs that handle these larger chunks of data are still used occasionally
in input/output systems and the like. One such device is the 74x374 octal edge-
triggered D flip-flop, also known simply as an 8-bit register. (“Octal” means that
the device has eight sections.)

As shown in Figure 10-24(a), the 74x374 contains eight edge-triggered D
flip-flops that all sample their inputs and change their outputs on the rising edge
of a common CLK input. Each flip-flop output drives a three-state buffer that in
turn drives an active-high output. All of the three-state buffers are enabled by a
common, active-low output-enable input, OE_L. Like other three-state outputs,
when OE_L is negated, the ’374’s outputs behave as if they were disconnected
from the signals lines they would otherwise be driving.

One variation of the 74x374 is the 74x373, whose symbol is shown in
Figure 10-25. The ’373 uses D latches instead of edge-triggered D flip-flops.
Therefore, its outputs follow the corresponding inputs whenever G is asserted,
and they latch the last input values when G is negated.

TINY OFFSETS The free-running clocks and other generated inputs in of the many test benches in this
book are typically defined with tiny offsets, like 0.1 ns, so their edges don’t fall exactly
on a 5- or 10-ns boundary. That’s just the author’s nitpicking. The vertical reference
lines in Xilinx Vivado timing diagrams are drawn on top of instead of under signal
transitions. So, if a signal transition occurs exactly at a multiple of the reference
interval, it is obscured by the reference line, even if it’s a different color. “My way
looks nicer,” says the author, whose code often looks like this:

 always begin // 10 ns clock generation
 #5.9 MCLK = 0; // 6 ns HIGH
 #4 MCLK = 1; // 4 ns LOW
 #0.1 ; // Includes 0.1 ns offset for readability
 end

register

74x374

74x373

c10.fm Page 522 Thursday, April 6, 2017 9:17 PM

10.4 Multibit Registers and Latches 523

Figure 10-24
The 74x374 8-bit
register:
(a) logic diagram;
(b) traditional logic
symbol.

74x374

OE

CLK

1D 1Q

2Q2D

3D

4D

5D

6D

3Q

5Q

4Q

6Q

7D 7Q

8D 8Q

(b)

(a)

1Q

1D

2D

OE_L

CLK

D

QCLK

2Q

D

QCLK

3D

3Q

D

QCLK

4D

4Q

D

QCLK

5D

5Q

D

QCLK

6D

6Q

D

QCLK

7D

7Q

D

QCLK

8D

8Q

D

QCLK

Figure 10-25
Logic symbol for
the 74x373 8-bit
latch.

74x373

OE

G

1D 1Q

2Q2D

3D

4D

5D

6D

3Q

5Q

4Q

6Q

7D 7Q

8D 8Q

c10.fm Page 523 Thursday, April 6, 2017 9:17 PM

524 Chapter 10 Sequential Logic Elements

The 74x377, whose symbol is shown in Figure 10-26(a), is an edge-
triggered register like the ’374, but it does not have three-state outputs. It does
however have an active-low clock-enable input EN_L. If EN_L is asserted (LOW)
at the rising edge of the clock, then the flip-flops are loaded from the data inputs;
otherwise, they retain their present values, as shown logically in (b).

High pin-count surface-mount packaging supports even wider registers,
drivers, and transceivers. Most common are 16-bit devices, but there are also
devices with 18 bits (for byte parity) and 32 bits. Also, the larger packages can
offer more control functions, such as clear, clock enable, multiple output
enables, and even a choice of latching vs. registered behavior all in one device.
The data inputs of some devices in some CMOS logic families (such as LVC,
ALVC, and AVC, described in Section 14.7) also feature bus-holder circuits,
which we’ll describe in Section 10.5.2.

10.4.2 Multibit Registers and Latches in Verilog
Multibit registers and latches can be easily modeled using behavioral Verilog.
We can use the same kind of code as we used in Section 10.3.2 for individual
devices, except that we declare the signals as multibit vectors instead of single

74x377

Figure 10-26 The 74x377 8-bit register with clock enable: (a) logic symbol; (b) logical behavior of one bit.

Q

CLK

EN_L

CK

D

8D

8Q

74x377

EN

CLK

1D 1Q

2Q2D

3D

4D

5D

6D

3Q

5Q

4Q

6Q

7D 7Q

8D 8Q

(a) (b)

Program 10-13 Verilog for a 74x377-like 8-bit register with clock enable.

module Vr74x377(CLK, EN_L, D, Q);
 input CLK, EN_L;
 input [1:8] D;
 output reg [1:8] Q;

 always @ (posedge CLK)
 if (EN_L==0) Q <= D;
endmodule

c10.fm Page 524 Thursday, April 6, 2017 9:17 PM

10.5 Miscellaneous Latch and Bistable Applications 525

bits. For example, Program 10-13 shows a Verilog module for a 74x377-like 8-
bit register with clock enable.

In Verilog it’s easy to define registers with more inputs and with additional
features. For example, Table 10-14 is a module for a 16-bit register with three-
state outputs and clock-enable, output-enable, and synchronous clear inputs. An
internal signal vector IQ holds the flip-flop outputs, and the three-state outputs
are defined and enabled as in Section 7.1.3.

As always, it’s possible to parameterize the Verilog modules that define
commonly needed components so they may be easily instantiated with different
options—data widths in particular. For example, the 16-bit register in
Table 10-14 can be parameterized by including “parameter WID = 16” along
with its other declarations, and replacing all occurrences of “16” with “WID”.
When the component is instantiated, the register width will default to 16 bits, but
any width can be obtained by specifying the desired value in the instance state-
ment, for example:

Vrreg #(.WID(24)) U1 (.CLK(myCLK), .CLKEN(myCLKEN), .OE(myOE),
 .CLR(myCLR), .D(myD), .Q(myQ));

*10.5 Miscellaneous Latch and Bistable Applications
Two simple but commonly used applications of S-R latches and bistables are
described here.

*10.5.1 Switch Debouncing
A common application of simple bistables and latches is switch debouncing.
We’re all familiar with electrical switches from experience with lights, garbage
disposals, and other appliances. Switches connected to sources of constant logic
0 and 1 are often used in digital systems to supply “user inputs.” However, in

* Throughout this book, optional sections are marked with an asterisk.

Program 10-14 Verilog module for a 16-bit register with many features.

module Vrreg16(CLK, CLKEN, OE, CLR, D, Q);
 input CLK, CLKEN, OE, CLR;
 input [1:16] D;
 output [1:16] Q;
 reg [1:16] IQ;

 always @ (posedge CLK or posedge CLR)
 if (CLR==1) IQ <= 16'b0;
 else if (CLKEN==1) IQ <= D;

 assign Q = (OE==1) ? IQ : 16'bz;
endmodule

c10.fm Page 525 Thursday, April 6, 2017 9:17 PM

526 Chapter 10 Sequential Logic Elements

digital logic applications we must consider another aspect of switch operation,
the time dimension. A simple make or break operation, which occurs instantly
as far as we slow-moving humans are concerned, actually has several phases that
are discernible by high-speed digital logic.

Figure 10-27(a) shows how a single-pole, single-throw (SPST) switch can
be used to generate a single logic input. A pull-up resistor provides a logic-1
(HIGH) value when the switch is open, and the switch contact is tied to ground to
provide a logic-0 (LOW) value when the switch is pushed.

As shown in (b), it takes a while after a push for the wiper to hit the bottom
contact. Once it hits, it doesn’t stay there for long; it bounces a few times before
finally settling. The result is that several transitions are seen on the SW_L and
DSW logic signals for each single switch push. This behavior is called contact
bounce. Typical switches bounce for 10–20 ms, a very long time compared to the
switching speeds of logic gates.

Contact bounce may or may not be a problem, depending on the switch
application. For example, some computers and other devices have configuration
information specified by small switches, called DIP switches because they have
the same form factor as a dual in-line pin (DIP) package. Since DIP switches are
normally changed only when the device is inactive, there’s no problem. Contact
bounce is a problem if a switch like a pushbutton is being used to count or signal
some event (e.g., laps in a race). Then we must provide a circuit (or, in micro-
processor-based systems, software) to debounce the switch—to provide just one
signal change or pulse for each external event.

An S-R latch and pull-up resistors can be used to debounce a single-pole,
double-throw (SPDT) switch as shown in Figure 10-28. The switch contacts and
wiper have a “break before make” behavior, so the wiper terminal is “floating” at
some time halfway through the switch depression. Before the button is pushed,
the top contact holds SWR_L at 0 V, a valid logic 0, which holds DSW_L HIGH
and DSW LOW—the latch is reset. When the button is first pushed and the wiper
terminal is floating, the latch is still in the “reset” state and holds DSW LOW.

Figure 10-27
Switch input without
debouncing:
(a) logic circuit;
(b) timing diagram

push

SW_L DSW

(a)

1

0

+5V

GND

push first contact bounce
(b)

SW_L

DSW

contact bounce

DIP switch

debounce

c10.fm Page 526 Thursday, April 6, 2017 9:17 PM

10.5 Miscellaneous Latch and Bistable Applications 527

Eventually, when the wiper hits the bottom contact, SWS_L is pulled to 0 V,
setting the latch. Thus, DSW goes HIGH and it stays HIGH even when the wiper
bounces and loses its connection with the bottom contact one or more times. (It
does not bounce far enough to touch the top contact again.).

Depending on the application, system designers may prefer to use software
to debounce a switch, simply by using time delays to ignore the bounces. Some
drawbacks of the hardware S-R-latch solution are the SPDT switch’s higher cost
compared to SPST and its consumption of a second, possibly scarce input pin
when the S-R-latch is in an FPGA or ASIC.

*10.5.2 Bus-Holder Circuits
In Section 7.1, we described three-state outputs and how they are tied together
to create three-state buses. At any time, at most one output can drive the bus;
sometimes, no output is driving the bus, and the bus is “floating.” When high-
speed CMOS inputs are connected to a bus that is left floating for a long time (in
the fastest circuits, more than a clock tick or two), bad things can happen. For
example, noise, crosstalk, and other analog effects can drive the high-impedance
floating bus signals to a nonlogic voltage level near the CMOS devices’ input
switching threshold, which in turn causes excessive current flow in the devices’
outputs. For this reason, it is desirable and customary to provide pull-up resistors
that quickly pull a floating bus to a valid HIGH logic level.

Pull-up resistors aren’t all goodness—they cost money and they occupy
valuable printed-circuit-board real estate. A big problem that they have in very
high-speed circuits is that there’s no good resistance value. If it’s too high, when
a bus goes from LOW to floating, the transition from LOW to pulled-up (HIGH)
will be slow due to the high RC time constant, and input levels may spend too
much time near the switching threshold. But if the pull-up resistance is lowered,
devices trying to pull the bus LOW will have to sink more current, even to the
point of consuming far more power than the CMOS inputs on the bus.

The solution to this problem is to eliminate pull-up resistors in favor of the
active bus-holder circuit shown in Figure 10-29. This is nothing but a bistable
with a resistor R in one leg of the feedback loop. The bus holder’s INOUT signal
is connected to the three-state bus line which is to be held. When the three-state

Figure 10-28
Switch input using
an S-R latch for
debouncing.

SWS_L

DSW_L

DSW

SWR_L

push

R

R

S-R latch

bus-holder circuit

c10.fm Page 527 Thursday, April 6, 2017 9:17 PM

528 Chapter 10 Sequential Logic Elements

output currently driving the line LOW or HIGH changes to floating, the bus
holder’s righthand inverter holds the line in its current state. When an enabled
three-state output actively tries to change the line from LOW to HIGH or vice
versa, it must source or sink a small amount of additional current through R to
overcome the bus holder. This additional current flow persists only for the short
time that it takes for the bistable to flip into its other stable state.

The choice of the value of R in the bus holder is a compromise between low
override current (high R) and good noise immunity on the held bus line (low R).
In a typical example, bus-holder circuits in the 3.3-V CMOS LVC family specify
a maximum override current of 500 A, implying R ≈ 3.3 / 0.0005 = 6.6 KΩ.

Bus-holder circuits are often built into the inputs of another MSI device,
like an octal CMOS bus driver or transceiver. They require no extra pins and very
little chip area, so they are essentially free. And there’s no real problem in having
multiple (n) bus holders on the same signal line, as long as the bus drivers can
provide n times the override current for a few nanoseconds during switching.

Note that bus holders normally are not effective on buses that have any
TTL inputs attached to them, since TTL inputs require significant input current,
especially in the LOW state. When the bus holder is trying to hold the bus LOW,
this current creates a voltage drop across its resistor, raising the supposedly LOW
bus voltage, possibly high enough to be a nonlogic voltage, which is bad.

*10.6 Sequential PLDs
The earliest, bipolar PLD families featured some devices with only combina-
tional outputs, some with only registered outputs, and still others with a certain
number of each output type. We described the combinational PAL16L8 in
Section 6.2.2, and the registered types were described in previous editions of
this book. All of these were supplanted by more versatile CMOS generic array
logic (GAL) devices where the type of output, combinational or registered, can
be selected when the device is programmed, as we describe here. These devices
are still used when systems need a small amount of inexpensive, programmable
“glue” logic.

The GAL16V8 (aka “16V8”) PLD has eight outputs, and it was one of the
first programmable logic devices to allow the user to select among two or more
configurations of an output logic macrocell (OLM) for each output. The OLM’s
combinational configuration is shown in Figure 10-30(a). This looks like the
original PAL16L8 output configuration (see Figure 6-11 on page 249)—seven
ORed product terms and an eighth term to control the three-state output
enable—with the useful addition of a configurable inversion on the signal path.

INOUT
R

Figure 10-29
Bus-holder circuit.

generic array logic
(GAL) device

GAL16V8

output logic macrocell
(OLM)

c10.fm Page 528 Thursday, April 6, 2017 9:17 PM

10.6 Sequential PLDs 529

The registered configuration of the OLM, shown in Figure 10-30(b), has
all eight product terms connected to the OR gate and connects the logical sum,
inverted or not, to the input of a D flip-flop. All of the D flip-flops in the device
use the same common clock and drive an output pin through a three-state buffer
controlled by a common output-enable signal. Figure 10-31 shows the structure
of the 16V8 when all of the outputs are programmed to be registered, but any
number of outputs can be configured this way.

Two other PLDs are popular for applications that require slightly more
capability than the 16V8. The 20V8 is similar to the 16V8 but has four extra
input-only pins. Each product term in the 20V8 has 20 signals and their comple-
ments (12 input-only pins and 8 input/output pins), hence the “20” in “20V8.”

The 22V10, has the same number of signal pins as the 20V8 (22), but has
more internal architectural “goodies” than the 20V8, including the following:

• There are 10 outputs and OLMs instead of 8.

• Each output has its own product-term-controlled three-state enable.

• Each OR gate has up to 16 product terms, with a minimum of 8.

• There is a global synchronous preset signal that sets all internal flip-flops
to 1 on the rising edge of the clock, controlled by a single product term.

• There is a global asynchronous reset signal that resets all internal flip-flops
to 0 when asserted, controlled by a single product term.

• The common clock signal for the internal flip-flops is also available as a
combinational input to any product term.

PLD manufacturers evolved their macrocell architectures significantly
after introducing the devices above, learning from both successes and failures of
designers who targeted practical circuits into each successive architecture gener-
ation. For example, to take advantage of increasing chip densities, they created
more complex architectures to interconnect multiple PLDs within a single
complex PLD (CPLD) chip. As densities increased, though, experience showed
that FPGA architectures could evolve more effectively than PLD and CPLD
architectures, so the newest, highest-density, and highest-performance program-
mable devices today are FPGAs.

Figure 10-30 Output logic macrocells for the 16V8R: (a) combinational; (b) registered.

D Q

Q

CLKOE

Registered
output logic macrocell

(b)

CLKOE

Combinational
output logic macrocell

(a)

GAL20V8

GAL22V10

c10.fm Page 529 Thursday, April 6, 2017 9:17 PM

530 Chapter 10 Sequential Logic Elements

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(11)

(15)

(17)
O3

O5

OE_L

CLK

I1

I2

I3

I4

I5

I6

I7

I8

(19)
D Q

Q

O1

(18)
O2

(16)
O4

(14)
O6

(13)
O7

(12)
O8

D Q

Q

D Q

Q

D Q

Q

D Q

Q

D Q

Q

D Q

Q

D Q

Q

Figure 10-31 Logic diagram for the GAL16V8 in the “registered” configuration.

c10.fm Page 530 Thursday, April 6, 2017 9:17 PM

10.7 FPGA Sequential Logic Elements 531

10.7 FPGA Sequential Logic Elements
Over the years, FPGAs have evolved tremendously, not just in size, but also in
their capabilities and sophistication. We’ll cover many aspects of one of the
latest architectures, the Xilinx 7 Series, in Section 15.5, but for now we’ll focus
only on its sequential elements which are coupled to the combinational LUTs
that you’ve already seen.

As we showed in Section 1.10, FPGA logic in general is broken into a large
number of configurable logic blocks (CLBs) that are individually much smaller
than a PLD. They are distributed across the entire chip in a sea of programmable
interconnections, and the entire array is surrounded by programmable I/O
blocks. A typical FPGA’s configurable logic block is much less capable than a
typical PLD. However, an FPGA chip contains a lot more of these blocks than a
PLD, which has only one; and even more than a CPLD with the same die size.
Modern FPGAs have at least hundreds of CLBs, and the largest have many tens
of thousands. We’ll discuss FPGA programmable interconnections and I/O in
Section 15.5, but here we’ll focus on the logic blocks.

Figure 10-32 shows some internals of a Xilinx 7-series FPGA chip. Each
CLB contains a pair of slices, and each slice has four logic blocks that we’ll call
programmable logic element (PLEs). Each PLE has one 6-input LUT and two
flip-flops, as we’ll show in detail. The PLEs have some control signals in com-
mon and are connected by an internal carry chain (the CARRY4 element that we
described in Section 8.1.10). So, the 7-series CLB contains two slices or eight
PLEs, for a total of eight LUTs, 16 flip-flops, and two 4-bit carry chains.

configurable logic
block (CLB)

Figure 10-32
CLBs in a Xilinx
7-series FPGA.

7-series FPGA chip

Configurable Logic
Block (CLB) Slice

PLE

PLE

PLE

PLE

Slice

Slice

CLB

carry
chain

slice
programmable logic

element (PLE)

c10.fm Page 531 Thursday, April 6, 2017 9:17 PM

532 Chapter 10 Sequential Logic Elements

The 7-series PLE has the structure shown in Figure 10-33, which we’ll
describe starting from the lefthand side. The 7-series LUT has six inputs and two
outputs. Based on the programming of LUT’s 64-bit “ROM,” the O6 output can
perform any logic function of the six inputs B[6:1]. Alternatively, as explained in
Section 6.1.3, when B[6] is set to a constant 1, O6 and O5 independently perform
any two logic functions of B[5:1].

Next are two 2-input multiplexers that control the configuration of the
CARRY4 carry chain which runs vertically through the four PLEs in a slice. We
showed the slice’s carry chain in Figure 8-16 on page 400. The PLE’s carry-
chain input CIN comes from the PLE or slice below it. Its output COUT can
come from, depending on the value of the O6 LUT output, either CIN or one of
two other sources selected by programming—either the PLE’s “extra input” BX
or the LUT’s O5 output. That’s a lot of choices, and the synthesis tool has
algorithms that choose an optimal configuration when it recognizes a known
logic function to realize at the slice level, usually the carry chain for an adder.

D

SR

Q

CLK

FF/LAT
SRHI
SRLO
INIT1
INIT0CE

BMUX

BQ

D

SR

Q

CLK

SRHI
SRLO
INIT1
INIT0CE

B

from
other

PLEs in
slice

BX

LUT

A6:A1

O6
O5

B6:1

SR

CLK

CE

common to all
PLEs in slice

CIN

COUT (to next PLE or slice)

(from previous PLE or slice)

Sync/Async

Reset type
(programmed for
entire slice)

Figure 10-33 Structure of Xilinx 7-series programmable logic element (PLE).

THE NAMES HAVE
BEEN CHANGED

TO PROTECT THE
INNOCENT

In this case, the “innocent” are the students who may have noticed that the signal
names and numbers in the LUT in Figure 6-6 on page 244 are different from the ones
used here in Figure 10-33. That’s because the first figure uses traditional numbering
for ROM address and data bits as introduced Section 6.1, and here we conform to the
Xilinx naming, in case curiosity leads them to the Xilinx documentation.

c10.fm Page 532 Thursday, April 6, 2017 9:17 PM

10.7 FPGA Sequential Logic Elements 533

The carry logic also has an XOR gate to combine CIN with the O6 LUT output,
which is used to create a sum bit by XORing a half-adder sum bit from the LUT
with CIN.

After those preliminaries, we can finally describe the PLE’s two storage
elements. The first, a D flip-flop, can programmably get its D input from BX or
the LUT’s O5 output. The second can be programmed to be either a D flip-flop
or a D latch and can programmably get its D input from BX, the LUT’s O5 or O6
output, the XOR output, or COUT.

Both of the PLE’s storage elements (and in fact all storage elements in a
slice) use the same clock signal CLK, which can be programmed at the slice level
to be active high or active low. When the second storage element is programmed
to be a latch, CLK serves as the G (enable) input. The slice also has an active-
high clock-enable signal CE used by all storage elements. That may sound like a
lot of choices, but wait, there’s more!

The storage elements can be set or reset by a common SR (set-reset) signal
for the slice. As suggested by the “check boxes” within each storage-element
symbol, each element can be programmed to use SR as a set, a reset, or not at all.
Moreover, the slice itself can be programmed to have all of its sets and resets be
synchronous or asynchronous. Also, the initial state of each storage element can
be programmed to be a 0 or a 1 at system initialization—that is, at power up or
upon the assertion of the device’s “global reset” signal.

Finally, we come to the PLE’s outputs. There is a dedicated combinational
output B which is the LUT’s O6 output. A second combinational output BMUX
is driven by a multiplexer which can programmably select the output of the left-
hand flip-flop, COUT, the XOR output, O5, or O6. The third output on the
righthand side of the figure is dedicated as the output of the second flip-flop, BQ.
And don’t forget the carry-chain output COUT at the top of the PLE, which we
discussed above.

A logic designer would need to get a lot of experience with PLE and slice
structure to be able to effectively map any given sequential logic design into the
most effective configuration. Some things may be simple, like choosing a latch
or a flip-flop and the type and polarity of the reset signal, depending on the
requirements of the design. But others are not at all obvious, like which of the

MYSTERY MUX On top of all of the primary PLE features that we’ve described, the 7-series slice has
a few more goodies that can be seen when considering a set of four PLEs as they are
combined in a slice. For example, the mux in the upper-left corner of the PLE, when
configured properly with similar muxes in other PLEs in the slice, allows the outputs
of all four LUTs to be combined to implement an arbitrary 7- or 8-bit logic function.
This is called an F7MUX or F8MUX, depending on its connections and which PLE
it’s in, and is discussed in the box on page 245.

c10.fm Page 533 Thursday, April 6, 2017 9:17 PM

534 Chapter 10 Sequential Logic Elements

two flip-flops and which registered outputs to use for which signals, and how to
use the bypass input and the carry chain.

Fortunately, the PLE and slice were never intended to be used that way by
a designer. Instead, the manufacturer’s synthesis tools have “fitting” algorithms
that can map commonly used HDL structures into very effective PLE and slice
configurations. The algorithms can map most HDL code into corresponding
configurations that are “good enough.” Indeed, the manufacturer’s architects of
the PLE and slice had to work hand-in-hand with the tool designers to ensure
that their architecture supported the right features and programmable choices to
make effective algorithms possible, while still optimizing the size and perfor-
mance of the PLE and slice structure—there can be hundreds of thousands of
PLEs on the chip, so every little bit counts!

*10.8 Feedback Sequential Circuits
The simple bistable and the various latches and flip-flops that we studied earlier
in this chapter are all feedback sequential circuits. Each contains one or more
feedback loops that, ignoring their behavior during state transitions, store a 0 or
a 1 at all times. The feedback loops are memory elements, and each circuit’s
behavior depends on both the current inputs and the values stored in the loops.
In this section, we’ll show how to analyze such circuits to give you some insight
on how they work.

*10.8.1 Basic Analysis
Feedback sequential circuits are the most common example of fundamental-
mode circuits. In the normal operation of such circuits, inputs usually are not
expected or allowed to change simultaneously. The analysis procedure assumes
that inputs change one at a time, allowing enough time between successive
changes for the circuit to settle into a stable internal state. This differs from

*This section and all of its subsections are optional.

KEEP YOUR
FEEDBACK TO

YOURSELF

Only rarely does a logic designer encounter a situation where a feedback sequential
circuit must be analyzed or designed. The most commonly used feedback sequential
circuits are the flip-flops and latches that are used as the building blocks in larger
sequential circuits. Their internal design and operating specifications are supplied by
an IC manufacturer.

Even an ASIC designer typically does not design gate-level flip-flop or latch
circuits, since these elements are supplied in a library of commonly used functions
in any given ASIC technology. Still, you may be curious about how flip-flops and
latches “do their thing”; this section shows you how to analyze such circuits.

fundamental-mode
circuit

c10.fm Page 534 Thursday, April 6, 2017 9:17 PM

10.8 Feedback Sequential Circuits 535

clocked circuits, in which multiple inputs can change at almost arbitrary times
without affecting the state, and all input values are sampled and state changes
occur at the edge of a clock signal.

Like clocked synchronous state machines, feedback sequential circuits
may be structured as Mealy or Moore machines, as shown in Figure 10-34.
A circuit with n feedback loops has n binary state variables and 2n states.

To analyze a feedback sequential circuit, we must break the feedback loops
in Figure 10-34 so that the next value stored in each loop can be predicted as a
function of the circuit inputs and the current value stored in all loops. Here, we’ll
look at the simplest possible situation—just one loop. Figure 10-35 shows how
to break the feedback loop in the NAND circuit for a D latch. We conceptually
break the loop by inserting a fictional buffer in the loop as shown. The output of
the buffer, named Y, is the single state variable for this example.

Figure 10-34
Feedback sequential
circuit structure for
Mealy and Moore
machines.

current stateNext-State
Logic

Output
Logic

feedback
loops

inputs

outputs

only present in
Mealy machine

Figure 10-35
Feedback analysis
of a D latch.

D

C

(C · D)′

(C · D′)′

C · D′+Y′

C · D+(C · D′+Y′)′

D′

Q

QN

Y∗
Y

JUST ONE LOOP The way the circuit in Figure 10-35 is drawn, it may look like there are two feedback
loops. However, once we make one break as shown, there are no more loops. That
is, each signal can be written as a combinational function of the other signals, not
including itself.

c10.fm Page 535 Thursday, April 6, 2017 9:17 PM

536 Chapter 10 Sequential Logic Elements

Let us assume that the propagation delay of the fictional buffer is 10 ns (but
any nonzero number will do) and that all of the other circuit components have
zero delay. If we know the circuit’s current state (Y) and inputs (D and C), then
we can predict the value Y will have in 10 ns. The next value of Y, denoted Y∗, is
a combinational function of the current state and inputs. Thus, reading the logic
diagram, we can write an excitation equation for Y∗:

Now the state of the feedback loop (and the circuit) can be written as a function
of the current state and input, and enumerated by a transition table as shown in
Figure 10-36. Each cell in the transition table shows the fictional-buffer output
value that will occur 10 ns (or whatever delay you’ve assumed) after the
corresponding state and input combination occurs.

A transition table has one row for each possible combination of the state
variables, so a circuit with n feedback loops has 2n rows in its transition table.
The table has one column for each possible input combination, so a circuit with
m inputs has 2m columns in its transition table.

By definition, a fundamental-mode circuit such as a feedback sequential
circuit does not have a clock to tell it when to sample its inputs. Instead, we can
imagine that the circuit is evaluating its current state and input continuously (or
every 10 ns, if you prefer). As the result of each evaluation, it goes to a next state
predicted by the transition table. Most of the time, the next state is the same as
the current state; this is the essence of fundamental-mode operation. We make
some definitions next that will help us study this behavior in more detail.

In a fundamental-mode circuit, a total state is a particular combination of
internal state (the values stored in the feedback loops) and input state (the cur-
rent value of the circuit inputs). A stable total state is a combination of internal
state and input state such that the next internal state predicted by the transition
table is the same as the current internal state. If the next internal state is different,
then the combination is an unstable total state. We have rewritten the transition
table for the D latch in Figure 10-37 as a state table, giving the names S0 and S1
to the states and drawing a circle around the stable total states.

Y∗ = (C ⋅ D) + (C ⋅ D′ + Y′)′
 = C ⋅ D + C′ ⋅ Y + D ⋅ Y

excitation equation

transition table

Figure 10-36
Transition table
for the D latch in
Figure 10-35.

C D

Y 00 01 11 10

0 0 0 1 0

1 1 1 1 0

Y*

total state
internal state
input state
stable total state

unstable total state
state table

c10.fm Page 536 Thursday, April 6, 2017 9:17 PM

10.8 Feedback Sequential Circuits 537

To complete the analysis of the circuit, we must also determine how the
outputs behave as functions of the internal state and inputs. There are two
outputs and hence two output equations:

Note that Q and QN are outputs, not state variables. Even though the circuit has
two outputs, which can theoretically take on four combinations, it has only one
state variable Y, and hence only two states.

The output values predicted by the Q and QN equations can be incorpor-
ated in a combined state and output table that completely describes the operation
of the circuit, as shown in Figure 10-38. Although Q and QN are normally com-
plementary, it is possible for them to have the same value of 1 momentarily,
during the transition from S0 to S1 under the C D = 11 column of the table.

We can now predict the behavior of the circuit from the transition and
output table. First of all, notice that we have written the column labels in our
state tables in “Karnaugh map” or “Gray code” order, so that only a single input
bit changes between adjacent columns of the table. This layout helps our analy-
sis because we assume that only one input changes at a time, and that the circuit
always reaches a stable total state before another input changes.

At any time, the circuit is in a particular internal state and a particular input
is applied to it; we called this combination the total state of the circuit. Let us
start at the stable total state “S0/00” (S = S0, C D = 00), as shown in

Q = C ⋅ D + C′ ⋅ Y + D ⋅ Y
QN = C ⋅ D′ + Y′

Figure 10-37
State table for the D
latch in Figure 10-35,
showing stable total
states.

C D

S 00 01 11 10

S0 S0 S0 S1 S0

S1 S1 S1 S1 S0

S*

output equation

Figure 10-38
State and output
table for the D latch.

C D

S 00 01 11 10

S0 S0 , 01

, 10

, 01 , 01

, 10

, 11

, 10 , 01

S0 S1 S0

S1 S1 S1 S1 S0

S*, Q QN

c10.fm Page 537 Thursday, April 6, 2017 9:17 PM

538 Chapter 10 Sequential Logic Elements

Figure 10-39. Now suppose that we change D to 1. The total state moves to one
cell to the right; we have a new stable total state, S0/01. The D input is different,
but the internal state and output are the same as before. Next, let us change C
to 1. The total state moves one cell to the right to S0/11, which is unstable. The
next-state entry in this cell sends the circuit to internal state S1, so the total state
moves down one cell, to S1/11. Examining the next-state entry in the new cell,
we find that we have reached a stable total state. We can trace the behavior of the
circuit for any desired sequence of single input changes in this way.

Now we can revisit the question of simultaneous input changes. Even
though “almost simultaneous” input changes may occur in practice, we must
assume that nothing happens simultaneously in order to analyze the behavior of
sequential circuits. The impossibility of simultaneous events is supported by the
varying delays of circuit components themselves, which depend on voltage,
temperature, and fabrication parameters. What this tells us is that a set of n
inputs that appear to us to change “simultaneously” may actually change in any
of n! different orders from the point of view of the circuit operation.

For example, consider the operation of the D latch as shown in
Figure 10-40. Let us assume that it starts in stable total state S1/11. Now sup-
pose that C and D are both “simultaneously” set to 0. In reality, the circuit
behaves as if one or the other input went to 0 first. Suppose that C changes first.
Then the sequence of two left-pointing arrows in the table tells us that the circuit
goes to stable total state S1/00. However, if D changes first, then the other
sequence of arrows tells us that the circuit goes to stable total state S0/00. So the
final state of the circuit is unpredictable, a clue that the feedback loop may actu-
ally become metastable if we set C and D to 0 simultaneously. The time span

Figure 10-39
Analysis of the D latch
for a few transitions.

C D

S 00 01 11 10

S0 S0 , 01

, 10

, 01 , 01

, 10

, 11

, 10 , 01

S0 S1 S0

S1 S1 S1 S1 S0

S*, Q QN

Figure 10-40
Multiple input changes
with the D latch.

C D

S 00 01 11 10

S0 S0 , 01

, 10

, 01 , 01

, 10

, 11

, 10 , 01

S0 S1 S0

S1 S1 S1 S1 S0

S*, Q QN

c10.fm Page 538 Thursday, April 6, 2017 9:17 PM

10.8 Feedback Sequential Circuits 539

over which this view of simultaneity is relevant is the setup- and hold-time win-
dow of the D latch.

Simultaneous input changes don’t always cause unpredictable behavior
and thus may be allowable in normal operation. However, we must analyze the
effects of all possible orderings of signal changes to determine this; if all order-
ings give the same result, then the circuit output is predictable. For example,
consider the behavior of the D latch starting in total state S0/00 with C and D
simultaneously changing from 0 to 1; it always ends up in total state S1/11. This
corresponds to the fact that in practice, a D latch has no setup hold requirement
on the D input with respect to the 0-to-1 transition on C.

*10.8.2 Analyzing Circuits with Multiple Feedback Loops
In circuits with multiple feedback loops, we must break all of the loops, creating
one fictional buffer and state variable for each loop that we break. There are
many possible ways, which mathematicians call cut sets, to break the loops in a
given circuit, so how do we know which one is best? The answer is that any
minimal cut set—a cut set with a minimum number of cuts—is fine. Mathema-
ticians can give you an algorithm for finding a minimal cut set, but as a digital
designer working on small circuits, you can just eyeball the circuit to find one.

Different cut sets for a circuit lead to different excitation equations, transi-
tion tables, and state/output tables. However, the stable total states derived from
one minimal cut set correspond one-to-one to the stable total states derived from
any other minimal cut set for the same circuit. That is, state/output tables derived
from different minimal cut sets display the same input/output behavior, with
only the names and coding of the states changed.

If you use more than the minimal number of cuts to analyze a feedback
sequential circuit, the resulting state/output table will still describe the circuit
correctly. However, it will use 2m times as many states as necessary, where m is
the number of extra cuts. Formal state-minimization procedures can be used to
reduce this larger table to the proper size, but it’s a much better idea to select a
minimal cut set in the first place.

A good example of a sequential circuit with multiple feedback loops is an
edge-triggered D flip-flop. CMOS flip-flops typically use transmission gates in
their feedback loops. For example, Figure 10-41 shows the circuit design of the
“FD1Q” positive-edge-triggered D flip-flop in LSI Logic’s old LCA500K series
of CMOS gate arrays. Such a flip-flop can be analyzed in the same way as a
purely logic-gate-based design, once you recognize the feedback loops.
Figure 10-41 has two feedback loops, each of which has a pair of transmission
gates in a mux-like configuration controlled by CLK and CLK′, yielding the fol-
lowing loop equations:

Y1∗ = CLK′ ⋅ D′ + CLK ⋅ Y1

 Y2∗ = CLK ⋅ Y1′ + CLK′ ⋅ Y2

cut set

minimal cut set

c10.fm Page 539 Thursday, April 6, 2017 9:17 PM

540 Chapter 10 Sequential Logic Elements

Except for the double inversion of the data as it goes from D to Y2∗ (once
in the Y1∗ equation and again in the Y2∗ equation), these equations are very rem-
iniscent of the master/slave-latch structure of the D flip-flop in Figure 10-12 on
page 505. The corresponding transition table is shown in Figure 10-42, with the
stable total states circled.

A transition table with multiple state variables may have races, where two
or more state variables change during the transition from one stable total state to
the next. In a critical race, the final state depends on the order in which the vari-
ables change. Luckily for us, examination of all the possible transitions in the
flow table in Figure 10-42 shows that it has no critical races; in fact, no races at
all. Since we’re analyzing a mature a commercial design, we should have
expected that; otherwise, it’s operation could be unreliable, depending on factors
like voltage, temperature, and the phase of the moon.

At this point, we no longer need to refer to state variables. Instead, we can
name the state-variable combinations and determine the output values for each
state/input combination to obtain a state/output table, like Figure 10-43. Some

Figure 10-41 Positive edge-triggered CMOS D flip-flop for analysis.

D

CLK

Y1∗ Y1 Y2∗ Y2
Q

Figure 10-42
Transition table for
the D flip-flop in
Figure 10-41.

CLK D

Y1 Y2 00 01 11 10

00 10 00 01 01

01 11 01 01 01

10 10 00 10 10

11 11 01 10 10

Y1∗ Y2∗

race

critical race

c10.fm Page 540 Thursday, April 6, 2017 9:17 PM

10.8 Feedback Sequential Circuits 541

circuits (though not this one) may require multiple “hops” to get from one stable
total state to the next one. The state table for such a circuit may be further simpli-
fied to create a flow table that eliminates multiple hops and shows only the
ultimate destination for each transition.

The flip-flop’s edge-triggered behavior can be observed in the series of
state transitions shown in Figure 10-44. Let us assume that the flip-flop starts in
internal state S1/10. That is, the flip-flop is storing a 0 (since Q = 0), CLK is 1,
and D is 0. Now suppose that we change D to 1; the flow table shows that we
move one cell to the left, still a stable total state with the same output value. We
can change D between 0 and 1 as much as we want, and just bounce back and
forth between these two cells. Similarly, if D is 1, we can change CLK between 0
and 1 as much as we want, and just bounce back and forth between two cells in
this row. However, if both CLK and D change to 0, we move to internal state S3;
but still the output Q is unchanged at 1. Now, if we change D back to 0, we go
back up to the S1 row and can repeat the behavior there.

The moment of truth finally comes when CLK changes to 1 while we are in
internal state S3. This moves us to internal state S3, where the output Q changes
to 0, capturing the value that was present on D at the rising edge of CLK. Similar
behavior involving S2 and S0 can be observed on a rising clock CLK edge that
causes Q to change from 1 to 0.

Figure 10-43
State/output table
for the D flip-flop in
Figure 10-41.

CLK D

S 00 01 11 10

S0 S2 , 0 S0 , 0 S1 , 0 S1 , 0

S1 S3 , 1 S1 , 1 S1 , 1 S1 , 1

S2 S2 , 0 S0 , 0 S2 , 0 S2 , 0

S3 S3 , 1 S1 , 1 S2 , 1 S2 , 1

S∗ , Q

flow table

Figure 10-44
State and output
table showing the
D flip-flop’s edge-
triggered behavior.

CLK D

S 00 01 11 10

S0 S2 , 0 S0 , 0 S1 , 0 S1 , 0

S1 S3 , 1 S1 , 1 S1 , 1 S1 , 1

S2 S2 , 0 S0 , 0 S2 , 0 S2 , 0

S3 S3 , 1 S1 , 1 S2 , 1 S2 , 1

S∗ , Q

c10.fm Page 541 Thursday, April 6, 2017 9:17 PM

542 Chapter 10 Sequential Logic Elements

*10.8.3 Feedback Sequential-Circuit Design
The feedback sequential circuits that we’ve analyzed in the previous subsections
exhibit quite reasonable behavior, since, after all, they are latch and flip-flop
circuits that have been used for years. However, if we throw together a “random”
collection of gates and feedback loops, we won’t necessarily get “reasonable”
sequential circuit behavior. In a few rare cases, we may not get a sequential cir-
cuit at all (see Exercise 10.48), and in many cases, the circuit may be unstable
for some or all input combinations (see Exercise 10.56).

Thus, the design of feedback sequential circuits continues to be something
of a black art and is practiced only by a tiny fraction of digital designers. Some
simple examples were shown in previous editions of this book. The basic design
steps are as follows:

1. Construct a primitive flow table from the circuit’s word description. This
table has only one stable total state per row, to keep things simple.

2. Minimize the number of states in the flow table, using a formal minimiza-
tion procedure.

3. Find a race-free assignment of coded states to named states, adding auxil-
iary states or splitting states as required. Eliminating critical races can be
tricky, and may also significantly increase the number of states required.

4. Construct the transition table.

5. Determine excitation equations corresponding to the transition table.

6. Find a realization of the excitation equations that is free of static hazards.
If an excitation equation has a hazard, its output can have a “glitch” during
an input transition, and that can cause the feedback loop to lose its current
state even when the equation says it should be in the same state before and
after the transition.

7. Check for essential hazards, which are the possibility of the circuit going
to an incorrect next state as a result of a single input change. Such hazards
are inherent in the circuit’s flow table, regardless of its logic realization,
and can be eliminated only by guaranteeing that delays on certain feedback
paths within the circuit are greater than maximum delays on certain input-
logic paths.

8. Draw the logic diagram.

For all but the simplest circuits, the seventh step is the toughest. It turns out
that a fundamental-mode circuit must have at least three states to have an essen-
tial hazard, so latches don’t have them. On the other hand, all flip-flops (circuits
that sample inputs on a clock edge) do. And this is why digital designers always
use predesigned flip-flops that have been modeled and tested over a range of
operating conditions, rather than “rolling their own.”

primitive flow table

state minimization

state assignment

transition table

excitation equations

essential hazards

logic diagram

c10.fm Page 542 Thursday, April 6, 2017 9:17 PM

10.8 Feedback Sequential Circuits 543

*10.8.4 Feedback Sequential Circuits in Verilog
The always block and the simulator’s event list are Verilog’s fundamental
mechanisms for handling feedback sequential circuits. Feedback sequential
circuits may change state in response to input changes, and these state changes
are manifested by changes propagating in a feedback loop until the feedback
loop stabilizes. In simulation, this is manifested by the simulator putting signal
changes on the event list and scheduling processes to rerun in “delta time” and
propagate these signal changes until no more signal changes are scheduled.

Program 10-15 is dataflow-style Verilog code for an S-R latch, equivalent
to a pair of cross-coupled NOR gates. In simulation, each of its two continuous-
assignment statements implies a software process as discussed in Section 5.12.
These processes interact to emulate the simple latching behavior of an S-R latch.
The module includes a timescale directive and a 1-ns delay in each assign
statement to produce a more interesting simulation result.

When we introduced the S-R latch in Section 10.2.1, we showed a timing
diagram for a particular input sequence in Figure 10-5 on page 500. To test the
Verilog module, we created a test bench with similar input timing. The resulting
timing diagram produced by simulator is shown in Figure 10-45. The Verilog
simulation is of course faithful enough to handle the cases where both S and R
are asserted simultaneously.

Program 10-15 Dataflow-style Verilog code for an S-R latch with cross-coupled NOR gates.

`timescale 1 ns / 100 ps
module VrSRlatchNOR_d (S, R, Q, QN);
input S, R;
 output Q, QN;

 assign #1 QN = ~(S | Q);
 assign #1 Q = ~(R | QN);
endmodule

Figure 10-45 Simulation timing diagram for the S-R latch.

c10.fm Page 543 Thursday, April 6, 2017 9:17 PM

544 Chapter 10 Sequential Logic Elements

The most interesting result in simulation occurs at the end, when S and R
are negated simultaneously. Recall from the box on page 500 that a real S-R
latch circuit may oscillate or go into a metastable state in this situation. If
Program 10-15 were written without the 1-ns delays, the simulation could actu-
ally loop forever as each execution of one assignment statement triggers another
execution of the other. After some number of repetitions, a well-designed simu-
lator will discover the problem—for example by noticing that delta time keeps
advancing while simulated time does not—and stop looping, which was the case
with the Xilinx Vivado simulator.

However, with the 1-ns delays in place, we can actually see the oscillation
that would occur if real circuit behavior was identical to what is simulated—zero
signal rise and fall times, precise signal delays, and no noise or other parasitic
electronic effects. In a real circuit, an oscillation may occur but with more sine-
wave-like transitions, or both outputs may coast into a metastable state halfway
between HIGH and LOW, until the outputs finally settle into one stable state or
the other after a nondeterministic time.

References
The problem of metastability has been around for a long time. Greek philoso-
phers wrote about the problem of indecision thousands of years ago. A later
group of philosophers named Devo sang about metastability in the title song of
their Freedom of Choice album. The U.S. Congress still can’t figure out how to
“save” Social Security. And I could have said that in every previous edition, too!

The latches and flip-flops described in this chapter are by far the most com-
monly used types today. Their Verilog models as shown in this chapter should
work with any vendor’s synthesis tool, which should “infer” the element that
we’ve shown, if it exists in the target technology. But to be absolutely sure, your
best reference is the documentation for the particular synthesis tool you’re using
and the technology that you’re targeting. Consider, for example, the surprising,
incorrect synthesized behavior described in the box on page 518.

Also, if a particular latch or flip-flop does not exist in the target technology,
instead of rejecting it a synthesis tool may quietly create a decidedly ugly and
inefficient emulation of it, as in Exercise 10.50. You may be better off restructur-

STRUCTURAL
LATCH CODE

An S-R-latch module with the same functionality as Program 10-15 could be written
in structural style by instantiating a pair of Verilog’s built-in NOR gates, or in behav-
ioral style with an always block. These models should be equivalent to the original
in both simulation and synthesis, except possibly in simulation when S and R are
negated simultaneously, depending on operation of the simulator when it encounters
this unusual case.

c10.fm Page 544 Thursday, April 6, 2017 9:17 PM

Drill Problems 545

ing your logic to use a more universally available flip-flop or latch. The only way
to avoid these situations is to read and understand the vendor’s documentation.

A more complete high-level discussion of the analysis and design of feed-
back sequential circuits can be found in earlier editions of the book you’re
reading. That may be enough to satisfy your curiosity. But if you’re planning to
actually design any such circuits from scratch, you should consult one or more of
the really authoritative and comprehensive classic works on the subject, such as
Edward J. McCluskey’s Logic Design Principles (Prentice Hall, 1986) and Zvi
Kohavi and Niraj K. Jha’s Switching and Finite Automata Theory (Cambridge
University Press, 2010, third edition).

Drill Problems
10.1 Give two examples of metastability that occur in sports, other than ones already

mentioned in this chapter.

10.2 (1960s) In what song do the Lovin’ Spoonful sing about metastability?

10.3 (1980s) Find the lyrics for the title song in Devo’s Freedom of Choice album and
write out the lines that refer to metastability.

10.4 (21st century) Identify a song that was popular in the current century and whose
lyrics concern metastability, and write out those lines.

10.5 Would you expect the propagation delay from the set input to the Q output to be
faster in a set-reset latch built from a pair of NAND gates or one built from a pair
of NOR gates? Explain.

10.6 True or false: While set and reset in an S-R latch are asserted simultaneously, the
Q output goes to a non-logic voltage halfway between logic 0 and 1. If true,
explain what causes this, and if false describe another situation, if any, that can
cause this condition.

10.7 What do the lyrics of a 1960s hit by the Rolling Stones have in common with
Figure 10-6(c)?

10.8 Sketch the outputs of an S-R latch of the type shown in Figure 10-4 for the input
waveforms shown in Figure X10.8. Assume that input and output rise and fall
times are zero, that the propagation delay of a NOR gate is 10 ns, and that each
time division below is 10 ns.

10.9 Repeat Drill 10.8 using the input waveforms shown in Figure X10.9. Although
you may find the result unbelievable, this behavior can actually occur in real
devices whose transition times are short compared to their propagation delay.

Figure X10.8
R

S

Figure X10.9
R

S

c10.fm Page 545 Thursday, April 6, 2017 9:17 PM

546 Chapter 10 Sequential Logic Elements

10.10 An S-R latch with a Q output is built from a pair of cross-coupled NOR gates. Is
the latch set dominant or reset dominant?

10.11 An S-R latch with a Q output is built from a pair of cross-coupled NAND gates. Is
the latch set dominant or reset dominant?

10.12 Write a structural Verilog module VrSRlatchNOR_s corresponding to the S-R
latch in Figure 10-4. Use Verilog’s built-in nor component, and specify a simu-
lated delay of 1 ns through each gate using a `timescale compiler directive and
using the delay specifier “#1” after each nor keyword.

10.13 Create a Verilog test bench for the S-R latch of Drill 10.12. In the test bench, cre-
ate input waveforms on S and R with timing as shown in Figure X10.8 followed
by Figure X10.9. Run the test bench and print or draw the simulator’s input and
output waveforms (S, R, Q, and QN). What does the simulator do on the last input
transition?

10.14 Write a structural Verilog module VrSRlatchNAND_s corresponding to the S-R
latch in Figure 10-8. Use Verilog’s built-in nand component, and specify a simu-
lated delay of 1 ns through each gate. Then use the test bench of Drill 10.13 on
this module as specified there, modifying as needed for the active-low inputs.

10.15 In what situations, if any, do the latches in Drills 10.12 and 10.14 produce differ-
ent outputs for the same input sequence? To help find the answer, you may write
a test bench similar to the one in Drill 10.13 that instantiates both modules.

10.16 A positive-edge-triggered S-R flip-flop has two control inputs S and R with the
same meanings as in an S-R latch, except that the control inputs are sampled and
the output changes state only at the rising edge of a CLK input. Show how to build
a set-dominant S-R flip-flop using a D flip-flop and combinational logic.

10.17 A positive-edge-triggered J-K flip-flop has two control inputs J and K that control
the device’s behavior at the rising edge of CLK. If only J is asserted, the Q output
is set to 1; if only K is asserted, Q is cleared to 0; if both are asserted, Q is toggled;
and if neither is asserted, Q is not changed. Show how to build a J-K flip-flop
using a D flip-flop and combinational logic.

10.18 Show how to build a T flip-flop with enable using a J-K flip-flop.

10.19 Figure 10-19(b) showed how to build a T flip-flop with enable using a D flip-flop
and combinational logic. Show how to build a D flip-flop using a T flip-flop with
enable and combinational logic.

10.20 Show how to build an S-R latch using a single positive-edge-triggered D flip-flop
of the kind shown in Figure 10-16 and no other components.

10.21 Write a behavioral Verilog module VrDnegEC for a negative-edge-triggered D
flip-flop with enable and asynchronous active-low clear. Also write a test bench
that instantiates your flip-flop and exercises its operation for a comprehensive
input sequence.

10.22 Write a behavioral Verilog module VrTposE for a positive-edge-triggered T flip-
flop with enable. Also write a test bench that instantiates your flip-flop and exer-
cises its operation for a comprehensive input sequence.

c10.fm Page 546 Thursday, April 6, 2017 9:17 PM

Exercises 547

10.23 Write a behavioral Verilog module VrJKposP for a positive-edge-triggered J-K
flip-flop with asynchronous active-low preset. Also write a test bench that instan-
tiates your flip-flop and exercises its operation for a comprehensive input
sequence.

10.24 What is the maximum number of edge-triggered D flip-flops that can be utilized
within a single Xilinx 7-series slice? What control inputs, if any, must be identical
for all of these flip-flops? (You may have to consult Xilinx documentation.)

10.25 What is the maximum number of D latches that can be utilized within a single
Xilinx 7-series slice? What control inputs, if any, must be identical for all of these
latches? (You may have to consult Xilinx documentation.)

10.26 Write a parameterized, behavioral Verilog module Vrreg_WID for a multibit
register with width WID bits (default 16), clock-enable CLKEN, three-state output-
enable OE, and synchronous clear CLR.

10.27 Write a structural Verilog module Vr74x377_s whose behavior is identical to that
of Program 10-13. Your module should instantiate appropriate flip-flops from the
component library of your favorite programmable device. Write a test bench that
instantiates both Vr74x377_s and Vr74x377, and compares their outputs for a
comprehensive input sequence.

10.28 Write a behavioral Verilog module Vr74x373 whose behavior is identical to that
of the MSI 74x373 component, including its three-state outputs. Write a test
bench that exercises your module for a comprehensive input sequence.

10.29 Write a structural Verilog module Vr74x373_s whose behavior is identical to that
of the Vr74x373 module in Drill 10.28. Your module should instantiate appropri-
ate latches from the component library of your favorite programmable device.
Write a test bench that instantiates both Vr74x373_s and Vr74x373, and com-
pares their outputs for a comprehensive input sequence.

Exercises
10.30 Explain how metastability occurs in the D latch of Figure 10-9 when its setup and

hold times are not met, analyzing the behavior of its internal feedback loop.

10.31 Describe a situation, other than the metastable state, in which the Q and QN
outputs of the edge-triggered D flip-flop in Figure 10-16 may be noncomplemen-
tary for an arbitrarily long time.

10.32 Determine and discuss one other situation, besides the one described in the last
paragraph of Section 10.2.3, where the output of a D latch may become metasta-
ble. To what timing specification of a D latch does this situation relate?

10.33 Write a parameterized Verilog test bench VrNtoSdec_latch_tb that checks the
latching decoder in Program 10-5 for a comprehensive set of inputs. You may use
the test bench in Program 6-8 as a starting point.

10.34 Write a behavioral Verilog module that has the same inputs and outputs as the S-R
latch in Figure 10-4 and faithfully mimics its behavior in all respects except
possibly metastability. Synthesize your module, targeting your favorite program-

c10.fm Page 547 Thursday, April 6, 2017 9:17 PM

548 Chapter 10 Sequential Logic Elements

mable device, and compare its resource requirements with the pair of cross-
coupled NOR gates in the discrete gate-level implementation.

10.35 Write a behavioral Verilog module that has the same inputs and outputs as the S-R
latch in Figure 10-8 and faithfully mimics its behavior in all respects except
possibly metastability. Synthesize your module, targeting your favorite program-
mable device, and compare its resource requirements with the pair of cross-
coupled NAND gates in the discrete gate-level implementation.

10.36 Using Xilinx Vivado tools, the author wrote the solution for Drill 10.12 and then
targeted it to a Xilinx 7-series FPGA, resulting in an implementation with the
schematic shown in Figure X10.36. Here, the LUT2 output is QN = S′ ⋅ Q′, and
the LUT3 output is Q = R′ ⋅ (S+Q). Explain whether this implementation is guar-
anteed to faithfully mimic the behavior of the pair of cross-coupled NOR gates
that it’s based upon.

10.37 A famous logic designer decided to quit teaching and make a fortune by patenting
and licensing a new kind of positive-edge-triggered device, the JFW flip-flop.
Besides a clock input CLK, this device has a Q output and three inputs that control
the device’s behavior at the rising edge of CLK:

J Sets the Q output to 1 if no other control input is asserted.

F Flips the meaning of the J input; that is, clears the Q output to 0 if J is asserted
and toggles the Q output if J is negated.

W Whatever—if J is negated, sets the Q output to whatever it was one cycle
before, flipping that value if F is asserted. If J is asserted along with W, the
device sets both Q and its memory of the current Q to whatever the next Q
would be if W were negated.

Write a behavioral Verilog module VrJFWff for the device. Without adding a
reset input, is there a way to deterministically initialize (clear or preset) the device
from an unknown state in one clock tick? Do you think the device was successful
in the marketplace, or was it a flop? Explain your reasoning.

10.38 Write a test bench that exercises the JFW flip-flop of Drill 10.37. Check for cor-
rect operation by applying a 16-tick input sequence 111–000 followed by 000–
111 (in binary counting order) on the inputs J, F, W. The output sequence on Q
should be 0011 0100 0011 1100.

10.39 Show how a bus-hold circuit of the kind shown in Section 10.5.2 can be used to
create a debounced switch input.

10.40 Suppose you are asked to design a circuit that produces a debounced logic input
from an SPST (single-pole, single-throw) switch. What inherent problem are you
faced with?

Figure X10.36

QN_OBUF_inst_i_1

LUT2

OI0

I1

S_IBUF_inst

IBUF

OI
QN_OBUF_inst

OBUF

OI
S QNQ_OBUF_inst_i_1

LUT3

O

I0

I1

I2

R_IBUF_inst

IBUF

OI
Q_OBUF_inst

OBUF

OI
R Q

JFW flip-flop

c10.fm Page 548 Thursday, April 6, 2017 9:17 PM

Exercises 549

10.41 Figure X10.41 shows another way to wire up an SPDT pushbutton switch to pro-
vide a logic input in a CMOS system. The top contact is connected to logic 1, and
the bottom contact to logic 0. Like most switches, this one has “break before
make” behavior, so the SW signal floats for several milliseconds as the button is
pushed or released. Add analog and digital components to the switch circuit to
obtain a debounced SW signal that stays at a valid logic level as the button is
pushed or released.

10.42 Find a way to debounce and clean up the SW signal in Exercise 10.41, consuming
just one pin on a standard CMOS MSI device. Search the Web and identify one
or more standard devices that can do this for you.

10.43 A clever digital designer, but one with no analog knowledge or experience, tried
to solve the “floating SW” problem in Exercise 10.41 by simply replacing the
switch with one that had “make before break” behavior. What happened the first
time someone pushed the switch with the power on?

10.44 A particular Xilinx 7-series slice has been configured with three D latches. How
many edge-triggered D flip-flops can be utilized in the same slice? (Hint: You’ll
have to search the Web for the correct answer; it’s not in this text.)

10.45 This exercise is meant to challenge your understanding of latches and timing,
even though state machines are never built this way anymore. Suppose that a
clocked synchronous state machine with the structure of Figure 9-4 is designed
using D latches with active-high G inputs, instead of edge-triggered D flip-flops,
as storage elements. For proper next-state operation, what relationships must be
satisfied among the following timing parameters?

10.46 Analyze the feedback sequential circuit in Figure 10-16, assuming that the PR_L
and CLR_L inputs are always 1. Derive excitation equations, construct a transition
table, and analyze the transition table for critical and noncritical races. Name the
states, and write a state/output table and, if different, a flow/output table. Show
that the circuit performs the same function as Figure 10-42.

10.47 Show that a ones’-complement adder built as a binary adder with its carry output
connected to its carry input (“end-around carry”) is a feedback sequential circuit.

tFmin, tFmax Minimum and maximum propagation delay of the next-state logic.
tGQmin, tGQmax Minimum and maximum enable-to-output delay of a D latch.
tDQmin, tDQmax Minimum and maximum data-to-output delay of a D latch.

tsetup, thold Setup and hold times of a D latch.
tH, tL Clock HIGH and LOW times.

Figure X10.41SW

push

c10.fm Page 549 Thursday, April 6, 2017 9:17 PM

550 Chapter 10 Sequential Logic Elements

10.48 Draw the logic diagram for a circuit that has one feedback loop but is not a
sequential circuit. That is, the circuit's output should be a function of its current
input only. In order to prove your case, break the loop and analyze the circuit as
if it were a feedback sequential circuit, and demonstrate that the outputs for each
input combination do not depend on the “state.”

10.49 Any practical single-loop feedback sequential circuit is just a variation of an S-R
or D latch and has an excitation equation of the form

Why aren’t there any practical circuits whose excitation equation substitutes Q′
for Q above?

10.50 As shown in Table 10-1, the Xilinx ISE library has an edge-triggered D flip-flop
component FDCP that has two asynchronous inputs, clear and preset, with func-
tionality similar to Figure 10-16. However, such a flip-flop component does not
exist in a Xilinx 7-series FPGA. If an FDCP is instantiated in a user’s Verilog
module, Vivado emulates it using two natively available edge-triggered flip-flops,
a D latch, and a 3-input LUT, as shown in Figure X10.50. The LUT’s function is
O = I0 ⋅ I2′ + I1 ⋅ I2. Explain in words how this works, and write a test bench that
exercises the FDCP’s operation for a comprehensive input sequence. Are the
asynchronous inputs set-dominant or reset-dominant?

10.51 In general, the excitation logic in a feedback sequential circuit must be free of
static and dynamic hazards, defined in Section 3.4. For example, consider a D
latch whose excitation logic is a two-level AND-OR circuit having the form in
Exercise 10.49 with a forcing term of C ⋅ D and a holding term of C′. Find the
static-1 hazard in the excitation logic and explain how the latch may operate when
a hazardous input transition occurs. Determine how to modify the excitation logic
to eliminate the hazard.

Q∗ = (forcing term) + (holding term) ⋅ Q

Figure X10.50

U1

FDCP

Q

C

CLR

D

PRE

CLK_IBUF_inst

IBUF

OI

CLR

CLR_IBUF_inst

IBUF

OI

D

D_IBUF_inst

IBUF

OI

PRE

PRE_IBUF_inst

IBUF

OI

Q

Q_OBUF_inst

OBUF

OI

L7

LDCE

Q

CLR

D

G

GE

F1

FDCE

Q

C

CE

CLR

D

F2

FDPE

Q

C

CE

D

PRE

L3

LUT3

O

I0

I1

I2

CLK

c10.fm Page 550 Thursday, April 6, 2017 9:17 PM

Exercises 551

10.52 Simulate the latch circuit that is initially described in Exercise 10.51 under the
conditions described there. Use a Verilog structural model in which each gate has
a delay of 1 ns, or draw the waveforms by hand, again assuming a delay of 1 ns
per gate. How does the circuit behave at the hazardous input transition(s)? Next,
increase the delay of just the inverter in the circuit to 3 ns, repeat the simulation,
and explain the results. What would you expect to happen in the real circuit?

10.53 Compare the circuit in Figure X10.53 with the D latch in Figure 10-9. Prove that
the circuits function identically. In what way is Figure X10.53, which is used in
some commercial D latches, better?

10.54 Suppose you are designing a circuit that requires an S-R flip-flop, and targeting
it to an FPGA that has only LUTs, edge-triggered D flip-flops, and D latches. The
FPGA has no native S-R flip-flops, and even simple gates like NAND and NOR
are realized using LUTs. You’ve read ahead and studied the riddle on page 720,
so you know that you cannot safely implement the S-R flip-flop as a pair of cross-
coupled LUTs. And while the FPGA’s edge-triggered D flip-flops and D latches
have asynchronous CLR inputs, you don’t want to use them because they are
needed for other signals at reset. Show how to safely realize an S-R flip-flop in
this environment using only the available elements. In what situations, if any, is
its behavior different from that of the cross-coupled NAND- or NOR-gate design?

10.55 A BUT flop may be constructed from an NBUT gate as shown in Figure X10.55.
(An NBUT gate is simply a BUT gate with inverted outputs; see Exercise 3.37 for
the definition of a BUT gate.) Analyze the BUT flop as a feedback sequential cir-
cuit and obtain excitation equations, transition table, and flow table. Is this circuit
good for anything, or is it a flop?

10.56 Repeat Exercise 10.55 for the asymmetric BUT flop in Figure X10.56.

Figure X10.53

Q

QN

D

G

BUT flop

Figure X10.55
X2

X1
Q1

Q2

Figure X10.56
X2

X1
Q1

Q2

c10.fm Page 551 Thursday, April 6, 2017 9:17 PM

552 Chapter 10 Sequential Logic Elements

10.57 A “clever” student, Sam, designed the circuit in Figure X10.57 to create a BUT
gate based on the definition in Exercise 3.37 using an available 2-to-4 decoder.
The circuit appears to have feedback, but Sam analyzed the circuit for all 16 input
combinations to make sure it was combinational. That is, Sam applied each input
combination to A1, A2, B1, and B2, and assuming that Z1 and Z2 had the correct
values, checked that the decoder and inverter outputs were consistent with that
assumption. The circuit seemed to work correctly for all 16 possible input
combinations.

But in simulation, when the inputs were simultaneously changed from all 0s to all
1s, the simulator stopped after 5000 simulation cycles, complaining that the
outputs hadn’t stabilized. And when the circuit was built and the same input tran-
sition was tried, the circuit’s outputs sometimes oscillated before settling down.
Analyze the circuit as a feedback sequential circuit and explain why this happens.

10.58 Build a verbal flip-flop—a logical word puzzle that can be answered correctly in
either of two ways depending on state. How might such a device be adapted to the
political arena?

10.59 Read John Chu’s science-fiction short story “Hold-Time Violations,” and quote
the passage that first introduces and explains them. How are they eliminated? Can
a similar approach be used in digital logic?

Figure X10.57

1Y1

A1

B1

B2

A2

Z1

Z2

74x139
dual 2-to-4 decoder

1A

1G

1B

1Y0

1Y2

1Y3

2A

2G

2B

2Y0

2Y1

2Y2

2Y3

c10.fm Page 552 Thursday, April 6, 2017 9:17 PM

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

553

Q

CLK

CLK

D

D Q

QD

CLK

c h a p t e r11
Counters and Shift Registers

ny sequential circuit is technically a state machine, having stor-
age elements, excitation logic, output logic, and a well-defined
next-state behavior. However, there are some commonly used
sequential circuits whose behaviors are so familiar and easy to

describe that they have their own names—counters and shift registers.
In the days of MSI-based design, many different predesigned single-

chip counter and shift registers circuits were commercially available, each in
its own IC package. Because of these parts’ ubiquity, designers developed
several different ways to perform more elaborate sequential functions using
the MSI components as a starting point and adding a handful of gates to
obtain a more specialized function, such as a customized counting sequence,
a timing generator, or even a random-number generator.

Naturally, counters and shift registers today are embedded in larger
ICs like ASICs, PLDs, and FPGAs, either as library components or as HDL
modules. Besides being used as needed in larger designs to perform their
basic functions, they are also used as the starting point for specialized
sequential functions like the ones mentioned above.

So, in this chapter, we’ll describe the basic design of counters and shift
registers at the gate and flip-flop level and in Verilog; and we’ll also show
how they can perform various specialized functions.

A

DDPP5.book Page 553 Tuesday, March 28, 2017 5:33 PM

554 Chapter 11 Counters and Shift Registers

11.1 Counters
The name counter is generally used for any clocked sequential circuit whose
state diagram contains a single cycle, as in Figure 11-1. The modulus of a
counter is the number of states in the cycle. A counter with m states is called a
modulo-m counter or, sometimes, a divide-by-m counter. A counter with a non-
power-of-2 modulus has extra states that are not used in normal operation.

Probably the most commonly used counter type is an n-bit binary counter.
Such a counter has n flip-flops and has 2n states, which are visited in the
sequence 0, 1, 2, … , 2n − 1, 0, 1, … . Each of these states is encoded as the
corresponding n-bit binary integer.

11.1.1 Ripple Counters
An n-bit binary counter can be constructed with just n flip-flops and no other
components, for any value of n. Figure 11-2 shows such a counter for n = 4.
Recall that a T flip-flop changes state (toggles) on every rising edge of its clock
input. Thus, each bit of the counter toggles if and only if the immediately
preceding bit changes from 1 to 0. This corresponds to a normal binary counting
sequence—when a particular bit changes from 1 to 0, it generates a carry to the
next most significant bit. The counter is called a ripple counter because the carry
information ripples from the less significant bits to the more significant bits, one
bit at a time.

Although a ripple counter requires fewer components than any other type
of binary counter, it does so at a price—it is slower than any other type of binary
counter. In the worst case, when the most significant bit must change, the output
is not valid until time n ⋅ tTQ after the rising edge of CLK, where tTQ is the
propagation delay from input to output of a T flip-flop. Also, ripple counters
don’t fit well or at all into FPGA- and PLD-based designs, where all flip-flops or
groups of flip-flops share a common clock signal.

Thus, ripple counters are rarely used in practice, but they can be useful in
very low-power applications, such as digital watches. A flip-flop consumes
additional, “dynamic” power every time that it is clocked, even if its state isn’t

counter
modulus

modulo-m counter
divide-by-m counter
n-bit binary counter

Figure 11-1
General structure
of a counter’s
state diagram,
a single cycle.

S1

Sm

S5

S4

S3

S2

ripple counter

DDPP5.book Page 554 Tuesday, March 28, 2017 5:33 PM

11.1 Counters 555

changing. With a ripple counter, only the low-order bit is clocked at the full
clock frequency, and each higher-order bit operates at half of the frequency and
consumes only half of the dynamic power of the one before it.

11.1.2 Synchronous Counters
A synchronous counter connects all of its flip-flop clock inputs to the same

common CLK signal, so that all of the flip-flop outputs change at the same time,
after only tTQ ns of delay. As shown in Figure 11-3, this can be done using T flip-
flops with enable inputs; the output toggles on the rising edge of T if and only if
EN is asserted. Combinational logic on the EN inputs determines which, if any,
flip-flops toggle on each rising edge of T.

As shown in Figure 11-3, it is also possible to provide a master count-
enable signal CNTEN. Each T flip-flop toggles if and only if CNTEN is asserted

Figure 11-2
A 4-bit binary
ripple counter.

Q

Q
TCLK

T

T

T

Q0

Q1

Q2

Q3

Q

Q

Q

Q

Q

Q

synchronous counter

Figure 11-3
A synchronous
4-bit binary
counter with
serial enable logic.

 Q

T

EN

CLK

CNTEN

Q

T

Q

T

Q

T

Q0

Q1

Q2

Q3

EN

EN

EN

DDPP5.book Page 555 Tuesday, March 28, 2017 5:33 PM

556 Chapter 11 Counters and Shift Registers

and all of the lower-order counter bits are 1. Like the binary ripple counter, a
synchronous n-bit binary counter can be built with a fixed amount of logic per
bit—in this case, a T flip-flop with enable and a 2-input AND gate.

The counter structure in Figure 11-3 is sometimes called a synchronous
serial counter because the combinational enable signals propagate serially from
the least significant to the most significant bits. If the clock period is too short,
there may not be enough time for a change in the counter’s LSB to propagate to
the MSB. Moreover, in an FPGA- or PLD-based implementation, the serial
enable chain is not at all efficient to implement. These problems are eliminated
in Figure 11-4 by driving each EN input with a dedicated AND gate, just a single
level of logic. Called a synchronous parallel counter, this is the fastest binary
counter structure.

11.1.3 A Universal 4-Bit Counter Circuit
This subsection shows the gate-level design of a synchronous 4-bit binary
counter with synchronous load and clear inputs, based on the most popular MSI
counter of its day, the 74x163. We’ll call it simply a CNTR4U. Most designers
today would use an HDL model to create such a counter, but it’s worthwhile to
study its internals because it has such a classic and efficient design.

The CNTR4U’s internal logic diagram is shown in Figure 11-5, and its
function is summarized by the state table in Table 11-1 (with “middle” current
states 0010–1100 omitted).

The CNTR4U uses D flip-flops rather than T flip-flops, which facilitates
the load and clear functions. That also makes the CNTR4U good to study since
almost all FPGAs and PLDs use only D flip-flops internally. Each D input is
driven by a 2-input multiplexer consisting of two AND gates and an OR gate. The
multiplexer output is 0 if the CLR input is asserted. Otherwise, the top AND gate
passes the data input (D3, D2, D1, or D0) to the output if LD is asserted. If neither

synchronous serial
counter

Figure 11-4
A synchronous
4-bit binary
counter with
parallel enable
logic.

 Q

T

EN

CLK

CNTEN

Q

T

Q

T

Q

T

Q0

Q1

Q2

Q3

EN

EN

EN

synchronous parallel
counter

DDPP5.book Page 556 Tuesday, March 28, 2017 5:33 PM

11.1 Counters 557

Figure 11-5 Logic diagram for the CNTR4U synchronous 4-bit binary counter.

Q

Q

CLK

CLK

D Q0

Q

QCLK

D Q1

Q

QCLK

D Q2

Q

QCLK

D Q3

RCO

D3

ENP

ENT

D2

D1

D0

CLR

LD

DDPP5.book Page 557 Tuesday, March 28, 2017 5:33 PM

558 Chapter 11 Counters and Shift Registers

CLR nor LD is asserted, then the bottom AND gate passes the output of an XNOR
gate to the multiplexer output.

The XNOR gates perform the counting function in the CNTR4U, allowing
D instead of T flip-flops to be used. One input of each XNOR is the correspond-
ing count bit (Q3, Q2, Q1, or Q0); the other input is asserted, complementing the
count bit, if both enables ENP and ENT are asserted and all of the lower-order
count bits are 1. Notice that the lower-order count bits are ANDed together by
gates with ever-increasing widths in a “parallel enable” structure. The RCO
(“ripple carry out”) signal indicates a carry from the most significant bit position
and is 1 when all of the count bits are 1 and ENT is asserted. This signal can be
used for cascading, that is, building wider counters with multiple CNTR4Us.

Even though most counters are designed with enable inputs, counters are
often used in a free-running mode in which they are enabled continuously.
Figure 11-6 shows a traditional logic symbol for the CNTR4U and connections

Table 11-1
State table for the
CNTR4U 4-bit binary
counter.

Inputs Current State Next State

CLR LD ENT ENP Q3 Q2 Q1 Q0 Q3 Q2 Q1 Q0

1 x x x x x x x 0 0 0 0

0 1 x x x x x x D3 D2 D1 D0

0 0 0 x x x x x Q3 Q2 Q1 Q0

 0 0 x 0 x x x x Q3 Q2 Q1 Q0

0 0 1 1 0 0 0 0 0 0 0 1

0 0 1 1 0 0 0 1 0 0 1 0

. . .

 0 0 1 1 1 1 0 1 1 1 1 0

 0 0 1 1 1 1 1 0 1 1 1 1

 0 0 1 1 1 1 1 1 0 0 0 0

free-running counter

Figure 11-6
Connections for
the CNTR4U to
operate in a free-
running mode.

CNTR4U

CLR

CLK

LD

Q0

Q1

ENP

ENT

D0 Q0

Q1

Q2

Q3

RCO

D1

D2

D3

Q2

Q3

RCO

CLOCK

DDPP5.book Page 558 Tuesday, March 28, 2017 5:33 PM

11.1 Counters 559

to make it operate in free-running mode. Figure 11-7 shows the resulting output
waveforms. Notice that, starting with Q0, each signal has half the frequency of
the preceding one. Thus, a free-running CNTR4U can be used as a divide-by-2,
-4, -8, and -16 counter.

Although the CNTR4U is a modulo-16 counter, it can be made to count in a
modulus less than 16 by using the CLR or LD input to shorten the normal count-
ing sequence. For example, to make a modulo-N counter that counts from 0 to

, we create an active-high signal that is asserted in state and apply
that to the CLR input, sending the counter back to state 0 on the next clock tick.
This can typically be done with a single AND gate whose inputs are the state bits
that are 1 in the binary encoding of . Remember that the CLR input is a syn-
chronous clear; this method wouldn’t work properly with an asynchronous clear
input. You can also make a modulo-N counter that counts from to 15
using no additional gates (see Drill 11.4).

11.1.4 Decoding Binary-Counter States
A binary counter may be combined with a decoder to obtain a set of 1-out-of-m-
coded signals, where one signal is asserted in each counter state. This is useful
when counters are used to control a set of devices, where a different device is
enabled in each counter state. In this approach, each output of the decoder
enables a different device.

Figure 11-8 shows how a CNTR4U wired as a modulo-8 counter can be
combined with a 3-to-8 decoder to provide eight signals, each one representing a
counter state. Figure 11-9 shows typical timing for this circuit. Each decoder
output is asserted during a corresponding clock period.

Notice that the decoder outputs may contain “glitches” on state transitions
where two or more counter bits change, even though the CNTR4U outputs are
glitch free and the 3-to-8-decoder outputs do not have any static hazards. In a

CLK

QA

QB

QC

QD

COUNT 0 1 2 8 9 10 11 12 13 14 15 03 4 5 6 7

RCO

Figure 11-7 Clock and output waveforms for a free-running divide-by-16 counter.

N 1– N 1–

N 1–

16 N–

decoding glitches

DDPP5.book Page 559 Tuesday, March 28, 2017 5:33 PM

560 Chapter 11 Counters and Shift Registers

synchronous counter like the CNTR4U, the outputs don’t change at exactly the
same time. More important, different signal paths in a decoder can have different
delays; for example, the path from A1 to Y1_L may be faster than the path from
A0 to Y1_L. Thus, even if the decoder input changes “simultaneously” from 011
to 100, the decoder may behave as if its input were temporarily 001, and the
Y1_L output may have a glitch. In the present example, it can be shown that the
glitches can occur in any realization of the binary decoder function; this problem
is an example of a function hazard.

In most applications, the decoder output signals portrayed in Figure 11-9
would be used as function inputs to registers, counters, and other devices that

Figure 11-8
A modulo-8 binary
counter and
decoder.

CNTR4U

CLR

CLK

LD

Q0

Q1

ENP

ENT

D0 Q0

Q1

Q2
D1

D2

D3

Q2

Q3

RCO

CLOCK 3-to-8
decoder

A0

A1

A2

EN

Y0

Y1

Y2

Y3

Y4

Y5

Y6

Y7

S0_L

S1_L

S2_L

S3_L

S4_L

S5_L

S6_L

S7_L

CLOCK_L

S0_L

S1_L

S2_L

S3_L

S4_L

S5_L

S6_L

S7_L

COUNT 0 21 0 1 23 4 5 6 7

Figure 11-9 Timing diagram for a modulo-8 binary counter and decoder, showing decoding glitches.

function hazard

DDPP5.book Page 560 Tuesday, March 28, 2017 5:33 PM

11.1 Counters 561

sample those inputs on a clock edge (e.g., CE in a multibit register with clock
enable, or LD or ENP in another CNTR4U). In such a case, the decoding glitches
in the figure are not a problem if all devices use the same clock signal, since the
glitches occur after the clock edge. They are long gone before the next tick
comes along, when the decoder outputs are sampled by the other edge-triggered
devices. However, the glitches would be a problem if they were applied to asyn-
chronous control inputs like the S_L or R_L inputs of an S-R latch. Likewise,
using such potentially glitchy signals as clocks for edge-triggered devices is a
definite no-no.

If necessary, one way to “clean up” the glitches in Figure 11-9 is to connect
the decoder outputs to another register that samples the stable decoded outputs
on the next clock tick, as shown in Figure 11-10. However, once you decide to
add an 8-bit register, a less costly solution is to use an 8-bit “ring counter,” which
provides glitch-free decoded outputs directly, without the cost of the 3-bit
counter and decoding logic, as we’ll show in Section 11.2.3.

11.1.5 Counters in Verilog
Verilog allows counters to be specified very easily. Program 11-1 is a Verilog
model with the behavior of the CNTR4U counter of the preceding subsection.
Edge-triggered behavior is obtained using the posedge keyword in the first
always block, and a series of if-else statements determine the counter’s next-
state behavior based on the control inputs. A second always block is used to
specify the RCO combinational output behavior.

Notice that the counter module uses addition to specify counting, but a typ-
ical tool will not synthesize an entire adder to perform this operation. As a
minimum, the tool will reduce the amount of logic required because a constant is
being added. And if the target technology has features that streamline counter
realization (like XOR gates or T flip-flops), it will “infer” them if it can figure out
that the designer is specifying a counter.

S0_L

S1_L

S2_L

S3_L

S4_L

S5_L

S6_L

S7_L

RS0_L

RS1_L

RS2_L

RS3_L

RS4_L

RS5_L

RS6_L

RS7_L

8-bit register

CLK

1D 1Q

2Q2D

3D

4D

5D

6D

3Q

5Q

4Q

6Q

7D 7Q

8D 8Q

CNTR4U

CLR

CLK

LD

Q0

Q1

ENP

ENT

D0 Q0

Q1

Q2
D1

D2

D3

Q2

Q3

RCO

CLOCK 3-to-8
decoder

A0

A1

A2

EN

Y0

Y1

Y2

Y3

Y4

Y5

Y6

Y7

Figure 11-10 A modulo-8 binary counter and decoder with glitch-free outputs.

DDPP5.book Page 561 Tuesday, March 28, 2017 5:33 PM

562 Chapter 11 Counters and Shift Registers

It is very easy to modify the counter module to have other behaviors. For
example, Program 11-2 shows how to modify the two always blocks for deci-
mal (divide-by-10) counting behavior. The resulting counter counts from 0 to 9
and repeats.

Next, Program 11-3 shows modifications for the excess-3 decimal count-
ing sequence (counting from 3 to 12 and repeating). For some applications, the
excess-3 counting sequence is advantageous because its high-order bit is a
square wave (50% duty cycle).

Finally, Program 11-4 is a Verilog module for a 4-bit up/down counter
which has an extra input UPDN to control the counting direction. Note the use of
subtraction for counting down, and the logic for RCO that depends on direction,
activating for a count of 15 when counting up, and 0 when counting down.

The clear input of any of these counters can be made asynchronous simply
by adding “posedge CLR” to the first always block’s sensitivity list.

Program 11-1 Verilog module for CNTR4U 4-bit universal binary counter.

module Vrcntr4u(CLK, CLR, LD, ENP, ENT, D, Q, RCO);
 input CLK, CLR, LD, ENP, ENT;
 input [3:0] D;
 output reg [3:0] Q;
 output reg RCO;

 always @ (posedge CLK) // Create the counter f-f behavior
 if (CLR == 1) Q <= 4'd0;
 else if (LD == 1) Q <= D;
 else if ((ENT == 1) && (ENP == 1)) Q <= Q + 1;
 else Q <= Q;

 always @ (Q or ENT) // Create RCO combinational output
 if ((ENT == 1) && (Q == 4'd15)) RCO = 1;
 else RCO = 0;
endmodule

Program 11-2 Verilog for a 4-bit decimal counter module Vrcntr4udec.

 always @ (posedge CLK) // Create the counter f-f behavior
 if (CLR) Q <= 4'd0;
 else if (LD) Q <= D;
 else if (ENT && ENP && (Q == 4'd9)) Q <= 4'd0;
 else if (ENT && ENP) Q <= Q + 1;
 else Q <= Q;

 always @ (Q or ENT) // Create RCO combinational output
 if (ENT && (Q == 4'd9)) RCO = 1;
 else RCO = 0;

DDPP5.book Page 562 Tuesday, March 28, 2017 5:33 PM

11.1 Counters 563

Program 11-3 Verilog for an excess-3 decimal counter module Vrexcess3.

 always @ (posedge CLK) // Create the counter f-f behavior
 if (CLR) Q <= 4'd3;
 else if (LD) Q <= D;
 else if (ENT && ENP && (Q == 4'd12)) Q <= 4'd3;
 else if (ENT && ENP) Q <= Q + 1;
 else Q <= Q;

 always @ (Q or ENT) // Create RCO combinational output
 if (ENT && (Q == 4'd12)) RCO = 1;
 else RCO = 0;

WHAT ELSE? The “else Q <= Q” clauses in Programs 11-1 through 11-4 are not needed; the Ver-
ilog compiler, simulator, and synthesizer know that the output of a behaviorally
specified flip-flop should be preserved if no new value is assigned at the clock edge.
Thus, we didn’t include such an else clause in the behavioral model of a clock-
enabled D flip-flop in Program 10-11 on page 521. However, from the point of view
of program readability and maintainability, it seems like a good thing to do when
there’s a longer list of assignment cases, both here and later in Program 11-11.

Including the “else Q <= Q” clause may lead to a more or a less efficient
implementation, depending on the synthesis tool. The Xilinx Vivado tool disables
the clock for this case, using the clock-enable input that’s already be available “for
free” in 7-series FPGAs to enable the clock only for cases where something new is
assigned to Q. A less sophisticated tool may synthesize a multiplexer to feed back the
Q outputs into the flip-flop D input in the style of Figure 10-17(a) on page 507.

Program 11-4 Verilog module for a 4-bit up/down counter.

module Vrupdn4 (CLK, CLR, LD, ENP, ENT, UPDN, D, Q, RCO);
 input CLK, CLR, LD, ENP, ENT, UPDN;
 input [3:0] D;
 output reg [3:0] Q;
 output reg RCO;

 always @ (posedge CLK) // Create the counter f-f behavior
 if (CLR) Q <= 4'd0;
 else if (LD) Q <= D;
 else if (ENT && ENP && UPDN) Q <= Q + 1;
 else if (ENT && ENP && !UPDN) Q <= Q - 1;
 else Q <= Q;

 always @ (Q or ENT or UPDN) // Create RCO combinational output
 if (ENT && UPDN && (Q == 4'd15)) RCO = 1;
 else if (ENT && !UPDN && (Q == 4'd0)) RCO = 1;
 else RCO = 0;
endmodule

DDPP5.book Page 563 Tuesday, March 28, 2017 5:33 PM

564 Chapter 11 Counters and Shift Registers

All four variants of the counter can be instantiated and exercised in the
same test bench, as shown in Program 11-5. Unlike many of our other test
benches, this one is not “self checking;” it merely provides inputs that cause the
counters to count. The designer can then check the resulting waveforms for the
correct counting sequence, which is straightforward for a typical counter. The
waveforms produced by the simulator are shown in Figure 11-11.

In the preceding subsection, we showed how binary-counter outputs can be
decoded to create a set of mutually exclusive “enable” inputs for a set of devices.
A Verilog module with similar functionality is shown in Program 11-6. It still

Program 11-5 Verilog test bench to exercise four 4-bit counters.

`timescale 1 ns / 100 ps
module VrcntrTB1 ();
 reg CLK, CLR, LD, ENP, ENT, UPDN;
 reg [3:0] D;
 wire [3:0] cntr4uQ, cntr4decQ, excess3Q, updn4Q;
 wire cntr4uRCO, cntr4decRCO, excess3RCO, updn4RCO;

 always begin // 10 ns period for clock generation
 #5.5 CLK = 0; // 5.5 ns HIGH
 #4.0 CLK = 1; // 4.0 ns LOW
 #0.5 ; // Plus 0.5 ns HIGH for readability
 end

 Vrcntr4u U1 (.CLK(CLK), .CLR(CLR), .LD(LD), .ENP(ENP), .ENT(ENT), .D(D),
 .Q(cntr4uQ), .RCO(cntr4uRCO));
 Vrcntr4dec U2 (.CLK(CLK), .CLR(CLR), .LD(LD), .ENP(ENP), .ENT(ENT), .D(D),
 .Q(cntr4decQ), .RCO(cntr4decRCO));
 Vrexcess3 U3 (.CLK(CLK), .CLR(CLR), .LD(LD), .ENP(ENP), .ENT(ENT), .D(D),
 .Q(excess3Q), .RCO(excess3RCO));
 Vrupdn4 U4 (.CLK(CLK), .CLR(CLR), .LD(LD), .ENP(ENP), .ENT(ENT), .D(D),
 .UPDN(UPDN), .Q(updn4Q), .RCO(updn4RCO));

 initial begin
 CLR = 0; LD = 0; ENP = 0; ENT =0; D = 0; UPDN = 0; // All inputs 0
 #105 ; // Wait for FPGA global reset to end
 CLR = 1; D = 4'b1111; #10 // Make sure counter clears
 #10 ;
 CLR = 0; LD = 1; #10 // Now load 1111
 LD = 0; ENP = 1; #10 // No counting yet (ENT not 1)
 ENT = 1; UPDN = 1; #40 // Now count (up) 4 ticks
 UPDN = 0; #40 // Then count (down) 6 ticks
 UPDN = 1; #200 // Finally count (up) 20 ticks
 ENP = 0; #30 // And stop counting
 $stop(1);
 end
endmodule

DDPP5.book Page 564 Tuesday, March 28, 2017 5:33 PM

11.1 Counters 565

contains a 3-bit counter, created by the first always block, but unlike our other
Verilog counters, its flip-flop bits are not visible outside the module. The second
always block, which is combinational, decodes the counter outputs to create the
external outputs.

We also showed in the preceding subsection how to obtain glitch-free
decoded counter outputs by following the counter with a register, and we can
create a Verilog module with the same functionality. The declarations for such a
module can be exactly the same as in Program 11-6, but we replace its sequential
and combinational always blocks with the single sequential always block
shown in Program 11-7.

Figure 11-11 Simulation timing diagram for the counter test bench.

Program 11-6 Verilog code for a 3-bit counter and decoded outputs.

module Vr3bitctrdec (CLK, CLR, S_L);
 input CLK, CLR;
 output reg [0:7] S_L;
 reg [2:0] Q;
 integer i;

 always @ (posedge CLK) // Create the counter f-f behavior
 if (CLR) Q <= 3'd0;
 else Q <= Q + 1;

 always @ (Q) begin // Decode counter states to create outputs
 S_L = 8'b11111111;
 for (i=0; i<=7; i=i+1)
 if (i == Q) S_L[i] = 0;
 end
endmodule

DDPP5.book Page 565 Tuesday, March 28, 2017 5:33 PM

566 Chapter 11 Counters and Shift Registers

11.2 Shift Registers
11.2.1 Shift-Register Structure
A shift register is an n-bit register with a provision for shifting its stored data by
one bit position at each tick of the clock. Figure 11-12 shows the structure of a
serial-in, serial-out shift register. The serial input, SERIN, specifies a new bit to
be shifted into one end at each clock tick. This bit appears at the serial output,
SEROUT, after n clock ticks, and is lost one tick later. Thus, an n-bit serial-in,
serial-out shift register can be used to delay a signal by n clock ticks.

A serial-in, parallel-out shift register, shown in Figure 11-13, has outputs
for all of its stored bits, making them available to other circuits. Such a shift
register can be used to perform serial-to-parallel conversion.

Conversely, it is possible to build a parallel-in, serial-out shift register.
Figure 11-14 shows the general structure of such a device. At each clock tick,
the register either loads new data from inputs D1–Dn or it shifts its current con-
tents, depending on the value of the LOAD/SHIFT control input (which could be
named LOAD or SHIFT_L). Internally, the device uses a 2-input multiplexer on
each flip-flop’s D input to select between the two cases. A parallel-in, serial-out
shift register can be used to perform parallel-to-serial conversion.

Program 11-7 Verilog changes for a 3-bit counter module Vr3bitctrdecreg
with registered, decoded outputs.

 always @ (posedge CLK) begin
 if (CLR) Q <= 3'd0; // Create the counter f-f behavior
 else Q <= Q + 1;
 S_L <= 8'b11111111; // Default for outputs is negated
 for (i=0; i<=7; i=i+1) // Decode counter states to assert
 if (i == Q) S_L[i] <= 0; // one active-low output
 end

shift register

Figure 11-12
Structure of a
serial-in, serial-out
shift register.

Q

CLOCK

SERIN

CLK

CLK

D

D

SEROUT

Q

QD

CLK

serial input
serial output

serial-in, parallel-out
shift register

serial-to-parallel
conversion

parallel-in, serial-out
shift register

parallel-to-serial
conversion

DDPP5.book Page 566 Tuesday, March 28, 2017 5:33 PM

11.2 Shift Registers 567

By providing outputs for all of the stored bits in a parallel-in shift register,
we obtain the parallel-in, parallel-out shift register shown in Figure 11-15. Such
a device is general enough to be used in any of the applications of the previous
shift registers.

All of the shift registers that we’ve shown so far are called unidirectional
shift registers because they shift in only one direction. A bidirectional shift
register has the ability to shift in either direction, “left” or “right,” depending on
the value of a control input. We can combine this enhancement with the ability to
load or hold on each clock tick to create a “universal” shift register. Thus,
Figure 11-16(a) is the logic diagram for a 4-bit-wide universal shift register with

Figure 11-13
Structure of a
serial-in, parallel-
out shift register.

Q1

Q2

Qn

Q

CLOCK

SERIN

CLK

CLK

D

D Q

QD

CLK

Figure 11-14
Structure of a
parallel-in, serial-
out shift register.

Q

CLOCK

LOAD/SHIFT

SERIN

CLK

D

SEROUT

D1

Q

CLK

D

D2

Q

CLK

D

Dn

parallel-in, parallel-out
shift register

unidirectional shift
register

bidirectional shift
register

DDPP5.book Page 567 Tuesday, March 28, 2017 5:33 PM

568 Chapter 11 Counters and Shift Registers

synchronous clear that we’ll call a SHRG4U, with the logic symbol in (b). The
two directions are called “left” and “right,” even though the logic diagram and
the symbol aren’t necessarily drawn that way. In the SHRG4U, left means “in the
direction from QD to QA,” and right means “in the direction from QA to QD.”
Figure 11-16 is consistent with these names if you rotate it 90° clockwise.

Table 11-2 is a function table for the SHRG4U. The function table is highly
compressed, since it does not contain columns for most of the inputs (A–D, RIN,
LIN) or the current state QA–QD. Still, by expressing each next-state value as a
function of these implicit variables, it almost completely defines the operation of
the SHRG4U for all 213 possible combinations of current state and input, and it
sure beats a 8192-row table!

Note that the SHRG4U’s LIN (left-in) input is conceptually located on the
“righthand” side of the circuit, but it is the serial input for left shifts. Similarly,
RIN is on the “lefthand” side but is the serial input for right shifts.

Figure 11-15
Structure of a
parallel-in, parallel-
out shift register.

Q

CLOCK

LOAD/SHIFT

SERIN

CLK

D

Qn

Q1

Q2

D1

Q

CLK

D

D2

Q

CLK

D

Dn

left
right

Table 11-2
Function table for the
SHRG4U 4-bit universal
shift register.

Inputs Next state

Function CLR S1 S0 QA∗ QB∗ QC∗ QD∗
Clear 1 x x 0 0 0 0

Hold 0 0 0 QA QB QC QD
Shift right 0 0 1 RIN QA QB QC
Shift left 0 1 0 QB QC QD LIN
Load 0 1 1 A B C D

DDPP5.book Page 568 Tuesday, March 28, 2017 5:33 PM

11.2 Shift Registers 569

CLK

CLR

LIN

D

QDD Q

CLK

C

QCD Q

CLK

B

QBD Q

CLK

A

RIN

S1

S0

QAD Q

CLK

10

00

11

01

10

00

11

01

10

00

11

01

10

00

11

01

LEFT

RIGHT

S1 S0 value when enabled

SHRG4U

CLR

CLK

S1

RIN

S0

B QB

A QA

C QC

D QD

LIN RIGHT

(b)

(a)

LEFT

Figure 11-16
SHRG4U 4-bit
universal shift
register:
(a) logic diagram;
(b) logic symbol.

DDPP5.book Page 569 Tuesday, March 28, 2017 5:33 PM

570 Chapter 11 Counters and Shift Registers

11.2.2 Shift-Register Counters
Serial/parallel conversion is a “data” application, but shift registers have “non-
data” applications as well. A shift register can be combined with combinational
logic to form a state machine whose state diagram is cyclic. Such a circuit is
called a shift-register counter. Unlike a binary counter, a shift-register counter
does not count in an ascending or descending binary sequence, but it is useful in
many “control” applications nonetheless. The next three subsections show three
different ways to build shift-register counters. Each approach yields a different
kind of counting sequence with its own particular advantages.

11.2.3 Ring Counters
The simplest shift-register counter uses an n-bit shift register to obtain a counter
with n states, and is called a ring counter. Figure 11-17 is the logic diagram for
a 4-bit ring counter. The SHRG4U universal shift register is wired so that S1S0
is normally 10 and it performs a left shift. However, when RESET is asserted,
S1S0 is 11 and it loads A-D, which is 0001 (refer to the SHRG4U’s function
table, Table 11-2 on page 568). Once RESET is negated, the SHRG4U shifts left
on each clock tick. The LIN serial input is connected to the “leftmost” output, so
the next states are 0010, 0100, 1000, 0001, 0010, …. Thus, the counter visits
four unique states before repeating. A timing diagram is shown in Figure 11-18.
In general, an n-bit ring counter visits n states in a cycle.

The ring counter in Figure 11-17 has one major problem—it is not robust.
If its single 1 output is lost due to a temporary hardware problem, the counter
goes to state 0000 and stays there “forever.” Likewise, if an extra 1 output is set
(e.g., state 0101 is created), the counter will go through an incorrect cycle of
states and stay in that cycle forever. These problems are quite evident if we draw
the complete state diagram for the counter circuit, which has 16 states. As shown
in Figure 11-19, there are 12 states that are not part of the normal counting cycle.
If a glitch sends the counter off its normal cycle, it stays off it unless another
glitch puts it back.

shift-register counter

ring counter

Figure 11-17
Simplest design for
a 4-bit, 4-state ring
counter with a
single circulating 1.

CLOCK

RESET

Q0

Q1

Q2

Q3

SHRG4U

CLR

CLK

S1

RIN

S0

B QB

A QA

C QC

D QD

LIN

wired to shift from
QD towards QA
(“shift left”)

(load)

DDPP5.book Page 570 Tuesday, March 28, 2017 5:33 PM

11.2 Shift Registers 571

A self-correcting counter is designed so that all abnormal states have
transitions leading to normal states. Self-correcting counters are desirable for the
same reason that we recommended a minimal-risk approach to state assignment
at the end of Section 9.3.3: if something unexpected happens, a counter or state
machine should go to a “safe” state.

A self-correcting ring counter circuit is shown in Figure 11-20. The circuit
uses a NOR gate to shift a 1 into LIN only when the three least significant bits are
0. This results in the state diagram in Figure 11-21; all abnormal states lead back
into the normal cycle. Notice that, in this circuit, an explicit RESET signal is not
necessarily required. Regardless of the initial state of the shift register on power-
up, it reaches state 0001 within four clock ticks. However, an explicit reset signal
should still normally be provided as shown. This ensures that the counter starts
up at the same clock tick with other devices in the system and also provides a
known starting point in simulation (see Exercise 11.45).

In the general case, an n-bit self-correcting ring counter uses an (n − 1)-
input NOR gate and corrects an abnormal state within n − 1 clock ticks.

self-correcting counter

Figure 11-18
Timing diagram for
a 4-bit ring counter.

CLOCK

RESET

Q0

Q1

Q2

Q3

STATE S1 S2 S3 S4 S1 S2

0100

0001

0000

1111

0101

1010

10000010

1100

0011

10010110

0111

10111110

1101

Figure 11-19 State diagram for a simple ring counter.

self-correcting ring
counter

DDPP5.book Page 571 Tuesday, March 28, 2017 5:33 PM

572 Chapter 11 Counters and Shift Registers

The major appeal of a ring counter for control applications is that its states
appear in 1-out-of-n decoded form directly on the flip-flop outputs. That is,
exactly one flip-flop output is asserted in each state. Furthermore, these outputs
are “glitch free”; compare with the binary counter and decoder approach of
Figure 11-8 on page 560.

*11.2.4 Johnson Counters
An n-bit shift register with the complement of the serial output fed back into the
serial input is a counter with 2n states and is called a twisted-ring, Moebius, or
Johnson counter. Figure 11-22 is the basic circuit for a Johnson counter and
Figure 11-23 is its timing diagram. The normal states of this counter are listed
in Table 11-3. If both the true and complemented outputs of each flip-flop are
available, each normal state of the counter can be decoded with a 2-input AND
or NAND gate, as shown in the table. The decoded outputs are glitch free.

Figure 11-20
Self-correcting
4-bit, 4-state ring
counter with a
single circulating 1.

CLOCK

Q0

Q1

Q2

Q3

BCD0

SHRG4U

CLR

CLK

S1

RIN

S0

B QB

A QA

C QC

D QD

LIN

RESET
(load)

wired to shift from
QD towards QA
(“shift left”)

Figure 11-21
State diagram for a
self-correcting ring
counter.

0100

0001

10000010

0000

1001 1100

1110

1111

0110

011110110011

1010

11010101

twisted-ring counter
Moebius counter
Johnson counter

DDPP5.book Page 572 Tuesday, March 28, 2017 5:33 PM

11.2 Shift Registers 573

Figure 11-22
Basic 4-bit, 8-state
Johnson counter.

CLOCK

RESET

Q0

Q1

Q2

Q3

Q3_L

SHRG4U

CLR

CLK

S1

RIN

S0

B QB

A QA

C QC

D QD

LIN

wired to shift from
QD towards QA
(“shift left”)

Figure 11-23 Timing diagram for a 4-bit Johnson counter.

CLOCK

RESET

Q0

Q1

Q2

Q3

STATE S1 S2 S3 S1 S2 S3S4 S5 S6 S7 S8

State Name Q3 Q2 Q1 Q0 Decoding

Table 11-3
States of a 4-bit
Johnson counter.

S1 0 0 0 0 Q3′ ⋅ Q0′
S2 0 0 0 1 Q1′ ⋅ Q0

S3 0 0 1 1 Q2′ ⋅ Q1

S4 0 1 1 1 Q3′ ⋅ Q2

S5 1 1 1 1 Q3 ⋅ Q0

S6 1 1 1 0 Q1 ⋅ Q0′
S7 1 1 0 0 Q2 ⋅ Q1′
S8 1 0 0 0 Q3 ⋅ Q2′

DDPP5.book Page 573 Tuesday, March 28, 2017 5:33 PM

574 Chapter 11 Counters and Shift Registers

An n-bit Johnson counter has 2n − 2n abnormal states and is therefore
subject to the same robustness problems as a ring counter. A 4-bit self-correcting
Johnson counter can be designed as shown in Figure 11-24. This circuit loads
0001 as the next state whenever the current state is 0xx0. A similar circuit using
a single 2-input NOR gate can perform correction for a Johnson counter with any
number of bits. The correction circuit must load 00…01 as the next state
whenever the current state is 0x…x0.

11.2.5 Linear Feedback Shift-Register Counters
The n-bit shift register counters that we’ve shown so far have far less than the
maximum of 2n normal states. An n-bit linear feedback shift-register (LFSR)
counter can have 2n − 1 states, almost the maximum. Such a counter is some-
times called a maximum-length sequence generator.

The design of LFSR counters is based on the theory of finite fields, which
was developed by French mathematician Évariste Galois (1811–1832) shortly
before he was killed in a duel with a political opponent. The operation of an
LFSR counter corresponds to operations in a finite field with 2n elements.

self-correcting Johnson
counter

Figure 11-24
Self-correcting
4-bit, 8-state
Johnson counter

CLOCK

LOAD

Q3_L

Q0

Q1

Q2

Q3

SHRG4U

CLR

CLK

S1

RIN

S0

B QB

A QA

C QC

D QD

LIN

RESET wired to shift from
QD towards QA
(“shift left”)

THE SELF-
CORRECTION

CIRCUIT IS ITSELF
CORRECT!

We can prove that the Johnson-counter self-correction circuit corrects any abnormal
state as follows. An abnormal state can always be written in the form x…x10x…x,
since the only states that can’t be written in this form are normal states (00…00,
11…11, 01…1, 0…01…1, and 0…01). Therefore, within n − 2 clock ticks, the shift
register will contain 10x…x. One tick later it will contain 0x…x0, and one tick after
that the normal state 00…01 will be loaded.

maximum-length
sequence generator

finite fields

DDPP5.book Page 574 Tuesday, March 28, 2017 5:33 PM

11.2 Shift Registers 575

Figure 11-25 shows the structure of an n-bit LFSR counter. The shift regis-
ter’s serial input is connected to the sum modulo 2 of a certain subset of its
output bits. These feedback connections determine the counting sequence. By
convention, the outputs are always numbered and shifted in the direction shown.

Using finite-field theory, it can be shown that for any value of n, there
exists at least one feedback equation that makes the counter go through all 2n − 1
nonzero states before repeating. This is called a maximum-length sequence.

Table 11-4 lists feedback equations that yield maximum-length sequences
for selected values of n. For each value of n greater than 3, there are many other
feedback equations that result in maximum-length sequences, all different.

Figure 11-25 General structure of a linear feedback shift-register counter.

n-bit parallel-out
shift register

PR

CLK

SERIN

QY

QZ

QX

QB

QC

QA

CLOCK

RESET

Xn

XORs connect to
selected outputs

(see table)

odd-parity circuit

Xn–1

Xn–2

Xn–3

X2

X1

X0

maximum-length
sequence

n Feedback Equation

Table 11-4
Feedback equations
for linear feedback
shift-register counters.

2 X2 = X1 ⊕ X0
3 X3 = X1 ⊕ X0
4 X4 = X1 ⊕ X0
5 X5 = X2 ⊕ X0
6 X6 = X1 ⊕ X0
7 X7 = X3 ⊕ X0
8 X8 = X4 ⊕ X3 ⊕ X2 ⊕ X0

12 X12 = X6 ⊕ X4 ⊕ X1 ⊕ X0
16 X16 = X5 ⊕ X4 ⊕ X3 ⊕ X0
20 X20 = X3 ⊕ X0
24 X24 = X7 ⊕ X2 ⊕ X1 ⊕ X0
28 X28 = X3 ⊕ X0
32 X32 = X22 ⊕ X2 ⊕ X1 ⊕ X0

DDPP5.book Page 575 Tuesday, March 28, 2017 5:33 PM

576 Chapter 11 Counters and Shift Registers

An LFSR counter designed according to Figure 11-25 can never cycle
through all 2n possible states. Regardless of the connection pattern, the next state
for the all-0s state is the same—all 0s.

The logic diagram for a 3-bit LFSR counter is shown in Figure 11-26. The
state sequence for this counter is shown in the first three columns of Table 11-5.
Starting in any nonzero state, 100 at reset and in the table, the counter visits six
other states before returning to the starting state, for a total of seven states.

An LFSR counter can be modified to have 2n states, including the all-0s
state, as shown in color for the 3-bit counter in Figure 11-26. The resulting state
sequence is given in the last three columns of Table 11-5. In an n-bit LFSR
counter, an extra XOR gate and an n − 1 input NOR gate connected to all shift-
register outputs except X0 accomplishes the same thing.

Figure 11-26 A 3-bit LFSR counter; modifications to include the all-0s state are shown in color.

RIN

LIN

CLOCK

INIT
(load)

X0

X2

X1

X3

SHRG4U

CLR

CLK

S1

S0

B QB

A QA

C QC

D QD

wired to shift from
QD towards QA
(from X2 towards X0)

Table 11-5
State sequences for the
3-bit LFSR counter in
Figure 11-26.

Original Sequence Modified Sequence

X2 X1 X0 X2 X1 X0

1 0 0 1 0 0
0 1 0 0 1 0
1 0 1 1 0 1
1 1 0 1 1 0
1 1 1 1 1 1
0 1 1 0 1 1
0 0 1 0 0 1
1 0 0 0 0 0
. . . 1 0 0
.

DDPP5.book Page 576 Tuesday, March 28, 2017 5:33 PM

11.2 Shift Registers 577

The states of an LFSR counter are not visited in binary counting order.
However, LFSR counters are typically used in applications where this character-
istic is an advantage. A major application of LFSR counters is in generating test
inputs for logic circuits. In many cases, the “pseudorandom” counting sequence
of an LFSR counter may be more likely than a binary counting sequence to
detect errors, especially if only a subset of the 2n possible n-bit values are used.
LFSRs are also used in the encoding and decoding circuits for certain error-
detecting and error-correcting codes, including CRC codes, which we intro-
duced in Section 2.15.4.

In data communications, LFSR counters are often used to “scramble” and
“descramble” the serial data patterns transmitted by high-speed modems and
network interfaces, including 100-Mbps and 1-Gbps Ethernet. This is done by
clocking the LFSR at the same frequency and XORing one bit of its output with
successive bits of the user’s serial data stream. Even when the user data stream
contains a long run of 0s or 1s (not uncommon), combining it with the LFSR’s
pseudorandom output improves the DC balance of the transmitted signal and
creates a rich set of transitions that allows clocking information to be recovered
more easily at the receiver. For descrambling, the receiver uses an LFSR with the
same counting sequence, initialized to start at the same point in the incoming
data stream, and XORs the same LFSR output bit with the data stream.

WORKING IN
THE FIELD

A finite field has a finite number of elements and two operators, addition and multi-
plication, that satisfy certain properties. An example of a finite field with P elements,
where P is any prime, is the set of integers modulo P. The operators in this field are
addition and multiplication modulo P.

According to finite-field theory, if you start with a nonzero element E and
repeatedly multiply by a “primitive” element α, after P − 2 steps you will generate
the rest of the field’s nonzero elements in the field before getting back to E. It turns
out that in a field with P elements, any integer in the range 2, … , P − 1 is primitive.
You can try this yourself using P = 7 and α = 2, for example. The elements of the
field are 0, 1, … , 6, and the operations are addition and subtraction modulo 7.

The paragraph above gives the basic idea behind maximum-length sequence
generators. However, to apply them to a digital circuit, you need a field with 2n

elements, where n is the number of bits required by the application. On one hand,
we’re in luck, because Galois proved that there exist finite fields with Pn elements
for any integer n, as long as P is prime, including P = 2. On the other hand, we’re out
of luck, because when n > 1, the operators in fields with Pn (including 2n) elements
are quite different from ordinary integer addition and multiplication. Also, primitive
elements are harder to find.

If you enjoy math, you’d be fascinated by the finite-field theory used by LFSR
circuits for maximum-length sequence generators and other applications; see the
References. Otherwise, you can confidently follow the “cookbook” approach here.

DDPP5.book Page 577 Tuesday, March 28, 2017 5:33 PM

578 Chapter 11 Counters and Shift Registers

11.2.6 Shift Registers in Verilog
It’s easy to describe shift registers behaviorally in Verilog, including all of the
types and applications that we encountered in previous subsections; here we’ll
look at several of them.

A serial-in, parallel-out shift register is coded behaviorally in the Verilog
module in Program 11-8, which has a few aspects worth mentioning. The shift-
register width is parameterized, with a default of 8 bits. Concatenation “{}” and
part-select “[]” are used to construct the shifted 8-bit vector from the rightmost
bits of Q and the serial input—this is a “left” shift. You could also shift using a
Verilog shift operator, as in “Q <= (Q<<1) | SERIN,” but only if you understand
exactly how Verilog works in this construction: the rightmost bit of the shifted Q
is 0, and SERIN is padded with 0s on the left before the OR operation (also see
Drill 11.16). The module in Program 11-8 may be modified to obtain a serial-in,
serial-out shift register by declaring Q as a reg only (not output), and assigning
the value of Q[7] to a separately declared output wire SEROUT.

A behavioral Verilog module corresponding to the SHRG4U universal
4-bit shift register is shown in Program 11-9. Concatenation is used to group the

Program 11-8 Verilog module for a serial-in, parallel-out 8-bit shift register.

module Vr8bitSRparout (CLK, CLR, SERIN, Q);
 input CLK, CLR, SERIN;
 output reg [WID-1:0] Q;
 parameter WID = 8;

 always @ (posedge CLK)
 if (CLR == 1) Q <= 0; //Synchronous clear
 else Q <= {Q[WID-2:0], SERIN}; // Shift
endmodule

Program 11-9 Verilog module for a universal 4-bit shift register.

module Vrshrg4u(CLK, CLR, RIN,LIN, S0,S1, A,B,C,D, QA,QB,QC,QD);
 input CLK, CLR, S0, S1, RIN, LIN, A, B, C, D;
 output reg QA, QB, QC, QD;

 always @ (posedge CLK) begin
 if (CLR == 1'b1) {QA,QB,QC,QD} <= 4'b0;
 else case ({S1,S0})
 2'b00: ; // Hold
 2'b01: {QA,QB,QC,QD} <= {RIN,QA,QB,QC}; // Shift right
 2'b10: {QA,QB,QC,QD} <= {QB,QC,QD,LIN}; // Shift left
 2'b11: {QA,QB,QC,QD} <= {A,B,C,D}; // Load
 default: {QA,QB,QC,QD} <= 4'bx; // shouldn’t occur
 endcase
 end
endmodule

DDPP5.book Page 578 Tuesday, March 28, 2017 5:33 PM

11.2 Shift Registers 579

inputs and the outputs into vectors to more easily describe and code the shifting
operations. A case statement is used to select the appropriate operation as a
function of S1 and S0, including no operation in the 00 case, which results in the
register value being held. This is a “full case” (the choice list contains all combi-
nations of the selection expression), so the default case should never occur,
except in simulation if an x or z value is present on S1 or S0.

A test bench for the shift-register module is shown in Program 11-10. Its
testing strategy has three parts that check the module’s operation for a compre-
hensive set of inputs. The first part checks the load, hold and synchronous clear
functions for all 16 combinations of the A–D inputs. Continuing on the next page,
the second part checks the right-shift function for all 64 combinations of the A–D
and the RIN and LIN inputs. The last two are especially important since there can
easily be coding errors where these inputs are used incorrectly (e.g., swapped).
Note that the test bench compares the UUT’s right-shift results against ones that
use Verilog’s built-in shift operations, a double-check on the alternative formu-
lation in the UUT, which uses part-selects and concatenation. The third part of
the test bench does similar checks for the left-shift function.

Program 11-10 Verilog test bench for the 4-bit universal shift register (part 1).

module Vrshrg4u_tb() ;
reg Tclk, CLR, S0, S1, RIN, LIN;
reg [3:0] I; // A-D = I[3:0]
wire [3:0] Q; // QA-QD = Q[3:0]

Vrshrg4u UUT (.CLK(Tclk), .CLR(CLR), .RIN(RIN), .LIN(LIN), .S0(S0), .S1(S1),
 .A(I[3]), .B(I[2]), .C(I[1]), .D(I[0]),
 .QA(Q[3]), .QB(Q[2]), .QC(Q[1]), .QD(Q[0]));

always begin
 #0.5 ; Tclk = 1'b1; #5 ; // Rising edges will occur at 10.5, 20.5, etc.
 Tclk = 1'b0; #4.5 ;
end

initial begin : TB
integer ii, j;
 #116 ; // Wait for FPGA global reset to end
 RIN = 1'b0; LIN = 1'b0; // Don't check RIN and LIN yet
 $display("Starting load, hold, and clear test");
 for (ii=0; ii<=15; ii=ii+1) begin // Do loads and holds for all data-input combs.
 CLR = 1'b0; {S1,S0} = 2'b11; I[3:0] = ii; #10 ; // Load next value, wait for tick
 if (Q != I[3:0]) $display("S1S0=11, ABCD=%4b, QA-QD=%4b, load failed", I, Q);
 {S1,S0} = 2'b00; #10 ; // hold value, wait for tick
 if (Q != I[3:0]) $display("S1S0=00, ABCD=%4b, now QA-QD=%4b, hold fails",I,Q);
 CLR = 1'b1; #10 ; // Do clear and give it a cycle to take effect
 if (Q != 4'b0) $display("CLR=1, QA-QD=%4b, clear failed", Q);
 end
 $display("Clear, load, and hold test completed");
 CLR = 1'b0; // No clear for the rest of the test bench

DDPP5.book Page 579 Tuesday, March 28, 2017 5:33 PM

580 Chapter 11 Counters and Shift Registers

Next, we consider a universal 8-bit parallel-in, parallel-out shift register
with an extended set of functions, controlled by three function-select inputs as
shown in Table 11-6. Besides the hold, load, and shift functions of the SHRG4U,
it performs circular and arithmetic shift operations as defined in the table. Corre-
sponding behavioral Verilog code is shown in Program 11-11. A case statement
is used to specify the shift register’s operation for the possible values of the

Program 11-10 (parts 2 and 3)

 $display("Starting shift-right test for all states");
 for (ii=0; ii<=63; ii=ii+1) begin // Now test right shifts from all starting states
 {S1,S0} = 2'b11; {LIN, RIN, I[3:0]} = ii[5:0]; #10 ; // Load next, wait for tick
 {S1,S0} = 2'b01; #10 ; // Shift right, wait for tick
 if (Q != ((I>>1) | (RIN<<3)))
 $display("S1S0=01, old QA-QD=%4b, LIN,RIN=%2b, QA-QD=%4b, shift-right failed",
 I, {LIN,RIN}, Q);
 end
 $display("All states shift-right test completed");
 $display("Starting shift-left test for all states");
 for (ii=0; ii<=63; ii=ii+1) begin // Now test left shifts from all starting states
 {S1,S0} = 2'b11; {LIN, RIN, I[3:0]} = ii[5:0]; #10 ; // Load next, wait for tick
 {S1,S0} = 2'b10; #10 ; // Shift left, wait for tick
 if (Q != ((I<<1) | {3'b000,LIN}))
 $display("S1S0=10, old QA-QD=%4b, LIN,RIN=%2b, QA-QD=%4b, shift-left failed",
 I, {LIN,RIN}, Q);
 end
 $display("All states shift-left test completed");
end
endmodule

Table 11-6 Function table for an extended-function 8-bit shift register.

Inputs Next state

Function CLR S2 S1 S0 Q7∗ Q6∗ Q5∗ Q4∗ Q3∗ Q2∗ Q1∗ Q0∗

Clear 1 0 0 0 0 0 0 0 0 0 0 0

Hold 0 x x x Q7 Q6 Q5 Q4 Q3 Q2 Q1 Q0

Load 0 0 0 1 D7 D6 D5 D4 D3 D2 D1 D0

Shift right 0 0 1 0 RIN Q7 Q6 Q5 Q4 Q3 Q2 Q1

Shift left 0 0 1 1 Q6 Q5 Q4 Q3 Q2 Q1 Q0 LIN

Shift circular right 0 1 0 0 Q0 Q7 Q6 Q5 Q4 Q3 Q2 Q1

Shift circular left 0 1 0 1 Q6 Q5 Q4 Q3 Q2 Q1 Q0 Q7

Shift arithmetic right 0 1 1 0 Q7 Q7 Q6 Q5 Q4 Q3 Q2 Q1

Shift arithmetic left 0 1 1 1 Q6 Q5 Q4 Q3 Q2 Q1 Q0 0

DDPP5.book Page 580 Tuesday, March 28, 2017 5:33 PM

11.2 Shift Registers 581

select inputs S[2:0]. As before, concatenation and part-selects are used to con-
struct the shifted 8-bit vector from seven bits of Q and the appropriate eighth bit.

Moving on to shift-register counters, Program 11-12 is a Verilog module
for a self-synchronizing 8-bit ring counter. We’ve add two functions that weren’t
present in our previous design in Figure 11-20 on page 572: counting occurs
only if CNTEN is asserted, and an INIT input is provided to force the counter into
an initial state S[7:0]=00000001. Both INIT and CNTEN are synchronous inputs,
sampled on the rising edge of the clock.

Perhaps the most interesting feature in Program 11-12 is its use of “&” as
the boolean reduction AND operator for a vector, something you don’t see too
often. The expression ”&(~S[6:0])” complements the seven high-order bits of
S, and then ANDs them together. Its value is 1 if and only if the low-order bits of
S are 0000000, exactly what is needed as the serial input for self synchronization
using the method described in Section 11.2.3.

Program 11-11 Verilog module for an extended-function 8-bit shift register.

module Vrshrg8ext (CLK, CLR, RIN, LIN, S, D, Q);
 input CLK, CLR, RIN, LIN;
 input [2:0] S;
 input [7:0] D;
 output reg [7:0] Q;
 always @ (posedge CLK)
 if (CLR == 1) Q <= 0;
 else case (S)
 3'd0: Q <= Q; // Hold
 3'd1: Q <= D; // Load
 3'd2: Q <= {RIN, Q[7:1]}; // Shift right
 3'd3: Q <= {Q[6:0], LIN}; // Shift left
 3'd4: Q <= {Q[0], Q[7:1]}; // Shift circular right
 3'd5: Q <= {Q[6:0], Q[7]}; // Shift circular left
 3'd6: Q <= {Q[7], Q[7:1]}; // Shift arithmetic right
 3'd7: Q <= {Q[6:0], 1'b0}; // Shift arithmetic left
 default Q <= 8'bx; // should not occur
 endcase
endmodule

Program 11-12 Verilog module for an 8-bit self-synchronizing ring counter.

module Vr8bitringctr (CLK, INIT, CNTEN, S);
 input CLK, INIT, CNTEN;
 output reg [7:0] S;

 always @ (posedge CLK)
 if (INIT == 1) S <= 8'b00000001; //Synchronous initialization
 else if (CNTEN == 1) S <= {S[6:0], &(~S[6:0])}; // Shift, w/ self-sync logic
 else S <= S; // not needed, S won't change if omitted
endmodule

DDPP5.book Page 581 Tuesday, March 28, 2017 5:33 PM

582 Chapter 11 Counters and Shift Registers

11.2.7 Timing-Generator Examples
Ring counters are often used to generate multiphase clocks or enable signals in
digital systems, and the requirements in different systems are many and varied.
The ability to easily model and modify such a counter’s behavior easily is a dis-
tinct advantage of an HDL-based design.

Figure 11-27 shows a set of clock or enable signals that might be required
in a digital system with six distinct phases of operation. Each phase lasts for two
ticks of a master clock signal, CLK, during which the corresponding active-low
phase-enable signal Pi_L is asserted. We can obtain this sort of timing from a
ring counter if we provide an extra flip-flop T1 to distinguish the two ticks of
each phase, so that a shift occurs on the second tick of each phase. We’ll also
define a few control inputs for additional functionality:

RESET When this input is asserted, no outputs are asserted. The counter
always goes to the first tick of phase 1 after RESET is negated.

RUN When asserted, this input allows the counter to advance to the
second tick of the current phase, or to the first tick of the next phase;
otherwise, the current tick of the current phase is extended.

RESTART Asserting this input causes the counter to go back to the first tick of
phase 1, even if RUN is not asserted.

A Verilog module that provides the corresponding behavior is shown in
Program 11-13. A 6-bit active-high variable, IP, is used for what eventually
becomes the circuit’s output; this internal signal is inverted by a continuous-
assignment statement to produce the required 6-bit active-low output P_L.
During reset, IP is held at all-0s, so no output is asserted. The shift register is

Figure 11-27 Six-phase timing waveforms required in a certain digital system.

CLK

T1

P1_L

P2_L

P3_L

P4_L

P5_L

P6_L

DDPP5.book Page 582 Tuesday, March 28, 2017 5:33 PM

11.2 Shift Registers 583

loaded with a single 1 just after reset is negated (determined by recognizing the
all-0s state) or if RESTART is asserted. If RUN is asserted, T1 is complemented and
the register is shifted if T1 is 0. The shift uses self-correcting logic as explained
previously in connection with Figure 11-20 on page 572.

A test bench for the timing generator is shown in Program 11-14. This
module does not check the UUT’s outputs against its spec; it only applies a clock

Program 11-13 Verilog module for a six-phase timing generator.

module Vrtimegen6 (CLK, RESET, RUN, RESTART, P_L);
 input CLK, RESET, RUN, RESTART;
 output [1:6] P_L;
 reg [1:6] IP; // internal active-high phase signals
 reg T1; // first tick within phase

 always @ (posedge CLK)
 if (RESET == 1) begin T1 <= 1; IP <= 6'b0; end
 else if ((IP == 6'b0) || (RESTART == 1))
 begin T1 <= 1; IP <= 6'b100000; end
 else if (RUN == 1)
 begin T1 <= ~T1; if (T1==0) IP <= {(IP[1:5]==0),IP[1:5]}; end

 assign P_L = ~IP; // active-low phase outputs
endmodule

Program 11-14 Test bench for the timing generator.

module Vrtimegen_tb ();
 reg CLK, RESET, RUN, RESTART;
 wire [1:6] P_L;

 Vrtimegen6 UUT (.CLK(CLK), .RESET(RESET), .RUN(RUN), .RESTART(RESTART), .P_L(P_L));

 always begin // create free-running test clock with 10 ns period
 #0.5 CLK = 1; #5; // 5 ns high (small offset for
 CLK = 0; #4.5; // 5 ns low waveform readability)
 end

 initial begin
 RESET = 1; RESTART = 0; RUN = 0;
 #115
 RESET = 0; #20 RUN = 1; #30
 RESTART = 1; #10 RESTART = 0; #50
 RESTART = 1; #10 RESTART = 0; #30 RUN = 0; #20 RUN = 1; #40
 RESTART = 1; #20 RESTART = 0; #100 RUN = 0; #10 RUN = 1; #40
 RESTART = 1; #10 RESTART = 0; #150
 RESTART = 1; #10 RESTART = 0; #180
 $stop(1);
 end
endmodule

DDPP5.book Page 583 Tuesday, March 28, 2017 5:33 PM

584 Chapter 11 Counters and Shift Registers

and a sequence of control values, requiring the user to check the resulting output
waveforms visually. Part of the resulting waveforms are shown in Figure 11-28.
Several aspects of the UUT’s operation can be checked in the waveforms:

• When RESET is released, operation begins in phase 1 as required. Since RUN
is still negated, the outputs are “stuck” in the first half of phase 1. After RUN
is asserted, they advance to the second half of phase 1 and then phase 2.

• Asserting RESTART returns the output sequence back to phase 1.

• RESTART may last longer than one tick, which lengthens phase 1.

• RESTART may occur at the end or in the middle of a 2-tick phase. In the
latter case, the last tick of that phase is aborted.

• Negating RUN lengthens the current phase accordingly.

• After phase 6, the outputs cycle back to phase 1 as expected.

The set of test cases in a test bench like this one are only as comprehensive
as the designer’s thinking about various situations that might occur, and they
check the UUT only as well as the designer can visually recognize incorrect or
unwanted outputs. This example does not show every possible situation, nor
does it check the results automatically like a self-checking test bench would. But
it’s good enough to show that the basic operation of the module is correct and to
exhibit a couple of behaviors that the designer might want to change or specify
more fully in the spec and the resulting module (see Exercise 11.55).

Before showing another timing generator, this is a good place to introduce
an alternative test-bench file structure that yields essentially the same test bench
but is preferred by some designers and in some environments. We’ll see the util-
ity of this different structure when we get to the next timing generator.

The test bench in Program 11-14, and each of our test benches before it,
declares the UUT’s input and output signals, instantiates the UUT, and then
follows that with Verilog code for stimulating the UUT. Some of our previous
test benches have also included code here to check the UUT’s outputs, as well as

Figure 11-28 Timing waveforms produced by test bench for Vrtimegen6 module.

DDPP5.book Page 584 Tuesday, March 28, 2017 5:33 PM

11.2 Shift Registers 585

“helper” tasks to aid the checking and displaying of results. The alternative file
structure has a much smaller top-level test-bench file with just the first two parts
followed by an `include statement:

• Declare the UUT’s input and output signals.

• Instantiate one or more UUTs.

• Use an `include statement to fetch a “stimulus file” that contains Verilog
test code for generating clocks and stimulus patterns, checking results, and
defining local variables and “helper” tasks as needed.

Note that the stimulus file does not define a module, but it exists within a module
which is the top-level test bench itself. The top-level test bench and stimulus file
in the alternate style are shown in Programs 11-15 and 11-16, respectively; each
was simply extracted from our original test bench in Program 11-14. We’ll reuse
Program 11-16 in the other top-level test benches in this subsection.

Program 11-15 Alternate-style top-level test bench for the timing generator.

module Vrtimegen_tba ();
 reg CLK, RESET, RUN, RESTART;
 wire [1:6] P_L;

 Vrtimegen6 UUT (.CLK(CLK), .RESET(RESET), .RUN(RUN), .RESTART(RESTART), .P_L(P_L));

`include "Vrtimegen_stim.v"

endmodule

Program 11-16 Stimulus file for alternate-style timing-generator test bench.

 always begin // create free-running test clock with 10 ns period
 #0.5 CLK = 1; #5; // 5 ns high (small offset for
 CLK = 0; #4.5; // 5 ns low waveform readability)
 end

 initial begin
 RESET = 1; RESTART = 0; RUN = 0;
 #115
 RESET = 0; #20 RUN = 1; #30
 RESTART = 1; #10 RESTART = 0; #50
 RESTART = 1; #10 RESTART = 0; #30 RUN = 0; #20 RUN = 1; #40
 RESTART = 1; #20 RESTART = 0; #100 RUN = 0; #10 RUN = 1; #40
 RESTART = 1; #10 RESTART = 0; #150
 RESTART = 1; #10 RESTART = 0; #180
 $stop(1);
 end

DDPP5.book Page 585 Tuesday, March 28, 2017 5:33 PM

586 Chapter 11 Counters and Shift Registers

Now we can show a modification of previous timing generator that is use-
ful for some applications. The new design must produce output waveforms that
are asserted only during the second tick of each two-tick phase, producing the
waveforms shown in Figure 11-29. The active parts of the Pi_L waveforms are
guaranteed be completely non-overlapping, even during the brief transitions
between phases. This is important in some applications, for example, providing
the output-enable inputs for multiple devices that may drive the same three-state
bus. This change has a subtle but important effect on the design approach.

In the original design, we used a 6-bit ring counter and one auxiliary state
bit T1 to keep track of the two states within each phase. With the new waveforms
this is not possible. In the states between active-low pulses (STATE = 0, 2, 4, etc.
in Figure 11-29) the phase outputs are all negated, so they can no longer be used
to figure out which state should be visited next. Something else is needed to keep
track of the state.

There are many different ways to solve this problem. One obvious way to
get the waveforms of Figure 11-29 from Program 11-13 would be to keep IP
defined as is, and combinationally “AND” each 2-tick-wide phase bit with T1 so
P_L is asserted only during the second half of the 2-tick cycle, so that for each
phase i, P_L[i] = ~(IP[i] & ~T1). However, that’s a bad idea if these signals
are themselves going to be used as clocks, because they may have glitches, as
we’ll explain next.

Regardless of the module’s target realization—ASIC, FPGA, or PLD—the
Pi and T1 signals are all outputs from flip-flops clocked by the same master
clock CLK. Although these signals change at approximately the same time, their
timing is never quite exact. One output may change sooner than another; this is

Figure 11-29 Modified timing waveforms for a digital system.

CLK

P1_L

P2_L

P3_L

P4_L

P5_L

P6_L

STATE 0 1 2 3 4 5 6 7 8 9 10 11 0 1 2 3 4

DDPP5.book Page 586 Tuesday, March 28, 2017 5:33 PM

11.2 Shift Registers 587

called output timing skew. For example, suppose that on the transition from state
1 to 2 in Figure 11-29, IP[2] flip-flop output changes to 1 before ~T1 changes
to 0. In this case, a short glitch could appear on the output of any combinational
circuit that realizes P_L[2] = ~(IP[2] & ~T1).

To get glitch-free outputs, we should design the circuit so that each phase
output is a registered output. One way to do this is to build a 12-bit ring counter
and use only alternate outputs to yield the desired waveforms. Program 11-17 is
a Verilog module that does the job. The first always block is the sequential part,
creating the 12 flip-flops with the needed initialization and shifting behaviors.
The second always block is the combinational part, just “picking off” alternate
shift-register outputs and inverting them.

Another approach is to recognize that, since the waveforms cycle through
12 states, we can build a modulo-12 binary counter and decode the states of that
counter. A Verilog module using this approach is shown in Program 11-18. The
states of the counter correspond to the “STATE” values shown in Figure 11-29.
Since the phase outputs must be glitch free, they are decoded one cycle early and
then stored in a register, to appear on the output at the correct time. Also note that
while P_L is set by the case statement at the beginning of the always block, this

output timing skew

Program 11-17 Verilog for a modified six-phase timing generator.

module Vrtimegen12r (MCLK, RESET, RUN, RESTART, P_L);
 input MCLK, RESET, RUN, RESTART;
 output reg [1:6] P_L;
 reg [1:12] IP; // internal active-high phase signals

 always @ (posedge MCLK)
 if (RESET == 1) IP <= 12'b0;
 else if ((IP == 12'b0) || (RESTART == 1)) IP <= 12'h800;
 else if (RUN == 1) IP <= {IP[12],IP[1:11]};
 else IP <= IP;

 always @ (*) // Combinational output logic -- just inverters
 for (ii=1; ii<=6; ii=ii+1) P_L[ii] = ~IP[2*ii];
endmodule

ALTERNATIVE
BENEFITS

Notice that compared to previous modules, the new time generators in Programs
11-17 and 11-18 happened to use a different name for the master clock (MCLK instead
of CLK), but the alternative test-bench file structure lets us handle that easily in the
instantiation without having to copy over the rest of the test code. The alternative
test-bench file structure is also useful if we might later enhance the checking capa-
bilities in the stimulus file (Vrtimegen_stim.v), since we no longer have to update
the same code in two or more different test benches.

DDPP5.book Page 587 Tuesday, March 28, 2017 5:33 PM

588 Chapter 11 Counters and Shift Registers

value may be changed in the if-else statement that follows if RESET is asserted.
Because of this, no output is asserted during reset.

A top-level test bench for the two new modules for modified waveforms is
shown in Program 11-19. This test bench instantiates both modules so we can
compare their output waveforms with each other, as in Figure 11-30. The first
module’s waveforms, P_L1[1:6], look alright, with characteristics very similar
to what we observed for the original time-generator design:

Program 11-18 Counter-based Verilog module for a modified six-phase timing generator.

module Vrtimegen12ct1 (MCLK, RESET, RUN, RESTART, P_L);
 input MCLK, RESET, RUN, RESTART;
 output reg [1:6] P_L;
 reg [3:0] S; // internal state variables for mod-12 counter

 always @ (posedge MCLK) begin
 if (RUN == 1) begin
 P_L <= 6'b111111; // default all outputs negated
 case (S) // assert the appropriate output
 4'd1: P_L[1] <= 0; // in counts 1,3,5,7,9,11
 4'd3: P_L[2] <= 0;
 4'd5: P_L[3] <= 0; // Note these may be overridden below if
 4'd7: P_L[4] <= 0; // RESET or RESTART is asserted
 4'd9: P_L[5] <= 0;
 4'd11: P_L[6] <= 0;
 endcase
 end
 if (RESET == 1) begin S <= 0; P_L <= 6'b111111; end // reset case
 else if (RUN == 1) begin // run cases
 if ((RESTART==1) S <= 0; // restart from any state
 else if (S == 11) S <= 0; // wraparound
 else if (RUN == 1) S <= S+1; // Normal count
 end
 // maintain state if not reset, restarting, or running
 end
endmodule

Program 11-19 Top-level test bench for the modified six-phase timing generators.

module Vrtimegen_tba12 ();
 reg CLK, RESET, RUN, RESTART;
 wire [1:6] P_L1, P_L2;

 Vrtimegen12r U1 (.MCLK(CLK),.RESET(RESET),.RUN(RUN),.RESTART(RESTART),.P_L(P_L1));
 Vrtimegen12ct1 U2 (.MCLK(CLK),.RESET(RESET),.RUN(RUN),.RESTART(RESTART),.P_L(P_L2));

`include "Vrtimegen_stim.v"

endmodule

DDPP5.book Page 588 Tuesday, March 28, 2017 5:33 PM

11.2 Shift Registers 589

• When RESET is released, operation might begin in phase 1 as required, but
we can’t tell for sure. Since RUN is still negated, P_L1[1] is “stuck” in the
first half of phase 1. After RUN is asserted, though, operation continues to
the second half of phase 1 where P_L1[1] is asserted, and then to phase 2.

• Asserting RESTART returns the output sequence back to phase 1.

• RESTART may last longer than one tick, which lengthens the first “half” of
phase 1, with P_L1[1] still negated.

• RESTART may occur while P_L1[i] is asserted or negated. In the latter
case, the second half of phase i is aborted, and two ticks elapse with no
phase signal asserted (more if RESTART lasts longer than one tick).

• Negating RUN lengthens the current phase accordingly. Either the negated
or the asserted portion of the phase signal may be lengthened, depending
on when RUN is negated.

• After phase 6, the outputs cycle back to phase 1 as expected.

In the second module’s waveforms, P_L2[1:6], a problem immediately
jumps out: the phase signals are one tick behind the corresponding signals in the
first module! But a little thought immediately reveals the reason for this. To
eliminate output glitches, we stored the decoded phase outputs in a register, but
that delays the output signals by one clock tick. We can eliminate that delay by
decoding the register state corresponding to the first half of each phase, so that
the registered output signal is asserted one tick later, in the second half of the
phase. The required changes are shown in Program 11-20.

Rerunning the test bench to compare the outputs of Vrtimegen12ct2 with
those of Vrtimegen12r, we find that they completely match except for one
“corner case.” Finding and correcting that case is left as Exercise 11.52.

Figure 11-30 Timing waveforms produced by the Vrtimegen_tba12 test bench.

DDPP5.book Page 589 Tuesday, March 28, 2017 5:33 PM

590 Chapter 11 Counters and Shift Registers

11.2.8 LFSR Examples
Our last examples involve LFSRs using the design approach in Section 11.2.5.
Program 11-21 is a parameterized Verilog module for an LSFR with N bits
QX[N-1:0]. The following parameters are defined:

• N is the width of the LFSR in bits, with default of 8.

• FE[N-1:0] defines the feedback equation, with a 1 for each output bit that
it includes, from left to right for QX[N-1] down to QX[0]. The default
value is based on the n=8 row in Table 11-4 on page 575.

• SEED is the initial value for QX[N-1:0]. Any nonzero value will generate
a maximum-length sequence; an all-0s value would leave QX stuck in the
all-0s state.

Of course, an LFSR will generate a maximum-length sequence only if the
feedback equation is chosen properly, for example from Table 11-4. A test bench
that checks the Vrlfsr module for this aspect of proper operation is shown in
Program 11-22. After resetting the LFSR, it stores the LFSR output, which is the
seed value, in a variable seedQX. If the LFSR is operating properly, this value
should not be repeated until exactly 2n − 1 clock ticks later.

Program 11-20 Corrected Verilog for counter-based timing generator.

module Vrtimegen12ct2 (MCLK, RESET, RUN, RESTART, P_L);
 ...
 case (S) // Assert the appropriate output
 4'd0: P_L[1] <= 0; // in tick after counts 0,2,4,6,8,10
 4'd2: P_L[2] <= 0;
 4'd4: P_L[3] <= 0; // These may be overridden below if
 4'd6: P_L[4] <= 0; // RESET or RESTART is asserted
 4'd8: P_L[5] <= 0;
 4'd10:P_L[6] <= 0;
 endcase
 ...

SYNTHESIS
RESULTS

The modified six-phase timing generator in Program 11-17 is essentially a 12-bit
ring counter with some extra features, so it uses 12 flip-flops and some additional
logic for the extra features—8 LUTs when targeted to a Xilinx 7-series FPGA. The
corresponding counter-based timing generator in Program 11-20 needs only four
flip-flops for its modulo-12 counter, but also six more to create glitch-free phase
outputs for a total of 10 flip-flops, plus 6 LUTs for additional logic.

So, the counter-based version is a little smaller, and its worst-case delay path
in the targeted FPGA turns out to be a little shorter, so it can run about 10% faster.
But the ring-counter version was easier to design, in my opinion. Both approaches
are good to have in your bag of tricks.

DDPP5.book Page 590 Tuesday, March 28, 2017 5:33 PM

11.2 Shift Registers 591

Program 11-21 Parameterized Verilog module for an LSFR with 2 to N bits.

module Vrlfsr (CLK, RESET, RUN, QX);
 parameter N = 8; // width of the LFSR
 parameter FE = 8'b00011101; // Define the 1 bits of the feedback equation
 parameter SEED = 8'b00000001; // Define initial state value (seed)
 input CLK, RESET, RUN;
 output reg [N-1:0] QX; // state bits for the LFSR
 reg XN; // feedback value into QX[N-1]
 integer i;

 always @ (posedge CLK) begin
 if (RESET == 1) QX <= SEED;
 else if (RUN == 1) begin
 XN = 0;
 for (i=0; i<N; i=i+1) // XOR the bits of QX corresponding to
 XN = XN ^ (FE[i] & QX[i]); // nonzero terms in the feedback eqn
 QX <= {XN, QX[N-1:1]}; // Shift right, feeding in XN on left
 end
 end
endmodule

Program 11-22 Verilog test bench for an N-bit LFSR.

module Vrlfsr_tb ();
 parameter N = 8;
 reg CLK, RESET, RUN;
 wire [N-1:0] QX;
 reg [N-1:0] seedQX; // Capture the starting value of QX
 integer steps; // Count the number of steps

 Vrlfsr UUT (.CLK(CLK),.RESET(RESET),.RUN(RUN),.QX(QX));

 always begin // create free-running test clock with 10 ns period
 #0.2 CLK = 1; #5; // 5 ns high (tiny offset for
 CLK = 0; #4.8; // 5 ns low waveform readability)
 end

 initial begin
 RESET = 1; RUN = 0; #115
 RESET = 0; #20
 seedQX = QX; steps = 1;
 RUN = 1; #10 // Do one step
 while ((QX != seedQX) && (steps < 2**N)) begin // Keep going until
 steps = steps + 1; #10 ; // the seed repeats or too many steps
 end
 $display("Executed %0d steps, QX = %b\n",steps,QX);
 if ((QX != seedQX)) $display("Seed %b never repeated!\n",seedQX);
 end
endmodule

DDPP5.book Page 591 Tuesday, March 28, 2017 5:33 PM

592 Chapter 11 Counters and Shift Registers

The test bench uses a while statement to execute a loop whose duration
matches the clock period, counting how many clock periods (steps) have elapsed
and comparing QX with seedQX at each step. When they match, the simulation
displays the number of steps taken and stops. The test bench terminates the
while loop if no match has occurred after 2n steps. Note that it works properly
only if n is less than the integer width used by the simulator.

As mentioned in Section 11.2.5, LFSRs are sometimes used to generate
pseudorandom numbers. Many years ago, before “interactive art” was popular,
the author’s digital-designer friend JC Heater constructed an interactive-art
piece incorporating a white-noise-based random number generator. The idea
was to generate a sequence of random multi-digit decimal numbers, a new one
every few seconds, and to display the sequence on a big, bright, multi-digit
seven-segment display. Amazingly, passersby would stop and stare at the display
for a long time, waiting for an “interesting” number like their address or birthday
to appear somewhere in the dozen or so digits!

We can write a Verilog module that instantiates two existing modules to
make a 10-digit pseudorandom version of Heater’s artistic creation. As shown in
Program 11-23, the Vrrandomart module instantiates the Vrlfsr module with
the parameter values needed to create a 32-bit LFSR, and connects the LFSR’s
output to a 32-bit to 10-digit binary-to-decimal decoder module Vrbintodec32,
Program 8-28 on page 433. The module’s output, DIGITS[39:0], contains ten
4-bit BCD digits that can be hooked up to seven-segment displays with built-in
decoders. Alternatively, the module could be enhanced to incorporate ten seven-
segment decoders, allowing its outputs to drive the segments directly (see
Exercise 11.72).

TEST-BENCH
RESULTS

I tested all of the feedback equations in Table 11-4 with the LFSR test bench running
on the Xilinx Vivado simulator, and they all passed. The simulation of the 32-bit
LFSR ran for about 10 hours on my Windows laptop—over four billion steps! And
to successfully complete it, I had to turn off waveform generation to avoid using up
all of the laptop’s disk storage. They were pretty boring waveforms anyway.

Program 11-23 Verilog module for an LFSR-based interactive-art project.

module Vrrandomart (CLK, RESET, RUN, DIGITS);
 input CLK, RESET, RUN;
 output wire [39:0] DIGITS; // Digits for the 7-seg displays
 wire [31:0] RAND;

 Vrlfsr #(.N(32), .FE(32'h00400007), .SEED(32'h12345679)) U2
 (.CLK(CLK), .RESET(RESET), .RUN(RUN), .QX(RAND));
 Vrbintodec32 U3 (.BIN(RAND), .DEC(DIGITS));
endmodule

DDPP5.book Page 592 Tuesday, March 28, 2017 5:33 PM

11.3 Iterative versus Sequential Circuits 593

A test bench for the Vrrandomart module is shown in Program 11-24. If
you use this test bench to perform a post-synthesis functional or timing simula-
tion, it may run slowly enough that you can enjoy staring at its outputs scrolling
by on your computer, and wait for your own “significant number” to appear!

*11.3 Iterative versus Sequential Circuits
We introduced iterative circuits in Section 7.4.2. The function of an n-module
iterative circuit can be performed by a sequential circuit that uses just one copy
of the module but requires n steps (clock ticks) to obtain the result. This is an
excellent example of a space/time trade-off in digital design.

As shown in Figure 11-31, flip-flops are used in the sequential-circuit ver-
sion to store the cascading outputs at the end of each step; the flip-flop outputs
are used as the cascading inputs at the beginning of the next step. The flip-flops
must be initialized to the boundary-input values before the first clock tick, and
they contain the boundary-output values after the nth tick.

*Through out this book, optional sections are marked with an asterisk.

Program 11-24 Verilog test bench for the LFSR-based interactive-art project.

`timescale 1ns/100ps
module Vrrandomart_tb ();
 reg CLK, RESET, RUN;
 wire [39:0] DIGITS; // Digits for the 7-seg displays
 integer i,d;
 reg [39:0] dg;

 Vrrandomart UUT (.CLK(CLK), .RESET(RESET), .RUN(RUN), .DIGITS(DIGITS));

 always begin // create free-running test clock with 50 ns period
 CLK = 0; #25; // 25 ns high
 CLK = 1; #25; // 25 ns low
 end

 initial begin
 RESET = 1; RUN = 0;
 #150 RESET = 0; RUN = 1;
 for (i=1; i<=1000; i=i+1) begin
 #50 $write ("Random number: ");
 dg = DIGITS;
 for (d=9; d>=0; d=d-1)
 begin $write ("%1d", dg[39:36]); dg = dg << 4; end
 $write ("\n");
 end
 $stop(1);
 end
endmodule

DDPP5.book Page 593 Tuesday, March 28, 2017 5:33 PM

594 Chapter 11 Counters and Shift Registers

Since an iterative circuit is a combinational circuit, all of its primary and
boundary inputs may be applied simultaneously, and its primary and boundary
outputs are all available after a combinational delay. In the sequential-circuit
version, the primary inputs must be delivered sequentially, one per clock tick,
and the primary outputs are produced with similar timing. Therefore, serial-out
shift registers are often used to provide the inputs, and serial-in shift registers are
used to collect the outputs. For this reason, the sequential-circuit version of an
“iterative widget” is often called a “serial widget.”

For example, Figure 11-32 shows the basic design for a serial comparator
circuit. The shaded block is identical to the module used in the iterative compar-
ator of Figure 7-24 on page 334. The circuit is drawn in more detail in
Figure 11-33, which includes a synchronous reset input. When RESET_L is
asserted, the initial value of the cascading flip-flop is forced to 1 at the next clock
tick. The initial value of the cascading flip-flop corresponds to the boundary
input in the iterative comparator.

Figure 11-31
General structure
of the sequential-
circuit version of an
iterative circuit.

moduleCI CO

PI
C C +1

C

PO

PO

CLK

CLOCK

register

PI

Figure 11-32
Simplified serial
comparator circuit.

EQO
EQID Q

CLK

CLOCK

X

Y

CMP

serial comparator

Figure 11-33
Detailed serial
comparator circuit.

EQI

X

Y

RESET

CLOCK

D Q

CK

EQO

DDPP5.book Page 594 Tuesday, March 28, 2017 5:33 PM

11.3 Iterative versus Sequential Circuits 595

An n-bit serial comparison requires n + 1 clock ticks. RESET_L is asserted
at the first clock tick. RESET_L is negated and data bits are applied at the next n
ticks. The EQI output gives the comparison result during the clock period after
the last tick. A timing diagram for two successive 4-bit comparisons is shown in
Figure 11-34. The spikes in the EQO waveform indicate the time when the com-
binational outputs are settling in response to new X and Y input values.

A serial binary adder circuit for addends of any length can be constructed
from a full adder and a D flip-flop, as shown in Figure 11-35. The flip-flop,
which stores the carry between successive bits of the addition, is cleared to 0 at
reset. Addend bits are presented serially on the A and B inputs, starting with the
LSB, and sum bits appear on S in the same order.

Because of the large size and high cost of digital logic circuits in the early
days, many computers and calculators used serial adders and other serial
versions of iterative circuits to perform arithmetic operations. Even though these
arithmetic circuits aren’t used much today, they are an instructive reminder of

Figure 11-34 Timing diagram for serial comparator circuit.

CLOCK

RESET_L

X

bit 0 1

1 0 0 1 0 10 0

2 3 R 0 1 2 3 R

Y

1 0 1 0 0 10 0

EQO

EQI

not equal equal

serial binary adder

Figure 11-35
Serial binary adder
circuit.

CIN

B

A

COUT

S S

COUT

CIN

RCOUT
D Q

CLK

CLOCK

B

A

RESET

full adder

DDPP5.book Page 595 Tuesday, March 28, 2017 5:33 PM

596 Chapter 11 Counters and Shift Registers

the space/time trade-offs that are possible in digital design. Iterative circuits and
corresponding sequential circuits can also be considered for applications where
each basic computation is performed on a unit larger than a bit, like a nibble or
byte (for example, see Exercises 11.75–11.76).

References
Logic hazards have been known since at least the 1950s, and function hazards
were discussed by Edward J. McCluskey in Logic Design Principles (Prentice
Hall, 1986). Galois fields were invented centuries ago, and their applications to
error-correcting codes, as well as to the LFSR counters of this chapter, are
described in introductory books on coding theory, including Error-Control Tech-
niques for Digital Communication by A. M. Michelson and A. H. Levesque
(Wiley-Interscience, 1985).

Some PLDs and CPLDs contain XOR structures that allow large counters
to be designed without a large number of product terms. This requires a some-
what deeper understanding of counter excitation equations, as described in
Section 10.5 of the second edition of this book. Fortunately, the synthesis tools
for these devices should know how to figure this out for you.

The logic elements in some FPGAs, including the Xilinx 7 series, can be
configured to create large serial-in, serial-out shift registers using far fewer
resources than would be consumed using the device’s fully programmable flip-
flops and interconnect. Recall that a 7-series LUT has 64 bits of memory that are
normally initialized to specify a combinational logic function; each memory bit
is essentially a 1-bit latch. Using a special “SRL” configuration, a single LUT’s
64 latches may be hooked up in series as 32 edge-triggered D flip-flops (each
one consuming two latches), forming a serial-in, serial-out shift register up to 32
bits in length, independent of the handful of fully programmable flip-flops in the
same slice. See Xilinx publication UG474, 7 Series FPGA Configurable Logic
Block, for more information and options.

Drill Problems
11.1 Design a 4-bit ripple down counter using four T flip-flops and no other

components.

11.2 Design a 4-bit ripple up counter using four D flip-flops of the type shown in
Figure 10-12 and no other components.

11.3 Assume that the propagation delay from clock to output of a D flip-flop is 5 ns.
What is the maximum propagation delay from clock to output for the 4-bit ripple
counter of Drill 11.2?

11.4 Describe the connections needed for a CNTR4U to be set up as a modulo-N
counter that counts from to 15, using no additional gates.

11.5 Consider the divide-by-16 counter timing diagram in Figure 11-7. Are there any
transitions in which the RCO output could have a glitch?

16 N–

DDPP5.book Page 596 Tuesday, March 28, 2017 5:33 PM

Drill Problems 597

11.6 In the discussion of Figure 11-8, the text states that in the decoder, “the path from
A1 to Y1_L may be faster than the path from A0 to Y1_L.” Explain how this can
be true. Hint: Consider Figure 6-17.

11.7 What is the counting sequence of the counter circuit in Figure X11.7? Ignoring
initial behavior right after reset, is there a way to eliminate the AND gate and still
get a counter with the same modulus?

11.8 What is the counting sequence of the counter circuit in Figure X11.7 if the bottom
AND-gate input is connected to Q2 instead of Q0?

11.9 A CNTR4U counter is hooked up with inputs ENP, ENT, and D3 always HIGH,
inputs D0–D2 always LOW, input LD = Q0 ⋅ Q2, and input CLR = Q1 ⋅ Q3. The
CLK input is hooked up to a free-running clock signal. Draw a logic diagram for
this circuit. Assuming that the counter starts in state 0000, write the output
sequence on Q3–Q0 for the next 15 clock ticks.

11.10 Multiple instances of the CNTR4U counter may be cascaded to create a binary
counter with an arbitrarily large number of bits, 4n, using no additional logic.
Determine and describe the cascading arrangement: how should the RCO outputs
be hooked up, and which control inputs should be hooked up to the same inputs
to control the overall 4n-bit counter?

11.11 Determine the widths of the glitches shown in Figure 11-9 on the Y2_L output of
the 3-to-8 decoder, assuming that the decoder is internally structured as shown in
Figure 6-17 on page 255, and that each internal gate has a delay of 10 ns.

11.12 A certain design with a 100-MHz clock signal CLK also requires a 10-MHz signal
CLK10 with a 50% duty cycle. Identify one or more outputs of existing Verilog
modules in Section 11.1.5 that have the required characteristics when the module
is clocked by CLK.

11.13 Write a Verilog test bench that instantiates the two versions of a 3-bit counter with
decoding in Programs 11-6 and 11-7, and runs them for a few dozen clock ticks.
Examine the resulting output waveforms to confirm that the outputs of the second
version are the same as the first’s except delayed by one clock tick.

11.14 Repeat Drill 11.13 with an error in Program 11-7: changing the last non-blocking
assignment to S_L to a blocking assignment. How does this change the module’s

Figure X11.7

CNTR4U

CLR

CLK

LD

Q0

Q1

ENP

ENT

D0 Q0

Q1

Q2

Q3

D1

D2

D3

Q2

Q3

RCO

SOMETHING

CLOCK

RESET

DDPP5.book Page 597 Tuesday, March 28, 2017 5:33 PM

598 Chapter 11 Counters and Shift Registers

output and why? Then change all four assignments to blocking, run the test bench
again, and explain the output behavior. What rule have you violated?

11.15 A CNTR4UD is a 4-bit up/down counter with the same inputs and outputs as the
CNTR4U binary counter, plus an UP/DN input that controls whether it counts up
(UP/DN=1) or down. The function of the RCO output also depends on UP/DN; it
is asserted in state 1111 when counting up, and 0000 when counting down. What
is the counting sequence of the circuit shown in Figure X11.15?

11.16 The shift-register module in Program 11-8 uses part-select and concatenation to
specify the left-shifted value, while the text offered another way to do it using a
Verilog built-in shift operator. Corresponding to these two approaches, write two
different Verilog expressions for specifying a right-shifted value.

11.17 Starting with state 00001, write the sequence of the first ten states for a 5-bit
LFSR counter designed according to Figure 11-25 and Table 11-4.

11.18 As we explained in the box on page 195, in some places you can get away with
using logical negation (!) when technically, bitwise negation (~) should be used.
But the continuous-assignment statement in Program 11-13 is not one of them.
Determine what happens if you mistakenly used logical negation.

11.19 A digital designer built the self-synchronizing ring counter of Figure 11-20 after
substituting a 3-input NAND gate for the NOR gate. What was the counting
sequence of the resulting circuit? Was the counter still self-synchronizing?

11.20 Write a parameterized Verilog module Vrringn for an n-bit self-synchronizing
ring counter with synchronous INIT and CNTEN inputs, and outputs Q_L[n-1:0],
with default n=6. It should have a single circulating 0, starting at Q_L[0] at when
INIT is asserted and shifting left at each clock tick when CNTEN is 1.

11.21 Write a Verilog module for a 4-bit ripple counter similar to Figure 11-2 plus a
reset input. Not that you’d ever want to build such a nasty thing, but target your
module to your favorite FPGA and comment on the synthesis and implementation
(place and route) results.

CNTR4UD

CNTR4UD

UP/DN

CLK

LD

QA

QB

ENP

ENT

A

B

C

D

QC

QD

RCO

Q3_L

CLOCK

Q0

Q1

Q2

Q3

CLRRESET
Figure X11.15

DDPP5.book Page 598 Tuesday, March 28, 2017 5:33 PM

Exercises 599

Exercises
11.22 What limits the maximum counting speed of a ripple counter, if you don’t insist

on being able to read the counter value at all times? At what times can you read it?

11.23 Write a formula for the maximum clock frequency of the synchronous serial bina-
ry counter circuit in Figure 11-3. In your formula, let tTQ denote the propagation
delay from T to Q in a T flip-flop, tsetup the setup time of the EN input to the rising
edge of T, and tAND the delay of an AND gate.

11.24 Repeat Exercise 11.23 for the synchronous parallel binary counter circuit shown
in Figure 11-4, and compare results.

11.25 Repeat Exercise 11.23 for an n-bit synchronous serial binary counter.

11.26 Repeat Exercise 11.23 for an n-bit synchronous parallel binary counter. Beyond
what value of n is your formula no longer valid?

11.27 Using a CNTR4U 4-bit binary counter, design a modulo-11 counter circuit with
the counting sequence 4, 5, 6, …, 13, 14, 4, 5, 6, ….

11.28 Find the datasheet on the Web and look up the internal logic diagram for a 74x162
synchronous decade counter, and write its state table in the style of Table 11-1,
including its counting behavior in the normally unused states 10–15.

11.29 Devise a cascading scheme for the CNTR4U, analogous to the synchronous par-
allel counter structure of Figure 11-4, such that the maximum counting speed is
the same for any counter with up to 4(n+1) bits (using n+1 CNTR4Us), where n
is the maximum number of inputs of a high-speed AND gate. Identify and name
the relevant timing parameters of the CNTR4U and write a formula for the maxi-
mum counting frequency based on those parameters and the propagation delay of
the AND gates.

11.30 Design a modulo-129 counter using two CNTR4Us and no additional gates.

11.31 Based on the Vrcntr4u module in Program 11-1, write a new module Vrcntr32
that uses a parameter WID to set the counter width, with a default of 32 bits. Using
your favorite synthesis tool, target the new module to your favorite FPGA and
determine how many LUTs and flip-flops it requires. Repeat with WID=64. Hint:
With Xilinx Vivado 2016.3 tools and a 7-series FPGA, the number of LUTs was
at least 25% greater than the counter width.

11.32 Write a Verilog test bench Vrcntr32_tb based on Program 11-5 to test the mod-
ule in Exercise 11.31. Based on the width of the instantiated counter, be sure that
the new test bench exercises it for a several ticks before and after it rolls over from
all 1s to all 0s, without having to run (or examine!) a zillion cycles.

11.33 Write a Verilog module for an 8-bit modulo-N counter with clear and load inputs,
where the value of N is specified by a constant N in the module.

11.34 Repeat the preceding exercise, but let N be determined by a value that is loaded
from the data inputs into a second 8-bit register when a control signal “MLOAD” is
asserted. Use comments to document what happens when more than one control
input is asserted; your design should exhibit reasonable behavior in these cases.

11.35 Design a clocked synchronous circuit with four inputs, N3, N2, N1, and N0, that
represent an integer N in the range 0–15. The circuit has a single output Z that is

DDPP5.book Page 599 Tuesday, March 28, 2017 5:33 PM

600 Chapter 11 Counters and Shift Registers

asserted for exactly N clock ticks during any 16-tick interval (assuming that N is
held constant during the interval of observation). (Hints: Use combinational logic
with a CNTR4U set up as a free-running divide-by-16 counter. The ticks in which
Z is asserted should be spaced as evenly as possible, that is, every second tick
when N = 8, every fourth when N = 4, and so on.)

11.36 Modify the circuit of Exercise 11.35 so that Z produces N transitions in each
16-tick interval. The resulting circuit is called a binary rate multiplier and was
once sold as a TTL MSI part, the 7497. (Hint: Gate the clock with the level output
of the previous circuit.)

11.37 Repeat Exercises 11.35 and 11.36 using an 8-bit input N7–N0, and model the
design using a behavioral Verilog module for an available programmable device.

11.38 Design a modulo-16 counter, using one CNTR4UD (see Drill 11.15) and at most
one discrete logic gate, with the following counting sequence: 7, 6, 5, 4, 3, 2, 1,
0, 8, 9, 10, 11, 12, 13, 14, 15, 7, ….

11.39 Write a Verilog module for an n-bit counter that realizes a counting sequence sim-
ilar to the one in Exercise 11.38. Write your code so that the size of the counter
can be changed by changing the value of a single constant N.

11.40 Write a Verilog module for a binary up/down counter intended to be used in the
elevator controller in a 20-story building. The counter should have enable and up/
down control inputs. It should stick at state 1 when counting down, stick at state
20 when counting up, and skip state 13 in either mode. Write a test bench that
exercises your module for a comprehensive set of inputs.

11.41 As defined in Section 11.1, a counter is any sequential circuit whose state dia-
gram is a single cycle. Write a Verilog module Vr4bitanyctr with two inputs,
CLK and RESET, and a 4-bit output Q[3:0]. The module should specify the desired
counting sequence in a list that can be easily modified with a one-line change to
obtain any desired 16-state, 4-bit counting sequence. At reset, your module
should go to the first state in the list. Write a test bench Vr4bitanyctr_tb that
runs your counter for a few dozen clock ticks so you can observe its counting
sequence. Test your module first with a sequential counting sequence and then
with a jumbled one. Hint: Investigate and use Verilog’s capability to initialize the
values of a reg array.

11.42 Write a parameterized Verilog module Vrshrgnu based on Program 11-9 for an
n-bit universal shift register, with a default of n = 8.

11.43 Write a parameterized Verilog test bench Vrshrgnu_tb based on Program 11-10
to test the Vrshrgnu module in Exercise 11.42. Use the Verilog $random function
to load random data into the shift register, and test 1000 random data values per
function regardless of the value of n.

11.44 Suppose you are asked to design a serial computer, one that moves and processes
data one bit at a time. The first decision you must make is which bit to transmit
and process first, the LSB or the MSB. Which would you choose, and why?

11.45 Write a Verilog module for a 4-bit self-synchronizing ring counter that does not
have a reset input. Write a test bench that initializes the counter to an unknown
state (all x’s) and then exercises it for a dozen clock ticks. Does the counter ever

binary rate multiplier

DDPP5.book Page 600 Tuesday, March 28, 2017 5:33 PM

Exercises 601

self-synchronize in simulation? Is there a way in Verilog to simulate what hap-
pens in the real circuit? Explain, and comment on the value, if any, of eliminating
the additional circuitry required for an actual reset input.

11.46 Write a Verilog test bench that checks whether the self-synchronizing ring
counter of Program 11-12 always returns to a valid state from any of its possible
256 states within n clock ticks. Also, use the test bench to determine (or confirm
if you think you already know it) the value of n. Do not modify the original
module in any way. However, you should test your test bench’s ability to find
errors by changing “[6:0]” to “[7:1]” in the original module, an error that
actually occurred in a draft of this chapter. Hint: “Use the _____, Luke.”

11.47 Write a Verilog module for an 8-bit self-correcting ring counter whose states are
11111110, 11111101, …, 01111111. Include reset and enable inputs, where the
counter goes to the initial state when reset is asserted, and counts only if the
enable input is asserted.

11.48 Write a Verilog module Vr8bitringsed for an 8-bit self-error-detecting ring
counter that has a single recirculating 1. The counter should be designed so that
if it ever detects an error state—with no 1s or more than one 1 in its output—it
goes to the all-0s state and stays there and asserts an ERROR output until it is
reset. When your module is targeted to your favorite FPGA, how do its resource
requirements compare with those of a “plain” 8-bit self-correcting ring counter?

11.49 Write a test bench that checks the operation of the Vr8bitringsed module in
Exercise 11.48, ensuring that it goes to the “error” state if it somehow reaches any
of the 248 possible invalid states. Can you find a way to write the test bench or
otherwise use the tools so you do not have to modify the UUT design in any way
(like providing new inputs in the UUT to load an invalid starting state)? If not,
what’s the best you can do?

11.50 Write a Verilog module for a 12-state self-correcting Johnson counter. Write a test
bench that stimulates the counter, and check the resulting waveforms for correct-
ness. Synthesize the module, targeting to your favorite FPGA, and determine how
many resources (flip-flops and LUTs) it requires.

11.51 Modify the module in Exercise 11.50 to provide a new input TSTLD which, when
asserted at the clock edge, loads the counter’s flip-flops with an arbitrary value
taken from a new set of data inputs. Write a test bench which, using TSTLD and
the new data inputs, determines whether the counter eventually returns to the nor-
mal Johnson counting sequence from all possible starting states. Your test bench
should display each possible starting state and indicate whether or not the counter
returns to the Johnson counting sequence from that state, and total the number of
starting states for which it fails. Test the test bench by running it with a non-self-
correcting version of the Johnson counter.

11.52 Update the test bench in Program 11-19 to instantiate timing generator modules
Vrtimegen12r and Vrtimegen12ct2. Run it and show that their outputs mostly
match, but find at least one case where they don’t. Make a corrected module
Vrtimegen12ct3 so the outputs do match completely, re-running the test bench
to prove it.

DDPP5.book Page 601 Tuesday, March 28, 2017 5:33 PM

602 Chapter 11 Counters and Shift Registers

11.53 Write a new stimulus file Vrtimegen_stim2.v for use with the test bench in
Program 11-19, where the new version compares the outputs of the two UUTs at
each time step and displays an informative message when they are different. Test
the new version by using Vrtimegen12r and Vrtimegen12ct2 as the UUTs.

11.54 Starting with your solution to Exercise 11.53, update the stimulus file to generate
a comprehensive set of stimulus inputs algorithmically, varying the lengths of
time that RUN and RESTART are asserted and negated and overlapped. Use the new
stimulus file to compare the output of Vrtimegen12r against the outputs of both
Vrtimegen12ct2 and Vrtimegen12ct3 (your solution to Exercise 11.52), and
determine whether there are any more corner cases to be discovered.

11.55 Modify the Vrtimegen6 timing-generator module in Program 11-13 so that if
RUN is negated, it does not stop until the currently asserted phase signal has been
negated (i.e., phase signals are never shortened or lengthened). Check your mod-
ified module with the Vrtimegen_tb test bench, adding additional tests if
necessary to prove that you’ve got it right.

11.56 Modify the Vrtimegen6 timing-generator module in Program 11-13 so that the
phases are always at least two clock ticks long, even if RESTART is asserted at the
beginning of a phase. However, RESET should still take effect immediately. Check
your modified module with the Vrtimegen_tb test bench, adding additional tests
if necessary to prove that you’ve got it right.

11.57 Suppose that the Vrtimegen12r or the Vrtimegen12ct2 timing-generator
module is used to control a dynamic memory system, such that all six phases must
be completed to read or write the memory. If the timing generator is reset or
restarted during a write operation without completing all six phases, the memory
contents may be corrupted. Modify the module to avoid this problem.

11.58 Design two different 2-bit, 4-state counters, where each design uses two edge-
triggered D flip-flops of the kind shown in Figure 10-12(c) and no other gates.

11.59 Design a 4-bit Johnson counter and decoding for all eight states using four D flip-
flops (Figure 10-12(c)) and eight gates. Your counter need not be self-correcting.

11.60 Write a Verilog module for an 8-bit Johnson counter that starts in the all-0s state.
Include reset and enable inputs, where the counter goes to the initial state when
reset is asserted, and counts only if the enable input is asserted.

11.61 Prove that an even number of shift-register outputs must be connected to the odd-
parity circuit in an n-bit LFSR counter if it generates a maximum-length
sequence. (Note that this is a necessary but not a sufficient requirement. Also,
although Table 11-4 is consistent with what you’re supposed to prove, simply
quoting the table is not a proof!)

11.62 Prove that X0 must appear on the righthand side of any LFSR feedback equation
that generates a maximum-length sequence. (Note: Assume the LFSR bit order-
ing and shift direction are as given in the text; that is, the LFSR counter shifts
right, toward the X0 stage.)

11.63 Suppose that an n-bit LFSR counter is designed according to Figure 11-25 and
Table 11-4. Prove that if the odd-parity circuit is changed to an even-parity

DDPP5.book Page 602 Tuesday, March 28, 2017 5:33 PM

Exercises 603

circuit, the resulting circuit is a counter that visits 2n − 1 states, including all of
the states except 11…11.

11.64 Find a feedback equation for a 4-bit LFSR counter, other than the one given in
Table 11-4, that produces a maximum-length sequence.

11.65 Given an n-bit LFSR counter that generates a maximum-length sequence (2n − 1
states), prove that connecting an extra XOR gate and an n − 1 input NOR gate as
shown in Figure 11-26 produces a counter with 2n states.

11.66 Prove that a sequence of 2n states is still obtained if a NAND gate is substituted
for a NOR above, but that the state sequence is different.

11.67 In the Verilog LFSR module of Program 11-21, find a way to eliminate the for
loop by using a Verilog reduction operator. Check the correctness of your new
module using the test bench in Program 11-22. Synthesize both modules and tar-
get to your favorite programmable device. Do they have identical synthesis
results, or if you can’t tell, identical resource requirements?

11.68 Correct the test bench in Program 11-22 to make a new test bench Vrlfsr_tbc
that works correctly even if the LFSR width is the same as or wider than integers.
Find a way to test it that doesn’t take all night or longer.

11.69 Try to guess a polynomial that yields a maximum-length sequence for a 10-bit
LFSR counter. Use the test bench in Exercise 11-22 to determine whether each of
your guesses works.

11.70 After completing Exercise 11.69, modify your test bench to discover and display
all 10-bit polynomials that yield maximum-length sequences. How many are
there?

11.71 Design an iterative circuit for checking the parity of a 16-bit data word with a
single even-parity bit. Does the order of bit transmission matter?

11.72 Instantiate the Vrrandomart module in Program 11-23 in a hierarchical design
with outputs that are suitable for directly driving the segment inputs of ten seven-
segment displays; use the Vr7segdec module of Program 6-12.

11.73 Designer JC Heater told the author that his original random-number interactive
art had one other feature that captivated some viewers. Random numbers with one
or more leading zeroes didn’t occur very frequently—ten times less likely for
each additional zero. To highlight these events, the seven-segment decoding logic
included “leading-zero blanking” (leading zeroes are not displayed). Design an
enhanced module Vrrandomart_bl that incorporates this feature and whose
outputs can directly drive the segment inputs of ten seven-segment displays. You
can incorporate the Vr7segdec module of Program 6-12.

11.74 Design an iterative circuit with one input Bi per stage and two boundary outputs
X and Y such that X = 1 if at least two Bi inputs are 1 and Y = 1 if at least two
consecutive Bi inputs are 1.

11.75 Sketch the structure of an iterative circuit that converts a 32-bit binary number
into ten BCD digits, based on the Vrbintodec32 combinational Verilog module
in Program 8-28. Indicate the circuit’s boundary inputs and outputs, primary
inputs and outputs, and cascading inputs and outputs.

DDPP5.book Page 603 Tuesday, March 28, 2017 5:33 PM

604 Chapter 11 Counters and Shift Registers

11.76 Write a Verilog module Vrbintodec32_seq for a clocked sequential circuit that
performs the same conversion as the iterative circuit in Exercise 11.75, in ten
clock ticks using just one instance of the Vrdiv10_so module. Besides a clock
input CLK, your module should have a 32-bit data input DIN, a LOAD control
input that is asserted for one tick to start a conversion, and a 4-bit DIG output. The
BCD digits corresponding to DIN should appear on DIG, least significant digit
first, during the next 10 clock periods after LOAD is asserted. Your circuit should
use no more than 40 flip-flops.

11.77 Write a self-checking test bench for the module in Program 11.76.

11.78 Write a structural Verilog module Vrrev8ser for a sequential circuit with inputs
CLK, RESET, and SERIN, and output SEROUT, with the following behavior that
repeats every eight clock ticks after reset. The circuit receives eight bits of input,
one bit per clock tick, on SERIN. After the eighth tick, it outputs the bits one at a
time, on SEROUT in reverse order. During this time, it also gathers the next eight
bits which will also be put out in reverse order immediately after being received.
During the first eight clock periods after reset, SEROUT should be 0.

Now, here’s the challenge. Your design should instantiate just one Vrcntr4u and
two Vrshrg4u components and it should not contain any other registers, though
it may contain a small amount of combinational logic, limited to one continuous
assignment statement. Note that the Vrcntr4u and Vrshrg4u components have
more functionality than is needed in this application, but their unused logic will
be pruned away in synthesis. Write a test bench that checks for proper operation
of your module for a sequence of 1000 random 8-bit inputs (8000 clock ticks).

DDPP5.book Page 604 Tuesday, March 28, 2017 5:33 PM

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

605

c h a p t e r12
State Machines in Verilog

here are many possible coding styles for creating state machines in
Verilog, including using no consistent style at all. Some styles, and
especially an inconsistent style, are guaranteed to get you in trou-
ble. Without the discipline of a consistent coding style, it is fairly

easy to write syntactically correct Verilog code where the simulator’s opera-
tion, the synthesized hardware’s operation, and what you think the machine
should be doing are all different!

The basic coding style that we’ll introduce in the first section of this
chapter has been used for years by digital-design professionals to give a
minimum of errors. This style also has the advantage of separating the major
sections of a state machine’s operation and structure, making the design easy
to understand and maintain. We’ll also show some variations and simplifica-
tions of the style. What you eventually end up using in your own designs
may well depend on the standards that are dictated by your own design orga-
nization or team.

Test benches are important companions to state-machine designs, and
there are a few different ways to construct them, as discussed in the second
section of this chapter. Following that, the rest of the chapter will be devoted
to numerous examples of state machines and test benches, interspersed with
a few new concepts including “don’t-care” state encodings and decomposi-
tion of state machines.

T

module ButSM (

 input CLK, A, B, C, D,

 output reg Q1, Q2

);

always @ (posedge CLK)

 begin

 if ((A==B)&&(C!=D))

 {Q1,Q2}<={1'b1,~Q1};

 else Q1 <= 0;

 if ((C==D)&&(A!=B))

 {Q1,Q2}<={~Q2,1'b1};

 else Q2 <= 0;

 end

endmodule

DDPP5.book Page 605 Tuesday, March 28, 2017 5:33 PM

606 Chapter 12 State Machines in Verilog

12.1 Verilog State-Machine Coding Styles
12.1.1 Basic Coding Style
Our basic Verilog state-machine coding style matches the general structure of
Mealy and Moore state machines that we presented in Figures 9-4 and 9-5 on
page 444. The code can be divided into three parts:

• State memory. This may be specified in behavioral form using an always
block that is sensitive to a clock-signal edge, as we showed in
Section 10.3.2 and Program 10-6 on page 516 for edge-triggered D flip-
flops; or it can use a structural style with explicit flip-flop instantiations, as
we showed in Section 10.3.1.

• Next-state (excitation) logic. This is written as a combinational always
block whose sensitivity list includes the machine’s current state and inputs.
This block usually contains a case statement that enumerates all possible
values of the current state.

• Output logic. This is another combinational always block that is sensitive
to the current state and inputs. It may or may not include a case statement,
depending on the complexity of the output function.

The detailed coding within each section may vary. When there is a tight
coupling of next-state and output-logic specifications, it may be desirable to
combine the next-state and output logic into a single combinational always
block, and indeed, into a single case statement. When pipelined outputs are
used, the output memory could be specified along with the state memory, or a
separate always block or structural code could be used. You’ve already seen all
of the Verilog features needed to support state-machine design, but we’ll refresh
your memory as we go along.

Figure 12-1 Moore state-machine structure implied by Verilog coding style.

CLOCK
Next-State Logic State Memory

Output Logic

Z

A, B
SregSnext

 @ (A, B, Sreg)

 (Sreg)

 INIT: (A==0) Snext = A0;

 Snext = A1;

 A0: ...

always begin

 case

 if

 else

 @ (CLOCK)

 Sreg <= Snext;

always posedge

 @ (Sreg)

 (Sreg)

 INIT, A0, A1: Z = 0;

 OK0, OK1: Z = 1;

 Z = 0;

always

 case

 default

 endcase

DDPP5.book Page 606 Tuesday, March 28, 2017 5:33 PM

12.1 Verilog State-Machine Coding Styles 607

Figure 12-1 shows the relationship between our coding style and state-
machine structure for the example state-machine in the next subsection. Two
other very important aspects of any coding style are parameter statements for
defining state encodings, and reset capability for the state memory, as we’ll see.

12.1.2 A Verilog State-Machine Example
In Section 9.3, we illustrated the state-table design process using the simple
design problem below:

Design a clocked synchronous state machine with two inputs, A and B, and
a single output Z that is 1 if:

– A had the same value at each of the two previous clock ticks, or
– B has been 1 since the last time that the first condition was true.

Otherwise, the output should be 0.

We constructed a state/output table for this machine in Section 9.3, and we’ve
repeated it here in Table 12-1. Also, we showed a corresponding Verilog module
which is repeated in Program 12-1.

As usual, the Verilog module declaration specifies its inputs and outputs—
CLOCK, A, B, and Z in this example. Next, it declares variables Sreg and Snext
for the machine’s current and next states, respectively. A parameter statement
specifies the state assignment, defining a unique constant for each of the
machines’s five states. Here we just assigned five 3-bit values in sequence, but
other assignments could be made by changing the definitions in the parameter
statement. State encodings with more than three bits would also require a corre-
sponding change in the width of Sreg and Snext.

The first always block in the module creates the state memory. This block
executes on the rising edge of CLOCK and loads the next state Snext into the state
register Sreg. A synthesizer infers positive-edge-triggered D flip-flops for Sreg.

The second always block specifies the next-state logic using a case state-
ment. It assigns a value to Snext in six cases, corresponding to the five explicitly
defined states and a default for other, undefined states. For robustness, the
default case sends the machine back to the INIT state. Each “if” statement has a

A B

Table 12-1
State and output table
for the example state
machine.

S 00 01 11 10 Z

INIT A0 A0 A1 A1 0
A0 OK0 OK0 A1 A1 0
A1 A0 A0 OK1 OK1 0

OK0 OK0 OK0 OK1 A1 1
OK1 A0 OK0 OK1 OK1 1

S∗

DDPP5.book Page 607 Tuesday, March 28, 2017 5:33 PM

608 Chapter 12 State Machines in Verilog

final “else” to ensure that a value is always assigned to Snext. If no value were
assigned to Snext for any state/input combinations, the Verilog compiler would
unnecessarily infer a latch to hold the value of Snext for those combinations.

The third and final always block in Program 12-1 handles the machine’s
single Moore output, Z, which is set to a value as a function of the state only. It
would be easy to define Mealy outputs here as well, by making Z be a function of
the inputs as well as the state in each enumerated case. If this is done, then the
inputs would also be added to the sensitivity list of the always block, either
explicitly or by just using the “*” shorthand.

Program 12-1 Verilog module for state-machine example.

module VrSMex(CLOCK, A, B, Z);
 input CLOCK, A, B;
 output reg Z;
 reg [2:0] Sreg, Snext; // State register and next state
 parameter [2:0] INIT = 3'b000, // Define the states
 A0 = 3'b001,
 A1 = 3'b010,
 OK0 = 3'b011,
 OK1 = 3'b100;

 always @ (posedge CLOCK) // Create the state memory
 Sreg <= Snext;

 always @ (A, B, Sreg) begin // Next-state logic
 case (Sreg)
 INIT: if (A==0) Snext = A0;
 else Snext = A1;
 A0: if (A==0) Snext = OK0;
 else Snext = A1;
 A1: if (A==0) Snext = A0;
 else Snext = OK1;
 OK0: if (A==0) Snext = OK0;
 else if ((A==1) && (B==0)) Snext = A1;
 else Snext = OK1;
 OK1: if ((A==0) && (B==0)) Snext = A0;
 else if ((A==0) && (B==1)) Snext = OK0;
 else Snext = OK1;
 default Snext = INIT;
 endcase
 end

 always @ (Sreg) // Output logic
 case (Sreg)
 INIT, A0, A1: Z = 0;
 OK0, OK1: Z = 1;
 default Z = 0;
 endcase
endmodule

DDPP5.book Page 608 Tuesday, March 28, 2017 5:33 PM

12.1 Verilog State-Machine Coding Styles 609

If the output logic is uncomplicated, especially in Moore machines like the
present example, it may be more convenient to specify it using a continuous
assignment statement. In the present example, the final always block could be
replaced by just one continuous assignment:

 assign Z = (Sreg==OK0) || (Sreg==OK1);

Of course, this would also necessitate declaring Z as type wire instead of reg.

12.1.3 Combined State Memory and Next-State Logic
The structure of the three always blocks in Program 12-1 makes it very clear, to
the designer at least, that we are creating a state machine with the three blocks
shown in Figure 12-1—state memory, next-state (excitation) logic, and output
logic. This structure also makes it very easy to instantiate explicit flip-flop or
register components for the state memory, instead of having the compiler infer
them from a behavioral description.

On the other hand, depending on the design environment, when the Verilog
compiler processes the next-state logic, it doesn’t necessarily “know” that this is
next-state logic for a state machine. As far as it’s concerned, this is just general

NEXT-STATE
CODING-STYLE

VARIATIONS

As we recommended when we introduced case statements back in Section 5.9.7, the
best Verilog coding practices use full case statements only—ones where all possible
choices are covered, either explicitly or by the use of a default case. The latter is
used in next-state case statement in Program 12-1.

Nevertheless, some designers would precede this case statement with one
more line of code, “Snext = INIT”. This establishes a “default” next state for the
machine if the case statement fails to cover all state/input combinations. While the
default case at the end handles unused states, it does nothing for any uncovered
input combinations that may exist in the other cases. There are no such uncovered
input combinations for any state in Program 12-1, because each case has a single if
statement with a final else clause that picks up any input combinations that weren’t
explicitly tested. But nothing except the designer’s care in coding makes that true.

Another useful variation occurs in machines where most transitions stay in the
current state. Then, the case statement can be preceded by a line of code that main-
tains the current state as default, “Snext = Sreg”.

Yet another variation is the default “Snext = 3'bx” (or whatever width the
state register has). In simulation, this ensures that if the next-state logic ever sees an
unspecified state/input combination, the state will be undefined (x’s), which is easy
to detect in simulation.

Finally, you may have noticed that the begin-end block surrounding the case
statement in the next-state always block is not really necessary syntactically, since
the case is the single procedural statement needed to follow always. However, the
begin-end would still be needed if we wanted to add any other statements to the
always block, like a default assignment to Snext.

DDPP5.book Page 609 Tuesday, March 28, 2017 5:33 PM

610 Chapter 12 State Machines in Verilog

combinational logic and the compiler may do some things that are silly in the
state-machine context, like inferring latches for unspecified state/input combi-
nations. For that reason, some designers prefer to combine the state memory and
next-state logic into a single always block. We used this style for all of the
counters and shift registers in Chapter 11, which are technically state machines.

To combine the state memory and the next-state logic, the first two always
blocks in previous state machine are rewritten as shown in Program 12-2, in a
new module VrSMexc. The next-state values for Sreg are set directly using non-
blocking assignment statements within the sequential always block. If the next
value of the state register is not specified, the synthesis tool understands that by
convention, the register value is not to change at the clock edge. For example, if
we deleted the last else clause in Program 12-2, we would still get the same
synthesized circuit.

12.1.4 Reset Inputs
State machines and other clocked sequential circuits should normally have a
reset or other initialization input to force them into a known starting state. Even
if the starting state is unimportant in physical operation—for example, in a
counter whose sole purpose is to provide a lower frequency output for other
circuits—an initialization input is usually needed in simulation and in device
testing to provide a known starting point.

Reset and initialization inputs may be synchronous or asynchronous. The
latter use the flip-flops’ asynchronous preset or clear inputs and can be asserted
at any time, overriding the devices’ CLOCK and other inputs. Synchronous reset
and initialization inputs may use dedicated flip-flop control inputs that have

Program 12-2 Combined state memory and next-state logic in VrSMexc.

 always @ (posedge CLOCK) // State memory and next-state logic
 case (Sreg)
 INIT: if (A==0) Sreg <= A0;
 else Sreg <= A1;
 A0: if (A==0) Sreg <= OK0;
 else Sreg <= A1;
 A1: if (A==0) Sreg <= A0;
 else Sreg <= OK1;
 OK0: if (A==0) Sreg <= OK0;
 else if ((A==1) && (B==0)) Sreg <= A1;
 else Sreg <= OK1;
 OK1: if ((A==0) && (B==0)) Sreg <= A0;
 else if ((A==0) && (B==1)) Sreg <= OK0;
 else Sreg <= OK1;
 default Sreg <= INIT;
 endcase

DDPP5.book Page 610 Tuesday, March 28, 2017 5:33 PM

12.1 Verilog State-Machine Coding Styles 611

been provided for that purpose, like the synchronous R and S inputs of the FDRE
and FDSE flip-flop library components that we introduced in Table 10-1 on
page 510. Or they may be obtained by gating the combinational logic signal that
would otherwise be applied to a flip-flop’s normal synchronous input, for exam-
ple, ANDing R′ or ORing S with the normal D input signal.

Program 12-3 shows two readily synthesizable examples of state memory
that have an active-high RESET input, the first synchronous and the second asyn-
chronous. As we noted in the box on page 518, some synthesis tools are picky
about the behaviorally specified asynchronous reset, requiring the asynchronous
assignment to be written in the if clause and the synchronous assignment to be
in the else.

The initial state upon reset need not be all-0s or all-1s, but the circuit cost
of providing an arbitrary starting-state value varies with the target technology.
For example, in the case of Xilinx 7-series FPGAs, we noted in Figure 10-33 on

TOO MANY
CODING STYLES

ABEL, the early HDL for programming PLDs, had basically just one coding style
for designing state machines; Verilog allows many. Why? There is really no signif-
icant upside in all the different possibilities offered by Verilog, and there are a lot of
ways they can get you into trouble.

The answer is in the history of the two languages. ABEL was designed first and
foremost as a hardware description language, and it was used immediately to target
real devices and real digital-design projects. Verilog, on the other hand, was
designed as a simulation language, and a fairly general one at that. Its features were
directed primarily at the needs of simulation, including the need to get fast simula-
tion performance in an era when computers were not so fast and cheap. Verilog’s use
for synthesis came later.

So, when using Verilog for state-machine design, it is up to the designer to
adopt a consistent coding style, one that will avoid errors and will be easily recog-
nizable and maintainable by fellow team members. Normally, style guidelines will
be published and maintained by the designer’s company, but lacking that, feel free
to use the guidelines recommended here!

Program 12-3 Synchronous and asynchronous reset for state machines in
Verilog for new modules VrSMexrs and VrSMexra.

// State memory with active-high synchronous reset
always @ (posedge CLOCK) // Create state memory
 if (RESET==1) Sreg <= INIT; else Sreg <= Snext;

// State memory with active-high asynchronous reset
always @ (posedge CLOCK or posedge RESET) // Create state memory
 if (RESET==1) Sreg <= INIT; else Sreg <= Snext;

DDPP5.book Page 611 Tuesday, March 28, 2017 5:33 PM

612 Chapter 12 State Machines in Verilog

page 532 that each flip-flop’s S/R input may be programmed at initialization to
be S or R. On the other hand, in the 22V10 PLD (page 529), all of the flip-flops
must be set or reset together.

An asynchronous initialization input can be asserted at any time, but in
general, it cannot be negated at any time. A problem can occur if it is negated too
close to a triggering clock edge. Some flip-flops may respond to the edge, and
others may not, and the system may start operation in an invalid state. In larger
circuits and systems, this problem is more likely simply because there are more
opportunities for delays to vary across the physical circuit or system. To prevent
this problem, reset signals that originate from outside sources are typically syn-
chronized with the internal clock or clocks before being applied to internal flip-
flops, regardless of whether their initialization inputs are synchronous or asyn-
chronous. The details of such reset synchronization circuits of course depend on
timing and start-up-sequencing requirements of the system.

12.1.5 Pipelined Moore Outputs in Verilog
Another interesting variation is possible in our example Verilog state machine.
As written, the module defines a conventional Moore-type state machine with
the structure shown in Figure 12-1 on page 606. But we can convert the machine
to have pipelined outputs with the structure shown in Figure 12-2. To do this, we
need only to declare a “next-output” variable Zn and replace the original Verilog
state-memory and output code of Program 12-1 with the code shown in
Program 12-4, corresponding to the structure shown in Figure 12-2. Here,
instead of computing Z from the inputs and Sreg, the output logic computes Zn
from the inputs and Snext. The value of Zn is loaded into the pipelined output
register to produce Z at the next clock tick.

The new machine’s behavior is indistinguishable from that of the original
machine, except for timing. We’ve reduced the propagation delay from CLOCK to
Z by producing Z directly on a register output, but we may have also increased
the setup-time requirements of A and B to CLOCK. In addition to their propagation
delay through the next-state logic, changes in A and B must also propagate
through the output logic in time to meet the setup time requirement of the output

Program 12-4 Verilog pipelined output code.

 always @ (posedge CLOCK) // Create output register -- combine
 Z <= Zn; // with state-memory code if desired

 always @ (Snext) // Output logic
 case (Snext)
 INIT, A0, A1: Zn = 0;
 OK0, OK1: Zn = 1;
 default Zn = 0;
 endcase

DDPP5.book Page 612 Tuesday, March 28, 2017 5:33 PM

12.1 Verilog State-Machine Coding Styles 613

flip-flop’s D input. Depending on the implementation technology and the syn-
thesis tools, this extra delay may or may not actually occur. When the new
design was targeted to a Xilinx FPGA using their Vivado tools, the synthesizer
was able to “flatten” the logic for Zn to fit in a single LUT driving the D input of
the output (Z) flip-flop. So, the timing path for Zn to the D input was about the
same as the path for any of the Snext bits to the state-memory D input.

12.1.6 Direct Verilog Coding Without a State Table
All of the variations in the example state-machine design that we’ve shown so
far rely on the state table that we originally constructed by hand in Section 9.3.1.
However, it is possible to write a Verilog model directly, without creating a state
table or state diagram at all.

Based on the original problem statement on page 607, the key simplifying
idea is to remove the last value of A from the state definitions, and instead to have
a separate register that keeps track of it (LASTA). Then only two non-INIT states
must be defined: LOOKING (“still looking for a match”) and OK (“got a match or B
has been 1 since last match”).

A Verilog module based on this approach is shown in Program 12-5. The
first always block creates the state memory and the LASTA register. The second
one creates the next-state logic using the idea in the preceding paragraph. The Z
output is a simple combinational decode of the OK state, so we create it using a
continuous-assignment statement instead of the more verbose always block and
case statement. Note this requires Z to be declared as a wire rather than a reg.

The next-state logic in Program 12-5 is easier to understand and relate to
the word description than the original, and we avoided the tedium of developing

Figure 12-2 Structure of Verilog state machine with pipelined outputs.

Output Register

CLOCK
Next-State Logic State Memory

Output Logic

Z

A, B SregSnext

Zn

 @ (A, B, Sreg)

 (Sreg)

 INIT: (A==0) Snext = A0;

 Snext = A1;

 A0: ...

always begin

 case

 if

 else

 @ (Snext)

 (Snext)

 INIT, A0, A1: Zn = 0;

 OK0, OK1: Zn = 1;

 Zn = 0;

always

 case

 default

 endcase

 @ (CLOCK)

 Sreg <= Snext;

always posedge

 @ (CLOCK)

 Z <= Zn;

always posedge

DDPP5.book Page 613 Tuesday, March 28, 2017 5:33 PM

614 Chapter 12 State Machines in Verilog

a state table. Clearly, this is what HDL-based state-machine design is all about.
The rest of the examples in this chapter are developed without a state table or
state diagram. We’ll also look at state-machine test benches, starting right after
the following optional subsection.

*12.1.7 State-Machine Extraction
Some Verilog synthesis tools have a feature for recognizing state machines in
HDL code, as long as they match a prescribed template. Once they recognize a
state machine, the tools can do interesting things with it, such as trying different
state encodings or using “special” optimization methods that are tuned to the
target technology. In the Xilinx Vivado tool suite, this feature is called FSM
extraction. The prescribed templates for state-machine extraction typically
include requirements such as the following:

• Next-state behavior is specified by a case statement where the selection
expression is the state variable, which itself is a multibit vector of type reg.

* Throughout this book, optional sections are marked with an asterisk.

Program 12-5 Simplified Verilog state-machine design.

 module VrSMexa(CLOCK, RESET, A, B, Z);
 input CLOCK, RESET, A, B;
 output wire Z; // declared as wire for continuous assignment
 reg LASTA; // LASTA holds last value of A
 reg [1:0] Sreg, Snext; // State register and next state
 parameter [1:0] INIT = 2'b00, // Define the states
 LOOKING = 2'b10,
 OK = 2'b11;

 always @ (posedge CLOCK) begin // State memory (with sync. reset)
 if (RESET==1) Sreg <= INIT; else Sreg <= Snext;
 LASTA <= A;
 end

 always @ (A, B, LASTA, Sreg) begin // Next-state logic
 case (Sreg)
 INIT: Snext = LOOKING;
 LOOKING: if (A==LASTA) Snext = OK;
 else Snext = LOOKING;
 OK: if (B==1 || A==LASTA) Snext = OK;
 else Snext = LOOKING;
 default Snext = INIT;
 endcase
 end

 assign Z = (Sreg==OK) ? 1 : 0; // Output logic
endmodule

FSM extraction

DDPP5.book Page 614 Tuesday, March 28, 2017 5:33 PM

12.1 Verilog State-Machine Coding Styles 615

• The state variable is assigned only constant values, if not directly, then
indirectly in a way that the tool can figure out. For example, in our recom-
mended state-machine coding style, a variable, Snext, is assigned to Sreg,
but Snext is assigned only constant values and Vivado can determine this.

• The number of different constant values (states) is at least some minimum;
in Vivado the default minimum is five.

• Ideally, the constant values are defined in a parameter statement, though
that may not be a strict requirement.

• There are no assignments to individual bits or multibit parts of the state
variable.

• The state variable is not declared as a module output.

Once the synthesis tool recognizes a state machine, it converts it to an
internal symbolic representation. At that point, the most common optimization
is to try different state encodings and to select the one that gives the best results
according to some metric, like overall circuit size or timing performance. In
Vivado, there are several encodings that can either be tried automatically by the
tool or forced by a user option:

• Sequential. The states are encoded with a minimum number of bits, with
constant values assigned in binary counting order as they are encountered
in the internal symbolic representation, which is not necessarily the same
order as in the original case statement.

• Gray. The states are assigned in a Gray-code counting sequence matching
the loop structure of the machine’s next-state behavior. This only works
well if the machine has a main loop structure or other long chains of states
with no branching. One goal of Gray-code order is to have only one state
variable change on each transition, but this goal cannot be completely
achieved even in a pure loop if the number of states is not even (see the box
on page 466).

• Johnson. The states in the machine’s loop structure, if it has one, are
assigned in the same sequence as those of a Johnson counter. Note that an
n-bit Johnson counter provides a maximum of 2n states. The main benefit
of Johnson encoding, even without a looping next-state behavior, is that
each state can be decoded from just two state bits regardless of the total
number of state bits. This may reduce the total resource requirements,
especially in an FPGA if decoding all of the state bits plus inputs would
require more than one LUT.

• One-hot. Each state has a corresponding state bit that is set to 1 in that state
and to 0 in all others, so there are n bits for n states. States in this encoding
require the most flip-flops but have the simplest state decoding. This may
result in a faster circuit, with fewer levels of logic needed for decoding.

DDPP5.book Page 615 Tuesday, March 28, 2017 5:33 PM

616 Chapter 12 State Machines in Verilog

State-machine optimizations and transformations (like using different state
encodings) are local to the module in which they are declared. That’s why they
cannot be done if the state variable is declared as a module output—any
re-encoding of the state assignment would appear outside the module, and other
modules using that output would be unaware of it. If the variable is local, and
outputs are subsequently derived from it, that’s OK; the synthesis tool can create
logic to derive the same output values from the new state encoding.

The registers in all of the sequential modules in Chapter 11 were declared
as module outputs, which is one reason that the synthesis tool does not attempt
state-machine extraction on any of them. Another reason is that all of their regis-
ters have variables, not constants, assigned to them in one or more places. Most
of the state-machine examples in the present chapter, however, can use state-
machine extraction. We’ll look at one example in particular in Section 12.5.

12.2 Verilog State-Machine Test Benches
We explained the general concept of Verilog test benches in Section 5.13. The
test bench for a state machine has four basic parts:

1. Declaration of the test-bench module itself. Note that this module has no
inputs and outputs of its own.

2. Component instantiation of the state-machine entity to be tested, often
called the unit under test (UUT).

3. An always block to create a free-running clock.

4. Statements to initialize the UUT, to apply a sequence of test-vector inputs
at each clock tick, and to check for expected output values.

Part 4 requires the most work, typically more than is required for combinational
circuits. For combinational circuits with a relatively small number of inputs, we
can often use the “brute force” approach of applying all possible inputs and
checking the outputs against a “functionally” determined result (e.g., selected or
decoded value, arithmetic result, etc.). This is even true for sequential circuits
that perform easily described functions, like the counters and shift registers in
Chapter 11. The function of a general state machine may not be so easily
described; its only authoritative description may be its state table or diagram, if
one exists, or the HDL code itself. But correctness of the HDL code is what
we’re trying to check—we may have a chicken and egg problem! How can we
devise a test sequence that checks the machine for all situations?

The short answer to the question is that, much the same as with combina-
tional circuits and the functionally specified sequential circuits of Chapter 11,
we should try to come at the design of state-machine test benches from a differ-
ent perspective than we used when creating the state table or diagram or the
HDL code itself. There are at least two methods of test-bench construction that
do this, discussed next.

DDPP5.book Page 616 Tuesday, March 28, 2017 5:33 PM

12.2 Verilog State-Machine Test Benches 617

12.2.1 State-Machine Test-Bench Construction Methods
The first method contrasts with our early statement on state-machine design, that
you can’t easily design a state machine just by looking at an example input
sequence and the resulting output waveforms. However, there’s nothing to stop
us from seeing if a state-machine-as-designed is operating as we expect it to, by
examining the waveforms that it actually does produce from an example input
sequence. For this method to be effective, we need the input sequence to fully
exercise the machine, and it can do that in one of two ways:

1. The input sequence should cause the machine to visit every normal state,
and eventually to take every possible transition out of every normal state.

2. The input sequence should exercise every “feature” of the machine under
every possible variation of circumstances or exceptions.

The first way can be fairly precise, since some tools can track which of a
module’s HDL statements are executed in simulation. Even if they can’t, we can
manually modify the machine’s next-state logic (case statement) to track this, as
we’ll show later.

The second way is a little “softer,” but it has one benefit—we may think
about the features and their variations a little differently at this stage than when
we first wrote the next-state logic, so there is an opportunity (and perhaps even a
tendency) to consider the features and variations more comprehensively.

Regardless of which of the above ways a designer uses to generate the
input sequence, it remains the designer’s responsibility to manually examine the
resulting output waveforms and to determine if they are correct according to the
machine’s high-level description. This may require a great amount of attention
to detail.

The second construction method is to create a self-checking test bench,
with much the same goals and benefits that we had for creating self-checking
test benches for combinational circuits, and for the more easily described
sequential functions in Chapter 11. Once again, we must construct an input
sequence that fully exercises the machine. In this case, however, we check the
machine’s output at each step along the way to be sure that it matches what’s
expected according to the machine’s high-level description.

In applying this second method, one possible approach would be to check
the machine’s output in every state (for a Moore machine) or for every state/
input combination (in a Mealy machine), but this would be a mere parroting of
the machine’s state diagram, state/output table, or HDL description. It makes
more sense in the second method to construct the input sequence at a higher level
to exercise its every feature and variation, and then to check the resulting outputs
at the same level.

It’s quite possible in the construction of a self-checking test bench that we
can make errors in our prediction of what the machine’s output should be for

DDPP5.book Page 617 Tuesday, March 28, 2017 5:33 PM

618 Chapter 12 State Machines in Verilog

some parts of the input sequence. Thus, test-bench construction and use may be
an iterative process in which we find and correct errors in the test bench as well
as in the UUT.

Finally, there is a third type of test bench, similar to what we had with some
combinational circuits in previous chapters. If we already have a known-good,
“golden” module that implements the state machine exactly as desired, we can
write a test bench that compares the outputs of any new implementation with
those of the golden module for a comprehensive input sequence. In this case, no
functional understanding of the modules’ operation is strictly required. Rather,
we need only to use the first way of creating the test bench’s input sequence,
ensuring that it visits every normal state and eventually takes every possible tran-
sition out of every normal state of the golden machine.

12.2.2 Example Test Benches
We’ll illustrate the test-bench-construction methods using our familiar example
state machine of Program 12-1 on page 608. But first, you should notice that this
machine doesn’t have a reset input. Therefore, we can’t simulate it properly—
since its state memory can’t be initialized, its starting state is unknown. So, we’ll
only test versions of the machine with a RESET input as in Programs 12-3, 12-4
and 12-5 on pages 611, 612 and 614. With this in mind, we can write a test-bench
module according to the first construction method as shown in Program 12-6.

The first section of the module declares local variables to apply to the
inputs and to capture the output of the state machine. It also declares two “test
vectors” Avec and Bvec which will be initialized with 30-bit constants that will
be sequenced into A and B, one bit per clock tick, in the main body of the test.
The second section instantiates the state machine, giving it the component name
“UUT”; as usual, the local variable names can be the same as or different from the
port names.

Next, the test bench has an always block to create a free-running clock
Tclk with a 10-ns period. Since we are running a functional simulation with no
embedded timing information, it doesn’t matter what clock period we use. How-
ever, one subtlety is that, regardless of its period, the clock’s transition from
undefined to 1 at time 0 may be considered to be a rising edge, and the state flip-
flops may respond accordingly. But we won’t count on this; we’ll keep the reset
input asserted at the beginning of the test.

The initial block is devoted to applying the actual test inputs. Since
we’re new at this, we start with a $monitor task that prints all signals values on
the system console any time one of them changes. The reset input is asserted for
quite a while. The first 100 ns of that is to get beyond the “global reset” in the
Xilinx FPGA environment, which was explained previously in conjunction with
Program 10-2 on page 512. The extra 15 ns is to get to the middle of the second
post-reset clock period, by which time the machine should have found its way
into the INIT state.

DDPP5.book Page 618 Tuesday, March 28, 2017 5:33 PM

12.2 Verilog State-Machine Test Benches 619

After negating the reset input, the test bench executes a for loop that
applies test inputs to A and B, as defined by Aseq and Bseq and shifted out of
Avec and Bvec, every 10 ns for 30 clock ticks. The resulting Z outputs can be
observed both on the system console because of the $monitor task, and in the
simulator’s waveform display.

The test vectors Aseq and Bseq were chosen purposefully but without a lot
of deep thought, to provide successive values on A that sometimes matched and
sometimes did not, and to combine those with values on B that would sometimes
hold the Z output at 1 regardless and sometimes would not. Do the chosen test
vectors visit all of the states and exercise all of the transitions out of those states
in the UUT? There’s no easy way to know without using a tool that tracks that, or
instrumenting the UUT’s next-state code as we’ll show later. However, as shown

Program 12-6 Test bench for applying an input sequence to a VrSMex state machine.

`timescale 1ns/100ps
module VrSMex_tbv ();
 reg Tclk, RST, A, B;
 wire Z;
 reg [1:30] Avec, Bvec;
 parameter Aseq = 30'b10110010010000111010110010110111,
 Bseq = 30'b00000011111000001110001110100000;
 integer i;

 VrSMex UUT (.CLOCK(Tclk), .RESET(RST), .A(A), .B(B), .Z(Z)); // instantiate UUT

 always begin // create free-running test clock with 10 ns period
 #0.5 Tclk = 1; #5; // 5 ns high (small offset for
 Tclk = 0; #4.5; // 5 ns low waveform readability)
 end

 initial begin // What to do starting at time 0
 $monitor("Time:%d RST=%b Tclk=%b A=%b B=%b Z=%b",
 $time, RST, Tclk, A, B, Z); // Monitor all signals
 RST = 1; // Apply reset
 A = 1; B = 1; // A and B are 1 too
 Tclk = 1; // Start clock at 1 at time 0
 Avec = Aseq; Bvec = Bseq; // Init A and B input-sequence vectors
 #115; // Wait 115 ns
 RST = 0; // unreset
 for (i=1; i<=30; i=i+1) begin // Apply input sequence for 30 ticks
 A = Avec[1]; Avec = Avec<<1;
 B = Bvec[1]; Bvec = Bvec<<1;
 #10 ;
 end
 $stop(1); // end test
 end
endmodule

DDPP5.book Page 619 Tuesday, March 28, 2017 5:33 PM

620 Chapter 12 State Machines in Verilog

in the waveforms in Figure 12-3, they do create a good variety of responses on
the Z output, and careful inspection shows that Z does match what’s expected
based on machine’s functional specification.

The second construction approach, a self-checking test bench, is shown in
Program 12-7. It begins similarly to the first test bench, but does not define test
vectors; the test sequence is embedded later. It does, however, define a task
checkZ that will be used to apply test inputs and compare the simulated output Z
with an expected value, and print an error message and stop if they are different.
We defined it to save typing and clutter in the test code, which begins as before
at 115 ns by negating the reset input.

 Since the state definitions are “hidden” in the UUT’s module definitions,
the test bench cannot check the state directly. But we know that the output should
be 0 in the INIT state, so our first call of the checkZ task prints a message and
stop the simulation if Z is not 0 at this point. Then we negate RST and call checkZ
again to apply the next values to A and B, wait 10 ns, and compare the new value
of Z with what’s expected. If any of the actual outputs fail to match, the simula-
tion stops and prints an error message so we can investigate the problem.

Note that the test bench is checking the machine’s functional behavior,
pretty much at the level of our original word description. Except for a little
special knowledge of what happens at initialization, the test bench makes no ref-
erence to the actual internal states of the machine. So, the same test bench could
be used with different versions of the same state machine with different states or
state assignments, or other subtle differences.

Suppose that we are satisfied with the performance of the VrSMexa state
machine as tested by the preceding test bench, or perhaps even in actual usage,

Figure 12-3 Timing waveforms created by VrSMex_tbv test bench.

LOOKING UNDER
THE HOOD

Beyond the port definitions for a particular UUT instantiated by a test bench, Verilog
purposely hides the inner workings of the module’s implementation. But for debug-
ging purposes, you’d really like to see what’s going on inside. So, when you run your
test bench on an interactive simulator, you can normally drill down and see signal
values within the UUT module’s implementation.

DDPP5.book Page 620 Tuesday, March 28, 2017 5:33 PM

12.2 Verilog State-Machine Test Benches 621

so we would like to use it as a “golden” reference design. In the third method of
test-bench construction, we can check other designs of the same state machine
against the reference design. Program 12-8 shows the approach. The new test
bench instantiates two UUTs, the first being the “golden” VrSMexa module, and

Program 12-7 Self-checking Verilog test bench for the VrSMex state machines.

`timescale 1ns/100ps
module VrSMex_tb ();
reg Tclk, RST, A, B;
wire Z;

VrSMexa UUT (.CLOCK(Tclk), .RESET(RST), .A(A), .B(B), .Z(Z)); // instantiate UUT

task checkZ; // Task to apply inputs, wait, check output, and print if wrong
 input stepnum, ai, bi, expectZ;
 integer stepnum; reg ai, bi, expectZ;
 begin
 A = ai; B = bi; #10 ;
 if (Z != expectZ) begin
 $display($time," Error, step %d, expected %b, got %b",
 stepnum, expectZ, Z); $stop(1); end;
 end
endtask

always begin // create free-running test clock with 10 ns period
 #6 Tclk = 0; // 6 ns high
 #4 Tclk = 1; // 4 ns low
end

initial begin // What to do starting at time 0
 $monitor("Time:%d RST=%b Tclk=%b A=%b B=%b Z=%b", $time, RST, Tclk, A, B, Z);
 RST = 1; // Apply reset (synchronous for this UUT)
 A = 1; B = 1; // A and B are 1 too
 Tclk = 1; // Start clock at 1 at time 0
 #115; // Wait 15 ns, past at least on rising clock edge
 checkZ(1,1,1,0); // Expect Z=0 initially
 RST = 0; // unreset
 checkZ(2,1,1,0); // still Z=0 after INIT
 checkZ(3,1,0,1); // Two 1s in a row, want Z=1
 checkZ(4,0,1,1); // B=1 should hold Z=1
 checkZ(5,1,0,0); // B=0 releases it
 checkZ(6,0,1,0); // B=1 but nothing to hold
 checkZ(7,0,0,1); // But now two 0s in a row
 checkZ(8,1,1,1); // B=1 should hold Z=1
 checkZ(9,0,0,0); // B=0 releases it
 $stop(1); // end test
 end
endmodule

DDPP5.book Page 621 Tuesday, March 28, 2017 5:33 PM

622 Chapter 12 State Machines in Verilog

the second being the pipelined-output version of Program 12-4 on page 612.
After the usual clock creation and signal initialization, the test bench executes a
for loop that applies a randomly generated 3000-tick input sequence to both
UUTs, using Verilog’s built-in $random function (only the LSB is used). Their Z
outputs are compared at each tick, and any mismatch is flagged.

Generating an effective random input sequence for this machine was pretty
easy, but that’s not always true. Depending on the machine, “random” inputs
may not be too likely to produce common operational scenarios. We saw this for
some combinational circuits, like comparators in Section 7.4.7. In sequential
circuits, a very specific and long input sequence may be needed to set up the
machine to be ready to exercise one or more behaviors. Thus, even for testing
against a “golden” module, it may be necessary to provide an input sequence that
has been customized to exercise all of the machine’s features, rather than to rely
on a random one.

Program 12-8 Test bench to compare VrSMex state machines for a long random input sequence.

`timescale 1ns/100ps
module VrSMex_tbr ();
reg Tclk, RST, A, B;
wire Z1, Z2;
integer i;

VrSMexa U1 (.CLOCK(Tclk), .RESET(RST), .A(A), .B(B), .Z(Z1)); // instantiate UUT
VrSMexp U2 (.CLOCK(Tclk), .RESET(RST), .A(A), .B(B), .Z(Z2)); // instantiate UUT

always begin // create free-running test clock with 10 ns period
 #6 Tclk = 0; // 6 ns high
 #4 Tclk = 1; // 4 ns low
end

initial begin
 RST = 1; // Apply reset
 A = 1; B = 1; // A and B are 1 too
 Tclk = 1; // Start clock at 1 at time 0
 #115; // Wait 115 ns
 RST = 0; // unreset
 for (i=1; i<=3000; i=i+1) begin // Apply random inputs sequence for 3000 ticks
 A = $random; // This will get the LSB of new random number
 B = $random; // This will get the LSB of next random number
 #10 ;
 if (Z1 !== Z2) $display("Iteration %d error, Z1,Z2 = %b,%b", i, Z1, Z2);
 end
 $display("Test completed");
 $stop(1); // end test
 end
endmodule

DDPP5.book Page 622 Tuesday, March 28, 2017 5:33 PM

12.2 Verilog State-Machine Test Benches 623

12.2.3 Instrumenting Next-State Logic for Testing
We mentioned previously that it is possible to “instrument” a UUT’s next-state
logic to determine whether all of its transitions are exercised by a test pattern.
Note that this must be done in the UUT, not in the test bench, since a given func-
tional behavior may be achieved by different but equivalent state machines
having different states and transitions. Program 12-9 shows the changes needed
to instrument the VrSMex state machine of Program 12-1. At the beginning of
the module, we define a “global” integer variable savetr and a task Tchk with
two inputs: an integer tr for a transition number and a vector next for a next-
state value. When invoked, the task simply sets Snext equal to next and savetr
to tr. The always block that creates the state memory is modified to display the
saved transition number when it is finally taken at the clock edge. The last step
is to modify the next-state logic: each place where we used to assign a next state
to Snext, we instead invoke Tchk with a unique integer and that next state.

When we run a test bench on an instantiation of the instrumented module,
the identifying number of each transition will be displayed. Using the 30-input
test sequence in Program 12-6, the display shows that transitions 1, 5, and 13 are
never taken. Transition 1 not being taken makes sense, since the test bench only

PUNTING ON
RESET

If you tried, you might actually get away with simulating a state machine with no
reset. Your simulator may initialize flip-flops to a known state, usually 0, instead of
unknown. In the example machine with the simplest state assignment, all-0s corre-
sponds to INIT, which is what we wanted anyway.

This behavior may be accurate, but it’s dangerous. It may accurately model the
physical design, because the flip-flops in many PLDs and FPGAs are guaranteed to
come up in the 0 state, as long as power is applied smoothly. It’s dangerous for many
reasons, some of which are explained below.

At some point during normal circuit operation, the power supply voltage may
experience a glitch, enough to change some flip-flop states but not enough to activate
the device’s automatic power-up reset circuit. This could leave your state machine
in an unknown state with no way to bring it back. You might not notice this potential
pitfall while debugging in the lab.

During the design process, you might decide to change your machine’s state
encoding, such that the device’s power-on reset state is no longer a good one in all
cases. But you might not notice this in simulation.

Late in the game, you (or your production department, or by this point, your
successor) might change the PLD or FPGA device containing your state machine to
one that has a different or no guaranteed power-on reset state. In the rush to get the
revision into production, no one notices.

All of these cases are ones that were never caught in simulation, because the
machine always “just worked” with no reset. So, please always provide a reset for
your state machines, and use it in simulation.

DDPP5.book Page 623 Tuesday, March 28, 2017 5:33 PM

624 Chapter 12 State Machines in Verilog

Program 12-9 Changes to the VrSMex module to display taken state transitions.

 integer savetr; // Int to save taken-transition number

 task Tchk; // Task to display and take transition
 input tr, next;
 integer tr; reg [2:0] next;
 begin
 Snext = next;
 savetr = tr;
 end
 endtask

 always @ (posedge CLOCK) // Create state memory
 if (RESET==1) Sreg <= INIT; // Sync reset
 else begin
 Sreg <= Snext; // Save new state and display which transition did it
 $display("Time: %4d, took transition %2d",$time,savetr);
 end

 always @ (A, B, Sreg) begin // Next-state logic
 case (Sreg)
 INIT: if (A==0) Tchk(1,A0);
 else Tchk(2,A1);
 A0: if (A==0) Tchk(3,OK0);
 else Tchk(4,A1);
 A1: if (A==0) Tchk(5,A0);
 else Tchk(6,OK1);
 OK0: if (A==0) Tchk(7,OK0);
 else if ((A==1) && (B==0)) Tchk(8,A1);
 else Tchk(9,OK1);
 OK1: if ((A==0) && (B==0)) Tchk(10,A0);
 else if ((A==0) && (B==1)) Tchk(11,OK0);
 else Tchk(12,OK1);
 default Tchk(13,INIT);
 endcase
 end

HOLD YOUR
HORSES!

It would be premature to display the value of tr immediately, when Tchk is invoked
in the next-state logic. Since that’s combinational logic, Snext may undergo further
changes before the clock edge. Not all inputs that affect Snext necessarily change at
the same time, so Snext may undergo several changes before the clock edge when
it is finally stored in Sreg. Only the final, taken transition number is of interest.

DDPP5.book Page 624 Tuesday, March 28, 2017 5:33 PM

12.2 Verilog State-Machine Test Benches 625

leaves the INIT state once, with A=1. And we never expected transition 13, the
default case, to be taken in normal (non-error) operation. But the absence of
transitions 5 would have much been harder to spot without the instrumentation.

We can also run the self-checking test bench of Program 12-7 using the
instrumented module. This “hand crafted” test bench actually does much worse
than the previous one, missing transitions 1, 4, 7, 12, and 13. Updating both test
benches for complete transition coverage is left as Exercises 12.6 and 12.7.

12.2.4 In Summary
As you’ve seen, creating a comprehensive set of functional-test patterns for a
large state machine by hand can be a painstaking process. The test patterns
should visit all of the states and use all of the transitions out of each state; our
examples didn’t! Using these patterns, you must make sure that the machine’s
behavior at each step “makes sense.” This is more than determining that the
machine does what your code says it should—it will in most cases, because you
used automated tools to go from the code to the implementation. More important
is to determine that what your code says makes sense in all cases. This is espe-
cially important in infrequently used and perhaps unconsidered “corner cases.”
Success in this step comes only with practice and (often bad) experience.

Creating test patterns for use in manufacturing to detect hardware failures
is another matter. Here, the assumption is that your machine’s functional defini-
tion is correct, and you want to verify that the actual hardware as built matches
the specified behavior. Test patterns for this purpose are typically and best left to
an automatic test-pattern-generation program. Instead of starting with a Verilog
description, such a program typically uses a gate-level or other component-level
description of the implemented circuit to generate tests. In this way, it can create
tests that are likely to catch errors based on the expected physical failure modes
of the target device.

NOT SO EASY Checking that “all possible” next-state transitions are taken is not as easy as it first
may seem in this example. A single transition as it appears in an if or else clause
in the next-state logic could actually be taken for multiple, different input combina-
tions, depending on the logic of the if condition. For example, transitions 1, 3, 5,
and 7 in Program 12-9 could be taken with either B=0 or B=1. But in the test bench’s
operation, each of their transition numbers will be displayed for either value of B,
even if the other value is never seen.

 Still, checking that each listed transition is taken at least once is a very good
sanity check for next-state logic. If a listed transition is never taken, and moreover if
it is then found to be difficult or impossible to provoke, it could indicate an error in
either the next-state logic or in the designer’s understanding of how the machine is
supposed to work.

DDPP5.book Page 625 Tuesday, March 28, 2017 5:33 PM

626 Chapter 12 State Machines in Verilog

12.3 Ones Counter
Our first new Verilog example in this chapter is a “1s-counting machine” with
the following specification:

Design a clocked synchronous state machine with two inputs, X and Y, and
one output, Z. The output should be 1 if the number of 1 inputs on X and Y
since reset is a multiple of 4, and 0 otherwise.

At first glance, you might think the machine needs an infinite number of states,
since it counts 1 inputs over an arbitrarily long time. However, since the output
indicates the number of inputs received modulo 4, four states are sufficient to
keep track of the count, and we can just use two bits, Q[1:0], to encode them.

In this example, we can make good use of Verilog’s arithmetic capabilities,
in particular addition, to simplify our coding task. Program 12-10 is a Verilog
module that does the job. Instead of naming the states and defining the next-state
logic using a case statement with four cases, we have simply encoded the state
as a 2-bit number, and used addition to advance the state by 0, 1, or 2 depending
on the number of 1s in the X and Y inputs. The output logic simply asserts Z if
Q[1:0] is 0.

On the surface, this is a very simple example to understand—the code
seems very natural—so rather than dwell on the logic, this is a good place to
mention some of the finer points and potential pitfalls in Verilog coding, and
what’s going on “under the hood” when the synthesis tool processes our code.

So, let us dissect the first if statement in the next-state logic, which tests
whether X and Y are both 1 and if so, adds 2 to Q. How is the condition tested and
what does the compiler see? The expression “X&Y” performs a bitwise boolean
AND operation on two 1-bit signals and its result is a 1-bit signal. The if state-

Program 12-10 Verilog module for 1s-counting machine.

 module VronescntSM(CLOCK, RESET, X, Y, Z);
 input CLOCK, RESET, X, Y;
 output reg Z;
 reg [1:0] Q, Qnext;

 always @ (posedge CLOCK) // Create state memory
 if (RESET==1) Q <= 0; else Q <= Qnext; // Sync reset

 always @ (X, Y, Q) // Next-state logic
 if (X & Y) Qnext = Q + 2;
 else if (X | Y) Qnext = Q + 1;
 else Qnext = Q;

 always @ (Q) begin // Output logic
 if (Q==0) Z = 1; else Z = 0;
 end
endmodule

DDPP5.book Page 626 Tuesday, March 28, 2017 5:33 PM

12.3 Ones Counter 627

ment is looking for a true/false value, and that a 1-bit signal is considered to be
true if its value is 1'b1, and false if it’s 1'b0 or anything else, including 1'bx (an
“unknown” value in simulation). A technically more correct but also much more
verbose way to write the condition would be “(X==1'b1)&&(Y==1'b1),” which
compares the X and Y inputs against the proper signal value, producing true/false
results and combining those results with the logical AND operator &&. See the
discussion of logical operators and expressions in Section 5.5.

The next fine point in the if statement is how we add 2 to Q. In this module,
“Q” has been defined as a 2-bit vector (default unsigned), while “2” is a integer
constant, a “signed” number that happens to be positive. Because at least one of
the operands is unsigned, the Verilog addition operation defaults to unsigned,
and we get the desired result in both simulation and synthesis. With different
operand types we could get different results. See the discussion of vectors and
arithmetic in Section 5.3.

Why are these fine points important? Depending on the application, the
coding details, and the environment, you could have situations where the simu-
lation doesn’t match the actual circuit’s operation, unknown values (1'bx) go
undetected in simulation, or both the circuit and the simulation operate incor-
rectly (for example, if you naively expect an expression like “(2'b10 & 1'b1)”
to evaluate to “true”).

There are of course many other ways to code the addition operation in the
next-state logic in Program 12-10 that do not change its meaning. An elegant
way is to avoid the if statement entirely, replacing it with a direct addition of X
and Y to Q[1:0] as follows:

 Qnext = Q + {1'b0,X} + {1'b0,Y};

Another coding-style option that’s easily applied to this machine is to combine
the state register and the next-state logic (i.e., the first two always statements)
into a single sequential always statement as shown in Program 12-11. In this
simple machine, when all is said and done, such stylistic changes typically don’t
change the resulting synthesized circuit, which requires just two flip-flops and
two LUTs in a Xilinx 7-series FPGA.

Program 12-12 is a self-checking test bench for the 1s-counting machine.
It follows our recommended approach of using a different method to determine
the state machine’s outputs than what is likely used internally. In this example, it
generates random inputs for the machine’s X and Y inputs, and calculates their

Program 12-11 Combined state memory and next-state logic.

 always @ (posedge CLOCK) // Create state memory ...
 if (RESET==1) (RESET==1) Q <= 0; // Sync reset
 else if (X & Y) Q <= Q + 2; // ... and next-state logic
 else if (X | Y) Q <= Q + 1;
// else Q <= Q; // optional

DDPP5.book Page 627 Tuesday, March 28, 2017 5:33 PM

628 Chapter 12 State Machines in Verilog

running sum. To calculate the expected Z output value at each clock tick, it uses
Verilog’s modulo operator to divide the sum by 4, and then uses that result in a
logical expression that is 1 if the remainder is 0.

12.4 Combination Lock
The next example is a “combination lock” state machine that activates an
“unlock” output when a certain binary input sequence is received, and also pro-
vides a “hint” output to guide the user who knows how to use it:

Design a clocked synchronous state machine with one input, X, and two
outputs, UNLK and HINT. The UNLK output should be 1 if and only if X is 0
and the sequence of inputs received on X at the preceding seven clock ticks
was 0110111 (the rightmost bit being the most recently received). The
HINT output should be 1 if and only if the current value of X is the correct
one to move the machine closer to being in the “unlocked” state (i.e., to get
UNLK = 1).

Program 12-12 Verilog self-checking test bench for the 1s-counting machine.

module VronescntSM_tb ();
 reg Tclk, RST, X, Y;
 wire Z;
 integer i, sum;

 VronescntSM UUT (.CLOCK(Tclk), .RESET(RST), .X(X), .Y(Y), .Z(Z)); // Instantiate UUT

 always begin // create free-running test clock with 10 ns period
 #6 Tclk = 0; // 6 ns high
 #4 Tclk = 1; // 4 ns low
 end

 initial begin
 RST = 1; // Apply reset
 X = 0; Y = 0; // Inputs 0 to begin
 Tclk = 1; // Start clock at 1 at time 0
 #115; // Wait 115 ns
 RST = 0; // unreset
 sum = 0; // Track # of 1s in test inputs
 for (i=1; i<=3000; i=i+1) begin // Apply random inputs for 3000 ticks
 X = $random; // This will get the LSB of new random number
 Y = $random; // This will get the LSB of next random number
 sum = sum + X + Y;
 #10 ;
 if (Z!==((sum % 4)===0)) $display("Iteration %4d error, sum=%0d, Z=%b",i,sum,Z);
 end
 $stop(1); // end test
 end
endmodule

DDPP5.book Page 628 Tuesday, March 28, 2017 5:33 PM

12.4 Combination Lock 629

It is apparent from the word description that this is a Mealy machine. The UNLK
output depends on both the past history of inputs and X’s current value, and HINT
depends on both the state and the current X (indeed, if the current X produces
HINT = 0, then the clued-in user will want to change X before the clock tick).

This machine is a little different in its requirements from previous exam-
ples, but let’s give it a try. For the UNLK output at least, it seems obvious that we
need to know the input sequence we have seen so far, so that we can decide
whether the next input gets us one step closer to our goal or forces us to back-
track. Thus, we can construct the boilerplate, state definitions, next-state logic,
and output logic at least for UNLK as shown in Program 12-13. Here, we have
used state names corresponding to the initial part of the combination sequence
that we have received so far.

Program 12-13 Verilog module for the combination-lock machine.

module VrcomblockSM(CLOCK, RESET, X, UNLK, HINT);
 input CLOCK, RESET, X;
 output wire UNLK, HINT; // declare as wires for continuous assignment
 reg [2:0] Sreg, Snext; // State register and next state
 parameter [7:1] COMBINATION = 7'b0110111; // not used, but put here for reference
 parameter [2:0] GOTZIP = 3'b000, // Define the state encoding
 GOT0 = 3'b001, // Each state indicates we've received
 GOT01 = 3'b011, // progressively more of the unlock sequence.
 GOT011 = 3'b010, //
 GOT0110 = 3'b110, // States are Gray coded to potentially
 GOT01101 = 3'b111, // simplify the excitation logic.
 GOT011011 = 3'b101,
 GOT0110111 = 3'b100;

 always @ (posedge CLOCK) // State memory (with sync. reset)
 if (RESET==1) Sreg <= GOTZIP;
 else Sreg <= Snext;

 always @ (Sreg or X) // next-state logic
 case (Sreg)
 GOTZIP: if (X) Snext = GOTZIP; else Snext = GOT0;
 GOT0: if (X) Snext = GOT01; else Snext = GOT0;
 GOT01: if (X) Snext = GOT011; else Snext = GOT0;
 GOT011: if (X) Snext = GOTZIP; else Snext = GOT0110;
 GOT0110: if (X) Snext = GOT01101; else Snext = GOT0;
 GOT01101: if (X) Snext = GOT011011; else Snext = GOT0;
 GOT011011: if (X) Snext = GOT0110111; else Snext = GOT0110;
 GOT0110111: if (X) Snext = GOTZIP; else Snext = GOT0;
 default: Snext = GOTZIP;
 endcase
 // Output logic -- Detect combination
 assign UNLK = ((Sreg==GOT0110111) && (X==0)) ? 1 : 0;
 assign HINT = 1'b0; // Haven't figured out how to do this yet
endmodule

DDPP5.book Page 629 Tuesday, March 28, 2017 5:33 PM

630 Chapter 12 State Machines in Verilog

In the next-state case statement, each case advances us to the next state if
we get the correct input, and otherwise it sends us back. However, we don’t
always have to go all the way back to the beginning (GOTZIP or GOT0); some-
times a wrong input sends us back only partway (e.g., after receiving a 0 in state
GOT011011).

Notice that the HINT output is set to 0 in Program 12-13, because we
haven’t yet figured out an easy way to generate it correctly; we’ll come back to
that. As it is, it was not particularly easy to write the next-state logic either. We
had to define all the state names, based on the particular unlocking combination,
and then tailor the if statement in each next-state case according to the next
value needed to match the combination. On top of that, in case of a mismatch, we
had to look for opportunities to backtrack only partway instead of all the way to
the beginning. And if we need to change the machine to recognize a different
combination, we have to do this all over again. If the combination is a variable
stored in its own register, rather than a design-time constant, this approach
doesn’t work at all. There’s got to be a better way!

That brings us to the topic of finite-memory machines. The output required
of the combination-lock machine can always be determine from the current and
previous seven inputs. Formally, a finite-memory machine is one whose output is
completely determined by its current input and its inputs and outputs during the
previous n clock ticks, where n is a finite, bounded integer. The combination
lock clearly falls into this category. Figure 12-4 shows a generalized realization
of a finite-memory machine with one input and one output.

To realize the combination lock as a finite-memory machine, we need to
provide a 7-bit memory for the last seven input values on X, and then we can
determine the UNLK output by comparing the stored values with the combina-

finite-memory machine

Q

CLK

IN

CK

D Q

CK

D Q

CK

D

combinational logic

Q

CK

D Q

CK

D Q

CK

D

OUT

 flip-flops

 flip-flops

Figure 12-4
A finite-memory
machine with one
input and one output.

DDPP5.book Page 630 Tuesday, March 28, 2017 5:33 PM

12.4 Combination Lock 631

tion and checking that X is 0; the previous output values aren’t needed in this
example. Program 12-14 shows the Verilog module for this approach.

With the finite-memory approach, the state-machine design got a lot easier.
There is no next-state logic at all; it is effectively subsumed in the definition of
the “XHISTORY” register. And the output logic merely compares XHISTORY with
the unlock combination and tests that the current value of X is 0. Note that this
works fine even if the combination is a variable stored in a register or arriving on
its own input signals.

That finally brings us back to the question of how to calculate the HINT
output. After being able to use such a nice, universal approach for UNLK, it
wouldn’t be very satisfying to design HINT logic that works only for the one
particular combination value that we defined in the module. Moreover, we
would like to avoid any error-prone code constructs that require us to analyze the
combination bit-by-bit, as in the next-state logic in our original Program 12-13.

The solution is shown in the last always block in Program 12-14, which
contains a long chain of nested if-else statements. The chain begins by check-
ing whether the 7-bit history of X matches the unlock combination; if so, HINT is
asserted if X equals 0 as required. Otherwise, we check whether the last 6 bits
received (the rightmost bits of XHISTORY) match the initial 6 bits of the

Program 12-14 Finite-memory realization of the combination-lock machine.

module VrcomblockFM(CLOCK, RESET, X, UNLK, HINT);
 input CLOCK, RESET, X;
 output wire UNLK; // declared as wire for continuous assignment
 output reg HINT; // declared as reg for always block
 reg [7:1] XHISTORY; // 7-tick history of X
 parameter [7:1] COMBINATION = 7'b0110111;

 always @ (posedge CLOCK) // State memory (with sync. reset)
 if (RESET==1) XHISTORY <= 7'b1111111; // all-1s so no phantom initial 0 at reset
 else XHISTORY <= {XHISTORY[6:1], X}; // save the last 6 and new X

 // Output logic -- Detect combination pattern and 0 input
 assign UNLK = ((XHISTORY==COMBINATION) && (X==0)) ? 1 : 0;

 // Output logic -- Determine hint
 always @ (XHISTORY or X)
 if (XHISTORY[7:1]==COMBINATION) HINT = (X==0);
 else if (XHISTORY[6:1]==COMBINATION[7:2]) HINT = (X==COMBINATION[1]);
 else if (XHISTORY[5:1]==COMBINATION[7:3]) HINT = (X==COMBINATION[2]);
 else if (XHISTORY[4:1]==COMBINATION[7:4]) HINT = (X==COMBINATION[3]);
 else if (XHISTORY[3:1]==COMBINATION[7:5]) HINT = (X==COMBINATION[4]);
 else if (XHISTORY[2:1]==COMBINATION[7:6]) HINT = (X==COMBINATION[5]);
 else if (XHISTORY[1]==COMBINATION[7]) HINT = (X==COMBINATION[6]);
 else HINT = (X==COMBINATION[7]);
endmodule

DDPP5.book Page 631 Tuesday, March 28, 2017 5:33 PM

632 Chapter 12 State Machines in Verilog

combination; if so, the user moves closer to unlocking only if X equals the next
combination bit to the right. We continue in this fashion, checking fewer and
fewer rightmost bits of XHISTORY and initial bits of the combination, in each
case setting HINT equal to the combination bit just to the right of the matched
part. If there’s no match at all, the last else statement asserts HINT only if X
equals the very first bit of the combination.

The priority order of the nested if-else statements is important—it
ensures that the machine gives the best possible hint. For example, if XHISTORY
is 7'b1011011, then based on the rightmost three bits it could suggest a 0 input
to drive the machine to the final state in three more ticks after that (with further
inputs 111). But it’s better to suggest a 1 input based on the rightmost six bits,
and arrive in the final state on the very next tick. Related to this, the troublesome
design problem for Program 12-13, determining when to backtrack only part-
way, is nonexistent in this approach because of the priority order. Another
advantage of this approach is that its output logic for HINT, like its output logic
for UNLK, works even if the unlock combination is a variable.

Because we now have two quite different designs for the combination-lock
machine, they are good candidates for testing with a test bench that compares
their outputs for a long, random input sequence. See Exercises 12.38 and 12.39.

12.5 T-Bird Tail Lights
We described the function of the T-bird tail lights state machine in Section 9.4.1.
Just for fun, Figure 12-5 repeats our drawing of 1965 Ford Thunderbird’s tail
lights. The tail lights state machine has three inputs requesting left, right, and
hazard signals, and two sets of three outputs to illuminate the three signal lamps
on each side of the car in sequence shown in Figure 12-6.

Several steps are needed to design this or any state machine in Verilog:

1. Determine the inputs and outputs of the machine. We’ve already done that
above, working from its informal specification.

IS IT WORTH IT? A disadvantage of finite-memory state-machine design is that it will almost always
require more state memory than a design with customized, optimized state meanings.
When I targeted Program 12-13 to a Xilinx 7-series FPGA, the Vivado tools synthe-
sized a circuit using 2 LUTs and 3 registers for the state memory. When I synthesized
Program 12-14, the much easier and less error-prone finite-memory design, the
result used 3 LUTs and 7 registers.

Are the extra resources worth it? In my book, yes—saving engineering time
always trumps saving transistors in one-of-a-kind circuits (as opposed to large, repet-
itive structures like memory arrays). This is even more true when you consider that
the 7-series FPGA that I was targeting contains 53,200 LUTs and106,400 registers!

DDPP5.book Page 632 Tuesday, March 28, 2017 5:33 PM

12.5 T-Bird Tail Lights 633

2. Define a set of states needed to implement the machine, naming each state
as we go along. We may not be able immediately to think of all the states
that are needed, but as we work through the next-state conditions for the
states we may recognize the need to define additional states.

For T-bird tail lights, we need a state where all the lights are off (call it
IDLE), and then we’ll need three states where one to three lights are on for
left and right turns, respectively (call them L1–L3 and R1–R3). For most
state machines and environments, the best way to document the names and
meanings of the states is in the code itself.

3. Choose or define an additional state to serve as the initial state after a reset.
For T-bird tail lights, IDLE works well as the initial state.

4. In our preferred style of behavioral Verilog state-machine coding, create
the outline of a case statement, where the “selection expression” is simply
the state register, and each “choice” is a named state. For each named state,

Figure 12-5
T-bird tail lights.

ZOTTFFS
CALIFORNIA

RA RB RCLC LB LA

Figure 12-6
Flashing sequence
for T-bird tail lights:
(a) left turn;
(b) right turn.

LC(a) LB LA RA(b) RB RC

DDPP5.book Page 633 Tuesday, March 28, 2017 5:33 PM

634 Chapter 12 State Machines in Verilog

write a statement that specifies the next state as a function of the state
machine’s inputs. In our preferred coding style, this would be a possibly
nested if-else statement, always with a final else clause, so a value is
assigned to the next-state register for all possible input combinations.

5. Interactively in step 4, define and name additional states as needed to han-
dle unanticipated situations. In step 2 above, we forgot about the hazard
lights case for T-bird tail lights, where the machine loops through two
states instead of four, and we can create a new state LR3 to deal with this.

6. Once we have achieved closure on the next-state functions (as listed in the
case-statement choices), select a next state for any “unused” states to tran-
sition to unconditionally, and add a “default” choice to the case statement
to handle these. “Unused” states will exist in the physical machine if the
number of states is not a power of 2, or if we use a sparse state encoding,
like 1-hot.

7. Now that we know the number of states, we can select a state assignment.
As described in Section 9.3.3, there are always many possibilities. So,
whatever assignment we choose, it is best to embody it in a parameter
declaration. That way, we can deal with states symbolically in the rest of
the Verilog module, without having to edit anything but the parameter
declaration if we decide to change the state assignment later.

8. If we haven’t already, create the basic “boilerplate” for the Verilog module,
including the module input/output and variable declarations.

9. Write the statement that creates the state memory, either behaviorally (an
always block) or structurally (a component instantiation), as described
previously in Section 12.1.1.

10. Write the statement that creates the output logic.

This may seem like a lot of steps, but most of them are not very difficult.
The most critical is step 4, defining the next-state behavior of the machine.
Putting it all together for T-bird tail lights, we can write the Verilog module in
Program 12-15. The declarations are straightforward, including internal vari-
ables Sreg and Snext to hold the current and next state, respectively. A
parameter declaration defines the 3-bit encodings of the eight states, the same
ones that we used for this machine in the state-diagram and ASM-chart versions
in Chapter 9.

The first always block creates the 3-bit state register Sreg, including an
asynchronous reset input. The second always block is the heart of the machine,
with a case statement that defines the next-state behavior for the eight states.
The last always block also has a case statement, with one assignment statement
per state to define the values of the six Moore-type outputs as functions of the
current state.

DDPP5.book Page 634 Tuesday, March 28, 2017 5:33 PM

12.5 T-Bird Tail Lights 635

Program 12-15 Verilog module for T-bird tail lights state machine.

module VrTbirdSM(CLOCK, RESET, LEFT, RIGHT, HAZ, LA, LB, LC, RA, RB, RC);
 input CLOCK, RESET, LEFT, RIGHT, HAZ;
 output reg LA, LB, LC, RA, RB, RC;
 reg [2:0] Sreg, Snext; // State register and next state
 parameter [2:0] IDLE = 3'b000, // Define the states and their codes
 L1 = 3'b001, // left turn, one light on
 L2 = 3'b011, // left turn, two lights on
 L3 = 3'b010, // left turn, three lights on
 R1 = 3'b101, // right turn, one light on
 R2 = 3'b111, // right turn, two lights on
 R3 = 3'b110, // right turn, three lights on
 LR3 = 3'b100; // hazard, all lights on

 always @ (posedge CLOCK or posedge RESET) // Create state memory
 if (RESET==1) Sreg <= IDLE; else Sreg <= Snext; // Async reset

 always @ (LEFT, RIGHT, HAZ, Sreg) begin // Next-state logic
 case (Sreg)
 IDLE: if (HAZ | (LEFT & RIGHT)) Snext = LR3;
 else if (RIGHT) Snext = R1;
 else if (LEFT) Snext = L1;
 else Snext = IDLE;
 R1: Snext = R2;
 R2: Snext = R3;
 R3: Snext = IDLE;
 L1: Snext = L2;
 L2: Snext = L3;
 L3: Snext = IDLE;
 LR3: Snext = IDLE;
 default Snext = IDLE;
 endcase
 end

 always @ (Sreg) begin // Output logic
 case (Sreg)
 IDLE: {LC,LB,LA,RA,RB,RC} = 6'b000000; // Leave them all off
 R1: {LC,LB,LA,RA,RB,RC} = 6'b000100; // Set up the rotating patterns
 R2: {LC,LB,LA,RA,RB,RC} = 6'b000110; // for right turn
 R3: {LC,LB,LA,RA,RB,RC} = 6'b000111;
 L1: {LC,LB,LA,RA,RB,RC} = 6'b001000; // and left turn
 L2: {LC,LB,LA,RA,RB,RC} = 6'b011000;
 L3: {LC,LB,LA,RA,RB,RC} = 6'b111000;
 LR3: {LC,LB,LA,RA,RB,RC} = 6'b111111; // All-on flashing for hazard
 default {LC,LB,LA,RA,RB,RC} = 6'b000000; // All-off in any unused states
 endcase
 end
endmodule

DDPP5.book Page 635 Tuesday, March 28, 2017 5:33 PM

636 Chapter 12 State Machines in Verilog

It is fairly easy to make changes in the Verilog behavioral description of a
state machine, and then re-synthesize the machine using the available tools. For
example, the T-bird tail lights machine as originally designed checks the HAZ
input only in the IDLE state. It would be more desirable functionally for the
machine to start flashing for a hazard as soon as possible after the HAZ input is
asserted. Only the next-state logic in the original machine needs to be modified
to make this happen, as shown in Program 12-16. In each of the “turning” states,
we now check the HAZ input; if it is asserted, we go to the hazard-flashing state
LR3 next.

Program 12-16 Verilog next-state logic for an enhanced T-bird tail lights state machine.

 always @ (LEFT, RIGHT, HAZ, Sreg) begin // Next-state logic
 case (Sreg)
 IDLE: if (HAZ | (LEFT & RIGHT)) Snext = LR3;
 else if (RIGHT) Snext = R1;
 else if (LEFT) Snext = L1;
 else Snext = IDLE;
 R1: if (HAZ) Snext = LR3; else Snext = R2;
 R2: if (HAZ) Snext = LR3; else Snext = R3;
 R3: if (HAZ) Snext = LR3; else Snext = IDLE;
 L1: if (HAZ) Snext = LR3; else Snext = L2;
 L2: if (HAZ) Snext = LR3; else Snext = L3;
 L3: if (HAZ) Snext = LR3; else Snext = IDLE;
 LR3: Snext = IDLE;
 default Snext = IDLE;
 endcase
 end

Program 12-17 Verilog changes for an output-coded state assignment for T-bird tail lights.

 module VrTbirdSMeoc(CLOCK, RESET, LEFT, RIGHT, HAZ, LA, LB, LC, RA, RB, RC);
 input CLOCK, RESET, LEFT, RIGHT, HAZ;
 output reg LA, LB, LC, RA, RB, RC;
 reg [5:0] Sreg, Snext; // State register and next state
 parameter [5:0] IDLE = 6'b000000, // Define the states and their codes
 L1 = 6'b001000, // left turn, one light on
 L2 = 6'b011000, // left turn, two lights on
 L3 = 6'b111000, // left turn, three lights on
 R1 = 6'b000100, // right turn, one light on
 R2 = 6'b000110, // right turn, two lights on
 R3 = 6'b000111, // right turn, three lights on
 LR3 = 6'b111111; // hazard, all lights on
...
 always @ (Sreg) // Output logic
 {LC,LB,LA,RA,RB,RC} = Sreg;
endmodule

DDPP5.book Page 636 Tuesday, March 28, 2017 5:33 PM

12.6 Reinventing Traffic-Light Controllers 637

Another possible change would be to change the state assignment to an
output-coded one. This requires no change to the next-state logic, but instead to
the state-register and parameter declarations, and to the output logic, as shown
in Program 12-17.

Because T-bird tail lights are so “visual,” the state machine is an excellent
one to check with a test bench that displays the LED patterns that it produces for
a typical input sequence. (See Exercise 12.23.)

12.6 Reinventing Traffic-Light Controllers
Our next example is also from the world of driving. Traffic-light controllers in
California, especially in the city of Sunnyvale, are designed to maximize the
waiting time of cars at intersections. An infrequently used intersection (one that
might have only a “yield” sign if it were in Chicago) has the sensors and signals
shown in Figure 12-7. The lights are controlled by a state machine operating
with a 1-Hz clock and whose inputs are the sensors and two signals from a timer:

NSCAR This sensor output is asserted when a car on the north-south road is
over either sensor on either side of the intersection.

EWCAR This sensor output is asserted when a car on the east-west road is
over either sensor on either side of the intersection.

VIVADO FSM
EXTRACTION

The first time that I ran the three versions of the T-bird tail lights machine through
the Xilinx Vivado synthesis tools, I was very surprised to find that all three versions
gave very similar synthesis results. It turns out that Vivado’s “FSM extraction”
option had been turned on by default. As explained in Section 12.1.7, this feature
analyzes the Verilog module, looking for a structure that appears to be a finite-state
machine (FSM). If it finds one, it throws out the designer’s state encoding, and
selects one according to its own ideas of what’s good.

For all three T-bird tail lights examples, Vivado selected its “sequential” state
assignment, using the minimum number of state bits with values assigned in binary
counting order. So, Vivado’s state assignments used for Programs 12-15 and 12-16,
which have slightly different next-state logic, were similar but not identical 3-bit
encodings. Modifying the state assignment in Program 12-16 to the one in
Program 12-17 yielded an identical synthesized circuit, even though Program 12-17
explicitly calls for a 6-bit output-coded state assignment! However, once I disabled
the “FSM extraction” option, the tools dutifully used the exact state assignments
specified in the modules.

So, how good were Vivado’s state assignments? When the state machines were
targeted to Xilinx 7-series FPGAs, Programs 12-15 required 9 LUTs, and Programs
12-16 and 12-17 required 8 LUTs. However, when the designer’s (my) original state
assignments were used, Program 12-15 used only 4 LUTs, and Program 12-16 used
5. So for now, experienced designers can still do a better job than the tools—yeah!

DDPP5.book Page 637 Tuesday, March 28, 2017 5:33 PM

638 Chapter 12 State Machines in Verilog

TMLONG This timer output is asserted if more than five minutes has elapsed
since the timer started; it remains asserted until the timer is reset.

TMSHORT This timer output is asserted if more than five seconds has elapsed
since the timer started; it remains asserted until the timer is reset.

The state machine has seven outputs:

NSRED, NSYELLOW, NSGREEN Control the north-south lights.

EWRED, EWYELLOW, EWGREEN Control the east-west lights.

TMRESET When asserted, resets the timer and negates TMSHORT and
TMLONG. The timer starts timing when TMRESET is negated.

A typical, municipally approved algorithm for controlling the traffic lights
is embedded in the Verilog module of Program 12-18. This algorithm produces
two frequently seen behaviors of “smart” traffic lights. At night, when traffic is
light, it holds a car stopped at the light for up to five minutes, unless a car
approaches on the cross street, in which case it stops the cross traffic and finally
lets the waiting car go. (The “early warning” sensor is far enough back to change
the lights before the approaching car reaches the intersection.) During the day,
when traffic is heavy and there are always cars waiting in both directions, it
cycles the lights every five seconds, thus minimizing the utilization of the inter-
section and maximizing everyone’s waiting time, thereby creating a public
demand for more taxes to fix the problem.

Figure 12-7 Traffic sensors and signals at an intersection in Sunnyvale, California.

NSCAR

EWCAR

EWRED

EWYELLOW

EWGREEN

NSRED

NSYELLOW

NSGREEN

NSRED

NSYELLOW

NSGREEN
EWRED

EWYELLOW

EWGREEN

EWCAR

NSCAR

DDPP5.book Page 638 Tuesday, March 28, 2017 5:33 PM

12.6 Reinventing Traffic-Light Controllers 639

Program 12-18 Verilog module for Sunnyvale traffic-light controller.

module Vrsvale (CLOCK, RESET, NSCAR, EWCAR, TMSHORT, TMLONG,
 OVERRIDE, FLASHCLK, NSRED, NSYELLOW, NSGREEN,
 EWRED, EWYELLOW, EWGREEN, TMRESET);
 input CLOCK, RESET, NSCAR, EWCAR, TMSHORT, TMLONG, OVERRIDE, FLASHCLK;
 output NSRED, NSYELLOW, NSGREEN, EWRED, EWYELLOW, EWGREEN, TMRESET;
 reg [2:0] Sreg, Snext; // State register and next state
 // State encodings
 parameter NSGO = 3'b000, NSWAIT = 3'b001, NSWAIT2 = 3'b010, NSDELAY = 3'b011,
 EWGO = 3'b100, EWWAIT = 3'b101, EWWAIT2 = 3'b110, EWDELAY = 3'b111;

 always @ (posedge CLOCK) // Create state memory with sync reset
 if (RESET) Sreg <= NSDELAY; else Sreg <= Snext;

 always @ (*) // Next-state logic.
 case (Sreg)
 NSGO : // North-south green.
 if (~TMSHORT) Snext = NSGO; // Minimum 5 seconds.
 else if (TMLONG) Snext = NSWAIT; // Maximum 5 minutes.
 else if (EWCAR & ~NSCAR) Snext = NSGO; // Make EW car wait.
 else if (EWCAR & NSCAR) Snext = NSWAIT; // Thrash if cars both ways.
 else if (~EWCAR & NSCAR) Snext = NSWAIT; // New NS car? Make it stop!
 else Snext = NSGO; // No one coming, stay as is.
 NSWAIT : Snext = NSWAIT2; // Yellow light,
 NSWAIT2 : Snext = NSDELAY; // two ticks for safety.
 NSDELAY : Snext = EWGO; // Red both ways for safety.
 EWGO : // East-west green.
 if (~TMSHORT) Snext = EWGO; // Same behavior as above.
 else if (TMLONG) Snext = EWWAIT;
 else if (NSCAR & ~EWCAR) Snext = EWGO;
 else if (NSCAR & EWCAR) Snext = EWWAIT;
 else if (~NSCAR & EWCAR) Snext = EWWAIT;
 else Snext = EWGO;
 EWWAIT : Snext = EWWAIT2;
 EWWAIT2 : Snext = EWDELAY;
 EWDELAY : Snext = NSGO;
 default : Snext = NSDELAY; // "Reset" state.
 endcase

 assign TMRESET = (Sreg==NSWAIT2 || Sreg==EWWAIT2);
 assign NSRED = (OVERRIDE) ? FLASHCLK :
 (Sreg!=NSGO && Sreg!=NSWAIT && Sreg!=NSWAIT2);
 assign NSYELLOW = (OVERRIDE) ? 0 : (Sreg==NSWAIT || Sreg==NSWAIT2);
 assign NSGREEN = (OVERRIDE) ? 0 : (Sreg==NSGO);
 assign EWRED = (OVERRIDE) ? FLASHCLK :
 (Sreg!=EWGO && Sreg!=EWWAIT && Sreg!=EWWAIT2);
 assign EWYELLOW = (OVERRIDE) ? 0 : (Sreg==EWWAIT || Sreg==EWWAIT2);
 assign EWGREEN = (OVERRIDE) ? 0 : (Sreg==EWGO);
endmodule

DDPP5.book Page 639 Tuesday, March 28, 2017 5:33 PM

640 Chapter 12 State Machines in Verilog

The next-state logic in Program 12-18 has our typical style of using a case
statement to specify the behavior for each state, including if-else statements as
needed to check input dependencies. Regarding the output logic, this is a Moore
machine; each output signal is a function of state only. However, instead of a
case statement, the output logic in this example uses continuous assignments. It
was easier to code the lights’ operation by thinking about each light separately
and writing an expression that is asserted for the states in which that light should
be illuminated. Still, rewriting the output logic with a case statement is possible
and is offered as Exercise 12.30.

Program 12-18 uses a simple binary encoding of states. An output-coded
state assignment can be made with the changes shown in Program 12-19. Many
of the states can be identified by a unique combination of light-output values.
But there are three pairs of states that are not distinguishable by looking at the
lights alone: (NSWAIT, NSWAIT2), (EWWAIT, EWWAIT2), and (NSDELAY, EWDELAY).
We can handle these by adding one more state variable, Sreg[7] or “EXTRA”,
that has different values for the two states in each pair. Thus, NSWAIT and
NSWAIT2, for example, have the same state encoding and light-output values for
bits 1–6 but differ in bit 7.

One possible variation on the state-machine specification is to provide an
OVERRIDE input that the police can use to disable normal controller operation
and put the lights into an all-flashing-red mode as long as this input is asserted.
This allows them to manually clear up the traffic snarls created by this wonderful
invention. The enhancement is pretty easy to provide with the output-coded state
assignment, since the all-0s (all lights off) state is still available for use. As
shown in Program 12-20, we make three changes:

• Add the OVERRIDE input to the module.

• Define a new state, ALLOFF, with the all-0s state coding.

Program 12-19 Changes to Sunnyvale traffic-lights machine for output-coded state assignment.

 reg [1:7] Sreg, Snext; // State register and next state
 // bit positions of output-coded assignment: [1] NSRED, [2] NSYELLOW, [3] NSGREEN,
 // [4] EWRED, [5] EWYELLOW, [6] EWGREEN, [7] (EXTRA)
 parameter NSGO = 7'b0011000, // State encodings
 NSWAIT = 7'b0101000,
 NSWAIT2 = 7'b0101001,
 NSDELAY = 7'b1001000,
 EWGO = 7'b1000010,
 EWWAIT = 7'b1000100,
 EWWAIT2 = 7'b1000101,
 EWDELAY = 7'b1001001;
...
 // Output logic.
 assign TMRESET = (Sreg==NSWAIT2 || Sreg==EWWAIT2);
 assign {NSRED, NSYELLOW, NSGREEN, EWRED, EWYELLOW, EWGREEN} = Sreg[1:6];

DDPP5.book Page 640 Tuesday, March 28, 2017 5:33 PM

12.6 Reinventing Traffic-Light Controllers 641

• Place the original next-state case statement in the else clause of an if-
else statement that executes it if OVERRIDE is negated, and executes a
new case statement for a flashing cycle as long as OVERRIDE is asserted.

No changes are needed to the output logic since the new ALLOFF state has just
the right output values needed for all-lights-off part of the flashing cycle, and we
use an existing state NSDELAY for the all-red part.

As a “visual” application, Sunnyvale traffic lights are another candidate for
writing a test bench that simply applies a comprehensive set of inputs and shows
the resulting light patterns (see Exercise 12.32). A more ambitious and perhaps
depressing test bench would create a random pattern of traffic arrivals and calcu-
late performance metrics like average throughput and waiting time at the
intersection (see Exercise 12.33).

Program 12-20 Changes to add OVERRIDE to the traffic-lights machine with output-coded states.

module Vrsvaleocov (CLOCK, RESET, NSCAR, EWCAR, TMSHORT, TMLONG, OVERRIDE,
 NSRED, NSYELLOW, NSGREEN, EWRED, EWYELLOW, EWGREEN, TMRESET);
 input CLOCK, RESET, NSCAR, EWCAR, TMSHORT, TMLONG, OVERRIDE;
 ...
 parameter NSGO = 7'b0011000, // State encodings
 ...
 EWDELAY = 7'b1001001,
 ALLOFF = 7'b0000000;
 ...
 always @ (*) // Next-state logic.
 if (OVERRIDE) // All-red flashing if OVERRIDE
 case (Sreg)
 ALLOFF : Snext = NSDELAY; // Double red.
 NSDELAY : Snext = ALLOFF;
 default : Snext = NSDELAY; // Come here at start of override.
 endcase
 else // Normal operation
 case (Sreg)
 NSGO : ... // North-south green....

MOUNTAIN VIEW
TRAFFIC LIGHTS

In March of 2016, it was reported that Google donated $250,000 to Sunnyvale to
update the software for their traffic lights. I guess that being called out for 25 years
in every previous edition of this book wasn’t enough of an incentive for the city to
upgrade on their own nickel.

Google is headquartered, of course, in the neighboring city of Mountain View,
whose traffic lights had good behavior even before Google came along. Sunnyvale
could have achieved the same, and probably cheaply too, simply by replacing the
NSGO and EWGO next-state logic in their equivalent of Program 12-18 with something
closer to a traditional algorithm, as requested in Exercise 12.31.

DDPP5.book Page 641 Tuesday, March 28, 2017 5:33 PM

642 Chapter 12 State Machines in Verilog

12.7 The Guessing Game
Another state-machine example is a “guessing game” that can be built as an
amusing lab project:

Design a state machine with four inputs, G1–G4, that are connected to
pushbuttons. The machine has four outputs, L1–L4, connected to LEDs
located near the like-numbered pushbuttons. There is also an ERR output
connected to a red LED. In normal operation the L1–L4 outputs display a
1-out-of-4 pattern. At each clock tick, the pattern is rotated by one posi-
tion; the clock frequency is about 4 Hz.

Guesses are made by pressing and holding a debounced pushbutton, which
asserts an input Gi. When any Gi input is asserted, the ERR output is
asserted if the “wrong” pushbutton was pressed, that is, if the Gi input
detected at the clock tick does not have the same number as the LED output
that was asserted before the clock tick. Once a guess has been made, play
stops and the ERR output maintains the same value for one or more clock
ticks until the Gi input is negated, then play resumes.

Clearly, we will have to provide at least four states, one for each position of
the rotating pattern; let’s call them S1–S4. And we’ll need at least one more state
to indicate that play has stopped. A first cut at possible next-state logic is shown
in Program 12-21. The machine cycles through states S1–S4 as long as no Gi
input is asserted, and it goes to the STOP state when a guess is made. Each Li
output would be asserted in the like-numbered state.

The only problem with the next-state behavior in Program 12-21 is that it
doesn’t “remember” in the STOP state whether the guess was correct, so it has
no way to control the ERR output. This problem is fixed in the complete Verilog
module in Program 12-22, which has two “stopped” states, SOK and SERR. On
an incorrect guess, the machine goes to SERR, where ERR is asserted; other-
wise, it goes to SOK. Three state variables encode the six states. Although the
machine’s word description doesn’t require it, the new next-state logic is
designed to go to SERR even if the user tries to cheat the machine by pressing
two or more pushbuttons at a time, or by changing guesses while stopped.

Program 12-21 First cut at Verilog next-state logic for the guessing game.

 always @ (*) // Next-state logic
 case (Sreg)
 S1 : if (G1 | G2 | G3 | G4) Snext = STOP; else Snext = S2;
 S2 : if (G1 | G2 | G3 | G4) Snext = STOP; else Snext = S3;
 S3 : if (G1 | G2 | G3 | G4) Snext = STOP; else Snext = S4;
 S4 : if (G1 | G2 | G3 | G4) Snext = STOP; else Snext = S1;
 STOP: if (~G1 & ~G2 & ~G3 & ~G4) Snext = S1; else Snext = STOP;
 endcase

DDPP5.book Page 642 Tuesday, March 28, 2017 5:33 PM

12.7 The Guessing Game 643

The output logic in Program 12-22 simply decodes the current state and
asserts the appropriate Moore-type output. Since a different output combination
is produced in each named state, we can use the outputs as state variables in an
output-coded state assignment. In an output-coded version of the state machine,
we make Sreg and Snext 5 bits wide, change the parameter declaration, and
change the output logic as shown in Program 12-23.

Program 12-22 Corrected and completed Verilog module for the guessing game.

module Vrggame (CLOCK, RESET, G1, G2, G3, G4, L1, L2, L3, L4, ERR);
 input CLOCK, RESET, G1, G2, G3, G4;
 output reg L1, L2, L3, L4, ERR;
 reg [2:0] Sreg, Snext; // State register and next state

 parameter S1 = 3'b001, // State encodings for 4 running states,
 S2 = 3'b010,
 S3 = 3'b011,
 S4 = 3'b100,
 SOK = 3'b101, // OK state, and
 SERR = 3'b110; // error state

 always @ (posedge CLOCK) // Create state memory with sync reset
 if (RESET) Sreg <= SOK; else Sreg <= Snext;

 always @ (G1 or G2 or G3 or G4 or Sreg) // Next-state logic
 case (Sreg)
 S1 : if (G2 | G3 | G4) Snext = SERR;
 else if (G1) Snext = SOK;
 else Snext = S2;
 S2 : if (G1 | G3 | G4) Snext = SERR;
 else if (G2) Snext = SOK;
 else Snext = S3;
 S3 : if (G1 | G2 | G4) Snext = SERR;
 else if (G3) Snext = SOK;
 else Snext = S4;
 S4 : if (G1 | G2 | G3) Snext = SERR;
 else if (G4) Snext = SOK;
 else Snext = S1;
 SOK : if (~G1 & ~G2 & ~G3 & ~G4) Snext = S1; else Snext = SOK;
 SERR: if (~G1 & ~G2 & ~G3 & ~G4) Snext = S1; else Snext = SERR;
 default : Snext = SOK;
 endcase

 always @ (Sreg) begin // Output logic
 L1 = (Sreg == S1); L2 = (Sreg == S2); L3 = (Sreg == S3);
 L4 = (Sreg == S4); ERR = (Sreg == SERR);
 end

endmodule

DDPP5.book Page 643 Tuesday, March 28, 2017 5:33 PM

644 Chapter 12 State Machines in Verilog

A self-checking test bench for the guessing-game state machine is shown
in Program 12-24. It steps through a sequence of inputs that was constructed by
hand to check the machine’s operation for various scenarios. At each step, it
invokes a task checkLEDs whose inputs are a step number and the expected val-
ues of the LED outputs at that step. If an unexpected LED value occurs, it is
displayed and the test bench stops so the user can investigate. This test bench can
of course be used with either version of the machine, Program 12-22 or 12-23.

The input sequence in Program 12-24 is far from comprehensive. It doesn’t
even begin to check the machine’s operation with the G3 and G4 inputs. As you
can imagine, it is fairly painstaking to create an input sequence that will exercise
all possibilities, including specifying the expected outputs each time checkLEDs
is invoked. Therefore, this state machine is a good candidate for a test bench that
generates random inputs and checks the resulting outputs algorithmically. We’ll
explore that approach for another version of the machine in Section 12.9.1.

Program 12-23 Verilog changes for output-coded guessing-game state machine.

module Vrggameoc (CLOCK, RESET, G1, G2, G3, G4, L1, L2, L3, L4, ERR);
 input CLOCK, RESET, G1, G2, G3, G4;
 output wire L1, L2, L3, L4, ERR;
 reg [4:0] Sreg, Snext; // State register and next state
 parameter S1 = 5'b10000, // Output coded state assignment
 S2 = 5'b01000, // for 4 running states,
 S3 = 5'b00100,
 S4 = 5'b00010,
 SOK = 5'b00000, // OK state, and
 SERR = 5'b00001; // error state
...
 assign {L1,L2,L3,L4,ERR} = Sreg; // Output logic
endmodule

GETTING AN
EDGE

The main advantage of an output-coded state assignment is that the Moore-type out-
puts become valid almost immediately after the triggering clock edge, without the
combinational logic delay that would otherwise be required to derive the them from
the new contents of the state memory. Depending on the state machine, output
coding may require more logic resources or fewer.

For example, when I targeted Program 12-22 to a Xilinx 7-series FPGA, the
Vivado tools synthesized a circuit using 12 LUTs and three registers for the state
memory. When I synthesized Program 12-23, the output-coded version, two more
registers were used but the number of LUTs was reduced to 9—a slight net change
in resource requirements. Moreover, the output-coded version is really great for
players who need the benefit of a few saved picoseconds of LED delay when playing
the game :) .

DDPP5.book Page 644 Tuesday, March 28, 2017 5:33 PM

12.7 The Guessing Game 645

Program 12-24 Test bench for the guessing game.

`timescale 1ns/1ns
module Vrggame_tb ();
reg Tclk, RST, G1, G2, G3, G4;
wire L1, L2, L3, L4, ERR;

Vrggame UUT (.CLOCK(Tclk), .RESET(RST), .G1(G1), .G2(G2), .G3(G3), .G4(G4),
 .L1(L1), .L2(L2), .L3(L3), .L4(L4), .ERR(ERR));

task checkLEDs;
 input stepnum, expL1, expL2, expL3, expL4, expERR;
 integer stepnum; reg expL1, expL2, expL3, expL4, expERR;
 begin
 if ({L1, L2, L3, L4, ERR} != { expL1, expL2, expL3, expL4, expERR}) begin
 $display($time," Error, step %d, expected %5b, got %5b", stepnum,
 { expL1, expL2, expL3, expL4, expERR}, {L1, L2, L3, L4, ERR});
 $stop(1); end
 end
endtask

always begin // create free-running test clock with 10 ns period
 #5 Tclk = 0; // 5 ns high
 #5 Tclk = 1; // 5 ns low
end

initial begin
 RST = 1; // Apply reset
 {G1,G2,G3,G4} = 4'b0000; // All guess inputs are 0
 Tclk = 1; // Start clock at 1 at time 0
 #115; // Wait 115 ns
 checkLEDs(1,0,0,0,0,0); // Expect all LEDs off at reset
 RST = 0; // unreset
 #10; checkLEDs(2,1,0,0,0,0); // LEDs rotate after un-reset
 #10; checkLEDs(3,0,1,0,0,0); // No guesses yet, just check rotation
 #10; checkLEDs(4,0,0,1,0,0);
 #10; checkLEDs(5,0,0,0,1,0);
 #10; checkLEDs(6,1,0,0,0,0); // OK, made it back to L1
 G1 = 1; #10; checkLEDs(7,0,0,0,0,0); // Should be correct guess
 #10; checkLEDs(8,0,0,0,0,0); // Stay here as long as G1 still on
 G1 = 0; #10; checkLEDs(9,1,0,0,0,0); // Release G1 and go; start with L1 again
 G2 = 1; #10; checkLEDs(10,0,0,0,0,1); // Make a wrong guess, should get ERR on
 #10; checkLEDs(11,0,0,0,0,1); // Stay here as long as G2 still on
 #10; checkLEDs(12,0,0,0,0,1); // Stay here as long as G2 still on
 G2 = 0; #10; checkLEDs(13,1,0,0,0,0); // Release G2 and go; start with L1 again
 G1 = 1; // Try to fool it pressing multiple buttons
 G2 = 1; #10; checkLEDs(14,0,0,0,0,1); // Should get ERR on
 $stop(1); // end test
end
endmodule

DDPP5.book Page 645 Tuesday, March 28, 2017 5:33 PM

646 Chapter 12 State Machines in Verilog

*12.8 “Don’t-Care” State Encodings
This is a good place to introduce the idea of “don’t-care” state codings. Out of
the 32 possible coded states using five variables, only six are explicitly used in
Program 12-23 in Section 12.7. The rest of the states are unused and because of
the default case in the next-state logic, they have a next state of SOK, or 00000.
Another possible disposition for unused states, one that we haven’t explored
before, is obtained by careful use of “don’t-cares” in the coding of current state
(Sreg value) in the next-state logic’s case statement.

Table 12-2 shows such a state encoding for the guessing-game machine,
derived from the output-coded state assignment used in Program 12-23. In this
encoding, every one of the 32 possible values of the current state in Sreg is
matched by exactly one of the “don’t-care” coded states (e.g., 10111 = xS1,
00101 = xS3). However, next states are coded using the same unique values as in
Program 12-23.

The “don’t-care” coded current states can be used in the Verilog module as
shown in Program 12-25. The next states are defined by a parameter declara-
tion as before, but the current states are defined by a second parameter
declaration that uses ?’s in some of bit positions, as in Table 12-2. Recall that in
a Verilog literal, “?” means the same as “z” (“high impedance”), but depending
on the tool suite, it may also be interpreted as “don’t-care.” In such tool suites,
the compiler and synthesizer can use “don’t-cares” to simplify combinational
logic.

The other important change in Program 12-25 is in the next-state logic,
replacing replace the case keyword with casez. A casez statement allows z’s
(or equivalent ?’s) to appear in case choices—as they do in the “z” current states
defined in the second parameter declaration—and alerts the compiler and
synthesizer to treat the z’s as “don’t-cares” when creating the case logic.

In this approach, each unused current state behaves like a nearby “normal”
state; Figure 12-8 illustrates the concept. The machine is well-behaved and goes
to a “normal” state if it inadvertently enters an unused state. Yet the approach
still allows some simplification of the next-state logic. When Program 12-25
was targeted to a Xilinx 7-series FPGA using Vivado tools, the synthesized

Table 12-2
Current-state encoding
for the guessing-game
machine using “don’t-
cares.”

State L1 L2 L3 L4 ERR

xS1 1 x x x x

xS2 0 1 x x x

xS3 0 0 1 x x

xS4 0 0 0 1 x

xSOK 0 0 0 0 0

xSERR 0 0 0 0 1

DDPP5.book Page 646 Tuesday, March 28, 2017 5:33 PM

12.8 “Don’t-Care” State Encodings 647

Program 12-25 Verilog module for the guessing game using “don’t-care” current-state encodings.

module Vrggamedc (CLOCK, RESET, G1, G2, G3, G4, L1, L2, L3, L4, ERR);
 input CLOCK, RESET, G1, G2, G3, G4;
 output wire L1, L2, L3, L4, ERR;
 reg [1:5] Sreg, Snext; // State register and next state
 parameter S1 = 5'b10000, // Output coded state assignment
 S2 = 5'b01000, // for 4 running states,
 S3 = 5'b00100,
 S4 = 5'b00010,
 SOK = 5'b00000, // OK state, and
 SERR = 5'b00001; // error state
 parameter zS1 = 5'b1????, // State coding for cases, with don't-cares
 zS2 = 5'b01???, // for 4 running states,
 zS3 = 5'b001??,
 zS4 = 5'b0001?,
 zSOK = 5'b00000, // OK state, and
 zSERR = 5'b00001; // error state
 always @ (posedge CLOCK) // Create state memory with sync reset
 if (RESET) Sreg <= SOK; else Sreg <= Snext;
 always @ (G1 or G2 or G3 or G4 or Sreg) // Next-state logic
 casez (Sreg)
 zS1 : if (G2 | G3 | G4) Snext = SERR;
 else if (G1) Snext = SOK;
 else Snext = S2;
 zS2 : if (G1 | G3 | G4) Snext = SERR;
 else if (G2) Snext = SOK;
 else Snext = S3;
 zS3 : if (G1 | G2 | G4) Snext = SERR;
 else if (G3) Snext = SOK;
 else Snext = S4;
 zS4 : if (G1 | G2 | G3) Snext = SERR;
 else if (G4) Snext = SOK;
 else Snext = S1;
 zSOK : if (~G1 & ~G2 & ~G3 & ~G4) Snext = S1; else Snext = SOK;
 zSERR: if (~G1 & ~G2 & ~G3 & ~G4) Snext = S1; else Snext = SERR;
 default : Snext = SOK;
 endcase
 assign {L1,L2,L3,L4,ERR} = Sreg; // Output logic
endmodule

Figure 12-8
State assignment
using “don’t-cares”
for current states.

Current coded states Next coded states

DDPP5.book Page 647 Tuesday, March 28, 2017 5:33 PM

648 Chapter 12 State Machines in Verilog

machine required only 7 LUTs, comparing favorably with 9 LUTs needed for
the original Program 12-23.

Still, this approach should be used with great care. First, you must be sure
that the “don’t-care” state encodings are defined properly, in particular that they
are mutually exclusive and all inclusive. If they are not all inclusive and you
don’t specify a default case, then the tools will create “inferred latches” to hold
the previous choice for cases where there’s no current match, even if those cases
should never occur in practice. And if they are not mutually exclusive, you have
a “nonparallel case statement” where the tools will create priority logic to ensure
that only the first matched case is executed, again even if multiple cases can
never be matched in practice because they are unused. Second, in a larger design,
if something goes wrong elsewhere in your design and real errors (unexpected
x’s or z’s) are propagated to your “don’t-care” case logic, the simulator may
mask them, and the simulated behavior may not match the synthesized behavior.

12.9 Decomposing State Machines
Just like large procedures and functions in a programming language, large state
machines are difficult to conceptualize, design, and debug. Therefore, when
faced with a large state-machine problem, digital designers often look for oppor-
tunities to solve it with a collection of smaller state machines.

There’s a well-developed theory of state-machine decomposition that you
can use to analyze any given, monolithic state machine to determine whether it
can be realized as a collection of smaller ones. However, decomposition theory
is not too useful for designers who want to avoid designing large state machines
in the first place. Rather, a practical designer tries to cast the original design
problem into a natural, hierarchical structure, so the uses and functions of sub-

DON’T MAKE A
CASE OUT OF IT

It’s important to use casez and not case in Program 12-25. Using “case” is not an
error as far as the Verilog compiler is concerned; it does allow z’s to be used in
choices in a case statement. The simulator correctly considers them to be high-
impedance values, and it creates unknown outputs when the choices are executed.
Unable to generate unknown (“x”) outputs in a real circuit, the synthesizer simply
creates a circuit with no logic corresponding to these choices. It may give you a
warning, but it does not stop synthesis or flag this as a critical error.

REST IN PEACE Because of this subsection’s title, I got some complaints in previous editions for
joking about the “buried flip-flops” found in some PLDs. So I’m leaving that out.

state-machine
decomposition

DDPP5.book Page 648 Tuesday, March 28, 2017 5:33 PM

12.9 Decomposing State Machines 649

machines are obvious, making it unnecessary ever to write a state table, state
diagram, or HDL model for the equivalent monolithic machine.

The simplest and most commonly used type of decomposition is illustrated
in Figure 12-9. A main machine typically handles the primary inputs and outputs
and executes a top-level control algorithm. Submachines perform low-level steps
under the control of the main machine and may optionally handle some of the
primary inputs and outputs.

The hierarchical structure provided by Verilog is ideal for decomposing
large state machines. It’s easy to define the inputs and outputs used by the main
machine and submachines to communicate. Moreover, it is possible to “stub
out” the submachines, designing the main machine without coding the details of
the submachine until later. This is particularly useful since the designer’s initial
ideas about the functions of and communication with the submachines may
change as more details of the main machine are worked out. Finally, the main
machine and submachines may use different coding styles; for example, behav-
ioral for the main machine and structural for a submachine where an existing
library component will do the job.

Perhaps the most commonly used submachine is a counter. The main
machine starts the counter when it needs to stay in a particular main state for n
clock ticks, and the counter asserts a DONE signal when n ticks have occurred.
The main machine is typically designed to wait in the same state until DONE is
asserted. This adds an extra output and input to the main machine (START and
DONE), but it saves n − 1 states.

12.9.1 The Guessing Game Again
An example decomposed state machine designed along the lines discussed
above is based on the guessing game of Section 12.7. The original guessing
game is easy to win after a minute of practice because the LEDs cycle at a very
consistent rate of 4 Hz. To make the game more challenging, we can greatly
increase the clock speed to, say, 50 Hz, but program the LEDs to stay in each
state for a random length of time. Then the user truly must guess whether a given
LED will stay on long enough for the corresponding pushbutton to be pressed.

Figure 12-9
A typical, hierarchical
state-machine
structure.

DONE1

Main
machine

Submachine 1

Submachine 2

START1

DONE2

START2
Inputs Outputs

main machine
submachines

DDPP5.book Page 649 Tuesday, March 28, 2017 5:33 PM

650 Chapter 12 State Machines in Verilog

A block diagram for the enhanced guessing game is shown in
Figure 12-10. The main machine is basically the same as before, except that it
advances from one LED state to the next only if an enable input EN is asserted.
The EN input is driven by a random-duration timer which starts running when it
sees its START input asserted.

Just drawing the EN and START signals in Figure 12-10 does not define
the communication protocol between the main machine and the timer, which
requires both thought and documentation, for example as presented below:

• The EN and RUN inputs are checked by the respective machines only on
the CLOCK edge.

• The main machine asserts START only when it is about to transition into
one of its “running” states S1-S4, coming from a different state.

• The timer starts timing on the clock edge when it sees START asserted, and
asserts its EN output immediately after that edge if it has selected a random
duration of one clock tick, or during any other clock period thereafter
depending on the selected random duration.

• The timer stops running during the period in which it asserts EN, unless
and until it sees its START input asserted again, at which point it runs again
for a newly selected random number of clock ticks.

• The main machine ignores the EN input if it is not in a running state.

Based on this description and having the benefit of the original guessing-
game code in Program 12-22 as a starting point, we can design a top-level main
machine for the enhanced guessing game as shown in Program 12-26. No addi-
tional states are required, so the state definitions are the same as in the original
module, and the next-state logic is similar. However, in each “running” state, we
advance to the next one only if EN is 1; otherwise we stay in the current state.

The code for the START output is also important. Here, START is asserted
only if the next state will be different from the current state and is one of the four
“running” states. Note that START is a Mealy-type output, since it depends on

Figure 12-10
Block diagram of
guessing game
with random
delay.

guessing-game
state machine

EN

CLOCK

G1–G4 L1–L4

ERR

random-
duration

timer

START

DDPP5.book Page 650 Tuesday, March 28, 2017 5:33 PM

12.9 Decomposing State Machines 651

Program 12-26 Top-level Verilog module for enhanced guessing game.

module Vrggamemain (CLOCK, RESET, G1, G2, G3, G4, EN, L1, L2, L3, L4, ERR, START);
 input CLOCK, RESET, G1, G2, G3, G4, EN;
 output reg L1, L2, L3, L4, ERR, START;
 reg [2:0] Sreg, Snext; // State register and next state

 parameter S1 = 3'b001, // State encodings for 4 running states,
 S2 = 3'b010,
 S3 = 3'b011,
 S4 = 3'b100,
 SOK = 3'b101, // OK state, and
 SERR = 3'b110; // error state

 always @ (posedge CLOCK)// Create state memory with sync reset
 if (RESET) Sreg <= SOK; else Sreg <= Snext;

 always @ (*) // Next-state logic
 case (Sreg)
 S1 : if (G2 | G3 | G4) Snext = SERR;
 else if (G1) Snext = SOK;
 else if (EN) Snext = S2;
 else Snext = S1;
 S2 : if (G1 | G3 | G4) Snext = SERR;
 else if (G2) Snext = SOK;
 else if (EN) Snext = S3;
 else Snext = S2;
 S3 : if (G1 | G2 | G4) Snext = SERR;
 else if (G3) Snext = SOK;
 else if (EN) Snext = S4;
 else Snext = S3;
 S4 : if (G1 | G2 | G3) Snext = SERR;
 else if (G4) Snext = SOK;
 else if (EN) Snext = S1;
 else Snext = S4;
 SOK : if (~G1 & ~G2 & ~G3 & ~G4) Snext = S1; else Snext = SOK;
 SERR: if (~G1 & ~G2 & ~G3 & ~G4) Snext = S1; else Snext = SERR;
 default : Snext = SOK;
 endcase

 always @ (Sreg or Snext) begin // Output logic
 L1 = (Sreg == S1); L2 = (Sreg == S2); L3 = (Sreg == S3);
 L4 = (Sreg == S4); ERR = (Sreg == SERR);
 START = (Snext != Sreg) & ((Snext==S1)|(Snext==S2)|(Snext==S3)|(Snext==S4));
 end

endmodule

DDPP5.book Page 651 Tuesday, March 28, 2017 5:33 PM

652 Chapter 12 State Machines in Verilog

SNEXT which in turn depends on both the current state and the primary inputs.
However, according to the inter-machine communication protocol presented
above, the timer looks at the value of START only at a triggering CLOCK edge.

To complete the guessing game, we also need a random-timer submachine.
We’ll show how to build a pseudo-random timer shortly, but for simplicity we
can first “stub in” a simple timer with a fixed delay of up to three clock ticks, as
shown in Program 12-27. This module has just two bits for the count CNT, which
supports a maximum timer count of 3, specified by a parameter MAXCNT. The
short fixed delay makes it easier to debug the submachine’s communication with
the main machine, including corner cases like a delay of 1.

The next step is to create a top-level module that instantiates the main
machine and the timer and hooks them up as we showed in Figure 12-10. Such a
module Vrggametop appears in Program 12-28. Notice that it instantiates the
timer Vrggameftimer with the parameter MAXCNT equal to 1, so the LED pattern
shifts on every clock cycle. This should make the new machine operate the same
as the original Vrggame machine in Program 12-22, and we can check it using

Program 12-27 Simple fixed timer for the guessing game.

module Vrggameftimer (CLOCK, RESET, START, EN);
 input CLOCK, RESET, START;
 output wire EN;
 reg [1:0] CNT; // Enough bits to count to 3
 parameter MAXCNT = 2; // Assert EN after MAXCNT ticks (1, 2, or 3)

 always @ (posedge CLOCK)
 if (RESET) CNT <= 0; // Counter is stopped when CNT is zero
 else if (START) CNT <= 1;
 else if ((CNT!=0) && (CNT!=MAXCNT)) CNT=CNT+1; // Keep counting after starting
 else CNT <= 0; // but stop after hitting MAXCNT

 assign EN = (CNT==MAXCNT); // Assert EN for one tick when MAXCNT is reached
endmodule

Program 12-28 Top-level Verilog module for the guessing game.

module Vrggametop (CLOCK, RESET, G1, G2, G3, G4, L1, L2, L3, L4, ERR);
 input CLOCK, RESET, G1, G2, G3, G4;
 output wire L1, L2, L3, L4, ERR;
 wire START, EN; // Communication between the main and timer machines
// Instantiate the main machine
 Vrggamemain U1 (.CLOCK(CLOCK), .RESET(RESET), .G1(G1), .G2(G2), .G3(G3), .G4(G4),
 .L1(L1),.L2(L2),.L3(L3), L4(L4), ERR(ERR),.START(START),.EN(EN));
// Instantiate the timer
 Vrggameftimer #(.MAXCNT(1)) U2 (.CLOCK(CLOCK),.RESET(RESET),.START(START),.EN(EN));
endmodule

DDPP5.book Page 652 Tuesday, March 28, 2017 5:33 PM

12.9 Decomposing State Machines 653

the existing test bench in Program 12-24. Instantiating Vrggametop in existing
test bench does work and the tests pass, as far as they go. We’ll work on a more
comprehensive test bench later. Now that we know that the basic communication
between submachines works properly for at least this one case, we can start
working on a real random-timer submachine.

An LFSR can be used to generate a pseudorandom sequence, so that an
LED’s “on” time depends on the counting sequence of the LFSR. We wrote an
LFSR module Vrlfsr in Program 11-21 on page 591, which runs when its RUN
input is asserted. The new guessing-game timer module Vrggameptimer in
Program 12-29 instantiates Vrlfsr specifying a width of 24 bits. It also defines
one bit of state, RUNL, which is applied to the RUN input of the LFSR. The new
timer module waits for a random time to assert EN using the following strategy:

• When START is asserted, set RUNL to 1, which enables the LFSR to run.

• Decode the three low-order bits of the LFSR, so when they equal a certain
predefined value (3'b111) and the LFSR is running, assert EN, which
allows the guessing game LEDs to move to their next state. Note, this is a
Mealy output.

• At the end of the clock period in which the predefined value is decoded, set
RUNL to 0, which stops the LFSR until RUNL is asserted again.

There are some subtleties in the interactions among START, RUNL, EN, and
the LFSR operation, especially in the definition of EN as a Mealy output and in
the third bullet above. At the same that RUNL is set to 0, the LFSR will move on
to its next random state, so the low-order bits could be different in the next clock
period. And if START is already asserted when the predefined value is decoded in
the third bullet, then RUNL instead remains at 1 and the LFSR will keep running

Program 12-29 Pseudorandom timer for guessing-game using LSFR output bits.

module Vrggameptimer (CLOCK, RESET, START, EN);
 input CLOCK, RESET, START;
 output wire EN;
 reg RUNL;
 wire [23:0] QX;

Vrlfsr #(.N(24),.FE(24'b10000111)) U1 (.CLK(CLOCK), .RESET(RESET), .RUN(RUN), .QX(QX));

 always @ (posedge CLOCK)
 if (RESET) RUNL <= 1'b0; // All stopped during reset
 else if (START) RUNL <= 1'b1; // Start the LFSR running
 else if (QX[2:0]==3'b111) RUNL <= 1'b0; // Stop after 8 ticks, on average

 assign EN = ((QX[2:0]==3'b111) && (RUNL==1'b1)); // Assert EN when LFSR is running
endmodule

DDPP5.book Page 653 Tuesday, March 28, 2017 5:33 PM

654 Chapter 12 State Machines in Verilog

in the next clock period. These subtleties ensure that the LEDs will shift on every
clock tick, not every second clock tick, if the LFSR should contain a long string
of 1s in its low-order bits.

With an n-bit LFSR, the “on” time for EN can range from one to n clock
ticks. A larger value of n of course gives a larger range for the LED “on” time
and also decreases its predictability, yielding the most fun.

Another LFSR-based approach could be to use a counter as in the original
fixed timer but specify its maximum count dynamically according to the LFSR’s
QX output bits, or a subset of them. However, this can result in a high degree of
predictability. After all, the LFSR’s underlying component is just a shift register,
and considering the parallel output QX[N-1:0], each successive value is just a
right shift of the previous one with a new high-order bit. Considering QX as a
numeric time duration, each successive value is no shorter than about half the
previous one, and perhaps a lot longer, which leads to a pretty easy strategy for
winning the game. This approach and ways of eliminating its predictability are
explored in Exercises 12.42 and 12.46.

An enhanced self-checking test bench for the guess-game machine is
shown in Program 12-30. This test bench makes guess inputs randomly. Since
unlike a human it can react within one clock tick and has “perfect” knowledge of
the LED states, it can then check the game’s performance automatically, deter-
mining whether the game reacted correctly to its correct or incorrect guess. The
body of the test bench has a for loop that applies 10,000 random inputs and
examines the results in this way, so it checks the state machine very thoroughly.

 The test bench performs a random delay in three places, and a parameter
MAXwait specifies the maximum number of clock ticks for these delays. The
initial block performs the needed signal initializations and FPGA start-up
delay, and then executes the main for loop. The delays are aligned so the for
loop will change inputs and test outputs in the middle of a 10 ns clock period.

To make the game more challenging, it’s possible that some versions of the
state machine may not turn on an LED immediately at the beginning of a turn, so
the test bench allows up to 100 clock ticks for an LED to turn on. Once an LED
has turned on, the test bench waits for a first random delay before looking at the
LED states. Then it “looks at” the LED pattern and saves it in a variable GL for its
eventual guess. But it waits for a second random delay before actually making
the guess. After the delay, it saves the current, possibly changed, LED pattern in
a variable CL. One tick later, the state machine should react to the guess by turn-
ing off all LEDs. The test bench compares GL and CL to determine whether its
guess was correct and verifies that the state machine’s ERR output corresponds.
Finally, it waits for a third random delay before releasing the pushbutton (guess
input) and goes back to the beginning of the main loop.

Although the test bench in Program 12-30 does a very good job of check-
ing the state machine’s operation for “normal” guesses, it is still far from
complete. For example, it does not check that the LEDs always display a legal

DDPP5.book Page 654 Tuesday, March 28, 2017 5:33 PM

12.9 Decomposing State Machines 655

Program 12-30 Self-checking guessing-game test bench with an automatic approach.

`timescale 1ns/100ps
module Vrggame_tba ();
reg Tclk, RST, G1, G2, G3, G4;
wire L1, L2, L3, L4, ERR;
integer ii, j, rand;
reg [1:4] CL, GL; // Current and guessed LED pattern
parameter MAXwait = 4;

Vrggametop UUT (.CLOCK(Tclk), .RESET(RST), .G1(G1), .G2(G2), .G3(G3), .G4(G4),
 .L1(L1), .L2(L2), .L3(L3), .L4(L4), .ERR(ERR));

always begin // create free-running test clock with 10 ns period
 #5 Tclk = 0; // 5 ns high
 #5 Tclk = 1; // 5 ns low
end

initial begin // What to do starting at time 0
 RST = 1; // Apply reset
 {G1,G2,G3,G4} = 4'b0000; // All guess inputs are 0
 Tclk = 1; // Start clock at 1 at time 0
 #115; // Wait 115 ns
 RST = 0; #20 ; // unreset and let it take effect
 for (ii=1; ii<=10000; ii=ii+1) begin
 for (j=1; j<=100; j=j+1) if ({L1,L2,L3,L4} == 4'b0) #10 ; // Wait for LED on
 if ({L1,L2,L3,L4} == 4'b0) begin // Display error and stop if waited too long
 $display("Time: %d No LED on after 100 ticks",$time);
 $stop(1); end;
 rand = $random % (MAXwait+1); if (rand<0) rand = -rand;
 #(10*rand); // Delay 0-MAXwait ticks before guessing
 GL = {L1,L2,L3,L4}; // Save LED pattern for guess
 rand = $random % (MAXwait+1); if (rand<0) rand = -rand;
 #(10*rand); // Delay 0-MAXwait ticks to make guess
 CL = {L1,L2,L3,L4}; // LED pattern at time guess is made
 {G1,G2,G3,G4} = GL; // Make guess using saved pattern
 #10 ; // Wait for guess to be recognized
 if ({L1,L2,L3,L4} != 4'b0) // Expect all LEDs off
 $display("Time: %d LEDs not all off, L1-4=%4b",$time,{L1,L2,L3,L4});
 if (GL==CL) begin // Guess was correct
 if (ERR==1) $display("Time: %d Incorrect ERR assertion",$time);
 end // Else guess was incorrect
 else if (ERR==0) $display("Time: %d Missed ERR assertion",$time);
 rand = $random % (MAXwait+1); if (rand<0) rand = -rand;
 #(10*rand); // Delay 0-MAXwait ticks before releasing PB
 {G1,G2,G3,G4} = 4'b0; // Negate guess inputs and continue loop
 end;
 $stop(1); // end test
end
endmodule

DDPP5.book Page 655 Tuesday, March 28, 2017 5:33 PM

656 Chapter 12 State Machines in Verilog

pattern, with only one LED on at a time, nor does it check the machine’s ability
to detect “cheating,” like asserting multiple guess inputs simultaneously. These
enhancements are requested in Exercise 12.43.

12.10 The Trilogy Game
The “Trilogy Game” is a two-player game that starts with three heaps of coins,
sticks, or other objects, with 3, 5, and 7 objects in the heaps. The players alter-
nate play, and at each turn a player must remove one or more objects from one
heap—any nonzero number of objects, but all from the same heap. The loser of
the game is the person who removes the last remaining object.

We can design a state machine to keep track of the number of objects in the
heaps as the game is played. This is best done as a decomposed machine with
three counters, H1, H2, and H3, whose outputs indicate the number of objects in
the heaps, and a main machine with additional inputs and outputs as follows:

RST This input initializes the H1, H2, and H3 counters to 3, 5, and 7.

T1, T2, T3 These three inputs are associated with the like-numbered heaps.

NEXT This output indicates that the next player’s turn may begin.

OVER This output indicates that the heaps are now all empty and the
game is over.

The inputs are all sampled at the rising edge of a free-running CLK signal.
As indicated, the counters are initialized when RST is asserted. Subsequently,

A RANDOM,
COSTLY BUG

When I wrote the test bench in Program 12-30, I had a bug that was so bad that the
simulator would produce absurd results and sometimes crash, and it took me several
hours to find the bug. I wasted so much time on it that this book probably has one
less example in it as a result. So, I’m sharing it here in the hope that you can avoid
ever making the same error.

Notice the code in three places that gets a random number using Verilog’s
built-in $random function, and adjusts it to be in the range 0–MAXwait. My original
code left out the if statement. Recall that the value returned by $random is a 32-bit
signed integer. And the Verilog’s definition of the modulo operation, a % b, says that
the result has the same sign as the first operand. So, my original code could return a
negative random delay. The bug is so obvious once you find it, it’s laughable.

Unfortunately, different simulators handle negative delays differently, includ-
ing forcing them to zero, or giving error messages or warnings. In Vivado’s case, it
silently accommodates them. In my case, the only discernible and maddening hints
were that strange black bars sometimes appeared on portions of timing waveforms,
and my own displayed messages sometimes appeared out of sequence. The latter
shook my confidence in the entire software system, but eventually led me to my bug.

DDPP5.book Page 656 Tuesday, March 28, 2017 5:33 PM

12.10 The Trilogy Game 657

the “user interface” for the game is based on the inputs T1–T3, which would be
driven by pushbuttons, the status outputs NEXT and OVER, displayed on LEDs,
and the counter outputs H1–H3, which could drive 7-segment displays.

The state machine asserts NEXT when it is ready for a player’s turn to
begin, and it continues to assert NEXT until the player begins. The player asserts
Ti at one or more edges of CLK (not necessarily contiguous), and the state
machine decrements the counter Hi each time. For proper operation, the machine
must not decrement a counter below zero. Also, once the user decrements a par-
ticular counter, only that counter can be decremented further. The user indicates
that the turn is over either by decrementing all the way to zero, or by asserting a
Tj input other than the current input Ti. At that point, the machine asserts NEXT
and is ready to accept a new move, unless all the counters are zero, in which case
it asserts DONE and waits for RST.

In the specification above, we are expecting the user to synchronize their Ti

inputs with CLK, which is not really reasonable for a human user, unless the
clock frequency is very slow, a fraction of 1 Hz. Let us instead assume that the
free-running CLK frequency is arbitrarily fast. Then we need a circuit that can
receive a pushbutton input signal Pi of arbitrarily long duration, but which
asserts an output Ti for just one CLK period after its leading edge. Program 12-31
is an edge-detector module that does this by storing Pi at two consecutive clock
ticks, and looking for a 0 followed by a 1. Thus, we can apply a pushbutton input
Pi to an instance of this module to obtain a corresponding edge-detect signal Ti
that is a suitable input for the main machine. (We assume that the pushbutton
inputs are already “debounced;” else, see Exercises 12.52 and 12.53.)

THE GAME OF NIM The name of the Trilogy Game has nothing to do with the fact that it starts with three
piles of objects. It’s just what my family has always called it after learning the game
many years ago by playing it with a crew member during a day trip on a catamaran
named Trilogy in Hawaii.

The game is actually just one version of the very old and very well-known
mathematical game of NIM, which has similar rules but can have many different
starting configurations—any number of piles and any number of objects per pile.
Also, in traditional NIM, you win the game by taking the last object, while in the
Trilogy Game you lose by doing that. Playing to lose according to the normal rules
is called misère play.

With a simple Web search, you can find many articles on winning strategies
for NIM. The decomposed state machine design in this section merely keeps track of
the heaps, assuming the Trilogy Game starting configuration. You can combine it
with other logic to create a machine that plays the Trilogy Game with a human player
(see Exercise 12.59). Since an intelligent first player who goes first can always win
the Trilogy Game, you would definitely want to design any such state machine to
allow you to go first, but you can test it by letting it go first.

DDPP5.book Page 657 Tuesday, March 28, 2017 5:33 PM

658 Chapter 12 State Machines in Verilog

We also need a Verilog module for the heap counters. We could instantiate
the Vrupdn4 counter of Program 11-4 on page 563 with appropriate values to do
the job, and rely on the tools to prune away any unneeded logic from this circuit.
However, the required function is so simple that we can easily just define a new
module to do the job as shown in Program 12-32. While we’re at it, we’ve
designed this counter to be “sticky,” so it doesn’t count below zero if it gets
enabled after reaching that minimum count. That might come in handy later.

Now we are ready to tackle the overall state machine. The relationships
among the top-level machine and its submachines are shown in Figure 12-11.
There are three instances each of the Vredgedet module (pushbutton edge
detectors) and the Vrtrilctr module (heap counters). They connect with a
main module Vrtrilogymain which we describe next, and they are connected
to each other in a top-level module Vrtrilogytop shown in Program 12-33.

The declarations for the main module are shown in Program 12-34. The
inputs include CLK, RST, and the edge-detected pushbutton signals T1–T3.
Remaining inputs are the heap-counter outputs H1–H3, needed to detect when a
player’s turn or the game is over. Notice that the H1 counter needs only two bits
(initial count of 3) while the others need three. Module outputs are the count
enables CNTEN[1:3] for the three heap counters, and the game status NEXT and

Program 12-31 Leading-edge detector module.

module Vredgedet (CLK, P, T); // Edge detector module
 input CLK, P; // Detects rising edge of P
 output reg T; // Assert for one tick on edge
 reg SP1, SP2; // Synchronize P with CLK

 always @ (posedge CLK) begin
 SP1 <= P; SP2 <= SP1;
 T <= SP1 & ~SP2;
 end
endmodule

Program 12-32 Customized down counter for the Trilogy state machine.

module Vrtrilctr (CLK, LD, EN, Q);
 parameter N = 3; // N-bit down counter
 parameter ICNT = 7; // with initial value ICNT
 input CLK, LD, EN;
 output reg [N-1:0] Q; // Count value

 always @ (posedge CLK) begin
 if (LD) Q <= ICNT;
 else if (EN && (Q!=0)) Q <= Q-1; // Stick at 0 just in case
 else Q <= Q;
 end
endmodule

DDPP5.book Page 658 Tuesday, March 28, 2017 5:33 PM

12.10 The Trilogy Game 659

Vredgedet

Vredgedet

Vredgedet

P1

P2

P3

T1

T2

T3

CLK

RST

Vrtrilctr Vrtrilctr Vrtrilctr

CNTEN[1] CNTEN[2] CNTEN[3] H3

H1

H2

Vrtrilogymain

Vrtrilogytop

NEXT

OVER

Figure 12-11
Top-level module and
submodules for the
Trilogy game.

Program 12-33 Top-level structural module for the Trilogy game.

module Vrtrilogytop (CLK, RST, P1, P2, P3, H1, H2, H3, NEXT, OVER);
 input CLK, RST; // Clock and reset
 input P1, P2, P3; // Input pushbuttons
 output [1:0] H1; // Heap counters
 output [2:0] H2, H3;
 output NEXT, OVER; // Next-move and game-over status
 wire T1, T2, T3; // Edge signals detect from pushbuttons
 wire [1:3] CNTEN; // Count enables for heap counters

 Vredgedet E1 (.CLK(CLK), .P(P1), .T(T1)); // Edge detectors
 Vredgedet E2 (.CLK(CLK), .P(P2), .T(T2));
 Vredgedet E3 (.CLK(CLK), .P(P3), .T(T3)); // Heap counters

 Vrtrilctr #(.N(2),.ICNT(3)) C1 (.CLK(CLK), .LD(RST), .EN(CNTEN[1]), .Q(H1));
 Vrtrilctr #(.N(3),.ICNT(5)) C2 (.CLK(CLK), .LD(RST), .EN(CNTEN[2]), .Q(H2));
 Vrtrilctr #(.N(3),.ICNT(7)) C3 (.CLK(CLK), .LD(RST), .EN(CNTEN[3]), .Q(H3));

 Vrtrilogymain M1 (.CLK(CLK), .RST(RST), .T1(T1), .T2(T2), .T3(T3), .CNTEN(CNTEN),
 .H1(H1), .H2(H2), .H3(H3), .NEXT(NEXT), .OVER(OVER));
endmodule

DDPP5.book Page 659 Tuesday, March 28, 2017 5:33 PM

660 Chapter 12 State Machines in Verilog

OVER. The module also declares reg variables for the next state and for the state
register. A parameter statement defines the next-state encoding, which we’ll
discuss later, after we’ve actually worked out the states.

The main machine’s next-state and output logic appear in Program 12-35.
When RESET is asserted, a good place to begin is at an IDLE state, and that’s what
we’ll do. In the output logic we assert NEXT in that state to signal the beginning
of a turn. The key idea in the next-state logic is that once a player takes an object
from a particular heap, the player must continue in only that heap until the end of
the turn. Therefore, the IDLE state goes to a different next state depending on
which Ti input is asserted, for example GT1 if T1 is first asserted. In that state,
the output logic asserts the count enable for the corresponding heap counter, for
example CNTEN[1].

Once the machine is in a GTi state, it may accept additional requests to dec-
rement the corresponding heap counter. The edge detector machine that creates
Ti can never generate two 1 inputs in a row, but we have designed the main
machine to accommodate that situation just in case it is ever used in a situation
where that’s possible (for example, if another state machine is playing against a
human player as in Exercise 12.59). Therefore, if Ti is asserted in the GTi state,
the machine stays there to decrement the corresponding heap counter again.

A subtlety is that heap counter Hi might be getting decremented to zero
during the current GTi state; if so, we shouldn’t decrement it again. One way to
handle this is for the output logic to prevent CNTEN[i] from being asserted if the
counter is already zero, as shown in the output-logic comments. Another would
be for the first line of the GTi next-state logic to check for Hi>=1 instead of
H1!=0; either approach could lead to additional resources in the state machine’s

Program 12-34 Main-machine declarations for the Trilogy game.

module Vrtrilogymain (CLK, RESET, T1, T2, T3, H1, H2, H3, CNTEN, NEXT, OVER);
 input CLK, RESET; // Clock and reset
 input T1, T2, T3; // Input-transition detect
 input [1:0] H1; // Heap counters
 input [2:0] H2, H3;
 output [1:3] CNTEN; // Count enables for heap counters
 output NEXT, OVER; // Next-move and game-over status
 reg [3:0] Snext, Sreg;

 parameter IDLE = 4'b0000, // State encodings
 GT1 = 4'b0001,
 WT1 = 4'b0101,
 GT2 = 4'b0010,
 WT2 = 4'b0110,
 GT3 = 4'b0011,
 WT3 = 4'b0111,
 CHK = 4'b0100,
 DONE = 4'b1000;

DDPP5.book Page 660 Tuesday, March 28, 2017 5:33 PM

12.10 The Trilogy Game 661

Program 12-35 Trilogy game main-machine next-state and output logic.

 always @ (posedge CLK) begin
 if (RESET) Sreg <= IDLE; else Sreg <= Snext;
 end

 always @ (*) // Next-state logic
 case (Sreg)
 IDLE: if (T1 && (H1!=0)) Snext = GT1; // Ignore input if
 else if (T2 && (H2!=0)) Snext = GT2; // corresponding
 else if (T3 && (H3!=0)) Snext = GT3; // heap is empty
 else Snext = IDLE;
 GT1: if (T1 && (H1!=0)) Snext = GT1; // Decrement heap if two T1s
 else if (H1==0) Snext = CHK; // in a row (unlikely)
 else if (T2 || T3) Snext = CHK; // Go CHK if heap empty or
 else Snext = WT1; // other Ti; else wait
 WT1: if (T1 && (H1!=0)) Snext = GT1; // Decrement on another T1
 else if (H1==0) Snext = CHK; // Go CHK if heap empty or
 else if (T2 || T3) Snext = CHK; // other Ti
 else Snext = WT1; // Else wait
 CHK: if ((H1==0) && (H2==0) && (H3==0))
 Snext = DONE; // Done if all empty
 else Snext = IDLE; // Else new turn
 DONE: Snext = DONE; // Game over, wait for RESET
 GT2: if (T2 && (H2!=0)) Snext = GT2; // Same logic as GT1, WT1
 else if (H2==0) Snext = CHK;
 else if (T1 || T3) Snext = CHK;
 else Snext = WT2;
 WT2: if (T2 && (H2!=0)) Snext = GT2;
 else if (H2==0) Snext = CHK;
 else if (T1 || T3) Snext = CHK;
 else Snext = WT2;
 GT3: if (T3 && (H3!=0)) Snext = GT3; // Same logic as GT1, WT1
 else if (H3==0) Snext = CHK;
 else if (T1 || T2) Snext = CHK;
 else Snext = WT3;
 WT3: if (T3 && (H3!=0)) Snext = GT3;
 else if (H3==0) Snext = CHK;
 else if (T1 || T2) Snext = CHK;
 else Snext = WT3;
 default Snext = IDLE;
 endcase
 // Output logic
 assign CNTEN[1] = (Sreg==GT1); // && (H1!=0) optional because of counter design
 assign CNTEN[2] = (Sreg==GT2); // && (H2!=0) ditto
 assign CNTEN[3] = (Sreg==GT3); // && (H2!=0) ditto
 assign NEXT = (Sreg==IDLE);
 assign OVER = (Sreg==DONE);

endmodule

DDPP5.book Page 661 Tuesday, March 28, 2017 5:33 PM

662 Chapter 12 State Machines in Verilog

realization (see Exercise 12.55). In this version of the module, we have done
neither, since we happened to design the heap counter so it will not decrement
below zero even if enabled.

As we’ve said, in the normal operating environment, a Ti input will never
be asserted for two clock ticks in a row. However, it may be asserted at one or
more later times. Therefore, the next-state logic includes a “wait state” WTi for
each heap, where the machine goes from GTi and waits for additional inputs. If
the corresponding Ti input is asserted again, it goes back to GTi and the cycle
repeats.

The next-state logic in both the GTi and the WTi states check for whether
the turn is over, which can be signaled either by the corresponding heap counter
reaching zero or by one of the other Ti inputs being asserted. In either case, the
machine goes to a state CHK which checks all of the heaps to determine if the
game is over. If all are empty, then it goes to the DONE state where it stays until
the next RESET occurs, and it asserts OVER while it waits. Otherwise, it goes back
to the IDLE state to begin another turn, asserting NEXT.

With the next-state and output logic completed, we can circle back to the
state assignments. There are a total of nine states, so we’ll need to use four bits.
It makes sense as usual to encode the reset state (IDLE) as all 0s. We’ll try to
exploit the machine’s symmetries in the remaining assignments. There are three
pairs of GTi/WTi states, so we’ll encode them with the three different nonzero
combinations in the two low-order bits, and 00 and 01 in the two high-order bits
to distinguish GTi and WTi. Since there are only 9 states, not 10 or more, we need
to use just one 4-bit combination where the MSB is 1, say 1000, for the DONE
state; thus the OVER output equals the MSB and could be generated without any
additional logic. That leaves the 0100 combination for NEXT.

A simple test bench for the Trilogy game is shown in Program 12-36. Like
our first test bench for the guessing game, this one applies a sequence of user-
constructed moves that are applied to the game through a task. The task, Move, is
called with a heap number, a number of button presses to make, and the number
of objects expected to be in each heap after the presses have been made. After

FSM DETRACTION The state assignments selected by the Xilinx Vivado tool when FSM extraction is
enabled are surprisingly poor compared to the state assignment that we described in
this section, which we just kind of pulled out of the air based on symmetries in the
Vrtrilogymain module’s next-state logic. Using that state assignment as written in
Program 12-34, the synthesized module uses 4 flip-flops and 16 LUTs. With FSM
extraction enabled in the “auto” mode, Vivado makes a “sequential” assignment that
uses the same number of flip-flops but 35 LUTs! Even if the “Gray” assignment is
forced, it uses 24 LUTs. The “Johnson” and “one-hot” options use more flip-flops
and 30 and 24 LUTs, respectively. Hooray for experienced designers—for now!

DDPP5.book Page 662 Tuesday, March 28, 2017 5:33 PM

12.10 The Trilogy Game 663

Program 12-36 Test bench for the Trilogy game.

`timescale 1ns/100ps
module Vrtrilogy_tb ();
 reg CLK, RST, P1, P2, P3; // Individual inputs
 wire [1:0] H1; wire [2:0] H2, H3; // Heap counters
 wire NEXT, OVER; // Next-move and game-over status

 Vrtrilogytop UUT (.CLK(CLK), .RST(RST), .P1(P1), .P2(P2), .P3(P3),
 .H1(H1), .H2(H2), .H3(H3), .NEXT(NEXT), .OVER(OVER));
 task Move;
 input integer heap, n, exp1, exp2, exp3;
 integer ii;
 begin
 for (ii=1; ii<=n; ii=ii+1) begin // Push button (heap) n times
 #(70 + ($random % 30)); // Random (70+-29) wait til PB press
 case (heap)
 1: P1 = 1; 2: P2 = 1; 3: P3 = 1; default ;
 endcase
 #(70 + ($random % 30)); // Random (70+-29) PB press duration
 P1 = 0; P2 = 0; P3 = 0;
 end
 if ((H1!==exp1) || (H2!==exp2) || (H3!==exp3)) $write("Error: ");
 else $write(" ");
 $display("HEAP:N H1 H2 H3 NEXT OVER %1d:%1d %1d %1d %1d %1b %1b",
 heap, n, H1, H2, H3, NEXT, OVER);
 end
 endtask

 always begin // create free-running test clock with 10 ns period
 #6 CLK = 0; // 6 ns high
 #4 CLK = 1; // 4 ns low
 end

 initial begin
 CLK = 1; RST = 1; P1 = 0; P2 = 0; P3 = 0;
 #115 RST = 0;
 Move(0,0,3,5,7); // Check heap initialization
 Move(1,1,2,5,7); // Do a turn
 Move(3,1,2,5,7); // End the turn
 Move(2,2,2,3,7); // Do a turn
 Move(1,1,2,3,7); // End the turn
 Move(3,7,2,3,0); // Do and end a turn
 Move(3,1,2,3,0); // Try an illegal turn
 Move(1,2,0,3,0); // Do and end a turn
 Move(2,2,0,1,0); // Do a turn
 Move(1,1,0,1,0); // End a turn
 Move(2,1,0,0,0); // Do the last turn
 $stop(1) ;
 end
endmodule

DDPP5.book Page 663 Tuesday, March 28, 2017 5:33 PM

664 Chapter 12 State Machines in Verilog

each move, it displays the move, the number of remaining objects per heap, and
the NEXT and OVER outputs, and it also flags the error if any object count is differ-
ent from what’s expected.

Of course, the user-constructed sequence of moves in Program 12-36 is not
comprehensive, and it doesn’t even check the NEXT and OVER outputs. It’s also
possible to design a test bench that creates random moves, playing the game
multiple times with different move sequences, and checking the results automat-
ically, as we did in Program 12-30 for the guessing game (see Exercise 12.61).

References
Verilog supports many different state-machine coding styles, in fact, too many.
Our recommended state-machine coding style is based on a 1998 paper by
Clifford E. Cummings titled “State-Machine Coding Styles for Synthesis.” This
and many other interesting Cummings papers can be found on his website at
www.sunburst-design.com/papers. For example, two of them (coauthored
with Don Mills and Steve Golson) describe in great detail the pros and cons of
synchronous versus asynchronous reset signals for state machines and clocked
systems in general.

Reset inputs are important for both simulation and hardware testing, but
it’s also possible to force some state machines from any unknown state into a
known state using a sequence of inputs called a “synchronizing sequence.” For
example, an n-bit serial-in shift register without a load or clear input can still be
forced into the all-0s state in n clock ticks simply by shifting in n 0s. Likewise, a
“sticky” up/down counter can be forced to a known state by counting up or down
long enough. There’s actually a very well developed but almost forgotten theory
and practice of synchronizing sequences and somewhat less powerful “homing
experiments,” described by Frederick C. Hennie in Finite-State Models for
Logical Machines (Wiley, 1968). But unless you’ve got this old classic on your
bookshelf and know how to apply its teachings, please just remember to provide
a reset input in every state machine that you design!

A mathematical theory of state-machine decomposition has been studied
for years; Zvi Kohavi and Niraj K. Jha discuss the topic in the classic book
Switching and Finite Automata Theory, (Cambridge University Press, 2010,
third edition). They also discuss synchronizing sequences and homing experi-
ments and relate them to issues of testing sequential circuits.

Drill Problems
12.1 Write a Verilog module for the state machine described by the state diagram in

Figure X9.15. Note that the diagram is drawn with the convention that the state
does not change except for input conditions that are explicitly shown. At reset,
the machine should start in state A.

DDPP5.book Page 664 Tuesday, March 28, 2017 5:33 PM

Drill Problems 665

12.2 Write a Verilog module for the state machine described by the state diagram in
Figure X9.14. At reset, the machine should start in state A.

12.3 Write a test bench that exercises the Verilog state machine that you wrote in
Drill 12.2, ensuring that every transition in the state diagram of Figure X9.14 is
taken at least once. You may use the method of Section 12.2.3.

12.4 Write a Verilog module for a state machine with the state/output table shown in
Table X9.20. Use two state variables, Q1 Q2, with the state assignment A = 00,
B = 01, C = 11, D = 10, and provide a RESET input that initializes the machine to
state A. Also, draw a state diagram equivalent to the state table

12.5 Write a Verilog test bench that exercises the state machine of Drill 12.4 for an
input sequence that takes each possible transition at least once. Draw a path on
your state diagram to show the order in which transitions are taken and states are
visited by your test bench.

12.6 Update the test bench in Program 12-6 so it also exercises transitions 1, 5, and 13
in the VrSMexra_chk module of Program 12-9.

12.7 Update the self-checking test bench in Program 12-7 so it also checks transitions
1, 4, 7, 12, and 13 in the VrSMexra_chk module of Program 12-9.

12.8 Write a Verilog module Vredge for a state machine with one input X and one
Moore-type output EDGE, which detects transitions on X. The machine tests its
X input at each tick of the clock and asserts EDGE if the value of X at that tick is
different from the value at the previous tick. Use state names A, B, C, and so on
as needed, and use the “direct coding” approach of Section 12.1.6.

12.9 Write a Verilog module Vrgettwo for a state machine with two inputs, INIT and
X, and one Moore-type output Z. As long as INIT is asserted, Z is continuously 0.
Once INIT is negated, Z should remain 0 until X has been 0 for two successive
ticks and 1 for two successive ticks, regardless of the order of occurrence. Then
Z should go to 1 and remain 1 until INIT is asserted again. Use the “direct coding”
approach of Section 12.1.6.

12.10 Write a self-checking test bench for the Vrgettwo machine of Drill 12.9 that
asserts INIT followed by a random sequence of 20 inputs on X. It should then
assert INIT again and follow with a different random sequence, and repeat the
process for a total of 20 different random sequences.

12.11 Draw a timing diagram showing the inputs, outputs, and state variables (including
lastA) of the Verilog state machine in Program 12-5 when the test bench of
Program 12-7 is run. You can try to work this out by hand, or you can just run the
test bench!

12.12 Run the Verilog test bench in Program 12-7, and verify that it still works for one
or more other VrSMex state-machine versions. Then, introduce a bug in the OK
state in the VrSMexa version of the UUT, checking B against 0 instead of 1, and
confirm that the test bench catches the bug. Finally, can you insert a bug in the
UUT that the test bench does not catch?

12.13 Write a Verilog module for a “sticky-counter” state machine with eight states,
S0–S7, assigned in binary counting order. Besides CLOCK, your machine should
have two inputs, RESET and ENABLE, and one output, DONE. The machine

DDPP5.book Page 665 Tuesday, March 28, 2017 5:33 PM

666 Chapter 12 State Machines in Verilog

should go to state S0 whenever RESET is asserted. When RESET is negated, it
should move to next-numbered state only if ENABLE is asserted. However, once
it reaches state S7, it should stay there unless RESET is again asserted. The
DONE output should be 1 if and only if the machine is in state S7 and ENABLE
is asserted.

12.14 Write a Verilog test bench to check for proper operation of the sticky counter that
you designed in Drill 12.13.

12.15 Write a Verilog module for a state machine that is similar to the one specified in
Drill 12.13 except that, when enabled, it counts “two steps forward, one step
back.” The machine should have one additional output, BACK, that is asserted if
ENABLE is asserted and the machine is going to count back on the next clock
edge. Once the machine gets to state S7, it never counts back. Comment your
module to describe your strategy for creating this behavior and how many addi-
tional state bits are needed.

12.16 Write a Verilog test bench to check for proper operation of the state machine you
designed in Drill 12.15.

12.17 Update the guessing-game state machine of Program 12-22 to provide an output
“OK” which is asserted when the game is stopped after a correct guess. Then
update the test bench of Program 12-24 to accommodate and test the additional
output.

12.18 As a matter of coding style, it is possible to eliminate the final else clause in each
of the cases in Program 12-26 by assigning the current state to Snext just prior to
the case statement. Make this change and show that the synthesized module is
exactly the same (with most tools). You can run the test bench in Program 12-30
to ensure that everything still works.

12.19 Augment the guessing-game test bench of Program 12-24 to test for both correct
and incorrect guesses made with the G3 and G4 pushbuttons.

Exercises
12.20 Draw a state diagram for the state machine in the Verilog module on page 605,

naming the states S00–S11 for the four combinations of Q1Q2, and showing arcs
and expressions only for input conditions that cause the state to change (no self
loops). Can you find words that easily describe what this state machine does?

12.21 Write a Verilog module Vredgemiss for a state machine with two inputs X and
INIT and two Moore-type outputs EDGE and MISS, which dependably detects
transitions on X. The machine tests its X input at each tick of the clock and asserts
EDGE if the value of X at that tick is different from the value at the previous tick.
Once it is asserted, EDGE remains asserted until INIT is asserted for at least one
tick. The MISS output is asserted if one or more edges were missed prior to INIT
being asserted after EDGE was asserted, and it also remains asserted until INIT is
asserted. Be careful with “boundary” cases. In particular, if an edge occurs while
INIT is asserted, then EDGE should still be asserted, while MISS should be
negated.

DDPP5.book Page 666 Tuesday, March 28, 2017 5:33 PM

Exercises 667

12.22 Write a Verilog test bench that checks for correct behavior of the Vredgemiss
state machine of Exercise 12.21. Pay particular attention to boundary cases.

12.23 Write a test bench that graphically displays the outputs of any of the T-bird tail
lights machines of Section 12.5 for a comprehensive input sequence. Suggestion:
a sequence of lamp states may be displayed using an “O” or “.” for each lamp
depending on whether it’s on or off; for example, in a left turn:
... ...
..O ...
.OO ...
OOO ...

12.24 What does the personalized license plate in Figure 12-5 stand for? (Hint: It’s the
author’s old plate, a computer engineer’s version of OTTFFSS.)

12.25 Convert the T-bird tail lights machine in Program 12-15 to an equivalent module
VrTbirdSMp that has pipelined outputs. Write a test bench that compares the new
module’s outputs with those of VrTbirdSM for a comprehensive input sequence.

12.26 Synthesize the VrTbirdSMe module of Program 12-16 six times using Xilinx
tools with FSM extraction, targeting your favorite FPGA and specifying each of
the following six state-assignment styles: off, sequential, Gray, Johnson, one-hot,
and auto. Also, synthesize the VrTbirdSMeoc module of Program 12-17 with
FSM extraction disabled (“off” option). Construct a table that gives the following
results for each synthesis run: number of LUTs used, number of flip-flops used,
maximum clock frequency, and maximum delay from clock input to any module
output (not that the application needs fast timing). Comment on the results, refer-
ring to the characteristics discussed in Section 12.1.7 as appropriate.

12.27 Repeat Exercise 12.26 for the Vrsvale module in Program 12-18. Besides the six
results for Vrsvale, include results for the Vrsvaleoc module, which has the
changes in Program 12-19, synthesized without FSM extraction.

12.28 Xilinx Vivado 2016.3 tools cannot perform FSM extraction on the Vrsvaleocov
module in Program 12-20. Figure out why not, and update the module to create
an equivalent module Vrsvaleocov_fsme that supports FSM extraction.

12.29 Repeat Exercise 12.26 for the Vrsvaleocov_fsme module that you created in
Exercise 12.28.

12.30 Modify the Vrsvale state machine of Program 12-18 to make a new module
Vrsvale_cs whose output logic uses a case statement. Write a test bench that
compares the modules’ outputs and confirms that they are identical for a compre-
hensive input sequence. Also compare the synthesis results for the two modules
when they are targeted to your favorite FPGA.

12.31 Modify the Vrsvale state machine of Program 12-18 to make a new module
Vrmtnview whose next-state behavior is more rationale and attempts to minimize
the waiting times of cars. You don’t need to get fancy, but you can assume that
the long timer is reduced to 2 minutes.

12.32 Write a test bench that graphically displays the outputs of the Sunnyvale traffic-
lights machine of Program 12-18 for a comprehensive input sequence.

12.33 Write a test bench that stimulates the Sunnyvale traffic-lights machine of
Program 12-18 with a random sequence of car arrivals at the sensors, measures

DDPP5.book Page 667 Tuesday, March 28, 2017 5:33 PM

668 Chapter 12 State Machines in Verilog

the waiting time of each car, and calculates the intersection’s average waiting
time, capacity (cars per hour), and maximum queue length (number of waiting
cars) over a long interval (say, one hour). Make the following assumptions:

• Cars arrive from the north and east directions only, at random intervals
between 3 and 18 seconds selected independently for each direction.

• No more than 30 cars wait in the queue in any direction; beyond that, they turn
around and go home.

• When a light changes from red to green, the first waiting car if any goes
through the intersection immediately, and as long as the light remains green,
the next one goes after 6 seconds, and the rest every 3 seconds.

• If there are more than 10 cars in the queue for a given direction, queued drivers
treat a yellow light as if it were green.

• If the light is already green and the queue is empty when a car hits the sensor,
the car goes through the intersection immediately.

12.34 Re-run the test bench of Exercise 12.33 with the arrival interval set to range
between 3 and 66 seconds for each direction. What happens to the intersection’s
performance metrics?

12.35 Re-run the test bench of Exercise 12.33 against the Vrmtnview state machine of
Exercise 12.31. Compare the intersection’s performance metrics for the two dif-
ferent machines.

12.36 A Fibonacci sequence is a sequence of integers in which each integer is the sum
of the previous two integers. When the first two integers in the sequence are
defined to be 1, the Fibonacci sequence is 1, 1, 2, 3, 5, 8, 13, A Fibonacci
number is an integer that appears in this sequence.

Write a decomposed Verilog state machine whose single output bit is asserted in
a Fibonacci sequence. Use n = 8 for the purposes of this exercise, but write your
code so that n can be easily changed if desired. Besides CLOCK, the machine
should have two inputs, RESET and an n-bit input bus D for loading the first two
defined Fibonacci numbers (usually 1 and 1). It should have two outputs: FIB and
DONE.

On the first clock tick after RESET is negated, the machine should load the first
defined Fibonacci number (usually 1) from the D bus into an internal n-bit counter
A. On the second clock tick, it should load the second defined Fibonacci number
(usually 1 also) from the D bus into a second n-bit counter B and assert FIB.

On successive clock ticks, the machine asserts FIB only if it has been j clock ticks
since FIB was last asserted, where j is the next Fibonacci number in sequence
(starting with the first). You may define another internal n-bit counter C if needed,
as well as a top-level state machine to control the overall operation. Some time
after the FIB is asserted for the last n-bit Fibonacci number, the machine asserts
DONE and waits for RESET to be asserted again.

12.37 Write a Verilog test bench that checks for proper operation of the state machine
you designed in Exercise 12.36 when the first two Fibonacci numbers are 1 and
1, assuring that it asserts FIB at the proper clock ticks (2, 3, 4, 6, 9, 14, . . .) and no
others, and then asserts DONE within a reasonable period of time.

Fibonacci sequence

Fibonacci number

DDPP5.book Page 668 Tuesday, March 28, 2017 5:33 PM

Exercises 669

12.38 Write a test bench that compares the UNLK outputs of the combination-lock
machines of Programs 12-13 and 12-14 against each other for a 5000-tick random
input sequence. Explain or correct any discrepancies in their outputs. How often
would you expect UNLK to be asserted, and how often does it actually happen?

12.39 Enhance the combination-lock machine of Program 12-13 to provide a HINT
output that actually works. Use an ad hoc approach in which you just write an
appropriate equation for HINT based on the current state and input. Test your
enhanced machine using the test bench of Exercise 12.38 after first updating it to
compare HINT outputs as well.

12.40 Synthesize the two different combination-lock machines of Program 12-14 and
Exercise 12.39, targeting your favorite programmable device. Compare the
resource requirements of the two design approaches.

12.41 Redesign the T-bird tail lights machine of Section 12.5 to include parking light
and brake light functions. When the BRAKE input is asserted, all of the lights
should go on immediately, and stay on until BRAKE is negated, independent of
any other function. When the PARK input is asserted, each lamp is turned on at
50% brightness at all times when it would otherwise be off. This is achieved by
driving the lamp with a 100-Hz signal DIMCLK with a 30% duty cycle. Partition
the Verilog design into as many modules as you feel are appropriate, and target
the top-level design to a single programmable device. Also, write a short descrip-
tion of how your system works.

12.42 Write a new random timer Vrggamertimer module for use with the decomposed
guessing-game state machine of Program 12-28. The new module should use a
counter as in the Vrggameftimer module, except that its 8-bit maximum value
should be set each time that START is asserted according to the parallel outputs
QX[7:0] of an 8-bit LFSR. The LFSR itself should advance by only one state
each time that START is asserted.

12.43 Enhance the guessing-game test bench of Program 12-30 so it checks the follow-
ing additional game behaviors: (1) the game detects an error if the user presses
two or more guess buttons at the same time to make a guess; (2) the game detects
an error if the user presses a second button while the game is stopped; (3) when
the game is running, exactly one LED is on at each tick. Note that the test bench
need not check that the LEDs are lit in order; in another version of the game, out-
of-order sequencing may be a feature for added difficulty.

12.44 When the guessing-game test bench is run with exactly the configuration shown
in Program 12-30 and instantiates the pseudo-random timer in Vrggametop,
fewer than 200 of the 10,000 guesses use the G4 guess input. With the fixed timer
and MAXCNT=3, none of the guesses use the G3 or G4 inputs. Explain why this
happens and make improvements to the test bench to get more uniform test cov-
erage on the guess inputs.

12.45 Write a test bench Vrggame_tbc for the guessing game that simply runs the game
continuously for 10,000 clock ticks, without ever asserting any guess inputs. Use
it to exercise the Vrggametop module using the original Vrggameptimer module
of Program 12-29 and observe the output waveforms on L1-L4. Then repeat using
the Vrggamertimer module of Exercise 12.42. Which output waveforms seem

DDPP5.book Page 669 Tuesday, March 28, 2017 5:33 PM

670 Chapter 12 State Machines in Verilog

more “random” in the sense of making the game more difficult to win? Can you
describe an effective strategy for winning the game in one or both cases?

12.46 Repeat Exercise 12.42 using a 24-bit LFSR. The counter should still have only 8
bits, loaded from the low-order bits of the LFSR. Observe the new module’s out-
put behavior using the Vrggame_tbc test bench of Exercise 12.45. With the larger
LFSR, MAXCNT will sometimes be all-0s; does everything still work? For how
many ticks are the LEDs unchanged in this case? In what ways, if any, has the
larger LFSR made the game more difficult to beat?

12.47 Suggest and make a simple change in the Vrggamertimer random-timer module
of Exercise 12.42 that makes the LED timing less predictable without requiring
significantly more chip resources, if any. Test your updated module with the test
bench of Exercise 12.45 and comment on the results.

12.48 Change Program 12-26 to make a new module Vrggamemain_seq so that when
the game restarts after a guess, the LED pattern picks up where it left off, instead
of starting with L1 again.

12.49 Change Program 12-26 to make a new module Vrggamemain_rand so that the
LED pattern is random rather than a rotating sequence—random next LED and
random duration.

12.50 Write Verilog modules for a decomposed state machine VrgetN for a state
machine with two 1-bit inputs, INIT and X, a 4-bit input N[3:0] representing an
unsigned integer n, and one Moore-type output Z. As long as INIT is asserted, Z
is continuously 0. Once INIT is negated, Z should remain 0 until X has been 0 for
n+2 successive ticks and 1 for n+2 successive ticks, regardless of the order of
occurrence. Then Z should go to 1 and remain 1 until INIT is asserted again.

12.51 Write a self-checking test bench for the VrgetN machine of Exercise 12.50 that
sets N[3:0] to 0000 and asserts INIT, followed by a random sequence of 2000
inputs on X. It should then assert INIT again, increment N[3:0], and follow with
a different random sequence, repeating the process for all 16 values of N[3:0].
Suggest ways of making the tests more effective when N[3:0] is large.

12.52 Design a new pushbutton-input module VrPBdebedge for use in the Trilogy game
that debounces a pushbutton input before detecting its leading edge and then pro-
ducing a 1-clock-tick edge-detect signal as in the existing Vredgedet module.
Assume that the pushbutton is a single-pole, double-throw switch configured as
shown in Figure 10-28. However, assuming you are targeting your design to an
FPGA, there may be no native S-R latch available, and one built from LUTs and
feedback may not work reliably (see the box on page 720). Therefore, design the
debounce circuit using a natively available component like a D latch (e.g., Xilinx
LDCE). Write a test bench that checks your circuit for proper operation with a
“bouncy” switch input.

12.53 Design a new pushbutton-input module VrPBdebedgecnt for use in the Trilogy
game that debounces a pushbutton input before detecting its leading edge and
producing a 1-clock-tick edge-detect signal as in the existing Vredgedet module.
Assume you have available only a single-pole, single-throw pushbutton in the
configuration of Figure 10-27. Debounce the switch input by recognizing an edge
only when the input has remained in a new state for a certain number of clock

DDPP5.book Page 670 Tuesday, March 28, 2017 5:33 PM

Exercises 671

ticks, determined by a parameter DBCNT. You may also define a parameter NBCNT
which is the number of bits needed in a counter for DBCNT. Write a test bench that
checks your circuit for proper operation with a “bouncy” switch input.

12.54 Based on its nature, the Trilogy game is a good candidate for using the unary code
to show the heap counts—one LED per object. Instantiate the Vrtrilogytop
module in a higher-level module to do this, also making use one of the binary-to-
unary modules of Exercises 6.34–6.36.

12.55 Show how to modify the Vrtrilogymain next-state logic in Program 12-35 so it
will never assert the CNTEN input for a heap counter when the count is already
zero. How does this change affect the total number of LUTs required compared
to the original design? How does this compare with the savings would now be
possible by omitting the zero-check in the Vrtrilctr module?

12.56 In Section 12.10, the discussion about state assignment for the Vrtrilogymain
module says that the OVER output may be created without any additional logic, but
in synthesis it actually uses a 4-input LUT. Edit the output-logic Verilog code so
this LUT is not required. What are the pros and cons of doing this?

12.57 Using or modifying the modules in Section 12.10, write Verilog modules to track
play in a generalized game of NIM with three heaps. Each heap may be initialized
with up to 15 objects at the start. To support this capability, the new game requires
a 4-bit data input, DI[3:0]. After reset is negated, the user places the desired initial
count for the first heap on DI[3:0]. and then presses pushbutton P1. The user then
does the same for the second and third heaps, pressing P2 and P3. At that point,
the game machine asserts NEXT and play proceeds as in the Trilogy game.

12.58 By searching the Web, you can easily find various strategies for winning the game
of NIM for any configuration, including the configuration and rules used in the
Trilogy game. Write a Verilog module that uses such a strategy to try to win the
game against a human player. Given a current heap configuration in the game, the
module should determine what move to make to guarantee a win, if such a move
exists. If there is no such move, it should take just one object from the largest
heap, to give itself more time for the human to make a mistake. The module may
be combinational or sequential. Its inputs are the current heap counts (H1, H2,
H3), and its outputs are the heap number to take from (HN) and the number of
objects to take (NT). In the case of a sequential module, there is also a clock input
and you must define an input and output to initiate the search for a move and to
indicate the search’s completion.

12.59 Using Verilog modules, design a machine that plays the Trilogy game against a
human player. The machine should use the modules in Section 12.10 to keep
track of the game heaps, and the module you designed in Exercise 12.58 to select
its own move. Define and document additional inputs and outputs as needed to
create a convenient user interface that allows either the human or your machine
to move first, and for the human or your machine to enter moves using the same
interface that was used in Section 12.10. If you have not done Exercise 12.58, you
may use a “dummy” module for your machine to make fixed, random, or semi-
intelligent moves on its turns (e.g., take all but one object if it ever encounters a
state with objects in only one heap).

DDPP5.book Page 671 Tuesday, March 28, 2017 5:33 PM

672 Chapter 12 State Machines in Verilog

12.60 Enhance the Trilogy-game test bench of Program 12-36 so it checks the values of
NEXT and OVER during and after each move. Figure out a way to do this without
adding any more inputs to the Move task. Augment the test sequence to exercise
this feature, and insert one or more bugs into the Vrtrilogymain module to
ensure that the feature is working.

12.61 Write a test bench for the Trilogy game that plays the game repeatedly, each time
automatically constructing a random sequence of moves and checking for correct
values in the heap counts and NEXT and OVER during and after each move. Your
test bench should check both legal and illegal moves, like asserting the guess
input for a heap that is already empty.

12.62 Design a sequential version of the Verilog Tic-Tac-Toe move-picking circuit by
adapting the TwoInRow module in Section 7.5, but instantiating it only once and
using multiple clock cycles to determine a move. Besides a new input CLK, your
version will need a START input to tell it to start looking for a move and a DONE
output to assert when the determined move is on its output. Your circuit should
use as few clock cycles as possible to find the move in any given situation.

12.63 Target your solution to Exercise 12.62 to your favorite programmable device.
Repeat with the original combinational Tic-Tac-Toe circuit of Program 7-28.
Compare the resource requirements of the two synthesized versions.

12.64 Write a Verilog module for a state machine with two outputs, Z and DONE, where
the sequence and duration of Z=1 outputs represents a symbol (usually a letter or
number) in Morse code, and DONE is asserted in the clock period following the
symbol’s last Z=1 output. The machine’s inputs are CLK, SSTART, and SYM[0:9].

Morse-code symbols are encoded as “dots” and “dashes,” where a dot is repre-
sented by Z=1 for one clock period, and a dash is represented by Z=1 for three
clock periods. A symbol may have one to five dots and dashes that are separated
by Z=0 for one clock tick.

A symbol to be transmitted is encoded in SYM[0:9] as five pairs of bits
(SYM[0:1], SYM[2:3], and so on); in each pair, 10 encodes a dash, 01 encodes a
dot, and in symbols with fewer than five dots and dashes, 00 indicates the end.
Dots and dashes are transmitted starting with SYM[0:1].

After reset and when the machine is idle, Z is 0 and DONE is 1. A symbol to be
transmitted is presented on SYM[0:9], and SSTART is asserted, for one clock tick.
In the next clock period, DONE should be negated, and in the period after that, the
symbol’s first dot or dash should begin on Z. The machine should assert DONE in
the clock period following the end of the symbol’s last dot or dash.

12.65 Using your solution to Exercise 12.64 as a submachine, write a Verilog module
to transmit a message in Morse code, as read from a memory MSG[0:9][1:128].
A space symbol between words in the message is indicated by SYM[0:1]=00. On
output, multiple symbols in a word are separated by Z=0 for three clock ticks, and
words are separated by Z=0 for seven clock ticks. Provide an input MSTART and
an output MDONE to start message transmission and to indicate completion.

12.66 Write a test bench to display the output of your module from Exercise 12.65.
Determine whether your module meets the problem’s specification for the gaps
between symbols and words, and modify it if necessary to comply.

DDPP5.book Page 672 Tuesday, March 28, 2017 5:33 PM

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

673

c h a p t e r13
Sequential-Circuit
Design Practices

ince we haven’t yet done it elsewhere, we begin this chapter with a
summary of sequential-circuit documentation standards, focusing
on two primary areas. The first area describes the circuits’ high-
level behaviors step-by-step in terms of their inputs and outputs,

including state-machine specifications. The second describes the low-level
or “timing” behaviors of their important input, output, and internal signals,
mainly by using timing diagrams and timing specifications.

The past four chapters have described various state machines and
sequential-circuit building blocks, almost all of which are clocked. While it
is possible to build sequential circuits and systems without a clock, the most
commonly used and dependable digital-system design methods use clocked
circuits primarily. Therefore, we will continue to emphasize synchronous
systems—that is, systems and subsystems in which all flip-flops are clocked
by the same common clock signal. We’ll give an example that shows how
clocked state machines and data-path elements are typically used together to
build a synchronous system.

We’ll also highlight some common problems in synchronous system
design. For example, when we interconnect digital systems or subsystems
that use different clocks, or when a system has interfaces to “the outside
world,” we must identify asynchronous signals that need special treatment,
and use special methods to move information between clock domains, as
we’ll show in the last two sections of this chapter.

S

DDPP5.book Page 673 Tuesday, March 28, 2017 5:33 PM

674 Chapter 13 Sequential-Circuit Design Practices

13.1 Sequential-Circuit Documentation Practices
13.1.1 General Requirements
Basic documentation practices in areas such as signal naming, logic symbols,
schematic layout, and HDL coding style, which we introduced in previous
chapters, apply to digital systems as a whole and therefore to sequential circuits
in particular. We highlight the following ideas, however, for system elements
that are specifically “sequential”:

• Flip-flops. The symbols for individual sequential-circuit elements,
especially flip-flops, should follow the appropriate drawing standards, so
that the type, function, and clocking behavior of the elements are clear.

• State-machine descriptions. State machines should be described by state
tables, state diagrams, or text files in an HDL. Most often, an HDL-based
description is treated as definitive, since it contains the source code for the
machine’s realization. State tables and state diagrams are then secondary
resources which explain the machine’s operation, and they may be separate
documents or may be embedded as comments in the HDL file.

• State-machine HDL code or drawing structure. Within an HDL-based
design, the flip-flops, next-state logic, and output logic that form each state
machine should be specified together in a single module, with no extrane-
ous logic. If you should ever have occasion to draw a state machine’s logic
diagram, its flip-flops and combinational logic should be drawn together
in a logical format on the same page, so it looks like a state machine.

• Cascaded elements. In a schematic-based design, any registers, counters,
and shift registers that use multiple ICs should have these components
grouped together so that the cascading structure is obvious.

• Timing diagrams. The documentation package for sequential circuits
should include timing diagrams that show the general timing assumptions
and timing behavior of the circuit.

• Timing specifications. A sequential circuit should be accompanied by a
specification of the timing requirements for proper internal operation (e.g.,
maximum clock frequency), as well as the requirements for any externally
supplied inputs (e.g., setup- and hold-time requirements with respect to the
system clock, minimum pulse widths, etc.). When EDA tools are used to
create a design, “timing closure” is the process by which the designer uses
the tools to ensure that the design meets the timing requirements.

13.1.2 Logic Symbols
We introduced traditional symbols for flip-flops in Section 10.2. Flip-flops are
always drawn as rectangular-shaped symbols and follow the same general
guidelines as other rectangular-shaped symbols—inputs on the left, outputs on

DDPP5.book Page 674 Tuesday, March 28, 2017 5:33 PM

13.1 Sequential-Circuit Documentation Practices 675

the right, bubbles for active levels, and so on. In addition, some specific guide-
lines apply to the most-used flip-flop symbols:

• A dynamic-input indicator is placed on edge-triggered clock inputs.

• Asynchronous preset and clear inputs may be shown at the top and bottom
of a flip-flop symbol—preset at the top and clear at the bottom.

The logic symbols for larger-scale sequential elements, like the counters
and shift register in Chapter 11, are drawn with all inputs, including presets and
clears, on the left, and all outputs on the right. Bidirectional signals may be
drawn on the left or the right, whichever is convenient.

Like individual flip-flops, larger-scale sequential elements use a dynamic
indicator to indicate edge-triggered clock inputs. In “traditional” symbols, the
names of the inputs and outputs give a clue of their function, but they are some-
times ambiguous, so you must always consult the component specification to be
sure how to use an input or interpret an output.

13.1.3 State-Machine Descriptions
In Chapters 9 and 12, we used six different representations of state machines:

• Word descriptions

• State tables

• State diagrams

• ASM charts

• Transition lists

• Verilog models

You might think that having all these different ways to represent state machines
is a problem—too much for you to learn! Well, they’re not all that difficult to
learn, but there is a subtle problem here.

Consider a similar problem in programming, where high-level “pseudo-
code” or perhaps a flowchart can be used to document how a program works.
The pseudocode may express the programmer’s intentions very well, but errors,
misinterpretations, and typos can occur when it is translated into real code. In
any creative process, inconsistencies can occur when there are multiple repre-
sentations of how things work.

The same kind of inconsistencies can occur in state-machine design. As a
logic designer you may document a machine’s desired behavior with a 100%-
correct hand-drawn state diagram, but you can make mistakes translating the
diagram into an HDL model, and there used to be lots of opportunities for error
when you had to “turn the crank” manually to translate the state diagram into a
state table, transition table, excitation equations, and logic diagram.

The solution to this problem is similar to the one adopted by programmers
who write self-documenting code using a high-level language. The key is to

inconsistent
state-machine
representations

DDPP5.book Page 675 Tuesday, March 28, 2017 5:33 PM

676 Chapter 13 Sequential-Circuit Design Practices

select a representation that is both expressive of the designer’s intentions and
translatable into a physical realization using an error-free, automated process.
(You don’t hear many programmers screaming “Compiler bug!” when their
programs don’t work the first time.)

So, the best solution is to write state-machine “programs” directly in an
HDL, and to avoid alternate representations, other than general, summary word
descriptions. When consistent coding styles and practices are used, HDL state-
machine modules are easily readable and allow automated synthesis of the
description into an ASIC, FPGA-, or PLD-based realization. That’s one reason
why we devoted so much space and energy to providing lots of Verilog-based
state-machine examples in Chapter 12.

13.1.4 Timing Diagrams and Specifications
We showed many examples of timing diagrams in previous chapters. In the
design of sequential circuits, most timing diagrams show the relationship
between the clock and various input, output, and internal signals.

Figure 13-1 shows a fairly typical timing diagram that specifies the
requirements and characteristics of input and output signals in a synchronous
sequential circuit. The first line shows the system clock and its nominal timing
parameters. The remaining lines show a range of delays for other signals.

For example, the second line shows that flip-flops change their outputs at
some time between the rising edge of CLOCK and time tffpd afterward. External
circuits that sample these signals should not do so while they are changing. The
timing diagram is drawn as if the minimum value of tffpd were zero; a complete
documentation package would include a timing table indicating the actual
minimum, typical, and maximum values of tffpd and all other timing parameters.

The third line of the timing diagram shows the additional time, tcomb ,
required for the flip-flop output changes to propagate through combinational

Figure 13-1
A detailed timing
diagram showing
propagation delays
and setup and hold
times with respect to
the clock.

CLOCK

flip-flop
outputs

flip-flop
inputs

combinational
outputs

tH

tcomb

tsetupsetup-time margin

tL
tclk

tffpd

thold

DDPP5.book Page 676 Tuesday, March 28, 2017 5:33 PM

13.1 Sequential-Circuit Documentation Practices 677

logic elements, like Moore-type outputs and excitation logic for flip-flops that
use the same CLOCK signal. The excitation inputs of flip-flops and other
clocked devices require a setup time of tsetup, as shown in the fourth line.

For proper operation of a synchronous circuit whose operation is described
in Figure 13-1, we must have tclk − tffpd − tcomb > tsetup . That is, flip-flop output
changes that occur on a clock edge must propagate though the combinational
logic and arrive at other flip-flop inputs at least tsetup before the next clock edge.

Timing margins indicate how much “worse than worst-case” the individual
components of a circuit can be without causing the circuit to fail. Well-designed
systems have positive, nonzero timing margins to allow for unexpected circum-
stances (marginal components, power-supply noise, engineering errors, etc.) and
clock skew (Section 13.3.1). Timing margins are sometimes called timing slack.

The value tclk − tffpd(max) − tcomb(max) − tsetup is called the setup-time margin;
if this is negative, the circuit won’t work. Note that maximum propagation delays
are used to calculate setup-time margin. Another timing margin involves the
hold-time requirement thold; the sum of the minimum values of tffpd and tcomb
must be greater than thold, and the hold-time margin is tffpd(min) + tcomb(min) − thold.
That is, flip-flop output changes that occur on a clock edge must propagate
though the combinational logic slowly enough that they do not arrive at other
flip-flop inputs sooner than thold after that same clock edge.

The timing diagram in Figure 13-1 does not show the timing differences
between different flip-flop inputs or combinational-logic signals, even though
such differences may be significant in some circuits. For example, one flip-
flop’s Q output may be connected directly to another flip-flop’s D input, so that
tcomb for that path is zero, while another’s may go the ripple-carry path of a
32-bit adder before reaching a flip-flop input.

When proper synchronous design methodology is used, relative timings of
different flip-flop inputs are not critical, since none of these signals affect the
state of the circuit until a clock edge occurs. For setup time analysis, you merely
have to find the longest delay path from any flip-flop output at one clock edge to
any other flip-flop input at the next clock edge to determine whether the circuit
will work. However, you may have to analyze many different paths in order to
find the worst-case one. Similarly, for hold-time analysis you must find the
shortest delay path(s). In modern design environments, an EDA tool does all this
for you, but it’s important to understand how this information is determined and
of course where to look for it with the tool.

Another, perhaps more common, type of timing diagram shows only
functional behavior and is not concerned with actual delay amounts; an example
is shown in Figure 13-2. Here, the clock is “perfect.” Whether to show signal
changes as vertical or slanted lines is strictly a matter of personal taste in this and
all other timing diagrams, unless rise and fall times must be explicitly indicated.
Clock transitions are shown as vertical lines in this and other figures in keeping
with the working model that the clock is a “perfect” reference signal.

timing margin

timing slack
setup-time margin

hold-time margin

DDPP5.book Page 677 Tuesday, March 28, 2017 5:33 PM

678 Chapter 13 Sequential-Circuit Design Practices

The other signals in Figure 13-2 may be flip-flop outputs, combinational
outputs, or flip-flop inputs. Shading is used to indicate “don’t-care” signal
values; crosshatching as in Figure 13-1 could be used instead. All of the signals
are shown to change immediately after the clock edge. In reality, the outputs
change sometime later, and inputs may change just barely before the next clock
edge. However, “lining up” everything on the clock edge allows the timing
diagram to display more clearly which functions are performed during each
clock period. Signals that are lined up with the clock are simply understood to
change sometime after the clock edge, with timing that meets the setup- and
hold-time requirements of the circuit. Many timing diagrams of this type appear
in this book.

Table 13-1 is an example timing table for various sequential-circuit timing
parameters, based on the datasheets of a few 74-series SSI and MSI flip-flops,
latches, and registers. These devices are from the same CMOS logic families
that we used in examples in Section 4.2.3. Even if you never do a board-level
design that uses these parts, the table is representative and instructive of timing
parameters used in all kinds of sequential-circuit elements in boards, ASICs,
FPGAs, and PLDs, and it’s provided so you can work some examples by hand.

The table contains many “tpd” parameters, all of which specify delay to a Q
output from an input-signal edge. For a CLK or G input of a flip-flop or latch,
respectively, this is the delay from the rising edge of the active-high input signal,
and is so indicated in the parameter’s description. For the asynchronous preset
and clear inputs of the ’74 flip-flop, this is the delay from the assertion of the
active-low input signal, as is likewise indicated.

Figure 13-2
Functional timing of a
synchronous circuit.

CLOCK

SYNC_L

SIG1

DBUS DATA1 DATA2

NOTHING’S
PERFECT

In reality, there’s no such thing as a perfect clock signal. One imperfection that most
designers of high-speed digital circuits have to deal with is “clock skew.” As we
show in Section 13.3.1, a given clock edge arrives at different circuit inputs at dif-
ferent times because of differences in wiring delays, loading, and other effects.

Another imperfection, a bit beyond the scope of this text, is “clock jitter.” A
10-MHz clock does not have a period of exactly 100 ns on every cycle—it may be
100.05 ns in one cycle and 99.95 ns in the next. This is not a big deal in such a slow
circuit, but in a 1-GHz circuit the same 0.1 ns of jitter eats up 10% of the 1-ns timing
budget. And the jitter in some clock sources is even higher!

DDPP5.book Page 678 Tuesday, March 28, 2017 5:33 PM

13.1 Sequential-Circuit Documentation Practices 679

Table 13-1 Timing specifications (in ns) of selected CMOS flip-flops, latches, and registers.

74AC @ 5.0V 74HC @ 2.0V 74HC @ 4.5V

Min. Max. Typ. Maximum Typ. Maximum

Part Function Parameter 25°C 25°C 85°C 25°C 25°C 85°C

’74 dual D
flip-flop
w/ preset
and clear

tpd, CLK↑ to Q or Q 2.5 10.5 70 175 220 20 35 44

tpd, PR↓ or CLR↓ to Q or Q 2.0 10.5 70 230 290 20 46 58

ts, D to CLK↑ 3.0 100 125 20 25

th, D from CLK↑ 0.5 0 0 0 0

trec, CLK↑ from PR↑ or
CLR↑

0 25 30 5 6

tw, CLK low or high 5.0 80 100 16 20

tw, PR or CLR low 5.0 100 125 20 25

’373 8-bit D
latch
w/ 3-state
outputs

tpd, G↑ to Q 1.5 10.5 63 175 220 25 35 44

tpd, D to Q 1.5 10.5 50 150 190 22 30 38

ts, D to G↓ 4.5 50 65 10 13

th, D from G↓ 1.0 5 5 5 5

tpHZ, OE to Q 1.0 12.5 150 190 30 38

tpLZ, OE to Q 1.0 10.0 150 190 30 38

tpZH, OE to Q 1.0 9.5 150 190 30 38

tpZL, OE to Q 1.0 9.5 150 190 30 38

tw, G high 4.5 30 80 100 10 16 20

’374 8-bit D
flip-flop
w/ 3-state
outputs

tpd, CLK↑ to Q 1.5 10.5 63 180 225 17 36 45

ts, D to CLK↑ 4.5 100 125 20 25

th, D from CLK↑ 1.5 10 12 5 5

tpHZ, OE to Q 2.0 12.5 36 150 190 17 30 38

tpLZ, OE to Q 1.0 10.0 36 150 190 17 30 38

tpZH, OE to Q 1.0 9.5 60 150 190 16 30 38

tpZL, OE to Q 1.0 9.5 60 150 190 16 30 38

tw, CLK low or high 4.5 80 100 16 20

’377 8-bit D
flip-flop
w/ clock
enable

tpd, CLK↑ to Q 1.5 11.0 56 160 200 15 32 40

ts, D to CLK↑ 4.5 100 125 20 25

th, D from CLK↑ 1.0 5 5 5 5

ts, EN to CLK↑ 4.5 100 125 20 25

th, EN from CLK↑ 1.0 5 5 5 5

tw, CLK low or high 4.5 100 125 20 25

DDPP5.book Page 679 Tuesday, March 28, 2017 5:33 PM

680 Chapter 13 Sequential-Circuit Design Practices

Setup and hold times are also important parameters for sequential ele-
ments. The D flip-flops in the table all have ts and th specs for the D input from
the triggering edge of the clock (i.e., rising edge for these devices). The ’377 also
has setup and hold specs for the clock-enable input, which is also sampled at the
clock edge. Note that you may occasionally see a negative hold time spec. That
means that the D input is allowed to change before the triggering clock edge by
the specified amount.

The D latch in the table also has setup and hold specifications, but they are
for the falling edge of the active-high enable input G. As a consequence of the
device’s latching behavior, there is a propagation delay to the Q output from any
edge of D or the rising edge of G, but there are also setup and hold requirements
to reliably latch the data when G is negated.

All of the devices have minimum pulse widths specified for their “control”
inputs—clock, latch-enable, preset, and clear. The Q outputs of two devices, the
’373 and ’374, have three-state functionality. As explained in Section 7.1, such
outputs can be put into a high-impedance state where they are effectively discon-
nected from the signal lines that they would otherwise drive. Therefore, they
have timing parameters that specify the delay from the output-enable input (OE)
to moving the output between the high-impedance (“hi-Z”) state and one of the
“active” states, HIGH or LOW. These parameters are not particular to sequential
circuits; they exist in any device with three-state outputs.

For board-level design, keep in mind that all of the specifications in
Table 13-1 are merely representative; for a component’s exact numbers and their
definitions, you must consult the data sheet for the particular part, published by
its manufacturer.

MINIMUM,
MAXIMUM,

AND TYPICAL

Note that the values listed in Table 13-1 for pulse widths and setup, hold, and recov-
ery times (tw, ts, th, tred) are the minimum values required for proper operation. So,
the parameter value listed in a “Typical” column in Table 13-1 is the minimum value
required in a typical part under typical conditions, and the value in a “Maximum”
column is the highest minimum value that will be encountered in any part under the
specified conditions.

You have to be careful when interpreting manufacturers’ specifications, since
they vary in both nomenclature and in the test specifications that they publish. For
example, for most logic families Texas Instruments places the values of tw, ts, th, and
tred under a “Min” column instead of a “Maximum” column as we do. They don’t
publish a “typical” value of these parameters, while some other manufacturers of the
same part do. And different manufacturers may have different definitions for
“typical,” and slightly different specifications for the same part. That’s another good
reason for engineers to provide generous timing margins when designing with off-
the-shelf components.

DDPP5.book Page 680 Tuesday, March 28, 2017 5:33 PM

13.2 Synchronous Design Methodology 681

13.2 Synchronous Design Methodology
In a synchronous system, all flip-flops are clocked by the same common clock
signal, and asynchronous preset and clear inputs are not used, except for system
initialization. Although all the world does not march to the tick of a common
clock, within the confines of a digital system or subsystem we can try to make it
so. When we must interconnect digital systems or subsystems that use different
clocks, we can usually identify a limited number of asynchronous signals that
need special treatment, as we’ll show in Section 13.3.3.

Races and hazards are not problems in synchronous systems, for two
reasons. First, the only circuits that might be subject to races or essential hazards
are predesigned elements like discrete flip-flops or ASIC cells, guaranteed by
their manufacturers to work properly. Second, even though the combinational
circuits that drive flip-flop control inputs may contain static, dynamic, or
function hazards, these hazards have no effect, since the control inputs are
sampled only after the hazard-induced glitches have had a chance to settle out.

Aside from designing the functional behavior of each state machine, the
designer of a practical synchronous system or subsystem must perform three
other well-defined tasks to ensure reliable system operation:

1. Minimize and determine the amount of clock skew in the system, as
discussed in Section 13.3.1.

2. Ensure that flip-flops have positive setup- and hold-time margins, includ-
ing an allowance for clock skew, as described in Section 13.1.4.

3. Identify asynchronous input signals, synchronize them with the clock, and
ensure that the synchronizers have an adequately low probability of failure,
as described in Sections 13.3.3 and 13.4.

Before we get into these issues, this section introduces a general model for syn-
chronous system structure and gives an example.

CROSS YOUR
FINGERS

Older, slower logic families, including the 74HC family used in Table 13-1, may not
specify minimum propagation delays for flip-flops and combinational logic. This
makes it impossible to accurately calculate hold-time margins using the formula
given earlier in this subsection. However, the hold-time margin will still be nonneg-
ative even assuming worst-case minimum delays of zero if the flip-flops have a hold
time requirement of zero.

Alternatively, you can use the rule of thumb that minimum propagation delays
are no more than 20–25% of typical, calculate the hold-time margin that way, and
cross your fingers. In an EDA design environment for FPGAs and ASICs, the tools
will provide much better estimates, but then you still have other complications to
deal with, like on-chip clock skew, to be discussed in Section 13.3.1.

synchronous system

DDPP5.book Page 681 Tuesday, March 28, 2017 5:33 PM

682 Chapter 13 Sequential-Circuit Design Practices

13.2.1 Synchronous System Structure
The design examples that we gave in Chapter 12 were either individual or
decomposed state machines where each machine had a small number of states.
If a sequential circuit has more than a few flip-flops, then it’s not desirable (and
often not possible) to treat the circuit as a single, monolithic state machine,
because the number of states would be too large to handle.

Fortunately, most digital systems or subsystems can be partitioned into two
or more parts. Whether the system processes numbers, digitized voice signals, or
a stream of spark-plug pulses, a certain part of the system—which we’ll call the
data unit—can be viewed as storing, routing, combining, and otherwise just gen-
erally processing “data.” Another part, which we’ll call the control unit, can be
viewed as starting and stopping actions in the data unit, testing conditions, and
deciding what to do next according to circumstances. In general, only the control
unit must be designed as a state machine. The data unit and its components are
typically handled at a higher level of abstraction, such as:

• Combinational functions. These include arithmetic and logic units, com-
parators, and other operations that combine or modify data.

• Registers. A collection of flip-flops is loaded in parallel with many bits of
“data,” which can then be used or retrieved together.

• Specialized sequential functions. These include multibit counters and shift
registers, which increment or shift their contents on command. They may
also include very complex sequential functions, like data encryption.

• Read/write memory. Individual latches or flip-flops in a collection of the
same can be written or read out.

The first topic above was covered in Chapters 7 and 8. The next two were in
Chapters 10 and 11, and the last is in Chapter 15.

Figure 13-3 is a general block diagram of a system with a control unit and
a data unit. We have also included explicit blocks for input and output, but we
could have just as easily absorbed these functions into the data unit itself. The
control unit is a state machine whose inputs include command inputs that
indicate how the machine is to function, and condition inputs provided by the
data unit. The command inputs may be supplied by another subsystem or by a
user to set the general operating mode of the control state machine (RUN/HALT,
NORMAL/TURBO, etc.), while the condition inputs allow the control state-
machine unit to change its behavior as required by circumstances in the data unit
(ZERO_DETECT, MEMORY_FULL, etc.).

A key characteristic of the structure in Figure 13-3 is that the control, data,
input, and output units all use the same common clock. Figure 13-4 illustrates
the operations of the control and data units during a typical clock cycle:

1. Shortly after the beginning of the clock period, the control-unit state and
the data-unit register outputs are valid.

data unit
control unit

command input
condition input

DDPP5.book Page 682 Tuesday, March 28, 2017 5:33 PM

13.2 Synchronous Design Methodology 683

2. Next, after a combinational logic delay, Moore-type outputs of the control-
unit state machine become valid. These signals are control inputs to the
data unit. They determine what data-unit functions are performed in the
rest of the clock period—for example, selecting memory addresses, multi-
plexer paths, and arithmetic operations.

3. Near the end of the clock period, data-unit condition outputs like zero- or
overflow-detect are valid and are made available to the control unit.

4. At the end of the clock period, just before the setup-time window begins,
the next-state logic of the control-unit state machine has determined the
next state based on the current state and the command and condition inputs.
At about the same time, computational results in the data unit are available
to be loaded into data-unit registers.

5. After the clock edge, the whole cycle may repeat.

Figure 13-3
Synchronous
system structure.

DATA OUT

DATA INCOMMAND

CLOCK

CONTROL

CONTROL

CONDITIONS

CONTROL

DATA UNIT

OUTPUT

INPUT

CONTROL
UNIT

(state machine)

Figure 13-4 Operations during one clock cycle in a synchronous system.

valid

valid

valid

validData-unit result inputs and
control-unit excitation inputs

Control-unit state and
data-unit register outputs

CLOCK

Data-unit
control inputs

Data-unit
conditions

DDPP5.book Page 683 Tuesday, March 28, 2017 5:33 PM

684 Chapter 13 Sequential-Circuit Design Practices

Data-unit control inputs, which are control-unit state-machine outputs,
may be of the Moore, Mealy, or pipelined Mealy type; timing for the Moore type
was shown in Figure 13-4. Moore-type and pipelined-Mealy-type outputs
control the data unit’s actions strictly according to the current state and past
inputs, which do not depend on current conditions in the data unit. In contrast,
Mealy-type outputs may select different actions in the data unit according to
current conditions in the data unit. This increases flexibility, but typically also
increases the minimum clock period for correct system operation, since the
delay path may be much longer. Also, Mealy-type outputs must not create
feedback loops. For example, a signal that adds 1 to an adder’s input if the adder
output is nonzero causes an oscillation if the adder output is −1.

13.2.2 A Synchronous System Design Example
This subsection shows the Verilog design of a shift-and-add multiplier for
unsigned 8-bit integers which produces a 16-bit product using the algorithm of
Section 2.8. The design is synchronous and hierarchical.

As illustrated in Figure 13-5, the multiplier has five modules nested three
levels deep. The top-level module VrMPY8x8 contains both a datapath module
VrMPYdata and a control-unit module VrMPYctrl. The control unit contains
both a state machine VrMPYsm and a counter VrMPYcntr. An “include” file
VrMPYdefs contains parameter definitions used by these modules. Before you
look at any details, it’s important to understand the basic data-unit registers and
functions that are used to perform an 8-bit multiplication, as shown in
Figure 13-6:

MPY/LPROD A shift register that initially stores the multiplier and then accu-
mulates the low-order bits of the product as the algorithm is
executed.

PIPELINED
MEALY OUTPUTS

Some state machines have pipelined Mealy outputs, discussed in Section 9.2.2. In
Figure 13-4, pipelined Mealy outputs would typically be valid early in the cycle, at
the same time as control-unit state outputs. Early validity of these outputs, compared
to Moore outputs that must go through a combinational logic delay, may allow the
entire system to operate at a faster clock rate.

shift-and-add multiplier

Figure 13-5
Verilog modules
and “include” file
used in the
shift-and-add
multiplier.

VrMPYdefs
VrMPY8x8

VrMPYdata

VrMPYctrl

VrMPYcntrVrMPYsm

DDPP5.book Page 684 Tuesday, March 28, 2017 5:33 PM

13.2 Synchronous Design Methodology 685

HPROD A register that is initially cleared, and accumulates the high-
order bits of the product as the algorithm is executed.

MCND A register that stores the multiplicand throughout the algorithm.

F A combinational function equal to the 9-bit sum of HPROD and
MCND if the low-order bit of MPY/LPROD is 1, and equal to
HPROD (extended to 9 bits) otherwise.

The MPY/LPROD shift register serves a dual purpose, holding both yet-to-
be-tested multiplier bits (on the right) and unchanging product bits (on the left)
as the algorithm is executed. At each step it shifts right one bit, discarding the
multiplier bit that was just tested, moving the next multiplier bit to be tested to
the rightmost position, and loading into the leftmost position one more product
bit that will not change for the rest of the algorithm.

The VrMPY8x8 top-level module for the multiplier system has the follow-
ing inputs and outputs:

CLOCK A single clock signal for the state machine and registers.

RESET A reset signal to clear the registers and put the state machine into
its starting state before the system begins operation.

INP[7:0] An 8-bit input bus for the multiplicand and multiplier to be
loaded into registers in two clock ticks at the beginning of a
multiplication.

PROD[15:0] A 16-bit output bus that will contain the product at the end of a
multiplication.

START An input that is asserted prior to a rising clock edge to begin a
multiplication. START must be seen negated after the multiplica-
tion is complete, before is asserted again to start a new one.

DONE An output that is asserted when the multiplication is done and
PROD[15:0] is valid.

Figure 13-6
Registers and
functions used by
the shift-and-add
multiplication

HPROD

MCND

F = HPROD + MPY[0] · MCND

MC[7]

F[8]

MC[0]

F[0]

HP[0]HP[7]

MPY/LPROD

MPY[0]MPY[7]

shift

+

DDPP5.book Page 685 Tuesday, March 28, 2017 5:33 PM

686 Chapter 13 Sequential-Circuit Design Practices

A timing diagram for the multiplier system is shown in Figure 13-7. The
first six waveforms show the input/output behavior and how a multiplication
takes place in 10 clock periods as described below:

1. START is asserted. The multiplicand is placed on the INP bus and is
loaded into the MCND register at the end of this clock period.

2. The multiplier is placed on the INP bus and is loaded into the MPY
register at the end of the clock period.

3–10. One shift-and-add step is performed at each of the next eight clock ticks.
Immediately following the eighth clock tick, DONE is asserted and the
16-bit product is available on PROD[15:0]. A new multiplication can also
be started during this clock tick, but it may be started later.

To begin the Verilog design we define parameters in the file VrMPYdefs.v
as shown in Program 13-1; this is “include’d” by all of the modules. The first
group of parameters define the width of the multiplication, which is set to 8 bits
but can be changed. The second group sets the encoding of the state machine’s
state, which is used by modules that take actions in certain states as we’ll see.

The control unit VrMPYctrl is a decomposed state machine, as introduced
in Section 12.9. Its state machine VrMPYsm controls the overall operation, while
a counter VrMPYcntr counts the eight shift-and-add steps. These three Verilog
modules appear on the next two pages.

The VrMPYsm state machine has four states for multiplier control. Multipli-
cation begins when START is asserted. The machine goes to the INIT state and
then the RUN state, and stays in the RUN state until the MAX input, produced by the
VrMPYcntr module, is asserted after eight clock ticks. Then it goes to the IDLE
or the WAIT state, depending on whether or not START has been negated yet.

Figure 13-7
Timing diagram
for multiplier
system.

CLOCK

RESET

INP MCND MPY MCND MPY

START

DONE

SM IDLE INIT RUN RUN RUN RUN RUN RUN RUN RUN WAIT IDLE INIT

PROD VALID

Count 0 0 0 1 2 3 4 5 6 7 0 0 0

DDPP5.book Page 686 Tuesday, March 28, 2017 5:33 PM

13.2 Synchronous Design Methodology 687

The VrMPYcntr module, shown in Program 13-3, counts from 0 to MaxCnt
(MPYwidth-1) when the state machine is in the RUN state. The state-machine
states and counter values during an 8-bit multiplication sequence are shown in
the last two waveforms in Figure 13-7.

As shown in Program 13-4, the top-level control unit VrMPYctrl instanti-
ates the state machine and the counter, and it also has a small always block to

Program 13-1 Definitions “include” file for shift-and-add multiplier.

parameter MPYwidth = 8, // Operand width
 MPYmsb = MPYwidth-1, // Index of operand MSB
 PRODmsb = 2*MPYwidth-1, // Index of product MSB
 MaxCnt = MPYmsb, // Number of shift-and-add steps
 CNTRmsb = 2; // Step-counter size [CNTRmsb:0]

parameter IDLE = 2'b00, // State-machine states
 INIT = 2'b01,
 RUN = 2'b10,
 WAIT = 2'b11,
 SMmsb = 1, // SM state-register size [SMmsb:SMlsb]
 SMlsb = 0;

Program 13-2 Verilog state-machine module VrMPYsm.

module VrMPYsm (RESET, CLK, START, MAX, SM);
`include "VrMPYdefs.v"
 input RESET, CLK, START, MAX;
 output [1:0] SM;
 reg [1:0] Sreg, Snext;

 always @ (posedge CLK) // state memory (w/ sync. reset)
 if (RESET) Sreg <= IDLE;
 else Sreg <= Snext;

 always @ (*) // next-state logic
 case (Sreg)
 IDLE : if (START) Snext <= INIT;
 else Snext <= IDLE;
 INIT : Snext <= RUN;
 RUN : if (MAX && ~START) Snext <= IDLE;
 else if (MAX && START) Snext <= WAIT;
 else Snext <= RUN;
 WAIT : if (~START) Snext <= IDLE;
 else Snext <= WAIT;
 default : Snext <= IDLE;
 endcase

 assign SM = Sreg; // Copy state to module output
endmodule

DDPP5.book Page 687 Tuesday, March 28, 2017 5:33 PM

688 Chapter 13 Sequential-Circuit Design Practices

implement the DONE output function, which requires a 1-bit register. Notice how
input signals RESET, CLK, and START simply “flow through” VrMPYctrl and
become inputs of VrMPYsm and VrMPYcntr. Also notice how a local signal, SMi,
is declared to receive the state from VrMPYsm and deliver it both to VrMPYcntr
and to the output of VrMPYctrl.

The multiplier data path logic is defined in the VrMPYdata module, shown
in Program 13-5. This module declares local registers MPY, MCND, and HPROD.
Besides the RESET, CLK, and INP inputs and the PROD output, which you would
naturally need for the data path, this module also has START and the state-
machine state SM as inputs. These are needed to determine when to load the MPY
and MCND registers, and when to update the partial product (in the RUN state).

Program 13-3 Verilog counter module VrMPYcntr.

module VrMPYcntr (RESET, CLK, SM, MAX);
`include "VrMPYdefs.v"
 input RESET, CLK;
 input [SMmsb:SMlsb] SM;
 output MAX;
 reg [CNTRmsb:0] Count;

 always @ (posedge CLK)
 if (RESET) Count <= 0;
 else if (SM==RUN) Count <= (Count + 1);
 else Count <= 0;

 assign MAX = (Count == MaxCnt);
endmodule

Program 13-4 Verilog control-unit module VrMPYctrl.

module VrMPYctrl (RESET, CLK, START, DONE, SM);
`include "VrMPYdefs.v"
 input RESET, CLK, START;
 output reg DONE;
 output [SMmsb:SMlsb] SM;

 wire MAX;
 wire [SMmsb:SMlsb] SMi;

 VrMPYsm U1 (.RESET(RESET), .CLK(CLK), .START(START), .MAX(MAX), .SM(SMi));
 VrMPYcntr U2 (.RESET(RESET), .CLK(CLK), .SM(SMi), .MAX(MAX));

 always @ (posedge CLK) // implement DONE output function
 if (RESET) DONE <= 1'b0;
 else if (((SMi==RUN) && MAX) || (SMi==WAIT)) DONE <= 1'b1;
 else DONE <= 1'b0;

 assign SM = SMi; // Output copy of SM state, visible to other modules
endmodule

DDPP5.book Page 688 Tuesday, March 28, 2017 5:33 PM

13.2 Synchronous Design Methodology 689

The last statement in the VrMPYdata module produces the PROD output as a
combinational concatenation of the HPROD and MPY registers. Note the use of
concatenation to pad the addends to nine bits in the addition operation that
assigns a value to F.

Finally, the VrMPY8x8 module in Program 13-6 instantiates the data-path
and control-unit modules to create the multiplier system. Besides the top-level
system inputs and outputs, it declares one local signal SM to convey the state-
machine state from the control unit to the data path.

Program 13-5 Verilog data-path module VrMPYdata.

module VrMPYdata (RESET, CLK, START, INP, SM, PROD);
`include "VrMPYdefs.v"
 input RESET, CLK, START;
 input [MPYmsb:0] INP;
 input [SMmsb:SMlsb] SM;
 output [PRODmsb:0] PROD;
 reg [MPYmsb:0] MPY, MCND, HPROD;
 wire [MPYmsb+1:0] F;

 always @ (posedge CLK) // implement registers
 if (RESET) // clear registers on reset
 begin MPY <= 0; MCND <= 0; HPROD <= 0; end
 else if ((SM==IDLE) && START) // load MCND, clear HPROD
 begin MCND <= INP; HPROD <= 0; end
 else if (SM==INIT) MPY <= INP; // load MPY
 else if (SM==RUN) begin // shift registers
 MPY <= {F[0], MPY[MPYmsb:1]};
 HPROD <= F[(MPYmsb+1):1]; end

 assign F = (MPY[0]) ? ({1'b0,HPROD}+{1'b0,MCND}) : {1'b0, HPROD};
 assign PROD = {HPROD, MPY};
endmodule

Program 13-6 Verilog top-level multiplier module VrMPY8x8.

module VrMPY8x8 (RESET, CLK, START, INP, DONE, PROD);
`include "MPYdefs.v"
 input RESET, CLK, START;
 input [MPYmsb:0] INP;
 output DONE;
 output [PRODmsb:0] PROD;
 wire [SMmsb:SMlsb] SM;

 VrMPYdata U1 (.RESET(RESET), .CLK(CLK), .START(START), .INP(INP),
 .SM(SM), .PROD(PROD));
 VrMPYctrl U2 (.RESET(RESET), .CLK(CLK), .START(START), .DONE(DONE), .SM(SM));
endmodule

DDPP5.book Page 689 Tuesday, March 28, 2017 5:33 PM

690 Chapter 13 Sequential-Circuit Design Practices

A test bench can be written for the multiplier as shown in Program 13-7. Its
always block creates a free-running clock with a 10-ns period. Its initial
block does the rest of the work, using a nested for loop to perform multiplica-
tion of all possible pairs of 8-bit numbers, taking ten clock ticks for each pair.

After multiplying each pair of numbers, the test bench compares the
circuit’s result (PROD) with a result calculated using Verilog’s built-in multiplica-
tion operator, and prints an error message and stops the simulation if there is a
mismatch. The error message includes the current simulated time and the current
values of ii, jj, and PROD, as well as the expected product.

Program 13-7 Verilog multiplier test bench.

`timescale 1ns/100ps
module VrMPY8x8_tb ();
`include "VrMPYdefs.v"
 reg Tclk, RST, START;
 wire DONE;
 reg [MPYmsb:0] INP;
 wire [PRODmsb:0] PROD;
 integer ii, jj, cnt;

 VrMPY8x8 UUT(.CLK(Tclk), .RESET(RST), .START(START), .INP(INP),
 .DONE(DONE), .PROD(PROD)); // instantiate UUT

 always begin // create free-running test clock with 10 ns period
 #5 Tclk = 0; // 5 ns high
 #5 Tclk = 1; // 5 ns low
 end

 initial begin // What to do starting at time 0
 RST = 1; START = 0; INP = 0; // Initial inputs
 #115; // Wait 15 ns,
 RST = 0; // then apply inputs and check outputs.
 for (ii=0; ii<=2**MPYwidth-1; ii=ii+1) // Try all 256x256 combinations
 for (jj=0; jj<=2**MPYwidth-1; jj=jj+1) begin
 START = 1; INP = ii;
 #10; // Wait for 10 ns
 START = 0; INP = jj;
 #10; // Wait for 10 ns
 for (cnt=0; cnt<=MPYwidth-1; cnt=cnt+1)
 #10; // Shift-and-add MPYwidth times
 if (PROD != ii*jj) begin // Display and stop on error
 $display($time," Error, ii(%d) * jj(%d), expected %d(%b), got %d(%b)",
 ii, jj, ii*jj, ii*jj, PROD, PROD); $stop(1); end;
 end
 $stop(1); // end test
 end
endmodule

DDPP5.book Page 690 Tuesday, March 28, 2017 5:33 PM

13.3 Difficulties in Synchronous Design 691

13.3 Difficulties in Synchronous Design
Although the synchronous approach is the most straightforward and reliable
method of digital system design, a few nasty realities can get in the way. We’ll
discuss them in this section.

13.3.1 Clock Skew
Synchronous systems using edge-triggered flip-flops can be guaranteed to work
properly only if all flip-flops see the triggering clock edge at the same time.
Figure 13-8 shows what can happen otherwise. Here, two flip-flops are clocked
by the same signal, but the clock signal seen by FF2 is delayed by a significant
amount relative to FF1’s clock. This difference between arrival times of the
clock at different devices is called clock skew.

We’ve named the delayed clock in Figure 13-8(a) “CLOCKD.” If FF1’s
propagation delay from CLOCK to Q1 is short, and if the physical connection of
Q1 to FF2 is short, then the change in Q1 caused by a CLOCK edge may actually
reach FF2 before the corresponding CLOCKD edge. In this case, FF2 may go to
an incorrect next state determined by the next state of FF1 instead of the current
state, as shown in (b). If the change in Q1 arrives at FF2 only slightly early
relative to CLOCKD, then FF2’s hold-time specification may be violated, in
which case FF2 may become metastable and produce an unpredictable output.

We can determine quantitatively whether clock skew is a problem in a
given system by defining tskew to be the amount of clock skew and using the
other timing parameters defined in Figure 13-1 on page 676. For proper system
operation, we need

tffpd(min) + tcomb(min) − thold − tskew(max) > 0

In other words, clock skew subtracts from the hold-time margin that we defined
in Section 13.1.4.

Figure 13-8 Clock-skew example.

IN

Q1

Q2

CLOCK

CLOCKD

incorrect

correct

(b)

(a)

Q

CLK

D Q

CLK

DIN

CLOCK
FF1 FF2

Q1

CLOCKD

Q2

a long, slow path

clock skew

DDPP5.book Page 691 Tuesday, March 28, 2017 5:33 PM

692 Chapter 13 Sequential-Circuit Design Practices

Viewed in isolation, the example in Figure 13-8 may seem a bit extreme.
After all, why would a designer provide a short connection path for data and a
long one for the clock, when they could just run side by side? There are several
ways this can happen; some are mistakes, while others are unavoidable.

In a large system, a single clock signal may not have adequate fanout to
drive all of the devices with clock inputs, so it may be necessary to provide two
or more copies of the clock signal. The buffering method in Figure 13-9(a) obvi-
ously produces unwanted clock skew, since CLOCK1 and CLOCK2 are delayed
through an extra buffer compared to CLOCK.

The recommended buffering method is shown in Figure 13-9(b). All of the
clock signals go through identical buffers and thus have roughly equal delays.
Ideally, all the buffers should be part of the same IC package, as they would be in
an ASIC or FPGA, so that they all have similar delay characteristics and are
operating at identical temperature and power-supply voltage. To support board-
level clock distribution, some manufacturers build special buffers for just this
sort of application and specify the worst-case delay variation between buffers in
the same package, which can be as low as a few tenths of a nanosecond.

If even more copies of the clock signal are needed, the clock distribution
scheme of Figure 13-9(b) may be extended using a second rank of buffers driven
by the outputs of the first rank, with the second-rank outputs then driving the
clocked devices. This scheme can be extended to additional ranks and is often
called a clock tree.

Even the method in Figure 13-9(b) may produce excessive clock skew if
one clock signal is loaded much more heavily than the other; transitions on the
more heavily loaded clock appear to occur later because of increases in output-
transistor switching delay and signal rise and fall times. Therefore, a careful
designer tries to balance the loads on multiple clocks, looking at both DC load
(fanout) and AC load (wiring and input capacitance).

Another bad situation can occur when signals on a PCB or in an ASIC are
routed automatically by an EDA tool that does not have special facilities for

Figure 13-9 Buffering the clock: (a) excessive clock skew; (b) controllable clock skew.

CLOCK CLOCK

CLOCK1

CLOCK2

CLOCK_L CLOCK1

CLOCK2

CLOCK3

all in same
IC package

(a) (b)

clock tree

DDPP5.book Page 692 Tuesday, March 28, 2017 5:33 PM

13.3 Difficulties in Synchronous Design 693

clock routing (or has them turned off). Figure 13-10 shows a PCB or ASIC with
many flip-flops and larger-scale elements, all clocked with a common CLOCK
signal. The EDA tool has laid out CLOCK in a serpentine path that winds its way
past all the clocked devices. Other signals are routed point-to-point between an
output and a few inputs, so their paths are shorter. To make matters worse, in an
ASIC or FPGA some types of “wire” may be slower than others (e.g., metal vs.
polysilicon in a CMOS process technology). As a result, a CLOCK edge may
indeed arrive at FF2 quite a bit later than the data change that it produces on Q1.

One way to minimize this sort of problem is to arrange for CLOCK to be
distributed in a balanced, tree-like structure using the fastest type of wire, as
illustrated in Figure 13-11. The idea is that the physical distances from the clock
source to all of the receivers should be as close to equal as possible. Also, if one
or more ranks of clock buffering are needed (as in Figure 13-9(b)), they also
should be inserted in a balanced way. Usually, such a clock distribution network
must be must be laid out by hand or using a specialized EDA tool. Even then, in
a complex design it may not be possible to guarantee that clock edges arrive
everywhere before the earliest data change. An EDA timing analysis program is
typically used to detect these problems, which generally can be remedied only
by inserting extra delay (e.g., buffers) in the too-fast data paths. But this may
make the problems worse, because each additional component on the clock dis-
tribution path adds to delay variations and uncertainty.

In ASIC design, the EDA tools typically provide options for analyzing and
optimizing on-chip clock distribution networks. A “clock-tree synthesis (CTS)”
algorithm may be provided as part of the “back end,” to be run after the logic

Figure 13-10 A clock-signal path leading to excessive skew.

Q

CLK

D

CLK

CLK
CLK

CLK

CLK

CLK

CLK

Q

CLK

D

Q

CLK

D Q

CLK

D Q

CLK

D

CLOCK
Q1

FF1 FF2

DDPP5.book Page 693 Tuesday, March 28, 2017 5:33 PM

694 Chapter 13 Sequential-Circuit Design Practices

components have been placed on the chip. It attempts to create a clock distribu-
tion network with minimal skew. Total worst-case clock skew depends on many
factors, not just path length. Individual buffer sizes may be adjusted in each path,
changing their speeds to achieve skew goals, and all buffers’ delays vary with
temperature and voltage, which themselves may vary across a large chip.

Large FPGAs, like the Xilinx 7 series, typically provide pre-routed clock
distribution networks on-chip. These networks can distribute one or more clocks
with very low skew in multiple regions of the chip. Some FPGAs contain analog
circuits (phase-locked loops) that allow the timing of different clocks with the
same or related frequencies (multiples of each other) to be delayed relative to
each other or to an external reference. Clock distribution in a large FPGA with

Figure 13-11 Clock-signal routing to minimize skew.

Q

CLK

D

CLK

CLK
CLK

CLK

CLK

CLK

CLK

Q

CLK

D

Q

CLK

D Q

CLK

D Q

CLK

D

CLOCK

Q1

FF1 FF2

HOW NOT TO
GET SKEWERED

Unbalanced wire lengths and loads are the most obvious sources of clock skew, but
there are many other subtle sources. For example, crosstalk, the coupling of energy
from one signal line into another, can cause clock skew. Crosstalk is inevitable when
parallel wires are packed together tightly on a printed circuit board or in a chip, and
energy is radiated during signal transitions. Depending on whether an adjacent signal
is changing in the same or opposite direction as a clock, the clock’s transition can be
accelerated or retarded, making its transition appear to occur earlier or later.

In a large PCB or ASIC design, it’s usually not feasible to track down all the
possible sources of clock skew. As a result, ASIC suppliers may advise designers to
provide extra setup- and hold-time margin, equivalent to many gate delays, over and
above the known simulation timing results to accommodate such unknown factors.

DDPP5.book Page 694 Tuesday, March 28, 2017 5:33 PM

13.3 Difficulties in Synchronous Design 695

hundreds of thousands of flip-flops and LUTs, capable of realizing multiple sub-
systems in a single FPGA, is a complex art—in fact, the Xilinx guide on 7-series
clocking resources is over 100 pages long!

13.3.2 Gating the Clock
There are at least two situations where a designer would like to be able to

effectively “turn off” the clock signal going to one or more flip-flops. The first is
to prevent the flip-flop(s) from loading a new value, and the second is to save
power and possibly circuit area. This is called gating the clock and we’ll discuss
both situations.

Most of the sequential functions that we’ve introduced have synchronous
function-enable inputs. That is, their enable inputs are sampled on the clock
edge, along with the data. Our very first example of this was the edge-triggered
D flip-flop with clock enable in Section 10.2.5, followed by multibit registers
with synchronous load-enable inputs in Section 10.4. Other functions included
counters and shift registers with synchronous load-enable, count-enable, and
shift-enable inputs in Chapter 11.

Keep in mind that in all of these examples, the clock itself is not really
“gated.” Rather, a multiplexer is used to select the current value of Q to apply
each flip-flop’s D input in the “load disabled” case.

Nevertheless, many MSI parts, FPGA library components, and ASIC cells
do not have synchronous function-enable inputs. In board-level design, for
example, the 74x374 8-bit register has three-state outputs but no load-enable
input. So, what can a designer do if an application requires an 8-bit register with
both a load-enable input and three-state outputs? One solution is to use two
parts, the first one having the required load-enable, followed by a three-state
buffer. Another is to use a single larger part that provides both required func-
tions. But both of these solutions have higher board area and cost compared to
gating the clock.

In FPGA, CPLD, or ASIC design, the best solution is to specify exactly
what is needed in the HDL-based design, and let the synthesis tools figure out
the best way to implement it in the target technology. But “best” may require
some definition by the designer, especially considering resource limitations in
the target technology and various design goals. That brings us to the second rea-
son for gating the clock—saving power.

In CMOS ASICs and FPGAs, clocks account for a major fraction of the
total dynamic (CV2f) power consumption, which we introduced in Section 1.8,
for several reasons:

• In synchronous design, clocks go “everywhere,” so clock signal lines have
a lot of capacitance because of their length. And they connect to the inputs
of a lot of other circuits, so they also drive a lot of input capacitance. So,
the “C” factor in their dynamic power consumption is large.

gating the clock

DDPP5.book Page 695 Tuesday, March 28, 2017 5:33 PM

696 Chapter 13 Sequential-Circuit Design Practices

• Clocks by their very nature may run continuously, in which case the “f”
factor is the clock’s full operating frequency.

• Circuits like flip-flops which are driven by clocks may consume power
internally, even if their output state is not changing.

Gating the clock is an opportunity to cut down on dynamic power consumption
resulting from the second and third bullets above.

There are trade-offs to consider when deciding whether to gate the clock.
Generally, it does not make sense to gate a clock that drives just one or a few
clock inputs. The clock-gating circuit requires resources that consume area and
power, and they may exist only in limited numbers depending on the technology,
for example in FPGAs. For small cases it is typically better to use flip-flops with
multiplexer-based clock enables (as in Figure 10-17 on page 507) or otherwise
incorporate the required functionality in flip-flops’ excitation logic. And having
a large number of clocks, gated or not, also complicates the construction of
clock-distribution networks and subsequent timing analysis in any design.

That said, Figure 13-12 illustrates an obvious but wrong approach to gating
the clock. A signal CLKEN is asserted to enable the clock and is simply ANDed
with the clock to produce the gated clock GCLK. This has two problems:

1. If CLKEN is a state-machine output or other signal produced by a register
clocked by CLK, then CLKEN changes some time after CLK has already
gone HIGH. As shown in (b), this produces glitches on GCLK and false
clocking of the registers controlled by GCLK.

2. Even if CLKEN is somehow produced well in advance of CLK’s rising edge
(e.g., using a register clocked with the falling edge of CLK, an especially
nasty kludge), the AND-gate delay gives GCLK excessive clock skew rela-
tive to the original ungated CLK, which causes more problems all around.

A method of gating the clock that generates only minimal clock skew is
shown in Figure 13-13. Here, both an ungated clock and several gated clocks are
generated from the same active-low master clock signal. Gates in the same IC
package are used to minimize the possible differences in their delays. The
CLKEN signal may change arbitrarily whenever CLK_L is LOW, which is when
CLK is HIGH. That’s just fine if the CLKEN signal is produced by a state machine
whose outputs change right after CLK goes HIGH.

Figure 13-12 Bad clock gating: (a) simple-minded circuit; (b) timing diagram.

CLK

CLKEN

CLK

CLKEN

GCLK

GCLK

(a) (b)

DDPP5.book Page 696 Tuesday, March 28, 2017 5:33 PM

13.3 Difficulties in Synchronous Design 697

The approach of Figure 13-13 is acceptable in a particular application only
if the clock skew that it creates is acceptable. Furthermore, note that CLKEN
must be stable during the entire time that CLK_L is HIGH (CLK is LOW). Thus,
the timing margins in this approach are sensitive to the clock’s duty cycle, espe-
cially if CLKEN suffers significant combinational-logic delay (tcomb) from the
triggering clock edge. A truly synchronous function-enable input, like the
74x377’s load-enable input, can be changed at almost any time during the entire
clock period, up until a setup time before the triggering edge.

Another method of gating the clock combines an AND gate with a D latch
as shown in Figure 13-14; we’ll call this circuit a positive-edge clock gate. Why?
As shown by the timing diagram in Figure 13-15, it latches the value of CE just
before the positive (rising) edge of CLK, and allows the edge and subsequent
CLK HIGH value to pass through to GCLK only if CE was asserted. When CLK is
LOW, the AND gate keeps GCLK LOW also. And as long as CE is stable at an
appropriate setup time before the rising edge of CLK, CEQ is stable when CLK
goes HIGH and the AND gate passes the entire CLK HIGH pulse, or none of it, to
the GCLK output.

Figure 13-13 Acceptable clock gating: (a) circuit; (b) timing diagram.

CLK_L

CLK

CLKEN

CLK_L

CLK

GCLK1

GCLK2

GCLK3

CLKEN1

CLKEN2

CLKEN3

(a)

(b)

GCLK

all in same
IC package

Figure 13-14
Clock gating using
a latch.

D Q

G

CE

CLK

GCLK

CEQ

positive-edge clock gate

Figure 13-15
Timing of positive-
edge clock-gate
circuit.

CLK

CE

GCLK

CEQ

DDPP5.book Page 697 Tuesday, March 28, 2017 5:33 PM

698 Chapter 13 Sequential-Circuit Design Practices

Like the simple clock-gating circuit in Figure 13-12(a), the positive-edge
clock gate creates excessive skew between CLK and GCLK. However, if an
ungated clock is needed, one can be created with manageable skew using an
instance of the positive-edge clock gate of Figure 13-14, preferably in the same
IC package as the gated clocks, with CE always asserted.

The positive-edge clock gate is useful and popular enough that it appears as
a predefined cell in some ASIC libraries. Also, many copies are provided in the
on-chip clock distribution networks of recent Xilinx FPGAs, where it is called a
BUFHCE; there are 12 instances per “clocking region” in a 7-series FPGA,
which may contain as many as 24 such regions in the largest parts.

You may recall that the Xilinx 7-series slice, described in Section 10.7, has
a common clock-enable signal for the eight flip-flops in the slice. This is a good
opportunity for the slice to incorporate just one positive-edge clock gate to save
power in designs that use the clock enable. It also saves chip area in general by
eliminating the need for explicit input multiplexers on the eight clock-enabled
flip-flops—the clock-gating circuit is much smaller.

Xilinx also takes the power-saving idea one step further. Not all functions
in a design call out explicit clock enables, of course. But the Xilinx synthesis
tool can examine a design to determine if there are any groups of flip-flops, like
explicit multibit registers, whose outputs are potentially changing on every clock
cycle but are not always being used in the next one. If so, it can use one or more
LUTs to create clock-enable signals to load those registers only when their out-
puts might be used in the next cycle, and thereby save power. This uses resources
of course—LUTs—but they may be available “for free” anyway. And the tool
analyzes each opportunity to do this in the circuit to determine if it’s worthwhile,
that is, whether the clock-enable LUTs use less power than the extra flip-flop
clocking would.

13.3.3 Asynchronous Inputs
Even though it is theoretically possible to build a computer system that is fully
synchronous, you couldn’t do much with it, unless you could synchronize your
keystrokes and taps with a 2-GHz clock. Digital systems of all types inevitably
must deal with asynchronous input signals that are not synchronized with the
system clock.

Asynchronous inputs are often requests for service (e.g., interrupts in a
computer) or status flags (e.g., a resource has become available). Such inputs
normally change slowly compared to the system clock frequency, and they need
not be recognized at a particular clock tick. If a transition is missed at one clock
tick, it can always be detected at the next one. The transition rates of asynchro-
nous signals may range from less than one per second (the keystrokes of a slow
typist) to 200 MHz or more (access requests for a 2-GHz multiprocessor
system’s shared memory).

asynchronous input
signal

DDPP5.book Page 698 Tuesday, March 28, 2017 5:33 PM

13.3 Difficulties in Synchronous Design 699

Ignoring the problem of metastability for the moment, it is easy to build a
synchronizer, a circuit that samples an asynchronous input and produces an
output that meets the setup and hold times required in a synchronous system. As
shown in Figure 13-16, a D flip-flop samples the asynchronous input at each tick
of the system clock and produces a synchronous output that is valid during the
next clock period.

It is essential for asynchronous inputs to be synchronized at only one place
in a system; Figure 13-17 shows what can happen otherwise. Because of physi-

synchronizer

Figure 13-16
A single, simple
synchronizer:
(a) logic diagram;
(b) timing.

SYNCIN

CLOCK

(system clock)

ASYNCIN

(asynchronous input)

synchronizer

D Q

CLK Synchronous
system

CLOCK

ASYNCIN

SYNCIN

(a)

(b)

Figure 13-17
Two synchronizers
for the same
asynchronous
input: (a) logic
diagram;
(b) possible timing.

SYNC2

CLOCK

(system clock)

ASYNCIN

(asynchronous input)

SYNC1

D Q

CLK

synchronizers

D Q

CLK

Synchronous
system

CLOCK

ASYNCIN

SYNC1

SYNC2

(a)

(b)

DDPP5.book Page 699 Tuesday, March 28, 2017 5:33 PM

700 Chapter 13 Sequential-Circuit Design Practices

cal delays in the circuit, the two flip-flops will not see the clock and input signals
at precisely the same time and they don’t have identical performance either.
Therefore, when asynchronous input transitions occur near the clock edge, there
is a small window of time during which one flip-flop may sample the input as 1
and the other may sample it as 0. This inconsistent result may cause improper
system operation, as one part of the system responds as if the input were 1, and
another part responds as if it were 0.

Combinational logic may hide the fact that there are two synchronizers, as
shown in Figure 13-18. Since different paths through the combinational logic
will inevitably have different delays, the likelihood of an inconsistent result is
even greater. This situation is especially common when asynchronous signals
are used as inputs to state machines, since the excitation logic for two or more
state variables may depend on the asynchronous input. The proper way to use an
asynchronous signal as a state-machine input is shown in Figure 13-19. All of
the excitation logic sees the same synchronized input signal, SYNCIN.

Figure 13-18 An asynchronous input driving two synchronizers through combinational logic.

SYNC2

CLOCK

(system clock)

ASYNCIN

(asynchronous input)

SYNC1

D Q

CLK

synchronizers

D Q

CLK

Synchronous
system

Combinational logic

fanout

Figure 13-19 An asynchronous state-machine input coupled through a single synchronizer.

Q2

CLOCK

(system clock)

ASYNCIN

(asynchronous input)

Q1

D2

D1

D Q

CLK

state memory
synchronizer

D Q

CLK

SYNCIN
D Q

CLK
Combinational
excitation logic

DDPP5.book Page 700 Tuesday, March 28, 2017 5:33 PM

13.4 Synchronizer Failure and Metastability 701

13.4 Synchronizer Failure and Metastability
We showed in Section 10.1 that when the setup and hold times of a flip-flop are
not met, the flip-flop may go into a third, metastable state halfway between 0
and 1. Worse, the length of time it may stay in this state before falling back into
a legitimate 0 or 1 state is theoretically unbounded. When other gates and flip-
flops are presented with a metastable input signal, some may interpret it as a 0
and others as a 1, creating the sort of inconsistent behavior that we showed in
Figure 13-17. Or the other gates and flip-flops may produce metastable outputs
themselves—after all, they are now operating in the linear (non-digital) part of
their operating range. Luckily, the probability of a flip-flop output remaining in
the metastable state decreases exponentially with time, though never all the way
to zero.

13.4.1 Synchronizer Failure
Synchronizer failure is said to occur if a system uses a synchronizer output while
the output is still in the metastable state. You can avoid synchronizer failure only
by ensuring that the system waits “long enough” before using a synchronizer’s
output—“long enough” that the mean time between synchronizer failures is a
few orders of magnitude longer than your expected length of employment.

Metastability is more than an academic problem. Many experienced
designers of high-speed digital systems have built and shipped circuits that
suffer from intermittent synchronizer failures. In fact, the initial versions of
many commercial ICs have had metastability problems. In previous editions of
this book, we cited metastability problems in microprocessor and peripheral
chips from Zilog, Intel, AMD, and Texas Instruments. It’s possible to find more
stories online of problem parts and products, though most of the storytellers are
loathe to admit names. The nature of the problem is such that it will be noticed
only if a large quantity of devices having it are in operation, which is precisely
when it will cost the most to fix—by redesigning and replacing chips, boards, or
systems.

WHO CARES? As you should know, even the synchronizers in Figures 13-16 and 13-19 sometimes
fail. The reason is that the setup and hold times of the synchronizing flip-flop are
sometimes violated, because the asynchronous input can change at any time. “Well,
who cares?” you may say. “If the D input changes near the clock edge, then the flip-
flop will either see the change this time or miss it and pick it up next time; either way
is good enough for me!” The problem is, there is a third possibility, discussed in the
next section.

synchronizer failure

DDPP5.book Page 701 Tuesday, March 28, 2017 5:33 PM

702 Chapter 13 Sequential-Circuit Design Practices

There are two ways to get a flip-flop out of the metastable state:

1. Force the flip-flop into a valid logic state using input signals that meet the
published specifications for minimum pulse width, setup time, and so on.

2. Wait “long enough,” so the flip-flop comes out of metastability on its own.

Inexperienced designers often attempt to get around metastability in other ways,
and they are usually unsuccessful.

Figure 13-20 shows an attempt by a designer who thinks that since meta-
stability is an “analog” problem, it must have an “analog” solution. After all,
Schmitt-trigger inputs (see Section 14.5.2) and capacitors can often be used to
clean up noisy signals. However, rather than eliminate metastability, this circuit
enhances it—with the “right” components, the circuit will oscillate forever, once
it is excited by negating S_L and R_L simultaneously. (Confession: It was the
author who tried this over 30 years ago!)

Exercise 13.26 gives an example of a valiant but also failed attempt to
eliminate metastability. These examples should give you the sense that synchro-
nizer problems can be very subtle, so you must be careful. The only way to make
synchronizers reliable is to wait long enough for metastable outputs to resolve.
We will answer the question “How long is ‘long enough’?” later in this section.

13.4.2 Metastability Resolution Time
If the setup and hold times of a D flip-flop are met, the flip-flop output settles to
a new value within time tpd after the clock edge. If they are violated, the flip-flop
output may be metastable for an arbitrary length of time. In a particular system
design, we use the parameter tr , called the metastability resolution time, to
denote the maximum time that the output can remain metastable without causing
synchronizer (and system) failure.

Let’s be clear about t r. It is not the time at which the flip flop is guaranteed
to come out of metastability. Rather, it is the time at which the synchronizer fails
if its output is still metastable then. And it will fail, some fraction of the time.
When it fails, all of the other circuits that depend on it may themselves produce
incorrect or inconsistent outputs.

S_L

R_L

Q

QN

100pf

100pf

74LS132

Figure 13-20
A failed attempt to
build a metastable-
proof S-R flip-flop.

tr
metastability resolution

time

DDPP5.book Page 702 Tuesday, March 28, 2017 5:33 PM

13.4 Synchronizer Failure and Metastability 703

For an example of tr, consider the state-machine structure in Figure 13-19
on page 700. The available metastability resolution time is

where tclk is the clock period, tcomb is the propagation delay of the combinational
excitation logic, and tsetup is the setup time of the flip-flops used in the state
memory.

13.4.3 Reliable Synchronizer Design
The most reliable synchronizer is one that allows the maximum amount of time
for metastability resolution. However, in the design of a digital system, we
seldom have the luxury of slowing down the clock to make the system work
more reliably. Instead, we are usually asked to speed up the clock to get higher
performance from the system. As a result, we often need synchronizers that
work reliably with very short clock periods. We’ll present several such designs,
and show how to predict their reliability.

We showed previously that a state machine with an asynchronous input,
built as illustrated in Figure 13-19 on page 700, has t r = tclk − tcomb − tsetup. To
maximize t r for a given clock period, we should minimize tcomb and tsetup.
The value of tsetup depends on the type of flip-flops used in the state memory; in
general, faster flip-flops have shorter setup times. The minimum value of tcomb is
zero and is achieved by the synchronizer design of Figure 13-21, whose opera-
tion we explain next.

Inputs to flip-flop FF1 are asynchronous with the clock and may violate the
flip-flop’s setup and hold times. When this happens, the META output may
become metastable and remain in that state for an arbitrary time. However, we
assume that the maximum duration of metastability after the clock edge is tr.
(We show how to calculate the probability that our assumption is correct in the
next subsection.) As long as the clock period is greater than t r plus the FF2’s
setup time, SYNCIN becomes a synchronized copy of the asynchronous input on
the next clock tick without ever becoming metastable itself. The SYNCIN signal
is distributed as required to the rest of the system.

t r = tclk − tcomb − tsetup

tclk

tcomb

tsetup

Figure 13-21 Recommended synchronizer design.

SYNCINMETA

CLOCK

(system clock)

ASYNCIN

(asynchronous input)

D Q

CLK

synchronizer

D Q

CLK Synchronous
system

FF1 FF2

DDPP5.book Page 703 Tuesday, March 28, 2017 5:33 PM

704 Chapter 13 Sequential-Circuit Design Practices

13.4.4 Analysis of Metastable Timing
Figure 13-22 shows the flip-flop timing parameters that are relevant to our
analysis of metastability timing. The published setup and hold times of a flip-
flop with respect to its clock edge are denoted by ts and th, and they bracket an
interval called the decision window, when the flip-flop samples its input and
decides to change its output if necessary. As long as the D input changes outside
the decision window, as in (a), the manufacturer guarantees that the output will
change and settle to a valid logic state before time tpd. If D changes inside the
decision window, as in (b), metastability may occur and persist beyond time tr.

Theoretical research suggests, and experimental research has confirmed,
that when asynchronous inputs change during the decision window, the duration
of metastable outputs is governed by an exponential formula:

Here MTBF(tr) is the mean time between synchronizer failures, where a failure
is said to occur if metastability persists beyond time tr after a clock edge, where
tr ≥ tpd. This MTBF depends on f, the frequency of the flip-flop clock; a, the
number of asynchronous input changes per second applied to the flip-flop; and
To and τ, constants that depend on the electrical characteristics of the flip-flop.

The 74LS74 is an SSI (discrete) positive-edge-triggered D flip-flop in
bipolar TTL technology, and was one of the first devices analyzed by pioneering

Figure 13-22 Timing parameters for metastability analysis: (a) normal flip-flop operation;
(b) metastable behavior.

CLOCK

D

Q Q

stable stable

thts
decision
window

tpd

tclk

(a)

CLOCK

D unstable

thts
decision
window

tr(b)

metastable

decision window

DETAILS,
DETAILS

In our analysis of the synchronizer in Figure 13-21 we do not allow metastability,
even briefly, on the output of FF2, because we assume that the system has been
designed with zero timing margins. If the system can in fact tolerate some increase
in FF2’s propagation delay, the MTBF will be somewhat better than predicted.

MTBF tr()
exp tr/τ()
To f a⋅ ⋅

----------------------=

f
a
To

DDPP5.book Page 704 Tuesday, March 28, 2017 5:33 PM

13.4 Synchronizer Failure and Metastability 705

metastability researcher Thomas Chaney. He found that for a typical 74LS74,
To ≈ 0.4 s and τ ≈ 1.5 ns.

Now suppose we built a microprocessor system with a very slow (by
today’s standards) 10-MHz clock, and synchronize an input using the circuit of
Figure 13-21 on page 703 with a pair of 74LS74 D flip-flops. If ASYNCIN
changes during the decision window of FF1, the output META may become
metastable until time tr. If META is still metastable at the beginning of the deci-
sion window for FF2, then the synchronizer fails, because FF2 may have a
metastable output; system operation will be unpredictable in that case.

The setup time ts of a 74LS74 is 20 ns, and the clock period in our example
microprocessor system is 100 ns, so tr for synchronizer failure is 80 ns. If the
asynchronous input changes 100,000 times per second, then the synchronizer
MTBF is

That’s not bad, about 115 centuries between failures! Of course, if we’re lucky
enough to sell 11,500 copies of our system, one of them will fail in this way
every year. But, no matter, let us consider a more serious problem.

Suppose we upgrade our system to use a faster microprocessor chip with a
clock speed of 16 MHz. That’s less than twice the clock period, so it doesn’t
seem like much of a speed-up, right? We may have to replace some components
in our system to operate at the higher speed, but 74LS74s are still perfectly good
at 16 MHz. Or are they? With a clock period of 62.5 ns, the new synchronizer
MTBF is

UNDERSTANDING
A AND F

Although a flip-flop output can go metastable only if D changes during the decision
window, the MTBF formula does not explicitly specify how many such input chang-
es occur. Instead, it specifies the total number of asynchronous input changes per
second, a, and assumes that asynchronous input changes are uniformly distributed
over the clock period. Therefore, the fraction of input changes that actually occur
during the decision window is “built in” to the clock-frequency parameter f—as f
increases, the fraction goes up.

If the system design is such that input changes might be clustered in the deci-
sion window rather than being uniformly distributed (as when synchronizing a slow
input with a fixed but unknown phase difference from the system clock), then a use-
ful rule of thumb is to use a frequency equal to the reciprocal of the decision window
(based on published setup and hold times), times a safety margin of, say, 10. But it
could be much worse!

MTBF(80 ns)
exp(80/1.5)

0.4 107 105⋅ ⋅
--------------------------------- 3.6 1011s⋅= =

MTBF(42.5 ns)
exp(42.5/1.5)

0.4 1.6 107 105⋅ ⋅ ⋅
--- 3.1 s= =

DDPP5.book Page 705 Tuesday, March 28, 2017 5:33 PM

706 Chapter 13 Sequential-Circuit Design Practices

The only saving grace of this synchronizer at 16 MHz is that it’s so bad, we’re
likely to discover the problem in the engineering lab before the product ships!
Thank goodness the MTBF wasn’t one year.

13.4.5 Better Synchronizers
Given the poor performance of the 74LS74 as a synchronizer at moderate clock
speeds, digital designers back in the day had to consider alternatives for building
more reliable synchronizers. The simplest solution, which worked for many
design requirements, was and still is simply to use a flip-flop from a faster tech-
nology. Nowadays much faster technologies are available for flip-flops, whether
discrete or embedded in ASICs, FPGAs, or PLDs. But at the same time, system
clock frequencies have increased with technology improvements, so this isn’t
always a solution.

The metastability parameters To and τ for a few discrete flip-flops and
PLDs in older technologies have been derived empirically by researchers and in
a few cases they’ve been published by device manufacturers. Some of these are
shown in Table 13-2. The metastability parameters for newer devices are harder
to come by, so we’ll give examples in the rest of this section using the published
parameters for the older device technologies. We’ll point to some of the latest
work on metastability in newer technologies in the References.

Table 13-2
Metastability
parameters for
various devices.

Reference Device (ns) To (s) tr (ns)

Chaney (1983) 74LS74 1.50 4.0 ⋅ 10−1 77.7

Chaney (1983) 74S74 1.70 1.0 ⋅ 10−6 66.1

Chaney (1983) 74F74 0.40 2.0 ⋅ 10−4 17.7

TI (1997) 74LSxx 1.35 4.8 ⋅ 10−3 64.0

TI (1997) 74Sxx 2.80 1.3 ⋅ 10−9 90.3

TI (1997) 74ALSxx 1.00 8.7 ⋅ 10−6 41.1

TI (1997) 74ASxx 0.25 1.4 ⋅ 103 15.0

TI (1997) 74Fxx 0.11 1.9 ⋅ 108 7.9

TI (1997) 74HCxx 1.82 1.5 ⋅ 10−6 71.6

TI (1997) 74ACxx 0.36 1.1 ⋅ 10−4 15.7

Cypress (1997) PALC22V10B-20 0.26 5.6 ⋅ 10−11 7.6*

Cypress (1997) PALCE22V10-7 0.19 1.3 ⋅ 10−13 4.4*

Xilinx (1997) 7300-series CPLD 0.29 1.0 ⋅ 10−15 5.3*

Xilinx (1997) 9500-series CPLD 0.17 9.6 ⋅ 10−18 2.3*

*tr is added to the normal clock-to-out delay tpd

DDPP5.book Page 706 Tuesday, March 28, 2017 5:33 PM

13.4 Synchronizer Failure and Metastability 707

The numbers in Table 13-2 were all derived experimentally and vary with
a chip’s internal circuit design and IC fabrication process, and with the measure-
ment test setup that was used. Thus, even if published, metastability numbers
can vary dramatically must be used conservatively. For example, Drill 13.6 com-
pares the results of the previous subsection’s example, which used Chaney’s
numbers, with the results obtained using TI’s estimates of 74LSxx parameters.

Also note that different authors and manufacturers may specify some
metastability parameters and measurement result differently. For example,
author Chaney and manufacturer Texas Instruments (TI) measure the metasta-
bility resolution time tr from the triggering clock edge, as in our previous
subsection. On the other hand, manufacturers Cypress and Xilinx define tr as the
additional delay beyond the normal clock-to-output delay time tpd.

The last column in the table gives a somewhat arbitrarily chosen figure of
merit for each device. It is the metastability resolution time tr required to obtain
an MTBF of 1000 years when operating a synchronizer with a clock frequency
of 25 MHz and with 100,000 asynchronous input changes per second. For the
Cypress and Xilinx devices, their parameter values yield a value of tr, marked
with an asterisk, consistent with their own definition mentioned above.

As you can see, the 74LS74 is one of the worst devices in the table. If we
replace FF1 in the 16-MHz microprocessor system of the preceding subsection
with a 74ALS74, from a faster TTL family, we get

If you’re satisfied with a synchronizer MTBF of about 65 centuries per system
shipped, you can stop here. However, if FF2 is also replaced with a 74ALS74,
the MTBF gets better, since the ’ALS74 has a shorter setup time than the ’LS74,
only 10 ns. With the ’ALS74, the MTBF is over 20,000 times better:

Even if we ship a million systems containing this circuit, we (or our heirs) will
see a synchronizer failure only once in 144 years. Now that’s job security!

Actually, the margins above aren’t as large as they might seem. (How large
does 144 years seem to you?) Most of the numbers given in Table 13-2 are aver-
ages and are seldom specified, let alone guaranteed, by the device manufacturer.
And as you’ve seen, calculated MTBFs are extremely sensitive to the value of τ,
which in turn may depend on temperature, voltage, variations in the IC fabrica-
tion process, and the phase of the moon. So the operation of a given flip-flop,
whether discrete or in an ASIC or FPGA, may be much worse (or much better)
in a real system than predicted by the manufacturer.

MTBF(42.5 ns)
exp(42.5/1.00)

8.7 10 6– 1.6 107 105⋅ ⋅ ⋅ ⋅
-- 2.06 10⋅ 11s= =

MTBF(52.5 ns)
exp(52.5/1.00)

8.7 10 6– 1.6 107 105⋅ ⋅ ⋅ ⋅
-- 4.54 10⋅ 15s= =

DDPP5.book Page 707 Tuesday, March 28, 2017 5:33 PM

708 Chapter 13 Sequential-Circuit Design Practices

For example, consider what happens if we increase the clock in our
16-MHz system by just 25%, to 20 MHz. Your natural inclination might be to
think that metastability will get 25% worse, or maybe 250% worse, just to be
conservative. But, if you run the numbers, you’ll find that the MTBF using
’ALS74s for both FF1 and FF2 goes down from 4.54 ⋅ 1015 s to just 3.7 ⋅ 109 s,
over a million times worse! The new MTBF of about 429 years is fine for one
system, but if you ship a million of them, one will fail every four hours. You’ve
just gone from generations of job security to corporate goat!

13.4.6 Other Synchronizer Designs
We promised to describe other ways to build more reliable synchronizers. The
first way we showed was to use faster flip-flops, that is, to reduce the value of τ
in the MTBF equation. Having said that, the second way is obvious—to increase
the value of tr in the MTBF equation.

For a given system clock, the best value we can obtain for tr using the
circuit of Figure 13-21 on page 703 is tclk, if FF2 has a setup time of 0. However,
we can get values of tr on the order of n ⋅ tclk by using the multiple-cycle synchro-
nizer circuit of Figure 13-23. Here we divide the system clock by n to obtain a
slower synchronizer clock and longer tr = (n ⋅ tclk) − tsetup. Typically a value of
n = 2 or n = 3 gives adequate synchronizer reliability.

In the figure, note that the edges of CLOCKN will lag the edges of CLOCK
because CLOCKN comes from the Q output of a counter flip-flop that is clocked
by CLOCK. This means that SYNCIN, in turn, will be delayed or skewed relative
to other signals in the synchronous system that come directly from flip-flops
clocked by CLOCK. If SYNCIN goes through additional combinational logic in
the synchronous system before reaching its flip-flop inputs, their setup time may
be inadequate. If this is the case, the solution in Figure 13-24 can be used. Here,
SYNCIN is reclocked by CLOCK using FF3 to produce DSYNCIN, which will
have the same timing as other flip-flop outputs in the synchronous system. Of

multiple-cycle
synchronizer

Figure 13-23
Multiple-cycle
synchronizer.

SYNCINMETA

CLOCK
(system clock)

ASYNCIN
(asynchronous

input)

D Q

CLK

synchronizer

D Q

CLK

divide-by-N
counter

FF1 FF2
CLOCKN

Synchronous
system

DDPP5.book Page 708 Tuesday, March 28, 2017 5:33 PM

13.4 Synchronizer Failure and Metastability 709

course, the delay from CLOCK to CLOCKN must still be short enough that
SYNCIN meets the setup time requirement of FF3.

In an n-cycle synchronizer, the larger the value of n, the longer it takes for
an asynchronous input change to be seen by the synchronous system. This is
simply a price that must be paid for reliable system operation. In typical
microprocessor systems, most asynchronous inputs are for external events—
interrupts, DMA requests, and so on—that need not be recognized very quickly,
relative to synchronizer delays. In the time-critical area of main memory access,
experienced designers use the processor clock to run the memory subsystem too,
if possible. This eliminates the need for synchronizers and provides the fastest
possible system operation.

At higher frequencies, the feasibility of the multiple-cycle synchronizer
design shown in Figure 13-23 tends to be limited by clock skew. For this reason,
rather than use a divide-by-n synchronizer clock, designers often use cascaded
synchronizers. This design approach simply uses a cascade (shift register) of n
flip-flops, all clocked with the high-speed system clock. This approach is shown
in Figure 13-25.

With cascaded synchronizers, the idea is that metastability will be resolved
with some probability by the first flip-flop, and failing that, with an equal proba-

Figure 13-24 Multiple-cycle synchronizer with deskewing.

SYNCIN DSYNCIN

(deskewed
SYNCIN)

META
D Q

CLK

synchronizer

D Q

CLK

D Q

CLK

divide-by-N
counter

FF1 FF2 FF3

CLOCKN

CLOCK
(system clock)

ASYNCIN
(asynchronous

input) Synchronous
system

cascaded synchronizers

Figure 13-25 Cascaded synchronizer.

SYNCINMETA1

CLOCK
(system clock)

ASYNCIN
(asynchronous

input)

D Q

CLK

synchronizer

D Q

CLK

FF1 FF2

Synchronous
system

METAn-1
D Q

CLK

FFn

META2

DDPP5.book Page 709 Tuesday, March 28, 2017 5:33 PM

710 Chapter 13 Sequential-Circuit Design Practices

bility by each successive flip-flop in the cascade. So the overall probability of
failure is on the order of the nth power of the failure probability of a single-flip-
flop synchronizer at the system clock frequency. While this is partially true, the
MTBF of the cascade is poorer than that of a multiple-cycle synchronizer with
the same delay (n ⋅ tclk). With the cascade, the flip-flop setup time tsetup must be
subtracted from tr, the available metastability resolution time, n times, but in a
multiple-cycle design, it is subtracted only once.

The internal flip-flops in FPGAs, PLDs, and ASICs can of course be used
in synchronizer designs, where the two or more flip-flops in Figure 13-25 are
simply included in that chip. This is very convenient in most applications,
because it eliminates the need for external, discrete flip-flops. However, the
designer typically must provide commands or constraints to the design tools to
handle the synchronizer flip-flops correctly. Otherwise, many things can go
wrong, for example:

• Seeing two or more flip-flops in a row on a signal path, advanced tools may
move combinational logic forward or back, into the middle of the path, to
better balance delays at a higher level, which of course subtracts from tr.

• The tools may place a synchronizer’s two or more flip-flops far apart on
the chip, providing long, slow wires between them and again subtracting
from tr.

• While the chip may have a special flip-flop cell that is optimized for high
gain to yield fast metastability resolution (low τ), a command or constraint
must be used to force its use. Somewhere in the design process, that infor-
mation could be accidentally deleted or lost.

• If the design is reused in another project, the tools or the new designer may
not understand the synchronizer logic or the need for it, and just remove it!

These and other potential pitfalls are discussed in an excellent paper by
Steve Golson, cited in the References.

13.5 Two-Clock Synchronization Example
A very common problem in computer systems is synchronizing external data
transfers with the computer system clock. A simple example is the interface
between a personal computer’s network interface and a 100-Mbps Ethernet link.
The interface may be part of a general-purpose I/O interface subsystem, which
may be connected to the processor, either on the same chip or a different chip,
through a parallel bus, which we will assume for this example has a 33.33-MHz
clock. Even though the Ethernet speed is approximately a multiple of the bus
speed, the signal received on the Ethernet link is generated by another computer
whose transmit clock is not synchronized with the receive clock in any way. Yet
the interface must still deliver data reliably to the internal bus.

DDPP5.book Page 710 Tuesday, March 28, 2017 5:33 PM

13.5 Two-Clock Synchronization Example 711

Figure 13-26 shows the setup. NRZ serial data RDATA is received from the
Ethernet at 100 Mbps. The clock-and-data-recovery block on the left uses a
digital phase-locked loop (DPLL) internally to recover the original Ethernet
transmit clock, and uses that to recover the 100 Mbps data. Instead of using the
high-speed 100-Mhz recovered clock to communicate with the rest of the sys-
tem, it divides the clock by 4 and outputs a 25 MHz ECLK, which is easier to use
because of its lower frequency.

At the same time, the clock-and-data-recovery block uses an internal byte-
alignment circuit to search for special patterns in the received data stream that
indicate byte boundaries. When it detects one of these, it asserts the EBV output

Figure 13-26 100-Mbps Ethernet synchronization.

ECLK
EDATA

100 Mbps
Ethernet

received data

EBYTE[7:0]

EBV

SBYTE[7:0]

SCLK register

CLK

D Q

SBV

25 MHz

33.33 MHz

SD[7:0]

?
CLOCK AND

DATA RECOVERY,
BYTE ALIGNMENT

D Q SDV

ONE NIBBLE
AT A TIME

The explanation of 100-Mbps Ethernet reception above is oversimplified, but it’s
sufficient for discussing the synchronization problem. In reality, the received data
rate is 125 Mbps, where each 4 bits of user data is encoded as a 5-bit symbol using
a so-called 4B5B code. By using only 16 out of 32 possible 5-bit codewords, the
4B5B code guarantees that regardless of the user data pattern, the bit stream on the
wire will have a sufficient number of transitions to allow clock recovery. Also, the
4B5B code includes a special code that is transmitted periodically to allow nibble
(4-bit) and byte synchronization to be accomplished very easily.

Since the Ethernet data is decoded 4 bits at a time, the original 100 Mbps
Ethernet “MII” (Media-Independent Interface) was not too different from the one
shown in Figure 13-26, except that it delivered the data 4 bits at a time; hence our
use of a 25 MHz ECLK. A later interface, the “RMII,” bumped the clock speed to 50
MHz and reduced the interface’s pin count by delivering only 2 bits at a time.

If the entire Ethernet interface including clock and data recovery is integrated
on a single chip, as it usually is nowadays, the designers can structure it any way they
want to, as long as it works. In the end, the interface has to be able to deliver received
data to the system that uses it, synchronized with the local system clock, one byte
wide per tick, or even wider to accommodate 1 Gbps Ethernet data rates. So the
details of a real 100-Mbps Ethernet synchronizer may be different from what we
present here, but the general principles still apply.

DDPP5.book Page 711 Tuesday, March 28, 2017 5:33 PM

712 Chapter 13 Sequential-Circuit Design Practices

and places the received byte on the EBYTE[7:0] output. Based on the now known
byte alignment, it asserts EBV and places each subsequent byte on EBYTE as it is
received, typically one byte per two clock ticks.

As shown in the timing diagram in Figure 13-27, transitions on both EBV
and EBYTE occur on the rising edge of ECLK. The byte on EBYTE is valid only
during the clock period in which EBV is asserted. Since the Ethernet data rate of
100 Mbps is equivalent to 12.5 MBps, EBV should be asserted and a new byte
should be seen on every second clock tick when Ethernet data is being received.

The rest of the system is clocked by a 33.33 MHz clock SCLK. We need to
transfer each received byte EBYTE[7:0] into an interface register in SCLK’s
domain for further processing. How can we do it?

Since the 33.33 MHz SCLK is faster than the 25-MHz ECLK, it might seem
like we could just sample EBV with SCLK and grab EBYTE if we see that EBV is
asserted. This is wrong in several ways:

• During any given 40-ns EBV HIGH tick, we might sample EBV once or
twice, depending on the relative clock alignment at that time. How do we
know if we have one new byte or two?

• From the timing diagram in Figure 13-27, it looks like EBV is never assert-
ed for two ECLK periods in a row. So if SCLK sees it asserted two ticks in
a row, couldn’t we ignore the second one? No. Even though with 100 Mbps
Ethernet, the upstream interface should never have to deliver two bytes in
a row at 25 MHz, we assume that its designers won’t guarantee that; they
might want to use it differently in some situation still to be determined.

• Even if we overcame the previous two issues, if the one and only SCLK
edge with EBV HIGH arrives late in the cycle (30–35 ns into it), we don’t
have a whole lot of time for metastability resolution before we have to do
something with EBYTE. It’s always better to allow more time for metasta-
bility resolution if we can afford it, which we can in this application.

• Even if 5–10 ns is enough time for metastability resolution in the target
technology, it’s a bad idea to rely on relative clock timings. Theoretically,
we could operate SCLK a lot slower, just a little faster than 12.5 MHz, and

Figure 13-27
Ethernet interface
and system clock
timing.

ECLK

EBV

SCLK

80 ns
40 ns

EBYTE valid valid

30 ns

DDPP5.book Page 712 Tuesday, March 28, 2017 5:33 PM

13.5 Two-Clock Synchronization Example 713

still be able to absorb all of the data bytes from a 100-Mbps Ethernet, with
the right design. What if we did need to slow down SCLK sometimes,
whether for power saving or for debugging?

The typical and most well understood solution to this problem is to use a
first-in, first-out buffer, or FIFO. You may already be familiar with FIFOs in
software programming, where they may be used as shown in Figure 13-28(a).
One process, A, produces data, and another, B, consumes it. The FIFO is a data
structure that receives data written by A and stores it until B is able to read it.
“FIFO” means that data is read in the same order as it was written. On the aver-
age, A and B write and read at the same rate, but the FIFO is large enough to
absorb short-term variations where A is temporarily producing and writing data
faster than B can read and consume it. For that reason, a FIFO may also be called
an elastic buffer.

The application of a hardware FIFO for transferring data between two
clock domains, A and B, is shown in Figure 13-28(b). Here, writes to the FIFO
are synchronized with CLKA, and reads are synchronized with CLKB. Either
clock may be faster or slower than the other, or they may have the same approx-
imate frequency. They may even have exactly the same frequency or be
otherwise “locked” to each other, if both are derived from a common upstream
clock; this relationship is called mesosynchronous. For example, ECLK and
SCLK in Figure 13-27 could be derived from a common 100-MHz clock. How-
ever, their relative phase relationship may be unknown and may even vary with
temperature and other conditions, because of large or unpredictable delays in the
overall system that contains the writer and the reader. The FIFO hardware must
be able to handle all these possibilities without error, and as such is usually
called an asynchronous FIFO.

It also goes, almost without saying, that the FIFO must be large enough to
absorb the short-term variations in writing and reading. Just as in the software
FIFO, some kind of “flow control” is usually provided at a higher level to stop

first-in, first-out buffer
(FIFO)

Figure 13-28
FIFOs: (a) typical
software FIFO;
(b) asynchronous
hardware FIFO.

CLKA

PRODUCER
PROCESS A

CONSUMER
PROCESS B

writing reading

FIFO

CLOCK
DOMAIN A

CLOCK
DOMAIN B

writing reading

ASYNCHRONOUS
FIFO

CLKB

DATA DATA

(a)

(b)

elastic buffer

mesosynchronous
clocks

asynchronous FIFO

DDPP5.book Page 713 Tuesday, March 28, 2017 5:33 PM

714 Chapter 13 Sequential-Circuit Design Practices

the writer from producing data when the reader can’t take much more. When and
how to do this is well beyond the scope of our discussion. Here, we will look
only at a system where the receiving system is clearly capable of accepting all of
the data that is written over a relatively short period, and the FIFO’s job is only
to absorb the delays and short-term timing variations that occur because of clock
synchronization.

There are many ways to design an asynchronous FIFO, and none of them
are particularly easy, except for the most obviously wrong ones. For the problem
at hand (Ethernet-to-system data transfer), we should be able to use a fairly small
FIFO, just a few bytes deep. So we’ll take an approach that is not the world’s
most efficient, especially for deep FIFOs, but is relatively easy to illustrate and
explain (though it still has subtleties!).

Figure 13-29 shows the structure of our FIFO, assuming that it’s four bytes
deep. But we’ll design it in Verilog with parameters that are easily changed for
different depths. Like a software FIFO, our design uses the idea of a circular
buffer, a block of memory—four registers in our case—and two pointers that
specify where to write it and where to read it. The write and read pointers
WRPTR and RDPTR are each incremented after a corresponding operation.

In the software FIFO, empty and full conditions are detected by comparing
the pointers, but we can’t easily do that in the asynchronous FIFO. Since the
pointers are incremented in different clock domains, one or the other might be
changing while we’re doing a comparison. Here, WRPTR is incremented by
ECLK when a new byte is stored in a FIFO register, and RDPTR is incremented
by SCLK when a byte is read.

Instead, as shown in Figure 13-29, we’ll use a single bit “FLAG” alongside
each FIFO register. We’ll set FLAG in the ECLK domain when the corresponding
register is written, and we’ll read and eventually clear it in the SCLK domain
when the register is read. The FIFO must be deep enough that the reading and
clearing operations of any FLAG bit are completed before it and the correspond-
ing register are reused, but we won’t look at “how deep” that needs to be until
we’ve worked out more details of our design.

Before continuing, let us summarize the FIFO operations at a high level:

• At initialization, WRPTR and RDPTR are set to 0 to point to the first FIFO
location, and all FLAG bits are cleared.

Figure 13-29
Ethernet FIFO
structure for
Verilog module.

FIFO

FIFO[3]

FIFO[2]

FIFO[1]

FIFO[0]

[3]

[2]

[1]

[0]

FLAG

8
1

RDPTR

WRPTR

update with
ECLK

update with
SCLK

write with
ECLK

read with
SCLK

clear with
SCLK

set with
ECLK

circular buffer

DDPP5.book Page 714 Tuesday, March 28, 2017 5:33 PM

13.5 Two-Clock Synchronization Example 715

• When an Ethernet byte is received, it is loaded into FIFO[WRPTR],
FLAG[WRPTR] is set to 1, and WRPTR is incremented to point to the next
FIFO location. All of this happens in the ECLK domain.

• The system’s read-related operations all occur in the SCLK domain. The
state of FLAG[RDPTR] is determined. If it’s 1, FIFO[RDPTR] is read and
transferred to the SBYTE output (see Figure 13-26 on page 711) for one
clock period, SBV is asserted for the same period, FLAG[RDPTR] is
cleared, and RDPTR is incremented to point to the next FIFO location.

A final consideration for the design is that it must be possible to support back-
to-back operations within either clock domain. That is, it must be possible to
write two or more bytes into the FIFO on successive ECLK cycles, and to read
two or more bytes, if present in the FIFO, on successive SCLK cycles.

Reading FLAG is the one place in this design where we must consider
metastability. (Note, there are other approaches to asynchronous FIFO designs
that have multiple such places.) As you can understand from the last bullet
above, a lot of things happen or not depending on the value of FLAG[RDPTR]; it
must be read reliably.

There are multiple FLAG bits, one for each byte in the FIFO. Our design
uses an S-R latch for each one, as shown in Figure 13-30 for one bit, FLAG[i].
According to the Verilog logic expression on S, the latch is set when the write
pointer is pointing to the corresponding FIFO byte (WRPTR==i) and a new Ether-
net byte is present and about to be written into the FIFO (EBV==1'b1). Since the
FLAG_set[i] signal goes to an asynchronous input (S), it must be free of glitches.
The easiest way to generate it is with a flip-flop that captures the expression’s
value on the rising edge of ECLK, since any changes in WRPTR and EBV from
the preceding ECLK tick will have settled by then.

Next we bring FLAG[i] into the SCLK domain, using a pair of flip-flops FF1
and FF2 in the recommended synchronizer design of Figure 13-21 on page 703.
Other logic in the SCLK domain will use the SFLAG signal, not the unsynchro-
nized FLAG signal.

In this design, the available metastability resolution time is the timing slack
in the FLAGD signal, that is, one SCLK period minus the setup time of FF2 and
the propagation delay of FLAGD from SCLK to the D input of FF2. If more time
is needed, one of the methods in Section 13.4.6 may be used to get it. But just

Figure 13-30
FLAG[i] latch and
synchronizer.

SFLAG[i]
FLAGD[i]

SCLK

FLAG_set[i] D Q

CLK

D Q

CLK

FF1 FF2

S Q

R

S-R latch

FLAG[i]

((WRPTR==i) & RBV)

FLAG_clr[i]

((RDPTR==i) & SFLAG[i])

DDPP5.book Page 715 Tuesday, March 28, 2017 5:33 PM

716 Chapter 13 Sequential-Circuit Design Practices

keep in mind that any additional delay in delivering SFLAG to the logic that uses
it may require more FIFO depth to accommodate the additional delay in reading
a received Ethernet byte—a price that should be well worth paying.

Now that we can determine the value of FLAG[i] in the SCLK domain, we
need to figure out how to reset it when it’s found to be 1 and the corresponding
FIFO byte has been read. Actually, we can reset the FLAG latch in a way quite
analogous to setting it. As shown by the Verilog logic expression on the R input,
FLAG[i] is reset when the read pointer is pointing to the corresponding FIFO
location (RDPTR==i) and a new FIFO byte is present (SFLAG[i]==1'b1). Like
set, the reset signal must be glitch free. So we’ll generate it with a flip-flop that
captures the expression’s value on the rising edge of SCLK, when any changes in
RDPTR and SFLAG[i] from the preceding SCLK tick have settled.

All of these ideas are put together in the Verilog module of Program 13-8,
which has the inputs and outputs of the “?” block in Figure 13-26 on page 711,
plus ERST and SRST reset inputs in the ECLK and SCLK domains, respectively.

In the declarations, the module defines two parameters DEP and WID for the
depth of the FIFO and the width needed for the pointers into it. The module
instantiates another module, VrFIFOflagsync, that creates the FIFO FLAG bits
and synchronizing flip-flops of Figure 13-30, as we’ll describe shortly. Note at
this point, however, that parameter DEP is passed to FIFOflagsync so it can
create one FLAG bit and a pair of synchronizing flip-flops per FIFO location.

The first always block in Program 13-8 performs all of the operations in
the ECLK domain, and all of its reg variables are set on the positive edge of
ECLK. Note that even the FLAG_set bits which are passed to FIFOflagsync, one
per FLAG bit, are registered outputs. As discussed previously, these signals are
applied to the asynchronous set inputs of the S-R latches in FIFOflagsync, and
must therefore be free of decoding glitches which could occur when WRPTR or
EBV is changing.

At reset, the first always block clears all of the FLAG_set bits, all of the
FIFO locations, and WRPTR. After reset, it monitors EBV at each ECLK tick. If a
new byte has arrived, it stores it in the current FIFO “write” location, asserts the
FLAG_set signal for the corresponding FLAG bit, and updates WRPTR to point to
the next FIFO location.

The second always block in Program 13-8 performs operations needed in
the SCLK domain, and all of its reg variables are set on the positive edge of
SCLK. At reset, it clears SBYTE, SBV, and RDPTR, but sets all of the FLAG_clr bits
to mark all of the corresponding FIFO locations as empty. After reset, at each
tick it checks the synchronized SFLAG corresponding to the current FIFO read
location. If a new byte is present, it transfers it to the SBYTE output, sets the
FLAG_clr bit for the current read location, and updates RDPTR to point to the
next FIFO location.

DDPP5.book Page 716 Tuesday, March 28, 2017 5:33 PM

13.5 Two-Clock Synchronization Example 717

Program 13-8 Verilog module for Ethernet data transfer across clock domains.

module VrEthSync (ECLK, SCLK, ERST, SRST, EBYTE, EBV, SBYTE, SBV);
 input ECLK, SCLK, ERST, SRST, EBV;
 input [7:0] EBYTE;
 output reg [7:0] SBYTE;
 output reg SBV;
 parameter DEP=4, PTRWID=2;
 reg [7:0] FIFO [0:DEP-1];
 wire [0:DEP-1] SFLAG;
 reg [0:DEP-1] FLAG_set, FLAG_clr;
 reg [PTRWID-1:0] WRPTR, RDPTR;
 integer i;

 VrFIFOflagsync #(.DEP(DEP)) U1 (.SCLK(SCLK), .FLAG_set(FLAG_set),
 .FLAG_clr(FLAG_clr), .SFLAG(SFLAG));
 always @ (posedge ECLK) begin // Edge-triggered operations in ECLK domain
 if (ERST == 1'b1) begin // Synchronous reset
 for (i=0; i<=DEP-1; i=i+1) begin // Clear FIFO registers and FLAG_set bits
 FLAG_set[i] <= 0;
 FIFO[i] <= 8'hff; // Not strictly needed, but prevents initial x's in sim
 end
 WRPTR <= 0;
 end
 else begin // normal operation
 FLAG_set[0:DEP-1] <= 0; // Don't set any FLAG bits yet
 if (EBV==1'b1) begin // New byte has arrived
 FIFO[WRPTR] <= EBYTE; // Put byte into FIFO write location
 FLAG_set[WRPTR] <= 1'b1; // Assert corresponding FLAG_set bit
 if (WRPTR == DEP-1) WRPTR <= 0; // Advance WRPTR, with wraparound
 else WRPTR <= WRPTR + 1;
 end
 end
 end

 always @ (posedge SCLK) begin // Edge-triggered operations in SCLK domain
 if (SRST == 1'b1) begin // Synchronous reset
 SBYTE <= 0; // Not needed, but prevent initial x's in sim
 SBV <= 0;
 RDPTR <= 0;
 FLAG_clr <= {DEP{1'b1}}; // Clear the FLAG latches during reset
 end
 else begin // normal operation
 FLAG_clr[0:DEP-1] <= 0; // Don't clear any FLAG bits yet
 if (SFLAG[RDPTR]==1'b1) begin // New byte has arrived
 SBYTE <= FIFO[RDPTR]; // Get byte from FIFO read location
 SBV <= 1'b1; // Mark output reg SBYTE as valid
 FLAG_clr[RDPTR] <= 1'b1; // Free up the FIFO location
 if (RDPTR == DEP-1) RDPTR <= 0; // Advance RDPTR, with wraparound
 else RDPTR <= RDPTR + 1;
 end
 else SBV <= 1'b0; // No new byte, so mark output reg SBYTE as invalid
 end
 end
endmodule

DDPP5.book Page 717 Tuesday, March 28, 2017 5:33 PM

718 Chapter 13 Sequential-Circuit Design Practices

The VrFIFOflagsync module is coded in Program 13-9. This part of the
design was done in a separate module because it may be different depending on
the target technology, for several reasons:

• Although the S-R latches for FLAG may be specified behaviorally, not all
target technologies have an S-R-latch cell, so each latch might have to be
synthesized with a feedback loop. That’s fine if the target technology is an
ASIC, and the synthesizer creates a pair of cross-coupled gates for each
latch. But in an FPGA, there are no actual NAND or NOR gates to be cross
coupled, only programmable LUTs. Implementing an S-R latch with a
LUT and feedback could actually create timing-dependent errors, as
explained in the box on page 720. It’s important to implement all sequen-
tial elements using cells or components that are provided “natively” in the
target technology, since the supplier will have thoroughly analyzed and
guaranteed their correct operation including avoidance of timing hazards.

• To minimize the probability of synchronizer failure in this or any other
design, the available metastability resolution time should be maximized. In
Figure 13-30 on page 715, this means that the propagation delay of FLAGD
from FF1 to FF2 should be minimized. Some tools have directives to tell
the synthesizer to place the two flip-flops as close to each other as possible
to minimize wire delays, for example in the same CLB in an FPGA. In the
Xilinx Vivado tools, the ASYNC_REG property does this.

• Some target technologies, including both ASICs and FPGAs, have special
cells designed especially for synchronizers, which like any other compo-
nent in the technology library can be specified by an instance statement in
a Verilog module. These cells may feature two or more flip-flops already
wired in series with fast interconnect, and higher-gain transistors leading
to a faster time constant τ in the metastability resolution formula.

OPTIONAL BUT
PROBABLY FREE

At reset, the first always block in Program 13-8 clears all of the FIFO locations. This
operation is not strictly needed, because each FIFO location will not be read until the
corresponding FLAG bit has been set. However, in our example, the FIFO memory is
small and in most target technologies would be realized with discrete registers,
where a flip-flop reset input would likely be available “for free.”

In the design of a larger FIFO, you would probably implement the FIFO in a
read-write memory block, and initializing each location before it is used is likely to
be expensive and should be omitted. It’s true that some FPGA read-write memory
blocks can be cleared or even set to arbitrary initial values at power-up, when the
device is configured. But there’s still no “reset” input that can clear the entire mem-
ory in one step. Once the FPGA is up and running, memory can be reinitialized only
by extra logic that steps through the memory and loads locations one by one.

DDPP5.book Page 718 Tuesday, March 28, 2017 5:33 PM

13.5 Two-Clock Synchronization Example 719

In the case of the VrFIFOflagsync module in Program 13-9, we have
targeted Xilinx 7-series FPGAs. Here, as in every other programmable device,
there is no native S-R latch component to use for the design’s FLAG latch. How-
ever, the library does offer a D latch, the LDCE which we introduced in
Table 10-1 on page 510. A D latch can operate just like an S-R latch if we apply
S to G and latch a constant 1 when G is asserted, and apply R to the asynchro-
nous clear, which is provided in the LDCE component. The synthesizer realizes
each instantiation of the LDCE component using one of the FPGA CLB’s native,
programmable latch/flip-flops shown in Figure 10-33 on page 532.

So, the FIFOflagsync module uses a generate statement to instantiate
one LDCE for each FLAG bit, with the corresponding FLAG_set and FLAG_clr
inputs connected to each as described above. The module also uses a simple
behavioral always block to create the two synchronizing flip-flops per FLAG bit.

We can check the operation of the Ethernet synchronizer now by using a
test bench and simulator to apply inputs and observe outputs. The idea is to ini-
tialize the circuit and then apply Ethernet bytes to the EBYTE,EBV inputs. Using
a sequence of byte values that are in numerically increasing order, it is easy to
spot problems where any output bytes on SBYTE,SBV are missing or out of
order. The simulator also gives us the ability to look at signals that are inside the
VrEthSync and VrFIFOflagsync modules for debugging purposes.

Program 13-9 Verilog VrFIFOflagsync module targeted to Xilinx 7-series FPGAs.

module VrFIFOflagsync (SCLK, FLAG_set, FLAG_clr, SFLAG);
parameter DEP = 4;
 input SCLK; // Sync on SCLK
 input [0:DEP-1] FLAG_set, FLAG_clr; // Latch set and clear
 wire [0:DEP-1] FLAG; // Output of FLAG latch
 output reg [0:DEP-1] SFLAG; // Output of module
 reg [0:DEP-1] FLAGD; // Synchronizing flip-flop
 genvar g;

 generate
 for (g=0; g<=DEP-1; g=g+1) begin: flags // Latch a 1 when FLAG_set is asserted
 LDCE U1 (.G(FLAG_set[g]), .GE(1'b1), .D(1'b1),
 .CLR(FLAG_clr[g]), // Async clear when FLAG_clr is asserted
 .Q(FLAG[g]));
 end
 endgenerate

 always @ (posedge SCLK) begin // Capture FLAG in SCLK domain, resolve metastability
 FLAGD <= FLAG; SFLAG <= FLAGD;
 end
endmodule

DDPP5.book Page 719 Tuesday, March 28, 2017 5:33 PM

720 Chapter 13 Sequential-Circuit Design Practices

A test-bench module that does the job is shown in Program 13-10. After
the needed declarations, the module defines the HIGH and LOW times for the
clock waveforms, instantiates the VrEthSync module, and creates the free-run-
ning clocks ECLK and SCLK. Notice that the instance statement specifies a FIFO
depth parameter (DEP) of 3. For a depth larger than the default of 4, it would also
have to specify a new value for the PTRWID parameter.

Next, the test bench asserts the reset inputs for the VrEthSync module and
initializes its Ethernet inputs EBYTE, EBV. Like our other test benches targeted to
Xilinx FPGAs, it waits at least 100 ns for the FPGA’s internal global reset signal
to be negated before starting any operations involving sequential elements. It
waits an additional time to ensure that synchronous reset SRST has its effect on
FLAG_clr, and then negates both module resets ERST and SRST. Then it waits a
little more for any post-reset internals to settle (such as the propagation of FLAG

RIDDLE:
WHEN IS A NAND

NOT A NAND
AND A NOR

NOT A NOR?

As you know, an S-R latch can be built very simply in discrete logic as a pair of
cross-coupled NAND or NOR gates. If you specify a reset-dominant S-R latch using
a behavioral, dataflow, or even structural model in Verilog, and target it to an FPGA
using Xilinx Vivado or just about any other tool, you are going to get a LUT with
combinational feedback, like the one in Figure 13-31. This circuit realizes the latch’s
characteristic equation Q* = ~R & (S | Q), and is equivalent to the cross-coupled NOR
realization of Figure 10-4 on page 500. Or is it?

Remember, the LUT is a memory, a lookup table that in this example stores
the value of the characteristic equation for each of the eight possible combinations
of its address inputs S, R, and Q. There is no guarantee that the output will remain
stable while even just one input is changing between two input combinations that
both produce the same output. For example, if S is 1, R is 0, and Q is 1, producing a
Q* output of 1, the output may briefly go to 0 as S changes from 1 to 0. This glitch
could actually set up an oscillation in the Q*-to-Q feedback loop. That can’t happen
when a real 2-input gate generates (S | Q).

So the answer to the riddle is, “When it’s a LUT!”

Figure 13-31
S-R latch realized
with a LUT.

Q∗

S

Q

R

S R Q Q∗
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 1
1 0 1 1
1 1 0 0
1 1 1 0

LUT

S

R Q

DDPP5.book Page 720 Tuesday, March 28, 2017 5:33 PM

13.5 Two-Clock Synchronization Example 721

Program 13-10 Test bench for VrEthSync Ethernet data-transfer module.

`timescale 1ns/100ps
module VrEthSync_tb ();
 reg ECLK, SCLK, ERST, SRST, EBV;
 reg [7:0] EBYTE;
 wire [7:0] SBYTE;
 wire SBV;
 integer i;

parameter Ehigh = 20, Elow = 20; // Define ECLK waveform (25 MHz)
parameter Shigh = 18, Slow = 12; // Define SCLK waveform (33.3 MHz)

VrEthSync #(.DEP(3)) UUT (.ECLK(ECLK), .SCLK(SCLK), .ERST(ERST), .SRST(SRST),
 .EBYTE(EBYTE), .EBV(EBV), .SBYTE(SBYTE), .SBV(SBV)); // instantiate UUT

always begin // create ECLK, which starts LOW
 ECLK = 0; #Elow ECLK = 1; #Ehigh ;
end

always begin // create SCLK, which starts LOW
 SCLK = 0; #Slow SCLK = 1; #Shigh ;
end

initial begin
 ERST = 1; SRST = 1; // assert resets
 EBYTE = 8'h00; EBV = 0; // initialize received byte
 # 105 ; // Wait for global reset to end
 #(2*(Shigh+Slow)) ; // Wait two more SCLKs for FLAG_clr (clocked) to take effect
 ERST = 0; SRST = 0; // and negate resets
 #(2*(Shigh+Slow)) ; // Wait two more SCLKs for any more internals to settle
 for (i=1; i<=500; i=i+1) begin // Then run for 500 received bytes
 EBYTE = i; EBV = 1'b1; // received byte = i
 #(Ehigh+Elow) ; // wait one ECLK tick
 EBYTE = 0; EBV = 1'b0; // invalidate for one tick
 #(Ehigh+Elow) ; // wait one ECLK tick
 end
 $stop(1);
 end
endmodule

NEGATING
SYNCHRONOUS

RESETS

The resets in this example, ERST and SRST, are applied to synchronous reset inputs
of flip-flops. They may be asserted asynchronously at system initialization, but in the
real system each must be negated synchronously, allowing adequate setup time to the
corresponding clock. If synchronous reset inputs are negated just before the clock
edge, and setup-time requirements are violated, unreliable operation may result. For
example, some flip-flops may “take off” into their normal operations while others
remain reset, putting the overall circuit into an inconsistent state.

DDPP5.book Page 721 Tuesday, March 28, 2017 5:33 PM

722 Chapter 13 Sequential-Circuit Design Practices

through the synchronizing flip-flops). Finally, it is ready to run the test, which is
simply to apply a steadily increasing sequence of values to the EBYTE,EBV
module inputs on alternating ECLK ticks, a data rate of 12.5 MBps.

Figure 13-32 shows part of the timing waveforms created by the test bench,
beginning after the initial reset operations have finished. Several aspects of the
circuit’s operation may be noted:

• On alternating ECLK cycles, Ethernet data values are applied to EBYTE and
EBV is asserted. Although there would be no harm in normal operation to
allow EBYTE to be valid for two clock periods, we have purposely set it to
zero on unused cycles, so an error would be easy to spot if EBYTE were
being read at the wrong time. It’s also possible to apply x’s on these cycles.

• The simulation clearly shows WRPTR advancing with wraparound, and the
increasing data-byte values being written into successive FIFO locations.

Figure 13-32 VrEthSync timing waveforms created by the test bench.

DDPP5.book Page 722 Tuesday, March 28, 2017 5:33 PM

13.5 Two-Clock Synchronization Example 723

• For each FIFO location, the operations of FLAG_set[i] and FLAG_clr[i],
changed at positive edges of ECLK and SCLK respectively, can be seen. The
corresponding FLAG[i] is set as a new byte is loaded, and cleared as the
byte is transferred into SBYTE and SBV is asserted.

• As each byte is read from the FIFO, RDPTR is advanced.

• All of the Ethernet bytes appear, in order, on SBYTE. If you were able to
look further along the waveforms, you would see this behavior continue.

So, to answer a question that we posed at the beginning of the design,
based on the simulation it appears that a 3-byte-deep FIFO is “deep enough” for
reliable data transfer. Looking at both the module’s Verilog code and the simula-
tion waveforms, we can analyze the timing more closely:

• For a particular FIFO location, FLAG_set is set on the same ECLK rising
edge that a byte is written into it. The corresponding FLAG bit is set shortly
after that.

• There may be a delay of up to one SCLK period until the next rising SCLK
edge occurs and transfers FLAG into FLAGD.

• One more SCLK period after that, SFLAG is asserted as a result.

• Assuming that RDPTR is or is about to be pointing this FIFO location, then
one SCLK period later, the FIFO byte is loaded into SBYTE and FLAG_clr
is asserted.

• Finally, one SCLK period later, FLAG_clr is negated, completing the activ-
ity for this FIFO location.

So, from beginning to end, a FIFO location and FLAG are used for a total of three
to four SCLK periods, or 90 to 120 ns for a 33 MHz SCLK, plus certain setup times
and propagation delays around the first and last edges, no more than another 5-
20 ns depending on the target technology. The maximum total of about 140 ns
is somewhat less than the 160 ns required to receive two bytes with 100 Mbps
Ethernet, so we might even be able to get by with a FIFO depth of 2.

Looking at the waveforms in Figure 13-32, it’s apparent no more than two
FLAG bits, or two SFLAG bits, are ever asserted at the same time. In fact, if we

X-RATED The waveforms in Figure 13-32 are from a post-implementation timing simulation,
based on the actual placement and routing of the design. You can see a few places,
for example at about 400 ns and 600 ns on SBYTE, where the transition between suc-
cessive multibit values is not a clean “X”. This occurs because different bits change
at slightly different times, and the post-implementation simulation sees this. If you
were to zoom in on the timing diagram at these places, you would see the timing
difference between SBYTE bits is measured in only tens of picoseconds!

DDPP5.book Page 723 Tuesday, March 28, 2017 5:33 PM

724 Chapter 13 Sequential-Circuit Design Practices

resynthesize the design with parameter DEP=2 and run the simulation, it still
works. But we can’t be complacent. We’d like our design to work even if SCLK is
barely fast enough to keep up with the incoming Ethernet data rate, one byte
every 80 ns. So, we can change the SCLK period in the test bench from 30 to 79
ns and see what happens. Not only does a FIFO depth of 2 no longer work,
neither does 3, as shown in Figure 13-33. Here, FLAG_set for a particular FIFO
location is being asserted before the FLAG_clr from its previous use has been
negated. We need a depth of at least 4 for correct behavior, shown in
Figure 13-34.

As the timing diagram in Figure 13-34 shows, once the first Ethernet out-
put byte appears on SBYTE, they keep coming continuously. Further out, there is
a 1-SCLK-tick gap at byte 35 and about every 80 SCLK ticks thereafter. This
makes sense, since the SCLK period is just one part in 80 faster than the rate at
which Ethernet input bytes arrive. Looking even further out in the simulation
waveforms, the circuit continues to deliver Ethernet bytes on SBYTE, in order and
with no omissions.

Figure 13-33 VrEthSync timing waveforms with DEP=3 and slow SCLK.

DDPP5.book Page 724 Tuesday, March 28, 2017 5:33 PM

13.5 Two-Clock Synchronization Example 725

But does this really work? In multi-clock, asynchronous timing situations,
it’s difficult to simulate all of the possible timing alignments and situations that
can occur. So, it’s a good idea to do as much timing analysis as we can and see if
it corroborates the simulation results. In our original analysis, we concluded that
from beginning to end, a given FIFO location and FLAG are used for a total of
three to four SCLK periods, plus certain setup times and propagation delays
around the first and last edges. In the present design with a FIFO depth of 4, we
have four SCLK periods worth of FIFO storage, but what about the “extra” delays
mentioned above; why aren’t they sometimes causing errors?

According to the timing diagram in Figure 13-34, at about 700 ns, there
appears to be about 50 ns of timing margin between FLAG_clr[0] being negated

Figure 13-34 VrEthSync timing waveforms with DEP=4 and slow SCLK.

DDPP5.book Page 725 Tuesday, March 28, 2017 5:33 PM

726 Chapter 13 Sequential-Circuit Design Practices

and FLAG_set[0] being asserted to reuse and set FLAG[0] again. That may
seem like plenty, but remember that ECLK and SCLK are unsynchronized, and the
delays between them and everything that depends on them will vary over time.
In fact, if you were to look carefully further along in the simulation, you would
notice that just before 1-SCLK-tick gap at byte 35, around 3,400 ns, the margin
between FLAG_clr being negated and the corresponding FLAG_set being
asserted again has grown to about 80 ns (great!), but right after the gap, the
margin shrinks to 3.3 ns—too close for comfort!

Seeing this, a good designer could take one or more precautionary steps:

• Increase the FIFO depth to 5, adding one full SCLK period to the available
FLAG timing margins.

• Analyze the circuit further to determine what goes wrong, if anything,
when FLAG_clr and the corresponding FLAG_set overlap a little. And
how long is “a little?” Perhaps some overlap can be safely tolerated and
nothing needs to be changed.

• Determine if the flag operations can be modified so that each flag is used
for a little less time. For example, could FLAG_clr be asserted and negated
one SCLK period sooner? Perhaps more margin can be obtained without
increasing FIFO depth.

The first bullet above is the easiest and safest approach; the last two are left as
Exercises 13.22 and 13.23.

After all that, you’re probably hoping that we’re done, but not yet—not if
we want the design to work properly over a wide but plausible range of clock
frequencies. In particular, what happens if SCLK is very fast relative to ECLK?
Since a faster SCLK will empty the FIFO faster, we should have lots of margin
compared to the previous case, but we should look at a simulation anyway.

Figure 13-35 shows the timing with a 100 MHz SCLK. With the very fast
SCLK, we’ve also temporarily reduced the FIFO depth down to 2 just to simplify
the timing diagram. But what’s going on? Starting near 300 ns, SBV gets asserted
for four extra back-to-back cycles, and four extra bytes appear on SBYTE. This
weird behavior repeats further along in the timing diagram, next at 460 ns. Why?

A close look at the timing diagram shows what’s happening. SCLK is so fast
that FLAG_clr[0] is being asserted and negated before the end of the ECLK
period during which FLAG_set[0] is asserted. Since FLAG[0] is a latch, albeit a
reset-dominant one, it goes right back to being set as soon as FLAG_clr[0] is
negated. How can we fix this?

The problem occurs within a single ECLK period, and we are specifically
trying to make the circuit work properly even if SCLK is significantly faster than
ECLK. So, the solution cannot rely on speeding up ECLK, or looking at half of its
clock period or some similar kludge. However, we can change the method for
setting the flag—instead of latching a 1 while FLAG_set is asserted, we can use
an edge-triggered flip-flop to store a 1 on the rising edge of FLAG_set.

DDPP5.book Page 726 Tuesday, March 28, 2017 5:33 PM

13.5 Two-Clock Synchronization Example 727

Program 13-11 shows generate code for a VrFIFOflagsync_ET module
based on the new strategy. Instead of a D latch, we instantiate a native, positive-
edge-triggered FDCE D flip-flop for each flag bit, with FLAG_set connected to
the clock input to load in a 1, and we still use an asynchronous clear input to
clear the flag.

In our final timing diagram of this section, Figure 13-36 shows the results
using the VrFIFOflagsync_ET module. All is well. Notice that the FLAG_clr
pulse may still overlap with FLAG_set but that’s not a problem. The important
timing constraint here for the FLAG D flip-flop is that its asynchronous clear
input (FLAG_clr) must be negated for a certain recovery time before the next
rising edge of its clock (FLAG_set), and that is easily satisfied.

Figure 13-35 VrEthSync timing waveforms with DEP=2 and fast SCLK.

Program 13-11 Verilog code for VrFIFOflagsync_ET module targeted to Xilinx 7-series FPGAs.

 generate
 for (g=0; g<=DEP-1; g=g+1) begin: flags // Clock in a 1 on rising edge of FLAG_set
 FDCE U1 (.C(FLAG_set[g]), .CE(1'b1), .D(1'b1),
 .CLR(FLAG_clr[g]), // Async clear when FLAG_clr is asserted
 .Q(FLAG[g]));
 end
 endgenerate

DDPP5.book Page 727 Tuesday, March 28, 2017 5:33 PM

728 Chapter 13 Sequential-Circuit Design Practices

In our high-level summary of FIFO operations near the beginning of this
section, we mentioned that we wanted the design to support back-to-back opera-
tions on both the input and the output buses. We showed that for SBYTE in
Figure 13-34, but we haven’t explored that capability at all for EBYTE. Since we
already promised that the previous timing diagram was the last, we’ll leave that
timing study as an exercise for the reader (see Exercises 13.24 and 13.25).

After studying eighteen pages to design and analyze just one “simple”
example of data-transfer synchronization across clock domains, and even then
being left with exercises on some of the finer points, you should have a strong
appreciation of the difficulty of correct synchronization-circuit design. Going
forward, several guidelines used by experienced designers can help you:

• Minimize the number of different clock domains in a system.

• Clearly identify all clock boundaries and provide clearly identified
synchronizers at those boundaries.

• Provide enough metastability resolution time for each synchronizer so syn-
chronizer failure is rare, much more unlikely than other hardware failures.

• Analyze synchronizer behavior over a range of timing scenarios, including
faster and slower clocks that might be applied as a result of system testing
or upgrades.

Figure 13-36 VrEthSync timing waveforms with DEP=2, fast SCLK, and VrFIFOflagsync_ET.

DDPP5.book Page 728 Tuesday, March 28, 2017 5:33 PM

Drill Problems 729

• Simulate system behavior over a wide range of timing scenarios as well.

• Study the simulator results and make sure they make sense in light of the
timing analysis, and vice versa.

• Establish and maintain conservative timing margins.

Reliance on simulation results is a catch-all for modern digital designers,
who usually depend on sophisticated, high-speed logic simulators to find their
bugs. But it’s not a substitute for following the other guidelines. Ignoring them
can lead to problems that cannot be detected by a typical, small number of simu-
lation scenarios. Of all digital circuits, synchronizers are the ones for which it’s
most important to be “correct by design”!

References
Manufacturers’ websites are an excellent source of information on digital design
practices. Texas Instruments has an especially comprehensive site, including
application notes in dozens of areas, reference designs, and of course details on
all of their ICs and other products.

A good starting point for further reading on metastability is R. Ginosaur’s
“Metastability and Synchronizers: A Tutorial” (IEEE Design & Test of Comput-
ers, Sept./Oct. 2011), also published on the author’s website at Technion.
Another great source of pragmatic information and advice is “Synchronization
and Metastability,” by Steve Golson (SNUG Silicon Valley 2014); besides an
excellent introduction to the topic, highlights of his paper include anecdotes,
technology, accessible math, a list of fallacies, and comprehensive references.

Thomas J. Chaney spent decades studying and reporting on the metastabil-
ity problem. One of his more important works, “Measured Flip-Flop Responses
to Marginal Triggering” (IEEE Trans. Comput., Vol. C-32, No. 12, December
1983, pp. 1207–1209), reports some of the results that we showed in Table 13-2.
He’s still at it, and along with several coauthors he reports recent anecdotes and
describes a new tool for estimating synchronizer reliability in “Metastability and
Fatal System Errors” (2013, available via online search).

Drill Problems
13.1 The outputs of a 74AC374 drive the N0–4 and EN inputs of the circuit in

Figure 6-19, which is built using 74AC138 components. The outputs of the cir-
cuit drive another 74AC374, and both ’374s are clocked by the same signal with
negligible clock skew. Determine the setup- and hold-time margins of the second
’374 assuming a clock frequency of 25 MHz. Repeat for 30 MHz. Use the timing
specifications in Tables 4-3 and 13-1.

13.2 Repeat Drill 13.1 for 74HC components operating at 2.0 V and 25°C with a clock
frequency of 1.5 MHz only.

13.3 Repeat Drill 13.1 for 74HC operating at 4.5 V and 85°C with a 6.0-MHz clock.

DDPP5.book Page 729 Tuesday, March 28, 2017 5:33 PM

730 Chapter 13 Sequential-Circuit Design Practices

13.4 The delay of a combinational circuit can be near 0 (say, if it’s actually just a wire)
but never less than 0. So, in synchronous system design, what good is a flip-flop
with a negative hold time?

13.5 Considering the sequential-circuit building blocks discussed in Chapter 11,
which ones are most likely to suffer from clock skew and why?

13.6 Redo the two synchronizer MTBF calculations on page 705, but instead of using
Chaney’s estimates for To and τ for the 74LS74, use TI’s for the 74LSxx family.
What do your results tell you about these sorts of estimates and calculations?

13.7 In some synchronizer applications, the clock frequency f is substituted for the
parameter a in metastability MTBF calculations, assuming that an asynchronous
input change can occur on every clock tick. Redo the two synchronizer MTBF
calculations on page 705 under this assumption.

13.8 Calculate the MTBF of a synchronizer built according to Figure 13-21 using
74F74s, assuming a clock frequency of 25 MHz and an asynchronous transition
rate of 1 MHz. Assume the setup time of an ’F74 is 5 ns and the hold time is zero.

13.9 Calculate the MTBF of the synchronizer shown in Figure X13.9, assuming a
clock frequency of 30 MHz and an asynchronous transition rate of 2 MHz.
Assume that the setup time tsetup and the propagation delay tpd from clock to Q or
QN in a 74ALS74 are both 10 ns.

Exercises
13.10 Repeat Drill 13.1 after changing the second 74AC374 to a 74HC374 operating at

4.5 V and 85°C. At what frequency is the setup-time margin zero?

13.11 The circuit in Figure 7-18 is built to be as fast as possible using only components
from Tables 4-2 and 4-3. Assume that the outputs of a 74AC374 drive the DU bus,
the DC bus is loaded into another 74AC374, and both ’374s are clocked by the
same signal with negligible clock skew. Assuming that the outputs of the first
’374 are always enabled, determine the setup- and hold-time margins of the
second ’374 assuming a clock frequency of 15 MHz. Repeat for 20 MHz. Use the
timing specifications in Tables 4-2, 4-3, and 13-1.

13.12 Repeat Exercise 13.11 assuming clock skew of up to 2.0 ns.

13.13 Repeat Exercise 13.11 assuming that the output-enable input of the first ’374 is
asserted by the output of a 74AC377 that uses the same clock-input signal with
negligible clock skew.

SYNCINMETA

CLOCK
(system clock)

ASYNCIN
(asynchronous input)

D Q

CLK

synchronizer

D Q

CLK Synchronous
systemFF1

D Q

QCLK

FF3

FF2

74ALS74

74ALS74

74ALS74

Figure X13.9

DDPP5.book Page 730 Tuesday, March 28, 2017 5:33 PM

Exercises 731

13.14 The caption of Figure 10-26 says that it shows the “logical” behavior of one bit
of the 74x377. Show a way to eliminate the 2-input multiplexer on each flip-
flop’s D input and still obtain the same logical behavior, reducing the size of the
overall circuit. What effect would this have on the circuit’s performance?

13.15 Modify the multiplication state machine in Program 13-2 so the START input can
be negated for one tick at any time after a new multiplication has begun, and can
then be reasserted as soon as one tick later to begin the next multiplication as soon
as possible after the current one ends, at least one tick sooner than shown in
Figure 13-7. Update the test bench in Program 13-7 to check your modifications.
Can the multiplication begin two ticks earlier? Do any other multiplier modules
or control signals need to be modified in either case?

13.16 Modify the multiplication modules of Section 13.2.2 to handle signed, two’s-
complement multiplication, as described in Section 2.8. Try to avoid creating a
second adder (subtractor) for the last step. Update the test bench of Program 13-7
to check your design.

13.17 Using Verilog, design a datapath and state machine for dividing a 16-bit dividend
by a 16-bit divisor using the algorithm in Section 8.4.1. Your datapath will need
16-bit registers for DVSR, QUOT, and the low- and high-order halves of RDIV. The
state machine and datapath should use a control setup similar the multiplication
system’s in Section 13.2.2, where DVSR and DVND are loaded from an input bus
INP during the first two clock ticks and the division proceeds during the next 16.
Write a test bench that checks your system’s operation for pseudorandom inputs
in three categories, similar to Program 8-23. Check your results using Verilog’s
built-in division operation. Your system need not check for or do anything about
divide-by-0, but you can use the test bench to find out what it does in those cases.

13.18 Target your design in Exercise 13.17 to your favorite FPGA and examine the syn-
thesis results. Ensure that it contains only a single subtractor, and determine how
many flip-flops it has in addition to the ones used by the state machine.

13.19 Enhance the division system in Exercise 13.17 to check for the divide-by-zero
case and ensure that the quotient is all 1s in this case.

13.20 Modify the your design in Exercise 13.17 to use only three 16-bit registers, by
loading the quotient bits into the low-order bit of RDIV as they are generated and
shifting them at each step along with the rest of RDIV. After the last step, the low-
order half of RDIV will contain the quotient. Synthesize your modified design to
the same FPGA as in Exercise 13.18, and compare the FPGA resource require-
ments (LUTs and flip-flops) for the two versions.

13.21 Suppose that the synchronizer in Drill 13.9 is built with 74AC74 flip-flops and a
25-MHz clock, and the SYNCIN signal is connected to a combinational circuit in
the synchronous system, which in turn drives the D inputs of 74AC374 flip-flops
that are clocked by CLOCK. What is the maximum allowable propagation delay
of the combinational logic?

13.22 Analyze the Ethernet data-transfer module of Program 13-8 and determine what
goes wrong, if anything, when the assertions of FLAG_clr and the corresponding
FLAG_set overlap by any amount of time. If nothing goes wrong if they overlap
by “just a little,” determine how long of an overlap can be safely tolerated. State

DDPP5.book Page 731 Tuesday, March 28, 2017 5:33 PM

732 Chapter 13 Sequential-Circuit Design Practices

any assumptions or constraints on the design of the VrFIFOflagsync module
necessitated by your answer.

13.23 In the Ethernet data-transfer module of Program 13-8, determine if the flag oper-
ations can be modified so that each flag is used for a little less time. For example,
could FLAG_clr be asserted and negated one SCLK period sooner? State any
assumptions or constraints necessitated by your answer.

13.24 Explore the timing behavior of the Program 13-8 Ethernet data-transfer module
with back-to-back operations on the EBYTE input bus. Modify the test bench to
provide Ethernet input data at the same rate, 100 Mbps, but with successive pairs
of bytes appearing on EBYTE for two ECLK ticks in a row followed by two unused
ticks. Use the original clock rates of 25 MHz and 33 MHz for ECLK and SCLK,
and the original FIFO depth of 3. Determine whether the circuit still operates
properly and with sufficient margin, and if not, change it as needed.

13.25 Repeat Exercise 13.24 except now provide input data on EBYTE continuously, for
an input data rate of 200 Mbps.

13.26 A famous digital designer devised the circuit shown in Figure X13.26(a), which
is supposed to eliminate metastability within one period of a system clock. Circuit
M is a memoryless analog voltage detector whose output is 1 if Q is in the
metastable state, 0 otherwise. The circuit designer’s idea was that if line Q is
detected to be in the metastable state when CLOCK goes low, the NAND gate will
clear the D flip-flop, which in turn eliminates the metastable output, causing a 0
output from circuit M and thus negating the CLR input of the flip-flop. The
circuits are all fast enough that this all happens well before CLOCK goes high
again; the expected waveforms are shown in Figure X13.26(b).

Unfortunately, the synchronizer still failed occasionally, and the famous digital
designer is now designing pockets for blue jeans. Explain, in detail, how it failed,
including a timing diagram.

SYNCIN

CLOCK

(system clock)

ASYNCIN

(asynchronous input) Synchronous
system

D Q

CLK

CLR M

CLOCK_L

METACLR_L

SYNCIN

ASYNCIN

CLOCK

META

METACLR_L

(a)

(b)

Figure X13.26

DDPP5.book Page 732 Tuesday, March 28, 2017 5:33 PM

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

733

c h a p t e r14
Digital Circuits

he purpose of this chapter is to give you a working knowledge of
the electrical aspects of digital circuits, enough to give you a
basic understanding of real circuits and systems and even begin
to build them. You know from previous chapters that with modern
software tools, it’s possible to “build” circuits in the abstract,

using hardware design languages to specify their structure or behavior, and
using simulators to test their operation. But to build real, production-quality
circuits, either at the board level or the chip level, you’ll need to understand
the material in this chapter, and more.

Even if you think you’ll just be “slinging code” in your career, and you
expect to work in an environment that has specialists who deal with all of the
“electrical engineering stuff,” you need to know enough about it at least to
communicate with them intelligently. The logical and the electronic aspects
of digital design interact and require trade-offs more often than you might
think.

It’s probably been a while since you read Chapter 1, but you should
still recall the notion of “the digital abstraction,” which allows digital
designers to work with logic values of 0 and 1 instead of analog quantities.
A key aspect of this abstraction is to associate a range of analog values with
each logic value. As shown in Figure 14-1, a typical gate is not guaranteed to

T

DDPP5.book Page 733 Tuesday, March 28, 2017 5:33 PM

734 Chapter 14 Digital Circuits

have a precise voltage level for a logic 0 output. Rather, it may produce a voltage
somewhere in a range that is a subset of the range guaranteed to be recognized as
a 0 by other gate inputs. The difference between the range boundaries is called
noise margin—in a real circuit, a gate’s output can be corrupted by this much
noise and still be correctly interpreted at the inputs of other gates.

Behavior for logic 1 outputs is similar. Note in the figure that there is an
“invalid” region between the input ranges for logic 0 and logic 1. Although any
given digital device operating at a particular voltage and temperature will have a
fairly well-defined boundary (or threshold) between the two ranges, different
devices may have different boundaries. Still, all properly operating devices have
their boundary somewhere in the “invalid” range. Therefore, any signal that is
within the defined ranges for 0 and 1 will be interpreted identically by different
devices. This characteristic is essential for reproducibility of results.

It is the job of an electronic circuit designer to design logic gates that
produce and recognize logic signals that are within the appropriate ranges. This
is an analog circuit-design problem, and is typically performed by a specialist
who works at the transistor and physical layout level to create individual gates
and other elements that become part of an ASIC library or a standard compo-
nent, anything from an SSI/MSI function to an FPGA or VLSI microprocessor
chip. It’s impossible to design a circuit that has the desired behavior under every
possible condition of power-supply voltage, temperature, loading, and other fac-
tors. Instead, the electronic circuit designer or device manufacturer provides
device specifications (also known as specs) that define the conditions under
which correct behavior is guaranteed.

As a digital designer, then, you need not delve into the detailed analog
behavior of a digital device to ensure its correct operation. Rather, you need only
study enough about the device’s operating environment to determine that it is
operating within its published specifications. Granted, some analog knowledge
is needed to perform this study, but not nearly what you’d need to design a digital
device starting from scratch. This chapter aims to give you just what you need.

Figure 14-1
Logic values and
noise margins.

logic 0

Outputs Inputs
Noise
Margin

Voltage
logic 1

logic 0

logic 1

invalid

noise margin

device specifications
(specs)

DDPP5.book Page 734 Tuesday, March 28, 2017 5:33 PM

14.1 CMOS Logic Circuits 735

14.1 CMOS Logic Circuits
Besides being ubiquitous, CMOS logic is both the most capable and the easiest
to understand commercial digital logic technology. Beginning in this section, we
describe the basic structure of CMOS logic circuits and introduce the most com-
monly used commercial CMOS logic families.

The functional behavior of a CMOS logic circuit is fairly easy to under-
stand, even if your knowledge of analog electronics is not particularly deep. The
basic building blocks in CMOS logic circuits are MOS transistors, described
shortly. But before getting into that, we need to talk about logic levels.

14.1.1 CMOS Logic Levels
Abstract logic elements process binary digits, 0 and 1. However, real logic
circuits process electrical signals such as voltage levels. As we’ve suggested in
Figure 14-1, in any logic circuit there is a range of voltages (or other circuit con-
ditions) that is interpreted as a logic 0, and another, nonoverlapping range that is
interpreted as a logic 1.

A typical CMOS logic circuit operates from power supply of 5 volts (V) or
less. Many circuits, especially in portable devices, use lower voltages, as low as
1 V, to save power, but for simplicity and consistency, in this chapter we’ll
assume 5 V until we look at lower voltages in Sections 14.6 and 14.7. Most
aspects of CMOS operation scale with voltage, though not always linearly.

A LITTLE BIT
OF TTL

Transistor-transistor logic (TTL), which uses bipolar transistors, was introduced in
the 1960s and was the most commonly used digital logic family for decades after-
wards. As a result of technology improvements, newer but compatible TTL families
were introduced periodically. And other technologies, most notably CMOS, offered
TTL-compatible versions and interfaces, building on TTL’s popularity.

Standard TTL components use a 5-volt power supply, while almost all CMOS
today operates at lower voltages. Still, because CMOS and TTL coexisted for a long
time, many CMOS families were designed to operate at voltages as high as 5 volts
for TTL compatibility.

Although TTL was largely replaced by CMOS in the 1990s, you still may
encounter TTL or at least TTL-compatible components in your academic labs. Even
in industry there is occasionally a need to design new subsystems with TTL compat-
ibility; for example, to connect new equipment to a legacy bus. For those reasons,
this chapter will occasionally mention TTL, especially in reference to compatibility
and interfacing with CMOS devices.

Sections 14.6 and 14.7 will cover additional topics pertinent to CMOS/TTL
interfacing. If you need more information about TTL external characteristics and
internal operation, you can find it in previous editions of this book.

DDPP5.book Page 735 Tuesday, March 28, 2017 5:33 PM

736 Chapter 14 Digital Circuits

A 5-V CMOS circuit may interpret any voltage in the range 0–1.5 V as a
logic 0, and in the range 3.5–5.0 V as a logic 1. Thus, the definitions of LOW and
HIGH for 5-volt CMOS logic are as shown in Figure 14-2. Voltages that are in
the intermediate range (1.5–3.5 V) are not expected to occur except during sig-
nal transitions, and yield undefined logic values (i.e., a circuit may interpret
them as either 0 or 1). CMOS circuits using other power-supply voltages, such as
3.3 or 2.7 volts, partition the voltage range with similar proportions.

14.1.2 MOS Transistors
A metal-oxide semiconductor field-effect transistor (MOSFET), or simply MOS
transistor is modeled as a 3-terminal device that acts like a voltage-controlled
resistance. As suggested by Figure 14-3, an input voltage applied to one terminal
controls the resistance between the remaining two terminals. In digital logic
applications, a MOS transistor is operated so its resistance is always either very
high (and the transistor is “off”) or very low (and the transistor is “on”).

There are two types of MOS transistors, n-channel and p-channel; the names
refer to the type of semiconductor material used in the controlled resistance. The
circuit symbol for an n-channel MOS (NMOS) transistor is shown in
Figure 14-4. The terminals are called gate, source, and drain. Note that the
“gate” of a MOS transistor is not a “logic gate,” though it does “gate” the flow of
current between the other two terminals. As you might guess from the orienta-
tion of the circuit symbol, the drain is normally at a higher voltage than the
source.

The voltage from gate to source (Vgs) in an NMOS transistor is normally
zero or positive. If Vgs = 0, then the resistance from drain to source (Rds) is very
high, at least a megohm (106 ohms) or more. As we increase Vgs (i.e., increase
the voltage on the gate), Rds decreases to a very low value, 10 ohms or less in
some devices.

Figure 14-2
Logic levels for typical
CMOS logic circuits

5.0 V

3.5 V

1.5 V

0.0 V

Logic 1 (HIGH)

Logic 0 (LOW)

undefined
logic level

metal-oxide
semiconductor field-
effect transistor
(MOSFET)

Figure 14-3
The MOS transistor as
a voltage-controlled
resistance.

VIN

MOS transistor

“off” transistor“on” transistor

n-channel MOS
(NMOS) transistor

gate

source
drain

DDPP5.book Page 736 Tuesday, March 28, 2017 5:33 PM

14.1 CMOS Logic Circuits 737

The circuit symbol for a p-channel MOS (PMOS) transistor is shown in
Figure 14-5. Operation is analogous to that of an NMOS transistor, except that
the source is normally at a higher voltage than the drain, so Vgs is normally zero
or negative. If Vgs is zero, then the resistance from source to drain (Rds) is very
high. As we algebraically decrease Vgs (i.e., decrease the voltage on the gate),
Rds decreases to a very low value.

The gate of a MOS transistor has a very high impedance. That is, the gate
is separated from the source and the drain by an insulating material with a very
high resistance. However, the gate voltage creates an electric field that enhances
or retards (“gates”) the flow of current between source and drain. This is the
“field effect” in the “MOSFET” name.

Regardless of gate voltage, almost no current flows from the gate to source,
or from the gate to drain for that matter. The resistance between the gate and the
other terminals of the device is extremely high, well over a megohm in CMOS
logic families. The small amount of current that flows across this resistance is
very small, well under one microampere (A, 10−6 A), and is called a leakage
current.

The MOS transistor symbol itself reminds us that there is no connection
between the gate and the other two terminals of the device. However, the gate of
a MOS transistor is capacitively coupled to the source and drain, as the symbol
might suggest. In high-speed circuits, the power needed to charge and discharge
this capacitance on each input-signal transition accounts for a nontrivial portion
of a circuit’s power consumption.

Figure 14-4
Circuit symbol for an
n-channel MOS
(NMOS) transistor.

gate
drain

source

Voltage-controlled resistance:
increase Vgs ==> decrease Rds

Note: normally, Vgs ≥0Vgs

+

−

Figure 14-5
Circuit symbol for a
p-channel MOS
(PMOS) transistor.

gate drain

source

Voltage-controlled resistance:
decrease Vgs ==> decrease Rds

Note: normally, V gs ≤ 0

Vgs
+

−

p-channel MOS
(PMOS) transistor

IMPEDANCE VS.
RESISTANCE

Technically, there’s a difference between the words “impedance” and “resistance,”
but electrical engineers often use the terms interchangeably. So do we in this text.

leakage current

microampere, A

DDPP5.book Page 737 Tuesday, March 28, 2017 5:33 PM

738 Chapter 14 Digital Circuits

14.1.3 Basic CMOS Inverter Circuit
NMOS and PMOS transistors are used together in a complementary way to form
CMOS logic. The simplest CMOS circuit, a logic inverter, requires only one of
each type of transistor, connected as shown in Figure 14-6(a). The power-supply
voltage, VDD, typically may be in the range 1–6 V; in some CMOS logic families
it may be set to 5.0 V for compatibility with the legacy TTL family.

Ideally, the functional behavior of the CMOS inverter circuit can be
characterized by just two cases tabulated in Figure 14-6(b):

1. VIN is 0.0 V. In this case, the bottom, n-channel transistor Q1 is off, since
its Vgs is 0, but the top, p-channel transistor Q2 is on, since its Vgs is a large
negative value (−5.0 V). Therefore, Q2 presents only a small resistance
between the power-supply terminal (VDD, +5.0 V) and the output terminal
(VOUT), and the output voltage is 5.0 V.

2. VIN is 5.0 V. Here, Q1 is on, since its Vgs is a large positive value (+5.0 V),
but Q2 is off, since its Vgs is 0. Thus, Q1 presents a small resistance
between the output terminal and ground, and the output voltage is 0 V.

CMOS logic

Figure 14-6
CMOS inverter:
(a) circuit diagram;
(b) functional behavior;
(c) logic symbol. VIN

VDD = +5.0 V

VOUT

Q2
(p-channel)

Q1
(n-channel)

0.0
5.0

 VIN

(L)
(H)

(H)
(L)

 Q1

off
on

 Q2

on
off

5.0
0.0

 VOUT(b)

(c)

(a)

IN OUT

WHAT’S IN A
NAME?

The “DD” in the name “VDD” refers to the drain terminals of MOS transistors. This
may seem strange, since in the CMOS inverter VDD is actually connected to the
source terminal of a PMOS transistor. However, CMOS logic circuits evolved from
NMOS logic circuits, where the supply was connected to the drain of an NMOS
transistor through a load resistor, and the name “VDD” stuck.

Also note that ground is sometimes referred to as “VSS” in CMOS and NMOS
circuits. Some authors and most circuit manufacturers use “VCC” as the symbol for
the CMOS supply voltage, since this name is used in TTL circuits which preceded
CMOS. To get you used to both, we’ll start using “VCC” in Section 14.2.

DDPP5.book Page 738 Tuesday, March 28, 2017 5:33 PM

14.1 CMOS Logic Circuits 739

With the foregoing functional behavior, the circuit clearly behaves as a logical
inverter, since a 0-volt input produces a 5-volt output, and vice versa.

Another way to visualize CMOS operation uses switches. As shown in
Figure 14-7(a), the n-channel (bottom) transistor is modeled by a normally-open
switch, and the p-channel (top) transistor by a normally-closed switch. Applying
a HIGH voltage “pushes” each switch to the opposite of its normal state, as
shown in (b).

The switch model gives rise to a way of drawing CMOS circuits that makes
their logical behavior more readily apparent. As shown in Figure 14-8, different
symbols are used for the p- and n-channel transistors to reflect their logical
behavior. The n-channel transistor (Q1) is switched “on,” and current flows
between source and drain, when a HIGH voltage is applied to its gate; this seems
natural enough. The p-channel transistor (Q2) has the opposite behavior. It is
“on” when a LOW voltage is applied; the inversion bubble on its gate indicates
this inverting behavior.

Figure 14-7
Switch model for
CMOS inverter:
(a) LOW input;
(b) HIGH input.

VDD = +5.0 V

VOUT = HVIN = L

(a)
VDD = +5.0 V

VOUT = LVIN = H

(b)

Figure 14-8
CMOS inverter logical
operation.

Q2
(p-channel)

VIN

VDD = +5.0 V

VOUT

Q1
(n-channel)

on when
VIN is low

on when
VIN is high

DDPP5.book Page 739 Tuesday, March 28, 2017 5:33 PM

740 Chapter 14 Digital Circuits

14.1.4 CMOS NAND and NOR Gates
Both NAND and NOR gates can be constructed using CMOS. A k-input

gate uses k p-channel and k n-channel transistors.
Figure 14-9 shows a 2-input CMOS NAND gate. If either input is LOW, the

output Z has a low-impedance connection to VDD through the corresponding
“on” p-channel transistor, and the path to ground is blocked by the correspond-
ing “off” n-channel transistor. If both inputs are HIGH, the path to VDD is
blocked, and Z has a low-impedance connection to ground. Figure 14-10 shows
the switch model for the NAND gate’s operation.

Figure 14-9
CMOS 2-input
NAND gate:
(a) circuit diagram;
(b) function table;
(c) logic symbol.

VDD

A

B

Z

Q1

Q3

Q2 Q4

A

L
L
H
H

B

L
H
L
H

 Q1

off
off
on
on

 Q2

on
on
off
off

 Q3

off
on
off
on

 Q4

on
off
on
off

Z

H
H
H
L

A

B
Z

(a)

(b)

(c)

Figure 14-10 Switch model for CMOS 2-input NAND gate: (a) both inputs LOW;
(b) one input HIGH; (c) both inputs HIGH.

VDD

A = L

Z = H

(a)

B = L

VDD

A = H

Z = H

(b)

B = L

VDD

A = H

Z = L

(c)

B = H

DDPP5.book Page 740 Tuesday, March 28, 2017 5:33 PM

14.1 CMOS Logic Circuits 741

Figure 14-11 shows a CMOS NOR gate. If both inputs are LOW, then the
output Z has a low-impedance connection to VDD through the “on” p-channel
transistors, and the path to ground is blocked by the “off” n-channel transistors.
If either input is HIGH, the path to VDD is blocked, and Z has a low-impedance
connection to ground.

14.1.5 Fan-In
The number of inputs that a gate can have in a particular logic family is called
the logic family’s fan-in. CMOS gates with more than two inputs can be
obtained by extending series-parallel designs of Figures 14-9 and 14-11 in a
straightforward manner. A k-input gate has k series and k parallel transistors. For
example, Figure 14-12 on the next page shows a 3-input CMOS NAND gate.

In principle, you could design a CMOS NAND or NOR gate with a very
large number of inputs. In practice, however, the additive “on” resistance of
series transistors limits the fan-in of CMOS gates, typically to 4 for NOR gates
and 6 for NAND gates.

As the number of inputs is increased, designers of CMOS gate circuits
may compensate by increasing the size of the series transistors to reduce their
resistance and the corresponding switching delay. However, at some point this
becomes inefficient or impractical. Gates with a large number of inputs can be

Figure 14-11
CMOS 2-input
NOR gate:
(a) circuit diagram;
(b) function table;
(c) logic symbol.

A

L
L
H
H

B

L
H
L
H

 Q1

off
off
on
on

 Q2

on
on
off
off

 Q3

off
on
off
on

 Q4

on
off
on
off

Z

H
L
L
L

A

B
Z

VDD

A

B

Z

Q2

Q4

Q1 Q3

(a)

(b)

(c)

NAND VS. NOR CMOS NAND and NOR gates do not have identical electrical performance. For a
given silicon area, an n-channel transistor has about half the “on” resistance of a
p-channel transistor. Therefore, when transistors are put in series, k n-channel tran-
sistors have lower “on” resistance than do k p-channel ones. For a given silicon area,
a k-input NAND gate is generally faster than and preferred over a k-input NOR gate.

fan-in

DDPP5.book Page 741 Tuesday, March 28, 2017 5:33 PM

742 Chapter 14 Digital Circuits

made faster and smaller by cascading gates with fewer inputs. For example,
Figure 14-13 shows the logical structure of an 8-input CMOS NAND gate. The
total delay through a 4-input NAND, a 2-input NOR, and an inverter is typically
less than the delay of a “one-level” 8-input NAND circuit.

14.1.6 Noninverting Gates
In CMOS, and in most other logic families, the simplest gates are inverters, and
the next simplest are NAND gates and NOR gates. A logical inversion comes “for
free,” and it typically is not possible to design a noninverting gate with a smaller
number of transistors than an inverting one.

CMOS noninverting buffers and AND and OR gates can be obtained by
connecting an inverter to the output of the corresponding inverting gate. For
example, Figure 14-14 shows a noninverting buffer and Figure 14-15 shows an
AND gate. Combining Figure 14-11(a) with an inverter yields an OR gate.

Figure 14-12 CMOS 3-input NAND gate: (a) circuit diagram; (b) function table; (c) logic symbol.

A

L
L
L
L
H
H
H
H

A

B

C

Z

B

L
L
H
H
L
L
H
H

C

L
H
L
H
L
H
L
H

 Q1

off
off
off
off
on
on
on
on

 Q3

off
off
on
on
off
off
on
on

 Q5

off
on
off
on
off
on
off
on

 Q6

on
off
on
off
on
off
on
off

 Q4

on
on
off
off
on
on
off
off

 Q2

on
on
on
on
off
off
off
off

Z

H
H
H
H
H
H
H
L

VDD

B

C

Z

Q3

A Q1

Q5

Q2 Q4 Q6

(a) (b)

(c)

Figure 14-13
Logic diagram
equivalent to the
internal structure of
an 8-input CMOS
NAND gate.

I5
OUTOUT

I6

I7

I8

I1

I2

I3

I4

I5

I6

I7

I8

I1

I2

I3

I4

DDPP5.book Page 742 Tuesday, March 28, 2017 5:33 PM

14.1 CMOS Logic Circuits 743

14.1.7 CMOS AND-OR-INVERT and OR-AND-INVERT Gates
CMOS circuits can perform two levels of logic with just a single “level” of
transistors in a clever series-parallel configuration. For example, the circuit in
Figure 14-16(a) is a 2-wide, 2-input CMOS AND-OR-INVERT (AOI) gate. The
function table for this circuit is shown in (b) and a logic diagram for this function
using AND and NOR gates is shown in Figure 14-17. Transistors can be added
to or removed from this circuit to obtain an AOI function with a different number
of ANDs or a different number of inputs per AND.

The contents of each of the Q1–Q8 columns in Figure 14-16(b) depends
only on the input signal connected to the corresponding transistor’s gate. The
last column is constructed by examining each input combination and determin-

Figure 14-14
CMOS noninverting
buffer:
(a) circuit diagram;
(b) function table;
(c) logic symbol.

A Z

A

L
H

 Q1

off
on

 Q4

off
on

 Q2

on
off

 Q3

on
off

Z

L
H

A Z

(a)

(b)

(c)

Q2

VDD = +5.0 V

Q1

Q4

Q3

Figure 14-15 CMOS 2-input AND gate: (a) circuit diagram; (b) function table;
(c) logic symbol.

VDD

A

B

Z
Q1

Q3 Q5

Q2 Q4 Q6
A

L
L
H
H

B

L
H
L
H

 Q1

off
off
on
on

 Q2

on
on
off
off

 Q3

off
on
off
on

 Q4

on
off
on
off

 Q6

off
off
off
on

 Q5

on
on
on
off

Z

L
L
L
H

(a)

(b)

(c)
A

B
Z

AND-OR-INVERT
(AOI) gate

DDPP5.book Page 743 Tuesday, March 28, 2017 5:33 PM

744 Chapter 14 Digital Circuits

ing whether Z is connected to VDD or to ground by “on” transistors for that input
combination. Note that Z is never connected to both VDD and ground for any
input combination; in such a case the output would be a nonlogic value
somewhere between LOW and HIGH, and the output structure would consume
excessive power due to the low-impedance connection between VDD and ground.

A circuit can also be designed to perform an OR-AND-INVERT function.
For example, Figure 14-19(a) shows a 2-wide, 2-input CMOS OR-AND-INVERT
(OAI) gate. The function table for this circuit is shown in (b); the values in each
column are determined just as we did for the CMOS AOI gate. A logic diagram
for the OAI function using OR and NAND gates is shown in Figure 14-19.

The speed and other electrical characteristics of a CMOS AOI or OAI gate
are quite comparable to those of a single CMOS NAND or NOR gate. As a result,
these gates are very appealing because they can perform two levels of logic

Figure 14-16 CMOS AND-OR-INVERT gate: (a) circuit diagram; (b) function table.

VDD

C

A

B

D

Z

Q5

Q7

Q3

Q1

Q6 Q8

Q2 Q4

C

L
L
H
H
L
L
H
H
L
L
H
H
L
L
H
H

B

L
L
L
L
H
H
H
H
L
L
L
L
H
H
H
H

A

L
L
L
L
L
L
L
L
H
H
H
H
H
H
H
H

D

L
H
L
H
L
H
L
H
L
H
L
H
L
H
L
H

 Q1

off
off
off
off
off
off
off
off
on
on
on
on
on
on
on
on

 Q2

on
on
on
on
on
on
on
on
off
off
off
off
off
off
off
off

 Q3

off
off
off
off
on
on
on
on
off
off
off
off
on
on
on
on

 Q5

off
off
on
on
off
off
on
on
off
off
on
on
off
off
on
on

 Q7

off
on
off
on
off
on
off
on
off
on
off
on
off
on
off
on

 Q8

on
off
on
off
on
off
on
off
on
off
on
off
on
off
on
off

 Q6

on
on
off
off
on
on
off
off
on
on
off
off
on
on
off
off

 Q4

on
on
on
on
off
off
off
off
on
on
on
on
off
off
off
off

Z

H
H
H
L
H
H
H
L
H
H
H
L
L
L
L
L

(b)(a)

Figure 14-17
Logic diagram for CMOS
AND-OR-INVERT gate.

A

B

C

D

Z

OR-AND-INVERT
(OAI) gate

DDPP5.book Page 744 Tuesday, March 28, 2017 5:33 PM

14.2 Electrical Behavior of CMOS Circuits 745

(AND-OR or OR-AND) with just one level of delay. CMOS VLSI devices often
use these gates internally, since many HDL synthesis tools can automatically
convert AND/OR logic into AOI gates when appropriate.

14.2 Electrical Behavior of CMOS Circuits
This section and the next three discuss electrical, not logical, aspects of CMOS
circuit operation. It’s important to understand this material when you design real
circuits using CMOS or other logic families. Most of this material is aimed at
providing a framework for ensuring that the “digital abstraction” is really valid
for a given circuit. In particular, a circuit or system designer must provide
adequate engineering design margins—insurance that the circuit will work
properly even under the worst of conditions.

Figure 14-18 CMOS OR-AND-INVERT gate: (a) circuit diagram; (b) function table.

VDD

C

A

B

Z

Q5

Q1

Q7

Q3

Q4 Q8

Q2 Q6

C

L

H

H

L

L

H

H
L

L

H

H

L

L

H

H

D

L

L

L

H

H

H

H
L

L

L

L

H

H

H

H

A

L

L

L

L

L

L

L
H

H

H

H

H

H

H

H

B

L

L

H

L

H

L

H
L

H

L

H

L

H

L

H

 Q1

off

off

off

off

off

off

off
on

on

on

on

on

on

on

on

 Q2

on

on

on

on

on

on

on
off

off

off

off

off

off

off

off

 Q7

off

off

off

on

on

on

on
off

off

off

off

on

on

on

on

 Q5

off

on

on

off

off

on

on
off

off

on

on

off

off

on

on

 Q3

off

off

on

off

on

off

on
off

on

off

on

off

on

off

on

 Q4

on

on

off

on

off

on

off
on

off

on

off

on

off

on

off

 Q6

on

off

off

on

on

off

off
on

on

off

off

on

on

off

off

 Q8

on

on

on

off

off

off

off
on

on

on

on

off

off

off

off

Z

H

L LL H off on offoffon off on on H

H

L

H

L

H

L
H

H

L

L

L

L

L

L

(b)(a)

D

Figure 14-19
Logic diagram for CMOS
OR-AND-INVERT gate.

A

B

C

D

Z

engineering design
margins

DDPP5.book Page 745 Tuesday, March 28, 2017 5:33 PM

746 Chapter 14 Digital Circuits

14.2.1 Overview
The topics that we’ll examine in Sections 14.3–14.5 pertain to both the static and
the dynamic behavior of CMOS devices and circuits:

• Static behaviors. These topics cover situations where a circuit’s input and
output signals are not changing. They include things like power consump-
tion, the match-up and tolerances between input and output logic levels,
and noise immunity.

• Dynamic behaviors. These topics cover situations where a circuit’s input
and output signals are changing. They include things like the extra power
that is consumed as signals change, and the timing from an input-signal
change to the resulting output-signal change.

When analyzing or designing a digital circuit, the designer must consider
both static and dynamic behaviors. Most of the topics that we will discuss in
Sections 14.3–14.5 have both static and dynamic aspects. The topics include the
following:

• Logic voltage levels. CMOS devices operating under normal conditions are
guaranteed to produce output voltage levels within well-defined LOW and
HIGH ranges. And they recognize LOW and HIGH input voltage levels over
somewhat wider ranges. CMOS manufacturers specify these ranges and
operating conditions very carefully to ensure compatibility among differ-
ent devices in the same family, and to provide a degree of interoperability
(if you’re careful) among devices in different families.

• DC noise margins. Positive DC noise margins ensure that the highest LOW
voltage produced by an output is always lower than the highest voltage that
an input can reliably interpret as LOW, and that the lowest HIGH voltage

IS ALL THIS
REALLY

NECESSARY?

The behaviors described in the next few sections are a consequence of the electrical
design of the CMOS logic gates, including both their transistor-level structure and
the analog properties of the transistors themselves. Since you may never design a
logic gate yourself, you might think that these topics are unimportant.

However, these behaviors are also a consequence of the way that gates are
selected and interconnected to form digital logic circuits, and creating such intercon-
nections is exactly what a digital designer does.

Some technologies, like FPGAs, may hide the electrical consequences of on-
chip interconnections from the designer, who can specify the design using an HDL
and use a software tool to generate an internal connection pattern that satisfies all
electrical requirements. But it is almost always necessary for the designer to under-
stand electrical characteristics when two or more chips are interconnected. So, please
read on.

DDPP5.book Page 746 Tuesday, March 28, 2017 5:33 PM

14.2 Electrical Behavior of CMOS Circuits 747

produced by an output is always higher than the lowest voltage that an
input can reliably interpret as HIGH. A good understanding of noise mar-
gins is especially important in circuits that use devices from a number of
different families.

• Fanout. This refers to the number and type of device inputs and other loads
that are connected to a given output. If too many loads are connected to an
output, the DC noise margins of the circuit may be inadequate. Fanout also
affects the speed at which the output changes from one state to another.

• Speed. The time that it takes a CMOS output to change from the LOW state
to the HIGH state, or vice versa, depends on both the internal structure of
the device and the characteristics of the other devices that it drives, even to
the extent of being affected by the wire or printed-circuit-board traces con-
nected to the output. We’ll look at two separate components of “speed”—
transition time and propagation delay.

• Power consumption. The power consumed by a CMOS device depends on
a number of factors, including not only its internal structure, but also the
input signals that it receives, the other devices that it drives, and how often
its output changes between LOW and HIGH.

• Noise. The main reason for providing engineering design margins is to
ensure proper circuit operation in the presence of noise. Noise can be
generated by a number of sources; several of them are listed below, from
the least likely to the (perhaps surprisingly) most likely:

– Cosmic rays.
– Power-supply disturbances.
– Magnetic fields from nearby equipment.
– The switching action of the logic circuits themselves.

• Electrostatic discharge. Would you believe that you can destroy a CMOS
device just by touching it? Ordinary “static electricity” can have a voltage
potential of a thousand volts or more, enough to puncture and damage the
thin insulating material between a MOS transistor’s gate and its source and
drain.

• Open-drain outputs. Some CMOS outputs omit the usual p-channel pull-
up transistors. In the HIGH state, such an output behaves essentially like a
“no-connection,” which is useful in some applications.

• Three-state outputs. Some CMOS devices have an extra “output enable”
control input that can be used to disable both the p-channel pull-up transis-
tors and the n-channel pull-down transistors, creating a “high-impedance
(hi-Z)” output. Many such device outputs can be tied together to create a
multisource bus, as long as the control logic is arranged so that at most one
output is enabled at a time.

DDPP5.book Page 747 Tuesday, March 28, 2017 5:33 PM

748 Chapter 14 Digital Circuits

Among these topics, timing is probably the most important, since it’s an
area where designers typically must spend the most time, even if they’re other-
wise working at a strictly “logical” level. Even when you use automated tools in
a design, for example using an HDL and targeting an FPGA, getting the timing
right is often a difficult step. Designers often use the phrase “timing closure” for
this step, because they’d like to get it behind them!

14.2.2 Data Sheets and Specifications
The manufacturers of real-world devices provide data sheets that specify the
devices’ logical and electrical characteristics. The electrical specifications
portion of a minimal data sheet for a simple CMOS device, the 54/74HC00
quadruple NAND gate, is shown in Table 14-1. (“Quadruple” means there are
four gates in the same chip and package.) You may never design anything that
uses such a simple component, but the information in this datasheet is a subset
of what you will find for more complex components, including the many inputs
and outputs you will find on an FPGA or other VLSI chip. Different manufac-
turers typically specify additional parameters, and they may vary in how they
specify even the “standard” parameters shown in the table. To define exactly
what their parameters mean, they usually also show the test circuits and wave-
forms for them, as in Figure 14-20. Note that this figure contains information for
some additional parameters beyond those used with the 54/74HC00.

Most of the terms in the data sheet and the waveforms in the figure are
probably meaningless to you at this point. However, after reading the next three
sections, you should know enough about the electrical characteristics of CMOS
circuits that you’ll be able to understand the salient points of this or any other
data sheet. As a digital designer, you’ll need this knowledge to create reliable
and robust real-world circuits and systems.

14.3 CMOS Static Electrical Behavior
This section discusses the “DC” or static behavior of CMOS circuits, that is, the
circuits’ behavior when inputs and outputs are not changing. Electrical engi-
neers also call this “steady-state” behavior, because the electrical state of the
inputs is not changing.

14.3.1 Logic Levels and Noise Margins
The table in Figure 14-6(b) on page 738 defined the CMOS inverter’s behavior
only at two discrete input voltages; other input voltages may yield different

data sheet

DON’T BE AFRAID Computer science students and other non-EE readers should not have undue fear of
the material in the next three sections. Only a basic understanding of electronics, at
about the level of Ohm’s law, is required.

DDPP5.book Page 748 Tuesday, March 28, 2017 5:33 PM

14.3 CMOS Static Electrical Behavior 749

Table 14-1 Manufacturer’s data sheet for a typical CMOS device, a 54/74HC00 quad NAND gate.

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE
The following conditions apply unless otherwise specified:
Commercial: TA = −40°C to +85°C, VCC = 5.0 V ±5%; Military: TA = −55°C to +125°C, VCC = 5.0 V ±10%

Sym. Parameter Test Conditions(1) Min. Typ.(2) Max. Unit

VIH Input HIGH level Guaranteed logic HIGH level 3.15 — — V

VIL Input LOW level Guaranteed logic LOW level — — 1.35 V

IIH Input HIGH current VCC = Max., VI = VCC — — 1 A

IIL Input LOW current VCC = Max., VI = 0 V — — −1 A

VIK Clamp diode voltage VCC = Min., IN = −18 mA — −0.7 −1.2 V

IIOS Short-circuit current VCC = Max.,(3) VO = GND — — −35 mA

VOH Output HIGH voltage VCC = Min.,
VIN = VIL

IOH = −20 A 4.4 4.499 — V

IOH = −4 mA 3.84 4.3 — V

VOL Output LOW voltage VCC = Min.,
VIN = VIH

IOL = 20 A — .001 0.1 V

IOL = 4 mA 0.17 0.33 V

ICC Quiescent power
supply current

VCC = Max.
VIN = GND or VCC, IO = 0

— 2 10 A

SWITCHING CHARACTERISTICS OVER OPERATING RANGE, CL = 50 pF

Sym. Parameter(4) Test Conditions Min. Typ. Max. Unit

tPD Propagation delay A or B to Y — 9 19 ns

CI Input capacitance VIN = 0 V — 3 10 pF

Cpd Power dissipation capacitance per gate No load — 22 — pF

NOTES:
1. For conditions shown as Max. or Min., use appropriate value specified under Electrical Characteristics.
2. Typical values are at VCC = 5.0 V, +25 C ambient.
3. Not more than one output should be shorted at a time. Duration of short-circuit test should not exceed one second.
4. This parameter is guaranteed but not tested.

WHAT’S IN A
NUMBER?

Two different prefixes, “74” and “54,” are used in the part numbers of legacy SSI
and MSI devices. These prefixes simply distinguish between commercial and mili-
tary versions. A 74HC00 is the commercial part and the 54HC00 is the military
version.

DDPP5.book Page 749 Tuesday, March 28, 2017 5:33 PM

750 Chapter 14 Digital Circuits

output voltages. The complete input-output transfer characteristic of a particular
inverter can be described by a graph like Figure 14-21, also called a voltage-
transfer diagram. In this graph, the input voltage is varied from 0 to 5 V, as
shown on the X axis, and the Y axis plots the output voltage.

If we believed the curve in Figure 14-21, we could define a CMOS LOW
input level as any voltage under 2.4 V, and a HIGH input level as anything over
2.6 V. Only when the input is between 2.4 and 2.6 V does the inverter produce a
nonlogic output voltage under this definition.

Unfortunately, the typical transfer characteristic shown in Figure 14-21 is
just that—typical, but not guaranteed. It varies greatly under different conditions
such as power-supply voltage, temperature, and output loading. For example, the

Figure 14-20 Test circuits and waveforms for HC-series logic.

TEST CIRCUIT FOR ALL OUTPUTS

Pulse
Generator

Device
Under
Test

CLRT

VIN VOUT

VCC

Data
Input

Clock
Input

Asynchronous Control
Input (PR, CLR, etc.)

Synchronous Control
Input (CLKEN, etc.)

SETUP, HOLD, AND RELEASE TIMES

tSU

tREM

tH

tSU tH

Opposite-Phase
Input Transition

PROPAGATION DELAY

Same-Phase
Input Transition

Output
Transition

tPLH tPHL

tPLH tPHL

LOADING

Parameter S1

ClosedOpen

DEFINITIONS:
CL =

RT =
Load capacitance, includes jig and probe capacitance.
Termination resistance, should equal ZOUT of the Pulse Generator.

VCC

RL

S1

S2

0.0 V

VCC
50%

0.0 V

VCC
50%

0.0 V

VCC
50%

0.0 V

VCC
50%

0.0 V

VCC
50%

VOH
50%

0.0 V

VCC
50%

VOL

THREE-STATE ENABLE AND DISABLE TIMES

Control
Input

Output
Normally LOW

Output
Normally HIGH

50%

90%
0.0 V

50%

tPZL tPLZ

tPHZtPZH

Enable Disable

0.0 V

VCC
50%

VCC

VOL

10%

VOH

PULSE WIDTH

LOW-HIGH-LOW
Pulse

HIGH-LOW-HIGH
Pulse

tW
VOH
50%
VOL

VOH
50%
VOL

ten
tpZL

tpZH

RL CL S2

tdis
tpLZ

tpHZ ClosedOpen

Open

Open

Closed

Closed

1 KΩ

1 KΩ

50 pF
or

150 pF

—
50 pF

or
150 pF

OpenOpentpd

50 pF
or

150 pF

voltage transfer
diagram

DDPP5.book Page 750 Tuesday, March 28, 2017 5:33 PM

14.3 CMOS Static Electrical Behavior 751

transition in the middle of the curve may become more or less steep, and it may
shift to the left or the right. The transfer characteristic may even vary depending
on when the device was fabricated. For example, after months of trying to figure
out why gates made on some days were good and on other days were bad, legend
has it that one manufacturer discovered that the bad gates were victims of air-
borne contamination by a particularly noxious perfume worn by one of its
production-line workers!

Sound engineering practice dictates that we use specifications for LOW
and HIGH that are more conservative. Conservative logic-level specs for a typi-
cal CMOS logic family (HC-series) are depicted in Figure 14-22. These
parameters are specified by CMOS device manufacturers in data sheets like
Table 14-1 on page 749, and are defined as follows:

VOHmin The minimum output voltage produced in the HIGH state.

VIHmin The minimum input voltage guaranteed to be recognized as a HIGH.

VILmax The maximum input voltage guaranteed to be recognized as a LOW.

VOLmax The maximum output voltage produced in the LOW state.

The input voltages are determined mainly by switching thresholds of the
device’s transistors, while the output voltages are determined mainly by their
“on” resistances.

Figure 14-21
Typical input-output
transfer characteristic
of a CMOS inverter.

VIN

VOUT

undefinedLOW HIGH

0

1.5

3.5

5.0

0 1.5 3.5 5.0

HIGH

undefined

LOW

Figure 14-22
Logic levels and
noise margins for
the HC-series
CMOS logic family.

High-state
DC noise margin

Low-state
DC noise margin

0.7 VCC

0.3 VCC

 VCC

0

VIHmin

VOHmin

VOLmax

VILmax

HIGH

ABNORMAL

LOW

DDPP5.book Page 751 Tuesday, March 28, 2017 5:33 PM

752 Chapter 14 Digital Circuits

All of the parameters in Figure 14-22 are guaranteed by CMOS manu-
facturers over a range of temperature and output loading. Parameters are also
guaranteed over a range of power-supply voltage VCC, such as 5.0 V±10%.

The data sheet in Table 14-1 specifies values for each of these parameters
for HC-series CMOS. Notice that there are two values specified for VOHmin and
VOLmax, depending on whether the output current (IOH or IOL) is large or small.
When the device outputs are connected only to other CMOS inputs, the output
current is low (e.g., IOL ≤ 20 A), so there’s very little voltage drop across the
output transistors. In the next few subsections, we’ll discuss both these “pure”
CMOS applications, and applications where CMOS outputs are connected to
other circuits that require more current.

The power-supply voltage VCC and ground are often called the power-
supply rails. CMOS levels are typically a function of the power-supply rails, for
example:

VOHmin VCC − 0.1 V

VIHmin 70% of VCC

VILmax 30% of VCC

VOLmax ground (0 V) + 0.1 V

Notice in Table 14-1 that VOHmin is specified as 4.4 V. This is only a 0.1-V drop
from VCC, since the worst-case number is specified with VCC at its minimum
value of 5.0 − 10% = 4.5 V.

DC noise margin is a measure of how much noise it takes to corrupt a
worst-case output voltage into a value that may not be recognized properly by an
input. For example, with HC-series CMOS in the LOW state, VILmax (1.35 V)
exceeds VOLmax (0.1 V) by 1.25 V, so the LOW-state DC noise margin is 1.25 V.
In the HIGH state, VIHmin (3.15 V) is 1.25 V lower than VOHmin (4.4 V), so there
is 1.25 V of HIGH-state DC noise margin as well. In general, CMOS outputs
have excellent DC noise margins when driving other CMOS inputs.

Regardless of the voltage applied to the input of a CMOS gate, the input
consumes very little current, only the sum of leakage currents of its transistors’
gates. The maximum amount of leakage current that can flow is specified by the
device manufacturer:

IIH The maximum current that flows into the input in the HIGH state.

IIL The maximum current that flows into the input in the LOW state.

The input current shown in Table 14-1 for the ’HC00 is only ±1 A. Thus, it
takes very little power to maintain a CMOS input in one state or the other. This
is in sharp contrast to older bipolar logic circuits like TTL, whose inputs con-
sume significant current (and power) in one or both states.

power-supply rails

DC noise margin

DDPP5.book Page 752 Tuesday, March 28, 2017 5:33 PM

14.3 CMOS Static Electrical Behavior 753

14.3.2 Circuit Behavior with Resistive Loads
As mentioned previously, CMOS gate inputs have very high impedance and
consume very little current from the circuits that drive them. There are other
devices, however, which require nontrivial amounts of current to operate. When
such a device is connected to a CMOS output, we call it a resistive load or a DC
load. Here are some examples of resistive loads:

• Discrete resistors may not really be present in the circuit, but the load
presented by one or more TTL or other non-CMOS inputs may be modeled
by a simple resistor network.

• The resistors may be part of or may model a current-consuming device like
a light-emitting diode (LED) or a relay coil.

• Discrete resistors may be included to improve signal quality by providing
transmission-line termination, discussed in electrical-engineering texts
and the first three editions of this book.

When the output of a CMOS circuit is connected to a resistive load, the
output behavior is not nearly as ideal as we described previously. In either logic
state, the CMOS output transistor that is “on” has a nonzero resistance, and a
load connected to the output terminal will cause a voltage drop across this
resistance. Thus, in the LOW state, the output voltage may be somewhat higher
than 0.1 V, and in the HIGH state, it may be lower than 4.4 V. The easiest way to
see how this happens is look at a resistive model of the CMOS circuit and its
load.

Figure 14-23(a) shows the resistive model. The p-channel and n-channel
transistors have resistances Rp and Rn, respectively. In normal operation, one
resistance is high (> 1 MΩ) and the other is low (perhaps 100 Ω), depending on
whether the input voltage is HIGH or LOW. The load in this circuit consists of

resistive load
DC load

Figure 14-23 Resistive model of a CMOS inverter with a resistive load: (a) showing
actual load circuit; (b) using Thévenin equivalent of load.

VCC = +5.0 V

VOUT
VIN

Rn

Rp

2 kΩ

1 kΩ

(a)

CMOS
inverter

resistive
load

VCC = +5.0 V

VOUT
VIN

Rn

Rp

(b)

CMOS
inverter

Thévenin equivalent
of resistive load

+

−
VThev = 3.33 V

RThev = 667 Ω

DDPP5.book Page 753 Tuesday, March 28, 2017 5:33 PM

754 Chapter 14 Digital Circuits

two resistors attached to the supply rails; a real circuit may have any resistor
values, or an even more complex resistive network. In any case, a resistive load,
consisting only of resistors and voltage sources, can always be modeled by a
Thévenin equivalent network, like the one shown in Figure 14-23(b).

When the CMOS inverter has a HIGH input, the output should be LOW; the
actual output voltage can be predicted using the resistive model shown in
Figure 14-24. The p-channel transistor is “off” and has a very high resistance,
high enough to be negligible in the calculations that follow. The n-channel
transistor is “on” and has a low resistance, which we assume to be 100 Ω. (The
actual “on” resistance depends on the CMOS family and other characteristics
like operating temperature and whether or not the device was manufactured on a
good day.) The “on” transistor and the Thévenin-equivalent resistor RThev in

REMEMBERING
THÉVENIN

Any two-terminal circuit consisting of only voltage sources and resistors can be
modeled by a Thévenin equivalent consisting of a single voltage source in series with
a single resistor. The Thévenin voltage is the open-circuit voltage of the original cir-
cuit, and the Thévenin resistance is the Thévenin voltage divided by the original
circuit’s short-circuit current (defined as the current that flows when the circuit’s two
terminals are shorted to each other).

In the example of Figure 14-23, the Thévenin voltage of the resistive load,
including its connection to VCC, is established by the 1-kΩ and 2-kΩ resistors, which
form a voltage divider:

The short-circuit current is (5.0 V)/(1 kΩ) = 5 mA, so the Thévenin resistance
is (3.33 V) / (5 mA) = 667 Ω. Readers who are electrical engineers may recognize
this as the parallel resistance of the 1-kΩ and 2-kΩ resistors.

VThev
2 kΩ

2 kΩ 1kΩ+
------------------------------ 5.0 V⋅ 3.33 V= =

Figure 14-24
Resistive model for
CMOS LOW output
with resistive load.

VCC = +5.0 V

VOUT = 0.43 V
VIN = +5.0 V

100 Ω

> 1 MΩ

CMOS
inverter

Thévenin equivalent
of resistive load

+

−
VThev = 3.33 V

RThev = 667 Ω

(HIGH) (LOW)

DDPP5.book Page 754 Tuesday, March 28, 2017 5:33 PM

14.3 CMOS Static Electrical Behavior 755

Figure 14-24 form a simple voltage divider. The resulting output voltage can be
calculated as follows:

Similarly, when the inverter has a LOW input, the output should be HIGH,
and the actual output voltage can be predicted with the model in Figure 14-25.
We’ll assume that the p-channel transistor’s “on” resistance is 200 Ω. Once
again, the “on” transistor and the Thévenin-equivalent resistor RThev in the figure
form a simple voltage divider, and the resulting output voltage can be calculated
as follows:

In practice, it’s seldom necessary to calculate output voltages as in the pre-
ceding examples. In fact, IC manufacturers usually don’t specify the equivalent
resistances of the “on” transistors, so you wouldn’t have the necessary informa-
tion to make the calculation anyway. Instead, IC manufacturers specify a
maximum load for the output in each state (HIGH or LOW), and guarantee a
worst-case output voltage for that load. The load is specified in terms of current:

IOLmax The maximum current that the output can sink in the LOW state while
still maintaining an output voltage no greater than VOLmax.

IOHmax The maximum current that the output can source in the HIGH state while
still maintaining an output voltage no less than VOHmin.

These definitions are illustrated in Figure 14-26. A device output is said to sink
current when current flows from the power supply, through the load, and
through the device output to ground as in (a). The output is said to source current

VOUT 3.33 V 100 100 667+()⁄[]⋅=

0.43 V=

Figure 14-25
Resistive model for
CMOS HIGH output
with resistive load.

VCC = +5.0 V

VOUT = 4.61 V
VIN = +0.0 V

> 1 MΩ

200 Ω

CMOS
inverter

Thévenin equivalent
of resistive load

+

−
VThev = 3.33 V

RThev = 667 Ω

(LOW) (HIGH)

VOUT 3.33 V 5 V 3.33 V–() 667 200 667+()⁄[]⋅+=

4.61 V=

sinking current

sourcing current

DDPP5.book Page 755 Tuesday, March 28, 2017 5:33 PM

756 Chapter 14 Digital Circuits

when current flows from the power supply, out of the device output, and through
the load to ground as in (b).

Most CMOS devices have two sets of loading specifications. One set is for
“CMOS loads,” where the device output is connected to other CMOS inputs,
which consume very little current. The other set is for “TTL loads,” where the
output is connected to resistive loads like TTL inputs or other devices that con-
sume significant current. For example, the specifications for HC-series CMOS
outputs were included in Table 14-1 and are repeated in Table 14-2.

Notice in Table 14-2 that the output current in the HIGH state is shown as a
negative number. By convention, the current flow measured at a device terminal
is positive if positive current flows into the device; in the HIGH state, current
flows out of the output terminal.

As the table shows, with CMOS loads, the CMOS gate’s output voltage is
maintained within 0.1 V of the power-supply rail. With TTL loads, the output
voltage may degrade quite a bit. Also notice that for the same output current
(±4 mA) the maximum voltage drop with respect to the power-supply rail
is twice as much in the HIGH state (0.66 V) as in the LOW state (0.33 V). This

Figure 14-26 Circuit definitions of (a) IOLmax; (b) IOHmax.

VCC

VOLmax

IOLmax

VIN VIN

Rn

Rp
 > 1 MΩ

(a)

CMOS
inverter

resistive
load

VCC

VOHmin

IOHmaxRn
 > 1 MΩ

Rp

(b)

CMOS
inverter

resistive
load

"sinking
 current"

"sourcing
 current"

Table 14-2 Output loading specifications for HC-series CMOS with a 5V ±10% supply.

CMOS Load TTL Load

Parameter Name Value Name Value

Maximum LOW-state output current (mA) IOLmaxC 0.02 IOLmaxT 4.0

Maximum LOW-state output voltage (V) VOLmaxC 0.1 VOLmaxT 0.33

Maximum HIGH-state output current (mA) IOHmaxC −0.02 IOHmaxT −4.0

Minimum HIGH-state output voltage (V) VOHminC 4.4 VOHminT 3.84

current flow

DDPP5.book Page 756 Tuesday, March 28, 2017 5:33 PM

14.3 CMOS Static Electrical Behavior 757

suggests that the p-channel transistors in HC-series CMOS have a higher “on”
resistance than the n-channel transistors do. This is natural, since in any CMOS
circuit, a p-channel transistor has over twice the “on” resistance of an n-channel
transistor with the same area. Equal voltage drops in both states could be
obtained by making the p-channel transistors much larger than the n-channel
transistors, but for various reasons this was not done in the HC family.

Ohm’s law can be used to determine how much current an output sources
or sinks in a given situation. In Figure 14-24 on page 754, the “on” n-channel
transistor modeled by a 100-Ω resistor has a 0.43-V drop across it; therefore it
sinks (0.43 V)/(100 Ω) = 4.3 mA of current. Similarly, the “on” p-channel
transistor in Figure 14-25 sources = 1.95 mA.

The actual “on” resistances of CMOS output transistors usually aren’t
published, so it’s generally not possible to use the exact models of the previous
paragraphs. However, you can estimate “on” resistances using the following
equations, which rely on specifications that are always published:

These equations use Ohm’s law to compute the “on” resistance as the voltage
drop across the “on” transistor (or series of transistors) divided by the current
through it (or them) with a worst-case resistive load. Using the numbers given
for HC-series CMOS in Table 14-2, we can thus calculate Rp(on) ≈ 165 Ω and
Rn(on) ≈ 82.5 Ω. Note that VCC = 4.5 V (the minimum value) for this calculation.

Very good worst-case estimates of output current can be made by assuming
that there is no voltage drop across the “on” transistor. This assumption simpli-
fies the analysis, and yields a conservative result that is almost always good
enough for practical purposes. For example, Figure 14-27 shows a CMOS

0.39V() 200Ω()⁄

Rp on()
VCC VOHminT–

IOHmaxT
-----------------------------------≈

Rn on()
VOLmaxT

IOLmaxT
-------------------≈

Figure 14-27 Estimating sink and source current: (a) output LOW; (b) output HIGH.

VOUT = 0 V

IOUT = 5.0 mA

VIN = HIGH

CMOS
inverter

Thévenin equivalent
of resistive load

+

−
VThev = 3.33 V

RThev = 667 Ω

VCC = +5.0 V
(a)

VOUT = 5.0 V

|IOUT| = 2.5 mA

VIN = LOW

CMOS
inverter

Thévenin equivalent
of resistive load

+

−
VThev = 3.33 V

RThev = 667 Ω

VCC = +5.0 V
(b)

DDPP5.book Page 757 Tuesday, March 28, 2017 5:33 PM

758 Chapter 14 Digital Circuits

inverter driving the same Thévenin-equivalent load that we’ve used in previous
examples. The resistive model of the output structure is not shown, because it is
no longer needed; we assume that there is no voltage drop across the “on”
CMOS transistor. In (a), with the output LOW, the entire 3.33-V Thévenin-
equivalent voltage source appears across RThev, and the estimated sink current is

 = 5.0 mA. In (b), with the output HIGH and assuming a 5.0-V
supply, the voltage drop across RThev is 1.67 V, and the estimated source current
is = 2.5 mA.

An important feature of the CMOS inverter (or any CMOS circuit) is that
the output structure by itself consumes very little current in either state, HIGH or
LOW. In either state, one of the transistors is in the high-impedance “off” state.
All of the current flow that we’ve been talking about occurs when a resistive load
is connected to the CMOS output. If there’s no load, then no significant current
flows, and power consumption is near zero. With a load, however, current flows
through both the load and the “on” transistor, and power is consumed in both.

14.3.3 Circuit Behavior with Nonideal Inputs
So far, we have assumed that the HIGH and LOW inputs to a CMOS circuit are
ideal voltages, very close to the power-supply rails. However, the behavior of a
real CMOS inverter circuit depends on the input voltage as well as on the
characteristics of the load. If the input voltage is not close to the power-supply
rail, then the “on” transistor may not be fully “on” and its resistance may
increase. Likewise, the “off” transistor may not be fully “off” and its resistance
may be quite a bit less than one megohm. These two effects combine to move
the output voltage away from the power-supply rail.

For example, Figure 14-28(a) shows a CMOS inverter’s possible behavior
with a 1.5-V input. The p-channel transistor’s resistance has doubled at this
point, and the n-channel transistor is beginning to turn on. (These values are just

3.33V() 667Ω()⁄

1.67V() 667Ω()⁄

PIDDLING
CURRENT?

As we’ve stated elsewhere, an “off” transistor’s resistance is over one megohm, but
it’s not infinite. Therefore, a very tiny leakage current actually does flow in “off”
transistors, and the CMOS output structure does have a correspondingly tiny but
nonzero power consumption. In most applications, this power consumption is tiny
enough to ignore.

However, leakage current and the corresponding power consumption can be
significant in “standby mode” in battery-powered devices, such as laptop computers.
phones, and wearables. Leakage current can also be a significant concern in the
densest, highest-performance IC technologies, with tens of millions of transistors per
chip. As the transistors get smaller, their individual leakage currents may increase,
just as the total number of transistors per chip is increasing. The net effect is that as
much as half of the chip’s total power consumption may result from leakage.

DDPP5.book Page 758 Tuesday, March 28, 2017 5:33 PM

14.3 CMOS Static Electrical Behavior 759

assumed for the purposes of illustration; the actual values depend on the detailed
characteristics of the transistors.)

In the figure, the output at 4.31 V is still well within the valid range for a
HIGH signal, but not quite the ideal of 5.0 V. Similarly, with a 3.5-V input in (b),
the LOW output is 0.24 V, not 0 V. The slight degradation of output voltage is
generally tolerable; what’s worse is that the output structure is now consuming a
nontrivial amount of power. The current flow with the 1.5-V input is

and the power consumption is

The output voltage of a CMOS inverter deteriorates further with a resistive
load. Such a load may exist for any of a variety of reasons discussed previously.
Figure 14-29 shows the CMOS inverter’s possible behavior with a resistive load.
With a 1.5-V input, the output at 3.98 V is still within the valid range for a HIGH

Figure 14-28
CMOS inverter with
nonideal input
voltages:
(a) equivalent circuit
with 1.5-V input;
(b) equivalent circuit
with 3.5-V input.

VCC = +5.0 V

VOUT
 = 4.31 V

VIN
 = 1.5 V

2.5 kΩ

400 Ω

(a)
VCC = +5.0 V

VOUT
 = 0.24 V

VIN
 = 3.5 V

4 kΩ

200 Ω

(b)Iwasted Iwasted

Iwasted 5.0 V 400 Ω 2.5 kΩ+()⁄ 1.72 mA= =

Pwasted 5.0 V Iwasted⋅ 8.62 mW= =

Figure 14-29
CMOS inverter with
load and nonideal
1.5-V input.

VCC = +5.0 V

VOUT = 3.98 V
VIN = +1.5V

2.5 kΩ

400 Ω

CMOS
inverter

Thévenin equivalent
of resistive load

+

−
VThev = 3.33 V

RThev = 667 Ω

(LOW) (HIGH)

DDPP5.book Page 759 Tuesday, March 28, 2017 5:33 PM

760 Chapter 14 Digital Circuits

output signal, but it is still farther from the ideal of 5.0 V. Similarly, with a 3.5-V
input as shown in Figure 14-30, the LOW output is 0.93 V, not 0 V.

In “pure” CMOS systems, all of the logic devices in a circuit are CMOS.
Since CMOS inputs have a very high impedance, they present very little resistive
load to the CMOS outputs that drive them. Therefore, the CMOS output levels
all remain very close to the power-supply rails (0 V and 5 V), and none of the
devices waste power in their output structures. In “non-pure” CMOS systems,
additional power can be consumed in two ways:

• If nonideal logic signals are connected to CMOS inputs, then the CMOS
outputs use power as described in this subsection.

• If resistive loads are connected to CMOS outputs, then the CMOS outputs
use power in the way depicted in the preceding subsection.

14.3.4 Fanout
The fanout of a logic gate is the number of inputs that the gate can drive without
exceeding its worst-case loading specifications. The fanout depends not only on
the characteristics of the output, but also on the inputs that it is driving. Fanout
must be examined for both possible output states, HIGH and LOW.

For example, we showed in Table 14-2 on page 756 that the maximum
LOW-state output current IOLmaxC for an HC-series CMOS gate driving CMOS
inputs is 0.02 mA (20 A). We also stated previously that the maximum input
current IImax for an HC-series CMOS input in any state is ±1 A. Therefore, the
LOW-state fanout for an HC-series output driving HC-series inputs is 20.
Table 14-2 also showed that the maximum HIGH-state output current IOHmaxC is

 Therefore, the HIGH-state fanout for an HC-series output
driving HC-series inputs is also 20.

Note that the HIGH-state and LOW-state fanouts of a gate aren’t necessarily
equal. In general, the overall fanout of a gate is the minimum of its HIGH-state
and LOW-state fanouts, 20 in the foregoing example.

Figure 14-30
CMOS inverter with
load and nonideal
3.5-V input.

VCC = +5.0 V

VOUT = 0.93 V
VIN = +3.5V

200 Ω

4 kΩ

CMOS
inverter

Thévenin equivalent
of resistive load

+

−
VThev = 3.33 V

RThev = 667 Ω

(HIGH) (LOW)

fanout

LOW-state fanout

−0.02 mA (−20 A)HIGH-state fanout

overall fanout

DDPP5.book Page 760 Tuesday, March 28, 2017 5:33 PM

14.3 CMOS Static Electrical Behavior 761

In the fanout example that we just completed, we assumed that we needed
to maintain the gate’s output at CMOS levels, that is, within 0.1 V of the power-
supply rails. If we could live with somewhat degraded output levels specified for
“TTL loads,” then we could use IOLmaxT and IOHmaxT in the fanout calculation.
Table 14-2 gives these specifications as 4.0 mA and −4.0 mA, respectively.
Therefore, the fanout of an HC-series output driving HC-series inputs at “TTL
levels” is 4000—for practical purposes, virtually unlimited, apparently.

Well, not quite. The calculations that we’ve just carried out give the DC
fanout, defined as the number of inputs that an output can drive with the output
in a constant state (HIGH or LOW). Even if the DC fanout specification is met, a
CMOS output driving a large number of inputs may not behave satisfactorily on
transitions, LOW-to-HIGH or vice versa.

During transitions, the CMOS output must charge or discharge the stray
capacitance associated with the inputs that it drives, including that of the wiring
that connects it to them. If this capacitance is too large, the transition from LOW
to HIGH (or vice versa) may be too slow, causing improper system operation.

The ability of an output to charge and discharge stray capacitance is some-
times called AC fanout, though in board-level design it is seldom calculated as
precisely as DC fanout. As you’ll see in Section 14.4.1, it’s more a matter of
deciding how much speed degradation you’re willing to tolerate.

14.3.5 Effects of Loading
Loading an output beyond its rated fanout has several effects:

• In the LOW state, the output voltage (VOL) may increase beyond VOLmax.

• In the HIGH state, the output voltage (VOH) may fall below VOHmin.

• Propagation delay to the output may increase beyond specifications.

• Output rise and fall times may increase beyond their specifications.

• The operating temperature of the device may increase, thereby reducing
the reliability of the device and hastening device failure.

The first four effects reduce the DC noise margins and the timing margins of the
circuit. Thus, a slightly overloaded circuit may work properly in ideal condi-
tions, but experience says that it will fail once it’s out of the friendly
environment of the engineering lab.

14.3.6 Unused Inputs
In board-level design, some of the inputs of a logic gate, an MSI function, or
even an LSI chip might not be used. At the lowest level, in a real design problem,
you may need an n-input gate but have only an (n + 1)-input gate available. Tying
together two inputs of the (n + 1)-input gate gives it the functionality of an
n-input gate. You can convince yourself of this fact intuitively now, or use

DC fanout

AC fanout

DDPP5.book Page 761 Tuesday, March 28, 2017 5:33 PM

762 Chapter 14 Digital Circuits

switching algebra as you studied in Section 3.1. Figure 14-31(a) shows a NAND
gate with its inputs tied together.

You can also tie unused inputs to a constant logic value. An unused AND or
NAND input should be tied to logic 1, as in (b), and an unused OR or NOR input
should be tied to logic 0, as in (c). With MSI functions and LSI chips, the unused
input should be tied to a value appropriate for the unused function, which in
some cases may be either value (e.g., for an unused D input of a register). In
high-speed circuit design, it’s usually better to use method (b) or (c) rather than
(a), which increases the capacitive load on the driving signal and may slow
things down. In (b) and (c), a resistor value in the range 1–10 kΩ is typically
used, and a single pull-up or pull-down resistor can serve multiple unused
inputs. It is also possible to tie unused inputs directly to the power-supply rail,
though this may not be advisable for one or more reasons:

• In some logic families, a direct connection to VCC is not recommended
because of the need to limit input current in certain transient situations
which are beyond the scope of our discussion.

• Tying an input directly to a rail makes it more difficult to rework the board
or to apply a real signal to it for testing or debugging purposes. The same
is true if multiple unused inputs are tied together. (On the other hand, lots
of discrete pull-up and pull-down resistors take up lots of space.)

In any case, unused CMOS inputs should never be left unconnected (or
floating). On one hand, such an input will behave as if it had a LOW signal
applied to it, and it will normally show a value of 0 V when probed with an oscil-
loscope or voltmeter. So you might think that an unused OR or NOR input can be

Figure 14-31 Unused inputs: (a) tied to another input; (b) NAND pulled up; (c) NOR pulled down.

+5 V

X

X

Z

Z

X
Z

1 kΩ

(a) (b) (c)

logic 1 logic 0

1 k Ω

SUBTLE BUGS Floating CMOS inputs are often the cause of mysterious circuit behavior, as an
unused input erratically changes its effective state based on noise and conditions
elsewhere in the circuit. When you’re trying to debug such a problem, the extra
capacitance of an oscilloscope probe touched to the floating input is often enough to
damp out the noise and make the problem go away. This can be especially baffling
if you don’t realize that the input is floating!

floating input

DDPP5.book Page 762 Tuesday, March 28, 2017 5:33 PM

14.3 CMOS Static Electrical Behavior 763

left floating, because it will act as if a logic 0 is applied and will not affect the
gate’s output. However, since CMOS inputs have such high impedance, it takes
only a small amount of circuit noise to temporarily make a floating input look
HIGH, creating some very nasty intermittent circuit failures.

Luckily, LSI chips with many inputs (such as FPGAs and microprocessors)
normally have internal pull-up or pull-down resistors, usually configurable by
programming, so that an external signal does not need to be applied to an other-
wise unused input.

14.3.7 How to Destroy a CMOS Device
Hit it with a sledgehammer. Or simply walk across a carpet and then touch an
input pin with your finger. Because CMOS device inputs have such high imped-
ance, they are subject to damage from electrostatic discharge (ESD).

ESD occurs when a buildup of charge (“static electricity”) on one surface
arcs through a dielectric to another surface with the opposite charge. In the case
of a CMOS input, the dielectric is the insulation between an input transistor’s
gate and its source and drain. ESD may damage this insulation, causing a short-
circuit between the device’s input and its output.

Ordinary activities of people, like walking on a carpet, can create static
electricity with surprisingly high voltage potentials—1000 V or more. The input
structures of modern CMOS devices use various means to reduce their suscepti-
bility to ESD damage, but no device is completely immune. Therefore, to protect
CMOS devices from ESD damage during shipment and handling, manufacturers
normally package their devices in conductive bags, tubes, or foam. To prevent
ESD damage when handling loose CMOS devices, circuit assemblers and tech-
nicians usually wear conductive wrist straps that are connected by a coil cord to
earth ground; this prevents a static charge from building up on their bodies as
they move around the factory or lab.

Ordinary operation of some equipment, such as repeated or continuous
movement of mechanical components like doors or fans, can also create static

electrostatic discharge
(ESD)

ELIMINATE RUDE,
SHOCKING
BEHAVIOR!

Some design engineers consider themselves above such inconveniences, but to be
safe you should follow several ESD precautions in the lab:

• Before handling a CMOS device, touch the grounded metal case of a plugged-
in instrument or another source of earth ground.

• Before transporting a CMOS device, insert it in conductive foam.

• When carrying a circuit board containing CMOS devices, handle the board by
the edges, and touch a ground terminal on the board to earth ground before
poking around with it.

• When handing over a CMOS device to a partner, especially on a dry winter day,
touch the partner first. Your partner will thank you for it.

DDPP5.book Page 763 Tuesday, March 28, 2017 5:33 PM

764 Chapter 14 Digital Circuits

electricity. For that reason, printed-circuit boards containing CMOS circuits are
carefully designed with ESD protection in mind. Typically, this means ground-
ing connector housings, the edges of the board, and any other points where static
might be encountered because of proximity to people or equipment. This
“encourages” ESD to take a safe, metallic path to ground, rather than through the
pins of CMOS chips mounted on the board.

14.4 CMOS Dynamic Electrical Behavior
Both the speed and the power consumption of a CMOS device depend to a large
extent on “AC” or dynamic characteristics of the device and its load, that is, what
happens when the output changes between states. As part of the internal design
of CMOS ASICs, digital designers must carefully examine the effects of output
loading, and resize or redesign circuits where the load is too high. Even in board-
level design, the effects of loading must be considered for clocks, buses, and
other signals that have high fanout or long interconnections.

Speed depends on two characteristics: transition time and propagation
delay, discussed in the next two subsections. Power dissipation will be discussed
in the third subsection, and a few nasty real-world effects will be discussed in the
last three subsections.

14.4.1 Transition Time
The amount of time that the output of a logic circuit takes to change from one
state to another is called the transition time. Figure 14-32(a) shows how we
might like outputs to change state—in zero time. However, real outputs cannot
change instantaneously, because they need time to charge the stray capacitance
of the wires and other components that they drive. A more realistic view of a cir-
cuit’s output is shown in (b). An output takes a certain time, called the rise time
(tr), to change from LOW to HIGH, and a possibly different time, called the fall
time (tf), to change from HIGH to LOW.

transition time

Figure 14-32
Transition times:
(a) ideal case of
zero-time switching;
(b) a more realistic
approximation;
(c) actual timing, with
rise and fall times.

(a)

(b)

(c)

tr tf

tr tf

HIGH

LOW

VIHmin

VILmax

rise time (tr)

fall time (tf)

DDPP5.book Page 764 Tuesday, March 28, 2017 5:33 PM

14.4 CMOS Dynamic Electrical Behavior 765

Even Figure 14-32(b) is not quite accurate, because the rate of change of
the output voltage does not change instantaneously, either. Instead, the begin-
ning and the end of a transition are smooth, as shown in (c). To avoid difficulties
in defining the endpoints, rise and fall times are often measured at the bound-
aries of the valid logic levels as indicated in the figure, or sometimes at the 10%
and 90% points in the signal’s voltage range.

With the convention in Figure 14-32(c), the rise and fall times indicate how
long an output voltage takes to pass through the “undefined” region between
LOW and HIGH. The initial part of a transition is not included in the rise- or fall-
time number. Instead, the initial part of a transition contributes to the “propaga-
tion delay” number discussed in the next subsection.

The rise and fall times of a CMOS output depend mainly on two factors,
the “on” transistor resistance and the load capacitance. A large capacitance
increases transition times; since this is undesirable, it is very rare for a digital
designer to purposely connect a capacitor to a logic circuit’s output. However,
stray capacitance is present in every circuit; in board-level design, it comes from
at least three sources:

1. Output circuits, including a gate’s output transistors, internal wiring, and
packaging, have some capacitance associated with them, in the range of

 picofarads (pF) in typical logic families, including CMOS.

2. The wiring that connects an output to other inputs has capacitance, about
1 pF per inch or more, depending on the wiring technology.

3. Input circuits, including transistors, internal wiring, and packaging, have
capacitance, from 2 to 15 pF per input in typical logic families.

Stray capacitance is sometimes called a capacitive load or an AC load.
A CMOS output’s rise and fall times can be analyzed using the equivalent

circuit shown in Figure 14-33. As in the preceding section, the p-channel and
n-channel transistors are modeled by resistances Rp and Rn, respectively. In
normal operation, one resistance is high and the other is low, depending on the

stray capacitance

2–10

capacitive load
AC load

Figure 14-33
Equivalent circuit
for analyzing
transition times of
a CMOS output.

VCC = +5.0 V

VOUT
VIN

Rn

Rp

CMOS
inverter

Equivalent load for
transition-time analysis

+

−
VL

RL

CL

DDPP5.book Page 765 Tuesday, March 28, 2017 5:33 PM

766 Chapter 14 Digital Circuits

output’s state. The output’s load is modeled by an equivalent load circuit with
three components:

RL, VL These two components represent the DC load. They determine the
voltages and currents that are present when the output has settled into a
stable HIGH or LOW state. The DC load doesn’t have too much effect on
transition times when the output changes state.

CL This capacitance represents the AC load. It determines the voltages and
currents that are present while the output is changing, and how long it
takes to change from one state to the other.

When a CMOS output drives only CMOS inputs, the DC load is negligible.
To simplify matters, we’ll analyze only this case, with RL = ∞ and VL = 0, in the
remainder of this subsection. The presence of a nonnegligible DC load would
affect the results, but not dramatically (see Exercise 14.66).

We can now analyze the transition times of a CMOS output. For the
purpose of this analysis, we’ll assume CL= 100 pF, a moderate capacitive load in
board-level design. Also, we’ll assume that the “on” resistances of the p-channel
and n-channel transistors are 200 Ω and 100 Ω, respectively, as in the preceding
subsection. The rise and fall times depend on how long it takes to charge or
discharge the capacitive load CL.

First, we’ll look at fall time. Figure 14-34(a) shows the electrical condi-
tions in the circuit when the output is in a steady HIGH state. (RL and VL are not
drawn; they have no effect, since we assume RL = ∞.) For the purposes of our
analysis, we’ll assume that when CMOS transistors change between “on” and
“off,” they do so instantaneously. We’ll assume that at time t = 0 the CMOS
output changes to the LOW state, resulting in the situation depicted in (b).

equivalent load circuit

Figure 14-34 Model of a CMOS HIGH-to-LOW transition: (a) in the HIGH state;
(b) after p-channel transistor turns off and n-channel transistor turns on.

VCC = +5.0 V

VOUT = 5.0 V

IOUT = 0
IOUT

VIN

> 1 MΩ

200 Ω

100 pF

AC load

VCC = +5.0 V

VOUT
VIN

AC load

100 pF

(a) (b)

100 Ω

> 1 MΩ

DDPP5.book Page 766 Tuesday, March 28, 2017 5:33 PM

14.4 CMOS Dynamic Electrical Behavior 767

At time t = 0, VOUT is still 5.0 V. (A useful electrical-engineering maxim is
that the voltage across a capacitor cannot change instantaneously.) At time t = ∞,
the capacitor must be fully discharged and VOUT will be 0 V. In between, the
value of VOUT is governed by an exponential law:

The factor RnCL has units of seconds and is called an RC time constant.
The preceding calculation shows that the RC time constant for HIGH-to-LOW
transitions is 10 nanoseconds (ns).

Figure 14-35 plots VOUT as a function of time. To calculate fall time, recall
that 1.5 V and 3.5 V are the defined boundaries for LOW and HIGH levels for
CMOS inputs being driven by the CMOS output. To obtain the fall time, we
must solve the preceding equation for VOUT = 3.5 and VOUT = 1.5, yielding:

The fall time tf is the difference between these two numbers, or about 8.5 ns.

VOUT VDD e t RnCL()⁄–⋅=

5.0 e t 100 100 10
12–⋅ ⋅()⁄– V⋅=

5.0 e t 10 10
9–⋅()⁄– V⋅=

RC time constant

Figure 14-35
Fall time for a HIGH-
to-LOW transition of
a CMOS output.VOUT

5 V

0 V
time

tf

0

1.5 V

3.5 V

Rn

> 1 MΩ

100 Ω

Rp

> 1 MΩ

200 Ω

t RnCL ln
VOUT

VDD
------------⋅–=

10 10 9– ln
VOUT

5.0
------------⋅ ⋅–=

t3.5 3.57 ns=

t1.5 12.04 ns=

DDPP5.book Page 767 Tuesday, March 28, 2017 5:33 PM

768 Chapter 14 Digital Circuits

Rise time can be calculated in a similar manner. Figure 14-36(a) shows the
conditions in the circuit when the output is in a steady LOW state. If at time t = 0
the CMOS output changes to the HIGH state, the situation depicted in (b) results.
Once again, VOUT cannot change instantly, but at time t = ∞, the capacitor will be
fully charged and VOUT will be 5.0 V. Once again, the value of VOUT in between
is governed by an exponential law:

The RC time constant in this case is 20 ns. Figure 14-37 plots VOUT as a function
of time. To obtain the rise time, we must solve the preceding equation for
VOUT = 1.5 and VOUT = 3.5, yielding

Figure 14-36 Model of a CMOS LOW-to-HIGH transition: (a) in the LOW state;
(b) after n-channel transistor turns off and p-channel transistor turns on.

VCC = +5.0 V

VOUT = 0 V

IOUT = 0
IOUT

VIN

100 Ω

> 1 MΩ

100 pF

AC load

VCC = +5.0 V

VOUT
VIN

> 1 MΩ

200 Ω
AC load

100 pF

(a) (b)

VOUT VDD 1 e– t RpCL()⁄–()⋅=

5.0 1 e– t 200 100 10
12–⋅ ⋅()⁄–() V⋅=

5.0 1 e– t 20 10
9–⋅()⁄–() V⋅=

Figure 14-37
Rise time for a LOW-
to-HIGH transition of
a CMOS output. VOUT

5 V

0 V
time0

Rn

> 1 MΩ

100 Ω

Rp

> 1 MΩ

200 Ω

tr

1.5 V

3.5 V

DDPP5.book Page 768 Tuesday, March 28, 2017 5:33 PM

14.4 CMOS Dynamic Electrical Behavior 769

The rise time tr is the difference between these two numbers, or about 17 ns.
The foregoing example assumes that the p-channel transistor has twice the

resistance of the n-channel transistor, and as a result the rise time is twice as long
as the fall time. It takes longer for the “weak” p-channel transistor to pull the
output up than it does for the “strong” n-channel transistor to pull it down; the
output’s drive capability is “asymmetric.” High-speed CMOS devices are some-
times fabricated with larger p-channel transistors to make the transition times
more nearly equal and output drive more symmetric.

Regardless of the transistors’ characteristics, an increase in load capaci-
tance causes an increase in the RC time constant and a corresponding increase
in the transition times of the output. Thus, it is a goal of high-speed circuit
designers to minimize load capacitance, especially on the most timing-critical
signals. This can be done by minimizing the number of inputs driven by the
signal, by creating multiple copies of the signal, and by careful physical layout
of the circuit.

When working with real digital circuits, it’s often useful to estimate transi-
tion times, without going through a detailed analysis. A useful rule of thumb is
that the transition time approximately equals the RC time constant of the
charging or discharging circuit. For example, estimates of 10 and 20 ns for fall
and rise time respectively in the preceding example would have been pretty
much on target, especially considering that most assumptions about load capac-
itance and transistor “on” resistances are approximate to begin with.

Manufacturers of commercial CMOS circuits typically do not specify
transistor “on” resistances on their data sheets. If you search carefully, you
might find this information published in the manufacturers’ application notes. In
any case, you can estimate an “on” resistance as the voltage drop across the “on”
transistor divided by the current through it with a worst-case resistive load, as we
showed in Section 14.3.2:

t RC ln
VDD V– OUT

VDD
-⋅–=

20 10 9– ln
5.0 V– OUT

5.0
-⋅ ⋅–=

t1.5 7.13 ns=

t3.5 24.08 ns=

Rp(on)

VDD VOHminT–

IOHmaxT
≈

Rn(on)

VOLmaxT

IOLmaxT
≈

DDPP5.book Page 769 Tuesday, March 28, 2017 5:33 PM

770 Chapter 14 Digital Circuits

14.4.2 Propagation Delay
Rise and fall times only partially describe the dynamic behavior of a logic
element; we need additional parameters to relate output timing to input timing.
A signal path is the electrical path from a particular input signal to a particular
output signal of a logic element. The propagation delay tp of a signal path is the
amount of time that it takes for a change in the input signal to produce a change
in the output signal.

A complex logic element with multiple inputs and outputs may specify a
different value of tp for each different signal path. Also, different values may be
specified for a particular signal path, depending on the direction of the output
change. Assuming zero rise and fall times for simplicity, Figure 14-38(a) shows
two different propagation delays for the input-to-output signal path of a CMOS
inverter, depending on the direction of the output change:

tpHL The time between an input change and the corresponding output change
when the output is changing from HIGH to LOW.

tpLH The time between an input change and the corresponding output change
when the output is changing from LOW to HIGH.

THERE’S A
CATCH!

Calculated transition times are actually quite sensitive to the choice of logic levels.
In the examples in this subsection, if we used 2.0 V and 3.0 V instead of 1.5 V and
3.5 V as the thresholds for LOW and HIGH, respectively, we would calculate shorter
transition times. On the other hand, if we used 0.0 and 5.0 V, the calculated transition
times would be infinity! You should also be aware that in some logic families (most
notably TTL), the thresholds are not symmetric around the voltage midpoint. Still, it
is the author’s experience that the “time-constant-equals-transition-time” rule of
thumb usually works well enough for practical board-level circuits.

signal path
propagation delay tp

Figure 14-38
Propagation delays
for a CMOS inverter:
(a) ignoring rise and
fall times;
(b) measured at
midpoints of
transitions.

(a)

(b)

tpHL tpLH

tpHL tpLH

VIN

VOUT

VIN

VOUT

tpHL

tpLH

DDPP5.book Page 770 Tuesday, March 28, 2017 5:33 PM

14.4 CMOS Dynamic Electrical Behavior 771

Several factors lead to nonzero propagation delays. In a CMOS device, the
rate at which transistors change state is influenced both by the semiconductor
physics of the device and by the circuit environment, including input-signal
transition rate, input capacitance, and output loading. Multistage devices such as
noninverting gates or more complex logic functions may require several internal
transistors to change state before the output can change state. And even when the
output begins to change state, with nonzero rise and fall times it takes some time
to reach the threshold where additional delay is attributed instead to rise or fall
time, as we discussed in the preceding subsection. All of these factors are includ-
ed in propagation delay.

To factor out the effect of rise and fall times, manufacturers usually specify
propagation delays at the midpoints of input and output transitions, as shown in
Figure 14-38(b). However, sometimes the delays are specified at the logic-level
boundary points, especially if the device’s operation may be adversely affected
by slow rise and fall times. For example, Figure 14-39 shows how the minimum
input pulse width for an S-R latch (discussed in Section 10.2.1) might be
specified.

In addition, a manufacturer may specify absolute maximum input rise and
fall times that must be satisfied to guarantee proper operation. High-speed
CMOS circuits may consume excessive current or even oscillate if their input
transitions are too slow.

14.4.3 Power Consumption
The power consumption of a CMOS circuit whose output is not changing is
called static power dissipation or quiescent power dissipation. Most CMOS cir-
cuits have very low static power dissipation. This is what makes them so
attractive for smartphones, watches, and other low-power applications—when
computation pauses, very little power is consumed. A CMOS circuit consumes
significant power only during signal transitions; this is called dynamic power
dissipation.

One source of dynamic power dissipation is the partial short-circuiting of
the CMOS output structure during transitions. When the input voltage is not
close to one of the power supply rails (0 V or VCC), both the p-channel and
n-channel output transistors may be partially “on,” creating a series resistance of
600 Ω or less. In this case, current flows through the transistors from VCC to
ground. The amount of power consumed in this way depends on both the value

Figure 14-39
Worst-case timing
specified using logic-
level boundary points.

tpw(min)

HIGH

LOW
S or R

static power dissipation
quiescent power

dissipation

dynamic power
dissipation

DDPP5.book Page 771 Tuesday, March 28, 2017 5:33 PM

772 Chapter 14 Digital Circuits

of VCC and the rate at which output transitions occur, according to the formula:

The following variables are used in the formula:

PT The circuit’s internal power dissipation due to output transitions.

CPD The power-dissipation capacitance. This constant is normally specified
by the device manufacturer. CPD turns out to have units of capacitance,
but does not represent an actual output capacitance. Rather, it embodies
the dynamics of current flow through the changing output-transistor
resistances during a single pair of output transitions, HIGH-to-LOW and
LOW-to-HIGH. For example, CPD for HC-series CMOS gates might be
20–24 pF, even though the actual output capacitance is much less.

VCC The power-supply voltage. As all electrical engineers know, power
dissipation across a resistive load (the partially-on transistors) is
proportional to the square of the voltage.

f The transition frequency of the output signal. This implies the number
of power-consuming output transitions per second. (But note that the
number of transitions per second is the transition frequency times 2.)

The PT formula is valid only if input transitions are fast enough, leading to
fast output transitions. If the input transitions are too slow, then the output
transistors stay partially on for a longer time, and power consumption increases.
Device manufacturers usually recommend a maximum input rise and fall time,
below which the value specified for CPD is valid.

A second (and often more significant) source of CMOS power consump-
tion is the capacitive load (CL) on the output. During a LOW-to-HIGH transition,
current flows through a p-channel transistor to charge CL. Likewise, during a
HIGH-to-LOW transition, current flows through an n-channel transistor to
discharge CL. In each case, power is dissipated in the “on” resistance of the
transistor. We’ll use PL to denote the total amount of power dissipated by
charging and discharging CL.

The units of PL are power, or energy usage per unit time. The energy for
one transition could be determined by calculating the current through the
charging transistor as a function of time (using the RC time constant as in

PT CPD VCC
2

f⋅ ⋅=

power-dissipation
capacitance

transition frequency

CONSUMPTION
VS.

DISSIPATION

The words consumption and dissipation are used pretty much interchangeably when
discussing how much power a device uses. To be precise, however, dissipation
includes only the power that is used in the device itself, generating heat in the device.
Consumption includes additional power that the device consumes from the power
supply and delivers to other devices connected to it (like resistive loads).

CL

PL

DDPP5.book Page 772 Tuesday, March 28, 2017 5:33 PM

14.4 CMOS Dynamic Electrical Behavior 773

Section 14.4.1), squaring this function, multiplying by the “on” resistance of the
charging transistor, and integrating over time. An easier way is described below.

During a transition, the voltage across the CL changes by ±VCC. According
to the definition of capacitance, the total amount of charge that must flow to
make a voltage change of VCC across CL is . The total amount of energy
used in one transition is charge times the average voltage change. The first little
bit of charge makes a voltage change of VCC, while the last bit of charge makes a
vanishingly small voltage change; hence the average change is . The total
energy per transition is therefore . If there are 2f transitions per
second, the total power dissipated due to the capacitive load is

The total dynamic power dissipation of a CMOS circuit is the sum of PT
and PL:

Based on this formula, dynamic power dissipation is often called CV2f power. In
most applications of CMOS circuits, CV2f power is by far the major contributor
to total power dissipation. Note that CV2f power is also consumed by bipolar
logic circuits like TTL, but at low to moderate frequencies, it is insignificant
compared to the static (DC or quiescent) power dissipation of bipolar circuits.

*14.4.4 Current Spikes and Decoupling Capacitors
The topics in the next three subsections are particularly important for board-
level system design. When a CMOS output switches between LOW and HIGH,
current flows from VCC to ground through the partially-on p- and n-channel
transistors. These currents, often called current spikes because of their brief
duration, may show up as noise on the power-supply and ground connections in
a CMOS circuit, especially when multiple outputs are switched simultaneously.

For this reason, systems that use CMOS circuits require decoupling
capacitors between VCC and ground. These capacitors must be distributed
throughout the printed-circuit board, at least one within an inch or so of each
chip, to supply current during transitions. The large filtering capacitors typically
found in the power supply itself don’t satisfy this requirement, because stray
wiring inductance prevents them from supplying the current fast enough, hence
the need for a physically distributed system of decoupling capacitors.

*Throughout this book, optional sections are marked with an asterisk.

CL VCC⋅

VCC 2⁄
CL VCC

2⋅ 2⁄

PL CL VCC
2 2⁄() 2f⋅ ⋅=

CL VCC
2 f⋅ ⋅=

PD PT PL+=

CPD VCC
2 f⋅ CL VCC

2 f⋅⋅+⋅=

CPD CL+() VCC
2 f⋅⋅=

CV2f power

current spikes

decoupling capacitors

filtering capacitors

DDPP5.book Page 773 Tuesday, March 28, 2017 5:33 PM

774 Chapter 14 Digital Circuits

*14.4.5 Inductive Effects
Digital logic circuits rarely contain any discrete inductors but, just like stray
capacitance, stray inductance arises in circuit wiring, even in straight wires.
(Electrical engineers know that discrete inductors are usually formed by a coil
of wire.)

When the amount of current flowing through an inductor changes, a volt-
age is developed across that inductor according to the formula

where L is the inductance in henries and is the current’s rate of change in
amperes per second. Stray inductance can be on the order of 10 nanohenries (nH,

 H) per inch of wire on a printed circuit board.
With such tiny stray inductances, it may not seem possible that significant

voltages could be developed across them, and that inductive effects could be
safely ignored. This was the case with most digital circuits until the late 1990s.

However, two factors have combined to make inductance a significant
factor and sometimes an obstacle in high-speed CMOS design, especially at the
printed-circuit-board level. First, the output transistors in modern CMOS
circuits are able to switch on or off in extremely short times—on the order of
tens of picoseconds or less in the fastest circuits. Changing so quickly from a no-
current condition to one in which even just a few milliamperes of current is flow-
ing results in a rate of change () that is very high. Second, CMOS circuits’
power-supply voltage (VCC) has been steadily declining from 5 V to 1.2 V or less
in the densest ASICs. This has resulted in smaller noise margins between logic
levels, exacerbating the error-inducing effects of any voltage disturbances.

Under reasonable assumptions (see References), the maximum value of
 when driving a resistive load can be approximated by the formula

where R is the load resistance, and is the voltage change and is the rise
or fall time for the transition. So, let’s consider the voltage that could be devel-
oped across a 1-inch PCB trace driving a 2-KΩ load, for a couple of different
CMOS logic families. A 5-V 74HC output can have transition times as low as
5 ns. Based on the preceding formula,

Wow, 500,000 amps per second! Of course, the current doesn’t continue to ramp
up or down for anywhere near a second, but the rate of change during the 5-ns
output transition really is that high. Now, we can plug that number into the

stray inductance

V L
dI
dt
-----⋅=

henries dI dt⁄
nanohenries

10 9–

dI dt⁄

dI dt⁄

dI
dt

Max-resistor

VΔ
Tt

1
R
---⋅=

VΔ Tt

dI
dt

Max-resistor

5 V
5 ns

1
2000 Ω
------------------⋅ 5 105⋅ A/s= =

DDPP5.book Page 774 Tuesday, March 28, 2017 5:33 PM

14.4 CMOS Dynamic Electrical Behavior 775

voltage formula to see how much voltage is developed across our 1-inch, 10-nH
PCB trace:

When all’s said and done, the voltage change across the PCB trace is only 5 mV
(plus or minus, depending on the direction of current change). This is nothing to
worry about in a logic family that has 1.35 V of DC noise margin in either state.

Now let’s consider the case for a heftier CMOS family, 74AC, which can
source or sink six times as much current as 74HC, and it can do so with transition
times as short as 1 ns. The maximum current-change rate for 74AC driving a
1-KΩ load is

or 10 times higher than the previous case. So the voltage change across a 1-inch,
10-nH PCB trace is also 10 times higher, or 50 mV. That’s still not quite enough
to worry about, but wait, there’s more!

So far we’ve considered only resistive loads. As discussed in
Section 14.4.1, gate inputs and wiring have stray capacitance, and current must
flow to charge or discharge this capacitance. Under reasonable assumptions
(once again, see References), the maximum value of when driving a
capacitive load C can be approximated by the formula

V 10 10 9– 5 105⋅ ⋅ ⋅ 5 mV= =

dI
dt

Max-resistor

5 V
1 ns

1
1000 Ω
------------------⋅ 5 106⋅ A/s= =

HAND WAVING In this subsection, we assumed some transition times for 74HC and 74AC outputs
driving certain resistive and capacitive loads. Where did these numbers come from?
Minimum transition times, especially as a function of loading, are seldom if ever
specified in manufacturers’ data sheets. Actually, these numbers came from the
author’s experience in the lab.

You might also be wondering, what if we had a 10-inch instead of a 1-inch
PCB trace, and a 500-pF load instead of a 50-pF load? Could there be 15.2 V across
that trace during a transition? No, of course not. Experience shows that the transition
time would be much longer, and dI/dt would be much less. How can that be? The
answer is that the actual electrical model of the circuit output, the PCB trace, and the
load is much more complicated than we’ve shown, with each element having resis-
tive, capacitive, and inductive components.

The approximations in this subsection are just to give you a rough feel for
inductive effects. A more detailed study, typically using a circuit analysis tool like
SPICE, is needed to predict the dynamic effects of output transitions accurately.
Most IC manufacturers provide SPICE models (or equivalent) for their high-speed
output circuits to aid electrical engineers who must analyze such dynamic effects.

dI dt⁄

dI
dt

Max-capacstor

1.52 VΔ
Tt

2
------------------ C⋅=

DDPP5.book Page 775 Tuesday, March 28, 2017 5:33 PM

776 Chapter 14 Digital Circuits

On a good day, our 74AC output can drive a 50-pF load at the end of a 1-inch
PCB trace and deliver a transition time of about 5 ns. Based on the preceding
formula,

Plugging that into the voltage formula, the voltage developed across our 1-inch,
10-nH PCB trace is

Although this case eats into the noise margin even more than the last example,
it’s probably not enough to cause an incorrect logic value to be produced. The
real problem occurs when the inductive effects of several changing outputs are
concentrated on a single wire, as discussed in the next subsection.

*14.4.6 Simultaneous Switching and Ground Bounce
The current that flows through a gate’s output pin has to come from or go

to somewhere—from the device’s VCC pin when an output is sourcing current,
and to the ground pin when it’s sinking current. Now let’s consider what happens
when multiple gates use the same ground pin.

Figure 14-40 shows the situation when eight inverters are fabricated on a
single chip with one ground and one VCC pin. The connection from the chip’s
internal ground has stray inductance due to the chip and package substrates, the
bonding wire between the chip and its package, and the wiring between the
package and the PCB’s ground plane. In the figure, this is shown as a lumped
inductance L between the chip’s ground pin and the actual ground on the PCB.
The amount of stray inductance varies greatly with different packaging technol-
ogies, but in a 20-pin plastic DIP package with the ground pin in the corner, L is
on the order of 10 nH.

Now consider the situation when all eight inputs are LOW, so all eight out-
puts are HIGH, and all eight inputs are simultaneously changed to HIGH. This
kind of event is often called simultaneous switching. At that moment, all of the
outputs change to LOW, and the single ground pin must sink the current from all
eight loads. Assuming these are 74AC outputs each driving a 50 pF load as in the
previous subsection, maximum value of for each output is .
With simultaneously switching outputs, the current change across the stray
inductance L will be eight times this amount, and the voltage drop across L will
be

dI
dt

Max-capacstor

1.52 5 V⋅
25 10 18–⋅() s2

---------------------------------- 50 10 12– F 1.52 107 A/s⋅=⋅ ⋅=

V 10= 10 9– 1.52 107 152 mV=⋅ ⋅ ⋅

simultaneous switching

dI dt⁄ 1.52 107 A/s⋅

VGND L 8
dI
dt
-----⋅ ⋅ 10 10 9– 8 1.52 107 A/s⋅ ⋅ ⋅ ⋅ 1.216 V= = =

DDPP5.book Page 776 Tuesday, March 28, 2017 5:33 PM

14.4 CMOS Dynamic Electrical Behavior 777

This change in the chip’s internal ground voltage compared to the PCB and
system ground is called ground bounce, and its effects can be significant. A chip
has many inputs and outputs, and at any given time some of them may be
changing while others are supposed to remain static. But consider the effects of
a ground-bounce event on outputs that are supposed to remain static. Since LOW
output voltages are referenced to a chip’s internal ground (through an ON n-
channel transistor), any increase in VGND will also increase the LOW output volt-
ages, possibly raising them above the valid LOW range and causing misbehavior
elsewhere.

Ground bounce on a chip can also affect inputs on the same chip. A valid
CMOS HIGH input voltage could be as low as 3.15 V. Keep in mind that this
voltage is referenced to the chip’s internal ground. Suppose a chip input receives
a static, valid HIGH signal of 3.2 V from another chip. But then a ground-bounce
event temporarily raises the chip’s internal ground VGND to 1.2 V. As far as the
chip input is concerned, it now sees only 2.0 V with respect to its internal
ground, and this is well into the “undefined” region for logic inputs. In fact, a
slightly larger event could cause the apparent input voltage to drop well into the
valid range for LOW signals. Thus, the ground bounce created by simultaneously
switching outputs can change the logic value seen on totally unrelated inputs, as
long as they are all referenced to the same ground pin.

ground bounce

Figure 14-40
Ground bounce in
an IC with eight
inverters and one
ground pin.

Q2

VCC

Q1

Q16

Q15

IN1

IN8

OUT1

OUT8

LOAD1

LOAD8

I1

I8

I1 + . . . + I8L

VGND

VIN1

VIN8

DDPP5.book Page 777 Tuesday, March 28, 2017 5:33 PM

778 Chapter 14 Digital Circuits

A certain amount of ground bounce is inevitable in high-speed CMOS cir-
cuit design, but there are several ways that chip and system designers can reduce
it enough to mask it safely within the noise margins of the circuit:

• Create or use a logic family whose output circuits are explicitly designed
to have slower transition times, like 74FCT versus 74AC/ACT.

• Place the ground pins on the IC package so that the lead lengths to the chip
will be shorter and hence inductance will be lower. For example, newer
high-speed circuits packaged in DIPs now have VCC and ground pins in the
middle of each row of pins instead of on the corners.

• Use an IC package with lower inductance, like the square PLCC form
factor versus a long rectangular DIP.

• Use multiple ground pins to split the current demand across multiple paths
and thereby reduce the voltage drop across any one path. This is one reason
that high-pin-count ICs are designed with lots and lots of ground pins.

At this point, you might be wondering, what about “VCC bounce”? After
all, VCC wiring paths have stray inductance similar to ground paths, and they suf-
fer voltage drops when multiple outputs switch from LOW to HIGH. However,
logic levels are referenced to ground, not VCC, and CMOS inputs are more sensi-
tive to an input’s voltage relative to ground than to VCC. Thus, “VCC bounce” is
seldom a problem. Still, most high-pin-count ICs are designed with lots of VCC
pins to handle dynamic as well as static current demands with little voltage drop.
A typical VLSI chip has at least half as many VCC pins as ground pins and, quite
often, just as many.

14.5 Other CMOS Input and Output Structures
Circuit designers have modified the basic CMOS structure in many ways to
produce gates that are tailored for specific applications. This section describes
some of the more common variations in CMOS input and output structures.

14.5.1 Transmission Gates
A p-channel and n-channel transistor pair can be connected together to form a
logic-controlled switch. Shown in Figure 14-41, this circuit is called a CMOS
transmission gate.

Figure 14-41
CMOS transmission gate.

EN_L

EN

A Bnormally
complementary

transmission gate

DDPP5.book Page 778 Tuesday, March 28, 2017 5:33 PM

14.5 Other CMOS Input and Output Structures 779

A transmission gate is operated so that its input signals EN and EN_L are
always at opposite levels. When EN is HIGH and EN_L is LOW, there is a low-
impedance connection (as low as 1–5 Ω) between points A and B. When EN is
LOW and EN_L is HIGH, points A and B are disconnected.

Once a transmission gate is enabled, the propagation delay from A to B (or
vice versa) is very short. Because of their short delays and conceptual simplicity,
transmission gates are often used internally in larger-scale CMOS devices like
multiplexers and flip-flops. For example, Figure 14-42 shows how transmission
gates can be used to create a 2-input multiplexer. When S is LOW, the X “input”
is connected to the Z “output”; when S is HIGH, Y is connected to Z.

Note that unlike a gate-based multiplexer (e.g., Figure 6-32 on page 287),
a multiplexer that uses transmission gates is “two-way.” The transmission gate is
a switch, and a signal on Z can drive an input on X or Y or vice versa.

At least one manufacturer (Integrated Device Technology) makes a variety
of logic functions based on transmission gates. In their multiplexer devices, it
takes several nanoseconds for a change in the “select” inputs (such as in
Figure 14-42) to affect the input-output path (X or Y to Z). Once a path is set up,
however, the maximum propagation delay from input to output may be as little
as 0.15 ns; this is the fastest discrete CMOS multiplexer you can buy.

The p-channel (top) transistor in Figure 14-41 has a low impedance when
its gate (EN_L) is LOW. The n-channel transistor has a low impedance when EN is
HIGH. Two transistors are used because a typical “on” p-channel transistor can’t
conduct a LOW voltage between points A and B very well, and a typical “on”
n-channel transistor can’t conduct a HIGH voltage very well, but the parallel
transistors cover the entire voltage range just fine. Some manufacturers, such as
IDT, have improved their n-channel transistors enough to omit the p-channel
transistor. Besides saving a transistor, this approach also eliminates a parasitic
diode to VCC that would otherwise result from the chip’s physical structure.

Figure 14-42
Two-input multiplexer using
CMOS transmission gates.

X

Y

S

VCC

Z

DDPP5.book Page 779 Tuesday, March 28, 2017 5:33 PM

780 Chapter 14 Digital Circuits

14.5.2 Schmitt-Trigger Inputs
The input-output transfer characteristic for a typical CMOS gate was shown in
Figure 14-21 on page 751. The corresponding transfer characteristic for a gate
with Schmitt-trigger inputs is shown in Figure 14-43(a). A Schmitt trigger is a
special circuit that uses feedback internally to shift the switching threshold
depending on whether the input is changing from LOW to HIGH or from HIGH
to LOW.

For example, suppose the input of a Schmitt-trigger inverter is initially at
0 V, a solid LOW. Then the output is HIGH, close to 5.0 V. If the input voltage is
increased, the output will not go LOW until the input voltage reaches about
2.9 V. However, once the output is LOW, it won’t go HIGH again until the input
decreases to about 2.1 V. Thus, the switching threshold for positive-going input
changes, denoted by VT+, is about 2.9 V, and for negative-going input changes,
denoted by VT−, is about 2.1 V. The difference between the two thresholds is
called hysteresis; the Schmitt-trigger inverter provides about 0.8 V of hysteresis.

To demonstrate the usefulness of hysteresis, Figure 14-44(a) shows an
input signal with long rise and fall times and about 0.5 V of noise on it. An ordi-
nary inverter, without hysteresis, has the same switching threshold for both
positive-going and negative-going transitions, VT ≈ 2.5 V. Thus, the ordinary
inverter responds to the noise as shown in (b), producing multiple output chang-
es as the noisy input voltage crosses the switching threshold multiple times.
However, as shown in (c), a Schmitt-trigger inverter does not respond to the
noise, because its hysteresis is greater than the noise amplitude.

Schmitt-trigger input

Figure 14-43
A Schmitt-trigger
inverter: (a) input-
output transfer
characteristic;
(b) logic symbol.

5.0

0.0
2.1 2.9

VOUT

VT− VT+

VIN

(b)(a)

5.0

hysteresis

FIXING YOUR
TRANSMISSION

Schmitt-trigger inputs have better noise immunity than ordinary gate inputs for
signals with transmission-line reflections or long rise and fall times. Such signals
typically occur in physically long connections, such as input-output buses and
computer interface cables. Noise immunity is important in these applications, since
long signal lines are more likely to have reflections or to pick up noise from adjacent
signal lines, circuits, and appliances.

DDPP5.book Page 780 Tuesday, March 28, 2017 5:33 PM

14.5 Other CMOS Input and Output Structures 781

14.5.3 Three-State Outputs
Logic outputs have two normal states, LOW and HIGH, corresponding to logic
values 0 and 1. However, some outputs have a third electrical state that is not a
logic state at all, called the high-impedance, Hi-Z, or floating state. In this state,
the output behaves as if it isn’t even connected to the circuit, except for a small
leakage current that may flow into or out of the output pin. Thus, an output can
have one of three states—logic 0, logic 1, and Hi-Z.

An output with three possible states is called (surprise!) a three-state
output or, sometimes, a tri-state output. Three-state devices have an extra input,
usually called “output enable” or “output disable,” for placing the device’s
output(s) in the high-impedance state.

A three-state bus is created by wiring several three-state outputs together.
Control circuitry for the “output enables” must ensure that at most one output is

Figure 14-44 Device operation with slowly changing inputs: (a) a noisy, slowly
changing input; (b) output produced by an ordinary inverter;
(c) output produced by an inverter with 0.8 V of hysteresis.

5.0

0

VT− = 2.1
VT = 2.5

VT+ = 2.9

VIN

t

HIGH

LOW

VOUT

t

HIGH

LOW

VOUT

t

(a)

(b)

(c)

high-impedance state
Hi-Z state
floating state

three-state output
tri-state output

three-state bus

DDPP5.book Page 781 Tuesday, March 28, 2017 5:33 PM

782 Chapter 14 Digital Circuits

enabled (not in its Hi-Z state) at any time. The single enabled device can transmit
logic levels (HIGH and LOW) on the bus. We discussed this and other examples
of three-state applications in Section 7.1.

A simplified circuit diagram for a CMOS three-state buffer is shown in
Figure 14-45(a). The internal NAND, NOR, and inverter functions are shown in
functional rather than transistor form; they actually use a total of 10 more tran-
sistors (see Exercise 14.82). As shown in the function table (b), when the enable
(EN) input is LOW, both output transistors are off, and the output is in the Hi-Z
state. Otherwise, the output is HIGH or LOW as controlled by the “data” input A.
Logic symbols for three-state buffers and gates are normally drawn with the
enable input coming into the top, as shown in (c).

In practice, the three-state control circuit may be different from what we
have shown, in order to provide proper dynamic behavior of the output transis-
tors during transitions to and from the Hi-Z state. In particular, devices with
three-state outputs are normally designed so that the output-enable delay (Hi-Z
to LOW or HIGH) is somewhat longer than the output-disable delay (LOW or
HIGH to Hi-Z). Thus, if a control circuit activates one device’s output-enable
input and simultaneously deactivates a second’s, the second device should enter
the Hi-Z state before the first places a HIGH or LOW level on the bus (though a
prudent designer would provide enable signals with a much larger window of
nonoverlap to guarantee this under all conditions).

If two three-state outputs on the same bus are enabled at the same time and
try to maintain opposite states, the situation is similar to tying standard active-

LEGAL NOTICE The name “TRI-STATE” is a trademark of the National Semiconductor Corporation,
which was acquired by Texas Instruments in 2011. Their lawyers thought you’d like
to know.

three-state buffer

Figure 14-45 CMOS three-state buffer: (a) circuit diagram; (b) function table; (c) logic symbol.

VCC

A

EN

OUT

Q1

Q2

EN

L
L
H
H

A

L
H
L
H

B

H
H
L
L

C

H
H
H
L

D

L
L
H
L

 Q1

off
off
on
off

 Q2

off
off
off
on

OUT

Hi-Z
Hi-Z

L
H

EN

A OUT

(a) (b)

(c)B

C

D

DDPP5.book Page 782 Tuesday, March 28, 2017 5:33 PM

14.5 Other CMOS Input and Output Structures 783

pull-up outputs together as in Figure 14-53 on page 788—a nonlogic voltage is
produced on the bus. If fighting is only momentary, the devices probably will not
be damaged, but the large current drain through the tied outputs can produce
noise pulses that affect circuit behavior elsewhere in the system.

There is a leakage current of up to 10 A associated with a CMOS three-
state output in its Hi-Z state. This current, as well as the input currents of
receiving gates, must be taken into account when calculating the maximum
number of devices that can be placed on a three-state bus. That is, in the LOW or
HIGH state, an enabled three-state output must be capable of sinking or sourcing
up to 10 A of leakage current for every other three-state output on the bus, as
well as handling the current required by every input on the bus. As with standard
CMOS logic, separate LOW-state and HIGH-state calculations must be made to
ensure that the fanout requirements of a particular circuit configuration are met.

*14.5.4 Open-Drain Outputs
The p-channel transistors in CMOS output structures are said to provide active
pull-up, since they actively pull up the output voltage on a LOW-to-HIGH tran-
sition. These transistors are omitted in gates with open-drain outputs, like the
NAND gate in Figure 14-46(a). The drain of the topmost n-channel transistor is
left unconnected internally, so if the output is not LOW it is “open,” as indicated
in (b). The underscored diamond in the symbol in (c) is sometimes used to
indicate an open-drain output. A similar structure, called an “open-collector
output,” is provided in the legacy TTL logic families.

An open-drain output requires an external pull-up resistor to provide
passive pull-up to the HIGH level. For example, Figure 14-47 shows an open-
drain CMOS NAND gate, with its pull-up resistor, driving a load.

For the highest possible speed, an open-drain output’s pull-up resistor
should be as small as possible; this minimizes the RC time constant for LOW-to-
HIGH transitions (rise time). However, the pull-up resistance cannot be
arbitrarily small; the minimum resistance is determined by the open-drain
output’s maximum sink current, IOLmax. For example, in HC- and HCT-series

active pull-up
open-drain output

Figure 14-46
Open-drain CMOS
NAND gate:
(a) circuit diagram;
(b) function table;
(c) logic symbol.

VCC

A

B

Z

Q1

Q2

A

L
L
H
H

B

L
H
L
H

 Q1

off
off
on
on

 Q2

off
on
off
on

Z

open
open
open

L

A

B
Z

(a) (b)

(c)

pull-up resistor
passive pull-up

DDPP5.book Page 783 Tuesday, March 28, 2017 5:33 PM

784 Chapter 14 Digital Circuits

CMOS, IOLmax is 4 mA, and the pull-up resistor can be no less than 5.0 V/4 mA,
or 1.25 kΩ. Since this is an order of magnitude greater than the “on” resistance
of the p-channel transistors in a standard CMOS gate, the LOW-to-HIGH output
transitions are much slower for an open-drain gate than for standard gate with
active pull-up.

As an example, let us assume that the open-drain gate in Figure 14-47 is
HC-series CMOS, the pull-up resistance is 1.5 kΩ, and the load capacitance is
100 pF. We showed in Section 14.3.2 that the “on” resistance of an HC-series
CMOS output in the LOW state is about 80 Ω. Thus, the RC time constant for a
HIGH-to-LOW transition is about 80 Ω ⋅100 pF = 8 ns, and the output’s fall time
is about 8 ns. However, the RC time constant for a LOW-to-HIGH transition is
about 1.5 kΩ ⋅100 pF = 150 ns, and the rise time is about 150 ns. This relatively
slow rise time is contrasted with the much faster fall time in Figure 14-48. A
friend of the author calls such slow rising transitions ooze.

So why use open-drain outputs? Despite slow rise times, they can be useful
in three applications discussed next: driving light-emitting diodes (LEDs) and
other devices; driving multisource buses; and, in a pinch, performing wired
logic.

Figure 14-47
Open-drain CMOS
NAND gate driving
a load.

A

B

Z C

D

E

R = 1.5 kΩ

+5 V
pull-up
resistor

open-drain
output

Figure 14-48 Rising and falling transitions of an open-drain CMOS output.

tr

VOUT

5 V

3.5 V

1.5 V

0 V
0 50 100 150 200 250 300 time

tf

ooze

DDPP5.book Page 784 Tuesday, March 28, 2017 5:33 PM

14.5 Other CMOS Input and Output Structures 785

*14.5.5 Driving LEDs and Relays
An open-drain output can drive an LED or other device as shown in
Figure 14-49. If either input A or B is LOW, the corresponding n-channel
transistor is off and the LED is off. When A and B are both HIGH, both transistors
are on, the output Z is LOW, and the LED is on. The value of the pull-up resistor
R is chosen so that the proper amount of current flows through the LED in the
“on” state. The same arrangement can be used to drive a relay coil, where the
pull-up value R is chosen to yield enough current flow to activate the relay.

Typical LEDs require 10 mA for normal brightness. HC- and HCT-series
CMOS outputs are only specified to sink or source 4 mA and are not normally
used to drive LEDs. However, the outputs in advanced CMOS families such as
74ACT and 74ALVC can sink 24 mA or more and can be used quite effectively
to drive LEDs and even relays requiring more current.

The following information is used to calculate the pull-up resistor’s value:

1. The LED current ILED needed for the desired brightness, up to 10 mA for
some discrete LEDs but often less.

2. The voltage drop VLED across the LED in the “on” condition, about 1.6 V
for typical LEDs.

3. The power-supply voltage for the LED, VCCL, often the same as VCC.

4. The output voltage VOL of the open-drain output that sinks the LED
current. In the 74AC and 74ACT CMOS families, VOLmax is 0.37 V. If an
output can sink ILED and maintain a lower voltage, say 0.2 V, then the
calculation below yields a resistor value that is a little too low, but normally
with no harm done. A little more current than ILED will flow and the LED
will be just a little brighter than expected.

Using this information, we can write the following equation:

Figure 14-49
Driving an LED
with an open-drain
output.

VCC

A

B

Z

Q1

Q2

R

LED

VOLmax = 0.37 V

ILED = 10 mA

VCCL

VOL VLED ILED R⋅()+ + VCCL=

DDPP5.book Page 785 Tuesday, March 28, 2017 5:33 PM

786 Chapter 14 Digital Circuits

Assuming VCCL = 5.0 V and the other typical values above, we can solve for the
required value of R:

An advantage of the open-drain output is that the LED and CMOS driver
needn’t use the same VCC. If they are the same, an LED can driven by an ordi-
nary CMOS gate output with active pull-up as shown in Figure 14-50(a). If both
inputs are HIGH, the bottom (n-channel) transistors pull the output LOW as in the
open-drain version. If either input is LOW, the output is HIGH; although one or
both of the top (p-channel) transistors is on, no current flows through the LED.

With some CMOS families, you can turn an LED “on” when the output is
in the HIGH state, as shown in Figure 14-50(b). This is possible if the output can
source enough current to satisfy the LED’s requirements. However, method (b)
isn’t used as often as (a), because many CMOS and most TTL outputs cannot
source as much current in the HIGH state as they can sink in the LOW state.

RESISTOR
VALUES

In most applications, the precise value of LED series resistors is unimportant, as long
as groups of nearby LEDs have similar drivers and resistors to give equal apparent
brightness. In the example in this subsection, one might use an off-the-shelf resistor
value of 270, 300, or 330 ohms, whatever is readily available.

R
VCCL VOL VLED––

ILED
---=

5.0 0.37– 1.6–()V 10 mA⁄ 303 Ω= =

Figure 14-50 Driving an LED with an ordinary CMOS output: (a) sinking current,
“on” in the LOW state; (b) sourcing current, “on” in the HIGH state.

A

B

Z

Q1

Q3

Q2 Q4

R

LED

(a)

VCC

A

B

Z

Q1

Q3

Q2 Q4

R

LED

(b)

VCC

DDPP5.book Page 786 Tuesday, March 28, 2017 5:33 PM

14.5 Other CMOS Input and Output Structures 787

*14.5.6 Multisource Buses
Open-drain outputs can be tied together to allow several devices, one at a time,
to put information on a common bus. At any time, all but one of the outputs are
in their HIGH (open) state. The remaining output either stays in the HIGH state
or pulls the bus LOW, depending on whether it wants to transmit a logical 1 or a
logical 0 on the bus. Control circuitry selects the particular device that is allowed
to drive the bus at any time. This method is used in the popular I2C bus.

For example, in Figure 14-51, eight 2-input open-drain NAND-gate outputs
drive a common bus. The top input of each NAND gate is a data bit, and the
bottom input of each is a control bit. At most one control bit is HIGH at any time,
enabling the corresponding data bit to be passed through to the bus. (Actually,
the complement of the data bit is placed on the bus.) The other gate outputs are
HIGH, that is, “open,” so the data input of the enabled gate determines the value
on the bus.

*14.5.7 Wired Logic
If the outputs of several open-drain gates are tied together with a single pull-up
resistor, then wired logic is performed. (That’s wired, not weird!) An AND
function is obtained, since the wired output is HIGH if and only if all of the
individual gate outputs are HIGH (actually, open); any output going LOW is
sufficient to pull the wired output LOW. For example, a 3-input wired AND func-
tion is shown in Figure 14-52. If any of the individual 2-input NAND gates has
both inputs HIGH, it pulls the wired output LOW; otherwise, the pull-up resistor
R pulls the wired output HIGH.

Note that wired logic cannot be performed using gates with active pull-up.
Two such outputs wired together and trying to maintain opposite logic values
result in a very high current flow and an abnormal output voltage. Figure 14-53
shows this situation, which is sometimes called fighting. The exact output
voltage depends on the relative “strengths” of the fighting transistors, but with
5-V CMOS devices it is typically about 1–2 V, almost always a nonlogic
voltage. Worse, if outputs fight continuously for more than a few seconds, the
chips can get hot enough to sustain internal damage and to burn your fingers!

open-drain bus

Figure 14-51 Eight open-drain outputs driving a bus.

Data1

Enable1

Data2

Enable2

Data3

Enable3

Data4

Enable4

Data7

Enable7

Data8

Enable8

VCC
R

DATAOUT

Data5

Enable5

Data6

Enable6

wired logic

wired AND

fighting

DDPP5.book Page 787 Tuesday, March 28, 2017 5:33 PM

788 Chapter 14 Digital Circuits

*14.5.8 Pull-Up Resistors
A proper choice of value for the pull-up resistor R must be made in open-drain
applications. Two calculations are made to bracket the allowable values of R:

Maximum The voltage drop across R in the HIGH state must not reduce the
output voltage below VIHmin for driven gates plus any additional
noise margin that’s desired. This drop is produced by the HIGH-state
output leakage current of the wired outputs and the HIGH-state input
currents of the driven gates.

Figure 14-52 Wired-AND function on three open-drain NAND-gate outputs.

VCC

VCC

A

B

Z

Q1

Q2

2-input
open-drain

NAND gates

VCC

C

D

Q1

Q2

VCC

E

F

Q1

Q2

R

Figure 14-53
Two CMOS outputs
trying to maintain
opposite logic values
on the same line.

trying to pull LOW

trying to pull HIGH

VCC

HIGH

LOW

Z

Q1

Q3

Q2 Q4

VCC

HIGH

HIGH

Q1

Q3

Q2 Q4

≈ 20I ≈
5 V

Rp(on) + Rn(on)
mA

(HC or HCT)

pull-up-resistor
calculation

DDPP5.book Page 788 Tuesday, March 28, 2017 5:33 PM

14.5 Other CMOS Input and Output Structures 789

Minimum The sum of the current through R in the LOW state and the LOW-
state input currents of the gates driven by the wired outputs must not
exceed the LOW-state driving capability of the active output; for
example, 4 mA for HC/HCT and 8 mA for AHC/AHCT devices.

For example, suppose that four HCT open-drain outputs are wired together
and drive two legacy LS-TTL inputs as shown in Figure 14-54. A LOW output
must sink 0.4 mA from each LS-TTL input as well as sink the current through
the pull-up resistor R. For the total current to stay within the HCT IOLmax spec of
4 mA, the current through R may be no more than

Assuming that VOL of the open-drain output is 0.0 V, the minimum value of R is

Figure 14-54
Four open-drain
outputs driving two
inputs in the LOW
state.

VCC = +5 V

R

0.4 mA

0.4 mA

3.2 mA

4 mA

≤ 0.4 V

LOW

LOW

LOW

LOW

LOW

LOW

HIGH

HIGH

HCT open-drain
NAND gates

LS-TTL gates

IR(max) 4 2 0.4⋅()– 3.2 mA= =

Rmin 5.0 0.0–() IR(max)⁄ 1562.5 Ω= =

OPEN-DRAIN
ASSUMPTION

In our open-drain resistor calculations, we assume that the output voltage can be as
low as 0.0 V rather than 0.4 V (VOLmax) in order to obtain a worst-case result. That
is, even if the open-drain output is so strong that it can pull the output voltage all the
way down to 0.0 V (it’s only required to pull down to 0.4 V), we’ll never allow it to
sink more than 4 mA, so it doesn’t get overstressed. Some designers prefer to use
0.4 V in this calculation, figuring that if the output is so good that it can pull lower
than 0.4 V, a little bit of excess sink current beyond 4 mA won’t hurt it.

DDPP5.book Page 789 Tuesday, March 28, 2017 5:33 PM

790 Chapter 14 Digital Circuits

In the HIGH state, typical open-drain outputs have a maximum leakage
current of 5 A, and typical LS-TTL inputs require 20 A of source current.
Hence, the HIGH-state current requirement as shown in Figure 14-55 is

This current produces a voltage drop across R, and must not lower the output
voltage below LS-TTL’s VIHmin = 2.0 V plus an additional, say, 400 mV of noise
margin; thus the maximum value of R is

Hence, any value of R between 1562.5 Ω and 43.3 kΩ may be used. Higher
values reduce power consumption and improve the LOW-state noise margin,
while lower values increase power consumption but improve both the HIGH-
state noise margin and the speed of LOW-to-HIGH output transitions.

14.6 CMOS Logic Families
The first commercially successful CMOS family was 4000-series CMOS.
Although 4000-series circuits offered the benefit of low power dissipation, they
were fairly slow and were not easy to interface with the most popular logic
family of the time, bipolar TTL. Thus, the 4000 series was supplanted in most
applications by the more capable CMOS families discussed in this section.

All of the CMOS devices that we discuss have part numbers of the form
“74FAMnn,” where “FAM” is an alphabetic family mnemonic and nn is a

Figure 14-55
Four open-drain
outputs driving two
inputs in the HIGH
state.

VCC = +5 V

R

LOW

LOW

LOW

LOW

LOW

LOW

LOW

LOW

60 μA
5 μA

20 μA

20 μA

5 μA

5 μA

5 μA

≥ 2.4 V

HCT open-drain
NAND gates

LS-TTL gates

IR(leak) 4 5⋅() 2 20⋅()+ 60 A= =

Rmax 5.0 2.4–() IR(leak)⁄ 43.3 kΩ= =

4000-series CMOS

DDPP5.book Page 790 Tuesday, March 28, 2017 5:33 PM

14.6 CMOS Logic Families 791

numeric function designator. Devices in different families with the same value of
nn perform the same function. For example, the 74HC30, 74HCT30, 74AC30,
74ACT30, 74AHC30, and 74AHCT30 are all 8-input NAND gates.

The prefix “74” is simply a number that was used by an early, popular sup-
plier of TTL devices, Texas Instruments, probably because it didn’t conflict with
any other part-number prefixes. The prefix “54” is used for identical parts that
are specified for operation over a wider range of temperature and power-supply
voltage, for use in military applications. Such parts are usually fabricated in the
same way as their 74-series counterparts, except that they are tested, screened,
and marked differently, a lot of extra paperwork is generated, and a higher price
is charged, of course.

14.6.1 HC and HCT
The first two 74-series CMOS families are HC (High-speed CMOS) and HCT
(High-speed CMOS, TTL compatible). Compared with the original 4000 family,
HC and HCT both have higher speed and better current sinking and sourcing
capability. The HCT family uses a power-supply voltage VCC of 5 V and can be
intermixed with TTL devices, which also use a 5-V supply.

The HC family is optimized for use in systems that use CMOS logic exclu-
sively, which is typical of today’s systems, and can use any power-supply
voltage between 2 and 6 V. A higher voltage is used for higher speed, and a
lower voltage for lower power dissipation. Lowering the supply voltage is espe-
cially effective, since most CMOS power dissipation is proportional to the
square of the voltage (CV2f power).

Even when used with a 5-V supply, HC devices are not quite compatible
with TTL, since HC circuits are designed to recognize CMOS input levels.
Assuming a supply voltage of 5.0 V, Figure 14-56(a) shows the input and output
levels of HC devices. The output levels produced by TTL devices do not quite
match this range, so HCT devices use the different input levels shown in (b).
These levels are obtained using transistors with different switching thresholds,
yielding the different transfer characteristics shown in Figure 14-57. However,
the output characteristics of HC and HCT devices are essentially identical.

HC (High-speed
CMOS)

HCT (High-speed
CMOS, TTL
compatible)

Figure 14-56 Input and output levels for CMOS devices using a 5-V supply: (a) HC; (b) HCT.

ABNORMAL

HIGH
 VCC = 5.0 V

0.0 V 0.0 V

VIHmin = 3.5 V
VOHminT = 3.84V

VOLmaxT = 0.33 V

VILmax = 1.5 V

ABNORMAL

LOW

HIGH

HC Logic Levels
 VCC = 5.0 V

VIHmin = 2.0 V

VILmax = 0.8 V

HCT Logic Levels

(a) (b)

VOHminT = 3.84V

VOLmaxT = 0.33 V
LOW

DDPP5.book Page 791 Tuesday, March 28, 2017 5:33 PM

792 Chapter 14 Digital Circuits

14.6.2 AHC and AHCT
Several new CMOS families were introduced in the 1980s and the 1990s. Two
of the most recent and probably the most versatile are AHC (Advanced High-
speed CMOS) and AHCT (Advanced High-speed CMOS, TTL compatible).
These families are two to three times as fast as HC/HCT while maintaining
backward compatibility with their predecessors. Like HC and HCT, the AHC
and AHCT families differ from each other only in the input levels that they rec-
ognize; their output characteristics are the same.

Both AHC/AHCT and HC/HCT outputs have symmetric output drive. That
is, an output can sink or source equal amounts of current; the output is just as
“strong” in both states. Some other logic families, especially ones originally
designed for TTL compatibility, have asymmetric output drive; they can sink
much more current in the LOW state than they can source in the HIGH state.

*14.6.3 HC, HCT, AHC, and AHCT Electrical Characteristics
Electrical characteristics of the HC, HCT, AHC, and AHCT families are
summarized in this subsection. The specifications assume that the devices are
used with a nominal 5-V power supply, although (derated) operation is possible
with any supply voltage in the range 2–5.5 V (up to 6 V for HC/HCT). We’ll take
a closer look at low-voltage and mixed-voltage operation in Section 14.7.

Commercial (74-series) parts are intended to be operated at temperatures
between 0°C and 70°C, while military (54-series) parts are characterized for
operation between −55°C and 125°C. The specs in Table 14-3 assume an
operating temperature of 25°C. A full manufacturer’s data sheet provides
additional specifications for device operation over the entire temperature range.

Most devices within a given logic family have the same electrical specifi-
cations for inputs and outputs, typically differing only in power consumption

Figure 14-57
Transfer characteristics of
HC and HCT circuits
under typical conditions.

5.0
HCT

HC

0
0 1.4 2.5 5.0

VIN

VOUT

AHC (Advanced High-
speed CMOS)

AHCT (Advanced High-
speed CMOS, TTL
compatible)

VERY =
ADVANCED,

SORT OF

The AHC and AHCT logic families are manufactured by several companies, includ-
ing Texas Instruments and NXP (formerly Philips) Semiconductors. Compatible
families with similar but not identical specifications are manufactured by STMicro,
ON Semiconductor (formerly Fairchild), and Toshiba; they are called VHC and
VHCT, where the “V” stands for “Very.”

symmetric output drive

asymmetric output drive

DDPP5.book Page 792 Tuesday, March 28, 2017 5:33 PM

14.6 CMOS Logic Families 793

and propagation delay. Table 14-3 includes specifications for a 74x00 2-input
NAND gate and a 74x138 3-to-8 decoder in the HC, HCT, AHC, and AHCT
families. The ’00 NAND gate is included as the smallest logic-design building
block in each family, while the ’138 is an MSI part containing the equivalent of
about 15 NAND gates.

The first row of Table 14-3 specifies propagation delay. As discussed in
Section 14.4.2, two numbers, tpHL and tpLH, may be used to specify delay; the
number in the table is the worst case of the two. The propagation delay for the
’138 is somewhat longer than for the ’00, since signals must travel through three
or four levels of gates internally.

The second and third rows of the table show that the quiescent power
dissipation of these CMOS devices is practically nil, well under a milliwatt
(mW) if the inputs have CMOS levels—0 V for LOW and VCC for HIGH. (Note

Table 14-3 Speed and power characteristics of selected CMOS families operating at 5 V.

Family

Description Part Symbol Condition HC HCT AHC AHCT

Typical propagation delay (ns) ’00
’138

tPD 9
18

10
20

3.7
5.7

5
7.6

Quiescent power-supply
current (A)

’00
’138

ICC Vin = 0 or VCC
Vin = 0 or VCC

2.5
40

2.5
40

5.0
40

5.0
40

Quiescent power dissipation
(mW)

’00
’138

Vin = 0 or VCC
Vin = 0 or VCC

0.0125
0.2

0.0125
0.2

0.025
0.2

0.025
0.2

Power-dissipation capacitance
(pF)

’00
’138

CPD
CPD

22
55

15
51

2.4
13

2.6
14

Dynamic power dissipation
(mW/MHz)

’00
’138

0.55
1.38

0.38
1.28

0.06
0.33

0.065
0.35

Total power dissipation (mW) ’00
’00
’00

’138
’138
’138

f = 100 kHz
f = 1 MHz
f = 10 MHz
f = 100 kHz
f = 1 MHz
f = 10 MHz

0.068
0.56

5.5
0.338

1.58
14.0

0.050
0.39

3.8
0.328

1.48
13.0

0.031
0.085

0.63
0.23
0.53
3.45

0.032
0.09
0.68
0.24
0.55

3.7

Speed-power product (pJ) ’00
’00
’00

’138
’138
’138

f = 100 kHz
f = 1 MHz
f = 10 MHz
f = 100 kHz
f = 1 MHz
f = 10 MHz

0.61
5.1
50

6.08
28.4
251

0.50
3.9
38

6.55
29.5
259

0.11
0.31
2.3

1.33
2.99
19.7

0.16
0.45
3.38
1.79

4.2
28.1

DDPP5.book Page 793 Tuesday, March 28, 2017 5:33 PM

794 Chapter 14 Digital Circuits

that in the table, the quiescent power dissipation numbers given for the ’00 are
per gate, while for the ’138 they apply to the entire MSI device.)

As we discussed in Section 14.4.3, the dynamic power dissipation of a
CMOS gate depends on the voltage swing of the output (usually VCC), the output
transition frequency (f), and the capacitance that is being charged and
discharged on transitions, according to the formula

Here, CPD is the power-dissipation capacitance of the device and CL is the
capacitance of the load attached to the CMOS output in a given application. The
table lists both CPD and an equivalent dynamic power-dissipation factor in units
of milliwatts per megahertz, assuming that CL = 0. Using this factor, the total
power dissipation is computed at various frequencies as the sum of the dynamic
power dissipation at that frequency and the quiescent power dissipation.

Shown next in the table, the speed-power product is simply the product of
the propagation delay and power consumption of a typical gate; the result is
measured in picojoules (pJ). Recall from physics that the joule is a unit of
energy, so the speed-power product measures a sort of efficiency—how much
energy a logic gate uses to switch its output. In this day and age, it’s obvious that
the lower the energy usage, the better.

Table 14-4 gives the input specs of typical CMOS devices in each of the
families. Some of the specs assume that the 5-V supply has a ±10% margin; that
is, VCC can be anywhere between 4.5 and 5.5 V. These parameters were
discussed in previous sections, but for reference purposes, their meanings are
summarized here:

IImax The maximum input current for any value of input voltage. This spec
states that the current flowing into or out of a CMOS input is 1 A or
less for any value of input voltage. In other words, CMOS inputs create
almost no DC load on the circuits that drive them.

PD CL CPD+() VDD
2 f⋅ ⋅=

speed-power product

Table 14-4 Input specifications for CMOS families with VCC between 4.5 and 5.5 V.

Family

Description Symbol Condition HC HCT AHC AHCT

Input leakage current (A) IImax Vin = any ±1 ±1 ±1 ±1

Maximum input capacitance (pF) CINmax 10 10 10 10

LOW-level input voltage (V) VILmax 1.35 0.8 1.35 0.8

HIGH-level input voltage (V) VIHmin 3.85 2.0 3.85 2.0

DDPP5.book Page 794 Tuesday, March 28, 2017 5:33 PM

14.6 CMOS Logic Families 795

CINmax The maximum capacitance of an input. This number can be used when
figuring the AC load on an output that drives this and other inputs. Most
manufacturers also specify a lower, typical input capacitance of 2 to
5 pF, which gives a good estimate of AC load if you’re not unlucky.

VILmax The maximum voltage that an input is guaranteed to recognize as LOW.
Note that the values are different for HC/AHC versus HCT/AHCT. The
“CMOS” value, 1.35 V, is 30% of the minimum power-supply voltage,
while the “TTL” value is 0.8 V for compatibility with TTL families.

VIHmin The minimum voltage that an input is guaranteed to recognize as HIGH.
The “CMOS” value, 3.85 V, is 70% of the maximum power-supply
voltage, while the “TTL” value is 2.0 V for compatibility with TTL
families. (Unlike CMOS levels, TTL input levels are not symmetric
with respect to the power-supply rails.)

The specifications for TTL-compatible CMOS outputs usually have two
sets of output parameters; one set or the other is used depending on how an
output is loaded. A CMOS load is one that requires the output to sink and source
very little DC current, 20 A for HC/HCT and 50 A for AHC/AHCT. This is,
of course, the case when the CMOS outputs drive only CMOS inputs. With
CMOS loads, CMOS outputs maintain an output voltage within 0.1 V of the
supply rails, 0 and VCC. (A worst-case VCC = 4.5 V is used for the table entries;
hence, VOHminC = 4.4 V.)

A TTL load is one that consumes much more sink and source current, up to
4 mA from an HC/HCT output and 8 mA from an AHC/AHCT output. In this
case, a higher voltage drop occurs across the “on” transistors in the output cir-
cuit, but the output voltage is still guaranteed to be within the normal range for
TTL. While it’s very unlikely for your designs to use TTL nowadays, these specs
are useful if you need to drive any other load that consumes significant current.

Table 14-5 lists CMOS output specifications for both CMOS and TTL
loads. These parameters have the following meanings:

IOLmaxC The maximum current that an output can supply in the LOW state
while driving a CMOS load. Since this is a positive value, current
flows into the output pin.

IOLmaxT The maximum current that an output can supply in the LOW state
while driving a TTL load.

SAVING ENERGY There are practical as well as geopolitical reasons for saving energy in digital sys-
tems. Lower energy consumption means lower cost of power supplies and cooling
systems. Also, a digital system’s reliability is improved more by running it cooler
than by any other single reliability improvement strategy.

CMOS load

TTL load

DDPP5.book Page 795 Tuesday, March 28, 2017 5:33 PM

796 Chapter 14 Digital Circuits

VOLmaxC The maximum voltage that a LOW output is guaranteed to produce
while driving a CMOS load, that is, as long as IOLmaxC is not exceeded.

VOLmaxT The maximum voltage that a LOW output is guaranteed to produce
while driving a TTL load, that is, as long as IOLmaxT is not exceeded.

IOHmaxC The maximum current that an output can supply in the HIGH state
while driving a CMOS load. Since this is a negative value, positive
current flows out of the output pin.

IOHmaxT The maximum current that an output can supply in the HIGH state
while driving a TTL load.

VOHminC The minimum voltage that a HIGH output is guaranteed to produce
while driving a CMOS load, that is, as long as IOHmaxC is not exceeded.

VOHminT The minimum voltage that a HIGH output is guaranteed to produce
while driving a TTL load, that is, as long as IOHmaxT is not exceeded.

The voltage parameters above determine DC noise margins. The LOW-
state DC noise margin is the difference between VOLmax and VILmax. This
depends on the characteristics of both the driving output and the driven inputs.
For example, the LOW-state DC noise margin of HCT driving a few HCT inputs
(a CMOS load) is 0.8 − 0.1 = 0.7 V. With a TTL load, the noise margin for the
HCT inputs drops to 0.8 − 0.33 = 0.47 V. Similarly, the HIGH-state DC noise
margin is the difference between VOHmin and VIHmin. In general, when different
families are interconnected, you have to compare the appropriate VOLmax and
VOHmin of the driving gate with VILmax and VIHmin of all the driven gates to
determine the worst-case noise margins.

The IOLmax and IOHmax parameters in the table determine fanout capability
and are especially important when an output drives inputs in one or more
different families. Two calculations must be performed to determine whether an
output is operating within its rated fanout capability:

Table 14-5 Output specifications for CMOS families operating with VCC between 4.5 and 5.5 V.

Family

Description Symbol Condition HC HCT AHC AHCT

LOW-level output current (mA) IOLmaxC
IOLmaxT

CMOS load
TTL load

0.02
4.0

0.02
4.0

0.05
8.0

0.05
8.0

LOW-level output voltage (V) VOLmaxC
VOLmaxT

Iout ≤ IOLmaxC
Iout ≤ IOLmaxT

0.1
0.33

0.1
0.33

0.1
0.44

0.1
0.44

HIGH-level output current (mA) IOHmaxC
IOHmaxT

CMOS load
TTL load

−0.02
−4.0

−0.02
−4.0

−0.05
−8.0

−0.05
−8.0

HIGH-level output voltage (V) VOHminC
VOHminT

|Iout | ≤ | IOHmaxC|
| Iout | ≤ |IOHmaxT |

4.4
3.84

4.4
3.84

4.4
3.80

4.4
3.80

DDPP5.book Page 796 Tuesday, March 28, 2017 5:33 PM

14.6 CMOS Logic Families 797

HIGH-state fanout The IIHmax values for all of the driven inputs are added. The
sum must not exceed IOHmax of the driving output.

LOW-state fanout The IILmax values for all of the driven inputs are added. The
sum must not exceed IOLmax of the driving output

Note that the input and output characteristics of specific components may vary
from the representative values given in Table 14-5, so you must always consult
the manufacturers’ data sheets when analyzing a real design.

*14.6.4 AC and ACT
Introduced in the mid-1980s, a pair of more advanced CMOS families are aptly
named— AC (Advanced CMOS) and ACT (Advanced CMOS, TTL compatible).
These families are very fast, and they can source or sink a lot of current, up to
24 mA in either state. Like HC and HCT, and AHC and AHCT, the AC and ACT
families differ only in the input levels that they recognize; their output charac-
teristics are the same. Also like the other CMOS families, AC/ACT outputs have
symmetric output drive.

Devices in the AC and especially ACT families were popular because of
their ability to drive heavy DC loads, including TTL devices. Their outputs also
have very fast rise and fall times, which contributes to faster overall system oper-
ation, but at a price. The rise and fall times are so fast that they are often a major
source of “analog” problems, including switching noise and ground bounce. As
a result, the families in the next subsection were developed, and they gradually
supplanted the ACT family in most applications requiring TTL compatibility.

*14.6.5 FCT and FCT-T
In the early 1990s, yet another CMOS family was launched. The key benefit of
the FCT (Fast CMOS, TTL compatible) family was its ability to meet or exceed
the speed and the output drive capability of the best TTL families while reducing
power consumption and maintaining full compatibility with TTL. FCT output
circuits are specifically designed with rise and fall times that are more controlled
as compared to those of AC/ACT outputs, so FCT outputs do not create quite the
same magnitude of “analog” problems.

Still, the original FCT family had the drawback of producing a full 5-V
CMOS VOH, creating enormous CV2f power dissipation and circuit noise as its
outputs swung from 0 V to almost 5 V in high-speed (25 MHz+) applications. A
variation of the family, FCT-T (Fast CMOS, TTL compatible with TTL VOH), was
quickly introduced with circuit innovations to reduce the HIGH-level output
voltage, thereby reducing both power consumption and switching noise while
maintaining the same high operating speed as the original FCT. A suffix of “T”
is used on part numbers to denote the FCT-T output structure; for example,
74FCT138T versus 74FCT138.

AC (Advanced CMOS)
ACT (Advanced CMOS,

TTL compatible)

FCT (Fast CMOS, TTL
compatible)

FCT-T (Fast CMOS,
TTL compatible with
TTL VOH)

DDPP5.book Page 797 Tuesday, March 28, 2017 5:33 PM

798 Chapter 14 Digital Circuits

14.7 Low-Voltage CMOS Logic and Interfacing
All of the CMOS logic families that we described in the previous section can and
often do operate with a 5-V power supply. However, two factors have led the IC
industry to move toward lower power-supply voltages in CMOS devices:

• In most applications, CMOS output voltages swing from rail to rail, so the
V in the CV2f equation is the power-supply voltage. Cutting power-supply
voltage reduces dynamic power dissipation more than proportionally.

• As the industry moves toward ever-smaller transistor geometries, the oxide
insulation between a CMOS transistor’s gate and its source and drain is
getting ever thinner, and thus incapable of insulating voltage potentials as
“high” as 5 V.

As a result, JEDEC, an IC industry standards group, selected 3.3V ± 0.3V,
2.5V ± 0.2V, 1.8V ± 0.15V, 1.5V ± 0.1V, 1.2V ± 0.1V, and 1.0V ± 0.1V as the
next “standard” logic power-supply voltages. JEDEC standards specify the input
and output logic voltage levels for devices operating with these power-supply
voltages. In addition to complying with these JEDEC standards, some devices
are specified to operate with a supply as low as 0.7 V.

A few of the new low-voltage CMOS logic families and key characteristics
are listed below:

• LV (Low-Voltage) CMOS devices are specified to operate at 5.0 V, 3.3 V,
or 2.5 V, and have CMOS-compatible input thresholds (0.3 and 0.7 times
VCC).

• LVC (Low-Voltage CMOS) devices are specified to operate at 3.3 V, 2.5 V.
and 1.8 V and have high-current outputs for driving buses. They have TTL-
compatible input levels when operating at 3.3 V and they tolerate input
levels as high as 5.5 V.

• ALVC (Advanced Low-Voltage CMOS) devices are similar to LVC, but are
intended for use in low-voltage CMOS-only systems and subsystems (only
tolerating inputs up to 3.6 V) and have somewhat better performance.

• AVC (Advanced Very-low-voltage CMOS) devices are specified to operate
at 3.3 V, 2.5 V and 1.8 V.

• AUC (Advanced Ultra-low-voltage CMOS) devices are specified to operate
at 2.5 V, 1.8 V, and 1.2 V, and are optimized for 1.8-V operation.

MORE CMOS
LOGIC FAMILIES

Since the 1990s, still more CMOS logic families have been introduced, mainly to
support lower-voltage operation and to take advantage of spec improvements that
have been made possible by overall advances in CMOS technology. We’ll discuss
low-voltage CMOS logic and interfacing in general in the next section.

DDPP5.book Page 798 Tuesday, March 28, 2017 5:33 PM

14.7 Low-Voltage CMOS Logic and Interfacing 799

The migration to lower voltages has occurred in stages and will continue to
do so. For discrete logic families, the trend has been to produce parts that operate
and produce outputs at the lower voltage but that can also tolerate inputs at the
higher voltage. This approach allowed 3.3-V CMOS families to operate with
5-V CMOS and TTL families when the voltage migration first began, and has
continued to ease interoperation of families at adjacent standard voltages.

*14.7.1 3.3-V LVTTL and LVCMOS Logic Levels
The relationships among signal levels for standard TTL and low-voltage CMOS
devices operating at their nominal power-supply voltages are illustrated nicely
in Figure 14-58, adapted from a Texas Instruments application note. The origi-
nal, symmetric signal levels for pure 5-V CMOS families such as HC and AHC
are shown in (a). TTL-compatible CMOS families such as HCT, AHCT, and
FCT shift the voltages downward for compatibility with TTL as shown in (b).

The first step in the progression of lower CMOS power-supply voltages
was 3.3 V. The JEDEC standards for 3.3-V logic actually define two sets of
levels. LVCMOS (low-voltage CMOS) levels are used in pure CMOS applica-
tions where outputs have light DC loads (less than 100 μA), so VOL and VOH
are maintained within 0.2 V of the power-supply rails. LVTTL (low-voltage TTL)
levels, shown in Figure 14-58(c), are used when outputs may have significant
DC loads, so VOL can be as high as 0.4 V and VOH can be as low as 2.4 V.

The positioning of TTL’s logic levels at the low end of the 5-V range was
really quite fortuitous. As shown in Figure 14-58(b) and (c), it was possible to
define the LVTTL levels to match up with TTL levels exactly. Thus, an LVTTL

LVCMOS (low-voltage
CMOS) levels

Figure 14-58 Comparison of logic levels: (a) 5-V CMOS; (b) 5-V TTL, including 5-V TTL-compatible
CMOS; (c) 3.3-V LVTTL; (d) 2.5-V CMOS; (e) 1.8-V CMOS; (f) 1.5-V CMOS.

VCC5.0 V

VOH4.44 V

VIH3.5 V

VT2.5 V

VIL1.5 V

VOL0.5 V

GND0.0 V

VCC5.0 V

VOH2.4 V

VIH2.0 V

VT1.5 V

VIL0.8 V

VOL0.4 V

GND0.0 V

VCC3.3 V

VOH2.4 V

VIH2.0 V

VT1.5 V

VIL0.8 V

VOL0.4 V

GND0.0 V

VCC2.5 V

VOH2.0 V

VIH1.7 V

VT1.2 V

VIL0.7 V

VOL0.4 V

GND0.0 V

VCC1.8 V

VOH1.35 V
VIH1.17 V
VT0.9 V
VIL0.63 V
VOL0.45 V

GND0.0 V

5-V CMOS Families 5-V TTL Families 3.3-V LVTTL Families 2.5-V CMOS Families 1.8-V CMOS Families

(a) (b)

(c)

(d)

(e)

VCC1.5 V

VOH1.15 V
VIH0.975 V
VT0.75 V
VIL0.525 V
VOL0.35 V

GND0.0 V

1.5-V CMOS Families

(f)

LVTTL (low-voltage
TTL) levels

DDPP5.book Page 799 Tuesday, March 28, 2017 5:33 PM

800 Chapter 14 Digital Circuits

output can drive a TTL input with no problem, as long as its output current
specifications (IOLmax, IOHmax) are respected. Similarly, a TTL output can drive
an LVTTL input, except for the problem of driving it beyond LVTTL’s 3.3-V
VCC, as discussed in the next subsection.

Notice the narrowing of the ranges of valid logic levels and the DC noise
margins in the even lower-voltage standards in Figure 14-58(d) through (f). This
narrowing further increases the importance of minimizing analog effects like
switching noise and ground bounce in modern high-speed designs.

*14.7.2 5-V Tolerant Inputs
The inputs of a gate won’t necessarily tolerate voltages greater than VCC. This is
a problem when two different logic-voltage ranges are used in a system. For
example, 5-V CMOS devices easily produce 4.9-V outputs when lightly loaded,
and both CMOS and TTL devices routinely produce 4.0-V outputs even when
moderately loaded. The inputs of 3.3-V devices may not like these high voltages.

The maximum voltage VImax that an input can tolerate is listed in the “abso-
lute maximum ratings” section of the manufacturer’s data sheet. For HC devices,
VImax equals VCC. Thus, if an HC device is powered by a 3.3-V supply, its inputs
cannot be driven by any 5-V CMOS or TTL outputs without damage. For AHC
devices, on the other hand, VImax is 5.5 V; thus, AHC devices with a 3.3-V power
supply may be used to convert 5-V outputs to 3.3-V levels for use with 3.3-V
microprocessors, memories, and other devices in a pure 3.3-V subsystem.

Figure 14-59 helps to explain why some inputs are 5-V tolerant and others
are not. As shown in (a), the HC and HCT input structure actually contains two
reverse-biased clamp diodes, which we haven’t shown before, between each
input signal and VCC and ground. The purpose of these diodes is specifically to
shunt any transient input signal voltage less than 0 through D1 or greater than
VCC through D2 to the corresponding power-supply rail. Such transients often
result from transmission-line reflections that can occur on “long” signal lines—
ones whose propagation delay is longer than a signal’s transition time. Shunting

MORE POWER
(SUPPLIES)

TO YOU

Many microprocessors, FPGAs, and ASICs use a simple approach to accommodate
different internal and external logic levels—they have two or more power-supply
voltages. A low voltage, such as 1.2 V, is supplied to operate the chip’s internal
gates, or core logic. One or more higher voltages, such as 2.5 V or 3.3 V, are used to
operate the external input and output circuits, or pad ring, for compatibility with
older-generation devices in the system. Special buffer circuits are used internally to
translate safely and quickly between the core-logic and the pad-ring logic voltages.
In modern microprocessors, the internal voltage is often varied dynamically depend-
ing on the application’s needs—a lower voltage for lower power, and a higher
voltage for higher speed.

clamp diode

DDPP5.book Page 800 Tuesday, March 28, 2017 5:33 PM

14.7 Low-Voltage CMOS Logic and Interfacing 801

the transients, called “undershoot” and “overshoot,” to ground or VCC reduces
the magnitude and duration of reflections.

Of course, diode D2 can’t distinguish between transient overshoot and a
persistent input voltage greater than VCC. Hence, if a 5-V output is connected to
one of these inputs, it will not see the very high impedance normally associated
with a CMOS input. Instead, it will see a relatively low impedance path to VCC
through the now forward-biased diode D2, and excessive current will flow.

Figure 14-59(b) shows a 5-V tolerant CMOS input. This input structure
simply omits D2; diode D1 is still provided to clamp undershoot. The AHC
family uses this input structure.

The kind of input structure shown in Figure 14-59(b) is necessary but not
sufficient to create 5-V tolerant inputs. The transistors in a device’s particular
fabrication process must also be able to withstand voltage potentials higher than
VCC. On this basis, VImax in the AHC family is limited to 5.5 V. In some 3.3-V
ASIC processes, it’s not possible to get 5-V tolerant inputs, even if you’re will-
ing to give up the transmission-line benefits of diode D2.

*14.7.3 5-V Tolerant Outputs
Five-volt tolerance must also be considered for outputs, in particular, when both
3.3-V and 5-V three-state outputs are connected to a bus. When the 3.3-V output
is in the Hi-Z, disabled state, a 5-V device may be driving the bus, and a 5-V
signal may appear on the 3.3-V device’s output.

In this situation, Figure 14-60 explains why some outputs are 5-V tolerant
and others are not. As shown in (a), the standard CMOS three-state output has an
n-channel transistor Q1 to ground and a p-channel transistor Q2 to VCC. When
the output is disabled, circuitry (not shown) holds the gate of Q1 near 0 V, and
the gate of Q2 near VCC, so both transistors are off and Y is Hi-Z.

Now consider what happens if VCC is 3.3 V and a different device applies a
5-V signal to the output pin Y in Figure 14-60(a). Then the drain of Q2 (Y) is at
5 V while the gate (V2) is still at only 3.3 V. With the gate at a lower potential

Figure 14-59
CMOS input
structures:
(a) 5-V intolerant HC;
(b) 5-V tolerant AHC.

Q2

VI

VCC

Q1

D2

D1

Q2

VI

VCC

Q1

D1

(a) (b)

DDPP5.book Page 801 Tuesday, March 28, 2017 5:33 PM

802 Chapter 14 Digital Circuits

than the drain, Q2 will begin to conduct and provide a relatively low-impedance
path from Y to VCC, and excessive current will flow. Both HC and AHC three-
state outputs have this structure and therefore are not 5-V tolerant.

In newer, low-voltage CMOS families, manufacturers use various circuit
structures to protect three-state outputs in this situation. Figure 14-60(b) shows
one that was once used in Texas Instruments’ LVC family. An extra p-channel
transistor Q3 is used to prevent Q2 from turning on when it shouldn’t. When
VOUT is greater than VCC, Q3 turns on. This forms a relatively low impedance
path from Y to the gate of Q2, which now stays off because its gate voltage V2
can no longer be below the drain voltage.

*14.7.4 TTL/LVTTL Interfacing Summary
Based on the information in the preceding subsections, TTL (5-V) and LVTTL
(3.3-V) devices can be mixed in the same system subject to three rules:

1. LVTTL outputs can drive TTL inputs directly, subject to the usual con-
straints on output current (IOLmax, IOHmax) of the driving devices.

2. TTL outputs can drive LVTTL inputs if the inputs are 5-V tolerant.

3. TTL and LVTTL three-state outputs can drive the same bus if the LVTTL
outputs are 5-V tolerant.

*14.7.5 Logic Levels Less Than 3.3 V
Issues of input and output voltage tolerance must also be considered when mix-
ing lower-voltage CMOS devices. For example, can the input of an AUC device
operating at 1.8 V be connected to a bus driven by a 3.3-V or even a 2.5-V out-
put? The answer is yes, AUC inputs tolerate a maximum of 3.6 V, but you must
study the datasheets to learn that.

If the voltage levels in a mixed-level situation are tolerated, there is still the
question of whether the logic levels are properly recognized. This usually must
be examined in both directions—higher voltage driving lower and vice versa—
and both logic states, HIGH and LOW.

Figure 14-60
CMOS three-state
output structures:
(a) 5-V intolerant HC
and AHC;
(b) 5-V tolerant LVC.

Q2

VOUT

VCC

Q1

(a) (b)

Y

Q2

VOUT

VCC

Q1

Y
VCC Q3

V2VCC≈

≈ 0V

V2 VOUT≈

≈ 0V

DDPP5.book Page 802 Tuesday, March 28, 2017 5:33 PM

14.8 Differential Signaling 803

For example, a quick look at Figure 14-58(c) and (d) on page 799 shows
that VOH of a 2.5-V output equals VIH of a 3.3-V input. In other words, there is
zero HIGH-state DC noise margin when a 2.5-V output drives a 3.3-V input—
not a good situation, but it could be worse.

Comparing the logic levels for 2.5-V and 1.8-V logic, you can see that the
minimum HIGH output voltage for 1.8-V logic is quite a bit lower than what can
be recognized as HIGH by a 2.5-V input. A smaller mismatch occurs between
1.8-V and 1.5-V logic, but it still cannot be ignored.

The solution to these problems is to use a level shifter (or level translator),
a device which is powered by both supply voltages and which internally boosts
the lower logic levels to the higher ones. For example, the 74ALVC164245 level
shifter can connect two 16-bit buses with different logic levels on its two sides.
One side could use 5.0-V or 3.3-V power and logic levels, while the other side
uses 2.5-V or 1.8-V power and logic levels.

Many of today’s ASICs, FPGAs, and microprocessors contain level trans-
lators internally. This allows them to operate, for example, with a 1.8-V or lower
core and a 3.3-V pad ring, as we discussed in the box on page 800.

14.8 Differential Signaling
For greater noise immunity, a logic signal can be transmitted on two wires using
differential signaling. Instead of referencing an absolute voltage level, the logic
value on a differential pair depends on the voltage difference between the two
wires, 1 for a positive difference and 0 for negative. Assuming that the two wires
are routed next to each other for their entire signal path, the idea is that any noise
will affect both signals equally, leaving their difference more-or-less unchanged.
This scheme allows a much lower the absolute voltage swing for each signal
polarity while still providing a great deal of noise immunity. The lower voltage
swings also allow higher frequency operation, since for any fixed transition
speed (V/ns), a smaller voltage difference means shorter transition time.

Differential signals are sometimes called doubled-ended, and ordinary
signals on one wire are called single-ended. Logic symbols and function tables
for differential drivers and receivers are shown in Figure 14-61. The receiver’s
function table indicates that any positive voltage difference is a 1, and negative is
a 0. A device’s datasheet will specify the minimum absolute voltage difference
required for reliable detection of the input logic level.

level shifter
level translator

differential signaling

double-ended signaling
single-ended signaling

Figure 14-61 Differential signaling: (a) driver and function table; (b,c) receiver and function table.

OUTP

OUTN
IN

(a)
IN

0
1

OUTP

L
H

(b)
OUTN

H
L

INP

INN
OUT

(c)

–

+

INP – INN

> 0
< 0

(d)
OUT

0
1

DDPP5.book Page 803 Tuesday, March 28, 2017 5:33 PM

804 Chapter 14 Digital Circuits

References
After seeing the results of last few decades’ amazing pace of development in
digital electronics, it’s easy to forget that logic circuits had an important place in
technologies that came before the transistor. In Chapter 5 of Introduction to the
Methodology of Switching Circuits (Van Nostrand, 1972), George J. Klir shows
how logic can be (and has been) performed by a variety of physical devices,
including relays, vacuum tubes, and pneumatic systems.

For another perspective on the electronics material in this chapter, you can
consult almost any modern electronics text. Many contain a much more analyti-
cal discussion of digital circuit operation; for example, see Introduction to
Electronic Circuit Design by R. Spencer and M. Ghausi (Pearson, 2003). A good
introduction to ICs and logic families can be found in Digital Integrated Circuits
by J. M. Rabaey, A. Chandrakasan, and B. Nikolic (Pearson, 2003, second
edition).

A light-hearted and very readable introduction to digital circuits can be
found in Clive Maxfield’s Bebop to the Boolean Boogie (Newnes, 2008, third
edition). Some people think that the seafood gumbo recipe in Appendix H is
alone worth the price! Even without the recipe, the book is a well-illustrated
classic that guides you through the basics of digital electronics fundamentals,
components, and processes.

A sound understanding of the electrical aspects of digital circuit operation,
including capacitive effects, inductive effects, and transmission-line effects, is
mandatory for successful high-speed circuit design. Unquestionably, the best
book on this subject is High-Speed Digital Design: A Handbook of Black Magic,
by Howard Johnson and Martin Graham (Prentice Hall, 1993). It combines solid
electronics principles with tremendous insight and experience in the design of
practical digital systems. Also see Johnson’s follow-on book, High-Speed Signal
Propagation: Advanced Black Magic (Prentice Hall, 2003).

Characteristics of today’s logic families can be found in the data sheets
published by the device manufacturers. Old-time digital designers are proud of
their collections of thick databooks published by the device manufacturers, but
nowadays all of the latest specs can be found on the Web. Among the better sites
for logic-family data sheets and design application notes are www.ti.com (Texas
Instruments) and www.onsemi.com (formerly Fairchild Semiconductor).

Over the years, the JEDEC (Joint Electron Device Engineering Council)
has published and updated standards for digital logic levels from 3.3 V (first
published in 1994) all the way down to 1.0 V (2007). Their standards can be
found at www.jedec.org; registration is required but free.

DDPP5.book Page 804 Tuesday, March 28, 2017 5:33 PM

Drill Problems 805

Drill Problems
14.1 The Stub Series Terminated low Voltage (SSTV) logic family, used for SDRAM

modules, defines a LOW signal to be in the range 0.0–0.7 V and a HIGH signal to
be in the range 1.7–2.5 V. Under a positive-logic convention, indicate the logic
value associated with each of the following signal levels:

14.2 Repeat Drill 14.1 using a negative-logic convention.

14.3 Discuss how a logic buffer amplifier is different from an audio amplifier.

14.4 Is a buffer amplifier equivalent to a 1-input AND gate or a 1-input OR gate?

14.5 Write three completely different definitions of “gate” used in this chapter.

14.6 How many transistors are used in a 2-input CMOS NOR gate? How many of each
type are used?

14.7 (Hobbyists only.) Draw an equivalent circuit for a CMOS NOR gate using two
single-pole, double-throw 110-V relays.

14.8 For a given silicon area, which is likely to be faster, a CMOS NAND gate or a
CMOS NOR?

14.9 Define “fan-in” and “fanout.” Which one are you or an EDA tool likely to have to
calculate?

14.10 Draw the circuit diagram, function table, and logic symbol for a 3-input CMOS
NOR gate in the style of Figure 14-12.

14.11 Draw switch models in the style of Figure 14-10 for a 2-input CMOS NOR gate
for all four input combinations.

14.12 Draw a circuit diagram, function table, and logic symbol for a CMOS OR gate in
the style of Figure 14-15.

14.13 Which has fewer transistors, a 3-input CMOS inverting gate or a noninverting
gate?

14.14 Name and draw the logic symbols of two different 3-input CMOS gates that each
use six transistors.

14.15 Name and draw the logic symbols for two more 3-input CMOS gates using six
transistors each, that you didn’t give in Drill 14.14’s answer.

14.16 Name and draw the logic symbol of a 3-input CMOS gate that uses only three
transistors.

14.17 Which 8-input CMOS gate would you expect to be faster, NAND or AND? Why?

14.18 How is it that perfume can be bad for digital designers?

14.19 Using the data sheet in Table 14-1, determine the worst-case LOW-state and
HIGH-state DC noise margins of the 74HC00. State any assumptions required by
your answer.

14.20 Using the specs in Tables 14-4 and 14-5, determine the HIGH-state DC noise
margins of the 74HCT devices driving 74HCT for both CMOS and TTL loads.

(a) 0.1 V (b) 0.7 V (c) 1.7 V (d) −0.6 V

(e) 1.6 V (f) −2.0 V (g) 2.4 V (h) 3.3 V

DDPP5.book Page 805 Tuesday, March 28, 2017 5:33 PM

806 Chapter 14 Digital Circuits

14.21 The circuit in Figure X14.21(a) is a type of CMOS AND-OR-INVERT gate. Write
a function table for this circuit in the style of Figure 14-11(b), and a correspond-
ing logic diagram using AND and OR gates and inverters.

14.22 The circuit in Figure X14.21(b) is a type of CMOS OR-AND-INVERT gate. Write
a function table for this circuit in the style of Figure 14-11(b), and a correspond-
ing logic diagram using AND and OR gates and inverters.

14.23 Search online for the Texas Instruments data sheet for a 74ALVC00, and deter-
mine its worst-case LOW-state and HIGH-state DC noise margins when operated
with a 3.3-V (typical) supply and maximum DC loading on its outputs. State any
assumptions you make.

14.24 Repeat Drill 14.23 assuming “CMOS loads.”

14.25 Section 14.3 defines twelve different electrical parameters for CMOS circuits.
Using the data sheet in Table 14-1, determine the worst-case value of each of
these for the 74HC00. State any assumptions required by your answer.

14.26 Search online for the Texas Instruments data sheet for a 74AHC00 and repeat
Drill 14.25 for that component.

14.27 Based on the conventions and definitions in Section 14.2, if the current at a device
output is specified as a negative number, is the output sourcing current or sinking
current?

14.28 Across the range of valid HIGH input levels, 3.15–5.0 V, at what input level would
you expect the 74HC00 (see Table 14-1) operating at 5.0 V to consume the most
power?

14.29 Determine the LOW-state and HIGH-state DC fanout of a 74HC00 when it drives
74ALS00-like inputs. (Refer to Table 14-1 and an online datasheet for the Texas
Instruments 74ALS00.)

14.30 Estimate the “on” resistances of the p-channel and n-channel output transistors of
the 74HC00 using information in Table 14-1.

Figure X14.21

VCC

C

B

D

Q4

Q7 Q5

Q1

Q2

Q8

Q3

VCC

C

A

B

D

Z

Q5

Q7

Q3 Q1

Q4

Q2

Q8

(a) (b)

Q6

A

Z

Q6

DDPP5.book Page 806 Tuesday, March 28, 2017 5:33 PM

Drill Problems 807

14.31 Recalculate and relabel Figures 14-23 and 14-24, assuming Vcc = 3.3 V, “on”
resistances Rp = 100 Ω and Rn = 50 Ω, and the same load resistances.

14.32 Repeat Drill 14.31 for Figure 14-25.

14.33 Repeat Drill 14.31 for Figure 14-27.

14.34 How much high-state DC noise margin is available in an inverter whose transfer
characteristic under worst-case conditions is shown in Figure X14.34? How
much low-state DC noise margin is available? (Assume 1.5-V and 3.5-V thresh-
olds for LOW and HIGH.)

14.35 For each of the following resistive loads, determine whether the output drive
specifications of the 74HC00 over the commercial operating range are exceeded.
Refer to Table 14-1, and use VOLmax = 0.33 V, VOHmin = 3.84 V, and VCC = 5.0 V.
You may not exceed IOLmax or IOHmax in any state.

14.36 Under what circumstances is it safe to allow an unused CMOS input to float?

14.37 Explain why replacing small decoupling capacitors to larger ones with larger
capacitance may not be a good idea.

14.38 When is it important to hold hands with a friend?

14.39 Name the two components of CMOS logic gate’s delay. How are either or both
affected by the direction of the output transition?

14.40 Determine the RC time constant for each of the following resistor-capacitor
combinations:

14.41 Comparing 2-input CMOS NAND and NOR gates where all the n-channel and
p-channel transistors have the same size, explain why the NOR gate’s HIGH-to-
LOW output transitions are about four times slower than the NAND’s.

(a) 810 Ω to VCC (b) 330 Ω to VCC and 470 Ω to GND

(c) 1 kΩ to GND (d) 680 Ω to VCC and 810 Ω to GND

(e) 1.2 kΩ to VCC (f) 1 kΩ to VCC and 680 Ω to GND

(g) 2.2 kΩ to VCC (h) 1.2 kΩ to VCC and 1 kΩ to GND

(a) R = 120 Ω, C = 47 pF (b) R = 3.3 kΩ, C = 100 pF

(c) R = 47 Ω, C = 68 pF (d) R = 1.5 kΩ, C = 150 pF

VIN

VOUT

undefinedLOW HIGH

0

1.5

3.5

5.0

0 1.5 3.5 5.0

HIGH

undefined

LOW

Figure X14.34

DDPP5.book Page 807 Tuesday, March 28, 2017 5:33 PM

808 Chapter 14 Digital Circuits

14.42 Which would you expect to have a bigger effect on the power consumption of a
CMOS circuit, a 10% increase in power-supply voltage, or a 15% increase in load
and internal capacitance?

14.43 Explain why the number of CMOS inputs connected to the output of a CMOS
gate generally is not limited by DC fanout considerations.

14.44 A particular Schmitt-trigger inverter has VILmax = 0.7 V, VIHmin = 2.0 V, VT+ =
1.8 V, and VT− = 1.2 V. How much hysteresis does it have?

14.45 What would happen if three-state outputs turned on faster than they turned off?

14.46 A particular LED has a voltage drop of about 1.6 V in the “on” state and requires
about 6 mA of current for normal brightness. Determine an appropriate value for
the pull-up resistor when the LED is connected to a 74AC00 NAND gate as shown
in Figure 14-50(a), with both power rails at 5.0 V.

14.47 How does the answer for Drill 14.46 change if the LED only requires 3 mA and
is connected to a 74HC00 as shown in Figure 14-50(b)?

14.48 Which would you expect to be faster, a CMOS AND gate or a CMOS AND-OR-
INVERT gate, assuming all transistors switch at the same speed? Why?

14.49 For a given load capacitance and transition rate, what conditions in a logic family
with specs in this chapter leads to the highest dynamic power dissipation? What
conditions give the lowest dynamic power dissipation and how do they compare?

14.50 Using Figure 14-58, determine the DC noise margins for 1.5-V CMOS.

14.51 Find a commercially available 74-series device with a very long part number,
based on the logic family and the device number, but excluding the package type,
temperature range, and so on. You should be able to beat 74ALVCH16244.

Exercises
14.52 Design a CMOS circuit that has the functional behavior shown in Figure X14.52.

(Hint: Only eight transistors are required.)

14.53 Design a CMOS circuit that has the functional behavior shown in Figure X14.53.
(Hint: Only eight transistors are required.)

14.54 Draw a circuit diagram, function table, and logic symbol in the style of
Figure 14-15 for a CMOS gate with two inputs A and B and an output Z, where
Z=1 if A=0 or B=1, and Z=0 otherwise. (Hint: Only six transistors are needed.)

A

B

C

Z Figure X14.52

A
B

C

Z Figure X14.53

DDPP5.book Page 808 Tuesday, March 28, 2017 5:33 PM

Exercises 809

14.55 Draw a circuit diagram, function table, and logic symbol in the style of
Figure 14-15 for a CMOS gate with two inputs A and B and an output Z, where
Z=0 if A=1 or B=0, and Z=1 otherwise. (Hint: Only six transistors are needed.)

14.56 Draw a figure showing the logical structure of an 8-input CMOS NAND gate,
assuming that at most 4-input NAND and 2-input NOR gate circuits are practical.
Using your general knowledge of CMOS characteristics, select a circuit structure
that minimizes the NAND gate’s propagation delay for a given silicon area, and
explain why this is so.

14.57 Repeat Exercise 14.56 for a 7-input NAND gate using at most 3-input NAND and
2-input NOR gates.

14.58 Find a gate-level design for the BUT gate defined in Exercise 7.47 that uses a
minimum number of transistors when realized in CMOS. You may use inverting
gates with up to 4 inputs, AOI or OAI gates, transmission gates, or other transistor-
level tricks. Write the output expressions (which need not be two-level sums of
products), and draw the logic diagram.

14.59 What logic function is performed by the CMOS circuit shown in Figure X14.59?

14.60 How much current and power are “wasted” in Figure 14-28(b)?

14.61 Using information as needed from Table 14-1, determine the minimum total “on”
resistance of two series p-channel transistors in the 74HC00 when driving a per-
missible DC load at a worst-case output voltage.

14.62 Repeat Exercise 14.61 for the two parallel n-channel transistors.

14.63 What do the answers to Exercises 14.61 and 14.62 tell you about the relative “on”
resistances of the ’HC00’s n-channel and p-channel transistors?

14.64 Show detailed calculations for VOUT in Figures 14-29 and 14-30. (Hint: Create a
Thévenin equivalent for the CMOS inverter in each figure.)

14.65 Consider the dynamic behavior of a CMOS output driving a given capacitive
load. If the resistance of the charging path is double the resistance of the discharg-
ing path, is the rise time exactly twice the fall time? If not, what other factors
affect the transition times?

14.66 Analyze the fall time of the CMOS inverter output of Figure 14-33 using
RL=1 KΩ and VL=2.0 V. Compare your result with the result derived using
Figure 14-34 and explain.

A

B

ZFigure X14.59

DDPP5.book Page 809 Tuesday, March 28, 2017 5:33 PM

810 Chapter 14 Digital Circuits

14.67 Repeat Exercise 14.66 for rise time.

14.68 Rework the timing calculations corresponding to Figure 14-34 for 74AHC
CMOS operating at VCC = 3.3 V±0.3 V. You may assume that Rp(on) = 140 Ω and
Rn(on) = 50 Ω.

14.69 Rework the timing calculations corresponding to Figure 14-36 for 74AHC
CMOS operating at VCC = 3.3 V±0.3 V. You may assume that Rp(on) = 140 Ω and
Rn(on) = 50 Ω.

14.70 Write the truth table and a logic diagram for the logic function performed by the
CMOS circuit in Figure X14.70.

14.71 Using the specifications in Table 14-5, estimate the minimum “on” resistances of
the p-channel and n-channel transistors in 74AHC-series CMOS logic when driv-
ing a permissible load at the specified worst-case output voltage.

14.72 Repeat Exercise 14.71 using information from an online data sheet for the Texas
Instruments 74ALVC00.

14.73 Create a 4 × 4 × 2 × 2 matrix of worst-case DC noise margins for the following
CMOS interfacing situations: an (HC, HCT, AHC, or AHCT) output driving an
(HC, HCT, AHC, or AHCT) input with a (CMOS, TTL) load in the (LOW, HIGH)
state; Figure X14.73 illustrates. (Hints: There are 64 different combinations, but
many give identical results. Some combinations yield negative margins.)

14.74 Using Figure 14-58, determine the DC noise margins for 5-V-tolerant, 3.3-V
CMOS driving 5-V CMOS logic with TTL input levels, and vice versa.

A

B

C

Z

Figure X14.70

DDPP5.book Page 810 Tuesday, March 28, 2017 5:33 PM

Exercises 811

14.75 Using Figure 14-58, determine the DC noise margins for 3.3-V-tolerant, 2.5-V
CMOS driving 3.3-V CMOS, and vice versa.

14.76 Using Figure 14-58, determine the DC noise margins for (a) 2.5-V CMOS driving
itself, and (b) 1.8-V CMOS driving itself.

14.77 Calculate the approximate output voltage at Z in Figure 14-53, assuming that the
gates are HCT-series CMOS.

14.78 In the LED example in Section 14.5.5, a designer chose a resistor value of 680 Ω
for a lower-current LED and found that the open-drain gate was able to maintain
its output at 0.2 V while driving the LED. How much current flows through the
LED, and how much power is dissipated by the pull-up resistor in this case?

14.79 The dynamic power dissipation specification and calculation for an integrated
function like a counter is more complicated than the one for a simple gate. Search
online for the data sheet for a Texas Instruments CD74HC163 4-bit counter,
which is similar to the CNTR4U of Section 11.1.3. Determine its dynamic power
dissipation with a 3.3 V power supply assuming that it is continuously enabled,
has an input frequency of 10 MHz, and has a load of 25 pF on each output.

14.80 Using only AND and NOR gates, draw a logic diagram for the logic function
performed by the circuit in Figure 14-52.

14.81 How many transistors are needed to perform the logic function in Figure 14-52
using an AND-OR-INVERT structure? Sketch the transistor-level circuit.

14.82 Redraw the circuit diagram of a CMOS 3-state buffer in Figure 14-45 using actual
transistors instead of NAND, NOR, and inverter symbols. Can you design a circuit
for the same function that requires a smaller total number of transistors? If so,
draw it.

14.83 Modify the CMOS 3-state buffer circuit in Figure 14-45 so that the output is in
the Hi-Z state when the enable input is HIGH. The modified circuit should require
no more transistors than the original.

14.84 Using information in Table 14-1, estimate how much current can flow through
each output pin if the outputs of two different 74HC00s are fighting.

14.85 A Thévenin termination for an open-collector or three-state bus has the structure
shown in Figure X14.85(a). The idea is that, with appropriate values of R1 and
R2, this circuit is equivalent to the termination in (b) for any desired values of R
and V (between 0 and VCC). The value of V determines the voltage on the bus

HC HCT VHC VHCT

HC

HCT

VHC

VHCT

Output

Input

CL TL

CH TH

CL TL

CH TH

CL TL

CH TH

CL TL

CH TH

CL TL

CH TH

CL TL

CH TH

CL TL

CH TH

CL TL

CH TH

CL TL

CH TH

CL TL

CH TH

CL TL

CH TH

CL TL

CH TH

CL TL

CH TH

CL TL

CH TH

CL TL

CH TH

CL TL

CH TH

Key:
CL = CMOS load, LOW
CH = CMOS load, HIGH
TL = TTL load, LOW
TH = TTL load, HIGH

Figure X14.73

DDPP5.book Page 811 Tuesday, March 28, 2017 5:33 PM

812 Chapter 14 Digital Circuits

when no device is driving it, and the value of R is selected to match the charac-
teristic impedance of the bus for transmission-line purposes. For each of the
following desired pairs of V and R, determine the required values of R1 and R2,
assuming VCC = 5.0 V:

14.86 For each of the R1 and R2 pairs in Exercise 14.85, determine whether the termi-
nation can be properly driven by a three-state output in the 74AHC family having
the output specs in Table 14-5. For proper operation, the family’s IOL and IOH
specs must not be exceeded when VOL = VOLmax and VOH = VOHmin, respectively,
assuming “TTL” output levels.

14.87 Repeat Exercise 14.85 for the following desired pairs of V and R, assuming that
VCC = 3.3 V:

14.88 Search online for the Texas Instruments 74ALVC125 three-state-buffer data
sheet. Then, for each Thévenin termination in Exercise 14.87, determine whether
it can be properly driven by a 74ALVC125 output. For proper operation, the
device’s maximum IOL and IOH specs must not be exceeded when VOL = VOLmax
and VOH = VOHmin, respectively.

(a) V = 2.5, R = 220 (b) V = 2.7, R = 180

(c) V = 3.0, R = 120 (d) V = 2.0, R = 75

(a) V = 1.5, R = 220 (b) V = 2.0, R = 180

(c) V = 1.2, R = 120 (d) V = 1.67, R = 75

R1

R2
bus

(a)

Thévenin
 termination

Vbus

(b)

Thévenin
equivalent of
 termination

R

VCC

Figure X14.85

DDPP5.book Page 812 Tuesday, March 28, 2017 5:33 PM

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

813

c h a p t e r15
ROMs, RAMs, and FPGAs

ny sequential circuit has memory of a sort, since each flip-flop or
latch stores one bit of information. However, we usually reserve
the word “memory” to refer to bits that are stored in a structured
way, usually as a two-dimensional array in which one row of bits

is accessed at a time.
This chapter describes several different memory organizations and a

few commercially available memory chips. The same kinds of memory may
be embedded into larger VLSI chips, where they are combined with other
logic circuits to perform a useful function.

The applications of memory are many and varied. We’ve already seen
that memories are a key element in FPGAs, which use tens of thousands of
“lookup-table” (LUT) memories to perform logic functions. In a micro-
processor’s central processing unit (CPU), a read-only memory may be used
to define multiple small steps used to execute each complex instruction in
the CPU’s instruction set, or to store “seed” constants used in a division
algorithm. Alongside the CPU, a fast, read/write “static memory” may serve
as a cache to hold recently used instructions and data. A microprocessor’s
main read/write memory subsystem may hold billions of bits in “dynamic
memory” that stores the operating system, running applications, and data.

Applications of memory are not limited to microprocessors or even to
purely digital systems. For example, network devices like Ethernet switches
and internet routers use fast “static memories” as a “switching fabric” to

A

DDPP5.book Page 813 Tuesday, March 28, 2017 5:33 PM

814 Chapter 15 ROMs, RAMs, and FPGAs

transfer packets between network ports. There are many examples of modern
audio/visual equipment that use memories to temporarily store digitized signals
for enhancement through digital signal processing. And all kinds of data acqui-
sition equipment converts physical information (such as temperature, moisture,
and movement) into digital data, and stores it in a memory for later analysis.

We begin this chapter with a discussion of read-only memory, including
both “traditional” ROM and the newer “flash” ROM used in smartphones,
tablets, and other portable devices. We then describe the two commonly used
types of read/write memory—static and dynamic. We also discuss the internal
structures and bus interfaces of the different memory types.

The last section in this chapter looks at a few aspects of FPGA structure,
beyond what we’ve done in previous chapters. By enabling very quick develop-
ment of customized systems and subsystems, FPGAs have become essential
building blocks in modern digital design.

15.1 Read-Only Memory
A read-only memory (ROM) is a combinational circuit with n inputs and b
outputs, as shown in Figure 15-1. The inputs are called address inputs and are
traditionally named A0, A1, … , An–1. The outputs are called data outputs and
are typically named D0, D1, … , Db–1.

We think of ROM as being a type of memory because of the organizational
paradigm that describes its operation. Information is “stored” in a ROM when it
is programmed (we’ll say more about how this is done in Section 15.1.3). ROM
has an important difference from many other types of integrated-circuit memory.
It is nonvolatile memory; that is, its contents are preserved even if no power is
applied.

In Section 6.1, we showed how a ROM “stores” the truth table of an n-
input, b-output combinational logic function. Since a ROM is a combinational
circuit, you would be correct to say that it’s not really a memory at all. In terms
of digital circuit operation, you can treat a ROM like any other combinational
logic element.

read-only memory
(ROM)

Figure 15-1
Basic structure of
a 2n × b ROM.

 2 × ROM

A0

A1 D0

A2 D1

An–2 Db–1

An–1

address
inputs

data
outputs

address input
data output

nonvolatile memory

DDPP5.book Page 814 Tuesday, March 28, 2017 5:33 PM

15.1 Read-Only Memory 815

15.1.1 Internal ROM Structure
The mechanism used by ROMs to “store” information varies with different
ROM technologies. Modern ROMs use an MOS transistor, one per stored bit, to
distinguish between a 0 and a 1.

Figure 15-2 is the schematic of a primitive 8 × 4 ROM that you could build
yourself using a 3-to-8 decoder and a handful of discrete NMOS transistors. The
address inputs select one of the decoder outputs to be asserted. Each decoder
output is called a word line because it selects one row or word of the table stored
in the ROM. The figure shows the situation with A2–A0 = 101 and the ROW5
decoder output asserted.

Each vertical line in Figure 15-2 is called a bit line because it corresponds
to one output bit of the ROM. An asserted word line turns on a transistor, if one
is present, at the intersection of the word line and a bit line. A transistor pulls the
bit line LOW when turned on. There is only one transistor in row 5, and when
ROW5 is asserted, the corresponding bit line (D1_L) is pulled LOW. All of the
other bit lines remain HIGH, since none of the other decoder outputs are asserted

Figure 15-2 Logic diagram of a simple 8 × 4 ROM.

D0 0

1

0

0

D2

D3

3-to-8 decoder
ROW0 LOW

LOW

LOW

LOW

LOW

HIGH

LOW

LOW

R

ROW1

ROW2

ROW3

ROW4

ROW5

ROW6

ROW7

D0_L

D1_L

D2_L

D3_L

EN
Y0

Y1

Y2

Y3

B

A

C

A1

A01

0

1 A2
Y4

Y5

Y6

Y7

D1

HIGH

LOW

HIGH

HIGH

word line

bit line

DDPP5.book Page 815 Tuesday, March 28, 2017 5:33 PM

816 Chapter 15 ROMs, RAMs, and FPGAs

and all the other transistors in the array are off. The bit lines are buffered through
inverters to produce the D3–D0 ROM outputs, 0010 for the case shown.

In the ROM circuit of Figure 15-2, each intersection between a word line
and a bit line corresponds to one bit of “memory.” If a transistor is present at the
intersection, a 1 is stored; otherwise, a 0 is stored. If you were to build this circuit
in the lab, you would “program” the memory by inserting and removing transis-
tors at each intersection.

The transistor pattern shown in Figure 15-2 corresponds to the 2-to-4-
decoder truth table of Table 6-1 on page 241. This doesn’t seem very efficient—
we used a 3-to-8 decoder and a bunch of transistors to build the ROM version of
a 2-to-4 decoder. We could have profitably used some of the gates in the 3-to-8
decoder directly! However, we’ll show a more efficient ROM structure and a
more useful example in the next subsection.

15.1.2 Two-Dimensional Decoding
Suppose you wanted to build a 128 × 1 ROM using the kind of structure
described in the preceding subsection. Have you ever thought about what it
would take to build a 7-to-128 decoder in two levels of logic? Try 128 7-input
NAND gates to begin with, and add 14 buffers and inverters with a fanout of 64
each! ROMs with millions of bits and more are available commercially; trust
me, they do not contain 20-to-1,048,576 decoders or worse. Instead, they use a
different structure, called two-dimensional decoding, to reduce the decoder size
to something proportional to the square root of the number of addresses.

The basic idea in two-dimensional decoding is to arrange the ROM cells in
an array that is as close as possible to square. For example, Figure 15-3 shows a
possible internal structure for a 128 × 1 ROM. The three high-order address bits,
A6–A4, are used to select a row. Each row stores 16 bits starting at address
(A6, A5, A4, 0, 0, 0, 0). When an address is applied to the ROM, all 16 bits in the
selected row are “read out” in parallel on the bit lines. A 16-input multiplexer
selects the desired data bit based on the low-order address bits.

By the way, the transistor programming pattern in Figure 15-3 was not
chosen at random. It performs a very useful 7-input combinational logic func-
tion that would require 35 4-input AND gates to build as a minimal two-level

BOOTSTRAP ROM Primitive though it may seem, owners of the DEC PDP-11 minicomputer (circa
1970) made use of discrete ROM technology similar to Figures 15-2 and 15-3 in the
M792 32×16 “bootstrap ROM module.” Instead of an NMOS transistor, it used a
bipolar diode between the word line and the bit line at each intersection that stores
a 1. The module was shipped with 512 diodes soldered in place, and owners pro-
grammed it by clipping out the diode at each location where a 0 was to be stored!

two-dimensional
decoding

DDPP5.book Page 816 Tuesday, March 28, 2017 5:33 PM

15.1 Read-Only Memory 817

AND-OR circuit (see Exercise 15.6). The ROM version of this function and ones
like it could actually save a fair amount of engineering effort and space com-
pared to a gate-level design.

Two-dimensional decoding allows a 128 × 1 ROM to be built with a 3-to-8
decoder and a 16-input multiplexer (whose complexity is comparable to that of a
4-to-16 decoder). A 1M × 1 ROM could be built with a 10-to-1024 decoder and
a 1024-input multiplexer—not easy, but a lot simpler than the one-dimensional
alternative.

Besides reducing decoding complexity, two-dimensional decoding has one
other benefit—it leads to a chip whose physical dimensions are close to square,
important for chip fabrication and packaging. A chip with a 1M × 1 physical
array would be very long and skinny, and could not be built economically.

In ROMs with multiple data outputs, the storage arrays corresponding to
each data output may be made narrower in order to achieve an overall chip
layout that is closer to square. For example, Figure 15-4 shows the possible lay-
out of a 32K × 8 ROM chip.

Figure 15-3 Internal structure of a 128 × 1 ROM using two-dimensional decoding.

3-to-8
decoder

0

1

2

3

1

0

2

A5

A4

A6

A1

A0

A2

A3

S1
16-to-1 multiplexer

D0

Y

S0

S2

S3

4

5

6

7

R

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

DDPP5.book Page 817 Tuesday, March 28, 2017 5:33 PM

818 Chapter 15 ROMs, RAMs, and FPGAs

15.1.3 Commercial ROM Types
Unless you visit the Computer History Museum in Mountain View, CA, you
won’t find any ROM modules built with discrete transistors or diodes. A modern
ROM is fabricated as a single IC chip; one that stores 4 gigabits (232 bits) can be
purchased for under $5. Various methods have been used to “program” the infor-
mation stored in a ROM, as discussed below and summarized in Table 15-1.

Most of the early integrated-circuit ROMs were mask-programmable
ROMs (or, simply, mask ROMs). A mask ROM is programmed by the pattern of
connections and no-connections in one of the masks used in the IC manufactur-
ing process. To program or write information into the ROM, the customer would
give the manufacturer a listing of the desired ROM contents on a disk or other
medium. The manufacturer would use this information to create one or more
customized masks to manufacture ROMs with the required pattern. Because of
mask costs and the four-week delay typically required to obtain programmed
chips, mask ROMs were used only in very high-volume applications. For low-
volume applications there were more cost-effective choices, discussed next.

A programmable read-only memory (PROM) is similar to a mask ROM,
except that the customer could store data values (i.e., “program the PROM”) in
just a few minutes using a PROM programmer. A PROM chip is manufactured

Figure 15-4 Possible layout of a 32K × 8 ROM.

64-to-1
mux

64-to-1
mux

64-to-1
mux

64-to-1
mux

64-to-1
mux

64-to-1
mux

64-to-1
mux

64-to-1
mux

A6

A7

A8

A9

A10

A11

A12

A13

A14

A0

A1

A2

A3

A4

A5

9-to-512
decoder

512 × 64
array

D7 D6 D5 D4 D3 D2 D1 D0

512 × 64
array

512 × 64
array

512 × 64
array

512 × 64
array

512 × 64
array

512 × 64
array

512 × 64
array

mask-programmable
ROM

mask ROM
mask

programmable read-
only memory (PROM)

PROM programmer

DDPP5.book Page 818 Tuesday, March 28, 2017 5:33 PM

15.1 Read-Only Memory 819

with all of its diodes or transistors “connected.” This corresponds to having all
bits at a particular value, typically 1. The PROM programmer was used to set
desired bits to the opposite value. In bipolar technology, this was done by vapor-
izing tiny fusible links inside the PROM corresponding to each bit.

Introduced later, an erasable programmable read-only memory (EPROM)
could be programmed like a PROM, but could also be “erased” to the all-1s state
by exposing it to ultraviolet light. No, the light does not cause fuses to grow
back! Rather, EPROMs use a different technology, called “floating-gate MOS.”

As shown in Figure 15-5, an EPROM has a floating-gate MOS transistor at
every bit location. Each transistor has two gates. The “floating” gate is not con-
nected to anything and is surrounded by extremely high-impedance insulating
material. To program an EPROM, the programmer applies a high voltage to the
nonfloating gate at each bit location where a 0 is to be stored. This causes a tem-

Table 15-1 Commercial ROM types.

Type Technology Read cycle Write cycle Comments

Mask ROM NMOS, CMOS 10–200 ns 4 weeks Write once; low power

Mask ROM Bipolar < 100 ns 4 weeks Write once; high power; low density

PROM Bipolar < 100 ns 10–50 μs/byte Write once; high power; no mask charge

EPROM NMOS, CMOS 25–200 ns 10–50 μs/byte Reusable; low power; no mask charge

EEPROM NMOS+CMOS 50–200 ns 10–50 μs/byte 10,000–100,000 writes/location limit

NAND flash NMOS+CMOS 50–200 μs/page 10–50 μs/page 50,000–1,000,000 writes/page limit

fusible link
erasable programmable

read-only memory
(EPROM)

Figure 15-5
Storage matrix in
an EPROM using
floating-gate MOS
transistors (NOR
architecture).

VDD

floating gate

nonfloating gate

word lines

bit lines

floating-gate MOS
transistor

DDPP5.book Page 819 Tuesday, March 28, 2017 5:33 PM

820 Chapter 15 ROMs, RAMs, and FPGAs

porary breakdown in the insulating material and allows a negative charge to
accumulate on the floating gate. When the high voltage is removed, the negative
charge remains. During subsequent read operations, the negative charge pre-
vents the MOS transistor from turning on when it is selected.

Early EPROM manufacturers guaranteed that a properly programmed bit
would retain 70% of its charge for at least 10 years, even if the part was stored at
125°C, so EPROMs definitely fell into the category of “nonvolatile memory.”
However, they could also be erased. The insulating material surrounding the
floating gate becomes slightly conductive if it is exposed to ultraviolet light with
a certain wavelength. Thus, EPROMs could be erased by exposing the chips to
ultraviolet light, typically for 5–20 minutes, when the chip was housed in a pack-
age with a transparent quartz lid. Less expensive one-time programmable (OTP)
versions of these devices were also offered without the quartz lid.

An electrically erasable programmable read-only memory (EEPROM) is
like an EPROM, except that individual stored bits may be erased electrically.
The floating gates in an EEPROM are surrounded by a much thinner insulating
layer and can be erased by applying a voltage of the opposite polarity as the
charging voltage to the nonfloating gate. Large EEPROMs (1 Mbit or larger) can
be erased only in fixed-size blocks of 128 Kbits to 8 Mbits (16 Kbytes to
1 Mbyte). These memories are called flash EPROMs or flash memories, because
an entire block can be erased “in a flash,” like the flash of a camera. The last
flash EPROMs in Table 15-1 use a “NAND architecture” internally that brings
benefits and limitations, as we’ll soon discuss.

As noted in the table, writing an EEPROM location takes much longer than
reading it, so an EEPROM is no substitute for the volatile read/write memories
discussed later in this chapter. Also, the insulating layer can be worn out by
repeated programming operations. As a result, EEPROMs can be reprogrammed
only a limited number of times, typically 10,000 to 100,000 times per location;
that’s a second reason they’re no substitute for read/write memory.

EEPROMs are quite suitable for storing information that doesn’t change
very often, such as the default configuration data and bootstrap programs for
computers large and small, or the application software for the embedded proces-
sors in all sorts of equipment. On the other hand, when flash memory is used in
a computer file system, where some files may be rewritten very frequently,
special methods must be used to avoid “wearing out” some locations; we’ll say
more about that later.

The arrangement of transistors in Figure 15-5 is called a NOR architecture,
because any of the transistors in a column can pull their bit line low, reminiscent
of the parallel arrangement of NMOS transistors in a NOR gate. In the mid-
1990s, the industry sought ways to build higher density EEPROMs for new
applications like digital-camera memories and ultimately high-capacity “solid-
state disks” (SSDs) to replace mechanical, magnetic disc drives, and they turned
to another transistor arrangement called NAND architecture.

EPROM erasing

one-time programmable
(OTP) ROM

electrically erasable
programmable
read-only memory
(EEPROM)

flash EPROM
flash memory

NOR architecture

NAND architecture

DDPP5.book Page 820 Tuesday, March 28, 2017 5:33 PM

15.1 Read-Only Memory 821

As shown in Figure 15-6, the NAND architecture does not have a ground
connection for every bit of storage. Instead, a group of transistors are connected
in series, as in a NAND gate, with only the last connected to ground; all must be
“on” to pull their bit line low. Typically, there are 16 to 32 transistors in series,
and omitting most of the ground connections allows them to be packed more
closely together. Compared to an array of NOR cells, a NAND array may be 40%
smaller. Note that a complete memory chip will have more groups of 16 to 32
words below the topmost group shown in Figure 15-6, connected to the same bit
lines and using the same circuitry to read the values placed on the bit lines.

In an NAND memory, the transistor thresholds and programming levels are
set up so that a transistor whose word line is HIGH will be on regardless of
whether it stores a 1 or 0. A transistor whose word line is LOW will be off or on
depending on whether or not a charge has been stored on its floating gate. Thus,
a word (row) is read by setting the group and ground select lines HIGH, and set-
ting all of the word lines HIGH except for the desired word, whose word line is
set LOW. Each long column of 16 to 32 transistors in series will pass current or
not, depending on the value of its stored bit for the selected word.

The higher density of NAND memory comes at a price in performance, in
particular, access time. A row in a NOR memory array can be read out fairly
quickly, typically within tens of nanoseconds. In a NAND array, the current that

Figure 15-6
NAND architecture
for flash memory.

VDD

16 to 32
word lines

bit lines

group select

ground select

next
group

group

group select

DDPP5.book Page 821 Tuesday, March 28, 2017 5:33 PM

822 Chapter 15 ROMs, RAMs, and FPGAs

flows in a column is an order of magnitude lower than with NOR, and it can only
be sensed reliably by integrating the current (charge transfer) over a relatively
long time, on the order of microseconds. Thus, NAND memories are unsuitable
for providing random access to instructions or data in a microprocessor system,
which requires access times in the tens of nanoseconds.

However, on-chip memory arrays are big, and NAND arrays are still bigger
and they can access a lot of data in parallel. So, manufacturers of NAND memory
have targeted applications that benefit from relatively fast access to large chunks
of data, rather than fast word-by-word random access. It’s no surprise that this
characterizes NAND memory’s most popular applications, including photo stor-
age in digital cameras, program and data storage in notebooks and smartphones,
and SSDs in larger computers. When programs or data must be accessed ran-
domly in these applications (for example, when a program is actually invoked
and is running), it is first copied into volatile, read/write random-access memory.

The difference between NAND and NOR memory is often described in
terms of their external interfaces, which are quite different. But the difference
between those interfaces has been driven by their different applications, rather
than their internal array architectures, as we’ll see in the next subsections.

15.1.4 Parallel-ROM Interfaces
As it executes, a microprocessor program specifies a new address on each
instruction cycle, potentially a “random” one as it jumps around in the code. So,
for a ROM to support direct execution of a program, it needs a simple “parallel”
interface based on the structure we showed in Figure 15-1 on page 814. This was
in fact the case for most ROMs as they evolved over the years as described in the
preceding subsection, prior to the emergence of NAND memory and its
applications.

Parallel ROMs are still used today. They use NOR arrays internally and
many have the type of external interface described in this subsection, typically
an 8-bit data bus and an address bus that’s wide enough to receive all of the
address bits in parallel. Thus, “legacy” parallel EEPROMs from 32K × 8 to
512K × 8 have the logic symbols shown in Figure 15-7.

O[7:0]

A[12:0]

CS

OE

8K × 8 512K × 832K × 8 128K × 8

WE

O[7:0]

A[14:0]

CS

OE

WE

O[7:0]

A[16:0]

CS

OE

WE

O[7:0]

A[18:0]

CS

OE

WE

Figure 15-7 Logic symbols for legacy EEPROMs.

DDPP5.book Page 822 Tuesday, March 28, 2017 5:33 PM

15.1 Read-Only Memory 823

Typical applications can have multiple devices, including ROM, read/write
memories, and input/output ports, connected to a three-state bus, where only one
device drives the bus at a time. Each device typically has a chip-select (CS) input
like the ones in Figure 15-7 which must be asserted to allow it access the bus. An
output-enable (OE) input must be asserted to allow it to drive the bus, and a
write-enable (WE) input must be asserted to load data from the bus; WE is used
in EEPROMs only during programming operations. Figure 15-8 shows the
internal structure and logical model of CS and OE use for a typical ROM.

*15.1.5 Parallel-ROM Timing
Figure 15-9 shows typical ROM timing for read operations, including the fol-
lowing parameters:

tAA Access time from address. The access time from address of a ROM is the
propagation delay from stable address inputs to valid data outputs. A
phrase like “100-ns ROM” is usually referring to this parameter.

tACS Access time from chip select. The access time from chip select of a ROM
is the propagation delay from the time CS is asserted until the data
outputs are valid. In some chips, this is longer than the access time from
address, because the chip takes a little while to “power up.” In others,
this time is shorter because CS controls only output enabling.

*Throughout this book, optional sections are marked with an asterisk.

chip-select (CS) input
output-enable (OE)

input

write-enable (WE) input

Figure 15-8
Internal ROM
structure, showing
use of control
inputs for reading.

 row
decoder

A0

A1

CS_L

OE_L

Am–1

Am

Am+1

An–1

POWER
ON

storage
array

POWER
ON

 column
multiplexer

POWER
ON

Db–1 Db–2 D0

tAA

access time from
address

tACS
access time from chip

select

DDPP5.book Page 823 Tuesday, March 28, 2017 5:33 PM

824 Chapter 15 ROMs, RAMs, and FPGAs

tOE Output-enable time. This parameter is usually much shorter than access
time. The output-enable time of a ROM is the propagation delay from
OE and CS both asserted until the three-state output drivers have left the
Hi-Z state. Depending on whether the address inputs have been stable
long enough, the output data may or may not be valid at that point.

tOZ Output-disable time. The output-disable time of a ROM is the propaga-
tion delay from the time OE or CS is negated until the three-state output
drivers have entered the Hi-Z state.

tOH Output-hold time. The output-hold time of a ROM is the length of time
that the outputs remain valid after a change in the address inputs, or after
OE or CS is negated.

As with other components, the manufacturer specifies maximum and,
sometimes, typical values for all timing parameters. Usually, minimum values
are also specified for tOE and tOH. The minimum value of tOH is usually specified
to be 0; that is, the minimum combinational-logic delay through the ROM is 0.

As we’ve described it so far, a CS input is no more than a second output-
enable input that is ANDed with OE to enable the three-state outputs. However,
in many ROMs, CS also serves as a power-down input. When CS is negated,
power is removed from the ROM’s internal decoders, drivers, and multiplexers.
In this standby mode of operation, a typical ROM consumes less than 10% of the
power it uses in active mode with CS asserted.

The largest parallel-interface ROMs store only 1 Mbyte, tiny by today’s
standards. Although a parallel interface is needed, for example, to execute pro-
grams on a microprocessor, it’s more economical to use a larger NAND flash
memory (described next) for nonvolatile program storage, and transfer programs
as needed into read/write memory for execution.

ADDR

CS_L

OE_L

DATA

tAA tOZ tOZ tOE

tOH

tOE

tACS

stable stable stable

≥ tAA max(tAA, tACS)

valid validvalid

Figure 15-9 ROM timing.

tOE

output-enable time

tOZ

output-disable time

tOH

output-hold time

power-down input

standby mode
active mode

DDPP5.book Page 824 Tuesday, March 28, 2017 5:33 PM

15.1 Read-Only Memory 825

15.1.6 Byte-Serial Interfaces for NAND Flash Memories
Because of their slow access times, NAND memories are designed to read, write,
and erase large quantities of data during one access interval, with the help of
internal registers for temporary storage. Although the internal access is slow, the
data can be transferred between the internal registers and the external interface
at a very high clock speeds, one byte at a time.

Before we giving details of the external interface, we need to describe the
internal organization of a typical flash memory. The smallest unit of storage is
called a page and is typically about 512 bytes to 16 Kbytes—the larger page
sizes appear in newer, larger memories. Pages are grouped into blocks, typically
with 64 to 128 pages per block. And an entire chip may have 2K to 32K or more
blocks. These definitions and concepts are illustrated in Figure 15-10.

Read operations are slow, in the range of 10 to 50 μsec per page, depending
on the particular chip. Write operations are even slower, in the range of 300 to
700 μsec per page. A page must be erased at some time before it can be written,
and erase operations are the slowest. Erasing is done an entire block at a time and
its duration is in the range of 1 to 3 ms.

The internal structure and bus interface for a typical flash device are shown
in Figure 15-11. The interface is quite simple, as commands, addresses, and data
are transferred across the interface using the DQ bus just 8 bits at a time. But it’s

ROMS WITH
SERIAL

INTERFACES

Besides “legacy” NOR ROMs with parallel interfaces, there are also similarly sized
NOR ROMs with 2- or 3-wire serial interfaces for specialized applications, such as
downloading programming information into FPGAs. Because the IC die for such a
small amount of memory is so tiny, and few pads are needed for the serial interface
and power, the chip is small and cheap and can be housed in a package no larger than
your little fingernail, making it quite convenient for these applications

BLOCK

DEVICE = 2K – 32K blocks BLOCK = 64 – 128 PAGES PAGE

64–128
PAGES

512 – 16K bytes + spares

Figure 15-10 NAND-memory block and page structure.

DDPP5.book Page 825 Tuesday, March 28, 2017 5:33 PM

826 Chapter 15 ROMs, RAMs, and FPGAs

speedy; in read operations, for example, once a page has been read into the on-
chip internal register, the data can be read as quickly as one byte every 20 ns.

The interface signals are as follows; they use the flash industry’s standard
designation “#” for an active-low signal:

DQ[7:0] Data input and output bus.

CE# Chip Enable, must be asserted for other inputs to be used.

CLE Command Latch Enable, asserted to write the command register.

ALE Address Latch Enable, asserted to write the address register.

WE# Write Enable, asserted to write registers or data.

RE# Read Enable, asserted to read data or the status register.

WP# Write Protect, disables program and erase operations while asserted.

R/B# Ready/Busy, asserted by the device when ready.

All of the signals are device inputs, except R/B# which is an output, and DQ[7:0]
which is bidirectional (three-state). To be recognized, all of the control inputs
require the chip enable CE# to be asserted, which we won’t mention further.

So, where are the address signals? There are none. Addresses as well as
commands are transferred across the DQ bus at the beginning of an operation.
Figure 15-12 shows timing for a typical read operation. It begins with the system
placing a command byte value of 00h (hexadecimal) on the DQ bus and asserting
CLE and WE#. This tells the device that the address will follow. Five address
bytes are then written in sequence, with ALE and WE# asserted for each one.

The first two address bytes specify a “column” address within a page, often
but not always 0 (we’ll come back to this). So, the page size can be up to 64K
bytes, depending on the device; for smaller page sizes, the high order column-

Figure 15-11 NAND byte-serial device bus interface.

NAND ARRAY

1 page

DATA REGISTER

ADDRESS
REGISTER

COMMAND
REGISTER

CONTROL
INTF.

DATA
INTF.

DQ[7:0]

CE#

CLE

ALE

WE#

RE#

WP#

R/B#

STATUS
REGISTER

DDPP5.book Page 826 Tuesday, March 28, 2017 5:33 PM

15.1 Read-Only Memory 827

address bits are set to 0. The next three bytes specify the page number within the
overall memory array, also known as the “row.” So there can be up to 224 pages
(rows), again depending on the device, and the unused high-order page-number
bits are set to 0.

After writing the address, the system issues the “page-read” command by
placing 30h on the DQ bus and asserting CLE and WE#. This triggers an internal
state machine that starts the internal read operation for the selected page and
eventually transfers the entire contents of the page into the device’s internal data
register, which has the same width as the page. As the internal operation begins,
the device negates R/B#. It reasserts R/B# when the read operation has finished
and the entire contents of the page has been transferred to the on-chip internal
data register. This is typically tens of microseconds later.

So, there is no “fixed” access time for read operations from a NAND mem-
ory. Instead, it’s up to the system to monitor the memory’s R/B# status output.
Once R/B# is asserted, the system may read bytes serially from the internal data
register, in order, one byte at a time, starting at the column address that was spec-
ified at the beginning of the command. That’s why the column address is often
set to 0, so the entire page can be read. The individual bytes are read as shown in
the timing diagram, using the RE# control signal.

Write operations use the same interface, but two distinct operations are
required: erasing and programming. In programming, new data is written into an
entire page. Moreover, programming can only change a 1 bit to a 0, not the
reverse. Therefore, a “program-page” operation must be preceded at some point

Figure 15-12 NAND page-read timing on the byte-serial bus.

WE#

CLE

ALE

DQ[7:0] 00h CA1 CA2 RA1 RA2 RA3 30h

R/B#

RE#

D0 D1 D2 D3 D4 D5 D6

20-40 μs typ

30 ns
typ

HAVE ANOTHER
BYTE

Some NAND flash memories have a 16-bit version of the DQ bus. The wider data bus
allows higher-bandwidth data transfers (twice as many bits per cycle) or relaxed
timing or a combination of both. The high-order byte of the DQ bus is used only for
data; commands and addresses use the low-order byte only.

programming

DDPP5.book Page 827 Tuesday, March 28, 2017 5:33 PM

828 Chapter 15 ROMs, RAMs, and FPGAs

by a “block-erase” operation, which sets all of the bits in a block to 1. That’s
right, erasing must be performed on an entire block (multiple pages), which
complicates the management of storage in the device, especially for file-system
applications and the like.

Figure 15-13 shows the timing for a block-erase operation using the byte-
serial interface. The operation begins with the system placing a command byte
value of 60h on the DQ bus and asserting CLE and WE#. This tells the device that
a 3-byte address will follow. Only a row address is given, and its low-order bits,
which specify a page within the larger block, are ignored. Then the system issues
the “block-erase” command D0h (not “D’oh!”).

The block-erase command triggers an internal state machine in the device
that starts the erase operation for the selected block. The state machine performs
internal reads to ensure that every bit in the block has been successfully “erased”
to 1. As with page reads, the device asserts R/B# when the erase operation has
completed, typically a few milliseconds after initiation. At that point, the system

RANDOM READS
AND WRITES

It’s also possible to read one or more bytes starting at a “random” address in a page,
once the page has been loaded into the internal data register. The system must issue
the command 05h followed by just two (column) address bytes, followed by com-
mand E0h. Subsequent reads occur in sequence starting at the specified address. The
05h-E0h command may be issued repeatedly, as long as the page is still in the inter-
nal register.

In preparation for programming operations, it’s also possible for the system to
write bytes into the internal data register starting at a “random” column address, by
issuing the 85h command followed by two address bytes and one or more data bytes.
However, when the “program” command 10h is ultimately issued, the entire data
register is still programmed into the selected page.

erasing

Figure 15-13
NAND block-erase
timing on the
byte-serial bus.

WE#

CLE

ALE

DQ[7:0] 60h RA1 RA2 RA3 D0h

R/B#

RE#

stat70h

2-3 ms typ

DDPP5.book Page 828 Tuesday, March 28, 2017 5:33 PM

15.1 Read-Only Memory 829

may read the device’s internal status register by issuing the “read-status” com-
mand 70h; the low-order bit of the returned status byte indicates whether the
erase operation was successful.

Once a page has been erased, it may be programmed using the timing
shown in Figure 15-14. The beginning of the operation is similar to a page read:
the system issues a command, 80h for “program-page,” followed by five bytes.
The first two are a column address (often 0) and the next three are a page number
(row) in the overall memory array. But then it continues with additional writes;
each stores a byte from the DQ bus into the internal data register, starting at the
column address given in the command and continuing in order.

When all the bytes have been stored in the data register, the system issues
the “program” command 10h, which triggers an internal state machine to trans-
fer the contents of the data register into the selected page. Note that regardless of
how many bytes were stored into the data register, the entire register is trans-
ferred and the entire page is programmed. The device uses its R/B# output to
signal completion of the program operation, typically tens of microseconds later.
As in an erase operation, the system then reads the status register to determine
whether the program-page operation was successful.

Figure 15-14 NAND program-page timing on the byte-serial bus.

WE#

CLE

ALE

DQ[7:0] 80h CA1 CA2 RA1 RA2 RA3 D1

R/B#

RE#

stat70hD2 DnD3 10h

30 ns
typ

300 μs typ

 SYNCHRONOUS
6X SPEEDUP

Newer NAND flash memories support a “synchronous” timing mode in which the
WE# input is replaced with a free-running clock with a period as short as 10 ns. One
other signal is added to the interface to control the data transfers, which can now
occur on both edges of the clock (a “DDR” interface as discussed in Section 15.4.3).
This raises the available data-transfer bandwidth to six times that of the standard
“asynchronous” interface with the typical 30-ns minimum cycle times that we
discuss next.

DDPP5.book Page 829 Tuesday, March 28, 2017 5:33 PM

830 Chapter 15 ROMs, RAMs, and FPGAs

*15.1.7 NAND Memory Timing and Access Bandwidth
Figure 15-15 gives more timing details for the NAND-flash byte-serial bus inter-
face operating in its standard, “asynchronous” mode. The following key
parameters are used:

tCLS, tCLH Command latch setup and hold times. The command “latch” is really
an edge-triggered register that is clocked by the rising edge of WE#,
and CLE is a “clock enable” for it. To select or deselect the command
register, CLE need not be valid during the entire WE# active pulse
(which would be the case with a true latch), only for the specified
setup and hold times relative to the rising edge of WE#.

tALS, tALH Address latch setup and hold times. Similarly, the address “latch” is
really a register, and these are corresponding times for ALE relative to
the rising edge of WE#.

tDS, tDH Data setup and hold times. These times are for data being loaded into
the device, whether the data is destined for the command or address
register or the internal data register, again relative to WE#.

tWP Write-pulse width. WE# must be asserted at least this long to reliably
select the destination (command, address, or internal data register)
and store data into it, and for data-register writes to properly advance
the column address to the next byte to be written.

tWC Write-cycle time. This is the minimum time between successive
writes.

Figure 15-15 NAND byte-serial bus timing parameters.

CLE

WE#

DQ[7:0]

tCLS

tWP

stable

tDS tDH tDS tDH

validvalid

tCLH

tWP

tWC

ALE

tALS

stable

tALH

RE#

tRP tRP

tRC

valid valid

tREA tREA

tCLS , tCLH

tALS , tALH

tDS , tDH

tWP

write-pulse width

tWC

write-cycle time

DDPP5.book Page 830 Tuesday, March 28, 2017 5:33 PM

15.1 Read-Only Memory 831

tRP Read-pulse width. RE# must be asserted at least this long to reliably
read data from the internal status register or data register and to
advance the column address to the next byte to be read.

tRC Read-cycle time. This is the minimum time between successive read
operations.

tREA Read-access time. This specifies the delay from RE# being asserted
until the internal data register or status register becomes valid on the
DQ bus.

The minimum read and write cycle times tRC and tWC determine, in part,
how quickly data can be loaded into or retrieved from the memory. In a typical
device, both specs are the same, for example, 30 ns in an older 1 GB flash device.
This implies a peak data transfer rate on the bus of 33 MB/s. Newer devices can
increase this rate by as much as a factor of six (see the box on page 829).

The other key determinant of device speed is at a higher level, namely, how
quickly pages can be read from and written into the internal NAND array. For
example, the device manufacturer specifies a maximum value for tR, the delay
from the initiation of a page-read command to the time when the page is avail-
able in the internal register and the device has negated R/B#. In newer as well as
older devices, this is still on the order of 20–40 μs per page. However, newer
devices have larger page sizes (for example 8 Kbytes vs. 2 Kbytes), so their rel-
ative speed per byte read can be higher.

Finally, overall bandwidth depends on the access pattern of reads and
writes to the device. Programming operations are typically about ten times
slower than reads per page, and that’s only if there is a page available to be pro-
grammed that has already been erased. Storage-management driver software for
NAND devices tries to keep a pool of such pages available at all times.

*15.1.8 Storage Management for NAND Memories
To be used effectively in any application, or in some cases even at all, NAND
memories require a lot of management compared to NOR-based EEPROM
devices. We’ll touch upon the most important management areas here.

First of all, the way some people look at it, NAND memories are “broken”
from the very start. A NOR memory “just works”—you can program any part of
the memory you wish to, perhaps erase and reprogram some areas, and read back
everything that you put in, subject to a typical, very small hardware failure rate.

A NAND memory is inherently less reliable, however, because of its higher
density and the sensitivity of its read operations. It’s impractical to manufacture
a high-density NAND memory in which 100% of the bits on 100% of its pages
work perfectly at the time it is shipped. Moreover, as the device is used, even
more bits will go bad—they’ll lose their ability to be read or reprogrammed or
both. These problems must be handled as discussed next.

tRP
read-pulse width

tRC

read-cycle time

tREA

read-access time

DDPP5.book Page 831 Tuesday, March 28, 2017 5:33 PM

832 Chapter 15 ROMs, RAMs, and FPGAs

To deal with bad bits on a page, NAND memories are manufactured with
spare bytes for each page. For example, what you may think of as a 2-Kbyte page
actually contains 2,048 plus 64 bytes. All 2,112 bytes are used on every internal
operation, and the on-chip data register is 2,112 bytes wide. Low-level driver
software uses the extra bytes to manage the page as follows:

• Some of the spare bytes are set up to contain parity bits in an error-
correcting code so that when a page is read, errors in one or a few bits can
be corrected on the fly.

• If too many bits are bad, the page or the entire block that contains it can be
marked as bad, again using the spare bytes to set its status.

Of course, the spare bytes themselves can go bad, so the algorithms for the above
operations must be sufficiently robust to handle that possibility, too. And run-
ning the management software (particularly error detection and correction)
requires software overhead on every access.

Since NAND access occurs one page at a time, error detection and correc-
tion are done, of necessity, at the page level. However, permanent failures are
infrequent enough that regions of the device are normally marked bad at a higher
level, the block level. That is, failures of a page will cause its entire block to be
marked bad.

Before a new device is shipped from the factory, it is tested and its bad
blocks are marked. The manufacturer guarantees that during the normal life of
the device, no more than a certain number of the blocks will go bad, including
both the factory-marked ones and ongoing failures. The guaranteed maximum
number of bad blocks is typically on the order of 0.2% to 1% of the device total.

The fact that an entire page can go bad means that higher-level applications
cannot use NAND storage as a monolithic array of linearly addressable storage
locations, like a standard NOR EEPROM or a RAM. Rather, they must acknowl-
edge the device’s paged organization and deal with it in much the same way they
deal with other block-oriented storage devices that may have bad blocks, like
disk drives. Luckily, when NAND storage is used for a file system, the overhead
for this kind of mechanism is not particularly burdensome, since file systems
have dealt for decades with block-oriented storage that can have bad blocks, by
mapping a linear file into a list of arbitrarily addressed blocks.

Aside from error management, there are several other subtleties associated
with NAND memory usage. Recall, for example, that erasing occurs at the block
level, not the page level. And pages have to be erased before they can be
programmed, and erasing takes even longer than programming. So, the manage-
ment software must try to keep some already-erased pages and blocks available
at all times. When one or a few pages (for example in a small file) need to be
rewritten, the management software may try to gather and reallocate pages from
different files into the same pre-erased block, to most efficiently utilize storage
space and erased-page availability. The software must also observe other arcane

DDPP5.book Page 832 Tuesday, March 28, 2017 5:33 PM

15.2 Read/Write Memory 833

restrictions, such as the requirement that pages within an erased block be pro-
grammed in numerically increasing order of their page numbers.

Another important management activity is “write leveling.” Recall that the
the individual bits in an EEPROM “wear out” after a certain number of erase and
reprogramming cycles, on the order of 100,000 for typical NAND devices. In a
file system application, some files are rewritten a lot more often that others. The
management software for NAND devices keeps track of how many times each
block has been erased and reprogrammed, and during write operations it will
favor available pages in blocks that have been reprogrammed the least often.
Thus, a “hot” file may bounce around all over the device each time it is updated,
while a “cold” one may not move at all until the management software figures
out that it can move it to a block that’s been overused, to give that block a rest!

15.2 Read/Write Memory
The name read/write memory (RWM) is given to memory arrays in which we can
store and retrieve information at any time. All of the RWMs used in digital
systems nowadays are random-access memories (RAMs), which means that the
time it takes to read or write a bit is independent of the bit’s location in the RAM.
From this point of view, ROMs are also random-access memories, but the name
“RAM” is generally used only for read/write random-access memories.

read/write memory
(RWM)

random-access memory
(RAM)

SERIAL-ACCESS
MEMORY

Random-access memory can be contrasted with serial-access memory, where some
location is always immediately accessible, but accessing others take more time.

Some early computers used electromechanical serial-access memory devices,
such as delay lines and rotating drums. Instructions and data were stored in a rotating
medium with only one location under the “read/write head” at any time. To access a
random location, the computer would have to wait until the constant rotation brought
the desired location under the head.

In the 1970s, electronic equivalents of serial-access rotating memories were
developed, including memories based on charge-coupled devices (CCDs) and others
that used magnetic bubbles. Both types of devices were roughly equivalent to very
large serial-in, serial-out shift registers with their serial output connected back into
the serial input. This connection point was the logical equivalent of a hard disk’s
“read/write head.” To read a particular location, you would clock the shift register
until the desired bit appeared at the serial output, and to write the location, you would
substitute the desired new value at the serial input.

Although they offered higher density (more bits) than DRAMs when they were
introduced, CCD and magnetic-bubble memories never gained much commercial
acceptance. One reason for this was the enormous inconvenience of serial access.
Another was that they were never more than a couple years ahead of DRAMs in the
densities that they could achieve.

DDPP5.book Page 833 Tuesday, March 28, 2017 5:33 PM

834 Chapter 15 ROMs, RAMs, and FPGAs

In a static RAM (SRAM) (“S-ram”), once a word is written at a location, it
remains stored as long as power is applied to the chip, unless the same location
is written again. In a dynamic RAM (DRAM) (“D-ram”), the data stored at each
location must be refreshed periodically by reading it and then writing it back
again, or else it disappears. We’ll discuss both types in this chapter.

Most RAMs lose their memory when power is removed; they are a form of
volatile memory. Some RAMs retain their memory even when power is
removed; they are called nonvolatile memory. Examples of nonvolatile RAMs
are old-style magnetic core memories and modern CMOS static memories in an
extra-large package that includes a lithium battery with a 10-year lifetime.

15.3 Static RAM
The SRAMs in the next four subsections are often called asynchronous SRAMs
to distinguish them from a newer style discussed in Section 15.3.5. The newer,
“synchronous SRAMs” reference their control and data signals to a free-running
clock, while the ones discussed next do not.

15.3.1 Static-RAM Inputs and Outputs
Like a parallel ROM, a RAM has address and control inputs and data outputs,
but it also has data inputs. The inputs and outputs of a simple 2n × b-bit static
RAM are shown in Figure 15-16. The control inputs are comparable to those of
a ROM, with the addition of a write-enable (WE) input. When WE is asserted,
the data inputs are written into the selected memory location.

The memory locations in a static RAM behave like D latches, rather than
edge-triggered D flip-flops. This means that whenever the WE input is asserted,
the latches for the selected memory location are “open” (or “transparent”), and
input data flows into and through the latch. The actual value stored is whatever is
present when the latch closes.

static RAM (SRAM)

dynamic RAM (DRAM)

volatile memory
nonvolatile memory

asynchronous SRAM

Figure 15-16
Basic structure of
a 2n × b RAM.

2n × b RAM

A0

A1

DOUT0

DOUT1

An–1

address
inputs

DIN0

DIN1

DINb–1 DOUTb–1

CS

OE

WE

data
inputs

data
outputs

control
inputs

write-enable (WE) input

DDPP5.book Page 834 Tuesday, March 28, 2017 5:33 PM

15.3 Static RAM 835

Static RAM normally has just two defined access operations:

Read An address is placed on the address inputs while CS and OE are
asserted. The latch outputs for the selected memory location are
delivered to DOUT.

Write An address is placed on the address inputs and a data word is placed on
DIN; then CS and WE are asserted. The latches in the selected memory
location open, and the input word is stored.

A certain amount of care is needed when accessing SRAM, because it is
possible to inadvertently “clobber” one or more other locations while writing to
a selected one, if the SRAM’s timing requirements are not met. The following
subsection gives details on SRAM internal structure to show why this is so, and
the next one explains the actual timing behavior and requirements.

15.3.2 Static-RAM Internal Structure
Each bit of memory (or SRAM cell) in a static RAM has the same functional
behavior as the circuit in Figure 15-17. The storage device in each cell is a D
latch. When a cell’s SEL_L input is asserted, the stored data is placed on the
cell’s output, which is connected to a bit line. When both SEL_L and WR_L are
asserted, the latch is open and a new data bit is stored.

SRAM cells are combined in an array with additional control logic to form
a complete static RAM, as shown for an 8 × 4 SRAM in Figure 15-18 on the next
page. As in a simple ROM, a decoder on the address lines selects a particular row
of the SRAM to be accessed at any time.

Although Figure 15-18 is a somewhat simplified model of internal SRAM
structure, it accurately portrays several important aspects of SRAM behavior:

• During read operations, the output data is a combinational function of the
address inputs, as in a ROM. No harm is done by changing the address
lines while the output data bus is enabled. The access time for read opera-
tions is specified from the time that the last address input becomes stable.

• During write operations, the input data is stored in latches. This means that
the data must meet certain setup and hold times with respect to the trailing
edge of the latch enable signal. That is, the input data at a latch’s D input
need not be stable at the moment WR_L is asserted internally; it must only
be stable a certain time before WR_L is negated.

SRAM cell

Figure 15-17
Functional
behavior of a
static-RAM cell.

OUT
IN

SEL_L
D Q

C
WR_L

IN

SEL

WR

OUT

DDPP5.book Page 835 Tuesday, March 28, 2017 5:33 PM

836 Chapter 15 ROMs, RAMs, and FPGAs

• During write operations, the address inputs must be stable for a certain
setup time before WR_L is asserted internally and for a hold time after
WR_L is negated. Otherwise, data may be “sprayed” all over the array
because of the glitches that may appear on the SEL_L lines when the
address inputs of the decoder are changing.

Figure 15-18 Internal structure of an 8 × 4 static RAM.

IN OUT

SEL

WR

IN OUT

SEL

WR

IN OUT

SEL

WR

IN OUT

SEL

WR

IN OUT

SEL

WR

IN OUT

SEL

WR

IN OUT

SEL

WR

IN OUT

SEL

WR

IN OUT

SEL

WR

IN OUT

SEL

WR

IN OUT

SEL

WR

IN OUT

SEL

WR

IN OUT

SEL

WR

IN OUT

SEL

WR

IN OUT

SEL

WR

IN OUT

SEL

WR

IN OUT

SEL

WR

IN OUT

SEL

WR

IN OUT

SEL

WR

IN OUT

SEL

WR

IN OUT

SEL

WR

IN OUT

SEL

WR

IN OUT

SEL

WR

IN OUT

SEL

WR

IN OUT

SEL

WR

IN OUT

SEL

WR

IN OUT

SEL

WR

IN OUT

SEL

WR

IN OUT

SEL

WR

IN OUT

SEL

WR

IN OUT

SEL

WR

IN OUT

SEL

WR

DOUT3 DOUT2 DOUT1 DOUT0

3-to-8
decoder

DIN3 DIN2 DIN1 DIN0bit
line word line

0

1

2

32

1

0 4

5

6

7

A2

A1

A0

WE_L

CS_L

OE_L

WR_L

IOE_L

DDPP5.book Page 836 Tuesday, March 28, 2017 5:33 PM

15.3 Static RAM 837

• Internally, WR_L is asserted only when both CS_L and WE_L are asserted.
Therefore, a write cycle begins when both CS_L and WE_L are asserted
and ends when either is negated. Setup and hold times for address and data
are specified with respect to these events.

*15.3.3 Static-RAM Timing
Figure 15-19 shows the timing parameters that are typically specified for read
operations in a static RAM; they are described below:

tAA Access time from address. Assuming that the OE and CS inputs are
already asserted, or will be soon enough not to make a difference, this is
how long it takes to get stable output data after a change in address.
When designers talk about a “70-ns SRAM,” they’re usually referring to
this number.

tACS Access time from chip select. Assuming that the address and OE are
already stable, or will be soon enough not to make a difference, this is
how long it takes to get stable output data after CS is asserted. Often this
parameter is identical to tAA, but sometimes it’s longer in SRAMs with
a “power-down” mode and shorter in SRAMs without one.

tOE Output-enable time. This is how long it takes for the three-state output
buffers to leave the high-impedance state when OE and CS are both
asserted. This parameter is normally less than tACS, so it is possible for
the RAM to start accessing data internally before OE is asserted; this
feature is used to achieve fast access times while avoiding “bus fighting”
in many applications.

tOZ Output-disable time. This is how long it takes for the three-state output
buffers to enter the high-impedance state after OE or CS is negated.

tOH Output-hold time. This parameter specifies how long the output data
remains valid after a change in the address inputs.

write cycle

Figure 15-19 Timing parameters for read operations in a static RAM.

ADDR

CS_L

OE_L

DOUT

tAA tOZ tOZ tOE

tOH

tOE

tACS

stable stable stable

≥ tAA max(tAA,tACS)

valid validvalid

Note: WE_L = HIGH

tAA

access time from
address

tACS

access time from chip
select

tOE

output-enable time

tOZ

output-disable time

tOH

output-hold time

DDPP5.book Page 837 Tuesday, March 28, 2017 5:33 PM

838 Chapter 15 ROMs, RAMs, and FPGAs

If you’ve been paying attention, you may have noticed that the timing diagram
and timing parameters for SRAM read operations are identical to what we
discussed for ROM read operations in Section 15.1.4. That’s the way it is; when
they’re not being written, SRAMs can be used just like ROMs. The same is not
generally true for DRAMs, as we’ll see later.

Timing parameters for write operations are shown in Figure 15-20 and are
described below:

tAS Address setup time before write. All of the address inputs must be stable
at this time before both CS and WE are asserted. Otherwise, the data
stored at unpredictable locations may be corrupted.

tAH Address hold time after write. Analogous to tAS, all address inputs must
be held stable until this time after CS or WE is negated.

tCSW Chip-select setup before end of write. CS must be asserted at least this
long before the end of the write cycle in order to select a cell.

tWP Write-pulse width. WE must be asserted at least this long to reliably
latch data into the selected cell.

tDS Data setup time before end of write. All of the data inputs must be stable
at this time before the write cycle ends. Otherwise, the incorrect data
may be latched.

tDH Data hold time after end of write. Analogous to tDS, all data inputs must
be held stable until this time after the write cycle ends.

Manufacturers of SRAMs specify two write-cycle types, WE-controlled
and CS-controlled, as shown in the figure. The only difference between these
cycles is whether WE or CS is the last to be asserted and the first to be negated
when enabling the SRAM’s internal write operation.

The write-timing requirements of SRAMs could be relaxed somewhat if,
instead of using latches, the cells contained edge-triggered D flip-flops with a
common clock input and enable inputs controlled by SEL and WR. However,
this just isn’t done, because it would at least double the chip area of each cell,

Figure 15-20
Timing parameters
for write operations
in a static RAM.

ADDR

CS_L

WE_L

DIN

tAS tWP tAH

stable stable

tCSW

tDS tDH

tAS

tWP tAH

tCSW

tDS tDH

validvalid

(WE-controlled write) (CS-controlled write)

tAS

address setup time

tAH

address hold time

tCSW

chip-select setup time

tWP

write-pulse width

tDS

data setup time

tDH

data hold time

WE-controlled write
CS-controlled write

DDPP5.book Page 838 Tuesday, March 28, 2017 5:33 PM

15.3 Static RAM 839

since a D flip-flop has roughly the same chip area as two latches. Thus, a logic
designer who uses asynchronous SRAM is left to reconcile its latch-type timing
behavior with the edge-triggered register and state-machine timing used else-
where in a system. An alternative is to use a “synchronous SRAM,” as we’ll
discuss later, in Section 15.3.5.

A large SRAM does not contain a physical array whose dimensions equal
the logical dimensions of the memory. As in a ROM, the SRAM cells are laid out
in an almost square array, and an entire row is read internally during read opera-
tions. For example, the on-chip layout of a 32K × 8 SRAM might be very similar
to that of a 32K × 8 ROM shown in Figure 15-4 on page 818. During read oper-
ations, column multiplexers pass the required data bits to the output data bus, as
specified by a subset of the address bits (A5–A0 in the ROM example). For write
operations, the write-enable circuitry is designed so that only one column in
each subarray is enabled, as determined by the same subset of the address bits.

*15.3.4 Standard Asynchronous SRAMs
Asychronous SRAMs are produced in many sizes and speeds, up to 64 Mbits
(4M × 16 bits) with access times as fast as 55 ns. Faster access times of 8 ns can
be obtained from smaller 256K × 16-bit SRAMs.

Figure 15-21 shows generic logic symbols for standalone SRAM devices
ranging in size from 8K × 8 to 512K × 8. All of these devices have bidirectional
data buses—that is, they use the same data pins for both reading and writing.
This necessitates a slight change in their internal control logic to automatically
disable the output buffer whenever WE_L is asserted, even if OE_L is asserted.
However, the timing parameters and requirements for read and write operations
are almost identical to what we described in the preceding subsection.

Standalone SRAMs like the ones shown were often used to store data in
small microprocessor systems, often in “embedded” applications. However, as
chip densities increased, the use of standalone SRAMs decreased, because a
modest amount of SRAM could be integrated on the same chip with the micro-
processor and its input/output interfaces, in a so-called “system on a chip.” And

IO[7:0]

A[12:0]

CS2

OE

8K × 8 512K × 832K × 8 128K × 8

WE

IO[7:0]

A[14:0]

CS

OE

WE

IO[7:0]

A[16:0]

CS2

OE

WE

IO[7:0]

A[18:0]

CS

OE

WECS1 CS1

Figure 15-21 Logic symbols for legacy asynchronous SRAMs.

DDPP5.book Page 839 Tuesday, March 28, 2017 5:33 PM

840 Chapter 15 ROMs, RAMs, and FPGAs

if a lot more memory was needed, as in a general-purpose computer, standalone
DRAMs (discussed in Section 15.4) were and are used because their density is
greater and their cost per bit lower.

*15.3.5 Synchronous SRAM
A newer variety of standalone SRAM chips, called synchronous SRAM
(SSRAM) (“S-S-ram”), was developed to meet the performance demands of the
highest speed SRAM applications, typically in high speed communications and
networking. An SSRAM still uses latches in its internal storage array but has a
clocked interface for control, address, and data. Because critical timing paths are
handled in the SSRAM chip itself, it’s much easier to interface with the rest of
a system that uses the same clock.

As shown in Figure 15-22, an SSRAM places edge-triggered registers
AREG and CREG on its internal signal paths for address and control. As a result,
an operation that is set up before the rising edge of the clock is performed inter-
nally during a subsequent clock period. Register INREG captures the input data
for write operations and, depending on whether the device has “pipelined” or
“flow-through” outputs, register OUTREG is or is not provided to hold read data.

The first variety of SSRAM to be introduced was the late-write SSRAM
with flow-through outputs. For a read operation, shown in Figure 15-23(a), the
control and address inputs are sampled at the rising edge of the clock, and the
internal address register AREG is loaded only if ADS_L is asserted. During the
next clock period, the internal SRAM array is accessed and read data is delivered
to the device’s DIO data-bus pins. The device also supports a burst mode, in
which data at a sequence of addresses is read. In this mode, AREG behaves as a

synchronous SRAM
(SSRAM)

Figure 15-22
Internal structure
of a synchronous
SRAM.

SRAM array

ADDRESS

DIN DOUT

CS

WE

AREG

CREG control logic

INREG

ADDR

CLK

CS

GW_L

DIO

OE OUTREG

CEADS_L

only in devices with pipelined outputs

late-write SSRAM with
flow-through outputs

DDPP5.book Page 840 Tuesday, March 28, 2017 5:33 PM

15.3 Static RAM 841

counter, eliminating the need to apply a new address at each cycle. (The control
signals that support burst mode are not shown in Figures 15-22 or 15-23.)

For a write operation, shown in Figure 15-23(b), the write data is stored
temporarily in an on-chip register INREG, which is sampled one clock tick after
the address register is loaded. Therefore, ADS_L must be inhibited for at least
one tick after loading the address, so that the address in AREG is still valid when
the write takes place. The write takes place during the clock period following the
edge on which the “global write” control signal GW_L is asserted. As with read-
ing, the device has a burst mode where a sequence of addresses can be written
without supplying a new address.

Note that the “late-write” protocol makes it impossible to write to two dif-
ferent, nonsequential addresses in successive clock periods; the SRAM array is
idle for one clock period between writes (except in burst mode). From the point
of view of internal chip capabilities, this behavior is not necessary. However, the
late-write protocol was designed this way to match the bus protocols of older
microprocessors that used these SSRAMs in their external cache subsystems.

A late-write SSRAM with pipelined outputs is like the previous version,
except that a register OUTREG is placed between the SRAM array output and
the device output for read operations. As shown in Figure 15-24 on the next
page, this delays the read output data at the device pins until the beginning of the
next clock period, but it also provides the benefit that the data is now valid for
almost the entire clock period. The write cycle behaves the same as with flow-
through outputs. Compared to flow-through outputs, pipelined outputs provide
much better setup time for the device receiving the read data, and therefore may
allow operation at higher clock frequencies.

As we showed in Figure 15-22, conventional SSRAMs share the same pins
for both input data and output data. During a given clock period, the data I/O

Figure 15-23 Timing behavior for late-write SSRAM with flow-through outputs: (a) read operations;
(b) write operations.

CS, ADDR

CLK

X Y Z

X Y Z

AREG,
CREG

X Y Y+1 Y+2 Y+3

X Y Y+1 Y+2 Y+3SRAM array
(reading)

X Y Y+1 Y+2 Y+3DIO (out)

CS, ADDR

CLK

X Y Z

GW_L X Y

SRAM array
(writing)

DIO (in) X Y Y
+1

INREG X Y

X Y Y+1

(a) (b)

Z

Z

Z Y
+3

Y+1

Y
+2

AREG,
CREG

X Y Y+1 Y+2

Y+2

Y+2 Y+3

Y+3

Y
+1

Y
+3

Y
+2

ADS_L

Note: GW_L is HIGH throughout

X Y ZADS_L

Y+3 Z

Z

idleidle idle idle Z

Z

Z

idle

late-write SSRAM with
pipelined outputs

DDPP5.book Page 841 Tuesday, March 28, 2017 5:33 PM

842 Chapter 15 ROMs, RAMs, and FPGAs

pins can be used for reading or writing but not both. If you study the pattern of
data-bus and SRAM-array use in both styles of late-write SSRAM, you’ll find
cases where it’s not possible to initiate a read one clock cycle after initiating a
write or vice versa, due to resource conflict (see Exercise 15.20). Thus, late-
write SSRAMs suffer a turn-around penalty, a clock period in which the internal
SRAM array must be idle when a read is followed by a write or vice versa.

The turn-around penalty is eliminated in so-called zero-bus-turn-around
(ZBT) SSRAMs. The timing for a ZBT SSRAM with flow-through outputs is
shown in Figure 15-25. The type of operation (read or write) is selected by a
control signal R/W that is sampled at the same clock edge as the address. Regard-
less of whether the operation is a read or a write, the DIO bus is used during the
next clock period to transfer the read or write data. As a result, there is no data-
bus-usage conflict, as long as OE is controlled properly to avoid bus-fighting
between successive cycles. However, if a write is followed by a read, both oper-
ations would like to use the SRAM array during the same clock period. To avoid

Figure 15-24
Read-timing
behavior for late-
write SSRAM with
pipelined outputs.

CS, ADDR

CLK

X Y Z

X Y Z

AREG,
CREG

X Y Y+1 Y+2 Y+3

X Y Y+1 Y+2 Y+3SRAM array
(reading)

OUTREG

Z

Z

ADS_L

idle

X Y Y+1 Y+2 Y+3 Z

X Y Y+1 Y+2 Y+3 ZDIO (out)

idle

turn-around penalty

zero-bus-turn-around
(ZBT) SSRAM

Figure 15-25
Timing behavior for
a ZBT SSRAM
with flow-through
outputs.

CS, ADDR

CLK

R1 W1

R/W

SRAM array

DIO (in)

INREG,
WAREG

AREG,
CREG

R1 W1

ADS_L

R2 W2 R3 R4 W3 W4 R5

R2 W2 R3 R4 W3 W4 R5 R6 R7 R8

R6 R7 R7

R1 W1 R2 W2 R3 R4 W3 W4 R5 R6 R7 R8

R1 W1 R2 W2 R3 R4 W3 W4 R5 R6 R7 R8

W1 W2 W3 W4

W1 W2 W3 W4

R1 R2 R3 R4 R5 R6 R7

DIO (out) R1 R2 R3 R4 R5 R6 R7

W1 W2 W3 W4

DDPP5.book Page 842 Tuesday, March 28, 2017 5:33 PM

15.3 Static RAM 843

this resource conflict, the write operation is deferred until the next available
SRAM cycle. This opportunity occurs when either another write operation or no
operation is initiated on the address and control lines.

Although a ZBT SSRAM can access the internal SRAM array on every
clock cycle, this performance improvement is not without a price. While a write
operation is pending, the write address and related information must be stored in
another register, WAREG, since AREG is reused by other operations; this may
increase the on-chip memory access time slightly since the address source for
the array must now go through a multiplexer. More significantly for some appli-
cations, a write operation may be deferred indefinitely if it is immediately
followed by a continuous series of read operations. This anomaly may require
tricky controller design to detect the case where one of these read operations
attempts to access the address that was just written, since the value stored in the
SRAM array is “stale”!

A ZBT SSRAM with pipelined outputs adds OUTREG to the read data path
but is otherwise similar to the previous device. In this device, both reads and
writes use the DIO bus during the second clock period following the clock edge
in which the operation was initiated. As in the previous device, writes to the
internal SRAM array are deferred until an available cycle, so that reads can take
precedence. Timing is shown in Figure 15-26. As implied by the timing, two
levels of internal registers are needed for write address and data, since up to two
writes may be deferred while a sequence of reads occurs.

Among the four styles of SSRAM that we described, no single one is the
“best.” The best SSRAM is the one that best fits the bus protocol and other
requirements of the system in which it is used. SSRAM access protocols are very

ZBT SSRAM with
pipelined outputs

Figure 15-26
Timing behavior for
a ZBT SSRAM
with pipelined
outputs.

CS, ADDR

CLK

R1 W1

R/W

SRAM array

DIO (in)

AREG,
CREG

R1 W1

ADS_L

R2 W2 R3 R4 W3 W4 R5

R2 W2 R3 R4 W3 W4 R5 R6 R7 R8

R6 R7 R7

R1 W1 R2 W2 R3 R4 W3 W4 R5 R6 R7 R8

R1 W1 R2 W2 R3 R4 W3 W4 R5 R6 R7 R8

W1 W2 W3 W4

R1 R2 R3 R4 R5 R6 R7

OUTREG R1 R2 R3 R4 R5 R6 R7

W1 W2 W3

INREG1,
WAREG1

W1 W2 W3 W4

INREG2,
WAREG2

W1 W2 W3

DIO (out) R1 R2 R3 R4 R5 R6 R7

DDPP5.book Page 843 Tuesday, March 28, 2017 5:33 PM

844 Chapter 15 ROMs, RAMs, and FPGAs

beneficial in high-speed systems. For example, address, control, and write inputs
can be applied with more-or-less conventional setup and hold times with respect
to the system clock, and read data on pipelined output pins is available for almost
a complete clock cycle. Very importantly, the designer does not have to worry
about the tricky circuits and timing paths that are otherwise needed to enable
conventional SRAM latch-style operation.

The latest quad-data-rate (QDR) SSRAMs make timing tricky again, by
transferring data on both edges of the clock. But they also simplify operations
and eliminate the turn-around penalty by using separate input and output buses
(hence the claim that they are “four” times as fast). QDR devices were available
in 2017 with sizes up to 144 Mbits and clock frequencies as high as 1066 MHz.

15.4 Dynamic RAM
The basic memory cell in an SRAM, a D latch, requires four gates in a discrete
design, and four to six transistors in a custom-designed SRAM VLSI chip. In
order to build RAMs with higher density (more bits per chip), chip designers
invented memory cells that use as little as one transistor per bit.

15.4.1 Dynamic-RAM Structure
It is not possible to build a bistable element with just one transistor. Instead, the
memory cells in a dynamic RAM (DRAM) store information on a tiny capacitor
that is accessed through a MOS transistor. Figure 15-27 shows the storage cell
for one bit of a DRAM, which is accessed by setting the word line to a HIGH
voltage. To store a 1, the bit is accessed and a HIGH voltage is placed on the bit

quad-data-rate (QDR)
SSRAM

 SRAM IN FPGAS While the use of standalone SRAM chips has declined, SRAM usage in FPGAs has
soared. Today’s FPGAs have built-in blocks of SRAM that the designer can inter-
connect with other programmable logic on the chip. For example, each Xilinx
7-series FPGA has up to about 2,000 36-Kb “block RAMs” that can be individually
configured as n words by 1 to 72 bits (e.g., n=512 at width 72). To support high-
speed operation, each RAM’s interface to the rest of the FPGA is fully synchronous.
As Xilinx puts it in their documentation, “Nothing happens without a clock.”

dynamic RAM (DRAM)

Figure 15-27
Storage cell for one
bit in a DRAM.

word line

bit line

1-bit DRAM cell

DDPP5.book Page 844 Tuesday, March 28, 2017 5:33 PM

15.4 Dynamic RAM 845

line, which charges the capacitor through the “on” transistor. To store a 0, a LOW
voltage placed on the bit line discharges the capacitor.

To read a DRAM cell, the bit line is first precharged to a voltage halfway
between HIGH and LOW, and then the word line is set HIGH. Depending on
whether the capacitor voltage is HIGH or LOW, the precharged bit line is pulled
slightly higher or slightly lower. A sense amplifier detects this small change and
recovers a 1 or 0 accordingly. Note that reading a cell destroys the original
voltage stored on the capacitor, so that the recovered data must be written back
into the cell after reading.

The capacitor in a DRAM cell has a very small capacitance, but the MOS
transistor that accesses it has a very high impedance. Therefore, it takes a
relatively long time (100 milliseconds or more) for a HIGH voltage to discharge
to the point that it looks more like a LOW voltage. In the meantime, the capacitor
stores one bit of information.

Naturally, using a computer would be no fun if you had to reboot every 100
milliseconds because its memory contents disappeared (the behavior of some
computers notwithstanding). Therefore, DRAM-based memory systems use
refresh cycles to update every memory cell periodically, typically once every 64
milliseconds. This involves sequentially reading the somewhat degraded con-
tents of each cell into a D latch and then writing back a nice solid LOW or HIGH
value from the latch. Figure 15-28 illustrates the electrical state of a cell after a
write and a sequence of refresh operations.

The first DRAMs, introduced in the early 1970s, contained only 1024 bits,
but modern DRAMs are available containing 16 gigabits or more. If you had to
refresh every cell, one at a time, in 64 milliseconds, you’d have a problem—that
works out to about 1 picosecond per cell, and includes no time for useful read
and write operations. But like other memories, as we’ll show, DRAMs are
organized using two-dimensional arrays, and a single operation refreshes an
entire row of the array. Early DRAM arrays had 256 rows, requiring 256 refresh
operations every four milliseconds, or one about every 15.6 μsec. The newest
arrays have 8192 rows but need to be refreshed only once every 64 ms, which
works out to one row per 7.8 μsec. A refresh operation typically takes only a few
tens of nanoseconds, and can often be “hidden” during times when the DRAM
would otherwise be idle, so the DRAM is available for useful read and write
operations well over 99% of the time.

precharge

sense amplifier

refresh cycle

Figure 15-28
Voltage stored in a
DRAM cell after
writing and refresh
operations.

0 V

VCC

HIGH

LOW

1 written0 stored refresh refresh refresh

time

Vcap

DDPP5.book Page 845 Tuesday, March 28, 2017 5:33 PM

846 Chapter 15 ROMs, RAMs, and FPGAs

For simplicity, we’ll describe DRAM operations in terms of a relatively
small, generic 4M × 4-bit DRAM. Larger DRAMs typically contain multiple
arrays (called banks) with sizes that may be different from what is shown here.

Figure 15-29 is a block diagram of the internal structure of our example
4M × 4 DRAM. This device is called a synchronous DRAM (SDRAM) because
its control and data operations are all referenced to a common clock signal, CLK.
Older DRAMs had asynchronous control signals; for more information, see the
third edition of this book.

The logical array in Figure 15-29 has 4M × 4 bits, but the physical array is
square, containing 4096 × 4096 bits. Many commercial DRAM chips have non-
square individual arrays, but multiple nonsquare arrays (banks) are arranged to
yield an overall chip that is close to square.

In the earliest SDRAMs, the clock signal CLK ran at 100 MHz; the newest
SDRAMs run at 1067 MHz or more, and transfer data on both edges of the clock
(at a so-called double data rate [DDR]). Various commands, explained shortly,
can be applied to the device on the 3-bit CMD bus at each rising edge of CLK.

Although the example SDRAM has 4M (222) locations, the chip has only
12 multiplexed address inputs A[11:0]. A complete 22-bit address is presented to
the chip in two steps at two clock ticks, as determined by operation codes on the
CMD bus. Multiplexing the address inputs saves pins, important for compact
design of memory systems, and also fits quite naturally with the two-step
SDRAM access methods that we’ll describe shortly.

One advantage of having multiple banks in larger SDRAMs is to ease the
electrical and physical design problems that would occur with a single, very
large memory array. But even more important is the parallelism that can occur
when there are multiple banks. As we’ll see in the next subsection, SDRAM

DRAM bank

Figure 15-29
SDRAM internal
structure.

 row
decoder

and
latches

4096 x 4096
array

 column latches,
multiplexer, and demultiplexer

control

CLK

A[11:0]

row address

latch, mux, and
demux control

column address

DQ[1:4]

CMD[2:0]

synchronous DRAM
(SDRAM)

double data rate (DDR)

multiplexed address
inputs

DDPP5.book Page 846 Tuesday, March 28, 2017 5:33 PM

15.4 Dynamic RAM 847

operation is much more complicated than SRAM operation. Taking advantage
of the multiple banks in larger, high-speed SDRAMs, a modern SDRAM mem-
ory controller can perform several operations in parallel—for example,
completing a write operation in one bank while initiating a read operation in
another. This increases the effective throughput of the memory.

15.4.2 SDRAM Timing
There are many different timing scenarios for different SDRAM types and oper-
ations. In this subsection, we’ll describe the most common cycles for
conventional SDRAMs and relate them to the internal structure of the device.

As we mentioned previously, the 3-bit CMD bus is used to give a command
to the SDRAM at each clock tick. Typical SDRAMs have four or more banks;
additional input bits select the bank to which the command is applied. Most
commands take several clock cycles to complete, and multiple commands are
required to perform a single read or write operation. Table 15-2 gives the names
and descriptions of the most commonly used commands.

To perform a read cycle, several steps and commands are required:

1. Select the bank containing the desired address and issue the PRE com-
mand. This precharges all of the bit lines in the bank to a voltage halfway
between HIGH and LOW.

2. Wait a few clock ticks (as specified by the SDRAM manufacturer) until the
precharge operation has completed.

3. Once again select the desired bank, apply the high-order bits of the desired
address (the row address) to the A[11:0] inputs, and issue the ACTV
command. The row address is stored in an internal row-address register
and the word line for the selected row is activated, so the entire row can be
read and stored in an internal 4096-bit row latch.

4. Wait a few clock ticks (the so-called RAS-CAS delay) for the 4096-bit
word that was just read to stabilize internally.

Command
Name Description

Table 15-2
Commonly used
SDRAM commands.

NOP No operation

ACTV Row-address strobe and activate bank

READ Column address and read command

READA Read with auto-precharge

WRIT Column address and write command

WRITA Write with auto-precharge

REF Auto refresh

PRE Precharge

read cycle

row address
row-address register

row latch

RAS-CAS delay

DDPP5.book Page 847 Tuesday, March 28, 2017 5:33 PM

848 Chapter 15 ROMs, RAMs, and FPGAs

5. Apply the low-order bits of the desired address (the column address) to the
A[11:0] inputs, and issue the READ command. The column address is
stored in an internal column-address register and is applied to the column
multiplexer to select four bits out of the 4096-bit row latch to be delivered
to the DQ[1:4] output pins. (Only pins A[9:0] are used for the 10-bit column
address in this example.)

6. Wait a few more clock ticks (the so-called CAS latency) for the addressed
four bits to propagate through the column multiplexer and to the DQ[1:4]
outputs. During this time, the 4096-bit row latch is also written back into
the selected row. (Remember, all the capacitors in the row were discharged
by the read operation back in step 3.)

7. Finally, read the data on the DQ[1:4] data input/output pins.

These operations are illustrated in Figure 15-30 assuming a fairly generic
SDRAM with a 100-MHz clock and a CAS latency of 2. A memory controller or
microprocessor applies commands and addresses on the CMD and A buses in
order to be valid at the rising edge of CLK with a few nanoseconds of setup and
hold time. The SDRAM eventually places read data on the DQ bus shortly
(typically 5 ns) after a rising edge of CLK, so that the memory controller or
microprocessor can read it reliably on the next rising edge.

column address

column-address register

CAS latency

WHEN PRE
BECOMES POST

The need to precharge a DRAM’s bit lines prior to a read or write adds significant
delay to these operations. Therefore, most DRAM controllers are designed to
precharge the bit lines after each operation completes. That way, there’s a good
chance that the precharge will be completed by the time a new operation to the bank
is requested. In SDRAMs, the READA and WRITA commands automatically perform
a precharge on the just-used bank as a read or write operation is completed, and no
separate PRE command needs to be given.

Figure 15-30
SDRAM read-
cycle timing.

CLK

DQ[1:4]

A[11:0]

CMD[2:0] PRE ACTV READ ACTV

row
addr

col
addr

row
addr

out

CAS latency
(= 2)

PRE

10 ns

RAS-CAS
delay

PRE-to-ACTV
delay

ACTV-to-PRE delay

DDPP5.book Page 848 Tuesday, March 28, 2017 5:33 PM

15.4 Dynamic RAM 849

SDRAMs have all sorts of complicated timing requirements that are speci-
fied by the manufacturer. For example, once a read cycle has completed, it may
or may not be possible to request a new precharge cycle immediately—first, an
active-to-precharge delay must elapse, as shown in the figure. The timing
requirements also vary depending on whether read and write operations are
interleaved, and whether successive operations are going to the same bank or
different banks. This makes the design of SDRAM memory controllers very
challenging, but ripe with opportunities for increasing efficiency.

As shown in Figure 15-31, SDRAM write cycles are like read operations,
with one main difference. The memory controller or microprocessor drives the
write-data onto the DQ bus at the same time that it issues the WRIT command.
During the next few clock cycles (step 6 in our previous description of read oper-
ations), the SDRAM merges the write-data into the addressed column in the row
latch and then writes the entire, updated 4096-bit value back into selected row.

As you can see from the timing diagrams, it takes a lot of time and effort to
read or write a single location in an SDRAM—a total of seven clock cycles in
our read and write examples just to obtain one clock cycle with an actual data
transfer. Compare with SSRAMs (see Section 15.3.5), which can perform a data
transfer on every clock cycle.

SDRAMs can achieve higher data transfer rates when multiple locations in
the same row of the internal memory array are accessed successively. After all,
in our example SDRAM, the entire 4096-bit row is stored in the row latch during
a read operation, and it is a relatively simple matter to bring out a different 4-bit
word to the DQ bus on successive clock ticks.

Thus, Figure 15-32 shows the timing for a burst-read cycle, assuming a
burst length of four. The first 4-bit word is delivered at the same time as in a
normal read cycle, and additional words from successive locations are delivered
during the next three clock cycles. A typical SDRAM can support burst lengths
of 1, 2, 4, or 8 words, or the entire row latch (also called a page, 1024 words in
this example).

Figure 15-31
SDRAM write-
cycle timing.

CLK

DQ[1:4]

A[11:0]

CMD[2:0] PRE ACTV WRIT ACTV

row
addr

col
addr

row
addr

in

PRE

10 ns

RAS-CAS
delay

PRE-to-ACTV
delay

ACTV-to-PRE delay

write cycle

burst-read cycle

page

DDPP5.book Page 849 Tuesday, March 28, 2017 5:33 PM

850 Chapter 15 ROMs, RAMs, and FPGAs

The burst length is not specified on a per-operation basis; rather, it is
specified statically, using a few bits in an internal configuration register. The
memory controller programs the configuration register when the system begins
operation. Other static operating parameters, such as CAS latency (2 or 3) and
the method for generating successive burst addresses (sequential or interleaved),
are also programmed in the configuration register.

As shown in Figure 15-33, operations for a burst-write cycle are similar,
with the memory controller or microprocessor delivering one word to the DQ
bus per cycle, starting in the same clock cycle as the WRIT command. A new pre-
charge command cannot be given until two ticks after the last write-data appears
on the DQ bus. This provides time for the updated row latch to be written back
into the selected row.

Before we forget. we should discuss one other very important SDRAM
operation—the auto-refresh cycle. In this cycle, initiated by the REF command,
the SDRAM reads one row of each bank’s internal array into its row latch, and
writes it back. No address is applied to the A bus; instead, the SDRAM uses the
value of an internal 12-bit refresh counter as the row address, and increments it
after the refresh operation. A total of 4096 refresh operations must be performed
every 64 ms to prevent data loss. (The banks in larger chips have 8192 rows and
need twice as many refresh operations.) All banks must be precharged before a
REF command is given, and the command precharges the banks as it completes.

15.4.3 DDR SDRAMs
Double-data-rate (DDR) SDRAMs do just that—they double the data-transfer
rate of an SDRAM by transferring data on both edges of the clock, rising and
falling. Note that address and command operations still require one clock cycle,

Figure 15-32
SDRAM burst-
read-cycle timing.

CLK

DQ[1-4]

A[11-0]

CMD PRE ACTV READ ACTV

row
addr

col
addr

row
addr

out0 out1 out2 out3

PRE

configuration register

Figure 15-33
SDRAM burst-
write-cycle timing.

CLK

DQ[1-4]

A[11-0]

CMD PRE ACTV WRIT ACTV

row
addr

col
addr

row
addr

in0 in1 in2 in3

PRE

burst-write cycle

auto-refresh cycle

refresh counter

double-data-rate
(DDR) SDRAM

DDPP5.book Page 850 Tuesday, March 28, 2017 5:33 PM

15.5 Field-Programmable Gate Arrays (FPGAs) 851

the same as in a conventional SDRAM. So, the actual data-transfer rate is
increased only for burst operations.

DDR operation is “simple” from a functional point of view. For example,
just imagine eight words coming out in the same interval that four are shown in
the SDRAM burst cycles in Figures 15-32 and 15-33, with even-numbered
words referenced to the rising edge of the clock, and odd-numbered to the falling
edge.

But DDR operation is very tricky from a timing and analog implementa-
tion point of view. Remember, the whole point of DDR is to go fast. To maintain
precise timing, DDR SDRAMs use differential clock inputs—complementary
versions of the clock signal with very little timing skew between them. An on-
chip analog delay-locked loop (DLL) locks onto this clock signal and generates
internal and external signals, including output data and input and output latch
enables, with precise delays relative to this clock.

Board-level designers must be very careful to balance the delays, minimize
the skew, and optimize the quality of all signals going to and from the DDR
SDRAM. Even after all this work, DDR operation provides faster data transfers
only during burst-mode operations, so the benefit is application dependent.

15.5 Field-Programmable Gate Arrays (FPGAs)
In Chapter 1, we introduced basic FPGA architecture, an array of configurable
logic blocks (CLBs) embedded in a sea of programmable interconnect. Leading
FPGA manufacturers include Xilinx, Altera (now part of Intel), and Lattice
Semiconductor. The internal architectures of FPGAs differ among different
manufacturers and even among different families from the same manufacturer;
in this book we use the Xilinx 7 series as the running example.

In Sections 6.1.3, 8.1.10, and 10.7, we looked at the architectural features
of the configurable logic blocks in 7-series FPGAs. In this section, we’ll start at
an even higher level, showing how multiple “regions” of logic are put together
on a single chip. Then we’ll revisit CLBs and other elements, drill down into
some detail on the family’s programmable I/O features, and end with a peek at
the device’s massive programmable interconnect structure.

15.5.1 Xilinx 7-Series FPGA Family
The Xilinx 7-series FPGA family was designed to span a broad range of device
sizes and applications. The smallest devices have only about 2,800 LUTs, while
the largest have over 600,000.

An important question must be answered to scale this or any other FPGA
architecture—should larger devices simply increase the dimensions and param-
eters of the basic architecture, or should they add another layer of hierarchy?
Another important question exists at all sizes. Because of the nature of design
and redesign for FPGAs, it is often necessary to migrate a design from one

delay-locked loop
(DLL)

configurable logic block
(CLB)

DDPP5.book Page 851 Tuesday, March 28, 2017 5:33 PM

852 Chapter 15 ROMs, RAMs, and FPGAs

device to a larger one, or in rare cases, to a smaller one—how can that be done
without reworking the design for different device structural parameters?

The 7 series uses the approach in Figure 15-34, which shows the physical
layout for one FPGA chip (die). This chip is divided into six regions, outlined in
dark color, which are stacked three high and two across. All regions in this and
in all 7-series FPGA are exactly the same height. However, the stack height
(number of regions) may vary in different chips, and the left and right regions
may have different widths, even in the same chip. The largest chips may have a
third stack of regions. These variables provided ample opportunity for Xilinx to
offer a wide range of device sizes, some of which are listed in Table 15-3. We’ll
describe resources listed there in the next subsection.

A few other aspects of Figure 15-34 are noteworthy. Dedicated resources
are provided for clock distribution in a tree-like fashion that may remind you of
our clock-skew discussion in Section 13.3.1. The main “trunk” of the tree goes

Figure 15-34
Xilinx 7-series
FPGA with six
regions.

clock tree I/O banksI/O banks

CLBs and
other logic

CLBs and
other logic

CLBs and
other logic

CLBs and
other logic

CLBs and
other logic

CLBs and
other logic

CLBs and
other logic

CLBs and
other logic

CLBs and
other logic

CLBs and
other logic

CLBs and
other logic

CLBs and
other logic

Region X0Y2

Region X0Y1

Region X0Y0

Region X1Y2

Region X1Y1

Region X1Y0

DDPP5.book Page 852 Tuesday, March 28, 2017 5:33 PM

15.5 Field-Programmable Gate Arrays (FPGAs) 853

down the center of the chip, between the left and right regions, with horizontal
branches extending across at the middle of each region. From the branches, addi-
tional branches (not shown) extend upward and downward to reach all of the
CLBs in the region. Thus, clock-signal lengths are well-balanced, and clocks are
distributed and “managed” on a regional basis. Each region has local clocks as
well as access to global (chip-wide) clocks. Even clocks that are generated off-
chip are brought to the trunk before being distributed to the regions. A special
logic resource called a “Clock Management Tile” (CMT) in each region, located
near the trunk, selects, adjusts, and distributes the clocks in that region.

A second interesting aspect is the vertical I/O bank on one side of each
region. Each I/O bank contains 50 I/O pads and related circuitry (an “I/O
block”), which can be programmed to support various electrical I/O standards on
a bank-by-bank basis, as we describe in more detail in Section 15.5.3. So, even if
a design grows or shrinks enough to require different resources, including more
or fewer regions, its I/Os and clocks can normally stay in their originally
assigned region, thereby avoiding I/O-dependent “fitting” problems.

Device Slices LUTs
18 Kb

BRAMs DSPs CMTs
Max.

user I/O

Table 15-3
Resources in Xilinx
7-series FPGAs

XC7S6 938 3,752 10 10 2 100

XC7S15 2,000 8,000 20 20 2 100

XC7S50 8,150 32,600 150 120 5 250

XC7S100 16,000 64,000 240 160 8 400

XC7A12T 2,000 8,000 40 40 3 150

XC7A35T 5,200 20,800 100 90 5 250

XC7A75T 11,800 47,200 210 180 6 300

XC7A200T 33,650 134,600 730 740 10 500

XC7K70T 10,250 41,000 270 240 6 300

XC7K160T 25,350 101,400 650 600 8 400

XC7K325T 50,950 203,800 890 840 10 500

XC7K355T 55,650 222,600 1,430 1,440 6 300

XC7K410T 63,550 253,800 1,590 1,540 10 500

XC7K480T 74,650 297,400 1,910 1,920 8 400

XC7VX415T 64,400 257,600 1,760 2,160 12 600

XC7V585T 91,050 364,200 1,590 1,260 17 850

XC7VX690T 108,300 433,200 2,940 3,600 20 1,000

XC7VX980T 153,000 612,000 3,000 3,600 18 900

7-series I/O bank

DDPP5.book Page 853 Tuesday, March 28, 2017 5:33 PM

854 Chapter 15 ROMs, RAMs, and FPGAs

Consistent with this aspect, notice in the last two columns of Table 15-3
that the maximum number of user I/Os is always exactly 50 times the number of
CMTs, which is also the number of regions. Also notice the letter S, A, K, or V
after “XC7” in each device number. The letter designates one of four different 7-
series subfamilies with different packaging and price-performance points.

Yet another aspect of modern FPGA architectures is the ability to augment
their I/O structures with specialized elements for particular applications. In the
Xilinx 7 series, many of the devices in Table 15-3 have one or more regions con-
taining different I/O pads and circuits to support high-speed serial interfaces.

For example, all of the devices except the “S” subfamily have dedicated,
hardwired logic to support at least one PCI Express interface with up to eight
lanes of 5 Gbps serial I/O. For even higher speed serial I/O, some devices have
specialized I/O transceivers, phase-locked loops, and serial-parallel conversion
circuits to support rates up to 28 Gbps per transceiver, typically used to connect
with other devices in the same system. One of the largest devices in Table 15-3,
the XC7VX690T, has 80 such transceivers capable of up to 13 Gbps each, in
addition to its 1,000 pins of “low-speed” user I/O.

I/O PAD LAYOUT In our original FPGA diagram in Chapter 1, we showed the I/O pads in a so-called
“pad ring” around the circumference of the chip, for wired connections to the IC
package’s pins. In Figure 15-34, the pads are on the two sides only. In larger chips,
a third column of pads has to go somewhere in the middle of the chip. But that all
still works with the “flip-chip” technology used in the 7 series.

In the flip-chip approach, the FPGA die is manufactured with solder bumps on
each I/O pad. A special carrier is made with a pattern of contacts that match the
bumps on the FPGA die when the die is “flipped” and placed face down on the car-
rier. The whole assembly is heated, melting the solder to mechanically and
electrically bond the FPGA chip to the carrier. The carrier has its own internal metal
routing layers that connect the FPGA’s I/O pads to whatever the carrier uses to con-
nect to a printed-circuit board on the other side, like pins in a ceramic pin-grid array
(PGA), or the carrier’s solder balls in a ball-grid array (BGA). Figure 15-35 illus-
trates the BGA, omitting the typical lid over the FPGA chip.

Figure 15-35
Flip-chip FPGA
bonded to the
substrate for a
ball-grid array.

substrate
FPGA chip

solder bumps

printed-circuit board

DDPP5.book Page 854 Tuesday, March 28, 2017 5:33 PM

15.5 Field-Programmable Gate Arrays (FPGAs) 855

A final aspect that has gained popularity is the deployment of FPGAs
together with microprocessors to create systems-on-a-chip (SoCs) for embedded
applications, like medical instruments, machine vision, and professional video
equipment. Instead of combining the FPGA’s customized hardware with an off-
chip microprocessor subsystem, the designer can now use a microprocessor that
is already integrated on the same chip with the FPGA itself.

Thus, Xilinx created the “Zynq” family of devices that have the same base
architecture as 7-series FPGAs, but replace one or more regions or parts of them
with a microprocessor subsystem having the following major elements:

• A microprocessor and associated cache memory.

• Boot ROM and a modest amount of on-chip SRAM (256 KB).

• Interfaces to external NOR flash, NAND flash, SRAM, and DRAM.

• Direct Memory Access (DMA) interface.

• Two gigabit Ethernet and two USB interfaces.

• Up to 54 general-purpose I/O ports assignable to external I/O pins.

• Industry-standard on-chip I/O bus to interface with customized elements
created using the FPGA’s programmable logic.

Thus, using the FPGA’s programmable hardware resources, a designer can
customize the circuit for a particular application, and control it with customized
software using the on-chip microprocessor subsystem and off-chip resources
like flash and DRAM that are also tailored to the application.

Like the base 7-series FPGA family, the Zynq family is offered at several
different size and price-performance points, with programmable-logic options
ranging from 3,600 to 69,100 slices, 100–1,510 BRAMs, 66–2,020 DSPs, and
54–400 user I/O pins in addition to ones used by the microprocessor subsystem
for memory interfaces and the like.

15.5.2 CLBs and Other Logic Resources
Since an FPGA can have lots and lots of CLBs, it’s important that we understand
them! We showed the position of CLBs within the 7-series FPGA chip hierarchy
in Section 10.7, and for reference the illustration is repeated in Figure 15-36.
The basic configurable logic element contains four LUTs, eight flip-flops, and a
CARRY4 element, and is called a slice. Two slices are paired to form a CLB
which is embedded as a unit into the sea of interconnect. However, note that like
the Xilinx literature, our Table 15-3 counts slices, not CLBs.

We saw the basic capabilities of a slice elsewhere as we introduced each of
its various elements, but for reference they are summarized here:

• Each slice has four 6-input LUTs. A LUT can perform any combinational
logic function of six variables, or it can be split to perform any two func-
tions of the same five variables (see Section 6.1.3).

system on a chip (SoC)

slice

DDPP5.book Page 855 Tuesday, March 28, 2017 5:33 PM

856 Chapter 15 ROMs, RAMs, and FPGAs

• A D flip-flop and a second 1-bit storage element, programmable to be a D
flip-flop or latch, are paired with each LUT, for a total of eight flip-flops/
latches in the slice (see Section 10.7).

• A specialized CARRY4 element provides a fast carry path for 4 bits of
addition, and carries into and out of the slice are cascaded with the slices
above and below (see Section 8.1.10).

• Special multiplexers (F7MUX and F8MUX) combine LUT outputs to
implement 7- and 8-input combinational functions (see box on page 245).

• A LUT’s 64-bit “ROM” may be used to create a 32-bit shift register instead
of storing a truth table (see References on page 596).

• The “ROM” in one or more LUTs may be used to create a 32 × 1 or larger
“distributed” SRAM or ROM (see References on page 863).

Figure 15-37 shows the physical layout of one region in a Xilinx 7-series
FPGA. The I/O blocks and the CLBs are the same height, and the height of a
region is always exactly 50 of these elements. Two other elements that we’ll
describe next, BRAMs and DSPs, are somewhat taller, so their columns in a
region are 20 elements high. The widths of the left and right regions may be dif-
ferent, may have more than one BRAM or DSP column, and may also may vary
among family members.

The BRAM elements in Table 15-3 and Figure 15-37 are block RAMs.
Each BRAM has 18K bits of SRAM that can be used as an independent 16K × 1,
8K × 2, 4K × 4, 2K × 9, 1K × 18 or 512 × 36 memory. Pairs of BRAMs are laid

Figure 15-36
CLBs in a Xilinx
7-series FPGA.

7-series FPGA chip

Configurable Logic
Block (CLB) Slice

PLE

PLE

PLE

PLE

CLB

carry
chain

Slice

Slice

block RAM

DDPP5.book Page 856 Tuesday, March 28, 2017 5:33 PM

15.5 Field-Programmable Gate Arrays (FPGAs) 857

out vertically in 36-Kb blocks, supporting block configurations of 64K × 1,
32K × 1, 16K × 2, 8K × 4, 4K × 9, 2K × 18, 1K × 36, and 512 × 72. Some of these
configurations have multiple ports, which means that the memory can be read or
written simultaneously at two or more different addresses. Writing the BRAM is
always synchronous, while reading may be synchronous or asynchronous. Syn-
thesis tools can create wider and deeper memories using multiple BRAMs and
CLBs as needed for additional control and multiplexing logic.

The BRAM’s 36-Kb block size may seem unusual until you see that it
leads to a configuration with a 72-bit width. This is exactly what’s needed to sup-
port an extended Hamming code that can correct one error and detect double
errors in 64-bit data (see Section 2.15.3). In fact, each 36-Kb BRAM block has
built-in Hamming encoding and decoding logic to support such a code. Each
BRAM can also be configured as a FIFO memory with the same (synchronous)
or different (asynchronous) read and write clocks.

The last fundamental element in Table 15-3 and Figure 15-37 is the DSP
slice, which is an integrated datapath for performing digital-signal-processing
(DSP) operations. The DSP slice has four data inputs and corresponding regis-
ters, an 18-bit adder/subtractor and a 48-bit ALU, an 18 × 25-bit multiplier,

Figure 15-37
Physical layout of
a Xilinx 7-series
region.

50
I/O blocks
and slices

high

20 BRAMs 20 DSPs
50 x 26 CLBs

clock tree

50 I/O blocks

DSP slice

DDPP5.book Page 857 Tuesday, March 28, 2017 5:33 PM

858 Chapter 15 ROMs, RAMs, and FPGAs

inputs like clock enables and multiplexer selects to control various operations,
and a 48-bit registered data output. The designer must build a controller using
CLBs to specify how datapath resources are used at each clock tick to execute a
desired DSP algorithm. For DSP-intensive applications, like video processing,
the largest 7-series FPGAs have up to 3,600 DSP slices. The DSP slices are laid
out on the FPGA chip near BRAMs, which can store arrays of operands that are
used in various algorithms.

15.5.3 Input/Output Block
We introduced the Xilinx logical three-state input/output buffer component
IOBUF in Section 7.1.4. Each I/O pad on a 7-series device can be an input, an
output, or both.

The physical I/O buffers in 7-series FPGAs have many different electrical
configuration options. These options are selected through a combination of pro-
grammable bits that are loaded with all the others at chip initialization, and
power supplies that are connected to the installed chip on a printed circuit board.

Recall from Section 14.7 that there are several standard voltage standards
for low-voltage CMOS logic families. The 7-series FPGAs aim to support all of
these and more. The power supply for 7-series internal logic is a mere 1.0 V, but
level translation is provided to support higher voltages for I/O. Each I/O bank
has its own supply pins to power its 50 output drivers, which swing between 0 V
and VCCO; VCCO may be as high as 3.3 V. Each I/O bank also has its own “input
reference voltage” VREF, which establishes the threshold voltage between LOW
and HIGH inputs, normally half of the signal swing. The reference voltage can be
from an external source using an I/O pin, or for 1.2-V to 1.8-V standards it can
be generated internally. Using these options, a single 7-series device can connect
using multiple I/O standards, but voltage-compatible standards must be used
within each 50-pin I/O bank.

A greatly simplified logic/block diagram for one bit of 7-series I/O is
shown in Figure 15-38. The full capabilities are so extensive that Xilinx docu-
mentation actually separates this diagram into five parts, the input/output block
(IOB) and separate logic and delay blocks for both the input and the output sig-
nal paths. Let’s look at the IOB starting on the right-hand side of the figure.

The I/O pad (pin) can be configured to have a weak pull-up or pull-down
resistor, or a bus-holder (a.k.a. “keeper”) circuit of the kind we described in
Section 10.5.2 to hold the last value on a three-state bus when it is not actively
driven. The IOB’s input buffer and output driver support various I/O standards,
as described previously, and the output driver has two other “analog” options:

• Slew rate. Transitions can be configured to be “fast” or “slow,” as required
for external devices or for trading off board-level signal speed versus noise.

• Drive strength. The maximum current sourcing and sinking capability can
be adjusted between 2 and 24 mA, as needed for the connected load.

input/output block
(IOB)

DDPP5.book Page 858 Tuesday, March 28, 2017 5:33 PM

15.5 Field-Programmable Gate Arrays (FPGAs) 859

Moving now to “logic resources” on the left-hand side of Figure 15-38,
both the input path and output path can be configured with storage elements in
the path, each selected by a multiplexer. Placing storage elements “up close” to
the device I/O pins is especially useful in FPGAs. On output, relatively long
delays from internal CLB flip-flop outputs to the IOBs can make it difficult to
connect to external synchronous systems at very high clock rates. On input, long
delays from the I/O pins to CLB flip-flop inputs can make it difficult to meet
external system setup and hold times. Of course, using IOB storage elements is
possible only if the FPGA application’s interfacing requirements for external
devices allow such “pipelining” of inputs and outputs.

I/O pad

Passive
pull-up/

pull-down

VCCO

Analog
options

Output
driver

Input
buffer

D Q

CK

CE

Delay
Q D

CK

CE

T

OUT

OCLK

ICOMB

IREG

ICE

ICK

Input/Output Block (IOB), Logic, and Delay Resources

Keeper

Lat/FF
DDR
Reset

S/R

ISR

Lat/FF
DDR
Reset

S/R

D Q

CK

CE
Lat/FF
DDR
Reset

S/R

OSR

Delay

Input/Output Block (IOB)
Delay

Resources

Logic Resources

3-state control

Figure 15-38 Xilinx 7-series I/O block, I/O logic, and I/O delay resources.

DDPP5.book Page 859 Tuesday, March 28, 2017 5:33 PM

860 Chapter 15 ROMs, RAMs, and FPGAs

The storage elements in the input and output paths are configured individ-
ually with options similar to the ones in the CLBs: register or latch, positive or
negative clock polarity, and synchronous or asynchronous preset or clear. Note
that in the output path, a storage element is provided for the three-state enable as
well as for the data bit. The “DDR” options are discussed shortly. The logic
resources also include a serializer/deserializer (SERDES), not shown, to convert
very high speed serial inputs and outputs (up to 1.6 Gbps) to and from a parallel
format up to 14 bits wide for lower-speed processing by the FPGA’s logic.

Between the logic resources and the IOB, the input and output paths have
“delay resources” that allow the designer to delay the signal path by up to 32
steps as short as 39 ps. This block can be used for various purposes, including
compensating for board-level path delays and spreading out the transitions in
otherwise simultaneously switching outputs to mitigate board-level noise.

Several other important facilities for high-speed interfaces are not shown
in the figure. First, the input and output paths are configurable to support double-
data-rate (DDR) operation, used in many memory interfaces to double the data
bandwidth by sending and receiving data on both edges of the reference clock.
The I/O logic has extra storage elements and control signals to convert each
DDR signal to or from a pair of internal signals to process using just a single
edge of an internal clock. Second, a pair of input buffers or a pair of output driv-
ers can be configured and used together to accomplish differential signaling,
which we described in Section 14.8. DDR and differential signaling configura-
tions can be used independently or together. Finally, the I/O pads may be
configured with various resistive transmission-line termination networks to
reduce the reflections that occur in high-speed board-level connections.

15.5.4 Programmable Interconnect
Well, we saved the best for last. The 7-series programmable interconnect
architecture is a fine example of a structure that provides massive programmable
connectivity in a commercially feasible silicon area.

In Chapter 1, we showed a general FPGA architecture in which CLBs are
individually embedded in the interconnect structure, but the 7 series instead
embeds back-to-back pairs of CLBs to get, according to Xilinx, better routing
and almost certainly slightly lower chip area (and cost) for a given amount of
connectivity.

As shown on the left-hand side of Figure 15-39, the two slices in a CLB are
connected horizontally to a switch box (described shortly) which itself connects
horizontally to a much larger switch box, and the whole structure is mirrored on
the right-hand side of the figure. The mirrored structure is embedded between
horizontal interconnect lines above and below it, and there are vertical intercon-
nect lines between the switch boxes. The two large switch boxes connect to both
vertical and horizontal interconnect, as well as to a vertical spine coming from
the region’s horizontal clock-distribution branch shown in Figure 15-37.

serializer/deserializer
(SERDES)

switch box

DDPP5.book Page 860 Tuesday, March 28, 2017 5:33 PM

15.5 Field-Programmable Gate Arrays (FPGAs) 861

The interconnect itself has more structure and subtlety than is conveyed by
Figure 15-39’s thick gray lines. Wires are classified as “singles,” “doubles,”
“quads,” or longer, depending on whether they connect switch boxes that are
adjacent or 2, 4, or more switch boxes apart. Each switch box has a variety of
vertical and horizontal interconnect lengths connected to it, providing many
potential ways to connect to other switch boxes. Connections that are more than
two switch boxes apart may require multiple hops through intermediate boxes.

Each switch box programmably makes connections among the wires going
into it. Connections are made by CMOS transmission gates—switches—whose
open/closed states are determined by configuration memory (SRAM) that is
loaded when the FPGA chip is initialized. Each site of a potential connection is
called a programmable interconnection point (PIP).

The leftmost, smaller switch box in Figure 15-39 has only about 150 PIPs.
All of the inputs and outputs of the CLB’s two slices enter this switch box on its
lefthand side. During normal operation, the switch box can connect these wires
to corresponding dedicated wires on its righthand side, and these wires connect
to the larger switch box on to its right. However, before Xilinx ships the FPGA
to its customer, these wires may be connected to non-customer-visible resources
for factory-testing purposes.

The real action occurs in the larger switch boxes, one per CLB, and each
one containing about 3,700 PIPs. The numbers in color show roughly how many
wires enter each side of the switch box. Inside the switch box, transmission-
gate-based multiplexers provide a rich set of connection opportunities, all con-

clocks

switch
box

slice

slice

switch
box

switch
box

slice

slice

switch
box

~150
PIPs

~150
PIPs

~3,700
 PIPs

~3,700
 PIPs

horizontal interconnect

horizontal interconnect
vertical interconnect

~45

~90 ~175

~60

~45

~175 ~90

~60

Figure 15-39 Xilinx 7-series interconnect for a pair of CLBs.

programmable
interconnection
point (PIP)

DDPP5.book Page 861 Tuesday, March 28, 2017 5:33 PM

862 Chapter 15 ROMs, RAMs, and FPGAs

trolled by configuration memory. Basically, any CLB output can drive any type
of interconnect resource—singles, doubles, quads, or longer—or one of its own
inputs (for example, when a register output drives a LUT input in the same
CLB). CLB inputs can be driven only by singles, doubles, other CLB inputs, and
clocks which, as shown, also come into the switchbox.

The switch box has other capabilities. It can connect interconnect wires to
other interconnect wires. Thus, signal routes can “turn a corner” when a switch
box connects a vertical wire to a horizontal wire. It can also fan out signals: an
incoming signal can connect to multiple outputs. Signal paths through the switch
box may be buffered within the switch box, which is especially important to
reduce delay on signals arriving from or going to longer interconnect wires,
which are themselves passive.

We mentioned previously that longer connections may require hops
through multiple switch boxes. This increases “cost” in two ways: more switch
box resources are used, reducing their availability for other connections; and
delay is increased. The placement and routing tools use well-developed algo-
rithms to optimize connections based on these and other considerations. For
example, to connect CLBs that are six apart, it’s better to use a quad and a double
rather than six singles or three doubles.

FPGAs are judged not only by the capabilities of their logic resources but
also by the consistency of the results obtained from a fitter after small design
changes are made. There’s nothing more frustrating than making a small change
to a large design and finding that it no longer meets timing requirements, or
worse, cannot be routed. Thus, FPGA manufacturers have learned to provide
“extra” resources in their architectures to help ensure consistent results.

CONVENIENCE
STORY

OK, I lied. The small, 150-PIP switch boxes in Figure 15-39 don’t really exist, even
though you can see them if you look deeply into the “Device” view of a 7-series
FPGA using Vivado tools. According to Xilinx, this switch box is merely a graphical
convenience to better see what’s going on here and with other interconnected FPGA
elements, such as BRAMs. However, its functionality does exist; it’s just physically
integrated with the larger 3,700-PIP switch box.

GOOD PRACTICE Placement and routing is actually a pretty well understood problem, because it is the
major part of the “back end” of any custom chip design. Thus, the same kind of tools
and the same tool vendors are involved with placement and routing for both FPGAs
and ASICS. So, you might like to consider any FPGA experience that you get to be
good practice for ASIC design!

DDPP5.book Page 862 Tuesday, March 28, 2017 5:33 PM

References 863

References
Manufacturers publish individual data sheets and application notes for their
devices on their websites. A good source for information on smaller, “legacy”
ROMS and SRAMs is Renesas (www.renesas.com), while Micron Technology
(www.micron.com) has information on large NAND flash devices and just about
every variety of DRAM. Interfacing standards for NAND flash devices are devel-
oped and published by an industry group, Open NAND Flash Interface (ONFI,
www.onfi.org). Synchronous SRAMs are offered by Integrated Device Tech-
nology (IDT, www.idt.com) and Cypress Semiconductor (www.cypress.com).

In addition to the memories discussed in this chapter, several types of
“specialty” memory devices have widespread use. Probably the most common
are first-in, first-out (FIFO) memories; these are typically used to transfer data
from one processor or clock domain to another. The websites of IDT and Texas
Instruments (www.ti.com) are good sources of information on FIFOs.

Another type of specialty memory is the dual-port memory, which has two
independent sets of address, data, and control lines and allows independent oper-
ations to be performed on both ports simultaneously. IDT is a leading source for
these devices; in addition to data sheets, their website has an excellent set of
application notes on the devices.

The “ROMs” used in the LUTs in many FPGAs, including the Xilinx 7
series, are actually small read/write memories that are simply loaded with truth
tables at initialization to perform combinational logic functions. However, they
can also be optionally configured to small read/write memories; for example, a
7-series LUT is just a 64 × 1 or 32 × 2 SRAM. Typical tools also allow the
designer to create even larger SRAMs using multiple LUTs, in a “distributed
SRAM” organization. In fact, they can also create “distributed ROMs” using
LUTs that are loaded at initialization and have no active inputs to allow further
write operations. For examples, see Xilinx publication UG474, 7 Series FPGA
Configurable Logic Block, for information and options.

FPGA vendors provide comprehensive user guides for various aspects of
their devices, and the latest version is always available on the vendor’s website.
For the Xilinx 7 series, important references include DS180, 7 Series FPGAs
Data Sheet: Overview; UG474 Configurable Logic Block; UG473, Memory
Resources; UG472, Clocking; and UG471, SelectIO Resources.

Little is published about the programmable interconnection architectures
of modern FPGAs, since vendors consider this to be part of the “secret sauce”
that makes their products great. Also, the architectures are so complex that most
designers would not attempt to override the tools’ programming decisions even
if they were fully documented for the user. However, for more details on an older
FPGA architecture, the Xilinx XC4000 family, see the fourth edition of the book
you’re reading, or the documentation upon which that presentation was based,
the XC4000E Product Specification (May, 1999), available online.

first-in, first-out (FIFO)
memories

DDPP5.book Page 863 Tuesday, March 28, 2017 5:33 PM

864 Chapter 15 ROMs, RAMs, and FPGAs

Drill Problems
15.1 Determine the ROM size needed to realize the combinational logic functions in

each of the following figures: 6-19, 6-33, 7-13, and 7-27.

15.2 Determine the ROM size needed to realize the combinational logic functions in
each of the following figures: 7-31, 8-6, 8-17, and 8-21.

15.3 How many ROM bits would be required to build a 16-bit adder/subtractor with
mode control, carry input, carry output, and two’s-complement overflow output?
Be more specific than “billions and billions,” and explain your answer.

15.4 Draw a logic symbol for and determine the size of a ROM that realizes an 8×8
combinational multiplier.

15.5 Show how to design a 2M × 8 SRAM using 512K × 8 SRAMs and an MSI device
from Chapter 6 as building blocks.

Exercises
15.6 Describe the logic function of seven variables that is performed by the 128 × 1

ROM in Figure 15-3. Starting with the ROM pattern, one way to describe the
logic function is to write the corresponding truth table and canonical sum. How-
ever, since the canonical sum has 64 seven-variable product terms, you might
want to look for a simple but precise word description of the function.

15.7 Show how, using additional gates and building-block logic, a 512K × 8 ROM can
be used as a 4M × 1 ROM. What is the access time of the 4M × 1 ROM?

15.8 Draw a logic diagram for a ROM-based circuit that performs combinational mul-
tiplication of a pair of 8-bit unsigned or signed-magnitude integers. Signed vs.
unsigned operation should be selected by a single input, SIGNED. You may use
use as many discrete gates as you can easily draw, and you may use any number
of any of the ROMs in Figure 15-7, but minimize the number of ROM bits used.

15.9 Write and test a program in C or another programming language to generate the
contents of the ROM(s) in Exercise 15.8.

15.10 Write a program in C or another language that generates a 256K × 4 ROM that
computes the next move in a Tic-Tac-Toe game, using the input and output encod-
ings of Section 7.5. Your program must be smart enough to pick a winning move
whenever possible.

15.11 Repeat Exercise 15.10 using a 32K × 4 ROM. To accomplish this, the board state
must be encoded in only 15 bits. Explain your coding algorithm, and write func-
tions in C or another programming language to translate a cell number in either
direction between your encoding and the encoding of Section 7.5.

15.12 While so-called “landlines” in the public switched telephone network (PSTN) are
still analog, the switching systems at a local office as well as the long-distance
network are now all digital. Each landline terminates in a device at the local office
that samples the analog signals 8,000 times per second and converts each sam-
ple’s voltage into a digital representation with a dynamic range of approximately
14 bits, representing analog values between approximately and + ,
where is an arbitrary scale factor. However, only 8 bits are used in the encoding,

213– k⋅ 213 k⋅
k

DDPP5.book Page 864 Tuesday, March 28, 2017 5:33 PM

Exercises 865

called μ-law (“mu-law”) PCM, which has a sort of floating-point format shown
in Figure X15.12. The analog value , 14 bits including sign, of a signal encoded
in this system can be given by a formula,

The range of values of V is , and the smallest possible difference between
successive coded values is 2, when =0.

Sometimes in a phone system, it is necessary to process the “linear” equivalents
of μ-law-coded bytes: for example, to raise or lower the amplitude of the corre-
sponding analog signal, or to add two signal streams in a conference bridge.
Given any 8-bit encoded value U[7:0], it is possible to obtain a corresponding
linear 14-bit two’s-complement value using the formula above.

Draw the logic diagram of a ROM-based circuit that converts a μ-law input U[7:0]
to a corresponding two’s-complement value LIN[13:0]. What ROM size is
required, and how many bits total are in the ROM? Optional: Write a program in
your favorite language to generate the contents of the ROM.

15.13 Repeat Exercise 15.12 for a ROM-based circuit that converts a two’s-complement
input value LIN[13:0] into a corresponding μ-law output U[7:0]. Optional: Write a
program in your favorite language to generate the contents of the ROM. If a linear
input value falls between two linear values that correspond exactly with a μ-law-
coded value, as most will, ensure that your program selects the μ-law value that
corresponds most closely.

15.14 Based on the description in Exercise 15.12, write a Verilog module Vru2lin that
converts a μ-law input value to a two’s-complement output value by performing
the operations in the formula in real time, that is, not using the ROM-based
approach. Target your design to an FPGA and synthesize it. How many LUTs
does it use, and how many LUT “ROM” bits does it use in total? How does this
compare with the ROM-based realization of Exercise 15.12?

15.15 Read the documentation for your FPGA synthesis tools and learn how to create a
ROM whose bits are distributed among multiple LUTs. In your targeted FPGA
family, how many “LUTs as ROM” would you expect to need to perform the
μ-law to two’s-complement conversion of Exercise 15.12?

15.16 Continuing from Exercise 15.15, write a Verilog module Vru2lin_rom that does
the conversion using distributed LUTs as ROM. Your module should include an
initial block to generate the ROM contents using the conversion formula.
Target your module to an FPGA and synthesize it.

How many LUTs does your module actually require, and how many bits of LUT
“ROM” is that? Explain any discrepancy with what you expected (you may be
able to look at the synthesized schematic for clues). Optional: Compare the
worst-case delay of this module and the one in Exercise 15.12, in terms of both
the worst-case number of LUT levels and the tool’s predicted propagation delays.

V

V 1 2S–() 2E() 2M 33+() 32–⋅[]⋅=

8032±
E

Figure X15.12S E M

7 6 5 4 3 2 1 0

sign mantissaexponent

DDPP5.book Page 865 Tuesday, March 28, 2017 5:33 PM

866 Chapter 15 ROMs, RAMs, and FPGAs

15.17 Read the documentation for your FPGA synthesis tools and learn how to create a
ROM whose bits are distributed among multiple LUTs. In your targeted FPGA
family, how many “LUTs as ROM” would you expect to need to perform the
two’s-complement to μ-law conversion of Exercise 15.13?

15.18 Continuing from Exercise 15.17, write a Verilog module Vrlin2u_rom that does
the conversion using distributed LUTs as ROM. Your module may include an
initial block to generate the ROM contents, or you may write a program in
another language to generate the ROM contents. Either way, if a linear input value
falls between two linear values that correspond exactly with a μ-law-coded value,
as most will, ensure that your code selects the μ-law value that corresponds most
closely with the input value. Use the generated μ-law values to initialize the ROM
in your Verilog module, target it to an FPGA, and synthesize it.

How many LUTs does your module actually require, and how many bits of LUT
“ROM” is that? Explain any discrepancy with what you expected (you may be
able to look at the synthesized schematic for clues). Optional: Compare the
worst-case delay of this module and the one in Exercise 15.13, in terms of both
the worst-case number of LUT levels and the tool’s predicted propagation delays.

15.19 Continuing from Exercise 15.18, reduce the size of the module and eliminate over
half of the ROM, by including ROM only to perform linear to μ-law conversion
for positive values. Provide additional code to handle negative values. Compare
the size of the new module (number of LUTs) with the original. Also compare the
delay in terms of both the worst-case number of LUT levels and the tool’s
predicted propagation delays.

15.20 In the style of Figure 15-23, draw the timing diagram for a late-write SSRAM
with flow-through outputs for a series of interleaved reads and writes in the pat-
tern R-R-W-W-R-R-W-W. Run the individual cycles as close together as possible,
but be sure to account for resource conflicts that prevent back-to-back cycles.
What is the average utilization of the SRAM array if the SSRAM is presented
with a continuous stream of such requests?

15.21 Repeat the preceding exercise for a late-write SSRAM with pipelined outputs.

15.22 The Xilinx 7-series FPGAs scale in one other dimension, not discussed in the text
or shown in Figure 15-34, to create even larger devices. Investigate this online,
write a paragraph or two explaining it, and give the characteristics of at least three
devices that utilize this dimension, in the style of Table 15-3.

15.23 Modify the multiplier module of Program 8-16 so it loads inputs X and Y into 8-
bit registers on the rising edge of an external clock CLK, and places the resulting
product P into a 16-bit register on the next rising edge of CLK. Read the appropri-
ate parts of the Xilinx 7-series and Vivado documentation and determine how to
force a Verilog design that has registered inputs and outputs to use the registers
in the IOBs. Target your multiplier design to a 7-series FPGA, and apply your
knowledge to use IOB registers for X, Y, and P.

DDPP5.book Page 866 Tuesday, March 28, 2017 5:33 PM

867

INDEX

Note: Page numbers for defining references are given in color.

&*%$#@!
 (ceiling function) 64
∨ (vee) 93
∧ (wedge) 93
! (Verilog logical NOT) 195, 277
!= (Verilog logical inequality) 195
!== (Verilog case inequality) 197
! vs. ~, Verilog 195
(Verilog delay specifier) 224
(Verilog parameter substitution)

201, 271
$ (Verilog built-in functions and

tasks) 182, 223
% (Verilog modulus) 190
&& (Verilog logical AND) 195, 277
& (Verilog AND) 185, 273
- (Verilog subtraction) 190
* (optional sections) xvi
* (Verilog multiplication) 190
** (Verilog exponentiation) 190,

271
* sensitivity-list wildcard 205, 271
∗ suffix (state machine) 447–449
+ (Verilog addition) 190
⊕, Exclusive OR symbol 131, 321
/ (Verilog division) 190
:, in bus name 152
< (Verilog less than) 195
<< (Verilog shift left) 190
<<< (Verilog arithmetic shift left)

190
<= (Verilog less than or equal) 195
<= (Verilog nonblocking

assignment) 208
<= vs. =, Verilog 209
= (Verilog blocking assignment)

208

== (Verilog logical equality) 195
=== (Verilog case equality) 197
= vs. <=, Verilog 209
> (Verilog case equality) 197
> (Verilog greater than) 195
>= (Verilog greater than or equal)

195
>> (Verilog shift right) 190
>>> (Verilog arithmetic shift right)

190
? (in Verilog literal) 187
? (question mark in Verilog literal)

215
?: (Verilog conditional operator)

195, 196, 204, 263, 290, 308,
386

[] (Verilog bit-select operator)
189, 267

[:] (Verilog part-select operator)
189, 267, 578, 581

^ (Verilog XOR) 185
^~ (Verilog XNOR) 185
_L suffix 140
{} (Verilog concatenation operator)

189, 203, 222, 263, 278, 578,
581, 689

| (Verilog OR) 185
|| (Verilog logical OR) 195, 277
~ (Verilog NOT) 185, 273
~^ (Verilog XNOR) 185
~ vs. !, Verilog 195

0
0 3
0 and 1 3, 7, 9, 35, 92, 140, 734,

735, 815
0-set 128

0x prefix 39
1 3
10’s-complement representation 59
16V8 528
1-bit parity code 69
1-out-of-10 code 60
1-out-of-n code 65, 252, 465
1s-counting machine 626
1-set 128
20V8 529
22V10 529
2421 code 60
2-input, 4-bit multiplexer 286
2-to-4 binary decoder 250–254
4000-series CMOS 790
4B5B code 711
4-to-2 encoder 314
54 prefix 749
54-series parts 791, 792
5-V-tolerant inputs 800, 801
5-V-tolerant outputs 801
7497 600
74AC (Advanced CMOS) 778, 797

timing 161, 163, 679
74ACT (Advanced CMOS, TTL

compatible) 778, 785, 797
74AHC (Advanced High-speed

CMOS) 792
74AHCT (Advanced High-speed

CMOS, TTL compatible)
792

74ALS74
metastability analysis 707–708

74ALVC164245 803
74FCT (Fast CMOS, TTL

compatible) 778, 785, 797

DDPP5.book Page 867 Tuesday, March 28, 2017 5:33 PM

868 Index

74FCT-T (Fast CMOS, TTL
compatible with TTL VOH)
797

74HC (High-speed CMOS) 791
timing 161, 163, 679

74HCT (High-speed CMOS, TTL
compatible) 791

74HCT00 153
74HCT04 153
74LS00 153
74LS74 705, 706

metastability analysis 704–707
74 prefix 749
74-series parts 791, 792
74VHC (Very High-speed CMOS)

792
74VHCT (Very High-speed CMOS,

TTL compatible) 792
74x00 793
74x138 254, 793
74x163 556
74x16540 305
74x182 383
74x245 307
74x283 378–380
74x32244 305
74x373 499, 522, 679, 680
74x374 499, 522, 679, 680, 695
74x377 524, 679, 680, 697
74x381 383, 386
74x382 383
74x540 305, 308
74x541 305
74x74 678, 679
74x MSI register timing 679
74x prefix 20
7-series FPGAs xix, xx, 173, 244,

400, 510, 531, 532, 698,
851–862

7-series I/O bank 853
8421 code 60
8B10B code 66, 81, 83
8-input, 1-bit multiplexer 282
8-to-3 encoder 280
9s’ complement 60

A
a, asynchronous event frequency

704
abacus 60
ABEL (Advanced Boolean

Equation Language) 166
state-machine coding style 611

abnormal state 570, 571, 646
absolute maximum ratings 800
AC (Advanced CMOS) 778, 797
access time from address 823, 837
access time from chip select 823,

837
AC fanout 761
AC load 692, 765
ACT (Advanced CMOS, TTL

compatible) 778, 785, 797
active edge 441
Active-HDL, Aldec xx
active high 139
active-high clock 441
active-high pin 142
active level 139, 144, 145, 146
active-level naming convention

140
active-level suffix 147
active low 140
active-low clock 441
active-low pin 142
active mode 824
active pull-up 783
adders 372–403

Verilog 384–394
adding out 96, 108, 109, 374
addition 42

Verilog 190
address bits, decoder 250
address hold time 838
address input 240, 814
address setup time 838
adjacency diagram 465
Advanced Micro Devices (AMD)

294
AHC (Advanced High-speed

CMOS) 789, 792, 800, 802

AHCT (Advanced High-speed
CMOS, TTL compatible)
792

Aldec, Inc. xx–xxi
algebraic operator 93
algorithmic state machine (ASM)

chart 478–482, 487
all inclusion 473, 476
alpha particle 67
Alred, G. J. 172
Altera Corporation xx–xxi, 294
Alternate Mark Inversion (AMI) 81
ALU (arithmetic and logic unit)

372, 383, 682
always block, Verilog 205, 267
always keyword, Verilog 205, 265
always statement, Verilog 205,

265
ambiguous state diagram 473, 474
American National Standards

Institute (ANSI) 139
American Standard Code for

Information Interchange
(ASCII) 64

AMI (Alternate Mark Inversion) 81
analog 3
analog electronics 1
analog vs. digital 3–6, 7, 9,

733–734
analysis, combinational-circuit 90
AND gate 10, 93, 116

CMOS 742
symbol 138

and gate, Verilog 198
AND operation 94
AND-OR circuit 100, 107, 110,

115, 117, 123, 126
AND-OR device 246
AND-OR-INVERT (AOI) gate,

CMOS 743, 806, 811
Angell, R. 172
ANSI (American National

Standards Institute) 139
ANSI-style parameter redefinition

202

DDPP5.book Page 868 Tuesday, March 28, 2017 5:33 PM

Index 869

ANSI-style port declarations,
Verilog 184, 188

application-specific integrated
circuit (ASIC) 27–28, 134,
165, 534, 681, 693

design 33, 499
arithmetic and logic unit (ALU)

372, 383, 682
arithmetic operators, Verilog 190
arithmetic shift 403
arithmetic shift operators, Verilog

192
array, Verilog 193
array index, Verilog 193
array multiplier 417
arrow, state-diagram 450
ASCII (American Standard Code

for Information Interchange)
64

ASIC
place-and route 171

ASIC (application-specific
integrated circuit) 27–28,
134, 165, 534, 681, 693

ASIC design 165, 694
ASIC routing 692
ASM chart 478–482, 487
assert 140
asserted 3
assign keyword, Verilog 203,

224, 262
assignment-statement sizing,

Verilog 190
associative law 95
asterisk (optional sections) xvi
asymmetric output drive 792
asynchronous clear input 562
asynchronous design 2
asynchronous FIFO 713
asynchronous inputs, flip-flop 506
asynchronous input signal 681, 698
asynchronous reset, 22V10 529
asynchronous signals 673, 681
asynchronous SRAM 834
automatic test-pattern-generation

program 625

auto-refresh cycle, SDRAM 850
axiom 92

B
back annotator 169
back-end design process 171–172
Bai, Julie xxii
balanced code 81
ball-grid array (BGA) 854
bank, DRAM 846
barrel shifter 403
base, number system 36
basis step 97
Bauer, Trevor xxii
Baylis, John 83
Bayman, Michelle xxii
BCD (binary-coded decimal) 58
BCD addition 59
BCD code 252, 278
BCD decoder 255
BD (Blu-ray disc) 4, 8
begin-end block, Verilog 210
begin keyword, Verilog 210, 267
behavioral description, Verilog

205–219
behavioral model, Verilog 179,

205–219
BGA (ball-grid array) 854
bias 47
bidirectional bus 307
bidirectional data bus 839
bidirectional pins, PLD 248
bidirectional shift register 567
big picture 34
billions and billions 436, 864
bill of materials (BOM) 134
binary adder, serial 595
binary addition 42
binary-addition table 42
binary-coded decimal (BCD) 58
binary decoder 250–259, 289
binary decoder, 2-to-4 250–254
binary digit 7, 35, 36
binary division 56–57

binary encoder 280
binary operator 96
binary point 36, 45
binary radix 36
binary rate multiplier 600
binary subtraction 43
binary-subtraction table 42
binary-to-decimal conversion 39
binary-to-hexadecimal conversion

37
binary-to-octal conversion 37
binomial coefficient 58, 66, 463
bipolar junction transistor (BJT) 19
bipolar logic family 19
bipolar PROM 819
biquinary code 60
Birkner, John 294
bistable 496–499, 534
bit 7, 36
bit cell 78
bit line 815
bit rate 78
bit-select, Verilog 267
bit-select [], Verilog 189
bits per second (bps) 78
bit time 78
bit vector, Verilog 183, 189–193
bitwise boolean operators, Verilog

184
BJT (bipolar junction transistor) 19
Blake, Gary 172
block, Verilog 210
block diagram 134, 136, 148, 150,

289
blocking assignment operator,

Verilog = 208
blocking assignment statement,

Verilog 208, 226, 520
blocking vs. non-blocking

assignments, Verilog 520
block RAM 856
Blu-ray disc (BD) 4, 8
Bly, Robert W. 172
board-level design 33
BOM (bill of materials) 134

DDPP5.book Page 869 Tuesday, March 28, 2017 5:33 PM

870 Index

Boole, George 91, 126
Boolean algebra 91, 126

See also switching algebra
boolean operators, Verilog 184
boolean reduction operators,

Verilog 192
boolean vs. logical, Verilog 195
bootstrap ROM module 816
borrow 43, 52, 374
boundary inputs, iterative-circuit

333, 594
boundary outputs, iterative-circuit

333, 594
boxed comments xvi, xvii
bps 78
bps (bits per second) 78
Braun multiplier 418–425
Brayton, Robert K. 127
Brown, Charlie 498
Brusaw, C. T. 172
bubble, inversion 11, 98, 739
bubble-to-bubble logic design

143–146, 322
rules 146

buffer 9, 142
symbol 138

buffer, circular 714
buf gate, Verilog 198
bufif0 gate, Verilog 198
bufif1 gate, Verilog 198
bugs 5
building-block logic 239
built-in gate types, Verilog 198
burst length 850
burst mode 841
burst-read cycle, SDRAM 849
burst-write cycle, SDRAM 850
bus 136, 151–153, 157

bidirectional 307
open-drain 787

bus fighting 837
bus-holder circuit 304, 527
business practices 3
bus name, range in 152
bus transceiver 305, 308

BUT (function) 131
BUT flop 551
BUT gate 131, 235, 370
butification 370
but-not gate 181
byte 38

C
C 15
C++ 15
CAD (computer-aided design) 15
Cadence Design Systems 177
CAE (computer-aided engineering)

15
See also computer-aided design

call, Verilog function 221
call, Verilog task 222
canonical product 103, 111, 117
canonical sum 103, 104, 111, 117
capacitance, stray 765
capacitive load 159, 165, 765
capacitors, decoupling 773
capacitors, filtering 773
carburetor 4
car heater 89
carpet 763
carry 42, 52
CARRY4 element 400
carry generate 376, 386
carry lookahead 376
carry-lookahead adder 378
carry out 372
carry propagate 376, 386
carry-save addition 418
cascadable priority encoder 314
cascade 314
cascaded elements 674
cascaded synchronizers 709
cascading 256
cascading inputs, iterative-circuit

333, 593
cascading outputs, iterative-circuit

333, 593
case keyword, Verilog 213, 214,

265

case sensitivity 147
Verilog 147, 182
VHDL 147, 182

case statement, Verilog 104, 202,
213, 265, 311

full 214
parallel 214

casex keyword, Verilog 215
casex statement, Verilog 216
casez keyword, Verilog 215
casez statement, Verilog 215, 319
CAS latency 848
causality 155, 446, 500
Cavanaugh, Joseph 233, 433
CCD (charge-coupled device) 833
CD (compact disc) 4, 8
CD-R (writeable compact disc) 8
ceiling function 64, 285
central office (CO) 4
central processing unit (CPU) 813
Chandrakasan, A. 804
Chaney, Thomas J. 707, 729
characteristic impedance 812
charge-coupled device (CCD) 833
Charlie Brown 498
check bits 69
checksum 77
checksum, IPv4 53
checksum code 77
Chicago, Illinois 637
chip 6
chip-select (CS) input 823
chip-select setup time 838
chip viewer 169
chip vs. IC 16
Chu, John 552
Chua, H. T. 294
Ciletti, Michael D. 127, 233
CINmax 795
circle 450
circuit description 91, 135
circuit specification 134
circular buffer 714
circular reasoning 461

DDPP5.book Page 870 Tuesday, March 28, 2017 5:33 PM

Index 871

circular shifting 403
CL 772
clamp diode 800
Clare, Christopher R. 487
Clark, Leah xix
Clark Kent 498
CLB (configurable logic block) 26,

531–534, 851
clear input 500, 506, 675
clock 441

frequency 441
gated 695–697
in synchronous system 681
jitter 678
period 441
recovery 577
skew 677, 678, 681, 696
tick 441, 443

clocked 443
clocked synchronous state machine

443
clock-enable input 507
clock gate, positive edge 697
clock skew 681, 691–695
clock tree 692
clock-tree synthesis (CTS) 693
CMOS (complementary MOS)

19–25, 304, 693
4000-series 790
AND 742
AND-OR-INVERT (AOI) gate

743, 806, 811
gates 160
inverter 21–22, 738–739
load 795
logic 8, 9, 21, 738
NAND gate 22, 740
NOR gate 22, 741
OR-AND-INVERT (OAI) gate

744, 806
OR gate 742
technology 30, 31
transfer characteristic 780
transmission gate 23–24, 321,

778–779
TTL interfacing 753, 756, 791
unused inputs 762

CMOS/TTL interfacing 753, 756,
791

CNTR4UD 598
CO (central office) 4
code 57–66
code (Verilog) 6
coded state 462, 474
code rate 88
code word 57
coding 170
coding style

state-machine 676
Verilog 181, 188, 195, 196,

197, 209, 210, 214, 215,
216, 218, 221, 230, 520,
609

Verilog state-machine 606
colon, in bus name 152
color for expressions 93
color for Verilog keywords 182
column address, DRAM 848
column-address register, SDRAM

848
combinational circuit 9, 89

speed 117
combinational-circuit analysis 90,

104–110
combinational-circuit synthesis 90,

110–121
combinational multiplier 416
combinational vs. combinatorial

248
combination lock 628
combinatorial math 463
combining theorem 96, 118
command input 682
comments, Verilog 181
communication 3, 135
commutative law 95
compact disc (CD) 4, 8
comparators 217, 218, 331–355,

682
HDL 339–340
iterative 333
parallel 333
serial 594

Verilog 341–345
comparing numbers 44
comparison, Verilog 195
compilation 170
compiler

HDL 167
Verilog 182, 197, 199, 215, 224

complement 92
of a logic expression 99

complementary MOS See CMOS
complement number system 45
complete set 130
complete sum 126, 132
complex programmable logic

device (CPLD) 26, 529
fitting 171

component instantiation, Verilog
199

computer-aided design (CAD) 15,
96

software 693
computer-aided engineering (CAE)

15
See also computer-aided design

Computer History Museum 818
computing the radix complement

45
concatenation operator {}, Verilog

189, 203, 222, 263, 278, 578,
581, 689

concurrent statement, Verilog 198
condition, Verilog 211
conditional operator ?:, Verilog

195, 196, 204, 263, 290, 308,
386

conditional output box 478
condition expression 478
condition input 682
conductive wrist strap 763
configurable logic block (CLB) 26,

531–534, 851
configuration management, Verilog

182
configuration register, SDRAM

850
consensus 96, 124

DDPP5.book Page 871 Tuesday, March 28, 2017 5:33 PM

872 Index

consensus theorem 96
constant expression 188
constant logic signals 142–143
constant logic value 762
constants, Verilog 188, 197
constraints 171
constraints editor 169
contact bounce 526
continuous-assignment statement,

Verilog 203, 206, 262, 308
control unit 682
Conway, Lynn 487
core logic 800
corner cases 113
cosmic rays 7, 67, 747
cost 2, 6, 27, 28, 33, 34, 840

combinational-circuit 117
state-machine 463, 466

counter, up/down 598
counters 554–561, 682

cascaded 674
sticky 658, 664, 665
synchronous 555
synchronous parallel 556
synchronous serial 556
Verilog 561–566

counter wheel 49, 52
cover 96
covering theorem 96
CPLD See complex

programmable logic device
CPU (central processing unit) 813
CRC (cyclic-redundancy check) 74
critical race 540
Crowell, Peter xxii
CS-controlled write 838
Cummings, Clifford E. 234, 520,

664
CUPL (Compiler Universal for

Programmable Logic) 166
current

direction 756
flow, CMOS 756
leakage 737, 783
sinking 755
sourcing 755

current spikes 773
custom LSI 27
cut set 539
CV2f power 24, 695, 773, 791,

797, 798
cyclic-redundancy-check (CRC)

code 74
Cypress Semiconductor 707, 863

D
D’oh! 64, 828
data bit 156
dataflow description, Verilog

203–204
dataflow design, Verilog 203–204
dataflow model, Verilog 203–204
data hold time 838
data output 240, 814
data setup time 838
data sheet 748

CMOS 748–749
data unit 682
dating 114
DC balance 80, 577
DC circuit behavior 748
DC fanout 761
DC load 692, 753, 766, 797
DC noise margin 746, 752, 761

HIGH-state 796
LOW-state 796

ddpp.com xxi
DDR (double data rate) 846
DDR data 860
dead time 304
deassert 140
debounce 526
debugging 3, 762
decade counting 562
decimal codes 57–60
decimal counter 562
decimal decoder 255
decimal point 36
decimal-to-binary conversion 40
decision box 478
decision window 704

declarations, Verilog 179
decode 253
decoder 252
decoder, 2-to-4 binary 250–254
decoder, address bits 250
decoder, binary 250–259
decoders 241, 250–278, 559

Verilog 260–278
decoding 70

glitch-free 572
decoding, glitch-free 464–465
decoding glitches 559–561, 572
decomposed state assignment 464,

464
decomposition, state-machine 648
decoupling capacitors 773
deep submicron process 18
`define directive, Verilog 197

vs. parameter 197
defparam keyword, Verilog 202
delay 122, 155–165, 171, 172,

501, 692
maximum 159
minimum 159, 162
three-state-buffer 303
typical 159
See also propagation delay

delay line 833
delay-locked loop (DLL) 851
delay path 677
delay specifier

in gate instantiation 546
delay statement, Verilog 224
delay value, Verilog 203
delta delay, Verilog 226
delta time 543
De Michelli, Giovanni 127
DeMorgan’s theorem 97, 138

generalized 98, 108
DeMorgan equivalent symbols 138
demultiplexer 289
descrambler 577
design 534

hierarchical 170
state-machine 455–486

DDPP5.book Page 872 Tuesday, March 28, 2017 5:33 PM

Index 873

state-machine, with ASM charts
478–482

state-machine, with state
diagrams 472–478

state-machine, with Verilog
483–486

vs. synthesis 91, 110
design flow

Verilog 170
design flow, HDL 170–172
design time 33
device specifications 734,

748–749, 751
Devo 544
D flip-flop 442–443, 504–507

CMOS 539
with enable 507

dice 17
die, IC 16

plural of 17
dielectric 763
difference, in subtraction 43
differential signaling 803
digital 3
digital abstraction 9, 92, 733, 745
digital camera 3
digital design 1, 5

levels of abstraction 29
digital designer 135
digital logic 7
digital phase-locked loop (DPLL)

79, 442, 711
See also phase-locked loop

digital revolution 3, 5
digital signals 7
digital versatile disc (DVD) 8
digital vs. analog 3–6, 7, 9,

733–734
diode 19

clamp 800
parasitic 779

DIP (dual inline pin) 17
diphase 82
DIP switch 526
directed arc 472

directed arc, state-diagram 450
disable keyword, Verilog 218
disable statement, Verilog 218
Disanno, Scott xxii
disk, magnetic 8
$display task, Verilog 223, 270
distance, Hamming 66
distinguished 1-cell 132
distributed ROM 863
distributed SRAM 863
distributive law 96
divide-by-m counter 554
dividers 426–432
division 56–57

by shifting 403
overflow 56
rounding 403
Verilog 191, 427–432

D latch 503, 834
documentation 2, 3, 93, 133–154,

500, 674–680
flip-flop 674
state machine 674

don’t-care
in timing diagrams 678
in Verilog assignment 342, 471
in Verilog casex 216
in Verilog casez 215, 319
in Verilog state coding 646–648
next state 466
truth-table notation 253

double data rate (DDR) 846
double data rate (DDR) operation

443
double-data-rate (DDR) SDRAM

850
double-ended signaling 803
DPLL (digital phase-locked loop)

79, 711
drain, CMOS transistor 20, 736
DRAM (dynamic RAM)

bank 846
column address 848
See also dynamic RAM

drills vs. exercises xviii
drive strength, Verilog 203

DSP slice 857
dual 99
dual inline-pin (DIP) package 17,

526
duality 92, 99, 115
dual-port memory 863
duty cycle 441
DVD (Digital Versatile Disc) 8
dynamic circuit behavior 746, 764
dynamic hazard 125, 681
dynamic-input indicator 209, 504,

675
dynamic memory 8
dynamic power dissipation 554,

771, 794
See also CV2f power

dynamic RAM (DRAM) 834,
844–851

synchronous (SDRAM)
846–851

E
edge, active 441
edge, triggering 441
edge-triggered behavior 504
edge-triggered D flip-flop

442–443, 504–507
with enable 507

EEPROM (electrically erasable
programmable read-only
memory) 820–822

elaboration, Xilinx Vivado 173
elastic buffer 713
electrical loading 172
electrically erasable programmable

read-only memory
(EEPROM) 820

electronic design automation (EDA)
13, 139, 147

software 692
tools 13–16

electronics concepts xvi
electrostatic discharge (ESD) 747,

763
else keyword, Verilog 211, 265
enable, Verilog task 222

DDPP5.book Page 873 Tuesday, March 28, 2017 5:33 PM

874 Index

enable input 250, 253
D flip-flop 507
multiplexer 289
three-state-buffer 305

encoder 298
encoders 280, 312–319
encoders, Verilog 315
end-around carry 53, 549
endcase keyword, Verilog 213,

265
endfunction keyword, Verilog

220
endgenerate keyword, Verilog

202, 311
end keyword, Verilog 210, 267
endmodule keyword, Verilog 182,

261
endtask keyword, Verilog 222,

277
energy 795
engineering 2
engineering design margins 745
Eniac 19
entrepreneur 135
EPROM (erasable programmable

read-only memory) 819
Equivalence gate 321, 332
equivalent load circuit 766
equivalent states 460
equivalent symbols 138
erasable programmable read-only

memory (EPROM) 819
erasing 820
flash 820

erasing, NAND memory 828
erasing an EPROM 820
Eratosthenes 230
Ercegovac, Miloš 82, 433
error 67
error-correcting code 70, 324, 577
error-correcting decoder 74
error correction 70
error-detecting codes 68–78, 322,

577
error model 68

errors in this book xxi
ESD See electrostatic discharge
essential hazard 487, 542
essential prime implicant 132
Ethernet 37, 66, 78–79, 82, 577,

710–713
evaluation board xx
even-parity circuit 322
even-parity code 69, 322
even-parity function 120
event list, Verilog simulator

225–226, 543
excess-2m 1 system 48
excess-3 code 60
excess-3 sequence 562
excess-B representation 47
excitation 448
excitation equation 448, 452, 536
excitation logic 448
excitation logic, Verilog 606
Exclusive-NOR (XNOR) gate 130,

321
as comparator 331, 332

Exclusive-OR (XOR) gate 130, 320
as comparator 331

executing statement, Verilog 206
exercises vs. drills xviii
expansion formula 36
expression

product-of-sums 100, 102, 109,
115

sum-of-products 100, 102, 107,
109, 113–115

switching algebra 93, 94
expression, ambiguous 95
expression, Verilog 196
extended Hamming code 74
extra negative number 46, 51

F
f, synchronizer frequency 704
F7MUX 245, 410–411, 533, 856
F8MUX 245, 533, 856
factoring 119, 127
failure 67

intermittent 763
Fairchild Semiconductor 174, 804
fall time 155, 692, 761, 780, 797
fall time (tf) 764
FALSE 3
false, Verilog 194
fan 440
fan-in 741
fanout 692, 747, 760, 783, 796

AC 761
CMOS 760
DC 761
HIGH-state 760, 797
LOW-state 760, 797
overall 760

fault detection 128
FCT (Fast CMOS, TTL compatible)

778, 785, 797
FCT-T (Fast CMOS, TTL

compatible with TTL VOH)
797

feedback loop 90, 443, 496, 497,
499, 500, 502, 534, 535, 542

feedback sequential circuit 443,
499, 534–544

hazards 126
$monitor task, Verilog 223
fiber optics 8
Fibonacci sequence 668
fictional buffer 535, 536, 539
field, finite 82, 574
field effect 737
field-programmable gate array

(FPGA) 26, 27, 105, 134,
531–534, 746, 851–862

place-and route 171
FIFO (first-in, first-out buffer) 713
FIFO (first-in, first-out memory)

857, 863
FIFO, asynchronous 713
fighting outputs 302, 782, 787, 837
file input/output, Verilog 224
filtering capacitors 773
fine-line PCB technology 28
finite field 82, 574
finite induction 97

DDPP5.book Page 874 Tuesday, March 28, 2017 5:33 PM

Index 875

finite-memory machine 493, 630
finite-state machine (FSM) 440,

460, 493, 637
first-in, first-out (FIFO) memory

857, 863
first-in, first-out buffer (FIFO) 713
fitter 171
fitting 171
flash EPROM 128, 820
flat schematic structure 149
flip-chip IC packaging 854
flip-flop 499, 504–521, 534

asynchronous inputs 506
CMOS D 539
documentation 674

flip-flop vs. latch 499
floating-gate MOS transistor 819
floating input 527, 762
floating output 302
floating-point number 48
floating signal 304
floating state 304, 781
flow table 541
Flynn, Michael J. 82, 433
Ford Thunderbird 473
forever statement, Verilog 219
for keyword, Verilog 216, 267
for loop, Verilog 216, 267
for statement, Verilog 202, 216,

267, 311
FPGA See field-programmable

gate array
FPGA I/O bank 853
Franaszek, Peter 83
free-running counter 558
front-end design process 170
FSM (finite-state machine) 440,

460, 493, 637
FSM extraction 614
full adder 372, 373, 374
full case, Verilog 214
full subtractor 374
function, Verilog 220
functional verification 171, 172
function call, Verilog 221

function definition, Verilog 220
function hazard 560, 596, 681
function keyword, Verilog 220,

327
function table 254
fundamental carry operation (FCO)

396
fundamental-mode circuit 534, 536
fun stuff xvi, 2, 3
fuses, PLA 247
fusible link 819

G
G (giga-) 76
gain 496
GAL16V8 528
GAL20V8 529
GAL22V10 529
GAL device 528–530
Galois, Évariste 82, 574
Galois fields 596
gate 10

of CMOS transistor 20, 736
symbols 138–139

gate array 539
Gateway Design Automation 177
gating the clock 695–697
Gbps (gigabits per second) 577
generalized DeMorgan’s theorem

98, 108
generate block, Verilog 202, 311
generate keyword, Verilog 202,

311
generic array logic (GAL) 528–530
genvar keyword, Verilog 202, 311
Ghausi, M. 804
giga- (G) 76
gigabits per second (Gbps) 577
Ginosaur, R. 729
glitch 122, 158, 464, 559, 681,

696, 720
decoding 559–561

glitch-free decoding 464–465, 572
glue logic 166
Goldstine, Herman H. 126

Golson, Steve xix, 664, 729
Google 17
Graham, Martin 804
Gray assignment 465–466
Gray code 61, 66, 255, 457,

465–466
Greek philosophers 544
ground (GND) 21, 22, 776
ground bounce 777, 778, 797, 800
group carry-generate signals 386
group-carry lookahead 380, 383
group carry-propagate signals 386
group-ripple adder 380
guessing game 642–645, 649–656

H
half adder 372
half sum 372
halfword (2 bytes) 251
Hamlet circuit 132
Hamming, R. W. 72
Hamming code 72, 324
Hamming distance 66
hardware description language

(HDL) 5, 13, 27, 29, 94,
111, 165

compiler 13, 14, 167
design flow 170–172
signal naming 146–148
simulator 14
synthesis tool 168
synthesizer 14, 168
test bench 15
text editor 14, 167
tool suites 167–169

hardware model 5, 179
hazard 122–126, 681

dynamic 125, 681
essential 487, 542
function 560, 596, 681
in feedback sequential circuit

126
in synchronous design 126
static 559, 681
static-0 123
static-1 122

DDPP5.book Page 875 Tuesday, March 28, 2017 5:33 PM

876 Index

HC (High-speed CMOS) 751, 791,
800, 802

HCT (High-speed CMOS, TTL
compatible) 791, 800

HDL See hardware description
language

header checksum 53, 88
Heater, J. Courtenay 592, 603
Hellerman, Herbert 440
Hennie, Frederick C. 664
henries 774
hertz (Hz) 78
hexadecimal (hex) number system

37–39
hexadecimal digits A–F 37
hexadecimal-to-binary conversion

38
hierarchical design 170
hierarchical schematic structure

150
hierarchy 136
HIGH 3, 8, 140, 736
high-impedance state 302, 781
high-order bit 37
high-order digit 36
HIGH-state DC noise margin 796
HIGH-state fanout 760, 797
Hi-Z state 302, 304, 781
hold time 171, 504, 506, 508, 680,

835
negative 680

hold-time margin 677, 691
hold-time requirements 165
hold-time violation 507, 691
homing experiment 664
Horton, Marcia xxii
Huffman, W. C. 83
Huntington, E. V. 127
Huntington postulates 127
hysteresis 305, 780
Hz (hertz) 78

I
I/O bank, 7-series 853
I/O block (IOB) 858–860

I2C bus 787
IC (integrated circuit) 16–18, 19
IC packaging, flip-chip 854
IC process 18
IC type 153
IC vs. chip 16
identifier 146

Verilog 182
idle state 459
IDT (Integratd Device Technology)

779
IDT (Integrated Device

Technology) 863
IEEE (Institute of Electrical and

Electronics Engineers) 139
IEEE Std 1364-1995 (Verilog-

1995) 177
IEEE Std 1364-2001 (Verilog-

2001) 177, 234
IEEE Std 1364-2005 (Verilog-

2005) 177, 234
IEEE Std 1800-2009

(SystemVerilog) 178
IEEE Std 1800-2012

(SystemVerilog) 234
if keyword, Verilog 211
if statement, Verilog 211, 265,

311
IIH 752
IIL 752
IImax 794
impedance vs. resistance 737
implement 32
implementation 32, 113
implementation, Xilinx Vivado 173
implicit sensitivity list, Verilog 206
`include directive, Verilog 197
inconsistent state-machine

representations 675
independent error model 68
index 34
inductance, stray 774
induction step 97
inductive effects 774–778
inductor 774

infer (in synthesis) 168
infer a latch, Verilog 207, 212, 214
inferred latch 207
inferred latch, Verilog 342, 521
information bit 68
initial block, Verilog 227, 269
initial keyword, Verilog 227,

269
initial state 458, 463, 464, 466
inout declaration, Verilog 183
inout keyword, Verilog 183, 222
inout port, Verilog 183
input

5-V-tolerant 800, 801
floating 762
PLA 246

input/output declarations, Verilog
220

input declaration, Verilog 183
input keyword, Verilog 183, 220,

261
input port, Verilog 182–183
inputs, unused 761
input state 536
instance 180
instance statement, Verilog 199,

201, 206, 525
instantiate 180
instantiatiation 151
insulation 763
integer keyword, Verilog 186
integrated circuit (IC) 16–18, 19
Integrated Device Technology

(IDT) 779, 863
Intel Corporation xx, 18, 27, 29,

294, 701, 851
intermittent failure 763
internal state 536
Internet Protocol (IP) 4
Internet Protocol Version 4 (IPv4)

53
introductory courses xvi
invalid logic level 734
inversion bubble 11, 98, 115, 136,

138, 141, 142, 143–146, 739

DDPP5.book Page 876 Tuesday, March 28, 2017 5:33 PM

Index 877

inverted 1-out-of-n code 66
inverter 11, 92, 142

CMOS 21–22, 738–739
symbol 138

inverting gate 116
IOH 752
IOHmax 755
IOHmaxC 796
IOHmaxT 796
IOL 752
IOLmax 755
IOLmaxC 795
IOLmaxT 795
IP (intellectual property) 167
IP (Internet Protocol) 4
ISE (Integrated Software

Environment) xx
iterative circuit 333–334, 373, 593

boundary inputs 594
boundary outputs 594
cascading inputs 593
cascading outputs 593
primary output 594

iterative comparator 333
iterative consensus 97
iterative widget 594

J
Jacobs, Joanne xxii
JEDEC (Joint Electron Device

Engineering Council) 798,
804

Jenkins, Jesse xxii
JFW flip-flop 548
Jha, Niraj K. 128, 487, 545, 664
J-K flip-flop 546
Johnson, Howard 804
Johnson counter 572

self-correcting 574
Joint Photographic Experts Group

(JPEG) 4
jokes xix, 441
joule 794
JPEG (Joint Photographic Experts

Group) 4
juxtaposition 94

K
K (kilo-) 76
Karnaugh, Maurice 127
Karnaugh map 119, 457, 470
Karnaugh-map minimization 119
keep_hierarchy Verilog

constraint 328, 345
Kent, Clark 498
keywords, Verilog 182
Kilby, Jack 17
kilo- (K) 76
Klir, George J. 804
kludge 696, 726
Knuth, Donald E. 82, 248
Kogge-Stone adder 395
Kohavi, Zvi 128, 487, 545, 664

L
laboratory courses xvi
Láng, Tomas 82, 433
larger-scale logic element 141,

142, 148
large-scale integration (LSI) 17
latch, inferred 207, 342, 486, 608
latches 499–504, 534
latch inference, Verilog 207, 212,

214, 342, 486, 608
latch vs. flip-flop 499
late-write SSRAM with flow-

through outputs 840
late-write SSRAM with pipelined

outputs 841
Lattice Semiconductor 294, 851
lawyers xxi, 782
LCD (liquid-crystal display) 277
leakage current 737, 752, 758, 783
least significant bit (LSB) 37
least significant digit 36
LED (light-emitting diode) 277,

753, 784–786
left, shift-register direction 568
level shifter 803
levels of abstraction, digital design

29
level translator 803

Levesque, A. H. 596
LFSR (linear feedback shift

register) counter 574–577,
596

Verilog 590–593
libraries 168
library, Verilog 200
light-emitting diode (LED) 277,

753, 784–786
linear feedback shift register

(LFSR) counter 574–577,
596

Verilog 590–593
line code 78
Linux 39
liquid-crystal display (LCD) 277
literal 101

Verilog 187, 263
load

AC 765
capacitive 765
DC 753, 766
resistive 753

load capacitance 765
logic 0 734
logic 1 734
logical addition 93
logical expression, Verilog 194
logical multiplication 93
logical operators, Verilog 194–196
logical shifting 403
logical shift operators, Verilog 191
logical vs. bitwise negation, Verilog

598
logical vs. boolean, Verilog 195
logic circuit 89

combinational 89
sequential 90

logic design 1, 5
logic-design template 13
logic-device description 134
logic diagram 12, 134, 148–151,

198
logic-drawing template 165
logic equation 140

DDPP5.book Page 877 Tuesday, March 28, 2017 5:33 PM

878 Index

logic expression 94, 140
complement of 99
parenthesized 107

logic expressions vs. signal names
141

logic family 19
logic inverter, CMOS 21, 738
logic levels 733–736, 748–752

invalid 734
logic system, Verilog 184, 261
logic value 7

CMOS undefined 736
constant 762

longword (8 bytes) 250
lookahead carry circuit 381
lookup table (LUT) 244
looping statement, Verilog 216
LOW 3, 8, 140, 736
low-order bit 37
low-order digit 36
LOW-state DC noise margin 796
LOW-state fanout 760, 797
Low-Voltage CMOS (LVC) 528,

802
LRM (Verilog language reference

manual) 234, 272, 348
LSB (least significant bit) 37
LSI (large-scale integration) 17
LSI Logic Corporation 539
LS-TTL 789
_L suffix 140
lunch 3
LUT (FPGA lookup table) 244
LUT (lookup table) 30
LVC (Low-Voltage CMOS) 802
LVCMOS (low-voltage CMOS)

levels 799
LVTTL (low-voltage TTL) levels

799

M
M (mega-) 76
Mac vs. PC xx
magnetic bubbles 833
magnetic disk 8

magnetic tape 8
magnitude comparator 331,

335–338
magnitude comparison, signed vs.

unsigned 331
main machine 649
majority function, 3-input 201
Manchester code 8, 82
Mano, M. Morris 127
mapping 168, 171
marginal notes xvi
marginal pun xvi
marginal triggering condition 499
margins, engineering design 745
Marquand, A. 127
Mars 85
mask 818
mask-programmable ROM 818
mask ROM 818
master latch 504
mathematician 82
mathematicians 91, 93, 112, 129,

539
Maxfield, Clive 174, 804
maximum delay 159
maximum-length sequence 575

generator 574
maxterm 102, 117
maxterm i 102
maxterm list 103, 117
Mbps (megabits per second) 82
McCluskey, Edward J. xxii, 127,

128, 486, 545, 596
MCM (multichip module) 29
Mead, Carver 487
Mealy machine 444, 449, 450,

457, 461, 535, 629
Mealy-type output 445, 452, 684
mean time between failures

(MTBF) 704, 706, 708, 710
mechanical encoding disk 256
medium-scale integration (MSI) 17

functions 28
mega- (M) 76
megabits per second (Mbps) 82

memory 17, 323
first-in, first-out (FIFO) 857,

863
Mercedes 294
mesosynchronous clocks 713
metal-oxide semiconductor field-

effect transistor (MOSFET)
19, 736–737

metastability 497, 498–499, 500,
502, 504, 506, 538, 544, 691,
699, 701–710

metastability resolution time 702
metastable state 497, 701
metatheorem 99
Michels, Diana 17
Michelson, A. M. 596
microampere (uA) 737
Micron Technology 863
microprocessor 17, 151, 304, 305,

312, 323, 442, 705, 709, 813,
839

microsecond (µsec) 7
mil 28
Mills, Don 664
minimal-cost unused states 466,

468, 471
minimal cut set 539
minimal product 118
minimal-risk equations 471
minimal-risk unused states 466,

468
minimal sum 118
minimize 117
minimum delay 159, 162
minimum distance 68
minimum pulse width 499, 502,

503, 771
minterm 102, 117
minterm i 102
minterm list 103, 117
minterm number 102
minuend 43
misère play 657
Mitra, Subhasish xxii
MLC flash 128

DDPP5.book Page 878 Tuesday, March 28, 2017 5:33 PM

Index 879

model, hardware 5, 179
model vs. program 6
modem 577
module, Verilog 6, 179, 261
module declaration, Verilog 182
module keyword, Verilog 182
module vs. model 6
modulo-m counter 554
modulus 554

Verilog 191
Moebius counter 572
Mondrian, Piet xxii
$monitor task, Verilog 223
$monitoroff task, Verilog 223
$monitoron task, Verilog 223
Monolithic Memories, Inc. (MMI)

294
Moore’s Law 29
Moore machine 444, 449, 450,

454, 457, 474, 535
Moore-type output 445, 449, 452,

683, 684
MOS (“moss,” metal-oxide

semiconductor) 20
MOSFET (metal-oxide

semiconductor field-effect
transistor) 19, 736–737

MOS transistor 19, 736
most significant bit (MSB) 37, 44,

46
most significant digit 36
Motion Picture Experts Group

(MPEG) 4
Mountain View, CA 641, 818
m-out-of-n code 66
movies 5
MP3 4
MPEG (Motion Picture Experts

Group) 4
MSB (most significant bit) 37, 44,

46
MSI (medium-scale integration) 17

functions 28
MTBF (mean time between

failures) 704, 706, 708, 710
multichip module (MCM) 29

multidimensional array
Verilog-1995 422
Verilog-2001 194

multiple-cycle synchronizer 708
multiple error 68
multiple-output circuits 90
multiple-valued logic 128
multiplexed address inputs 846
multiplexer 30–33, 281–292

CMOS 30
enable input 289
expanding 287–289
gate-level design 31
switch model 30
truth table 30
Verilog 290–292

multiplexing 281
multiplication 54–56

signed 55–56
using ROM 243
Verilog 190, 418–425

multiplication dot (⋅) 93, 94
multiplier, shift-and-add 684
multipliers 416–425
multiplying out 96, 107, 109, 113,

114, 374
Murphy’s law 160
mutual exclusion 473, 476
mux 281

N
n{}, Verilog replication operator

189
named parameter redefinition 202
named state 474
NAND architecture (EEPROM) 820
NAND gate 11, 98, 116, 502

CMOS 22, 740
symbol 138

nand gate, Verilog 198
NAND memory erasing 828
NAND memory programming 827
NAND-NAND circuit 110, 115,

117, 126
NAND vs. NOR gate 502

CMOS 741

nanohenries (nH) 774
nanosecond (ns) 7
nasty realities 691
National Semiconductor

Corporation 782
n-bit binary code 252
n-bit binary counter 554
NBUT gate 551
n-channel MOS (NMOS) transistor

20, 736
n-cube 66, 68
negate 140
negated 3
negative BCD numbers 59
negative-edge-triggered D flip-flop

443, 506
negative hold time 680
negative logic 9
negative-logic convention 92
negative numbers 44–48
negedge keyword, Verilog 232,

515
nerds 91
nested expansion formula 40
nested if statement, Verilog 212
net, Verilog 185
net declaration, Verilog 185
net list 171, 198
nets vs. variables, Verilog 186–187
newline character 223
next-state function 447
next-state logic 444
next-state logic, Verilog 606
nH (nanohenries) 774
nibble 39
Nikolic, B. 804
NIM 657
NMOS (n-channel MOS) 20, 736
node, IC process 18
node, in state diagram 472
node, state-diagram 450
noise 747, 780
noise margin 734, 748–752

DC 746, 752, 761

DDPP5.book Page 879 Tuesday, March 28, 2017 5:33 PM

880 Index

nonblocking assignment, Verilog
226

nonblocking assignment operator,
Verilog <= 208

non-blocking assignment statement,
Verilog 520

noncode word 68
noninverting buffer 138
noninverting gate 116
nonrecurring engineering (NRE)

cost 27, 33
Non-Return-to-Zero (NRZ) 78
Non-Return-to-Zero Invert-on-1s

(NRZI) 80
nonvolatile, erasable memory 8
nonvolatile memory 241, 814, 820,

834
NOR architecture (EEPROM) 820
NOR gate 11, 98, 116, 502

CMOS 22, 741
symbol 138

nor gate, Verilog 198
normal term 102
NOR-NOR circuit 116, 117, 126
NOR vs. NAND gate, CMOS 741
notation 20
NOT gate 11
not gate, Verilog 198
notif0 gate, Verilog 198
notif1 gate, Verilog 198
NOT operation 93
NRE (nonrecurring engineering

cost) 27
NRZ (Non-Return-to-Zero) 78
NRZI (Non-Return-to-Zero Invert-

on-1s) 80
NRZ serial data 711
n-to-2n decoder 253
null statement, Verilog 210

O
octal 305, 522
octal number system 37–38
octal-to-binary conversion 38
odd-parity circuit 322

odd-parity code 69
off-set 103
"off" transistor 20, 736
Ohm’s law 748
Oliu, W. E. 172
one-hot state assignment 465–466

almost 466
ones’ complement 86
ones’-complement addition 53
ones’-complement arithmetic

52–53
ones’-complement subtraction 53
ones’-complement system 47
one-time programmable (OTP)

ROM 820
ONFI (Open NAND Flash

Interface) 863
ON Semiconductor 174, 804
on-set 103
"on" transistor 20, 736
ooze 784
open-collector output 783
open-drain bus 787
open-drain output 783–786
operator precedence 100

Verilog 196
optimization, Xilinx Vivado 173
optional sections (asterisk) xvi
OR-AND circuit 100, 108, 116,

117, 125, 126
OR-AND-INVERT (OAI) gate,

CMOS 744, 806
OR gate 10, 93, 116

CMOS 742
symbol 138

or gate, Verilog 198
or keyword, Verilog 205
OR operation 94
Osborne, Thomas E. 487
output

5-V-tolerant 801
open-collector 783
open-drain 783–786

output-coded state assignment 445,
643

output declaration, Verilog 183
output-disable time 824, 837
output-enable (OE) input 823
output-enable time 824, 837
output equation 449, 453, 537
output function, state-machine 447
output-hold time 824, 837
output keyword, Verilog 183,

222, 261
output loading 750, 752, 760, 761
output logic, state-machine 444
output logic, Verilog 606
output logic macrocell 528
output port, Verilog 182–183
outputs, fighting 782, 787
outputs, PLA 246
output table 453
output timing skew 587
overall fanout 760
overbar notation 93
overflow 52, 403

rules 50
two’s-complement 50, 51

overshoot 801

P
packed-BCD representation 58
pad, IC 16
pad ring 800
page, SDRAM 849
PAL16L8 248, 249
PALASM (PAL Assembler) 166
PAL device 166
parallel case, Verilog 214
parallel comparator 333
parallel data 78
parallel-in, parallel-out shift register

567
parallel-in, serial-out shift register

566
parallel-prefix adder 394–399
parallel-to-serial conversion 566
parameter, Verilog 201, 271
parameter declaration, Verilog 188,

271

DDPP5.book Page 880 Tuesday, March 28, 2017 5:33 PM

Index 881

parameterized modules, Verilog
201

parameter keyword, Verilog 188,
271

parameter redefinition, named 202
parameter substitution, Verilog 201
parasitic diode 779
parenthesization, switching algebra

95
parenthesized logic expression 107
Pareto 355
Parhami, Behrooz 433
parity bit 69, 322
parity-check matrix 72
parity function

even 120
Verilog 326–330

parity tree 322
partial product 55
part-select [:], Verilog 189, 267,

578, 581
party line 302, 304
passive pull-up 783
Patel, Parimal xxii
patents 83
path, signal 770
path sensitization 128
PayPal xxi
PBX (Private Branch Exchange) 4
PCB (printed-circuit board) 28–29,

442, 693, 773, 774
layout 96

PCB-level design 33, 694
PCB routing 692
PCB traces 28
p-channel MOS (PMOS) transistor

21, 737
PCI bus 78
PCI Express 78, 88, 854
PDP-11 minicomputer 816
Pellerin, David 178
pepperoni 16
perfect induction 94, 100
perfume 751
PERL 15

Perl 15
permanent failure 67
Peterson, W. W. 82
PGA (pin-grid array) 854
phase-locked loop (PLL) 694, 854
picosecond (ps) 7
pin 141
pin diagram 17
pin-grid array (PGA) 854
pin number 134, 153
pinout 17
pipelined Mealy outputs 684
pipelined outputs 445, 606, 612
Pizza Roma 16
PL 772
PLA (programmable logic array)

25, 105
See also programmable logic

device (PLD)
place and route 171
placement 168
placement, Xilinx Vivado 173
PLA fuses 247
PLCC package 778
PLD See programmable logic

device
PLE (programmable logic element)

531–534
Pless, V. 83
PLL (phase-locked loop) 854
PMOS (p-channel MOS) 21, 737
pneumatic logic 8, 804
politics 3, 82, 552
polymer memory 8
Porsche 294
port-association list, Verilog 199,

200
port declarations, ANSI-style 184,

188
ports, Verilog 182–183
posedge keyword, Verilog 232,

515
positional number system 36
positive-edge clock gate 697

positive-edge-triggered D flip-flop
442–443, 504–507

positive-edge-triggered J-K flip-flop
546

positive logic 9, 254
positive-logic convention 92, 140,

143
post-fitting timing verification 172
postulate 92
power 752
power consumption 758, 772

CMOS 747, 764
power dissipation 772

dynamic 771, 794
See also CV2f power

quiescent 771
static 771

power-dissipation capacitance 772,
794

power-down input 824
power supply 773
power-supply rails 143, 752, 758
power-supply voltage 159, 538,

707, 750, 752
precedence

switching algebra 94, 100
Verilog operator 196

precharge 845
predecoding 258–259, 262
prefix graph 396
prefix tree 397
preset input 500, 506, 675
primary inputs and outputs,

iterative-circuit 333
primary output, iterative-circuit

594
prime (′) 92
prime, definition of 112, 129
prime implicant 97, 120

essential 132
prime notation 93
prime number 112, 129
prime-number detector 111, 118,

129, 203, 212, 214, 219
test bench 227

principle of duality 99

DDPP5.book Page 881 Tuesday, March 28, 2017 5:33 PM

882 Index

printed-circuit board (PCB) 28–29,
442, 693, 773, 774

layout 96
priority 313
priority encoder 313
private branch exchange (PBX) 4
problem solving 2
procedural code 186

Verilog 205–224
procedural statement, Verilog 205,

207
process, deep submicron 18
process, IC 18
process, submicron 18
process, Verilog simulator 225
process node, IC 18
product code 76
product component 416, 418
product of sums 96
product-of-sums expression 100,

102, 108, 109, 115
product term 101
product terms, PLA 246
program 173
program and debug, Xilinx Vivado

173
programmable array logic (PAL)

device 25, 248–249
programmable devices 25–27
programmable interconnect

860–862
programmable logic array (PLA)

25, 105, 246–248
diagram 247

programmable logic device (PLD)
26–27, 119, 134, 165,
528–530

complex See complex
programmable logic
device (CPLD)

fitting 171
programmable logic element (PLE)

531–534
programmable read-only memory

(PROM) 818
bipolar 819
programmer 818

programmer vs. logic designer 135
programming 140

EEPROM 820
EPROM 819
mask ROM 818
NAND memory 827
PROM 818

programming and state machines
457

programming vs. state-machine
design 457, 675

program vs. model 6
project leader 135
PROM (programmable read-only

memory) 818
propagation delay 157, 160, 501,

503, 504, 505, 747, 761, 765,
770–771, 793

P-set 128
pseudorandom counting sequence

577
pull-up, active 783
pull-up, passive 783
pull-up resistor 304, 527, 783
pull-up-resistor calculation 788
pulse input 486
pulse-mode circuit 486
pulse width, minimum 499, 502,

503
punctuation 86
pushbutton 526

Q
QDR SSRAM 844
QoR (quality of results) 328
quad-data-rate (QDR) SSRAM 844
quad gate 748
quadruple gate 748
Quartus, Altera xx
question mark “?” in Verilog literal

187, 215
quiescent power dissipation 771
Quine, W. V. 127
Quine-McCluskey algorithm 127
Q vs. QN 537, 547
Q vs. QN 500

R
Raaum, Dave 218
Rabaey, J. M. 804
race 540, 681
radix 36
radix point 36
RAID (redundant array of

inexpensive disks) 76
rails, power-supply 143, 752, 758
$random function, Verilog 223
random-access memory (RAM)

833–851
static (SRAM) 834–844

random logic 239
Verilog example 356–362

range in bus name 152
range specification, Verilog 183
RAS-CAS delay 847
rate of a code 88
RC time constant 527, 767
read/write memory (RAM) 682,

833
read/write memory (RWM) 833
read cycle, SDRAM 847
read-only memory (ROM) 25,

240–245, 814–833
realization 32, 113
realize 32, 105, 113
recovery time 502
redundant array of inexpensive

disks (RAID) 76
reference designator 134, 153, 261
reflected code 62, 466
reflections, transmission-line 780,

800
refresh counter, SDRAM 850
refresh cycle 845
refresh operations, DRAM 850
register 522–524, 682

cascaded 674
registers, Verilog 524–525
register-transfer language (RTL)

167, 168
reg keyword, Verilog 186, 265
regression testing 230

DDPP5.book Page 882 Tuesday, March 28, 2017 5:33 PM

Index 883

reg vs. register, Verilog 264
relational operators

Verilog 194–195
relay 753
relay logic 8, 804
reliability 761, 795
Renesas 863
repeat statement, Verilog 219
replication operator n{}, Verilog

189
reserved words 147

Verilog 182
reset

state-machine 459, 460, 463
reset, synchronous versus

asynchronous 664
reset-dominant S-R latch 520
reset input 500, 618, 623
resistance vs. impedance 737
resistive load 753
resistor

pull-up 304, 527
calculation 788

Return-to-Zero (RZ) 80
reviewers xvii
revolution 3, 5
right, shift-register direction 568
ring counter 561, 570, 581

self-correcting 571
ripple 334
ripple adder 334, 373
ripple carry out, 74x163 counter

558
ripple counter 554
rise time 155, 692, 761, 780, 797
rise time (tr) 764
risk 3
RLSI 18
rollover, loop counter 230
ROM (read-only memory) 25
ROM, distributed 863
rotating 403
rotating drum 833
rounding in division 403
routing 168

routing, Xilinx Vivado 173
row address, SDRAM 847
row-address register, SDRAM 847
row latch, SDRAM 847
RTL (register-transfer language)

167, 168
running disparity 81
RZ (Return-to-Zero) 80

S
safe state 571
sales pitch 5–6
Samsel, Marta xxii
schematic diagram 13, 134, 136,

148–151, 165, 166, 198, 674
schematic editor 165
schematic entry 13
schematic viewer 169
Schmitt-trigger input 702,

780–781
scope, HDL signal name 148
scope,Verilog definitions 181
scope, Verilog signal names 272,

273
scrambler 577
SDRAM (synchronous DRAM)

auto-refresh cycle 850
burst-read cycle 849
burst-write cycle 850
column-address register 848
configuration register 850
page 849
read cycle 847
refresh counter 850
row address 847
row-address register 847
row latch 847
write cycle 849

second, s 78
second courses xvi
self-checking test bench 228
self-complementing code 60
self-correcting counter 571
self-correcting Johnson counter

574

self-correcting ring counter 571
self-documenting code 675
self-dual logic function 131
semicolon, Verilog 210
semiconductor diode 19
sense amplifier 845
sensitivity list, Verilog 205–206,

225, 265
implicit 206

sensitivity-list wildcard, * 205, 271
sensitivity matrix, Verilog 225, 226
sensor 60
sequential circuit 10, 90
sequential multiplier 418
SERDES (serializer/deserializer)

860
serial-access memory 833
serial binary adder 595
serial comparator 594
serial data 78
serial-in, parallel-out shift register

566
serial input, shift-register 566
serializer/deserializer (SERDES)

860
serial output, shift-register 566
serial-to-parallel conversion 566
serial widget 594
set 500
set-dominant S-R latch 520
setup time 171, 504, 506, 508,

680, 835
setup-time margin 677
setup-time violation 507
seven-segment decoder 278
seven-segment display 277
Shannon, Claude E. 91, 126
Shannon decomposition 204, 245
shift-and-add multiplication 54
shift-and-add multiplier 684
shift-and-subtract division 56
shifting 403
shift operators, Verilog 191
shift register 566–577, 682

cascaded 674

DDPP5.book Page 883 Tuesday, March 28, 2017 5:33 PM

884 Index

shift-register counter 570
shift registers, Verilog 578–593
sidebars xvi, xvii
sieve of Eratosthenes 230
signal, Verilog 185
signal flags 150, 153
signaling, double-ended 803
signaling, single-ended 803
signal names 140–141, 143–148

case sensitivity 147
in HDLs 146–148
scope 148

Verilog 272, 273
vs. logic expressions 141

signal naming 148
signal path 156, 157, 158, 162,

164, 165, 770
sign bit 44, 46
signed arithmetic, Verilog-2001

191
signed division 56
signed-magnitude adder 44
signed-magnitude representation

59
signed-magnitude subtractor 45
signed-magnitude system 44
signed multiplication 55–56
signed vs. unsigned magnitude

comparison 331
signed vs. unsigned numbers 51
sign extension 45, 46, 56, 86
silly error 151
simulation 166, 170, 191, 203,

543, 544
Verilog 225–226

simulation cycle, Verilog 226
simulation time, Verilog 225
simulator 14, 106, 164, 168, 224,

422
Verilog 225–226

simultaneous input changes 534,
538, 539

simultaneous switching 776, 778
single-ended signaling 803
single error 68

sinking current 755
slack, timing 677
slash (/) on bus 136
slave latch 504
sledgehammer 763
slice, Xilinx 7-series 401, 531, 855
small-scale integration (SSI) 16
smart traffic lights 638
SoC (system-on-a-chip) 855
Social Security 544
software tools 13–16

for logic design 93
soldering iron 13
solder paste 28
source, CMOS transistor 20, 736
sourcing current 755
space/time trade-off 593, 596
specification (spec) 134

circuit 134
device 734, 748–749, 751
system 134
timing 155

speed 6
CMOS 747, 764
combinational-circuit 114, 117

speed-of-light delay 7
speed-power product 794
Spencer, R. 804
spikes, current 773
SRAM, distributed 863
S-R latch 499, 503, 507, 543, 771

reset-dominant 520
set-dominant 520

S-R latch 502
SRL configuration, Xilinx 7-series

596
S-set 128
SSI (small-scale integration) 16
stable 497
stable total state 536
Stallings, William 83
standard cell 28
standard-cell design 28
standby mode 824

state 440, 446
abnormal 570, 571, 646
coded 462
idle 459
initial 464, 466
safe 571
unused 646

state/output table 447, 449, 454
state adjacency diagram 465
state assignment, decomposed 464
state assignment, Gray 465–466
state box 478
state diagram 447, 450, 454, 457,

472–478, 674
state machine 440, 443–454, 682,

700
ABEL coding style 611
cost 466
decomposition 648
design 2, 455–486

with ASM charts 478–482
with state diagrams 472–478
with Verilog 483–486

documentation 674
inconsistent descriptions 675
pipelined output 606
programs 676
reset 459
Verilog coding style 606

state-machine design vs.
programming 457, 675

state memory 443
Verilog 606

statements, Verilog 179
state name 448, 450
states, total number of 462
states, unused 462, 464, 466
state table 10, 449, 457, 536, 674
state-table reduction 487
state variable 440
static-0 hazard 123
static-1 hazard 122
static circuit behavior 746, 748
static electricity 747, 763
static hazard 559, 681

DDPP5.book Page 884 Tuesday, March 28, 2017 5:33 PM

Index 885

static power dissipation 771
static RAM (SRAM) 834–844

asynchronous 834
cell 835

steady state 496
steady-state behavior 122, 748
sticky counter 658, 664, 665
stimulus file 585
Stone, Harold S. 127
$stop task, Verilog 223
stray capacitance 765
stray inductance 774
structural description, Verilog

198–202
structural design, Verilog 198–202
structural model, Verilog 179,

198–202
structural Verilog code 423
Strunk, William, Jr. 172
submachine 649
submicron process 18

deep 18
subtraction 43
subtraction, Verilog 190
subtractor 372

full 374
subtractors 374–376

See also adders
subtrahend 43
suggestive drawings 452
sum bit 376
sum-of-products expression 96,

100, 102, 107, 109, 113–115
sum term 102
Sunnyvale, CA 5
Sunnyvale, California 637–641
Superman 498
surface-mount technology (SMT)

28
suspended statement, Verilog 206
Sutherland, Stuart 234
switch 525
switch box 860
switch debouncing 525–527
switching, simultaneous 776, 778

switching algebra 91–104, 127
adding out 96
ambiguous expression 95
associative law 95
binary operator 96
combining theorem 96
commutative law 95
consensus theorem 96
cover 96
covering theorem 96
DeMorgan’s theorem 97
distributive law 96
duality 99
expression 93, 94
juxtaposition 94
multiplying out 96
parenthesization 95
precedence 94, 100
theorem 94

switching noise 797, 800
switch model, CMOS 22, 739
symbols, gate 138–139
symmetric output drive 161, 792,

797
synchronization signal 79
synchronizer 2, 681, 699

failure 701
synchronizing sequence 664
synchronous 443
synchronous counter 555
synchronous design methodology

677
hazards in 126

synchronous DRAM (SDRAM)
846–851

See also SDRAM
synchronous parallel counter 556
synchronous preset, 22V10 529
synchronous serial counter 556
synchronous SRAM (SSRAM) 840

late-write with flow-through
outputs 840

late-write with pipelined outputs
841

QDR 844
turn-around penalty 842, 844

ZBT with flow-through outputs
842

ZBT with pipelined outputs 843
zero-bus-turnaround (ZBT) 842

synchronous systems 673,
681–690

syndrome 74, 325
Synopsys, Inc. 177
synthesis 166, 171, 191, 195, 201,

204, 219, 220, 224, 232, 384,
485, 607

combinational-circuit 90
vs. design 91, 110

synthesis, Xilinx Vivado 173
synthesis tools

HDL 168
Verilog 177

synthesizer 111, 206
HDL 168

system architect 135
system-on-a-chip (SoC) 165, 855
system specification 134
SystemVerilog 178

T
T (tera-) 76
τ, metastability-resolution time

constant 704, 707
T1 link 82
tAA 823, 830, 837
tACS 823, 837
tAH 838
tail lights 473
tape, magnetic 8
tAS 838
task, Verilog 222, 277
task call, Verilog 222
task definition, Verilog 222
task enable, Verilog 222
task keyword, Verilog 222, 277
taxes 638
Taylor, Douglas 178
T-bird tail lights 473–477
tclk 703
tcomb 703

DDPP5.book Page 885 Tuesday, March 28, 2017 5:33 PM

886 Index

tCSW 838
tDH 838
tDS 838
telephone system 4
temperature 159, 538, 707, 750,

752, 754
template generator 169
templates, Verilog 232, 233
temporary failure 67
tera- (T) 76
termination 753, 811
test bench 15, 168, 170

Verilog 182, 220, 422, 521,
616–625

test bench, self-checking 228
test-input generation 577
test plan 135
test vectors 625
Texas Instruments 174, 707, 804,

863
text 62
text editor, HDL 167
tf 764
T flip-flop 507, 554, 556

with enable 508
theorem, switching algebra 94
The Phone Company (TPC) 4, 82
thermometer code 298
Thévenin equivalent 754
Thévenin resistance 754
Thévenin termination 811
Thévenin voltage 754
Thomas, Donald 234
three-state, Verilog 183
three-state buffer 302–307, 782
three-state bus 527, 781

Verilog 308
three-state driver 302
three-state enable 302
three-state output 198, 527,

781–783, 801
Verilog 308–309

threshold 734
threshold logic 128
tick, clock 441, 443

tilde notation 93
$time function, Verilog 223
time keyword, Verilog 224
`timescale directive, Verilog 224
‘timescale directive, Verilog 269
time scale, Verilog 224
time to market 27, 33
timing 154–157

closure 165, 674, 748
timing, 74x MSI register 679
timing analysis 162, 693

program 164
tools 164

timing analyzer 15, 164, 169
timing control, Verilog 220,

224–225
timing diagram 12, 134, 154, 452,

456, 459, 674, 676–678
timing hazard 97
timing margin 677, 761
timing skew

output 587
three-state-buffer 303

timing slack 677, 715
timing specifications 155,

159–162, 674, 676–680
flip-flops, latches, and registers

679
MSI parts 163
SSI parts 161

timing table 156, 676
timing verification 171

post-fitting 172
timing verifier 15
To, metastability-resolution time

constant 704
tOE 824, 837
tOH 824, 837
tools 2
top-down design 359
total number of states 462
total state 536, 537
tOZ 824, 837
tp (propagation delay) 770–771
TPC See The Phone Company

tpHL 157, 770
tpHZ 302, 303
tpLH 157, 770
tpLZ 302, 303
tpZH 302, 303
tpZL 302, 303
tr 702, 703, 764
trace, PCB 28
traffic-light controller 64

See also Sunnyvale, CA
traffic lights 4
transceiver 305, 308
transfer characteristic, CMOS 750,

780
transfer diagram, voltage 496
transfer function 496
transient behavior 122
transistor

bipolar junction 19
MOS 19, 736
n-channel MOS (NMOS) 20,

736
p-channel MOS (PMOS) 21,

737
transistor-transistor logic (TTL) 8,

19, 735
CMOS interfacing 753, 756,

791
load 795

transition/excitation table 467
transition equation 448, 452
transition expression 454, 472
transition frequency 772, 794
transition list 477–478
transition p-term 477
transition-sensitive media 80
transition table 448, 453, 467, 536
transition time 155, 747, 764–769,

780
transmission gate, CMOS 23–24,

30, 282, 321, 367, 539,
778–779

transmission line
reflections 780, 800
termination 753

transmission-line effects 804

DDPP5.book Page 886 Tuesday, March 28, 2017 5:33 PM

Index 887

transparent latch 503, 834
triggering edge 441
tri net type, Verilog 185
tri-state output 781
TRUE 3
true, Verilog 194
truth table 9, 15, 30, 100–104,

241, 253, 467, 814
don’t-care (x) 253
notation 253, 254, 283, 286

truth values, Verilog 194
tsetup 703
TTL See transistor-transistor logic
Turing machine 441
turn-around penalty, SSRAM 842,

844
turning the crank 2, 91, 455, 456,

467, 477, 675
twisted-ring counter 572
two’s complement 86
two’s-complement addition 49
two’s-complement arithmetic

48–52
two’s-complement multiplication

55
two’s-complement subtraction 50
two’s-complement system 45
two-dimensional code 75
two-dimensional decoding 816,

839, 845
two-level AND-OR circuit 110, 115
two-level NAND-NAND circuit 110,

115
two-level NOR-NOR circuit 116
two-level OR-AND circuit 116
two-phase latch machine 487
tWP 830, 831, 838
typical delay 159

U
μA (microampere) 737
ULSI 18
unambiguous state diagram 476
unary code 298
unary minus, Verilog 190

unary plus, Verilog 190
undefined logic level 734
undefined logic value, CMOS 736
undefined region 765
underscore 146
underscore, Verilog 182
undershoot 801
unidirectional error 78
unidirectional shift register 567
unit under test (UUT) 226, 616
Unix 39
unreset 460
unsigned binary multiplication 54
unsigned division 56
unsigned multiplication 54–55
unstable total state 536
unused inputs 761
unused states 462, 464, 466, 646
up/down counter 562, 598
U.S. patents 83
UUT (unit under test) 226, 616

V
vacuum-tube logic 804
variable, Verilog 186, 265
variable declaration, Verilog 186
variables vs. nets, Verilog 186–187
VCC 738
VCC bounce 778
VDD 738
vector, Verilog 183, 189–193
vector net, Verilog 185
vector padding, Verilog 190, 291
vector variable, Verilog 186
vee ∨ 93
Veitch, E. W. 127
Veitch diagram 127
verification 171
Verilog 14, 27, 177–233

! (logical NOT) 195, 277
!= (logical inequality) 195
!== (case inequality) 197
! vs. ~ 195
(delay specifier) 224

(parameter substitution) 201,
271

$ (built-in functions and tasks)
182, 223

% (modulus) 190
&& (logical AND) 195, 277
& (AND) 185, 273
- (subtraction) 190
* (multiplication) 190
** (exponentiation) 190, 271
+ (addition) 190
/ (division) 190
< (less than) 195
<< (shift left) 190
<<< (arithmetic shift left) 190
<= (less than or equal) 195
<= (nonblocking assignment)

208
<= vs. = 209
= (blocking assignment) 208
== (logical equality) 195
=== (case equality) 197
= vs. <= 209
> (case equality) 197
> (greater than) 195
>= (greater than or equal) 195
>> (shift right) 190
>>> (arithmetic shift right) 190
?: (conditional operator) 195,

196, 204, 263, 290, 308,
386

? in literal 187, 215
[] 189, 267
[:] (part-select operator) 578,

581
^ (XOR) 185
^~ (XNOR) 185
{} (concatenation operator)

189, 203, 222, 263, 278,
578, 581, 689

| (OR) 185
|| (logical OR) 195, 277
~ (NOT) 185, 273
~^ (XNOR) 185
~ vs. ! 195

DDPP5.book Page 887 Tuesday, March 28, 2017 5:33 PM

888 Index

Verilog (continued)
addition 190
always block 205, 267
always keyword 205, 265
always statement 205, 265
ANSI-style port declarations

184, 188
arithmetic operators 190
arithmetic shift operators 192
array 193
array index 193
assign keyword 203, 224, 262
assignment-statement sizing 190
begin-end block 210
begin keyword 210, 267
behavioral description 205–219
behavioral model 179, 205–219
bit-select 267
bit-select [] 189
bit vector 183, 189–193
bitwise boolean operators 184
blocking assignment operator, =

208
blocking assignment statement

208, 226, 520
blocking vs. non-blocking

assignments 520
boolean operators 184
boolean reduction operators 192
built-in gate types 198
case keyword 213, 214, 265
case sensitivity 147, 182
case statement 104, 202, 213,

265, 311
casex keyword 215
casex statement 216
casez keyword 215
casez statement 215, 319
coding style 181, 188, 195, 196,

197, 209, 210, 214, 215,
216, 218, 221, 230, 520,
609

comments 181
comparison 195

compiler 182, 197, 199, 215,
224

component instantiation 199
concatenation operator {} 189,

203, 222, 263, 278, 578,
581, 689

concurrent statement 198
executing 206
suspended 206

condition 211
conditional operator ?: 195,

196, 204, 263, 290, 308,
386

configuration management 182
constants 188, 197
continuous-assignment

statement 203, 206, 262,
308

counters 561–566
dataflow description 203–204
dataflow design 203–204
dataflow model 203–204
declarations 179
`define directive 197
`define vs. parameter 197
defparam keyword 202
delay statement 224
delta delay 226
design flow 170
disable keyword 218
disable statement 218
$display task 223, 270
division 191, 427–432
else keyword 211, 265
endcase keyword 213, 265
endfunction keyword 220
endgenerate keyword 202,

311
end keyword 210, 267
endmodule keyword 182, 261
endtask keyword 222, 277
excitation logic 606
expression 196
false 194
$fflush task 223

file input/output 224
forever statement 219
for keyword 216, 267
for loop 216, 267
for statement 202, 216, 267,

311
full case 214
function 220
function call 221
function definition 220
function keyword 220, 327
gate types, built-in 198
generate block 202, 311
generate keyword 202, 311
genvar keyword 202, 311
identifiers 182
if keyword 211
if statement 211, 265, 311
implicit sensitivity list 206
`include directive 197
infer a latch 207, 212, 214
inferred latch 342, 521
initial block 227, 269
initial keyword 227, 269
inout keyword 183, 222
inout port 183
input/output declarations 183,

220
input keyword 183, 220, 261
input port 182–183
instance statement 199, 201,

206, 525
integer keyword 186
integer variable 186
keep_hierarchy constraint 328
keywords 182
language reference manual

(LRM) 234, 272, 348
latch inference 207, 212, 214
library 200
literals 187, 263
logical expression 194
logical operators 194–196
logical shift operators 191

DDPP5.book Page 888 Tuesday, March 28, 2017 5:33 PM

Index 889

Verilog (continued)
logical vs. bitwise negation 598
logic system 184, 261
looping statement 216
LRM (language reference

manual) 272
module 179, 261
module declaration 182
module keyword 182
modulus 191
$monitor task 223
$monitoroff task 223
$monitoron task 223
multidimensional array 194,

422
multiplication 190, 418–425
negedge keyword 232, 515
nested if statement 212
net 185
net declaration 185
nets vs. variables 186–187
next-state logic 606
nonblocking assignment 226
nonblocking assignment

operator, <= 208
non-blocking assignment

statement 520
null statement 210
operator precedence 196
or keyword 205
output keyword 183, 222, 261
output logic 606
output port 182–183
parallel case 214
parameter 201, 271
parameter declaration 188, 271
parameterized modules 201
parameter keyword 188, 271
parameter substitution 201
part-select [:] 189, 267, 578,

581
port-association list 199, 200
ports 182–183
posedge keyword 232, 515
procedural code 205–224

procedural statement 205, 207
process, simulator 225
question mark “?” in literal 187,

215
$random function 223
range specification 183
registers 524–525
reg variable 186, 265
reg vs. register 264
relational operators 194–195
repeat statement 219
replication operator n{} 189
reserved words 182
scope 181
semicolon 210
sensitivity list 205–206, 225,

265
implicit 206

sensitivity matrix 225, 226
shift operators 191
shift registers 578–593
signal 185
signal-name scope 272, 273
simulation 225–226
simulation cycle 226
simulation time 225
simulator 225–226

event list 225–226, 543
state-machine coding style 606
state memory 606
statements 179

executing 206
suspended 206

$stop task 223
structural description 198–202
structural design 198–202
structural model 179, 198–202
subtraction 190
synthesis tools 177
task 222, 277
task call 222
task definition 222
task enable 222
task keyword 222, 277

templates 232, 233
test bench 220, 616–625
three-state bus 308
three-state output 308
$time function 223
time keyword 224
`timescale directive 224
‘timescale directive 269
time scale 224
timing control 220, 224–225
tri net type 185
true 194
truth values 194
unary minus 190
unary plus 190
variable 186, 265
variable declaration 186
variables vs. nets 186–187
vector 183, 189–193
vector net 185
vector padding 190, 291
vector variable 186
while statement 219
wire net type 185, 261
$write task 223, 280
z bit value 215
zero-padding 190

Verilog-1995 177, 188, 193, 422
Verilog-2001 177, 182, 184, 194

signed arithmetic 191
Verilog-2005 177
Verilog HDL 234

See also Verilog
Verilog versus VHDL xix
very large-scale integration (VLSI)

18
VHC (Very High-speed CMOS)

792
VHCT (Very High-speed CMOS,

TTL compatible) 792
VHDL 14

precedence trap 94
VHDL case sensitivity 147, 182
VIHmin 751, 795

DDPP5.book Page 889 Tuesday, March 28, 2017 5:33 PM

890 Index

VILmax 751, 795
violation, timing 507
Vivado, Xilinx xix
Vivado tools 169
VLSI (very large-scale integration)

18
VOHmin 751
VOHminC 796
VOHminT 796
volatile memory 834
VOLmax 751
VOLmaxC 796
VOLmaxT 796
voltage, power-supply 159, 538,

707
voltage supervisor 460
voltage-transfer diagram 496, 750
Vulcan 91

W
wafer 16
Wakerly, Carmela v
Wakerly, John F. 1
Wakerly, Ralph F. v
Waser, Shlomo 82, 433
watchdog timer 460
waveform editor 168
WE-controlled write 838
wedge ∧ 93
weight 36, 46, 55

of MSB 46
weighted code 60
Weldon, E. J. Jr. 82
while statement, Verilog 219
White, E. B. 172
widget, iterative 594
widget, serial 594
Widmer, Albert 83
Windows PC xx
wire 141
wired AND 787
wired logic 787
wire keyword, Verilog 185, 261
wire lengths 172

wires 12
word 240
word (4 bytes) 251
word line 815
word processor 13, 15
worst-case delay 162
wrist strap, conductive 763
writable compact disc (CD-R) 8
$write task, Verilog 223, 280
write cycle 837

SDRAM 849
write-enable (WE) input 823, 834
write-pulse width 830, 831, 838
writing 135
www.ddpp.com xxi

X
Xilinx, Inc. xix, 294, 707

ISE (Integrated Software
Environment) xx

Xilinx 7-series slice 401
Xilinx University Program xxi
Xilinx Vivado 388
Xilinx Vivado tools 169
Xilinx XC4000 family 863
XNOR function, Verilog 185
XNOR gate 130, 321, 558
xnor gate, Verilog 198
XOR function 131

Verilog 185, 325–330
XOR gate 130, 320

as comparator 331
xor gate, Verilog 198

Z
z bit value, Verilog 215
ZBT SSRAM with flow-through

outputs 842
ZBT SSRAM with pipelined

outputs 843
zero-bus-turnaround (ZBT)

SSRAM 842
zero-code suppression 82
zero-padding, Verilog 190
Zynq xx, 855

DDPP5.book Page 890 Tuesday, March 28, 2017 5:33 PM

	Cover
	Tilte Page
	Copyright Page
	Contents
	Preface
	Chapter 1: Introduction
	1.1 About Digital Design
	1.2 Analog versus Digital
	1.3 Analog Signals
	1.4 Digital Logic Signals
	1.5 Logic Circuits and Gates
	1.6 Software Aspects of Digital Design
	1.7 Integrated Circuits
	1.8 Logic Families and CMOS
	1.9 CMOS Logic Circuits
	1.10 Programmable Devices
	1.11 Application-Specific ICs
	1.12 Printed-Circuit Boards
	1.13 Digital-Design Levels
	1.14 The Name of the Game
	1.15 Going Forward
	Drill Problems

	Chapter 2: Number Systems and Codes
	2.1 Positional Number Systems
	2.2 Binary, Octal, and Hexadecimal Numbers
	2.3 Binary-Decimal Conversions
	2.4 Addition and Subtraction of Binary Numbers
	2.5 Representation of Negative Numbers
	2.5.1 Signed-Magnitude Representation
	2.5.2 Complement Number Systems
	2.5.3 Two’s-Complement Representation
	2.5.4 Ones’-Complement Representation
	2.5.5 Excess Representations

	2.6 Two’s-Complement Addition and Subtraction
	2.6.1 Addition Rules
	2.6.2 A Graphical View
	2.6.3 Overflow
	2.6.4 Subtraction Rules
	2.6.5 Two’s-Complement and Unsigned Binary Numbers

	2.7 Ones’-Complement Addition and Subtraction
	2.8 Binary Multiplication
	2.9 Binary Division
	2.10 Binary Codes for Decimal Numbers
	2.11 Gray Code
	2.12 Character Codes
	2.13 Codes for Actions, Conditions, and States
	2.14 n-Cubes and Distance
	2.15 Codes for Detecting and Correcting Errors
	2.15.1 Error-Detecting Codes
	2.15.2 Error-Correcting and Multiple-Error-Detecting Codes
	2.15.3 Hamming Codes
	2.15.4 CRC Codes
	2.15.5 Two-Dimensional Codes
	2.15.6 Checksum Codes
	2.15.7 m-out-of-n Codes

	2.16 Codes for Transmitting and Storing Serial Data
	2.16.1 Parallel and Serial Data
	2.16.2 Serial Line Codes

	References
	Drill Problems
	Exercises

	Chapter 3: Switching Algebra and Combinational Logic
	3.1 Switching Algebra
	3.1.1 Axioms
	3.1.2 Single-Variable Theorems
	3.1.3 Two- and Three-Variable Theorems
	3.1.4 n-Variable Theorems
	3.1.5 Duality
	3.1.6 Standard Representations of Logic Functions

	3.2 Combinational-Circuit Analysis
	3.3 Combinational-Circuit Synthesis
	3.3.1 Circuit Descriptions and Designs
	3.3.2 Circuit Manipulations
	3.3.3 Combinational-Circuit Minimization
	3.3.4 Karnaugh Maps

	3.4 Timing Hazards
	3.4.1 Static Hazards
	3.4.2 Finding Static Hazards Using Maps
	3.4.3 Dynamic Hazards
	3.4.4 Designing Hazard-Free Circuits

	References
	Drill Problems
	Exercises

	Chapter 4: Digital Design Practices
	4.1 Documentation Standards
	4.1.1 Block Diagrams
	4.1.2 Gate Symbols
	4.1.3 Signal Names and Active Levels
	4.1.4 Active Levels for Pins
	4.1.5 Constant Logic Signals
	4.1.6 Bubble-to-Bubble Logic Design
	4.1.7 Signal Naming in HDL Models
	4.1.8 Drawing Layout
	4.1.9 Buses
	4.1.10 Additional Schematic Information

	4.2 Circuit Timing
	4.2.1 Timing Diagrams
	4.2.2 Propagation Delay
	4.2.3 Timing Specifications
	4.2.4 Sample Timing Specifications
	4.2.5 Timing Analysis Tools

	4.3 HDL-Based Digital Design
	4.3.1 HDL History
	4.3.2 Why HDLs?
	4.3.3 EDA Tool Suites for HDLs
	4.3.4 HDL-Based Design Flow

	References
	Drill Problems
	Exercises

	Chapter 5: Verilog Hardware Description Language
	5.1 Verilog Models and Modules
	5.2 Logic System, Nets, Variables, and Constants
	5.3 Vectors and Operators
	5.4 Arrays
	5.5 Logical Operators and Expressions
	5.6 Compiler Directives
	5.7 Structural Models
	5.8 Dataflow Models
	5.9 Behavioral Models (Procedural Code)
	5.9.1 Always Statements and Blocks
	5.9.2 Procedural Statements
	5.9.3 Inferred Latches
	5.9.4 Assignment Statements
	5.9.5 begin-end Blocks
	5.9.6 if and if-else Statements
	5.9.7 case Statements
	5.9.8 Looping Statements

	5.10 Functions and Tasks
	5.11 The Time Dimension
	5.12 Simulation
	5.13 Test Benches
	5.14 Verilog Features for Sequential Logic Design
	5.15 Synthesis
	References
	Drill Problems
	Exercises

	Chapter 6: Basic Combinational Logic Elements
	6.1 Read-Only Memories (ROMs)
	6.1.1 ROMs and Truth Tables
	6.1.2 Using ROMs for Arbitrary Combinational Logic Functions
	6.1.3 FPGA Lookup Tables (LUTs)

	6.2 Combinational PLDs
	6.2.1 Programmable Logic Arrays
	6.2.2 Programmable Array Logic Devices

	6.3 Decoding and Selecting
	6.3.1 A More Mathy Decoder Definition
	6.3.2 Binary Decoders
	6.3.3 Larger Decoders
	6.3.4 Decoders in Verilog
	6.3.5 Custom Decoders
	6.3.6 Seven-Segment Decoders
	6.3.7 Binary Encoders

	6.4 Multiplexing
	6.4.1 Gate-Level Multiplexer Circuits
	6.4.2 Expanding Multiplexers
	6.4.3 Multiplexers, Demultiplexers, and Buses
	6.4.4 Multiplexers in Verilog

	References
	Drill Problems
	Exercises

	Chapter 7: More CombinationalBuilding Blocks
	7.1 Three-State Devices
	7.1.1 Three-State Buffers
	7.1.2 Standard MSI Three-State Buffers
	7.1.3 Three-State Outputs in Verilog
	7.1.4 Three-State Outputs in FPGAs

	7.2 Priority Encoding
	7.2.1 Cascading Priority Encoders
	7.2.2 Priority Encoders in Verilog

	7.3 Exclusive-OR Gates and Parity Functions
	7.3.1 Exclusive-OR and Exclusive-NOR Gates
	7.3.2 Parity Circuits
	7.3.3 Parity-Checking Applications
	7.3.4 Exclusive-OR Gates and Parity Circuits in Verilog

	7.4 Comparing
	7.4.1 Comparator Structure
	7.4.2 Iterative Circuits
	7.4.3 An Iterative Comparator Circuit
	7.4.4 Magnitude Comparators
	7.4.5 Comparators in HDLs
	7.4.6 Comparators in Verilog
	7.4.7 Comparator Test Benches
	7.4.8 Comparing Comparator Performance

	7.5 A Random-Logic Example in Verilog
	Drill Problems
	Exercises

	Chapter 8: Combinational Arithmetic Elements
	8.1 Adding and Subtracting
	8.1.1 Half Adders and Full Adders
	8.1.2 Ripple Adders
	8.1.3 Subtractors
	8.1.4 Carry-Lookahead Adders
	8.1.5 Group Ripple Adders
	8.1.6 Group-Carry Lookahead
	8.1.7 MSI Arithmetic and Logic Units
	8.1.8 Adders in Verilog
	8.1.9 Parallel-Prefix Adders
	8.1.10 FPGA CARRY4 Element

	8.2 Shifting and Rotating
	8.2.1 Barrel Shifters
	8.2.2 Barrel Shifters in Verilog

	8.3 Multiplying
	8.3.1 Combinational Multiplier Structures
	8.3.2 Multiplication in Verilog

	8.4 Dividing
	8.4.1 Basic Unsigned Binary Division Algorithm
	8.4.2 Division in Verilog

	References
	Drill Problems
	Exercises

	Chapter 9: State Machines
	9.1 State-Machine Basics
	9.2 State-Machine Structure and Analysis
	9.2.1 State-Machine Structure
	9.2.2 Output Logic
	9.2.3 State-Machine Timing
	9.2.4 Analysis of State Machines with D Flip-Flops

	9.3 State-Machine Design with State Tables
	9.3.1 State-Table Design Example
	9.3.2 State Minimization
	9.3.3 State Assignment
	9.3.4 Synthesis Using D Flip-Flops
	9.3.5 Beyond State Tables

	9.4 State-Machine Design with State Diagrams
	9.4.1 T-Bird Tail Lights Example

	9.5 State-Machine Design with ASM Charts
	9.5.1 T-Bird Tail Lights with ASM Charts

	9.6 State-Machine Design with Verilog
	References
	Drill Problems
	Exercises

	Chapter 10: Sequential Logic Elements
	10.1 Bistable Elements
	10.1.1 Digital Analysis
	10.1.2 Analog Analysis
	10.1.3 Metastable Behavior

	10.2 Latches and Flip-Flops
	10.2.1 S-R Latch
	10.2.2 S-R Latch
	10.2.3 D Latch
	10.2.4 Edge-Triggered D Flip-Flop
	10.2.5 Edge-Triggered D Flip-Flop with Enable
	10.2.6 T Flip-Flops

	10.3 Latches and Flip-Flops in Verilog
	10.3.1 Instance Statements and Library Components
	10.3.2 Behavioral Latch and Flip-Flop Models
	10.3.3 More about clocking in Verilog

	10.4 Multibit Registers and Latches
	10.4.1 MSI Registers and Latches
	10.4.2 Multibit Registers and Latches in Verilog

	10.5 Miscellaneous Latch and Bistable Applications
	10.5.1 Switch Debouncing
	10.5.2 Bus-Holder Circuits

	10.6 Sequential PLDs
	10.7 FPGA Sequential Logic Elements
	10.8 Feedback Sequential Circuits
	10.8.1 Basic Analysis
	10.8.2 Analyzing Circuits with Multiple Feedback Loops
	10.8.3 Feedback Sequential-Circuit Design
	10.8.4 Feedback Sequential Circuits in Verilog

	References
	Drill Problems
	Exercises

	Chapter 11: Counters and Shift Registers
	11.1 Counters
	11.1.1 Ripple Counters
	11.1.2 Synchronous Counters
	11.1.3 A Universal 4-Bit Counter Circuit
	11.1.4 Decoding Binary-Counter States
	11.1.5 Counters in Verilog

	11.2 Shift Registers
	11.2.1 Shift-Register Structure
	11.2.2 Shift-Register Counters
	11.2.3 Ring Counters
	11.2.4 Johnson Counters
	11.2.5 Linear Feedback Shift-Register Counters
	11.2.6 Shift Registers in Verilog
	11.2.7 Timing-Generator Examples
	11.2.8 LFSR Examples

	11.3 Iterative versus Sequential Circuits
	References
	Drill Problems
	Exercises

	Chapter 12: State Machines in Verilog
	12.1 Verilog State-Machine Coding Styles
	12.1.1 Basic Coding Style
	12.1.2 A Verilog State-Machine Example
	12.1.3 Combined State Memory and Next-State Logic
	12.1.4 Reset Inputs
	12.1.5 Pipelined Moore Outputs in Verilog
	12.1.6 Direct Verilog Coding Without a State Table
	12.1.7 State-Machine Extraction

	12.2 Verilog State-Machine Test Benches
	12.2.1 State-Machine Test-Bench Construction Methods
	12.2.2 Example Test Benches
	12.2.3 Instrumenting Next-State Logic for Testing
	12.2.4 In Summary

	12.3 Ones Counter
	12.4 Combination Lock
	12.5 T-Bird Tail Lights
	12.6 Reinventing Traffic-Light Controllers
	12.7 The Guessing Game
	12.8 “Don’t-Care” State Encodings
	12.9 Decomposing State Machines
	12.9.1 The Guessing Game Again

	12.10 The Trilogy Game
	References
	Drill Problems

	Chapter 13: Sequential-CircuitDesign Practices
	13.1 Sequential-Circuit Documentation Practices
	13.1.1 General Requirements
	13.1.2 Logic Symbols
	13.1.3 State-Machine Descriptions
	13.1.4 Timing Diagrams and Specifications

	13.2 Synchronous Design Methodology
	13.2.1 Synchronous System Structure
	13.2.2 A Synchronous System Design Example

	13.3 Difficulties in Synchronous Design
	13.3.1 Clock Skew
	13.3.2 Gating the Clock
	13.3.3 Asynchronous Inputs

	13.4 Synchronizer Failure and Metastability
	13.4.1 Synchronizer Failure
	13.4.2 Metastability Resolution Time
	13.4.3 Reliable Synchronizer Design
	13.4.4 Analysis of Metastable Timing
	13.4.5 Better Synchronizers
	13.4.6 Other Synchronizer Designs

	13.5 Two-Clock Synchronization Example
	References
	Drill Problems
	Exercises

	Chapter 14: Digital Circuits
	14.1 CMOS Logic Circuits
	14.1.1 CMOS Logic Levels
	14.1.2 MOS Transistors
	14.1.3 Basic CMOS Inverter Circuit
	14.1.4 CMOS NAND and NOR Gates
	14.1.5 Fan-In
	14.1.6 Noninverting Gates
	14.1.7 CMOS AND-OR-INVERT and OR-AND-INVERT Gates

	14.2 Electrical Behavior of CMOS Circuits
	14.2.1 Overview
	14.2.2 Data Sheets and Specifications

	14.3 CMOS Static Electrical Behavior
	14.3.1 Logic Levels and Noise Margins
	14.3.2 Circuit Behavior with Resistive Loads
	14.3.3 Circuit Behavior with Nonideal Inputs
	14.3.4 Fanout
	14.3.5 Effects of Loading
	14.3.6 Unused Inputs
	14.3.7 How to Destroy a CMOS Device

	14.4 CMOS Dynamic Electrical Behavior
	14.4.1 Transition Time
	14.4.2 Propagation Delay
	14.4.3 Power Consumption
	14.4.4 Current Spikes and Decoupling Capacitors
	14.4.5 Inductive Effects
	14.4.6 Simultaneous Switching and Ground Bounce

	14.5 Other CMOS Input and Output Structures
	14.5.1 Transmission Gates
	14.5.2 Schmitt-Trigger Inputs
	14.5.3 Three-State Outputs
	14.5.4 Open-Drain Outputs
	14.5.5 Driving LEDs and Relays
	14.5.6 Multisource Buses
	14.5.7 Wired Logic
	14.5.8 Pull-Up Resistors

	14.6 CMOS Logic Families
	14.6.1 HC and HCT
	14.6.2 AHC and AHCT
	14.6.3 HC, HCT, AHC, and AHCT Electrical Characteristics
	14.6.4 AC and ACT
	14.6.5 FCT and FCT-T

	14.7 Low-Voltage CMOS Logic and Interfacing
	14.7.1 3.3-V LVTTL and LVCMOS Logic Levels
	14.7.2 5-V Tolerant Inputs
	14.7.3 5-V Tolerant Outputs
	14.7.4 TTL/LVTTL Interfacing Summary
	14.7.5 Logic Levels Less Than 3.3 V

	14.8 Differential Signaling
	References
	Drill Problems
	Exercises

	Chapter 15: ROMs, RAMs, and FPGAs
	15.1 Read-Only Memory
	15.1.1 Internal ROM Structure
	15.1.2 Two-Dimensional Decoding
	15.1.3 Commercial ROM Types
	15.1.4 Parallel-ROM Interfaces
	15.1.5 Parallel-ROM Timing
	15.1.6 Byte-Serial Interfaces for NAND Flash Memories
	15.1.7 NAND Memory Timing and Access Bandwidth
	15.1.8 Storage Management for NAND Memories

	15.2 Read/Write Memory
	15.3 Static RAM
	15.3.1 Static-RAM Inputs and Outputs
	15.3.2 Static-RAM Internal Structure
	15.3.3 Static-RAM Timing
	15.3.4 Standard Asynchronous SRAMs
	15.3.5 Synchronous SRAM

	15.4 Dynamic RAM
	15.4.1 Dynamic-RAM Structure
	15.4.2 SDRAM Timing
	15.4.3 DDR SDRAMs

	15.5 Field-Programmable Gate Arrays (FPGAs)
	15.5.1 Xilinx 7-Series FPGA Family
	15.5.2 CLBs and Other Logic Resources
	15.5.3 Input/Output Block
	15.5.4 Programmable Interconnect

	References
	Drill Problems
	Exercises

	Index

